WO2011121982A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2011121982A1
WO2011121982A1 PCT/JP2011/001837 JP2011001837W WO2011121982A1 WO 2011121982 A1 WO2011121982 A1 WO 2011121982A1 JP 2011001837 W JP2011001837 W JP 2011001837W WO 2011121982 A1 WO2011121982 A1 WO 2011121982A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
stator
slits
laminated
Prior art date
Application number
PCT/JP2011/001837
Other languages
French (fr)
Japanese (ja)
Inventor
近藤俊成
安田善紀
山際昭雄
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011121982A1 publication Critical patent/WO2011121982A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a rotating electrical machine such as a motor in which at least one of a rotor core and a stator core has a laminated structure, and a three-dimensional gap is formed between these cores.
  • some cores constituting rotors and stators of rotating electrical machines have a laminated structure in which electromagnetic steel sheets are laminated in the axial direction.
  • the magnetic flux penetrates in the lamination direction of the electromagnetic steel sheets.
  • an eddy current is generated in the portion, and there is a possibility that the efficiency of the motor may be reduced due to heat loss (eddy current loss) due to the eddy current.
  • the present invention has been made in view of such a point, and an object thereof is to suppress a reduction in efficiency due to eddy current loss in a rotating electric machine employing a three-dimensional gap between a rotor core and a stator core.
  • the first invention includes a drive shaft (60), a rotor (40) attached to the drive shaft (60), and a stator (20) provided on the outer peripheral side of the rotor (40),
  • the stator core (30) of the stator (20) and the rotor core (41) of the rotor (40) form a gap (G) extending between the cores (30, 41) alternately in the radial direction and the axial direction.
  • a rotating electric machine having concave and convex portions (38, 46) opposed to each other, wherein at least one of the stator core (30) and the rotor core (41) has a plurality of laminated plates (33) as shafts.
  • the projections (38A, 38B) have a laminated structure laminated in the direction and extend from the tip of the projection (38A, 38B, 46A, 46B) to the base end side of the projections (38, 46).
  • , 46A, 46B) slits (S1, S2, S1 ', S2' formed so as to penetrate at least one laminated plate (33) in the axial direction from the axial end of )have.
  • At least one of the stator core (30) and the rotor core (41) has a laminated structure in which a plurality of laminated plates (33) are laminated in the axial direction, and between the cores (30, 41).
  • a gap (G) (so-called three-dimensional gap) extending in the radial direction and the axial direction is formed. Therefore, the stator core (30) and the rotor core (41) are such that the convex portions (38A, 38B, 46A, 46B) of the concave and convex portions (38, 46) are in the stacking direction of the laminated plates (33, 43). Since they face each other, magnetic flux intrudes in the lamination direction of the electromagnetic steel plates (laminated plates) at the convex portions (38A, 38B, 46A, 46B), and eddy currents are generated.
  • the core (30, 41) having a laminated structure has a base end side from the tip of the convex portion (38A, 38B, 46A, 46B). And slits (S1, S2, S1 ′, S2 ′) extending in the axial direction from at least one laminated plate (33) from the axial ends of the convex portions (38A, 38B, 46A, 46B) are formed. Yes.
  • the slit (S1, S2, S1 ′, S2 ′) extends at least from the distal end to the proximal end of the convex portion (38A, 38B, 46A, 46B).
  • the slits (S1, S2, S1 ′, S2 ′) are formed so as to cross the convex portions (38A, 38B, 46A, 46B) in the radial direction. Therefore, the above-described eddy current flow path is significantly lengthened, and the electric resistance of the eddy current flow path becomes larger, and eddy current loss is further reduced.
  • the stator core (30) protrudes radially inward from the substantially cylindrical core back portion (35) and the core back portion (35), A plurality of teeth portions (34) having tip portions (36) constituting the concavo-convex portions (38) at the tips, and the slits (S1, S2) are formed on the respective tooth tip portions of the stator core (30) (
  • the convex portions (38A, 38B) in 36) are provided on the opposite side of the rotational direction of the rotor (40) from the center line (L) in the circumferential direction.
  • the stator core (30) is provided with the slits (S1, S2) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated.
  • the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow increases, so that the eddy current loss is greatly reduced.
  • the rotor (40) is provided in each of a plurality of magnet holes (44) formed axially symmetrically in the rotor core (41).
  • a plurality of magnets (42), and the slits (S1 ′, S2 ′) are formed at both ends of each of the magnet holes (44) in the circumferential direction of the rotor core (41) and the rotation center of the rotor (40).
  • (O) in a region sandwiched by two straight lines (X), each of which is provided on the rotational direction side of the rotor (40) with respect to the center line (L ') in the circumferential direction of each magnet (42). Yes.
  • the rotor core (41) is provided with the slits (S1 ′, S2 ′) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated.
  • the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow increases, so that the eddy current loss is greatly reduced.
  • the slits (S1, S2, S1 ', S2) are formed in the core (30, 41) having a laminated structure among the stator core (30) and the rotor core (41) facing each other through a so-called three-dimensional gap.
  • the slit (S1, S2, S1 ', S2') is formed so as to penetrate at least one laminated plate (33) in the axial direction from the axial end of the convex portion (38A, 38B, 46A, 46B). By doing so, the eddy current loss can be sufficiently reduced.
  • the slits (S1, S2, S1 ′, S2 ′) are formed so that the protrusions (38A, 38B, 46A and 46B) are formed so as to cross in the radial direction. Therefore, the electrical resistance of the above-described eddy current flow path can be significantly increased, and the eddy current loss can be further reduced to further suppress the efficiency reduction of the rotating electrical machine.
  • the stator core (30) is provided with the slits (S1, S2) at a location where a relatively large eddy current is likely to be generated because the magnetic flux that generates torque is concentrated. It is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, the eddy current loss can be greatly reduced, so that a reduction in the efficiency of the rotating electrical machine can be effectively suppressed.
  • the rotor core (41) is provided with the slits (S1 ′, S2 ′) at a location where a relatively large eddy current is likely to be generated because the magnetic flux that generates torque is concentrated.
  • the eddy current loss can be greatly reduced, so that a reduction in the efficiency of the rotating electrical machine can be effectively suppressed.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of an electric compressor to which a motor according to an embodiment of the present invention is applied.
  • FIG. 2 is a plan view showing the configuration of the motor of this embodiment.
  • FIG. 3 is a perspective view showing the configuration of the split stator core.
  • FIG. 4 is a perspective view of the rotor.
  • FIG. 5 is a side view of the rotor core.
  • FIG. 6 is an enlarged longitudinal sectional view showing a combined portion of the stator and the rotor.
  • 7A and 7B show a tooth tip portion of the stator, where FIG. 7A is a plan view, FIG. 7B is an end view, and FIG. 7C is a longitudinal sectional view cut in the radial direction.
  • FIG. 7A and 7B show a tooth tip portion of the stator, where FIG. 7A is a plan view, FIG. 7B is an end view, and FIG. 7C is a longitudinal sectional view cut in the radial direction
  • FIG. 8 shows the vicinity of the magnet slot of the rotor
  • (A) is a plan view
  • (B) is a longitudinal sectional view cut in the radial direction
  • (C) is a side view.
  • FIG. 9 is a diagram showing the relationship between the shape of the slit and the flow path of the eddy current.
  • 10A and 10B show a tooth tip portion of a stator according to Modification 1 of the embodiment of the present invention, where FIG. 10A is an end view and FIG. 10B is a longitudinal sectional view cut in the radial direction.
  • FIG. 11 is a plan view of the tooth tip portion of the stator according to the second modification of the embodiment of the present invention.
  • FIG. 12A and 12B show a tooth tip portion of a stator according to Modification 3 of the embodiment of the present invention, where FIG. 12A is an end view and FIG. 12B is a longitudinal sectional view cut in the radial direction.
  • 13A and 13B show a tooth tip portion of a stator according to Modification 4 of the embodiment of the present invention, in which FIG. 13A is an end view and FIG. 13B is a longitudinal sectional view cut in the radial direction.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of an electric compressor (100) to which a motor (1) according to an embodiment of the present invention is applied.
  • the motor (1) includes a stator (20), a rotor (40), and a drive shaft (60), and is accommodated in a casing (70) of an electric compressor (100) used for an air conditioner.
  • the motor (1) is a so-called IPM (Interior Permanent Magnet) motor, and rotationally drives a compression mechanism (80) connected to the drive shaft (60).
  • IPM Interior Permanent Magnet
  • the axial direction refers to the direction of the axis of the drive shaft (60)
  • the radial direction refers to the direction orthogonal to the axis.
  • the outer peripheral side refers to the side far from the axis
  • the inner peripheral side refers to the side closer to the axis.
  • a lamination position means the position of the axial direction of the laminated board mentioned later.
  • the stator (20) includes a stator core (30) and a coil portion (32) formed by winding a coil a plurality of times in a substantially rectangular shape.
  • the stator core (30) is configured as a laminated core in which a plurality of electromagnetic steel plates (laminated plates) are laminated in the axial direction.
  • the stator core (30) includes a substantially cylindrical core back portion (35) and a plurality of teeth portions (34) projecting radially inward from the core back portion (35).
  • the stator core (30) is composed of a plurality of members arranged in the circumferential direction.
  • the stator core (30) is composed of three arc-shaped divided stator cores (31) divided at intervals of 120 °.
  • the three split stator cores (31) are arranged so that the end faces of the split stator cores (31) adjacent in the circumferential direction are in contact with each other.
  • the present embodiment there are 36 teeth portions (34), and the same number of spaces are formed between the teeth portions (34).
  • the space constitutes a coil slot (37) for accommodating the coil portion (32).
  • twelve coil slots (37) are formed in one split stator core (31).
  • each tooth tip portion (36) is a tooth tip (36) that is quadrilateral in plan view and wider in the circumferential direction than the base end (core back (35) side) body. It is configured. As shown in FIG. 3, each tooth tip portion (36) is configured such that the radially inner end surface thereof is uneven in the axial cross section.
  • the uneven portion of each tooth tip portion (36) is referred to as a stator side uneven portion (38), and among the end surfaces on the radially inner side of the stator side uneven portion (38), the outermost surface is the bottom surface.
  • the other surface is referred to as the top surface.
  • the stator side uneven portion (38) has a first top surface (38a), a second top surface (38b), and a bottom surface (38c).
  • the stator side uneven portion (38) changes the radial length (tooth tip length) of the laminated plate (33) forming the tooth tip portion (36) according to the lamination position of the laminated plate (33). Can be formed. Specifically, the inner end of the plurality of laminated plates (33) formed to the same radial length forming the first top surface (38a) (the portion on the inner peripheral side from the second top surface (38b)) ) Constitutes the first convex portion (38A). Further, the second end surface (the portion on the inner peripheral side from the bottom surface (38c)) of the plurality of laminated plates (33) formed to the same radial length forming the second top surface (38b) The convex part (38B) is comprised.
  • first convex portion (38A) and the second convex portion (38B) constitute a convex portion according to the present invention.
  • slits (S1, S2) extending from the distal end to the proximal end side (extending from the radially inner end portion to the outer peripheral side) are formed in the first convex portion (38A) and the second convex portion (38B), respectively. Has been. The position and shape of the slits (S1, S2) will be described later.
  • each coil part (32) is each wound so that it may straddle a plurality of teeth parts (34), and is comprised by what is called distributed winding.
  • a rotating magnetic field can be generated in the stator (20).
  • the rotor (40) includes a rotor core (41) and a plurality of magnets (42).
  • the rotor core (41) is a laminated core obtained by laminating a plurality of electromagnetic steel plates (laminated plate (43)) in the axial direction, and is formed in a cylindrical shape.
  • a shaft hole (47) for inserting the drive shaft (60) is formed at the center of the rotor core (41).
  • the rotor core (41) is formed with a plurality of magnet slots (44) for receiving the plurality of magnets (42), respectively.
  • the magnet slots (44) are arranged at a 60 ° pitch around the axis of the shaft hole (47). That is, each magnet slot (44) is provided symmetrically with respect to the axis of the shaft hole (47).
  • Each of the magnet slots (44) is formed in a substantially U shape in plan view (viewed in the axial direction of the shaft hole (47)) and penetrates the rotor core (41) in the axial direction.
  • both end portions in the circumferential direction of each magnet slot (44) extend to the vicinity of the outer periphery of the rotor core (41).
  • a portion that forms an end portion in the circumferential direction of the magnet slot (44) is referred to as a bridge portion (44a).
  • the magnet (42) is held near the center of the magnet slot (44).
  • the total length of the magnet (42) is shorter than the total length of the magnet slot (44), and the gap (45) with the magnet (42) accommodated in each circumferential slot of each magnet slot (44). Are formed respectively.
  • the rotor core (41) is configured such that the radially outer end face is uneven in the axial section.
