WO2011122421A1 - 樹脂組成物、成形体、及び電気電子機器用筐体 - Google Patents

樹脂組成物、成形体、及び電気電子機器用筐体 Download PDF

Info

Publication number
WO2011122421A1
WO2011122421A1 PCT/JP2011/057032 JP2011057032W WO2011122421A1 WO 2011122421 A1 WO2011122421 A1 WO 2011122421A1 JP 2011057032 W JP2011057032 W JP 2011057032W WO 2011122421 A1 WO2011122421 A1 WO 2011122421A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
aromatic polycarbonate
cellulose ester
cellulose
Prior art date
Application number
PCT/JP2011/057032
Other languages
English (en)
French (fr)
Inventor
健志 梅原
哲文 高本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011122421A1 publication Critical patent/WO2011122421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a resin composition, a molded body, and a housing for electric and electronic equipment.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene resin
  • PC / ABS etc.
  • These resins are produced by reacting compounds obtained from petroleum as a raw material.
  • fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years.
  • Cellulose is gaining great attention as a biomass material that can be regenerated on the earth obtained from plants and as a biodegradable material in the environment.
  • Cellulose is not only used for paper, but cellulose derivatives, for example, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate are used as film materials and the like.
  • Patent Document 2 describes a transmission type light scattering sheet comprising a sea polymer and two kinds of island polymers. Specifically, cellulose triacetate is used as the sea polymer, polymethyl methacrylate is used as the island polymer, and acrylonitrile. -Sheets of styrene copolymers are disclosed.
  • Patent Document 3 a sheet is produced by extrusion molding using a cellulose-based resin composition having a continuous phase composed of a plasticized cellulose derivative and a dispersed phase composed of a thermoplastic resin such as polystyrene. It is described to do.
  • a resin composition containing a cellulose ester has a sea-island structure in which the morphology is a continuous phase composed of a cellulose ester and a dispersed phase composed of another polymer as described in Patent Document 2 or 3.
  • the morphology is a continuous phase composed of a cellulose ester and a dispersed phase composed of another polymer as described in Patent Document 2 or 3.
  • the present invention has been made by paying attention to the above problems in a resin composition using a cellulose ester, and its purpose is to provide flame retardancy and impact as a novel resin composition that can be used in various applications. It is providing the resin composition from which the molded object excellent in intensity
  • strength is obtained. Another object of the present invention is to provide a molded article excellent in flame retardancy and impact strength, and a casing for electrical and electronic equipment composed of the molded article.
  • the present inventors have found that the above object can be achieved by the following means.
  • a resin composition comprising a cellulose ester and an aromatic polycarbonate resin, The weight ratio of the aromatic polycarbonate resin to the cellulose ester is 0.4 to 1, The aromatic polycarbonate resin has a number average molecular weight of 10,000 to 26000, A resin composition having a sea-island type phase-separated structure in which the morphology includes a continuous phase of an aromatic polycarbonate resin and a dispersed phase of a cellulose ester. 2.
  • the cellulose ester is at least one cellulose ester selected from the group consisting of cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the resin composition of the present invention a molded article having excellent flame retardancy and impact strength can be obtained. Moreover, since the molded object of this invention is excellent in a flame retardance and impact strength, it can be used conveniently, for example as components, such as a motor vehicle, a household appliance, and an electric electronic device, a machine part, a house and a building material. Moreover, since the resin composition of the present invention uses a cellulose ester resin obtained from cellulose, which is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to prevention of global warming. .
  • the present invention is a resin composition comprising a cellulose ester and an aromatic polycarbonate resin,
  • the weight ratio of the aromatic polycarbonate resin to the cellulose ester is 0.4 to 1
  • the aromatic polycarbonate resin has a number average molecular weight of 10,000 to 26000
  • the present invention relates to a resin composition having a sea-island type phase separation structure (sea-island structure) in which the morphology includes a continuous phase of an aromatic polycarbonate resin and a dispersed phase of cellulose ester.
  • the resin composition of the present invention has a sea-island structure in which the morphology has a continuous phase and a dispersed phase, and the cellulose ester forms the dispersed phase.
  • the shape of a dispersed phase is not specifically limited, For example, arbitrary shapes, such as scale shape, columnar shape, and spherical shape, may be sufficient. This is because the shape of the dispersed phase is changed by heat, pressurization, and shearing force when it is molded into a molded body, so that there is almost no influence on the obtained molded body.
  • the average length of the minor axis of the dispersed phase is not particularly limited, but is preferably 1.0 ⁇ m or more, more preferably 1.0 to 20 ⁇ m, and still more preferably 1.0 to 10 ⁇ m.
  • the average aspect ratio (major axis / minor axis) of the dispersed phase is not particularly limited, but is preferably 5 or more, more preferably 5 to 100, and still more preferably 10 to 50.
  • the morphology of the resin composition can be observed with, for example, an electron microscope.
  • the cellulose ester in the present invention is not particularly limited.
  • Cellulose esters are usually produced by esterifying cellulose such as wood pulp (conifer pulp, hardwood pulp) and cotton linter pulp.
  • the cellulose ester can be produced by a conventional esterification method in which cellulose is reacted with an acylating agent, and can be produced through a saponification or aging step as necessary.
  • Cellulose esters are usually prepared by activating pulp (cellulose) with an activating agent (activation step) and then preparing an ester (such as a triester) with an acylating agent using a catalyst such as sulfuric acid (acylation step). ), Saponification (hydrolysis) and aging to adjust the degree of esterification (saponification and aging step).
  • cellulose acetate it can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
  • the ratio of the acylating agent in the acylation step can be selected within a range that provides a desired degree of acylation (eg, degree of acetylation). For example, 230 to 300 parts by mass, preferably 240 parts per 100 parts by mass of pulp (cellulose). 290 parts by mass, more preferably 250-280 parts by mass. In the case of cellulose acetate, for example, acetic anhydride can be used as the acylating agent.
  • sulfuric acid is usually used as the acylation or aging catalyst.
  • the amount of sulfuric acid used is usually 0.5 to 15 parts by mass, preferably 5 to 15 parts by mass, and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of cellulose.
  • the temperature for saponification / ripening can be selected from the range of 40 to 160 ° C., for example, 50 to 70 ° C.
  • it may be treated with an alkali.
  • cellulose ester examples include organic acid esters [cellulose carboxylic acid esters with carboxylic acids having 2 to 6 carbon atoms such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, etc.), mixed esters (cellulose acetate, etc.).
  • cellulose carboxylic acid esters with carboxylic acids having 2 to 6 carbon atoms such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, etc.
  • mixed esters cellulose acetate, etc.
  • Propionate cellulose dicarboxylic acid ester with carboxylic acid having 2 to 6 carbon atoms such as cellulose acetate butyrate), graft (polycaprolactone grafted cellulose acetate, etc.), inorganic acid ester (cellulose nitrate, cellulose sulfate, phosphorus Acid cellulose, etc.), organic acids, inorganic acid mixed esters (such as cellulose nitrate acetate) and the like.
  • cellulose organic acid esters modified with an organic acid are preferable, and cellulose organic acid esters modified with an organic acid having 2 to 12 carbon atoms are more preferable.
  • cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose propionate butyrate and the like are preferable, cellulose acetate, cellulose propionate, Cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose propionate butyrate are more preferred, and cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate are in terms of viscosity ratio with aromatic polycarbonate resin Especially preferred is cellulose acetate propionate.
  • These cellulose esters may be used alone or in combination of two or more.
  • the total average degree of substitution (acyl substitution degree) of the cellulose ester is preferably 2.0 to 2.8, more preferably 2.2 to 2.7 from the viewpoint of impact resistance.
  • the average degree of acetylation can be selected from the range of 30 to 62.5%, and the average degree of acetylation is usually 43.7 to 62.5% (average substitution degree of acetyl group 1.7 to 3), preferably Is 45 to 62.5% (average substitution degree 1.8 to 3), more preferably 48 to 62.5% (average substitution degree 2 to 3).
  • the degree of polymerization of the cellulose ester is not particularly limited, and is a viscosity average degree of polymerization of 200 to 400, preferably 250 to 400, and more preferably 270 to 350. By setting the viscosity average degree of polymerization within this range, it becomes easy to form a dispersed phase having a sea-island structure.
  • the molecular weight of the cellulose ester in the present invention is preferably a number average molecular weight (Mn) in the range of 50 ⁇ 10 3 to 100 ⁇ 10 3 , more preferably in the range of 55 ⁇ 10 3 to 80 ⁇ 10 3 , and 60 ⁇ 10 3 to A range of 75 ⁇ 10 3 is most preferred.
  • the weight average molecular weight (Mw) is preferably in the range of 100 ⁇ 10 3 to 300 ⁇ 10 3 , more preferably in the range of 140 ⁇ 10 3 to 275 ⁇ 10 3 , and in the range of 150 ⁇ 10 3 to 250 ⁇ 10 3 . Is most preferred. By setting the average molecular weight within this range, the moldability, the mechanical strength of the molded body, and the like can be improved.
  • the molecular weight distribution (MWD) is preferably in the range of 1.1 to 10.0, and more preferably in the range of 1.5 to 8.0. By setting the molecular weight distribution within this range, moldability and the like can be improved.
  • the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
  • the cellulose ester in the present invention can be produced by a known method. Moreover, a commercial item can also be used. For example, as cellulose acetate propionate, “482-20 (acetyl substitution degree: 0.1, propionyl substitution degree: 2.5, Mn: 73000, Mw: 234000)” manufactured by Eastman Chemical Co., Ltd. is cellulose acetate butyrate. As the rate, "cellulose acetate butyrate (acetyl substitution degree: 0.4, butyrate substitution degree: 1.1, Mn: 70000)” manufactured by Aldrich, Eastman Chemical Co., "381-20 (acetyl substitution degree: 0.
