WO2011118512A1 - Insulated gate bipolar transistor - Google Patents

Insulated gate bipolar transistor Download PDF

Info

Publication number
WO2011118512A1
WO2011118512A1 PCT/JP2011/056503 JP2011056503W WO2011118512A1 WO 2011118512 A1 WO2011118512 A1 WO 2011118512A1 JP 2011056503 W JP2011056503 W JP 2011056503W WO 2011118512 A1 WO2011118512 A1 WO 2011118512A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
region
trench
gate electrode
insulating film
Prior art date
Application number
PCT/JP2011/056503
Other languages
French (fr)
Japanese (ja)
Inventor
秀司 米田
慎 及川
憲治 澤村
Original Assignee
オンセミコンダクター・トレーディング・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オンセミコンダクター・トレーディング・リミテッド filed Critical オンセミコンダクター・トレーディング・リミテッド
Publication of WO2011118512A1 publication Critical patent/WO2011118512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Definitions

  • the present invention relates to an insulated gate bipolar transistor, and more particularly to an insulated gate bipolar transistor having an enhanced hole accumulation effect.
  • IGBTs Insulated gate bipolar transistors
  • the IGBT is roughly classified into a PT (Punch Through) structure and an NPT (Non Punch Through) structure.
  • PT Plasma-Gate Bipolar Transistors
  • NPT Non Punch Through
  • the drift layer needs to have a thickness corresponding to it. If it does so, the cost by the epitaxial growth of a drift layer will increase.
  • the drift layer is formed by polishing an FZ (Float Zoning) wafer.
  • the collector layer is formed by injecting p + type impurities into the drift layer with a low dose. For this reason, the amount of holes injected from the collector layer into the drift layer is several orders of magnitude lower in the NPT structure than in the PT structure. In this case, the amount of holes discharged from the emitter electrode cannot be ignored.
  • attempts have been made in the past to suppress the discharge of holes.
  • the emitter region and the emitter electrode are connected in the first region between adjacent trenches to make the region a main cell, while the second region that is between adjacent trenches and is different from the first region.
  • a configuration is disclosed in which an interlayer insulating film is formed between the emitter region and the emitter electrode to make the region a dummy cell. Holes are injected into the base layer from the collector side when the IGBT is on. However, since the area of the main cell is reduced by such a configuration, holes are not easily discharged to the emitter side through the main cell. .
  • the present invention has been made in view of such a problem, and includes a one-conductivity-type semiconductor layer serving as a collector region, a reverse-conductivity-type semiconductor layer provided on the one-conductivity-type semiconductor layer, and a surface provided on the surface of the reverse-conductivity-type semiconductor layer.
  • a plurality of trenches extending in the first direction on the surface, a gate electrode provided in the trench via an insulating film, and provided on the surface of the reverse conductivity type semiconductor layer between the adjacent trenches;
  • One conductivity type base region separated from each other by the opposite conductivity type semiconductor layer in the direction, and an opposite conductivity type emitter region provided adjacent to the trench on the surface of the base region, adjacent in the first direction
  • Another insulating film provided on the opposite conductivity type semiconductor layer between the base regions and overlapping an end portion of the both base regions, and another gate electrode provided on the other insulating film.
  • the present invention relates to an NPT-structure IGBT having a stripe-shaped trench cell, in which a base region serving as a hole outflow path is provided separately in the extending direction of the trench, and an emitter electrode is formed on the surface of the drift layer where the base region is not disposed. Is provided to limit the path through which holes injected into the drift layer flow when the transistor is turned on, thereby enhancing the hole accumulation effect. Further, a planar structure transistor is disposed on the surface of the drift layer where the base region is not disposed to increase the number of electron supply sources, thereby suppressing the decrease in current density while enhancing the hole accumulation effect.
  • the following effects can be obtained.
  • a base region adjacent to a trench (trench gate) extending in a stripe shape is provided separately in the extending direction of the trench, and the emitter electrode and the drift layer are insulated from the surface of the drift layer between the two separated base regions.
  • An insulating film is provided.
  • the effect of accumulating holes can be enhanced by separating the base region.
  • insulation that insulates the electrode and the drift layer from the surface of the drift layer between regions where both base regions are not disposed.
  • a film is provided, and the base region where holes are separated from each other is limited to be drawn out as a path. Thereby, the hole accumulation effect in the drift layer can be enhanced, and the saturation voltage can be reduced.
  • the channel (inversion layer) length when the transistor is on can be increased, and the number of electron supply sources can be increased.