  • the uneven portion of the rotor core (41) is referred to as the rotor-side uneven portion (46)
  • the innermost peripheral surface of the radially outer end surface of the rotor-side uneven portion (46) is the bottom surface, and the others. Is referred to as the top surface.
  • the rotor-side uneven portion (46) has a first top surface (46 a), a second top surface (46 b), and a bottom surface (46 c).
  • the rotor side uneven portion (46) can be formed by changing the diameter of the laminated plate (43) according to the laminated position of the laminated plate (43). Specifically, the first convex portion (the outer peripheral portion from the second top surface (46b)) of the plurality of laminated plates (43) having the same diameter forming the first top surface (46a) 46A) is configured. Further, the second convex portion (46B) is configured by the outer end portion (the portion on the outer peripheral side from the bottom surface (46c)) of the plurality of laminated plates (43) having the same diameter forming the second top surface (46b). Yes.
  • first convex portion (46A) and the second convex portion (46B) constitute the convex portion according to the present invention. Further, the first convex portion (46A) and the second convex portion (46B) have slits (S1 ′, S2 ′) extending from the distal end to the proximal end side (extending from the radially outer end portion to the inner peripheral side), respectively. ) Is formed. The position and shape of the slits (S1 ′, S2 ′) will be described later.
  • FIG. 6 is a cross-sectional view of a state in which the stator (20) and the rotor (40) are combined. As shown in FIG. 6, when the stator (20) and the rotor (40) are combined, the stator core (30) and the rotor core (41) have a gap (G) that extends alternately and continuously in the radial direction and the axial direction. Are opposed to each other in the radial direction and the axial direction.
  • the second top surface (46b) of the second convex portion (46B) of the portion (46), the second top surface (38b) of the second convex portion (38B) of the stator side uneven portion (38), the rotor side uneven portion ( 46) and the first top surface (38a) of the first convex portion (38A) of the stator side uneven portion (38) face each other, and a gap extending in the axial direction is formed therebetween. .
  • the axial end surface of the first convex portion (46A) of the rotor side uneven portion (46), the axial end surface of the second convex portion (38B) of the stator side uneven portion (38), and the rotor side uneven portion are opposed to each other, and a gap extending in the radial direction therebetween. Is forming.
  • stator side uneven portion (38) and the rotor side uneven portion (46) are alternately and continuously arranged between the stator core (30) and the rotor core (41) in the radial direction and the axial direction.
  • An extending gap (solid gap) is formed.
  • the size of the gap (G) is 0.3 mm in both the radial direction and the axial direction.
  • the convex portion (38A, 38B) of the stator side uneven portion (38) and the convex portion (46A, 46B) of the rotor side uneven portion (46) are in the radial direction. As well as facing in the axial direction. Therefore, magnetic flux penetrates not only in the radial direction but also in the axial direction into the convex portions (38A, 38B) of the stator side uneven portion (38) and the convex portions (46A, 46B) of the rotor side uneven portion (46). It will be.
  • the stator core (30) and the rotor core (41) are laminated cores in which laminated plates (33, 43) are laminated in the axial direction, respectively. Therefore, when magnetic flux enters the convex portions (38A, 38B) of the stator side uneven portion (38) and the convex portions (46A, 46B) of the rotor side uneven portion (46) in the axial direction, a plane perpendicular to the magnetic flux is obtained.
  • An eddy current (eddy current) flows by electromagnetic induction and generates Joule heat (eddy current loss). Due to this loss, the mechanical energy output from the motor (1) decreases, so that the input to the motor (1) needs to be increased accordingly, and the efficiency of the motor (1) decreases.
  • the eddy current is generated by the stator side uneven part (38) of the stator core (30) and the rotor side uneven part (38) of the rotor core (41). Concentrate in the vicinity of each laminated surface (axial end face) of 46).
  • the stator core (30) and the rotor core (41) have slits (S1, S2) (S1 ′, S2 ′) that suppress the generation of the eddy current. Is formed.
  • a slit (S1) is formed in each first convex portion (38A) of the stator side uneven portion (38), and each second convex portion.
  • a slit (S2) is formed in (38B).
  • each slit (S1, S2) is provided on the opposite side of the rotation direction of the rotor (40) from the tooth center line (L) (line passing through the center of the tooth portion (34)). .
  • the magnetic flux for generating torque concentrates on the opposite side of the rotation direction of the rotor (40) from the tooth center line (L), so a larger vortex than the other parts. This is because current is considered to be easily generated.
  • each slit (S1, S2) extends from the tip of each convex portion (38A, 38B) to the base end and reaches the base end.
  • the slit (S1) extends from the first top surface (38a) of the first convex portion (38A) to the outer peripheral side and extends to the same radial position as the second top surface (38b).
  • the slit (S2) extends from the second top surface (38b) of the second convex portion (38B) to the outer peripheral side and extends to the same radial position as the bottom surface (38c).
  • each slit (S1, S2) is provided at both end portions in the axial direction in each convex portion (38A, 38B). This is because it is considered that eddy currents are concentrated on the surface of the laminate of the convex portions (38A, 38B) due to the skin effect.
  • the axial length of each slit (S1, S2) may be a length that penetrates one or more laminated plates (33).
  • each slit (S1, S2) is formed to have an axial length penetrating three laminated plates (33), and the first convex portion.
  • the slits (S1) at both end portions in the axial direction continuously penetrate the first convex portion (38A) in the axial direction.
  • a slit (S1 ′) is formed in the first convex portion (46A) of the rotor side uneven portion (46), and the second convex portion is formed.
  • a slit (S2 ′) is formed in the portion (46B).
  • each slit (S1 ′, S2 ′) is formed at each convex portion (46A, 46B) at both ends in the circumferential direction of each magnet slot (44) and the rotation center (O) of the rotor (40).
  • the rotor In the region sandwiched between two straight lines (X) that connect the two, the rotor is more than the magnetic pole center line (L ′) (line passing through the center in the circumferential direction) of each magnet (42) in each magnet slot (44). (40) is provided on the rotational direction side.
  • each slit (S1 ′, S2 ′) is formed between the magnet center line (L ′) and the bridge portion (44a) on the rotational direction side of the rotor (40) in each convex portion (46A, 46B). It is provided in between. This is because a magnetic flux for generating torque concentrates on the above-mentioned portions of the respective convex portions (46A, 46B), and it is considered that a larger eddy current is likely to be generated than other portions.
  • each slit (S1 ′, S2 ′) extends from the tip of each convex portion (46a, 46b) to the base end to reach the base end.
  • the slit (S1 ′) extends from the first top surface (46a) of the first convex portion (46A) to the inner peripheral side and extends to the same radial position as the second top surface (46b).
  • the slit (S2 ′) extends from the second top surface (46b) of the second convex portion (46B) to the inner peripheral side and extends to the same radial position as the bottom surface (46c).
  • each slit (S1 ′, S2 ′) is provided at each end in the axial direction in each convex portion (46A, 46B). This is because it is considered that eddy currents are concentrated on the surface of the stacked layers of the convex portions (46A, 46B) due to the skin effect. Moreover, the axial direction length of each slit (S1 ', S2') should just be the length which penetrates 1 or more of the laminated sheets (43). In the present embodiment, as shown in FIGS.
  • each slit (S1 ′, S2 ′) is formed to have an axial length penetrating the three laminated plates (43), and the first In the convex portion (46A), the slits (S1 ′) at both axial end portions continuously pass through the first convex portion (46A) in the axial direction.
  • the formation method of the slits (S1, S2) (S1 ′, S2 ′) of the stator core (30) and the rotor core (41) may be any method. For example, if it is formed at the same time as punching the laminated plate (33, 43), it is not necessary to increase the number of processes to form the slits (S1, S2) (S1 ', S2'). Increase can be prevented. If the slits (S1, S2) (S1 ', S2') are formed by laser processing after punching out the cores (30, 41), the slits (S1, S2) (S1 ', S2') Can be formed thinner than punching.
  • the slits (S1, S2) (S1 ', S2') are to be formed by cutting after punching out the cores (30, 41), the slits (S1, S2) can be formed using general-purpose equipment. (S1 ′, S2 ′) can be formed.
  • the stator core (30) and the rotor core (41) each have a laminated structure in which a plurality of laminated plates (33) are laminated in the axial direction, and both cores (30, 41) A gap (G) (so-called three-dimensional gap) extending in the radial direction and the axial direction is formed between them.
  • stator core (30) and the rotor core (41) have a convex portion (38A, 38B, 46A and 46B) face each other in the laminating direction of the electromagnetic steel plates (laminated plates), so that magnetic flux intrudes in the laminating direction of the electromagnetic steel plates and generates eddy currents at each convex part (38A, 38B, 46A, 46B) End up.
  • the stator core (30) and the rotor core (41) extend from the distal end of each convex portion (38A, 38B, 46A, 46B) to the proximal end side, and each convex portion (38A, 38B, 46A, 46B) are formed with slits (S1, S2, S1 ', S2') penetrating at least one laminated plate (33) in the axial direction from the axial ends.
  • S1, S2, S1 ', S2' penetrating at least one laminated plate (33) in the axial direction from the axial ends.
  • the slits (S1, S2, S1 ′, S2 ′) extend from the distal ends of the convex portions (38A, 38B, 46A, 46B) to the proximal end side as shown on the left side of FIG. . That is, on the axial end face of each convex part (38A, 38B, 46A, 46B), the tip of each convex part (38A, 38B, 46A, 46B) is the above-mentioned slit (S1, S2, S1 ', S2') It is divided by and is not connected.
  • S1, S2, S1 ', S2' It is divided by and is not connected.
  • the tips of the convex portions (38A, 38B, 46A, 46B) are connected to the axial end surfaces of the convex portions (38A, 38B, 46A, 46B). Then, since the eddy current flows without bypassing each slit (S1, S2, S1 ′, S2 ′), the electric resistance of the eddy current channel cannot be increased. However, since each of the slits (S1, S2, S1 ′, S2 ′) extends from the tip of each convex portion (38A, 38B, 46A, 46B) to the base end side as described above, the eddy current flow The path can be lengthened and eddy current loss can be reduced.
  • the slits (S1, S2, S1 ′, S2 ′) extend from the distal end to the proximal end of the convex portions (38A, 38B, 46A, 46B), and the convex portions (38A, 38B, 46A, 46B) is formed so as to cross in the radial direction. Therefore, the above-mentioned eddy current flow path can be greatly extended to greatly increase the electrical resistance. Therefore, eddy current loss can be further reduced, and a reduction in efficiency of the motor (1) can be further suppressed.
  • the slits (S1, S2) are provided on the opposite side of the direction. That is, in the motor (1), the slits (S1, S2) are provided in the stator core (30) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated. As a result, it is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, since the eddy current loss can be greatly reduced, the efficiency reduction of the motor (1) can be effectively suppressed.
  • the motor (1) two straight lines (X) connecting the circumferential ends of the magnet slots (44) of the rotor core (41) and the rotation center (O) of the rotor (40), respectively.
  • the slits (S1 ′, S2 ′) are provided on the rotation direction side of the rotor (40) with respect to the center line (L ′) in the circumferential direction of the magnets (42). That is, in the motor (1), with respect to the rotor core (41), the magnetic flux that generates torque is concentrated, so that the slits (S1 ′, S2 ′) are provided at locations where relatively large eddy currents are likely to be generated. .
  • ⁇ Modification 1 >> The slits (S1, S2) on the stator core (30) side are shown as an example in FIGS. 10A and 10B, and the slits formed in the stator core (30) and the rotor core (41) of the above embodiment ( S1, S2, S1 ′, S2 ′) may be inclined with respect to the axial direction. Even if comprised in this way, since an eddy current flow path can be lengthened similarly to the said embodiment, the efficiency fall of the motor (1) by an eddy current loss can be suppressed.
  • the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may be inclined with respect to the teeth center line (L) and the magnetic pole center line (L ′) so as to follow the flow of magnetic flux. According to such a configuration, an increase in magnetic resistance due to the provision of the slits (S1, S2, S1 ′, S2 ′) can be suppressed.
  • the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may be configured to penetrate the two laminated plates (33) in the axial direction from the axial ends of the convex portions (38A, 38B, 46A, 46B). (33) It may be configured to penetrate only one sheet in the axial direction.
  • the slits (S1, S2, S1 ′, S2 ′) are passed through at least one laminated plate (33) in the axial direction from the axial ends of the convex portions (38A, 38B, 46A, 46B).
  • the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may extend beyond the base end from the tip of each of the convex portions (38A, 38B, 46A, 46B).
  • the slit (S1) extends from the first top surface (38a) of the first convex portion (38A) to the outer peripheral side with respect to the second top surface (38b), and the slit (S2) has the second convex portion ( 38B) may extend from the second top surface (38b) to the outer peripheral side of the bottom surface (38c).
  • the slit (S1 ′) extends from the first top surface (46a) of the first convex portion (46A) to the inner peripheral side of the second top surface (46b), and the slit (S2 ′) is the second top surface (46).