  • the content of the cellulose ester contained in the resin composition of the present invention is not particularly limited.
  • the cellulose ester is preferably contained in an amount of 30 to 70% by mass, more preferably 40 to 65% by mass, and still more preferably 50 to 60% by mass with respect to the total solid content of the resin composition. By setting it as this range, it becomes easy to form a sea-island structure using cellulose ester as a dispersed phase. In addition, the impact strength, flame retardance, and moldability of the molded body can be further suppressed while having significance as a carbon neutral material.
  • Aromatic polycarbonate-based resin The resin composition of the present invention has a sea-island structure in which the morphology has a continuous phase and a dispersed phase, and the aromatic polycarbonate-based resin constitutes the continuous phase.
  • aromatic polycarbonate-based resin examples include thermoplastic aromatic polycarbonate polymers or copolymers obtained by reacting an aromatic dihydroxy compound with phosgene or a carbonic acid diester.
  • Bisphenol A is preferable.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound, or a polymer or oligomer having a siloxane structure and containing both terminal phenolic OH groups is used. Can do.
  • the aromatic polycarbonate resin that can be used in the present invention is preferably a polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane. And polycarbonate copolymers derived from other aromatic dihydroxy compounds. Further, two or more aromatic polycarbonate resins may be used in combination.
  • the molecular weight of the aromatic polycarbonate resin in the present invention is in the range of 10000 to 26000 in terms of number average molecular weight, preferably in the range of 12000 to 25500, and more preferably in the range of 15000 to 25000.
  • the aromatic polycarbonate resin has a viscosity at which it is easy to form a continuous phase in the sea-island structure, and the resulting molded article has excellent impact strength and flame retardancy. It will be a real thing.
  • the number average molecular weight is determined using a converted molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene using N-methylpyrrolidone as a solvent and using a polystyrene gel.
  • GPC apparatus HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
  • the method for producing the aromatic polycarbonate resin in the present invention is not limited, and may be a phosgene method (interfacial polymerization method), a melting method (transesterification method), or a non-phosgene method using carbon dioxide as a raw material. Can be manufactured. Furthermore, an aromatic polycarbonate resin prepared by a melting method and having an adjusted amount of terminal OH groups can be used.
  • aromatic polycarbonate resin not only virgin raw materials but also aromatic polycarbonate resins regenerated from used products, so-called material recycled aromatic polycarbonate resins can be used.
  • Used products include optical recording media such as optical discs, light guide plates, automobile window glass and automobile headlamp lenses, vehicle transparent members such as windshields, containers such as water bottles, eyeglass lenses, soundproof walls and glass windows, waves A building member such as a plate is preferred.
  • recycled aromatic polycarbonate resin non-conforming product, pulverized product obtained from sprue or runner or pellets obtained by melting them can be used.
  • a commercially available product can be used as the aromatic polycarbonate resin.
  • the content of the aromatic polycarbonate resin contained in the resin composition of the present invention is not particularly limited.
  • the aromatic polycarbonate resin is preferably contained in an amount of 20 to 60% by mass, more preferably 30 to 55% by mass, and still more preferably 35 to 50% by mass with respect to the total solid content of the resin composition.
  • the mass ratio of the aromatic polycarbonate resin to the cellulose ester is 0.4 to 1, preferably 0.5 to 1. More preferably, it is 0.6 to 1.
  • the resin composition of the present invention may contain a flame retardant.
  • a flame retardant By containing a flame retardant, a flame retardant effect such as reduction or suppression of the combustion rate can be improved.
  • the flame retardant is not particularly limited, and a conventional flame retardant can be used.
  • a nitrogen compound flame retardant, an inorganic flame retardant, a halogen flame retardant, a phosphorus flame retardant, a silicone flame retardant, and the like can be given.
  • a flame retardant containing at least one selected from the group consisting of a phosphorus flame retardant, a nitrogen compound flame retardant, and a silicone flame retardant is preferable.
  • flame retardants are pyrolyzed when they are combined with resin or in molding process, and hydrogen halide is generated in comparison with commonly used brominated flame retardants and chlorinated flame retardants. It does not corrode or deteriorate the work environment, and is less likely to have a negative impact on the environment due to the generation of harmful substances such as dioxins when halogens dissipate during incineration. There is. Furthermore, a flame retardant containing a phosphorus-based flame retardant is more preferable from the viewpoint of hygroscopicity. Since the phosphorus-based flame retardant is excellent in compatibility with the aromatic polycarbonate resin, it also has an advantage of contributing to the formation of a sea-island structure.
  • the phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used.
  • organic phosphorus compounds such as phosphoric acid esters, phosphoric acid condensed esters, and polyphosphates may be mentioned. From the viewpoint of hygroscopicity, phosphoric acid esters and phosphoric acid condensed esters are preferable.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxye
  • Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof.
  • Aromatic phosphoric acid condensed esters such as the above, condensates of the above phosphoric acid esters and the like.
  • the molecular weights of these phosphate esters are not particularly limited, but are preferably 400 to 1500 and more preferably 500 to 1000 from the viewpoint of suppressing bleed out.
  • polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned.
  • lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
  • phosphorus-containing flame retardants may be used singly or in combination of two or more.
  • These phosphorus flame retardants can be produced by a known method. Commercially available products can also be used, such as “PX-200, 1,3-phenylenebis (di-2,6-xylenyl phosphate) (manufactured by Daihachi Chemical)” which is a phosphoric acid condensed ester. “PX-202 (manufactured by Daihachi Chemical)” and the like can be mentioned. These phosphorus-based flame retardants may be used alone or in combination of two or more.
  • Nitrogen compound flame retardants include aliphatic amine compounds, aromatic amine compounds, nitrogen-containing heterocyclic compounds, cyanide compounds, aliphatic amides, aromatic amides, urea, thiourea, nitrogen-containing sulfates, sulfamate salts, melamines
  • Examples include cyanurate.
  • Examples of the aliphatic amine include ethylamine, butylamine, diethylamine, ethylenediamine, butylenediamine, triethylenetetramine, 1,2-diaminocyclohexane, 1,2-diaminocyclooctane and the like.
  • the aromatic amine include aniline and phenylenediamine.
  • nitrogen-containing heterocyclic compounds include uric acid, adenine, guanine, 2,6-diaminopurine, 2,4,6-triaminopyridine, and triazine compounds.
  • cyan compound examples include dicyandiamide.
  • examples of the aliphatic amide include N, N-dimethylacetamide.
  • Examples of aromatic amides include N, N-diphenylacetamide.
  • nitrogen-containing sulfate examples include ammonium sulfate, dimethylamine sulfate, trimethylamine sulfate, diethylamine sulfate, triethylamine sulfate, diphenylamine sulfate, triphenylamine sulfate, guanidine sulfate, guanylurea sulfate, melamine sulfate, and combinations thereof. Guanidine sulfate, guanyl urea sulfate, melamine sulfate, or combinations thereof.
  • melamine sulfate and guanidine sulfate are more preferable, and melamine sulfate is more preferable.
  • the sulfamate include those having 2 or more nitrogen atoms in the molecule. Specific examples include ammonium sulfamate, guanidine sulfamate, guanylurea sulfamate, melamine sulfamate, dimethylamine sulfamate, trimethylamine sulfamate, diethylamine sulfamate, triethylamine sulfamate, triphenylamine sulfamate or a combination thereof.
  • guanidine sulfamate, guanylurea sulfamate, melamine sulfamate or a combination thereof is preferable, guanidine sulfamate, guanylurea sulfamate, diethylamine sulfamate, triethylamine sulfamate is more preferable, and guanidine sulfamate and guanylurea sulfamate are preferable. Further preferred.
  • the triazine compounds exemplified above are nitrogen-containing heterocyclic compounds having a triazine skeleton, and are triazine, melamine, benzoguanamine, methylguanamine, cyanuric acid, melamine cyanurate, melamine isocyanurate, trimethyltriazine, triphenyltriazine, amelin, and amelide.
  • thiocyanuric acid diaminomercaptotriazine, diaminomethyltriazine, diaminophenyltriazine, diaminoisopropoxytriazine and the like.
  • melamine cyanurate or melamine isocyanurate an adduct of cyanuric acid or isocyanuric acid and a triazine compound is preferable, usually an addition having a composition of 1 to 1 (molar ratio), optionally 1 to 2 (molar ratio).
  • Melamine cyanurate and melamine isocyanurate are produced by known methods. For example, a mixture of melamine and cyanuric acid or isocyanuric acid is made into a water slurry and mixed well to form both salts in the form of fine particles. Thereafter, the slurry is generally obtained in the form of powder after filtration and drying.
  • the salt does not need to be completely pure, and some unreacted melamine, cyanuric acid or isocyanuric acid may remain.
  • the average particle size of melamine cyanurate or melamine isocyanurate before blending with the resin is preferably 100 to 0.01 ⁇ m, more preferably 80 from the viewpoint of flame retardancy, mechanical strength and surface property of the molded product. ⁇ 1 ⁇ m.
  • nitrogen-containing heterocyclic compounds are preferable, among which triazine compounds are preferable, and melamine cyanurate is more preferable.
  • a dispersant such as tris ( ⁇ -hydroxyethyl) isocyanurate or a known surface treatment agent such as polyvinyl alcohol or metal oxide may be used in combination. Good.
  • These nitrogen compound flame retardants may be used singly or in combination of two or more.
  • silicone flame retardant examples include a two-dimensional or three-dimensional organosilicon compound, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
  • These silicon-containing flame retardants may be used alone or in combination of two or more.
  • flame retardants other than phosphorus flame retardants, nitrogen compound flame retardants, and silicone flame retardants include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate. , Zinc stannate, metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, tungstic metal salt Inorganic flame retardants such as composite oxides of tungsten and metalloid, zirconium compounds, guanidine compounds, fluorine compounds, graphite, and swellable graphite can be used.
  • a flame retardant may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the resin composition of the present invention contains a flame retardant
  • its content is not limited, but is preferably 30% by mass or less, more preferably 10 to 25% by mass, based on the total solid content of the resin composition. By setting it as this range, a flame retardance, impact resistance, brittleness, etc. can be improved more and generation
  • Fluorine-based resin The resin composition of the present invention preferably further contains a fluorine-based resin. This is to prevent drip when the molded body burns and to obtain higher flame retardancy.
  • the fluororesin in the present invention is a resin containing fluorine in a substance molecule, specifically, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene.
  • Perfluoroalkyl vinyl ether copolymer tetrafluoroethylene / ethylene copolymer, hexafluoropropylene / propylene copolymer, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymer, etc., among which polytetrafluoro Ethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / ethylene copolymer, polyvinylidene fluoride
  • polytetrafluoroethylene and tetrafluoroethylene / ethylene copolymers are preferred, and polytetrafluoroethylene is more preferred, and polytetrafluoroethylene-containing mixed powder comprising polytetrafluoroethylene particles and an organic polymer.
  • the body is also preferably used.
  • the molecular weight of the fluororesin such as polytetrafluoroethylene is preferably in the range of 100,000 to 10,000,000, more preferably in the range of 100,000 to 1,000,000, especially for the extrudability and flame retardancy of the present invention. effective.
  • Commercially available products of polytetrafluoroethylene include “Teflon (registered trademark)” 6-J, “Teflon (registered trademark)” 6C-J, and “Teflon (registered trademark)” 62 manufactured by Mitsui DuPont Fluorochemical Co., Ltd. -J, “Full-on” CD1 and CD076 manufactured by Asahi IC Fluoropolymers Co., Ltd.
  • a polytetrafluoroethylene-containing mixed powder composed of polytetrafluoroethylene particles and an organic polymer is excellent in handling properties and dispersibility, and is particularly preferably used.
  • the polytetrafluoroethylene-containing mixed powder composed of the polytetrafluoroethylene particles and the organic polymer is not limited, but polytetrafluoroethylene disclosed in Japanese Patent Application Laid-Open No. 2000-226523. Examples thereof include polytetrafluoroethylene-containing mixed powder composed of particles and an organic polymer.
  • the organic polymer include aromatic vinyl monomers, acrylate monomers, and vinyl cyanide.
  • An organic polymer containing 10% by mass or more of a monomer may be a mixture thereof.
  • the polytetrafluoroethylene content in the polytetrafluoroethylene-containing mixed powder is 0.1% by mass to 90% by mass. It is preferable that it is mass%.
  • the blending amount of the fluororesin in the resin composition of the present invention is preferably 3 to 0.01% by mass, more preferably 2 to 0.02% by mass, and still more preferably 1 to 0.03% by mass. . By setting it as this range, a flame retardance can be improved more, suppressing the influence on a moldability.
  • the resin composition of the present invention contains a cellulose ester resin and an aromatic polycarbonate resin, and can contain a flame retardant and a fluorine resin as necessary.
  • the resin composition of the present invention may contain various additives such as a plasticizer, a compatibilizer, an antioxidant, and a filler (reinforcing material) as necessary.
  • the resin composition of the present invention may contain a plasticizer.
  • a plasticizer those commonly used for polymer molding can be used.
  • phosphate esters such as triphenyl phosphate (TPP) and tricresyl phosphate (TCP), dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), di-2- Phthalate esters such as ethylhexyl phthalate (DEHP), fatty acid esters such as butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, citrate esters such as acetyl tributyl citrate (OACTB), trimellitic acid esters, polyester plasticizers Glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers and epoxy plasticizers.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid.
  • Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid
  • Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols.
  • a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
  • plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid
  • aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
  • the resin composition of the present invention contains a plasticizer
  • it may be one type or two or more types, and the content thereof is preferably 30% by mass or less, based on the total solid content of the resin composition, 0.005 to It is more preferably 20% by mass, still more preferably 0.01 to 10% by mass.
  • the resin composition of the present invention may contain a compatibilizing agent.
  • the compatibilizing agent is used for compatibilizing the cellulose ester and the aromatic polycarbonate resin in the present invention.
  • the compatibilizing agent can further improve performance such as impact resistance of the molded article by improving the interfacial strength between the cellulose ester and the aromatic polycarbonate resin.
  • the compatibilizing agent preferably has a reactive group, and more preferably a carboxylic acid anhydride or a compound having at least one selected from an epoxy group, an isocyanate group, and an oxazoline group.
  • Preferred compatibilizers include polymers modified with carboxylic acid anhydrides, epoxy groups, isocyanate groups, and oxazoline groups, block copolymers, graft polymers, random copolymers, and various nonionic surfactants. Agents, coupling agents, and crosslinking agents.
  • the compatibilizer is not particularly limited, specifically, Modiper series manufactured by Nippon Oil & Fats Co., Ltd., Bond First, Bondine series manufactured by Sumitomo Chemical Co., Ltd., Lexpearl series manufactured by Nippon Oil Co., Ltd., Commercial products such as Reseda series manufactured by Toagosei Co., Ltd., Alfon series, Epocross series manufactured by Nippon Shokubai Co., Ltd., and Duranate series manufactured by Asahi Kasei Chemicals Co., Ltd. (both are trade names) are preferably used.
  • the compatibilizer is not limited to these, and the compatibilizer described in “Plastic compatibilizer development / evaluation / recycling” (CMC Publishing Co., Ltd.) can also be suitably used.
  • the content of the compatibilizer in the resin composition of the present invention is preferably from 0.1 to 30% by mass, more preferably from 0.5 to 20% by mass, based on the total solid content of the resin composition.
  • the resin composition of the present invention may contain an antioxidant.
  • the antioxidant include phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like, and phenol-based antioxidants are preferable.
  • phenolic antioxidant Irganox 1010, Irganox 1076, Irganox 3114, etc. manufactured by Ciba Specialty Chemicals Co., Ltd., or Adekastab PEP-36 manufactured by Asahi Denka Co., Ltd. can be suitably used.
  • the resin composition of the present invention contains an antioxidant, its content is not limited, but is preferably 30% by mass or less, more preferably 0.01 to 10%, based on the total solid content of the resin composition. % By mass. By setting it within this range, the resin can obtain a sufficient stability improving effect against heating in the kneading or molding process, which is preferable.
  • the resin composition of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the molded body formed from the resin composition can be enhanced.
  • a filler A well-known thing can be used as a filler.
  • the shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
  • the inorganic filler glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gy
  • Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the content is not limited, but is preferably 30% by mass or less, more preferably 5 to 10% by mass with respect to the total solid content of the resin composition.
  • the resin composition of the present invention contains other components for the purpose of further improving various properties such as moldability, impact strength, and flame retardancy, as long as the object of the present invention is not impaired. You may go out.
  • other components include polymers other than the cellulose ester, stabilizers (ultraviolet absorbers, etc.), mold release agents (fatty acids, fatty acid metal salts, oxy fatty acids, fatty acid esters, aliphatic partially saponified esters, paraffin, low molecular weight Polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, processing aid, antibacterial agent, Antifungal agents and the like can be mentioned.
  • a coloring agent containing a dye or a pigment can be added.
  • thermoplastic polymer As the polymer other than the cellulose ester, either a thermoplastic polymer or a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability.
  • polymers other than cellulose ester resins include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene- Butene-1 copolymers, polypropylene homopolymers, polypropylene copolymers (such as ethylene-propylene block copolymers), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters Polyester such as nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, Reacetal
  • a multi-layer structure polymer called a so-called core-shell rubber which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
  • These polymers may be used alone or in combination of two or more.
  • the content thereof is preferably 30% by mass or less, more preferably 2 to 10% by mass with respect to the total solid content of the resin composition.
  • the resin composition of the present invention can be used for various purposes. For example, it is good also as a film by melt
  • the present invention is a molded body obtained from a resin composition containing a cellulose ester and an aromatic polycarbonate resin, A sea-island type phase-separated structure whose morphology has a continuous phase of aromatic polycarbonate resin and a dispersed phase of cellulose ester,
  • the present invention also relates to a molded article having an average minor axis length of the dispersed phase of 1.0 ⁇ m or more and an average aspect ratio (major axis / minor axis) of the dispersed phase of 5 or more.
  • the average length of the minor axis of the dispersed phase is 1.0 ⁇ m or more, and the average of the dispersed phase
  • the molded article of the present invention has a sea-island structure in which the morphology has a continuous phase and a dispersed phase, and the cellulose ester forms the dispersed phase.
  • the average length of the minor axis of the dispersed phase is 1.0 ⁇ m or more, preferably 1.0 to 20 ⁇ m, more preferably 1.0 to 10 ⁇ m.
  • the average aspect ratio (major axis / minor axis) of the dispersed phase is 5 or more, preferably 5 to 100, more preferably 10 to 50.
  • the shape of the particles of the dispersed phase is not particularly limited as long as it has the average length of the minor axis and the average aspect ratio, and can be any shape such as a scale shape or a column shape.
  • the morphology can be observed with an electron microscope, for example.