  • Embodiments may have the following configurations.
  • the slit according to the present invention is provided in both the cores (30, 41) of the stator (20) and the rotor (40), but may be provided in only one of them. Good. Even in such a case, the above-described effects can be achieved in one core.
  • stator (20) is exposed to an alternating magnetic field having a larger change than the rotor (40). Therefore, when the slit according to the present invention is provided in the stator (20), the effect is greater than when the slit is provided only in the rotor (40).
  • each slit (S1, S2) is provided on the rotation direction side of the rotor (40) from the tooth center line (L), and each slit (S1 ', S2') is connected to the magnet center line (L ') and the rotor. It may be provided between the bridge portion (44a) on the opposite side of the rotational direction of (40).
  • the number of the slits (S1, S2, S1 ′, S2 ′) is not limited to that of the above embodiment and each modified example. By increasing the number of the slits (S1, S2, S1 ′, S2 ′) as compared to the embodiment and each modification, the eddy current flow path becomes longer, and thus the above-described effect can be further increased. Further, the number of the slits (S1, S2, S1 ′, S2 ′) may be changed in accordance with the amount of magnetic flux that passes through each convex portion (38A, 38B, 46A, 46B).
  • the size of the gap (G) in the above embodiment and each modification is an example, and may be a different size. Further, the gap (G) may have a different size in the axial direction and the radial direction.
  • grooved part (46) are two convex parts (1st convex part (38A, 46A) and 2nd convex part (38B), respectively. 46B)), however, the shape of both concave and convex portions (38, 46) is not limited to this.
  • each of the stator side uneven portion (38) and the rotor side uneven portion (46) may have one convex portion, or may have three or more convex portions.
  • the motor (1) was demonstrated as an example of the rotary electric machine which concerns on this invention
  • the rotary electric machine which concerns on this invention is a stator similar to the said embodiment and each modification.
  • the generator may include (20) and the rotor (40).
  • the present invention can also be applied to a so-called concentrated winding type rotary electric machine, and can also be applied to a reluctance type rotary electric machine in which the rotor (40) does not include a magnet.
  • the present invention is useful for a rotating electrical machine such as a motor in which at least one of a rotor core and a stator core has a laminated structure and a three-dimensional gap is formed between these cores.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A stator core and rotor core in a motor each have recesses and protrusions opposite of each other so as to form gaps which extend continuously and alternately radially and axially between the two cores. At least one of the aforementioned stator and rotor cores is a core having a laminate structure in which multiple layered plates (33) are laminated in the axial direction, and slits (S1, S2) are formed in said core which extend from the tip toward the base end of a protrusion (38A, 38B) of the aforementioned recesses and protrusions (38) and which have extension in the axial direction of at least one of said layered plates (33) from the axial end of said protrusion (38A, 38B).

Description

回転電気機械Rotating electrical machine
  本発明は、ロータコア及びステータコアの少なくとも一方が積層構造を有し、これらのコア間に立体ギャップが形成されたモータ等の回転電気機械に関するものである。 The present invention relates to a rotating electrical machine such as a motor in which at least one of a rotor core and a stator core has a laminated structure, and a three-dimensional gap is formed between these cores.
  モータ等の回転電気機械では、ロータとステータの間のギャップを、所謂立体ギャップ構造とすることで、等価的にギャップ長を短縮したのと同等の特性となる効果(等価狭ギャップ効果)を期待できることが知られている。この等価狭ギャップ効果によって、トルクを代表とするモータの各種特性の改善を期待できることが知られている(例えば、下記非特許文献1を参照)。 In rotating electrical machines such as motors, a so-called three-dimensional gap structure is used for the gap between the rotor and the stator, and an effect equivalent to that obtained by equivalently shortening the gap length (equivalent narrow gap effect) is expected. It is known that it can be done. It is known that improvement of various characteristics of a motor represented by torque can be expected by the equivalent narrow gap effect (for example, see Non-Patent Document 1 below).
  ところで、回転電気機械のロータやステータを構成するコアには電磁鋼板を軸方向に積層した積層構造を有しているものがある。このような積層構造のコアに上述の立体ギャップ構造を採用すると、径方向だけでなく軸方向、即ち電磁鋼板(積層板)の積層方向にもロータとステータとが対向する部分が形成され、該部分では電磁鋼板の積層方向に磁束が侵入することとなる。その結果、当該部分において渦電流が発生し、該渦電流による熱損失(渦電流損)によってモータの効率が低下する虞があった。 Incidentally, some cores constituting rotors and stators of rotating electrical machines have a laminated structure in which electromagnetic steel sheets are laminated in the axial direction. When the above-described three-dimensional gap structure is adopted for the core of such a laminated structure, a portion where the rotor and the stator are opposed to each other not only in the radial direction but also in the axial direction, that is, in the lamination direction of the electromagnetic steel plates (laminate plates) In the portion, the magnetic flux penetrates in the lamination direction of the electromagnetic steel sheets. As a result, an eddy current is generated in the portion, and there is a possibility that the efficiency of the motor may be reduced due to heat loss (eddy current loss) due to the eddy current.
  本発明は、かかる点に鑑みてなされたものであり、その目的は、ロータコアとステータコアとの間に立体ギャップを採用した回転電気機械において、渦電流損による効率低下を抑制することにある。 The present invention has been made in view of such a point, and an object thereof is to suppress a reduction in efficiency due to eddy current loss in a rotating electric machine employing a three-dimensional gap between a rotor core and a stator core.
  第1の発明は、駆動軸(60)と、該駆動軸(60)に取り付けられたロータ(40)と、該ロータ(40)の外周側に設けられたステータ(20)とを備え、該ステータ(20)のステータコア(30)及び上記ロータ(40)のロータコア(41)が、両コア(30,41)の間に径方向及び軸方向に交互に連続して延びるギャップ(G)を形成するように対向する凹凸部(38,46)をそれぞれ有している回転電気機械であって、上記ステータコア(30)及び上記ロータコア(41)の少なくとも一方は、複数の積層板(33)が軸方向に積層された積層構造を有し、且つ上記凹凸部(38,46)のうちの凸部(38A,38B,46A,46B)の先端から基端側に延びると共に該凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くように形成されたスリット(S1,S2,S1',S2')を有している。 The first invention includes a drive shaft (60), a rotor (40) attached to the drive shaft (60), and a stator (20) provided on the outer peripheral side of the rotor (40), The stator core (30) of the stator (20) and the rotor core (41) of the rotor (40) form a gap (G) extending between the cores (30, 41) alternately in the radial direction and the axial direction. A rotating electric machine having concave and convex portions (38, 46) opposed to each other, wherein at least one of the stator core (30) and the rotor core (41) has a plurality of laminated plates (33) as shafts. The projections (38A, 38B) have a laminated structure laminated in the direction and extend from the tip of the projection (38A, 38B, 46A, 46B) to the base end side of the projections (38, 46). , 46A, 46B) slits (S1, S2, S1 ', S2' formed so as to penetrate at least one laminated plate (33) in the axial direction from the axial end of )have.
  第1の発明では、ステータコア(30)及びロータコア(41)の少なくとも一方が複数の積層板(33)が軸方向に積層された積層構造を有し、両コア(30,41)の間には径方向及び軸方向に延びるギャップ(G)(所謂、立体ギャップ)が形成されている。そのため、ステータコア(30)とロータコア(41)とは、それぞれの凹凸部(38,46)のうちの凸部(38A,38B,46A,46B)同士が積層板(33,43)の積層方向に対向するため、該凸部(38A,38B,46A,46B)において電磁鋼板(積層板)の積層方向に磁束が侵入して渦電流が発生してしまう。 In the first invention, at least one of the stator core (30) and the rotor core (41) has a laminated structure in which a plurality of laminated plates (33) are laminated in the axial direction, and between the cores (30, 41). A gap (G) (so-called three-dimensional gap) extending in the radial direction and the axial direction is formed. Therefore, the stator core (30) and the rotor core (41) are such that the convex portions (38A, 38B, 46A, 46B) of the concave and convex portions (38, 46) are in the stacking direction of the laminated plates (33, 43). Since they face each other, magnetic flux intrudes in the lamination direction of the electromagnetic steel plates (laminated plates) at the convex portions (38A, 38B, 46A, 46B), and eddy currents are generated.
  しかしながら、第1の発明では、ステータコア(30)及びロータコア(41)のうち、積層構造を有するコア(30,41)には、凸部(38A,38B,46A,46B)の先端から基端側に延びると共に該凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くスリット(S1,S2,S1',S2')が形成されている。このスリット(S1,S2,S1',S2')により、上記凸部(38A,38B,46A,46B)において渦電流が発生しても該渦電流は上記スリット(S1,S2,S1',S2')を迂回して流れなければならず、その流路が長くなる。その結果、渦電流流路の電気抵抗が増大し、渦電流損が低減される。 However, in the first invention, of the stator core (30) and the rotor core (41), the core (30, 41) having a laminated structure has a base end side from the tip of the convex portion (38A, 38B, 46A, 46B). And slits (S1, S2, S1 ′, S2 ′) extending in the axial direction from at least one laminated plate (33) from the axial ends of the convex portions (38A, 38B, 46A, 46B) are formed. Yes. Even if eddy currents are generated in the convex portions (38A, 38B, 46A, 46B) by the slits (S1, S2, S1 ′, S2 ′), the eddy currents are not affected by the slits (S1, S2, S1 ′, S2). ') Must flow around, and the flow path becomes longer. As a result, the electrical resistance of the eddy current flow path is increased and eddy current loss is reduced.
  第2の発明は、第1の発明において、上記スリット(S1,S2,S1',S2')は、少なくとも上記凸部(38A,38B,46A,46B)の先端から基端まで延びている。 In a second aspect based on the first aspect, the slit (S1, S2, S1 ′, S2 ′) extends at least from the distal end to the proximal end of the convex portion (38A, 38B, 46A, 46B).
  第2の発明では、スリット(S1,S2,S1',S2')が、凸部(38A,38B,46A,46B)を径方向に横断するように形成されている。そのため、上述の渦電流流路が大幅に長くなり、渦電流流路の電気抵抗がより大きなものとなって渦電流損がより低減される。 In the second invention, the slits (S1, S2, S1 ′, S2 ′) are formed so as to cross the convex portions (38A, 38B, 46A, 46B) in the radial direction. Therefore, the above-described eddy current flow path is significantly lengthened, and the electric resistance of the eddy current flow path becomes larger, and eddy current loss is further reduced.
  第3の発明は、第1又は第2の発明において、上記ステータコア(30)は、略円筒形状のコアバック部(35)と、該コアバック部(35)から径方向内側向きに突出し、上記凹凸部(38)を構成する歯先部(36)を先端に有する複数のティース部(34)とを備え、上記スリット(S1,S2)は、上記ステータコア(30)の上記各歯先部(36)における上記各凸部(38A,38B)において、周方向における中心線(L)よりも上記ロータ(40)の回転方向の反対側に設けられている。 According to a third invention, in the first or second invention, the stator core (30) protrudes radially inward from the substantially cylindrical core back portion (35) and the core back portion (35), A plurality of teeth portions (34) having tip portions (36) constituting the concavo-convex portions (38) at the tips, and the slits (S1, S2) are formed on the respective tooth tip portions of the stator core (30) ( The convex portions (38A, 38B) in 36) are provided on the opposite side of the rotational direction of the rotor (40) from the center line (L) in the circumferential direction.
  第3の発明では、ステータコア(30)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1,S2)が設けられている。その結果、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗が増大するため、渦電流損が大幅に低減される。 In the third invention, the stator core (30) is provided with the slits (S1, S2) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated. As a result, the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow increases, so that the eddy current loss is greatly reduced.
  第4の発明は、第1乃至第3のいずれか1つの発明において、上記ロータ(40)は、上記ロータコア(41)に軸対称に形成された複数の磁石穴(44)内にそれぞれ設けられた複数の磁石(42)を有し、上記スリット(S1',S2')は、上記ロータコア(41)の上記各磁石穴(44)の周方向の両端部と上記ロータ(40)の回転中心(O)とをそれぞれ結ぶ2つの直線(X)によって挟まれる領域において、上記各磁石(42)の周方向における中心線(L')よりも上記ロータ(40)の回転方向側に設けられている。 According to a fourth invention, in any one of the first to third inventions, the rotor (40) is provided in each of a plurality of magnet holes (44) formed axially symmetrically in the rotor core (41). A plurality of magnets (42), and the slits (S1 ′, S2 ′) are formed at both ends of each of the magnet holes (44) in the circumferential direction of the rotor core (41) and the rotation center of the rotor (40). (O) in a region sandwiched by two straight lines (X), each of which is provided on the rotational direction side of the rotor (40) with respect to the center line (L ') in the circumferential direction of each magnet (42). Yes.
  第4の発明では、ロータコア(41)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1',S2')が設けられている。その結果、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗が増大するため、渦電流損が大幅に低減される。 In the fourth invention, the rotor core (41) is provided with the slits (S1 ′, S2 ′) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated. As a result, the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow increases, so that the eddy current loss is greatly reduced.
  第1の発明によれば、所謂立体ギャップを介して対向するステータコア(30)及びロータコア(41)のうちの積層構造を有するコア(30,41)に上記スリット(S1,S2,S1',S2')を設けることにより、上記凸部(38A,38B,46A,46B)における渦電流流路の電気抵抗を増大させることができる。従って、渦電流損を低減して回転電気機械の効率低下を抑制することができる。 According to the first aspect of the invention, the slits (S1, S2, S1 ', S2) are formed in the core (30, 41) having a laminated structure among the stator core (30) and the rotor core (41) facing each other through a so-called three-dimensional gap. By providing '), it is possible to increase the electrical resistance of the eddy current flow path in the convex portions (38A, 38B, 46A, 46B). Therefore, it is possible to reduce eddy current loss and suppress a reduction in efficiency of the rotating electric machine.
  ところで、導体を流れる電流の密度は表面に近い程大きくなること(表皮効果)より、上記渦電流は上記凸部(38A,38B,46A,46B)の積層表面に集中する。そのため、上記スリット(S1,S2,S1',S2')を、凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くように形成することによって渦電流損を十分に低減することができる。 By the way, since the density of the current flowing through the conductor increases as it gets closer to the surface (skin effect), the eddy current concentrates on the laminated surface of the convex portions (38A, 38B, 46A, 46B). Therefore, the slit (S1, S2, S1 ', S2') is formed so as to penetrate at least one laminated plate (33) in the axial direction from the axial end of the convex portion (38A, 38B, 46A, 46B). By doing so, the eddy current loss can be sufficiently reduced.
  また、上記第2の発明によれば、スリット(S1,S2,S1',S2')が、凸部(38A,38B,46A,46B)の先端から基端まで上記凸部(38A,38B,46A,46B)を径方向に横断するように形成されている。そのため、上述の渦電流流路の電気抵抗を大幅に増大させることができ、渦電流損をより低減して回転電気機械の効率低下をより抑制することができる。 According to the second aspect of the invention, the slits (S1, S2, S1 ′, S2 ′) are formed so that the protrusions (38A, 38B, 46A and 46B) are formed so as to cross in the radial direction. Therefore, the electrical resistance of the above-described eddy current flow path can be significantly increased, and the eddy current loss can be further reduced to further suppress the efficiency reduction of the rotating electrical machine.
  また、上記第3の発明によれば、ステータコア(30)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1,S2)を設けることにより、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗を増大させることができる。従って、渦電流損を大幅に低減することができるため、回転電気機械の効率低下を効果的に抑制することができる。 According to the third aspect of the invention, the stator core (30) is provided with the slits (S1, S2) at a location where a relatively large eddy current is likely to be generated because the magnetic flux that generates torque is concentrated. It is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, the eddy current loss can be greatly reduced, so that a reduction in the efficiency of the rotating electrical machine can be effectively suppressed.
  また、上記第4の発明によれば、ロータコア(41)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1',S2')を設けることにより、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗を増大させることができる。従って、渦電流損を大幅に低減することができるため、回転電気機械の効率低下を効果的に抑制することができる。 According to the fourth aspect of the invention, the rotor core (41) is provided with the slits (S1 ′, S2 ′) at a location where a relatively large eddy current is likely to be generated because the magnetic flux that generates torque is concentrated. As a result, it is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, the eddy current loss can be greatly reduced, so that a reduction in the efficiency of the rotating electrical machine can be effectively suppressed.
図1は、本発明の実施形態に係るモータを適用した電動圧縮機の構成を模式的に示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a configuration of an electric compressor to which a motor according to an embodiment of the present invention is applied. 図2は、本実施形態のモータの構成を示す平面図である。FIG. 2 is a plan view showing the configuration of the motor of this embodiment. 図3は、分割ステータコアの構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the split stator core. 図4は、ロータの斜視図である。FIG. 4 is a perspective view of the rotor. 図5は、ロータコアの側面図である。FIG. 5 is a side view of the rotor core. 図6は、ステータ及びロータの組み合わせ部分を拡大して示す縦断面図である。FIG. 6 is an enlarged longitudinal sectional view showing a combined portion of the stator and the rotor. 図7は、ステータの歯先部を示し、(A)は平面図、(B)は端面図、(C)は径方向に切断した縦断面図である。7A and 7B show a tooth tip portion of the stator, where FIG. 7A is a plan view, FIG. 7B is an end view, and FIG. 7C is a longitudinal sectional view cut in the radial direction. 図8は、ロータの磁石用スロット付近を示し、(A)は平面図、(B)は径方向に切断した縦断面図、(C)は側面図である。FIG. 8 shows the vicinity of the magnet slot of the rotor, (A) is a plan view, (B) is a longitudinal sectional view cut in the radial direction, and (C) is a side view. 図9は、スリットの形状と渦電流の流路との関係を示す図である。FIG. 9 is a diagram showing the relationship between the shape of the slit and the flow path of the eddy current. 図10は、本発明の実施形態の変形例1のステータの歯先部を示し、(A)は端面図、(B)は径方向に切断した縦断面図である。10A and 10B show a tooth tip portion of a stator according to Modification 1 of the embodiment of the present invention, where FIG. 10A is an end view and FIG. 10B is a longitudinal sectional view cut in the radial direction. 図11は、本発明の実施形態の変形例2のステータの歯先部の平面図である。FIG. 11 is a plan view of the tooth tip portion of the stator according to the second modification of the embodiment of the present invention. 図12は、本発明の実施形態の変形例3のステータの歯先部を示し、(A)は端面図、(B)は径方向に切断した縦断面図である。12A and 12B show a tooth tip portion of a stator according to Modification 3 of the embodiment of the present invention, where FIG. 12A is an end view and FIG. 12B is a longitudinal sectional view cut in the radial direction. 図13は、本発明の実施形態の変形例4のステータの歯先部を示し、(A)は端面図、(B)は径方向に切断した縦断面図である。13A and 13B show a tooth tip portion of a stator according to Modification 4 of the embodiment of the present invention, in which FIG. 13A is an end view and FIG. 13B is a longitudinal sectional view cut in the radial direction.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 《発明の実施形態》
  -概要-
  図1は、本発明の実施形態に係るモータ(1)を適用した電動圧縮機(100)の構成を模式的に示す縦断面図である。上記モータ(1)は、ステータ(20)、ロータ(40)、及び駆動軸(60)を備え、空気調和機に用いる電動圧縮機(100)のケーシング(70)に収容されている。上記モータ(1)は、所謂IPM(Interior Permanent Magnet)モータであり、上記駆動軸(60)に連結された圧縮機構(80)を回転駆動する。なお、以下の説明において、軸方向とは駆動軸(60)の軸心の方向をいい、径方向とは上記軸心と直交する方向をいう。また、外周側とは上記軸心から遠い側をいい、内周側とは上記軸心から近い側をいう。また、積層位置とは、後述する積層板の軸方向の位置をいう。
<< Embodiment of the Invention >>
-Overview-
FIG. 1 is a longitudinal sectional view schematically showing a configuration of an electric compressor (100) to which a motor (1) according to an embodiment of the present invention is applied. The motor (1) includes a stator (20), a rotor (40), and a drive shaft (60), and is accommodated in a casing (70) of an electric compressor (100) used for an air conditioner. The motor (1) is a so-called IPM (Interior Permanent Magnet) motor, and rotationally drives a compression mechanism (80) connected to the drive shaft (60). In the following description, the axial direction refers to the direction of the axis of the drive shaft (60), and the radial direction refers to the direction orthogonal to the axis. Further, the outer peripheral side refers to the side far from the axis, and the inner peripheral side refers to the side closer to the axis. Moreover, a lamination position means the position of the axial direction of the laminated board mentioned later.
  -ステータ(20)-
  図2に示すように、上記ステータ(20)は、ステータコア(30)と、コイルを略矩形状に複数回巻いて形成されたコイル部(32)とを備えている。図3に示すように、ステータコア(30)は、複数の電磁鋼板(積層板)を軸方向に積層した積層コアに構成されている。
-Stator (20)-
As shown in FIG. 2, the stator (20) includes a stator core (30) and a coil portion (32) formed by winding a coil a plurality of times in a substantially rectangular shape. As shown in FIG. 3, the stator core (30) is configured as a laminated core in which a plurality of electromagnetic steel plates (laminated plates) are laminated in the axial direction.
  上記ステータコア(30)は、図2に示すように、略円筒形状のコアバック部(35)と、該コアバック部(35)から径方向内側向きに突出する複数のティース部(34)とを備えている。また、ステータコア(30)は、周方向に並ぶ複数の部材からなる。具体的には、本実施形態では、ステータコア(30)は、120°間隔で分割された3つの円弧形状の分割ステータコア(31)からなる。該3つの分割ステータコア(31)は、周方向に隣り合う分割ステータコア(31)の端面同士が当接するように配置されている。 As shown in FIG. 2, the stator core (30) includes a substantially cylindrical core back portion (35) and a plurality of teeth portions (34) projecting radially inward from the core back portion (35). I have. The stator core (30) is composed of a plurality of members arranged in the circumferential direction. Specifically, in this embodiment, the stator core (30) is composed of three arc-shaped divided stator cores (31) divided at intervals of 120 °. The three split stator cores (31) are arranged so that the end faces of the split stator cores (31) adjacent in the circumferential direction are in contact with each other.
  また、上記各ティース部(34)は、本実施形態では36つ設けられ、各ティース部(34)の間には同数の空間が形成されている。該空間は上記コイル部(32)を収容するコイル用スロット(37)を構成している。具体的には、1つの分割ステータコア(31)には、12個のコイル用スロット(37)が形成されている。 Further, in the present embodiment, there are 36 teeth portions (34), and the same number of spaces are formed between the teeth portions (34). The space constitutes a coil slot (37) for accommodating the coil portion (32). Specifically, twelve coil slots (37) are formed in one split stator core (31).
  また、上記各ティース部(34)の先端部は、平面視が四辺形で基端部側(コアバック部(35)側)の本体よりも周方向の幅が広い歯先部(36)に構成されている。各歯先部(36)は、図3に示すように、軸方向断面において径方向内側の端面が凹凸状に構成されている。以下では、各歯先部(36)の凹凸状の部分をステータ側凹凸部(38)と称し、該ステータ側凹凸部(38)の径方向内側の端面のうち、最も外周側の面を底面、その他の面を頂面と称する。具体的には、このステータ側凹凸部(38)は、第1頂面(38a)、第2頂面(38b)、及び底面(38c)を有している。 In addition, the tip of each of the teeth (34) is a tooth tip (36) that is quadrilateral in plan view and wider in the circumferential direction than the base end (core back (35) side) body. It is configured. As shown in FIG. 3, each tooth tip portion (36) is configured such that the radially inner end surface thereof is uneven in the axial cross section. Hereinafter, the uneven portion of each tooth tip portion (36) is referred to as a stator side uneven portion (38), and among the end surfaces on the radially inner side of the stator side uneven portion (38), the outermost surface is the bottom surface. The other surface is referred to as the top surface. Specifically, the stator side uneven portion (38) has a first top surface (38a), a second top surface (38b), and a bottom surface (38c).
  上記ステータ側凹凸部(38)は、積層板(33)の積層位置に応じて、歯先部(36)を形成する積層板(33)の径方向長さ(歯先長さ)を変化させることで形成することができる。具体的には、上記第1頂面(38a)を形成する同じ径方向長さに形成された複数の積層板(33)の内側端部(第2頂面(38b)より内周側の部分)によって、第1凸部(38A)が構成されている。また、上記第2頂面(38b)を形成する同じ径方向長さに形成された複数枚の積層板(33)の内側端部(底面(38c)より内周側の部分)によって、第2凸部(38B)が構成されている。 The stator side uneven portion (38) changes the radial length (tooth tip length) of the laminated plate (33) forming the tooth tip portion (36) according to the lamination position of the laminated plate (33). Can be formed. Specifically, the inner end of the plurality of laminated plates (33) formed to the same radial length forming the first top surface (38a) (the portion on the inner peripheral side from the second top surface (38b)) ) Constitutes the first convex portion (38A). Further, the second end surface (the portion on the inner peripheral side from the bottom surface (38c)) of the plurality of laminated plates (33) formed to the same radial length forming the second top surface (38b) The convex part (38B) is comprised.