  • Aromatic polycarbonate-type resin The molded object of this invention is a sea-island structure in which a morphology has a continuous phase and a dispersed phase, and aromatic polycarbonate-type resin comprises this continuous phase.
  • Content of the aromatic polycarbonate-type resin contained in the molded object of this invention is not specifically limited.
  • the mass ratio to the cellulose ester is preferably 0.4 to 1, more preferably 0.5 to 1. By setting it as this range, the polycarbonate resin is likely to be a continuous phase, and the impact strength, flame retardancy, and moldability of the molded product can be further improved.
  • There is no limitation in particular as an aromatic polycarbonate-type resin in the molded object of this invention It is the same as that of the aromatic polycarbonate-type resin demonstrated with the said resin composition.
  • the molded object of this invention is obtained by shape
  • the molded article of the present invention can be obtained by a production method including a step of heating the resin composition containing various additives as necessary and molding the resin composition by various molding methods.
  • the molding method examples include injection molding, extrusion molding, blow molding, and the like, and it is preferable to perform by injection molding. This is because a dispersed phase in which the average length of the short axis and the average aspect ratio are within the above ranges can be easily obtained by injection molding. Further, the heating temperature at the time of molding is preferably from 180 to 260 ° C., more preferably from 200 to 250 ° C., because the decomposition of the cellulose ester can be suppressed.
  • the use of the molded article of the present invention is not particularly limited.
  • interior or exterior parts of electric and electronic equipment home appliances, OA / media related equipment, optical equipment, communication equipment, etc.
  • automobiles mechanical parts And materials for housing and construction.
  • exterior parts especially casings
  • electrical and electronic equipment such as copiers, printers, personal computers, and televisions.
  • Examples 1 to 19 and Comparative Examples 1 to 4 [Production of molded body] Cellulose ester, aromatic polycarbonate-based resin, flame retardant and other components were mixed at a blending ratio (mass%) shown in Tables 1 and 2 to prepare a resin composition.
  • This resin composition was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., ULTnano) to produce pellets, and the pellets obtained were then injected into an injection molding machine (FANUC Corporation Robot S-2000i, automatic injection molding). Machine), 4 ⁇ 10 ⁇ 80 mm multi-purpose test pieces were molded.
  • PTFE 6J E-1 Polystyrene (“HRM63X” manufactured by Toyo Styrene Co., Ltd.)
  • HRM63X Polystyrene
  • the resin composition and the test piece are observed with an electron microscope, the constituents constituting the continuous phase in the resin composition and the test piece, the average length of the short axis and the average aspect ratio of the short axis of the disperse phase in the test piece (long axis / (Short axis) was measured. Thirty dispersed phases were randomly selected from an image obtained from an electron microscope, and those having an average length of the minor axis of the dispersed phase of 1.0 ⁇ m or more were rated as “ ⁇ ” and those having a minor axis of less than 1.0 ⁇ m as “x”. Moreover, the thing whose average aspect-ratio of a short axis is 5 or more was made into (circle) and less than 5 and x.
  • the electron microscope used was an S-5500 SEM manufactured by Hitachi High-Technologies.
  • the molded body produced from the pellets having a sea-island structure in which the aromatic polycarbonate-based resin is a continuous phase and the cellulose ester is a dispersed phase has good flame retardancy and impact strength.
  • a molded body produced from a pellet having a sea-island structure in which cellulose ester is a continuous phase and aromatic polycarbonate resin is a dispersed phase is inferior in both flame retardancy and impact strength.
  • the molded product having 5 (axis / minor axis) is good in both flame retardancy and impact strength.
  • a molded product having a sea-island structure in which cellulose ester is a continuous phase and aromatic polycarbonate-based resin is a dispersed phase is inferior in both flame retardancy and impact strength.
  • the aromatic polycarbonate-based resin has a sea-island structure in which the cellulose ester is a dispersed phase and the cellulose ester is a dispersed phase, but the average minor axis of the dispersed phase is less than 1.0 ⁇ m, or the average aspect ratio of the dispersed phase (major axis)
  • a molded product having a / minor axis of less than 5 was inferior in impact strength.
  • the resin composition of the present invention a molded article having excellent flame retardancy and impact strength can be obtained. Moreover, since the molded object of this invention is excellent in a flame retardance and impact strength, it can be used conveniently, for example as components, such as a motor vehicle, a household appliance, and an electric electronic device, a machine part, a house and a building material. Moreover, since the resin composition of the present invention uses a cellulose ester resin obtained from cellulose, which is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to prevention of global warming. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 難燃性と衝撃強度に優れた成形体が得られる樹脂組成物を提供する。また、難燃性と衝撃強度に優れた成形体、及び該成形体から構成される電気電子機器用筐体を提供する。 セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物であって、該セルロースエステルに対する該芳香族ポリカーボネート系樹脂の質量比が0.4~1であり、該芳香族ポリカーボネート系樹脂の数平均分子量は、10000~26000であり、モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造である樹脂組成物。

Description

樹脂組成物、成形体、及び電気電子機器用筐体
 本発明は、樹脂組成物、成形体、及び電気電子機器用筐体に関する。
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献1)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
 セルロースは植物から得られる地球上で再生産可能なバイオマス材料として、また環境中にて生分解可能な材料として、昨今の大きな注目を集めつつある。セルロースは紙に用いられるばかりではなく、その誘導体であるセルロースエステルは、例えばセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート等が、フィルム材料等として用いられている。
 また、例えば特許文献2では、海ポリマーと2種の島ポリマーからなる透過型光散乱シートが記載されており、具体的には、海ポリマーとしてセルローストリアセテート、島ポリマーとしてポリメタクリル酸メチル、及びアクリロニトリル-スチレン共重合体からなるシートが開示されている。
 また、特許文献3では、可塑化されたセルロース誘導体で構成された連続相と、ポリスチレン等の熱可塑性樹脂で構成された分散相とを有するセルロース系樹脂組成物を用いて押出成形によりシートを作製することが記載されている。
日本国特開2008-24919号公報 日本国特開2000-239541号公報 日本国特開2003-306577号公報
 本発明者らの検討により、セルロースエステルを含む樹脂組成物は、特許文献2又は3に記載のようにそのモルフォロジーがセルロースエステルからなる連続相と他のポリマーからなる分散相とを有する海島構造である場合、該樹脂組成物から得られる成形体は衝撃強度及び難燃性の観点で問題があることがわかった。
 本発明は、セルロースエステルを用いた樹脂組成物における上記課題に着目してなされたものであって、その目的は、様々な用途に用いることができる新規な樹脂組成物として、難燃性と衝撃強度に優れた成形体が得られる樹脂組成物を提供することである。また、本発明の別の目的は、難燃性と衝撃強度に優れた成形体、及び該成形体から構成される電気電子機器用筐体を提供することである。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、以下の手段により上記目的を達成することができることを見出した。
1.
 セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物であって、
 該セルロースエステルに対する該芳香族ポリカーボネート系樹脂の質量比が0.4~1であり、
 該芳香族ポリカーボネート系樹脂の数平均分子量は、10000~26000であり、
 モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造である樹脂組成物。
2.
 前記セルロースエステルが、セルロースアセテート、セルロースアセテートプロピオネート及びセルロースアセテートブチレートからなる群より選ばれる少なくとも1種のセルロースエステルである上記1に記載の樹脂組成物。
3.
 更に、リン系難燃剤、窒素化合物系難燃剤、及びシリコーン系難燃剤からなる群より選ばれる少なくとも1種の難燃剤を含む上記1又は2に記載の樹脂組成物。
4.
 前記リン系難燃剤がリン酸エステルである上記3に記載の樹脂組成物。
5.
 更に、フッ素系樹脂を含む上記1~4のいずれか1項に記載の樹脂組成物。
6.
 セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物から得られる成形体であって、
 モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造であり、
 該分散相の短軸の平均長が1.0μm以上であり、かつ該分散相の平均アスペクト比(長軸/短軸)が5以上である成形体。
7.
 上記1~5のいずれか1項に記載の樹脂組成物を成形して得られる成形体。
8.