  なお、上記第1凸部(38A)と第2凸部(38B)は、本発明に係る凸部を構成する。また、上記第1凸部(38A)と第2凸部(38B)には、それぞれ先端から基端側へ延びる(径方向の内側端部から外周側に延びる)スリット(S1,S2)が形成されている。該スリット(S1,S2)の位置、形状等については後述する。 Note that the first convex portion (38A) and the second convex portion (38B) constitute a convex portion according to the present invention. Further, slits (S1, S2) extending from the distal end to the proximal end side (extending from the radially inner end portion to the outer peripheral side) are formed in the first convex portion (38A) and the second convex portion (38B), respectively. Has been. The position and shape of the slits (S1, S2) will be described later.
  また、図2に示すように、上記コイル部(32)は、本実施形態では、各分割ステータコア(31)に対して6つずつ計18つ設けられている。また、各コイル部(32)は、それぞれ複数のティース部(34)に跨るように巻回され、所謂分布巻きに構成されている。この各コイル部(32)のコイルに所定の電力を供給することで、ステータ(20)に回転磁界を発生させることができる。 In addition, as shown in FIG. 2, in the present embodiment, a total of 18 coil portions (32) are provided for each of the divided stator cores (31). Moreover, each coil part (32) is each wound so that it may straddle a plurality of teeth parts (34), and is comprised by what is called distributed winding. By supplying predetermined power to the coils of the coil portions (32), a rotating magnetic field can be generated in the stator (20).
  -ロータ(40)-
  図4に示すように、上記ロータ(40)は、ロータコア(41)と、複数の磁石(42)とを備えている。上記ロータコア(41)は、複数の電磁鋼板(積層板(43))を軸方向に積層した積層コアであり、円筒状に形成されている。
-Rotor (40)-
As shown in FIG. 4, the rotor (40) includes a rotor core (41) and a plurality of magnets (42). The rotor core (41) is a laminated core obtained by laminating a plurality of electromagnetic steel plates (laminated plate (43)) in the axial direction, and is formed in a cylindrical shape.
  上記ロータコア(41)の中心には、駆動軸(60)を挿入する軸穴(47)が形成されている。また、ロータコア(41)には、上記複数の磁石(42)をそれぞれ収容する、複数の磁石用スロット(44)が形成されている。各磁石用スロット(44)は、軸穴(47)の軸心回りに60°ピッチで配置されている。つまり、各磁石用スロット(44)は、軸穴(47)の軸心に対して軸対称に設けられている。また、各磁石用スロット(44)は、平面視(軸穴(47)の軸方向視)において略U字状に形成され、該ロータコア(41)を軸方向に貫通している。また、各磁石用スロット(44)の周方向の両端部は、ロータコア(41)の外周付近まで延びている。なお、ロータコア(41)では、磁石用スロット(44)の周方向の端部を形成する部分(外周で細くなった部分、図4参照)をブリッジ部(44a)と称する。 A shaft hole (47) for inserting the drive shaft (60) is formed at the center of the rotor core (41). The rotor core (41) is formed with a plurality of magnet slots (44) for receiving the plurality of magnets (42), respectively. The magnet slots (44) are arranged at a 60 ° pitch around the axis of the shaft hole (47). That is, each magnet slot (44) is provided symmetrically with respect to the axis of the shaft hole (47). Each of the magnet slots (44) is formed in a substantially U shape in plan view (viewed in the axial direction of the shaft hole (47)) and penetrates the rotor core (41) in the axial direction. Further, both end portions in the circumferential direction of each magnet slot (44) extend to the vicinity of the outer periphery of the rotor core (41). In the rotor core (41), a portion that forms an end portion in the circumferential direction of the magnet slot (44) (portion narrowed at the outer periphery, see FIG. 4) is referred to as a bridge portion (44a).
  上記磁石(42)は、磁石用スロット(44)の中央付近に保持されている。この磁石(42)の全長は、磁石用スロット(44)の全長よりも短く、各磁石用スロット(44)の周方向の両端部分には、磁石(42)を収容した状態で空隙(45)がそれぞれ形成されている。 The magnet (42) is held near the center of the magnet slot (44). The total length of the magnet (42) is shorter than the total length of the magnet slot (44), and the gap (45) with the magnet (42) accommodated in each circumferential slot of each magnet slot (44). Are formed respectively.
  図5に示すように、ロータコア(41)は、軸方向断面において径方向外側の端面が凹凸状に構成されている。以下では、ロータコア(41)の凹凸状の部分をロータ側凹凸部(46)と称し、該ロータ側凹凸部(46)の径方向外側の端面のうち、最も内周側の面を底面、その他の面を頂面と称する。具体的には、このロータ側凹凸部(46)は、図5に示すように、第1頂面(46a)、第2頂面(46b)、底面(46c)を有している。 As shown in FIG. 5, the rotor core (41) is configured such that the radially outer end face is uneven in the axial section. Hereinafter, the uneven portion of the rotor core (41) is referred to as the rotor-side uneven portion (46), and the innermost peripheral surface of the radially outer end surface of the rotor-side uneven portion (46) is the bottom surface, and the others. Is referred to as the top surface. Specifically, as shown in FIG. 5, the rotor-side uneven portion (46) has a first top surface (46 a), a second top surface (46 b), and a bottom surface (46 c).
  上記ロータ側凹凸部(46)は、積層板(43)の積層位置に応じて、積層板(43)の直径を変化させることで形成することができる。具体的には、第1頂面(46a)を形成する同径の複数の積層板(43)の外側端部(第2頂面(46b)より外周側の部分)によって、第1凸部(46A)が構成されている。また、第2頂面(46b)を形成する同径の複数の積層板(43)の外側端部(底面(46c)より外周側の部分)によって、第2凸部(46B)が構成されている。 The rotor side uneven portion (46) can be formed by changing the diameter of the laminated plate (43) according to the laminated position of the laminated plate (43). Specifically, the first convex portion (the outer peripheral portion from the second top surface (46b)) of the plurality of laminated plates (43) having the same diameter forming the first top surface (46a) 46A) is configured. Further, the second convex portion (46B) is configured by the outer end portion (the portion on the outer peripheral side from the bottom surface (46c)) of the plurality of laminated plates (43) having the same diameter forming the second top surface (46b). Yes.
  なお、上記第1凸部(46A)と第2凸部(46B)は、本発明に係る凸部を構成する。また、上記第1凸部(46A)と第2凸部(46B)には、それぞれ先端から基端側へ延びる(径方向の外側端部から内周側に延びる)スリット(S1',S2')が形成されている。該スリット(S1',S2')の位置、形状等については後述する。 Note that the first convex portion (46A) and the second convex portion (46B) constitute the convex portion according to the present invention. Further, the first convex portion (46A) and the second convex portion (46B) have slits (S1 ′, S2 ′) extending from the distal end to the proximal end side (extending from the radially outer end portion to the inner peripheral side), respectively. ) Is formed. The position and shape of the slits (S1 ′, S2 ′) will be described later.
  -立体ギャップ-
  図6は、ステータ(20)とロータ(40)とを組み合わせた状態の断面図である。図6に示すように、ステータ(20)とロータ(40)を組み合わせた際に、ステータコア(30)とロータコア(41)とは、径方向及び軸方向に交互に連続して延びるギャップ(G)を介して径方向及び軸方向にそれぞれ対向している。具体的には、径方向に関しては、ロータ側凹凸部(46)の第1凸部(46A)の第1頂面(46a)とステータ側凹凸部(38)の底面(38c)、ロータ側凹凸部(46)の第2凸部(46B)の第2頂面(46b)とステータ側凹凸部(38)の第2凸部(38B)の第2頂面(38b)、ロータ側凹凸部(46)の底面(46c)とステータ側凹凸部(38)の第1凸部(38A)の第1頂面(38a)がそれぞれ対向し、それぞれの間に軸方向に延びるギャップを形成している。また、軸方向に関しては、ロータ側凹凸部(46)の第1凸部(46A)の軸方向端面とステータ側凹凸部(38)の第2凸部(38B)の軸方向端面、ロータ側凹凸部(46)の第2凸部(46B)の軸方向端面とステータ側凹凸部(38)の第1凸部(38A)の軸方向端面がそれぞれ対向し、それぞれの間に径方向に延びるギャップを形成している。このような構成により、ステータコア(30)とロータコア(41)との間には、ステータ側凹凸部(38)とロータ側凹凸部(46)とによって、径方向及び軸方向に交互に連続して延びるギャップ(立体ギャップ)が形成されている。この例では、ギャップ(G)の大きさは、径方向、軸方向ともに0.3mmである。
-Stereoscopic gap-
FIG. 6 is a cross-sectional view of a state in which the stator (20) and the rotor (40) are combined. As shown in FIG. 6, when the stator (20) and the rotor (40) are combined, the stator core (30) and the rotor core (41) have a gap (G) that extends alternately and continuously in the radial direction and the axial direction. Are opposed to each other in the radial direction and the axial direction. Specifically, with respect to the radial direction, the first top surface (46a) of the first protrusion (46A) of the rotor-side uneven portion (46), the bottom surface (38c) of the stator-side uneven portion (38), the rotor-side unevenness The second top surface (46b) of the second convex portion (46B) of the portion (46), the second top surface (38b) of the second convex portion (38B) of the stator side uneven portion (38), the rotor side uneven portion ( 46) and the first top surface (38a) of the first convex portion (38A) of the stator side uneven portion (38) face each other, and a gap extending in the axial direction is formed therebetween. . Moreover, regarding the axial direction, the axial end surface of the first convex portion (46A) of the rotor side uneven portion (46), the axial end surface of the second convex portion (38B) of the stator side uneven portion (38), and the rotor side uneven portion. The axial end surface of the second convex portion (46B) of the portion (46) and the axial end surface of the first convex portion (38A) of the stator side uneven portion (38) are opposed to each other, and a gap extending in the radial direction therebetween. Is forming. With such a configuration, the stator side uneven portion (38) and the rotor side uneven portion (46) are alternately and continuously arranged between the stator core (30) and the rotor core (41) in the radial direction and the axial direction. An extending gap (solid gap) is formed. In this example, the size of the gap (G) is 0.3 mm in both the radial direction and the axial direction.
  -スリット-
  上述のように、本発明に係るモータ(1)では、ステータ側凹凸部(38)の凸部(38A,38B)とロータ側凹凸部(46)の凸部(46A,46B)とが径方向だけでなく、軸方向にも対向している。そのため、ステータ側凹凸部(38)の凸部(38A,38B)とロータ側凹凸部(46)の凸部(46A,46B)とには、径方向だけでなく軸方向にも磁束が侵入することとなる。上述のように、ステータコア(30)とロータコア(41)とは、それぞれ積層板(33,43)が軸方向に積層された積層コアである。そのため、ステータ側凹凸部(38)の凸部(38A,38B)とロータ側凹凸部(46)の凸部(46A,46B)とにそれぞれ軸方向に磁束が侵入すると、該磁束に垂直な面内に電磁誘導によって渦状の電流(渦電流)が流れてジュール熱を発生させてしまう(渦電流損失)。この損失により、モータ(1)から出力される機械エネルギーが減少するため、その分だけモータ(1)への入力を大きくする必要が生じ、モータ(1)の効率が低下する。また、導体を流れる電流の密度は表面に近い程大きくなること(表皮効果)より、上記渦電流は、ステータコア(30)のステータ側凹凸部(38)とロータコア(41)のロータ側凹凸部(46)のそれぞれの積層表面(軸方向端面)付近に集中する。
-slit-
As described above, in the motor (1) according to the present invention, the convex portion (38A, 38B) of the stator side uneven portion (38) and the convex portion (46A, 46B) of the rotor side uneven portion (46) are in the radial direction. As well as facing in the axial direction. Therefore, magnetic flux penetrates not only in the radial direction but also in the axial direction into the convex portions (38A, 38B) of the stator side uneven portion (38) and the convex portions (46A, 46B) of the rotor side uneven portion (46). It will be. As described above, the stator core (30) and the rotor core (41) are laminated cores in which laminated plates (33, 43) are laminated in the axial direction, respectively. Therefore, when magnetic flux enters the convex portions (38A, 38B) of the stator side uneven portion (38) and the convex portions (46A, 46B) of the rotor side uneven portion (46) in the axial direction, a plane perpendicular to the magnetic flux is obtained. An eddy current (eddy current) flows by electromagnetic induction and generates Joule heat (eddy current loss). Due to this loss, the mechanical energy output from the motor (1) decreases, so that the input to the motor (1) needs to be increased accordingly, and the efficiency of the motor (1) decreases. Further, since the density of the current flowing through the conductor increases as it approaches the surface (skin effect), the eddy current is generated by the stator side uneven part (38) of the stator core (30) and the rotor side uneven part (38) of the rotor core (41). Concentrate in the vicinity of each laminated surface (axial end face) of 46).
  そこで、本発明に係るモータ(1)では、上述のように、ステータコア(30)及びロータコア(41)に、上記渦電流の発生を抑制するスリット(S1,S2)(S1',S2')が形成されている。 Therefore, in the motor (1) according to the present invention, as described above, the stator core (30) and the rotor core (41) have slits (S1, S2) (S1 ′, S2 ′) that suppress the generation of the eddy current. Is formed.
  図7(A),(B),(C)に示すように、上記ステータ側凹凸部(38)の各第1凸部(38A)にはスリット(S1)が形成され、各第2凸部(38B)にはスリット(S2)が形成されている。 As shown in FIGS. 7A, 7B, and 7C, a slit (S1) is formed in each first convex portion (38A) of the stator side uneven portion (38), and each second convex portion. A slit (S2) is formed in (38B).
  具体的には、各スリット(S1,S2)は、それぞれティース中心線(L)(ティース部(34)の中心を通る線)よりもロータ(40)の回転方向の反対側に設けられている。これは、各歯先部(36)では、ティース中心線(L)よりもロータ(40)の回転方向の反対側にトルクを発生させるための磁束が集中するため、他の部分よりも大きな渦電流が発生し易いと考えられるからである。 Specifically, each slit (S1, S2) is provided on the opposite side of the rotation direction of the rotor (40) from the tooth center line (L) (line passing through the center of the tooth portion (34)). . This is because, in each tooth tip (36), the magnetic flux for generating torque concentrates on the opposite side of the rotation direction of the rotor (40) from the tooth center line (L), so a larger vortex than the other parts. This is because current is considered to be easily generated.
  また、各スリット(S1,S2)は、各凸部(38A,38B)の先端から基端側に延びて基端まで至っている。具体的には、スリット(S1)は、第1凸部(38A)の第1頂面(38a)から外周側に延びて第2頂面(38b)と同じ径方向位置まで延びている。同様に、スリット(S2)は、第2凸部(38B)の第2頂面(38b)から外周側に延びて底面(38c)と同じ径方向位置まで延びている。 Also, each slit (S1, S2) extends from the tip of each convex portion (38A, 38B) to the base end and reaches the base end. Specifically, the slit (S1) extends from the first top surface (38a) of the first convex portion (38A) to the outer peripheral side and extends to the same radial position as the second top surface (38b). Similarly, the slit (S2) extends from the second top surface (38b) of the second convex portion (38B) to the outer peripheral side and extends to the same radial position as the bottom surface (38c).
  また、各スリット(S1,S2)は、各凸部(38A,38B)において、軸方向の両端部に設けられている。これは、表皮効果によって渦電流が各凸部(38A,38B)の積層表面に集中すると考えられるからである。また、各スリット(S1,S2)の軸方向長さは、積層板(33)1枚以上を貫通する長さであればよい。本実施形態では、図7(B),(C)に示すように、各スリット(S1,S2)は、積層板(33)3枚を貫通する軸方向長さに形成され、第1凸部(38A)では、軸方向両端部のスリット(S1)が連続して第1凸部(38A)を軸方向に貫通している。 In addition, each slit (S1, S2) is provided at both end portions in the axial direction in each convex portion (38A, 38B). This is because it is considered that eddy currents are concentrated on the surface of the laminate of the convex portions (38A, 38B) due to the skin effect. In addition, the axial length of each slit (S1, S2) may be a length that penetrates one or more laminated plates (33). In the present embodiment, as shown in FIGS. 7B and 7C, each slit (S1, S2) is formed to have an axial length penetrating three laminated plates (33), and the first convex portion. In (38A), the slits (S1) at both end portions in the axial direction continuously penetrate the first convex portion (38A) in the axial direction.
  また、図8(A),(B),(C)に示すように、上記ロータ側凹凸部(46)の第1凸部(46A)にはスリット(S1')が形成され、第2凸部(46B)にはスリット(S2')が形成されている。 Further, as shown in FIGS. 8A, 8B, and 8C, a slit (S1 ′) is formed in the first convex portion (46A) of the rotor side uneven portion (46), and the second convex portion is formed. A slit (S2 ′) is formed in the portion (46B).
  具体的には、各スリット(S1',S2')は、各凸部(46A,46B)において、各磁石用スロット(44)の周方向の両端部とロータ(40)の回転中心(O)とをそれぞれ結ぶ2つの直線(X)によって挟まれる領域において、各磁石用スロット(44)内の各磁石(42)の磁極中心線(L')(周方向の中心を通る線)よりもロータ(40)の回転方向側に設けられている。より詳細には、各スリット(S1',S2')は、各凸部(46A,46B)において、磁石中心線(L')とロータ(40)の回転方向側のブリッジ部(44a)との間に設けられている。これは、各凸部(46A,46B)の上記部分に、トルクを発生させるための磁束が集中するため、他の部分よりも大きな渦電流が発生し易いと考えられるからである。 Specifically, each slit (S1 ′, S2 ′) is formed at each convex portion (46A, 46B) at both ends in the circumferential direction of each magnet slot (44) and the rotation center (O) of the rotor (40). In the region sandwiched between two straight lines (X) that connect the two, the rotor is more than the magnetic pole center line (L ′) (line passing through the center in the circumferential direction) of each magnet (42) in each magnet slot (44). (40) is provided on the rotational direction side. More specifically, each slit (S1 ′, S2 ′) is formed between the magnet center line (L ′) and the bridge portion (44a) on the rotational direction side of the rotor (40) in each convex portion (46A, 46B). It is provided in between. This is because a magnetic flux for generating torque concentrates on the above-mentioned portions of the respective convex portions (46A, 46B), and it is considered that a larger eddy current is likely to be generated than other portions.
  また、各スリット(S1',S2')は、各凸部(46a,46b)の先端から基端側に延びて基端まで至っている。具体的には、スリット(S1')は、第1凸部(46A)の第1頂面(46a)から内周側に延びて第2頂面(46b)と同じ径方向位置まで延びている。同様に、スリット(S2')は、第2凸部(46B)の第2頂面(46b)から内周側に延びて底面(46c)と同じ径方向位置まで延びている。 Also, each slit (S1 ′, S2 ′) extends from the tip of each convex portion (46a, 46b) to the base end to reach the base end. Specifically, the slit (S1 ′) extends from the first top surface (46a) of the first convex portion (46A) to the inner peripheral side and extends to the same radial position as the second top surface (46b). . Similarly, the slit (S2 ′) extends from the second top surface (46b) of the second convex portion (46B) to the inner peripheral side and extends to the same radial position as the bottom surface (46c).
  また、各スリット(S1',S2')は、各凸部(46A,46B)において、軸方向の両端部に設けられている。これは、表皮効果によって渦電流が各凸部(46A,46B)の積層表面に集中すると考えられるからである。また、各スリット(S1',S2')の軸方向長さは、積層板(43)1枚以上を貫通する長さであればよい。本実施形態では、図8(B),(C)に示すように、各スリット(S1',S2')は、積層板(43)3枚を貫通する軸方向長さに形成され、第1凸部(46A)では、軸方向両端部のスリット(S1')が連続して第1凸部(46A)を軸方向に貫通している。 Also, each slit (S1 ′, S2 ′) is provided at each end in the axial direction in each convex portion (46A, 46B). This is because it is considered that eddy currents are concentrated on the surface of the stacked layers of the convex portions (46A, 46B) due to the skin effect. Moreover, the axial direction length of each slit (S1 ', S2') should just be the length which penetrates 1 or more of the laminated sheets (43). In the present embodiment, as shown in FIGS. 8B and 8C, each slit (S1 ′, S2 ′) is formed to have an axial length penetrating the three laminated plates (43), and the first In the convex portion (46A), the slits (S1 ′) at both axial end portions continuously pass through the first convex portion (46A) in the axial direction.
  上記ステータコア(30)及びロータコア(41)の各スリット(S1,S2)(S1',S2')の形成方法はいかなる方法でもよい。例えば、積層板(33,43)の打ち抜き時に同時に形成することとすれば、スリット(S1,S2)(S1',S2')を形成するために新たに工程を増やす必要がなくなり、製作コストの増大を防止できる。また、各コア(30,41)の打ち抜き後に、レーザ加工によってスリット(S1,S2)(S1',S2')を形成することとすれば、スリット(S1,S2)(S1',S2')を打ち抜き等に比べて細く形成することができる。さらに、各コア(30,41)の打ち抜き後に、切削加工によってスリット(S1,S2)(S1',S2')を形成することとすれば、汎用的な設備を用いてスリット(S1,S2)(S1',S2')を形成することができる。 The formation method of the slits (S1, S2) (S1 ′, S2 ′) of the stator core (30) and the rotor core (41) may be any method. For example, if it is formed at the same time as punching the laminated plate (33, 43), it is not necessary to increase the number of processes to form the slits (S1, S2) (S1 ', S2'). Increase can be prevented. If the slits (S1, S2) (S1 ', S2') are formed by laser processing after punching out the cores (30, 41), the slits (S1, S2) (S1 ', S2') Can be formed thinner than punching. Furthermore, if the slits (S1, S2) (S1 ', S2') are to be formed by cutting after punching out the cores (30, 41), the slits (S1, S2) can be formed using general-purpose equipment. (S1 ′, S2 ′) can be formed.
  -実施形態の効果-
  以上により、上記モータ(1)では、ステータコア(30)とロータコア(41)とは、それぞれ複数の積層板(33)が軸方向に積層された積層構造を有し、両コア(30,41)の間には、径方向及び軸方向に延びるギャップ(G)(所謂、立体ギャップ)が形成されている。そのため、コイル部(32)に電力を供給して運転状態にすると、ステータコア(30)とロータコア(41)とは、それぞれの凹凸部(38,46)のうちの各凸部(38A,38B,46A,46B)同士が電磁鋼板(積層板)の積層方向に対向するため、該各凸部(38A,38B,46A,46B)において電磁鋼板の積層方向に磁束が侵入して渦電流が発生してしまう。
-Effects of the embodiment-
Thus, in the motor (1), the stator core (30) and the rotor core (41) each have a laminated structure in which a plurality of laminated plates (33) are laminated in the axial direction, and both cores (30, 41) A gap (G) (so-called three-dimensional gap) extending in the radial direction and the axial direction is formed between them. Therefore, when electric power is supplied to the coil portion (32) to bring it into an operating state, the stator core (30) and the rotor core (41) have a convex portion (38A, 38B, 46A and 46B) face each other in the laminating direction of the electromagnetic steel plates (laminated plates), so that magnetic flux intrudes in the laminating direction of the electromagnetic steel plates and generates eddy currents at each convex part (38A, 38B, 46A, 46B) End up.
  しかしながら、上記モータ(1)では、ステータコア(30)及びロータコア(41)には、上記各凸部(38A,38B,46A,46B)の先端から基端側に延びると共に該各凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くスリット(S1,S2,S1',S2')が形成されている。これにより、上記各凸部(38A,38B,46A,46B)において渦電流が発生しても該渦電流は上記スリット(S1,S2,S1',S2')を迂回して流れなければならず、渦電流流路を長くすることができる。その結果、渦電流損を低減してモータ(1)の効率低下を抑制することができる。 However, in the motor (1), the stator core (30) and the rotor core (41) extend from the distal end of each convex portion (38A, 38B, 46A, 46B) to the proximal end side, and each convex portion (38A, 38B, 46A, 46B) are formed with slits (S1, S2, S1 ', S2') penetrating at least one laminated plate (33) in the axial direction from the axial ends. Thereby, even if an eddy current is generated in each of the convex portions (38A, 38B, 46A, 46B), the eddy current must flow around the slits (S1, S2, S1 ′, S2 ′). The eddy current flow path can be lengthened. As a result, it is possible to reduce eddy current loss and suppress a reduction in efficiency of the motor (1).
  また、上記各スリット(S1,S2,S1',S2')は、図9の左側に示すように、上記各凸部(38A,38B,46A,46B)の先端から基端側に延びている。つまり、各凸部(38A,38B,46A,46B)の軸方向端面において、該各凸部(38A,38B,46A,46B)の先端は上記各スリット(S1,S2,S1',S2')によって分断されて連結されていない。ここで、図9の右側に示すように、各凸部(38A,38B,46A,46B)の軸方向端面において、該各凸部(38A,38B,46A,46B)の先端が連結されていると、渦電流が各スリット(S1,S2,S1',S2')を迂回せずに流れてしまうため、渦電流流路の電気抵抗を増大させることができない。しかし、上記各スリット(S1,S2,S1',S2')は、上述のように上記各凸部(38A,38B,46A,46B)の先端から基端側に延びているため、渦電流流路を長くすることができ、渦電流損を低減することができる。 Further, the slits (S1, S2, S1 ′, S2 ′) extend from the distal ends of the convex portions (38A, 38B, 46A, 46B) to the proximal end side as shown on the left side of FIG. . That is, on the axial end face of each convex part (38A, 38B, 46A, 46B), the tip of each convex part (38A, 38B, 46A, 46B) is the above-mentioned slit (S1, S2, S1 ', S2') It is divided by and is not connected. Here, as shown on the right side of FIG. 9, the tips of the convex portions (38A, 38B, 46A, 46B) are connected to the axial end surfaces of the convex portions (38A, 38B, 46A, 46B). Then, since the eddy current flows without bypassing each slit (S1, S2, S1 ′, S2 ′), the electric resistance of the eddy current channel cannot be increased. However, since each of the slits (S1, S2, S1 ′, S2 ′) extends from the tip of each convex portion (38A, 38B, 46A, 46B) to the base end side as described above, the eddy current flow The path can be lengthened and eddy current loss can be reduced.