 上記6又は7に記載の成形体から構成される電気電子機器用筐体。
 本発明の樹脂組成物によれば、難燃性と衝撃強度に優れた成形体を得ることができる。また、本発明の成形体は難燃性と衝撃強度に優れるため、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の樹脂組成物は、植物由来の樹脂であるセルロースから得られるセルロースエステル系樹脂を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替でき得る。
(I)樹脂組成物
 本発明は、セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物であって、
 該セルロースエステルに対する該芳香族ポリカーボネート系樹脂の質量比が0.4~1であり、
 該芳香族ポリカーボネート系樹脂の数平均分子量は、10000~26000であり、
 モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造(海島構造)である樹脂組成物に関する。
1.セルロースエステル
 本発明の樹脂組成物は、モルフォロジーが連続相と分散相を有する海島構造であり、セルロースエステルは該分散相を形成する。分散相の形状は特に限定されず、例えば、鱗片状、柱状、球状等の任意の形状であってもよい。成形体に成形する際、分散相の形状は熱や加圧、剪断力によって変化するため得られる成形体への影響は殆どないからである。
 分散相の短軸の平均長は特に限定されないが、1.0μm以上であることが好ましく、1.0~20μmであることがより好ましく、1.0~10μmであることが更に好ましい。
 分散相の平均アスペクト比(長軸/短軸)は特に限定されないが5以上であることが好ましく、5~100であることがより好ましく、10~50であることが更に好ましい。
 なお、樹脂組成物のモルフォロジーは、例えば電子顕微鏡で観察することができる。
 本発明におけるセルロースエステルとしては、特に限定はない。セルロースエステルは、通常、木材パルプ(針葉樹パルプ、広葉樹パルプ)、コットンリンターパルプ等のセルロースをエステル化して製造されている。
 セルロースエステルは、セルロースをアシル化剤と反応させる慣用のエステル化方法により生成でき、必要に応じてケン化又は熟成工程を経て製造できる。セルロースエステルは、通常、パルプ(セルロース)を活性化剤により活性化処理(活性化工程)した後、硫酸などの触媒を用いてアシル化剤によりエステル(トリエステルなど)を調製し(アシル化工程)、ケン化(加水分解)・熟成によりエステル化度を調整する(ケン化・熟成工程)ことにより製造できる。セルロースアセテートの場合は、例えば、硫酸触媒法、酢酸法、メチレンクロライド法等の慣用の方法で製造できる。
 アシル化工程におけるアシル化剤の割合は、所望のアシル化度(酢化度など)となる範囲で選択でき、例えば、パルプ(セルロース)100質量部に対して230~300質量部、好ましくは240~290質量部、更に好ましくは250~280質量部である。なお、セルロースアセテートの場合、アシル化剤としては、例えば、無水酢酸などが使用できる。
 アシル化又は熟成触媒としては、通常、硫酸が使用される。硫酸の使用量は、通常、セルロース100質量部に対して、0.5~15質量部、好ましくは5~15質量部、更に好ましくは5~10質量部である。また、ケン化・熟成の温度は、40~160℃の範囲から選択でき、例えば、50~70℃である。
 更に、残留した硫酸を中和するために、アルカリで処理してもよい。
 セルロースエステルとしては、例えば、有機酸エステル[セルロースアセテート(酢酸セルロース)、セルロースプロピオネート、セルロースブチレート等の炭素数2~6のカルボン酸とのセルロースカルボン酸エステルなど]、混合エステル(セルロースアセテートプロピオネート、セルロースアセテートブチレート等の炭素数2~6のカルボン酸とのセルロースジカルボン酸エステルなど)、グラフト体(ポリカプロラクトングラフト化セルロースアセテートなど)、無機酸エステル(硝酸セルロース、硫酸セルロース、リン酸セルロース等)、有機酸、無機酸混合エステル(硝酸酢酸セルロースなど)等が例示される。
 本発明においては、これらのセルロースエステルのうち、有機酸で修飾されたセルロース有機酸エステルが好ましく、炭素数2~12の有機酸で修飾されたセルロース有機酸エステルがより好ましい。具体的には、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースブチレート、セルロースアセテートブチレート、セルロースプロピオネートブチレートなどが好ましく、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースプロピオネートブチレートがより好ましく、セルロースアセテート、セルロースアセテートプロピオネート及びセルロースアセテートブチレートが芳香族ポリカーボネート系樹脂との粘度比の観点から特に好ましく、セルロースアセテートプロピオネートが最も好ましい。これらのセルロースエステルは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 セルロースエステルの総平均置換度(アシル置換度)は耐衝撃性の観点から2.0~2.8であることが好ましく、2.2~2.7であることがより好ましい。
 セルロースアセテートの場合、平均酢化度30~62.5%の範囲から選択でき、通常、平均酢化度43.7~62.5%(アセチル基の平均置換度1.7~3)、好ましくは45~62.5%(平均置換度1.8~3)、更に好ましくは48~62.5%(平均置換度2~3)である。
 セルロースエステルの重合度は、特に制限されず、粘度平均重合度200~400、好ましくは250~400、更に好ましくは270~350である。この範囲の粘度平均重合度とすることで、海島構造の分散相を形成することが容易となる。
 本発明におけるセルロースエステルの分子量は、数平均分子量(Mn)が50×10~100×10の範囲が好ましく、55×10~80×10の範囲が更に好ましく、60×10~75×10の範囲が最も好ましい。また、重量平均分子量(Mw)は、100×10~300×10の範囲が好ましく、140×10~275×10の範囲が更に好ましく、150×10~250×10の範囲が最も好ましい。この範囲の平均分子量とすることにより、成形性、及び成形体の力学強度等を向上させることができる。
 分子量分布(MWD)は1.1~10.0の範囲が好ましく、1.5~8.0の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
 本発明における、数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。GPC装置は、HLC-8220GPC(東ソー社製)を使用できる。
 本発明におけるセルロースエステルは公知の方法で製造することができる。また、市販品を使用することもできる。例えば、セルロースアセテートプロピオネートとして、イーストマンケミカル社製、「482-20(アセチル置換度:0.1、プロピオニル置換度:2.5、Mn:73000、Mw:234000)」が、セルロースアセテートブチレートとして、Aldrich社製「cellulose acetate butyrate(アセチル置換度:0.4、ブチレート置換度:1.1、Mn:70000)」、イーストマンケミカル社製、「381-20(アセチル置換度:0.6、ブチリル置換度:1.3、Mw:70000)」が、セルロースジアセテートとして、ダイセル化学製、「L-70(アセチル置換度:2.45、Mn:65000、Mw:200000)」、セルローストリアセテートとして、ダイセル化学製、「FRM(アセチル置換度:2.79、Mn:66000、Mw:186000)」などがある。
 本発明の樹脂組成物に含まれるセルロースエステルの含有量は特に限定されない。セルロースエステルを樹脂組成物の全固形分に対して、好ましくは30~70質量%、より好ましくは40~65質量%、更に好ましくは50~60質量%含有する。この範囲とすることで、セルロースエステルを分散相とした海島構造が形成しやすくなる。また、カーボンニュートラルな材料としての意義を有しつつ、成形体の衝撃強度、難燃性、成形性の低下をより抑制することができる。
2.芳香族ポリカーボネート系樹脂
 本発明の樹脂組成物は、モルフォロジーが連続相と分散相を有する海島構造であり、芳香族ポリカーボネート系樹脂は該連続相を構成する。
 芳香族ポリカーボネート系樹脂としては、芳香族ジヒドロキシ化合物をホスゲン又は炭酸のジエステルと反応させることによって得られる熱可塑性芳香族ポリカーボネート重合体又は共重合体が挙げられる。
 該芳香族ジヒドロキシ化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-P-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタンなどが挙げられる。これらは単独あるいは混合物として使用することができる。好ましくはビスフェノールAが挙げられる。更に、難燃性を更に高める目的で上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物や、シロキサン構造を有する両末端フェノール性OH基含有のポリマーあるいはオリゴマーを使用することができる。
 本発明で用いることができる芳香族ポリカーボネート系樹脂としては、好ましくは、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導されるポリカーボネート樹脂、又は2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導されるポリカーボネート共重合体が挙げられる。更に2種以上の芳香族ポリカーボネート系樹脂を併用してもよい。
 本発明における芳香族ポリカーボネート系樹脂の分子量は、数平均分子量で10000~26000の範囲であり、12000~25500の範囲であることが好ましく、15000~25000の範囲であることがより好ましい。芳香族ポリカーボネート系樹脂の数均分子量をこの範囲とすることで、海島構造において芳香族ポリカーボネート系樹脂が連続相を形成し易い粘度となり、かつ、得られる成形体の衝撃強度及び難燃性が優れたとものなる。
 数平均分子量は、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求められる。GPC装置は、HLC-8220GPC(東ソー社製)を使用できる。
 本発明における芳香族ポリカーボネート系樹脂の製造方法については、限定されるものでは無く、ホスゲン法(界面重合法)あるいは、溶融法(エステル交換法)、あるいは原料として二酸化炭素を使用するノンホスゲン法等で製造することができる。更に、溶融法で製造された、末端基のOH基量を調整した芳香族ポリカーボネート系樹脂を使用することができる。
 更に、芳香族ポリカーボネート系樹脂としては、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート樹脂、いわゆるマテリアルリサイクルされた芳香族ポリカーボネート樹脂の使用も可能である。使用済みの製品としては、光学ディスクなどの光記録媒体、導光板、自動車窓ガラスや自動車ヘッドランプレンズ、風防などの車両透明部材、水ボトルなどの容器、メガネレンズ、防音壁やガラス窓、波板などの建築部材などが好ましく挙げられる。また、再生芳香族ポリカーボネート樹脂としては、製品の不適合品、スプルー、又はランナーなどから得られた粉砕品又はそれらを溶融して得たペレットなども使用可能である。
 本発明では芳香族ポリカーボネート系樹脂として市販品を用いることもでき、例えばパンライトL1225Y:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=25000)(帝人化成(株)社製)、パンライトL1225L:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=21000)(帝人化成(株)社製)、パンライトL1225LL:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=18000)(帝人化成(株)社製)、タフロンAC1030:ビスフェノールA骨格を有するポリカーボネート樹脂(Mn=18000)(帝人化成(株)社製)などが挙げられる。
 本発明の樹脂組成物に含まれる芳香族ポリカーボネート系樹脂の含有量は特に限定されない。
 芳香族ポリカーボネート系樹脂を樹脂組成物の全固形分に対して、好ましくは20~60質量%、より好ましくは30~55質量%、更に好ましくは35~50質量%含有する。
 また、本発明の樹脂組成物においては、セルロースエステルに対する芳香族ポリカーボネート系樹脂の質量比(芳香族ポリカーボネート系樹脂/セルロースエステル)が0.4~1であり、好ましくは0.5~1であり、より好ましくは0.6~1である。この範囲とすることで、芳香族ポリカーボネート系樹脂を連続相とした海島構造が形成しやすくなり、成形体の衝撃強度、難燃性をより向上させることができる。
3.難燃剤
 本発明の樹脂組成物は、難燃剤を含有してもよい。難燃剤を含有することによって、燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
 難燃剤は、特に限定されず、常用のものを用いることができる。例えば、窒素化合物系難燃剤、無機系難燃剤、ハロゲン系難燃剤、リン系難燃剤、シリコーン系難燃剤などが挙げられる。本発明においては、リン系難燃剤、窒素化合物系難燃剤及びシリコーン系難燃剤からなる群から選ばれる少なくとも1種を含有する難燃剤が好ましい。これらの難燃剤は、通常使用される臭素系難燃剤、塩素系難燃剤等と比較して、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないという利点がある。
 更に、吸湿性の観点からリン系難燃剤を含有する難燃剤がより好ましい。リン系難燃剤は、芳香族ポリカーボネート系樹脂との相溶性に優れるため、海島構造の形成にも寄与するという利点も有する。
 リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、リン酸縮合エステル、ポリリン酸塩などの有機リン系化合物が挙げられるが、吸湿性の観点からリン酸エステル、リン酸縮合エステルであることが好ましい。
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。
 リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート、並びにこれらの縮合物などの芳香族リン酸縮合エステル、上記リン酸エステルの縮合物等を挙げることができる。
 これらのリン酸エステル類の分子量は、特に限定はされないが、ブリードアウト抑制の観点から、400~1500であることが好ましく、500~1000であることがより好ましい。
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。
 また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
 これらのリン系難燃剤は公知の方法で製造することができる。また、市販品を使用することもでき、例えば、リン酸縮合エステルである「PX-200、1,3-フェニレンビス(ジ-2,6-キシレニルホスフェート)(大八化学製)」や「PX-202(大八化学製)」などを挙げることができる。
 これらのリン系難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
 窒素化合物系難燃剤としては、脂肪族アミン化合物、芳香族アミン化合物、含窒素複素環化合物、シアン化合物、脂肪族アミド、芳香族アミド、尿素、チオ尿素、含窒素硫酸塩、スルファミン酸塩、メラミンシアヌレートなどを挙げることができる。脂肪族アミンとしては、エチルアミン、ブチルアミン、ジエチルアミン、エチレンジアミン、ブチレンジアミン、トリエチレンテトラミン、1,2-ジアミノシクロヘキサン、1,2-ジアミノシクロオクタンなどを挙げることができる。芳香族アミンとしては、アニリン、フェニレンジアミンなどを挙げることができる。含窒素複素環化合物としては、尿酸、アデニン、グアニン、2,6-ジアミノプリン、2,4,6-トリアミノピリジン、トリアジン化合物などを挙げることができる。シアン化合物としては、ジシアンジアミドなどを挙げることができる。脂肪族アミドとしては、N,N-ジメチルアセトアミドなどを挙げることができる。芳香族アミドとしては、N,N-ジフェニルアセトアミドなどを挙げることができる。含窒素硫酸塩としては、硫酸アンモニウム、硫酸ジメチルアミン、硫酸トリメチルアミン、硫酸ジエチルアミン、硫酸トリエチルアミン、硫酸ジフェニルアミン、硫酸トリフェニルアミン、硫酸グアニジン、硫酸グアニル尿素、硫酸メラミン又はその組み合わせが挙げられ、中でも、硫酸トリエチルアミン、硫酸グアニジン、硫酸グアニル尿素、硫酸メラミン又はその組み合わせが挙げられる。なかでも、硫酸メラミン、硫酸グアニジンがより好ましく、硫酸メラミンが更に好ましい。
 スルファミン酸塩としては、分子中に窒素原子を2個以上有するものが挙げられる。具体的にはスルファミン酸アンモニウム、スルファミン酸グアニジン、スルファミン酸グアニル尿素、スルファミン酸メラミン、スルファミン酸ジメチルアミン、スルファミン酸トリメチルアミン、スルファミン酸ジエチルアミン、スルファミン酸トリエチルアミン、スルファミン酸トリフェニルアミン又はその組み合わせが挙げられる。なかでも、スルファミン酸グアニジン、スルファミン酸グアニル尿素、スルファミン酸メラミン又はその組み合わせが好ましく、スルファミン酸グアニジン、スルファミン酸グアニル尿素、スルファミン酸ジエチルアミン、スルファミン酸トリエチルアミンがより好ましく、スルファミン酸グアニジン、スルファミン酸グアニル尿素が更に好ましい。
 上記において例示したトリアジン化合物は、トリアジン骨格を有する含窒素複素環化合物であり、トリアジン、メラミン、ベンゾグアナミン、メチルグアナミン、シアヌル酸、メラミンシアヌレート、メラミンイソシアヌレート、トリメチルトリアジン、トリフェニルトリアジン、アメリン、アメリド、チオシアヌル酸、ジアミノメルカプトトリアジン、ジアミノメチルトリアジン、ジアミノフェニルトリアジン、ジアミノイソプロポキシトリアジンなどを挙げることができる。
 メラミンシアヌレート又はメラミンイソシアヌレートとしては、シアヌール酸又はイソシアヌール酸とトリアジン化合物との付加物が好ましく、通常は1対1(モル比)、場合により1対2(モル比)の組成を有する付加物を挙げることができる。また、メラミンシアヌレート及びメラミンイソシアヌレートは、公知の方法で製造されるが、例えば、メラミンとシアヌール酸又はイソシアヌール酸の混合物を水スラリーとし、良く混合して両者の塩を微粒子状に形成させた後、このスラリーを濾過、乾燥後に一般には粉末状で得られる。また、上記の塩は完全に純粋である必要は無く、未反応のメラミンないしシアヌール酸、イソシアヌール酸が多少残存していても良い。また、樹脂に配合される前のメラミンシアヌレート又はメラミンイソシアヌレートの平均粒径は、成形品の難燃性、機械的強度、表面性の点から100~0.01μmが好ましく、更に好ましくは80~1μmである。
 窒素化合物系難燃剤の中では、含窒素複素環化合物が好ましく、中でもトリアジン化合物が好ましく、更にメラミンシアヌレートが好ましい。
 また、上記窒素化合物系難燃剤の分散性が悪い場合には、トリス(β-ヒドロキシエチル)イソシアヌレートなどの分散剤やポリビニルアルコール、金属酸化物などの公知の表面処理剤などを併用してもよい。
 これらの窒素化合物系難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
 シリコーン系難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。
 置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
 これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
 また、リン系難燃剤、窒素化合物系難燃剤及びシリコーン系難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一スズ、酸化第二スズ、ホウ酸亜鉛、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤を用いることができる。難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。
 本発明の樹脂組成物が難燃剤を含有する場合、その含有量は限定的でないが、樹脂組成物の全固形分に対して、30質量%以下が好ましく、10~25質量%がより好ましい。この範囲とすることにより、難燃性・耐衝撃性・脆性等をより向上させることができ、ペレットブロッキングの発生を抑制できる。
4.フッ素系樹脂
 本発明の樹脂組成物は、更にフッ素系樹脂を含有することが好ましい。成形体が燃焼した場合のドリップを防止し、更に高度な難燃性を得るためである。
 本発明におけるフッ素系樹脂とは、物質分子中にフッ素を含有する樹脂であり、具体的には、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/エチレン共重合体、ヘキサフルオロプロピレン/プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド/エチレン共重合体などが挙げられるが、中でもポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/エチレン共重合体、ポリビニリデンフルオライドが好ましく、特にポリテトラフルオロエチレン、テトラフルオロエチレン/エチレン共重合体が好ましく、更にはポリテトラフルオロエチレンが好ましく、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体も好ましく用いられる。ポリテトラフルオロエチレンなどのフッ素系樹脂の分子量は10万~1000万の範囲のものが好ましく、とくに10万~100万の範囲のものがより好ましく、本発明の押出成形性と難燃性にとくに効果がある。ポリテトラフルオロエチレンの市販品としては、三井・デュポンフロロケミカル(株)製の“テフロン(登録商標)”6-J、“テフロン(登録商標)”6C-J、“テフロン(登録商標)”62-J、旭アイシーアイフロロポリマーズ(株)製の“フルオン”CD1やCD076などが市販されている。また、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体の市販品としては、三菱レイヨン(株)から、“メタブレン(登録商標)”Aシリーズとして市販され、“メタブレン(登録商標)”A-3000、“メタブレン(登録商標)”A-3800などが市販されている。また、ポリテトラフルオロエチレンの“テフロン(登録商標)”6-Jなどは凝集し易いため、他の樹脂組成物と共にヘンシェルミキサーなどで機械的に強く混合すると凝集により塊が生じる場合があり、混合条件によってはハンドリング性や分散性に課題がある。一方、ポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体は前記のハンドリング性や分散性に優れ、とくに好ましく用いられる。前記のポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体とは、限定されるものではないが、特開2000-226523号公報で開示されているポリテトラフルオロエチレン粒子と有機系重合体とからなるポリテトラフルオロエチレン含有混合粉体などが挙げられ、前記の有機系重合体としては芳香族ビニル系単量体、アクリル酸エステル系単量体、及びシアン化ビニル系単量体を10質量%以上含有する有機系重合体などであり、それらの混合物でもよく、ポリテトラフルオロエチレン含有混合粉体中のポリテトラフルオロエチレンの含有量は0.1質量%~90質量%であることが好ましい。
 本発明の樹脂組成物におけるフッ素系樹脂の配合量は、好ましくは3~0.01質量%であり、より好ましくは2~0.02質量%、更に好ましくは1~0.03質量%である。この範囲とすることで、成形性への影響を抑えながら難燃性をより向上させることができる。
5.樹脂組成物
 本発明の樹脂組成物は、セルロースエステル系樹脂と芳香族ポリカーボネート系樹脂とを含有しており、必要に応じて、難燃剤、フッ素系樹脂を含有することができる。本発明の樹脂組成物は、上記した成分のほか、必要に応じて、可塑剤、相溶化剤、酸化防止剤、フィラー(強化材)等の種々の添加剤を含有していてもよい。