  また、上記モータ(1)では、上記各スリット(S1,S2,S1',S2')は、上記各凸部(38A,38B,46A,46B)の先端から基端まで延び、上記各凸部(38A,38B,46A,46B)を径方向に横断するように形成されている。そのため、上述の渦電流流路を大幅に延長して電気抵抗を大幅に増大させることができる。よって、渦電流損をより低減することができ、モータ(1)の効率低下をより抑制することができる。 Further, in the motor (1), the slits (S1, S2, S1 ′, S2 ′) extend from the distal end to the proximal end of the convex portions (38A, 38B, 46A, 46B), and the convex portions (38A, 38B, 46A, 46B) is formed so as to cross in the radial direction. Therefore, the above-mentioned eddy current flow path can be greatly extended to greatly increase the electrical resistance. Therefore, eddy current loss can be further reduced, and a reduction in efficiency of the motor (1) can be further suppressed.
  さらに、上記モータ(1)では、ステータコア(30)の上記各歯先部(36)における上記各凸部(38A,38B)において、周方向における中心線(L)よりもロータ(40)の回転方向の反対側に上記各スリット(S1,S2)が設けられている。つまり、上記モータ(1)では、ステータコア(30)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1,S2)が設けられている。その結果、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗を増大させることができる。従って、渦電流損を大幅に低減することができるため、モータ(1)の効率低下を効果的に抑制することができる。 Further, in the motor (1), the rotation of the rotor (40) in the respective convex portions (38A, 38B) in the respective tooth tip portions (36) of the stator core (30) more than the center line (L) in the circumferential direction. The slits (S1, S2) are provided on the opposite side of the direction. That is, in the motor (1), the slits (S1, S2) are provided in the stator core (30) at locations where a relatively large eddy current is likely to occur because the magnetic flux that generates torque is concentrated. As a result, it is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, since the eddy current loss can be greatly reduced, the efficiency reduction of the motor (1) can be effectively suppressed.
  また、上記モータ(1)では、ロータコア(41)の上記各磁石用スロット(44)の周方向の両端部と上記ロータ(40)の回転中心(O)とをそれぞれ結ぶ2つの直線(X)によって挟まれる領域において、上記各磁石(42)の周方向における中心線(L')よりも上記ロータ(40)の回転方向側に上記各スリット(S1',S2')が設けられている。つまり、上記モータ(1)では、ロータコア(41)に関して、トルクを発生させる磁束が集中するために比較的大きな渦電流が発生し易い箇所に上記スリット(S1',S2')が設けられている。その結果、比較的大きな渦電流が流れる可能性の高い渦電流流路の電気抵抗を増大させることができる。従って、渦電流損を大幅に低減することができるため、モータ(1)の効率低下を効果的に抑制することができる。 In the motor (1), two straight lines (X) connecting the circumferential ends of the magnet slots (44) of the rotor core (41) and the rotation center (O) of the rotor (40), respectively. The slits (S1 ′, S2 ′) are provided on the rotation direction side of the rotor (40) with respect to the center line (L ′) in the circumferential direction of the magnets (42). That is, in the motor (1), with respect to the rotor core (41), the magnetic flux that generates torque is concentrated, so that the slits (S1 ′, S2 ′) are provided at locations where relatively large eddy currents are likely to be generated. . As a result, it is possible to increase the electrical resistance of the eddy current flow path in which a relatively large eddy current is likely to flow. Therefore, since the eddy current loss can be greatly reduced, the efficiency reduction of the motor (1) can be effectively suppressed.
 《変形例1》
  図10(A)、(B)に一例としてステータコア(30)側のスリット(S1,S2)を示すように、上記実施形態のステータコア(30)及びロータコア(41)に形成された上記各スリット(S1,S2,S1',S2')は、軸方向に対して傾斜していてもよい。このように構成しても、上記実施形態と同様にして渦電流流路を長くすることができるため、渦電流損によるモータ(1)の効率低下を抑制することができる。
<< Modification 1 >>
The slits (S1, S2) on the stator core (30) side are shown as an example in FIGS. 10A and 10B, and the slits formed in the stator core (30) and the rotor core (41) of the above embodiment ( S1, S2, S1 ′, S2 ′) may be inclined with respect to the axial direction. Even if comprised in this way, since an eddy current flow path can be lengthened similarly to the said embodiment, the efficiency fall of the motor (1) by an eddy current loss can be suppressed.
 《変形例2》
  図11に一例としてステータコア(30)側のスリット(S1,S2)を示すように、上記実施形態のステータコア(30)及びロータコア(41)に形成された上記各スリット(S1,S2,S1',S2')は、磁束の流れに沿うように、ティース中心線(L)及び磁極中心線(L')に対してそれぞれ傾斜していてもよい。このような構成によると、上記各スリット(S1,S2,S1',S2')を設けることによる磁気抵抗の増加を抑制することができる。
<< Modification 2 >>
As shown in FIG. 11 as an example, the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may be inclined with respect to the teeth center line (L) and the magnetic pole center line (L ′) so as to follow the flow of magnetic flux. According to such a configuration, an increase in magnetic resistance due to the provision of the slits (S1, S2, S1 ′, S2 ′) can be suppressed.
 《変形例3》
  図12に一例としてステータコア(30)側のスリット(S1,S2)を示すように、上記実施形態のステータコア(30)及びロータコア(41)に形成された上記各スリット(S1,S2,S1',S2')は、それぞれ上記各凸部(38A,38B,46A,46B)の軸方向端部から各積層板(33)2枚を軸方向に貫くように構成されていてもよく、各積層板(33)1枚のみを軸方向に貫くように構成されていてもよい。
<< Modification 3 >>
As shown in FIG. 12, as an example, the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may be configured to penetrate the two laminated plates (33) in the axial direction from the axial ends of the convex portions (38A, 38B, 46A, 46B). (33) It may be configured to penetrate only one sheet in the axial direction.
  これは、導体を流れる電流の密度は表面に近い程大きくなること(表皮効果)から、上記各凸部(38A,38B,46A,46B)において発生する渦電流は該各凸部(38A,38B,46A,46B)の積層表面に集中する。そのため、上記各スリット(S1,S2,S1',S2')を、上記各凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くように形成することによって渦電流損を十分に低減することができる。 This is because the density of the current flowing through the conductor increases as it gets closer to the surface (skin effect), so the eddy current generated in each of the convex portions (38A, 38B, 46A, 46B) , 46A, 46B). Therefore, the slits (S1, S2, S1 ′, S2 ′) are passed through at least one laminated plate (33) in the axial direction from the axial ends of the convex portions (38A, 38B, 46A, 46B). By forming in this way, eddy current loss can be sufficiently reduced.
 《変形例4》
  図13に一例としてステータコア(30)側のスリット(S1,S2)を示すように、上記実施形態のステータコア(30)及びロータコア(41)に形成された上記各スリット(S1,S2,S1',S2')は、それぞれ上記各凸部(38A,38B,46A,46B)の先端から基端を超えて延びていてもよい。具体的には、スリット(S1)は第1凸部(38A)の第1頂面(38a)から第2頂面(38b)よりも外周側まで延び、スリット(S2)は第2凸部(38B)の第2頂面(38b)から底面(38c)よりも外周側まで延びていてもよい。また同様に、スリット(S1')は、第1凸部(46A)の第1頂面(46a)から第2頂面(46b)よりも内周側まで延び、スリット(S2')は第2凸部(46B)の第2頂面(46b)から底面(46c)よりも内周側まで延びていてもよい。このように構成することにより、上述の渦電流流路を大幅に延長して電気抵抗を大幅に増大させることができる。よって、渦電流損をより低減することができ、モータ(1)の効率低下をより抑制することができる。
<< Modification 4 >>
As shown in FIG. 13 as an example, the slits (S1, S2) on the stator core (30) side, the slits (S1, S2, S1 ′, S2 ′) may extend beyond the base end from the tip of each of the convex portions (38A, 38B, 46A, 46B). Specifically, the slit (S1) extends from the first top surface (38a) of the first convex portion (38A) to the outer peripheral side with respect to the second top surface (38b), and the slit (S2) has the second convex portion ( 38B) may extend from the second top surface (38b) to the outer peripheral side of the bottom surface (38c). Similarly, the slit (S1 ′) extends from the first top surface (46a) of the first convex portion (46A) to the inner peripheral side of the second top surface (46b), and the slit (S2 ′) is the second top surface (46). You may extend from the 2nd top surface (46b) of a convex part (46B) to the inner peripheral side rather than the bottom face (46c). By comprising in this way, the above-mentioned eddy current flow path can be extended greatly and an electrical resistance can be increased significantly. Therefore, eddy current loss can be further reduced, and a decrease in efficiency of the motor (1) can be further suppressed.
 《その他の実施形態》
  上記実施形態及び各変形例は、以下のような構成としてもよい。
<< Other Embodiments >>
The embodiment and each modification may have the following configurations.
  上記実施形態及び各変形例では、本発明に係るスリットは、ステータ(20)及びロータ(40)の両コア(30,41)に設けられていたが、いずれか一方のみに設けられていてもよい。そのような場合であっても、一方のコアにおいて上述の効果を奏することができる。 In the above embodiment and each modified example, the slit according to the present invention is provided in both the cores (30, 41) of the stator (20) and the rotor (40), but may be provided in only one of them. Good. Even in such a case, the above-described effects can be achieved in one core.
  なお、ステータ(20)の方がロータ(40)に比べて変化の大きい交番磁界に曝される。そのため、本発明に係るスリットをステータ(20)に設けると、ロータ(40)のみに設ける場合よりもその効果は大きくなる。 Note that the stator (20) is exposed to an alternating magnetic field having a larger change than the rotor (40). Therefore, when the slit according to the present invention is provided in the stator (20), the effect is greater than when the slit is provided only in the rotor (40).
  また、上記各スリット(S1,S2,S1',S2')の周方向の位置は、上記実施形態及び各変形例の位置に限られない。例えば、各スリット(S1,S2)がそれぞれティース中心線(L)よりもロータ(40)の回転方向側に設けられ、各スリット(S1',S2')が磁石中心線(L')とロータ(40)の回転方向の反対側のブリッジ部(44a)との間に設けられていてもよい。 Further, the circumferential position of each of the slits (S1, S2, S1 ′, S2 ′) is not limited to the position of the above-described embodiment and each modification. For example, each slit (S1, S2) is provided on the rotation direction side of the rotor (40) from the tooth center line (L), and each slit (S1 ', S2') is connected to the magnet center line (L ') and the rotor. It may be provided between the bridge portion (44a) on the opposite side of the rotational direction of (40).
  さらに、上記スリット(S1,S2,S1',S2')の個数は、上記実施形態及び各変形例のものに限られない。上記実施形態及び各変形例よりも上記スリット(S1,S2,S1',S2')の個数を増やすことにより、渦電流流路がより長くなるため、上述の効果をさらに増大させることができる。また、上記スリット(S1,S2,S1',S2')の個数は、各凸部(38A,38B,46A,46B)毎に、通過する磁束量にあわせて変えることとしてもよい。 Furthermore, the number of the slits (S1, S2, S1 ′, S2 ′) is not limited to that of the above embodiment and each modified example. By increasing the number of the slits (S1, S2, S1 ′, S2 ′) as compared to the embodiment and each modification, the eddy current flow path becomes longer, and thus the above-described effect can be further increased. Further, the number of the slits (S1, S2, S1 ′, S2 ′) may be changed in accordance with the amount of magnetic flux that passes through each convex portion (38A, 38B, 46A, 46B).
  また、上記実施形態及び各変形例におけるギャップ(G)の大きさは一例であって、異なる大きさであってもよい。さらに、上記ギャップ(G)は、軸方向と径方向とで大きさが異なっていてもよい。 Further, the size of the gap (G) in the above embodiment and each modification is an example, and may be a different size. Further, the gap (G) may have a different size in the axial direction and the radial direction.
  また、上記実施形態及び各変形例では、ステータ側凹凸部(38)及びロータ側凹凸部(46)は、それぞれ2つの凸部(第1凸部(38A,46A)及び第2凸部(38B,46B))を有するように形成されていたが、両凹凸部(38,46)の形状はこれに限られない。例えば、ステータ側凹凸部(38)及びロータ側凹凸部(46)は、凸部をそれぞれ1つずつ有するものであってもよく、3つ以上の凸部をそれぞれ有するものであってもよい。 Moreover, in the said embodiment and each modification, a stator side uneven | corrugated | grooved part (38) and a rotor side uneven | corrugated | grooved part (46) are two convex parts (1st convex part (38A, 46A) and 2nd convex part (38B), respectively. 46B)), however, the shape of both concave and convex portions (38, 46) is not limited to this. For example, each of the stator side uneven portion (38) and the rotor side uneven portion (46) may have one convex portion, or may have three or more convex portions.