 本発明の樹脂組成物は、可塑剤を含有してもよい。これにより成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)等のリン酸エステル、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジ-2-エチルヘキシルフタレート(DEHP)等のフタル酸エステル、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等の脂肪酸エステル、クエン酸アセチルトリブチル(OACTB)などのクエン酸エステル、トリメリット酸エステル、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。
 本発明の樹脂組成物が可塑剤を含有する場合、1種でも2種以上でも良く、その含有量は、樹脂組成物の全固形分に対して、30質量%以下が好ましく、0.005~20質量%がより好ましく、更に好ましくは0.01~10質量%である。
 本発明の樹脂組成物は、相溶化剤を含有してもよい。相溶化剤とは、本発明におけるセルロースエステルと芳香族ポリカーボネート系樹脂とを相溶化させるものである。相溶化剤は、セルロースエステルと芳香族ポリカーボネート系樹脂の界面強度を向上させることによって成形体の耐衝撃性などの性能をより向上させることができる。
 本発明において、相溶化剤としては、反応性基を有するものが好ましく、カルボン酸無水物、又は、エポキシ基、イソシアネート基、及びオキサゾリン基から選ばれる少なくとも1種を有する化合物がより好ましい。
 好ましい相溶化剤としては、カルボン酸無水物、エポキシ基、イソシアネート基、及びオキサゾリン基で変性された重合体、ブロック共重合体、グラフト重合体、並びにランダム共重合体、更に種々のノニオン系界面活性剤、カップリング剤、架橋剤を挙げることができる。
 相溶化剤は、特に限定されないが、具体的には、日本油脂(株)製モディパーシリーズ、住友化学(株)製、ボンドファースト、ボンダインシリーズ、日本石油(株)社製レクスパールシリーズ、東亞合成(株)社製レゼダシリーズ、アルフォンシリーズ、日本触媒(株)製エポクロスシリーズ、旭化成ケミカルズ(株)社製デュラネートシリーズ(いずれも商品名)などの市販品が好適に用いられる。また相溶化剤はこれらに限定されることはなく、「プラスチック相溶化剤 開発・評価・リサイクル」(シーエムシー出版)に記載の相溶化剤なども好適に用いることができる。本発明の樹脂組成物における相溶化剤の含有量は、樹脂組成物の全固形分に対して、0.1~30質量%が好ましく、より好ましくは0.5~20質量%である。
 本発明の樹脂組成物は、酸化防止剤を含有してもよい。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が挙げられ、好ましくは、フェノール系酸化防止剤である。フェノール系酸化防止剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガノックス1010、イルガノックス1076、イルガノックス3114等、又は旭電化(株)製のアデカスタブPEP-36を好適に使用できる。
 本発明の樹脂組成物が酸化防止剤を含有する場合、その含有量は限定的でないが、樹脂組成物の全固形分に対して、30質量%以下が好ましく、より好ましくは0.01~10質量%である。この範囲とすることにより、混練や成型プロセスでの加熱に対して樹脂が十分な安定性の向上効果を得ることができ好ましい。
 本発明の樹脂組成物は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、樹脂組成物によって形成される成形体の機械的特性を強化することができる。
 フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。
 樹脂組成物がフィラーを含有する場合、その含有量は限定的でないが、樹脂組成物の全固形分に対して、30質量%以下が好ましく、5~10質量%がより好ましい。
 本発明の樹脂組成物は、前記したもの以外にも、本発明の目的を阻害しない範囲で、成形性、衝撃強度、難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロースエステル以外のポリマー、安定剤(紫外線吸収剤など)、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
 前記セルロースエステル以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロースエステル系樹脂以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ABS樹脂、AES樹脂(エチレン系ゴム強化AS樹脂)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ASA樹脂(アクリル系ゴム強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
 また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
 本発明の樹脂組成物がセルロースエステル以外のポリマーを含有する場合、その含有量は、樹脂組成物の全固形分に対して30質量%以下が好ましく、2~10質量%がより好ましい。
 本発明の樹脂組成物は、様々な用途に用いることが可能である。例えば、溶剤に溶かして塗布法によりフィルムとしてもよい。また、溶融押し出し法などによりフィルムとしてもよい。
(II)成形体
 本発明は、セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物から得られる成形体であって、
 モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造であり、
 該分散相の短軸の平均長が1.0μm以上であり、かつ該分散相の平均アスペクト比(長軸/短軸)が5以上である成形体にも関する。
 このように、芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相と有する海島型相分離構造で、更に該分散相の短軸の平均長を1.0μm以上、かつ該分散相の平均アスペクト比を5以上とすることにより、衝撃強度及び難燃性の観点で非常に優れた成形体とすることができる。
1.セルロースエステル
 本発明の成形体は、モルフォロジーが連続相と分散相を有する海島構造であり、セルロースエステルは該分散相を形成する。
 分散相の短軸の平均長は1.0μm以上であり、1.0~20μmが好ましく、1.0~10μmがより好ましい。
 分散相の平均アスペクト比(長軸/短軸)は5以上であり、5~100が好ましく、10~50がより好ましい。
 短軸の平均長と平均アスペクト比がこの範囲であれば、該範囲外のものと比べ、衝撃を受けて破断する際の破断経路が長くなり、破断に必要なエネルギーが大きくなることで耐衝撃性が向上する。分散相の粒子の形状は、上記短軸の平均長と平均アスペクト比を有するものであれば、特に限定されず、例えば、鱗片状、柱状等の任意の形状とすることができる。
 本発明の成形体におけるセルロースエステルとしては、特に限定はなく、上記樹脂組成物で説明したセルロースエステルと同様である。
 なお、前記モルフォロジーは、例えば電子顕微鏡で観察することができる。
2.芳香族ポリカーボネート系樹脂
 本発明の成形体は、モルフォロジーが連続相と分散相を有する海島構造であり、芳香族ポリカーボネート系樹脂は該連続相を構成する。本発明の成形体に含まれる芳香族ポリカーボネート系樹脂の含有量は特に限定されない。好ましくはセルロースエステルに対する質量比が0.4~1、より好ましくは0.5~1である。この範囲とすることでポリカーボネート系樹脂が連続相になりやすく、成形体の衝撃強度、難燃性、成形性をより向上させることができる。本発明の成形体における芳香族ポリカーボネート系樹脂としては、特に限定はなく、上記樹脂組成物で説明した芳香族ポリカーボネート系樹脂と同様である。
3.製造方法
 本発明の成形体は、前記セルロースエステルと前記芳香族ポリカーボネート系樹脂を含む樹脂組成物を成形することにより得られる。より詳細には、芳香族ポリカーボネート系樹脂の連続相とセルロースエステルの分散相とを含む海島型相分離構造を有する樹脂組成物を成形することが好ましく、上述の本発明の樹脂組成物を成形することがより好ましい。必要に応じて各種添加剤等を含む該樹脂組成物を加熱し、各種の成形方法により成形する工程を含む製造方法によって本発明の成形体は得られる。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられるが、射出成形により行うことが好ましい。射出成形によって、短軸の平均長と平均アスペクト比が上記範囲内となる分散相を容易に得ることができるからである。
 また、成形時の加熱温度は、セルロースエステルの分解を抑制できるという理由から、180~260℃であることが好ましく、200~250℃であることがより好ましい。
 本発明の成形体の用途は、特に限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明の範囲は以下に示す実施例に限定されるものではない。
<実施例1~19、比較例1~4>
[成形体の作製]
 セルロースエステル、芳香族ポリカーボネート系樹脂、難燃剤及びその他の成分を表1及び2に示す配合割合(質量%)で混合し、樹脂組成物を調製した。この樹脂組成物を二軸混練押出機(テクノベル(株)製、ULTnano)に供給しペレットを作製し、ついで得られたペレットを、射出成形機(ファナック(株)Roboshot S-2000i、自動射出成形機)に供給して、4×10×80mmの多目的試験片を成形した。
 表1及び2中、各成分の詳細は以下の通りである。
(A-1)セルロースアセテートプロピオネート(イーストマンケミカル社製“CAP482-20”アセチル置換度:0.1、プロピオニル置換度:2.5、Mn:73000、Mw:234000)
(A-2)セルロースアセテートブチレート(イーストマンケミカル社製“CAB381-20” アセチル置換度:0.6、ブチリル置換度:1.3、Mw:70000)
(B-1)低粘度ポリカーボネート(帝人化成(株)社製“パンライトL-1225LL”、Mn:18000)
(B-2a)中粘度ポリカーボネート(出光興産(株)社製“タフロンAC1030”、Mn:18000)
(B-2b)中粘度ポリカーボネート(帝人化成(株)社製“パンライトL-1225L”、Mn:21000)
(B-2c)中粘度ポリカーボネート(帝人化成(株)社製“パンライトL-1225Y”、Mn:25000)
(B-3)高粘度ポリカーボネート(帝人化成(株)社製“パンライトK-1300Y”、Mn:26000より大)
(C-1)縮合リン酸エステル(大八化学工業(株)社製 PX-200)
(C-2)メラミンシアヌレート(日産化学工業(株)社製)
(C-3)ポリジメチルシロキサン(東レ・ダウコーニング(株)社製“DOW CORNING TORAY SH 200 C FLUID 500 CS”)
(D)フッ素系樹脂(三井・デュポンフロロケミカル(株)社製“PTFE 6J”)
(E-1)ポリスチレン(東洋スチレン(株)社製“HRM63X”)
 なお、表1及び2中、PCはポリカーボネート、CAPはセルロースアセテートプロピオネート、PSはポリスチレンを表す。
[評価]
 得られた成形体を用いて、以下の項目について評価した。評価結果は表1及び2に示した。
(シャルピー衝撃強度)
 ISO179に準拠して、射出成形にて成形した試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度を測定した。測定は3回行い、平均値を求めた。
 該シャルピー衝撃強度の平均が、12kJ/m以上のものを◎、5kJ/m以上12kJ/m未満のものを○、2kJ/m以上5kJ/m未満のものを△、2kJ/m未満のものを×とした。
(難燃性)
 難燃性の指標として、UL94に準拠した垂直燃焼試験を行った。試験本数は5本である。自己消火性の無いものをV-not、燃焼試験時に樹脂組成物のドリップがあり所定時間内に自己消火するものをV-2、燃焼時に樹脂組成物ドリップがなく所定時間内に自己消火するものをV-1(燃焼時間30秒以内)、V-0(燃焼時間10秒以内)とした。
 V-0を◎、V-1を○、V-2を△、V-notを×とした。
(モルフォロジー)
 樹脂組成物、及び試験片を電子顕微鏡で観察し、樹脂組成物及び試験片における連続相を構成する成分、試験片における分散相の短軸の平均長及び短軸の平均アスペクト比(長軸/短軸)を測定した。
 電子顕微鏡から得られる画像から分散相をランダムに30個選択し、その分散相の短軸の平均長が1.0μm以上のものを○、1.0μm未満のものを×とした。また、短軸の平均アスペクト比が5以上のものを○、5未満のものを×とした。電子顕微鏡は日立ハイテクノロジーズ製S-5500型SEMを用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、芳香族ポリカーボネート系樹脂が連続相であり、セルロースエステルが分散相である海島構造を有するペレットから作製した成形体は、難燃性、衝撃強度共に良好であることが確認された。一方、セルロースエステルが連続相であり、芳香族ポリカーボネート系樹脂が分散相である海島構造を有するペレットから作製した成形体は、難燃性、衝撃強度共に劣るものであった。
 また、芳香族ポリカーボネート系樹脂が連続相で、セルロースエステルが分散相である海島構造を有し、分散相の短軸の平均長が1.0μm以上であり、かつ分散相の平均アスペクト比(長軸/短軸)が5以上の成形体は、難燃性、衝撃強度共に良好であることが確認された。一方、セルロースエステルが連続相であり、芳香族ポリカーボネート系樹脂が分散相である海島構造を有する成形体は、難燃性、衝撃強度共に劣るものであった。
 また、芳香族ポリカーボネート系樹脂が連続相であり、セルロースエステルが分散相である海島構造を有するが、分散相の短軸の平均長が1.0μm未満、又は分散相の平均アスペクト比(長軸/短軸)が5未満である成形体は、衝撃強度に劣るものであった。
 本発明の樹脂組成物によれば、難燃性と衝撃強度に優れた成形体を得ることができる。また、本発明の成形体は難燃性と衝撃強度に優れるため、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の樹脂組成物は、植物由来の樹脂であるセルロースから得られるセルロースエステル系樹脂を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替でき得る。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年3月30日出願の日本特許出願(特願2010-079929)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (8)

  1.  セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物であって、
     該セルロースエステルに対する該芳香族ポリカーボネート系樹脂の質量比が0.4~1であり、
     該芳香族ポリカーボネート系樹脂の数平均分子量は、10000~26000であり、
     モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造である樹脂組成物。
  2.  前記セルロースエステルが、セルロースアセテート、セルロースアセテートプロピオネート及びセルロースアセテートブチレートからなる群より選ばれる少なくとも1種のセルロースエステルである請求項1に記載の樹脂組成物。
  3.  さらに、リン系難燃剤、窒素化合物系難燃剤、及びシリコーン系難燃剤からなる群より選ばれる少なくとも1種の難燃剤を含む請求項1又は2に記載の樹脂組成物。
  4.  前記リン系難燃剤がリン酸エステルである請求項3に記載の樹脂組成物。
  5.  さらに、フッ素系樹脂を含む請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  セルロースエステル及び芳香族ポリカーボネート系樹脂を含む樹脂組成物から得られる成形体であって、
     モルフォロジーが芳香族ポリカーボネート系樹脂の連続相と、セルロースエステルの分散相とを有する海島型相分離構造であり、
     該分散相の短軸の平均長が1.0μm以上であり、かつ該分散相の平均アスペクト比(長軸/短軸)が5以上である成形体。
  7.  請求項1~5のいずれか1項に記載の樹脂組成物を成形して得られる成形体。
  8.  請求項6又は7に記載の成形体から構成される電気電子機器用筐体。
PCT/JP2011/057032 2010-03-30 2011-03-23 樹脂組成物、成形体、及び電気電子機器用筐体 WO2011122421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010079929A JP2011207193A (ja) 2010-03-30 2010-03-30 樹脂組成物、成形体、及び電気電子機器用筐体
JP2010-079929 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122421A1 true WO2011122421A1 (ja) 2011-10-06

Family

ID=44712131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057032 WO2011122421A1 (ja) 2010-03-30 2011-03-23 樹脂組成物、成形体、及び電気電子機器用筐体

Country Status (2)

Country Link
JP (1) JP2011207193A (ja)
WO (1) WO2011122421A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183321A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
JP2017059323A (ja) * 2015-09-14 2017-03-23 ダイキン工業株式会社 絶縁電線及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246471A (ja) * 2011-05-31 2012-12-13 Sumitomo Bakelite Co Ltd 難燃性樹脂組成物、難燃性絶縁シート、難燃性絶縁フィルムおよび電気・電子機器
JP6306342B2 (ja) * 2013-12-24 2018-04-04 ダイセルポリマー株式会社 セルロースエステル組成物
JP6534241B2 (ja) * 2013-12-24 2019-06-26 ダイセルポリマー株式会社 セルロースアセテート組成物
JP2015172169A (ja) * 2014-03-12 2015-10-01 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117077A (ja) * 1998-10-09 2000-04-25 Toray Ind Inc 半透膜およびその製造方法
JP2001071650A (ja) * 1999-09-07 2001-03-21 Dainippon Printing Co Ltd 熱転写記録材料
JP2003306577A (ja) * 2002-04-15 2003-10-31 Daicel Chem Ind Ltd セルロース系樹脂組成物
JP2004051897A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 異方性光散乱シート
JP2006111858A (ja) * 2004-09-17 2006-04-27 Toray Ind Inc 樹脂組成物ならびにそれからなる成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117077A (ja) * 1998-10-09 2000-04-25 Toray Ind Inc 半透膜およびその製造方法
JP2001071650A (ja) * 1999-09-07 2001-03-21 Dainippon Printing Co Ltd 熱転写記録材料
JP2003306577A (ja) * 2002-04-15 2003-10-31 Daicel Chem Ind Ltd セルロース系樹脂組成物
JP2004051897A (ja) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd 異方性光散乱シート
JP2006111858A (ja) * 2004-09-17 2006-04-27 Toray Ind Inc 樹脂組成物ならびにそれからなる成形品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183321A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂組成物、及び樹脂成形体
US9605086B2 (en) 2015-03-26 2017-03-28 Fuji Xerox Co., Ltd. Resin composition and resin molded article
JP2017059323A (ja) * 2015-09-14 2017-03-23 ダイキン工業株式会社 絶縁電線及びその製造方法

Also Published As

Publication number Publication date
JP2011207193A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5040204B2 (ja) 難燃性樹脂組成物ならびにそれからなる成形品
JP4962662B2 (ja) 熱可塑性樹脂組成物およびそれからなる成形品
WO2011122582A1 (ja) 樹脂組成物、射出成形用樹脂組成物、成形体、及び電気電子機器用筐体
JP5233063B2 (ja) 樹脂組成物ならびにそれからなる成形品
JP5365421B2 (ja) 熱可塑性樹脂組成物ならびにそれらからなる成形品
JP5326232B2 (ja) 樹脂組成物ならびにそれからなる成形品
WO2011122646A1 (ja) 樹脂組成物、成形体、及び電気電子機器用筐体
JP2007056246A (ja) 樹脂組成物およびそれからなる成形品
WO2011122421A1 (ja) 樹脂組成物、成形体、及び電気電子機器用筐体
WO2010047351A1 (ja) セルロース誘導体、樹脂組成物、セルロース誘導体からなる成型体、及びこの成型体から構成される電気電子機器用筺体
WO2011142388A1 (ja) 樹脂組成物、射出成形用樹脂組成物、及び電気電子機器用筐体
JP2008001766A (ja) 樹脂組成物ならびにそれからなる成形品
JP2010195963A (ja) 熱可塑性樹脂組成物、その製造方法ならびにそれらからなる成形品
JP2013173873A (ja) 熱可塑性樹脂組成物ならびにそれらからなる成形品
JP2006016447A (ja) 樹脂組成物ならびにそれからなる成形品
WO2012023561A1 (ja) 樹脂組成物、及び電気電子機器用筐体
JP2011208103A (ja) 樹脂組成物、成形体、及び電気電子機器用筐体
JP2011162696A (ja) 射出成形用樹脂組成物、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2010090311A (ja) セルロース誘導体、樹脂組成物、成形体、電子機器用筺体、及びセルロース誘導体の製造方法
JP2012116902A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2010241848A (ja) セルロース樹脂組成物、成形体及び電気電子機器用筺体
JP2011132431A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011162697A (ja) 射出成形用樹脂組成物、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011162695A (ja) 樹脂組成物、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5486917B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762653

Country of ref document: EP

Kind code of ref document: A1