  また、上記実施形態及び各変形例では、本発明に係る回転電気機械の例としてモータ(1)について説明したが、本発明に係る回転電気機械は、上記実施形態及び各変形例と同様のステータ(20)及びロータ(40)を備えた発電機であってもよい。 Moreover, in the said embodiment and each modification, although the motor (1) was demonstrated as an example of the rotary electric machine which concerns on this invention, the rotary electric machine which concerns on this invention is a stator similar to the said embodiment and each modification. The generator may include (20) and the rotor (40).
  さらに、本発明は、所謂集中巻きタイプの回転電気機械にも適用可能であり、ロータ(40)が磁石を備えていないリラクタンス型回転電気機械にも適用可能である。 Furthermore, the present invention can also be applied to a so-called concentrated winding type rotary electric machine, and can also be applied to a reluctance type rotary electric machine in which the rotor (40) does not include a magnet.
  なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 It should be noted that the above embodiment is essentially a preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
  以上説明したように、本発明は、ロータコア及びステータコアの少なくとも一方が積層構造を有し、これらのコア間に立体ギャップが形成されたモータ等の回転電気機械について有用である。 As described above, the present invention is useful for a rotating electrical machine such as a motor in which at least one of a rotor core and a stator core has a laminated structure and a three-dimensional gap is formed between these cores.
      1   モータ(回転電気機械)
     20   ステータ
     30   ステータコア
     33   積層板
     34   ティース部
     35   コアバック部
     36   歯先部
     38   ステータ側凹凸部(凹凸部)
     38A  第1凸部(凸部)
     38B  第2凸部 (凸部)
     40   ロータ
     41   ロータコア
     42   磁石
     43   積層板
     44   磁石用スロット(磁石穴)
     46   ロータ側凹凸部(凹凸部)
     46A  第1凸部(凸部)
     46B  第2凸部(凸部)
     60   駆動軸
     S1、S2、S1’、S2’  スリット
      G   ギャップ
1 Motor (rotary electric machine)
20 Stator 30 Stator Core 33 Laminate Plate 34 Teeth Part 35 Core Back Part 36 Tooth Tip Part 38 Stator Side Unevenness (Unevenness)
38A 1st convex part (convex part)
38B 2nd convex part (convex part)
40 Rotor 41 Rotor Core 42 Magnet 43 Laminated Plate 44 Magnet Slot (Magnet Hole)
46 Concave and convex portions on the rotor side
46A 1st convex part (convex part)
46B 2nd convex part (convex part)
60 Drive shaft S1, S2, S1 ', S2' Slit G Gap

Claims (4)

  1.   駆動軸(60)と、該駆動軸(60)に取り付けられたロータ(40)と、該ロータ(40)の外周側に設けられたステータ(20)とを備え、該ステータ(20)のステータコア(30)及び上記ロータ(40)のロータコア(41)が、両コア(30,41)の間に径方向及び軸方向に交互に連続して延びるギャップ(G)を形成するように対向する凹凸部(38,46)をそれぞれ有している回転電気機械であって、
      上記ステータコア(30)及び上記ロータコア(41)の少なくとも一方は、複数の積層板(33)が軸方向に積層された積層構造を有し、且つ上記凹凸部(38,46)のうちの凸部(38A,38B,46A,46B)の先端から基端側に延びると共に該凸部(38A,38B,46A,46B)の軸方向端部から少なくとも1つの積層板(33)を軸方向に貫くように形成されたスリット(S1,S2,S1',S2')を有している
    ことを特徴とする回転電気機械。
    A stator core of the stator (20), comprising a drive shaft (60), a rotor (40) attached to the drive shaft (60), and a stator (20) provided on an outer peripheral side of the rotor (40). The rotor core (41) of the rotor (40) and the rotor (40) face each other so as to form a gap (G) extending alternately and continuously in the radial direction and the axial direction between the cores (30, 41). Rotating electric machines each having a portion (38, 46),
    At least one of the stator core (30) and the rotor core (41) has a laminated structure in which a plurality of laminated plates (33) are laminated in the axial direction, and a convex portion of the concave and convex portions (38, 46). (38A, 38B, 46A, 46B) extends from the distal end to the proximal end side, and penetrates at least one laminated plate (33) in the axial direction from the axial end of the convex portion (38A, 38B, 46A, 46B) A rotary electric machine characterized by having slits (S1, S2, S1 ', S2') formed on the surface.
  2.   請求項1において、
      上記スリット(S1,S2,S1',S2')は、少なくとも上記凸部(38A,38B,46A,46B)の先端から基端まで延びている
    ことを特徴とする回転電気機械。
    In claim 1,
    The slit (S1, S2, S1 ′, S2 ′) extends at least from the distal end to the proximal end of the convex portion (38A, 38B, 46A, 46B).
  3.   請求項1又は2において、
      上記ステータコア(30)は、略円筒形状のコアバック部(35)と、該コアバック部(35)から径方向内側向きに突出し、上記凹凸部(38)を構成する歯先部(36)を先端に有する複数のティース部(34)とを備え、
      上記スリット(S1,S2)は、上記ステータコア(30)の上記各歯先部(36)における上記各凸部(38A,38B)において、周方向における中心線(L)よりも上記ロータ(40)の回転方向の反対側に設けられている
    ことを特徴とする回転電気機械。
    In claim 1 or 2,
    The stator core (30) includes a substantially cylindrical core back part (35) and a tooth tip part (36) that protrudes radially inward from the core back part (35) and constitutes the uneven part (38). A plurality of teeth (34) at the tip,
    The slits (S1, S2) are formed so that the rotor (40) is located more than the center line (L) in the circumferential direction in the convex portions (38A, 38B) of the tooth tip portions (36) of the stator core (30). An electric rotating machine provided on the opposite side of the rotation direction of
  4.   請求項1乃至3のいずれか1つにおいて、
      上記ロータ(40)は、上記ロータコア(41)に軸対称に形成された複数の磁石穴(44)内にそれぞれ設けられた複数の磁石(42)を有し、
      上記スリット(S1',S2')は、上記ロータコア(41)の上記各磁石穴(44)の周方向の両端部と上記ロータ(40)の回転中心(O)とをそれぞれ結ぶ2つの直線(X)によって挟まれる領域において、上記各磁石(42)の周方向における中心線(L')よりも上記ロータ(40)の回転方向側に設けられている
    ことを特徴とする回転電気機械。
    In any one of Claims 1 thru | or 3,
    The rotor (40) has a plurality of magnets (42) provided in a plurality of magnet holes (44) formed axially symmetrically in the rotor core (41),
    The slits (S1 ′, S2 ′) are two straight lines that connect the circumferential ends of the magnet holes (44) of the rotor core (41) and the rotation center (O) of the rotor (40), respectively. The rotating electrical machine is characterized in that, in the region sandwiched by X), the rotating electric machine is provided on the rotational direction side of the rotor (40) with respect to the center line (L ') in the circumferential direction of the magnets (42).
PCT/JP2011/001837 2010-03-31 2011-03-28 Rotating electric machine WO2011121982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010080759A JP5630057B2 (en) 2010-03-31 2010-03-31 Rotating electrical machine
JP2010-080759 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011121982A1 true WO2011121982A1 (en) 2011-10-06

Family

ID=44711745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001837 WO2011121982A1 (en) 2010-03-31 2011-03-28 Rotating electric machine

Country Status (2)

Country Link
JP (1) JP5630057B2 (en)
WO (1) WO2011121982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961040A4 (en) * 2013-02-20 2016-11-02 Mitsubishi Electric Corp Electric motor having embedded permanent magnets
EP3514920A1 (en) * 2018-01-17 2019-07-24 ABB Schweiz AG A stator core or a rotor core for an electrical machine with reduced eddy current losses and high magnetic conductivity and mechanical strength

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919999B2 (en) * 2012-05-01 2016-05-18 株式会社豊田中央研究所 Stator, rotating electric machine, and electric vehicle
JP6914424B2 (en) 2018-03-27 2021-08-04 三菱電機株式会社 Motors, compressors, blowers, and refrigerating air conditioners
WO2023190172A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Rotor, rotary electric machine, and drive device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178251A (en) * 1997-12-10 1999-07-02 Fuji Electric Co Ltd Armature for electric machine
JPH11289726A (en) * 1998-03-31 1999-10-19 Nissan Motor Co Ltd Reluctance motor
JPH11299131A (en) * 1998-03-16 1999-10-29 Lg Electronics Inc Motor with gap having various shape
JP2001037186A (en) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk Permanent magnet motor
JP2003319575A (en) * 2002-04-17 2003-11-07 Nippon Steel Corp Stator core for synchronous machine
JP2003348777A (en) * 2002-05-29 2003-12-05 Toshiba Corp Stator of dynamo-electric machine
JP2008178258A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Stator core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178251A (en) * 1997-12-10 1999-07-02 Fuji Electric Co Ltd Armature for electric machine
JPH11299131A (en) * 1998-03-16 1999-10-29 Lg Electronics Inc Motor with gap having various shape
JPH11289726A (en) * 1998-03-31 1999-10-19 Nissan Motor Co Ltd Reluctance motor
JP2001037186A (en) * 1999-07-19 2001-02-09 Toshiba Kyaria Kk Permanent magnet motor
JP2003319575A (en) * 2002-04-17 2003-11-07 Nippon Steel Corp Stator core for synchronous machine
JP2003348777A (en) * 2002-05-29 2003-12-05 Toshiba Corp Stator of dynamo-electric machine
JP2008178258A (en) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd Stator core

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2961040A4 (en) * 2013-02-20 2016-11-02 Mitsubishi Electric Corp Electric motor having embedded permanent magnets
US9762096B2 (en) 2013-02-20 2017-09-12 Mitsubishi Electric Corporation Interior permanent magnet motor
EP3514920A1 (en) * 2018-01-17 2019-07-24 ABB Schweiz AG A stator core or a rotor core for an electrical machine with reduced eddy current losses and high magnetic conductivity and mechanical strength
WO2019141400A1 (en) * 2018-01-17 2019-07-25 Abb Schweiz Ag A stator core or a rotor core for an electrical machine with reduced eddy current losses and high magnetic conductivity and mechanical strength
CN111656647A (en) * 2018-01-17 2020-09-11 Abb瑞士股份有限公司 Stator or rotor core of an electrical machine with reduced eddy current losses and high magnetic permeability and mechanical strength
US10992192B2 (en) 2018-01-17 2021-04-27 Abb Schweiz Ag Stator core or a rotor core for an electrical machine with reduced eddy current losses and high magnetic conductivity and mechanical strength
CN111656647B (en) * 2018-01-17 2021-06-22 Abb瑞士股份有限公司 Stator or rotor core of an electrical machine with reduced eddy current losses and high magnetic permeability and mechanical strength

Also Published As

Publication number Publication date
JP5630057B2 (en) 2014-11-26
JP2011217443A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5643127B2 (en) Rotating machine rotor
JP5774081B2 (en) Rotating electric machine
JP4901839B2 (en) Electric motor, compressor, blower and ventilation fan
JP5868513B2 (en) Permanent magnet embedded motor
JP2015033329A (en) Spoke permanent magnet machine with reduced torque ripples and method of manufacturing the same
AU2011233453B2 (en) Rotary electric machine
JP2011142735A (en) Permanent magnet type rotary electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP5741410B2 (en) Rotor for rotating electrical machines
JP5630057B2 (en) Rotating electrical machine
JP2004215442A (en) Permanent magnet embedded synchronous motor
JP2011015458A (en) Permanent magnet type rotary electric machine, and elevator device using the same
JP5439904B2 (en) Rotating electric machine
JP5593787B2 (en) Rotating electrical machine
JP2011199946A (en) Permanent magnet embedded rotor for rotary electric machine, and rotary electric machine
JP5471653B2 (en) Permanent magnet type electric motor
WO2022210237A1 (en) Magnetic geared rotary machine, power generation system, and magnetic pole piece rotor
JP2017050918A (en) Synchronous reluctance motor
JPWO2019187205A1 (en) Rotating machine
JP2019170091A (en) Rotary electric machine
JP6435838B2 (en) Rotating electric machine rotor and rotating electric machine including the same
JP5608377B2 (en) Rotating electric machine
JP2012213269A (en) Rotary electric machine
JP6877944B2 (en) Synchronous reluctance type rotary electric machine
JP2007252079A (en) Synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762230

Country of ref document: EP

Kind code of ref document: A1