  • Separation between the base regions in the trench type cell results in separation of the interval between the cells, and the cell density of the transistor is reduced.
  • a significant reduction in cell density can be suppressed by arranging other cells of the planar structure at locations apart from the base region. Thereby, it is possible to reduce channel resistance and suppress a decrease in current density while enhancing the hole accumulation effect.
  • the trench (trench gate) is separated into a plurality of portions in the direction in which the trench extends and is provided only in the region where the base region is disposed, so that the trench (trench gate) extends in a stripe shape to the edge of the substrate.
  • an increase in gate capacitance in a region where both base regions are not disposed can be suppressed.
  • FIG. 1A is a plan view and FIG. 1B is a perspective sectional view for explaining an insulated gate bipolar transistor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the insulated gate bipolar transistor according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view for explaining an insulated gate bipolar transistor according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating the insulated gate bipolar transistor according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the first embodiment of the present invention.
  • 6A is a plan view and FIG.
  • FIG. 6B is a perspective sectional view for explaining an insulated gate bipolar transistor according to a second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the third embodiment of the present invention.
  • FIG. 1 is a diagram showing the IGBT 10A
  • FIG. 1A is a plan view of the main surface (front surface) side of the substrate of the IGBT 10A
  • FIG. 1B shows a part of the first region r1 in FIG. It is a perspective sectional view.
  • IGBT 10 ⁇ / b> A includes one-conductivity-type semiconductor layer 1, reverse-conductivity-type semiconductor layer 2, trench 31, insulating film 41, gate electrode 51, base region 21, emitter region 61, Another insulating film 42 and another gate electrode 52 are provided.
  • the substrate is formed by laminating an n ⁇ type semiconductor layer 2 on a high concentration p type (p ++ type) semiconductor layer 1 serving as a collector layer.
  • the n ⁇ type semiconductor layer 2 becomes a drift layer of the IGBT 10A (FIG. 1B).
  • the IGBT 10A of the present embodiment has an NPT structure, and the p ++ type semiconductor layer 1 is formed on an n ⁇ type FZ wafer (silicon wafer) by ion implantation of p ++ type impurities.
  • FIG. 1A shows a configuration in which the second region r2 is provided on the surface of the drift layer (n ⁇ type semiconductor layer) 2 and another gate electrode provided in the third region r3 on the surface of the drift layer 2. 52 patterns are shown superimposed. Further, the pattern of the interlayer insulating film 3 on the other gate electrode 52 is shown in the fourth region r4, and the other gate electrode 52 is shown by a one-dot chain line.
  • the emitter electrode on the substrate surface is omitted.
  • the plurality of trenches 31 are provided on the surface of the drift layer 2 in parallel with each other in a stripe shape extending in the Y direction in a plan view of the surface.
  • the trench 31 is covered with a gate insulating film 41 made of an oxide film, for example, and a gate electrode 51 made of a polysilicon layer doped with impurities is buried.
  • the trench 31, the gate insulating film 41 and the gate electrode 51 constitute a trench gate TG.
  • the trench gate TG constitutes the trench cell 11 of the IGBT 10A together with the adjacent emitter region 61, base region 21, and body region 71.
  • Base region 21 is a p-type impurity region provided on the surface of drift layer 2 between adjacent trenches 31.
  • the base region 21 is separated into a plurality by the drift layer 2 in the Y direction in which the trench gate TG extends, and is adjacent to a part of the trench gate TG.
  • the plurality of base regions 21 exist as regions separated from each other in an island shape by the trench gate TG and the drift layer 2. End portions of the base regions 21 adjacent to each other with the trench gate TG interposed therebetween (joint surface with the drift layer 2) are provided so as to be aligned in the X-plane direction.
  • the emitter region 61 is a high-concentration n-type (n + -type) impurity region provided on the surface of the base region 21 adjacent to the trench 31 (trench gate TG).
  • the emitter region 61 exists as an island-like region provided inside the base region 21.
  • Body region 71 is a high-concentration p-type (p + -type) impurity region provided between adjacent emitter regions 61 on the surface of base region 21.
  • Another gate insulating film 42 (not shown in FIG. 1A) is provided on the drift layer 2 between the base regions 21 adjacent in the Y direction.
  • the other gate insulating film 42 overlaps with the end portions of both adjacent base regions 41 and covers up to the end portions of the emitter regions 61 provided in the respective base regions 21.
  • the other gate electrode 52 is provided on the other gate insulating film 42.
  • the other gate insulating film 42 and the other gate electrode 52 constitute a planar gate PG.
  • the planar gate PG constitutes the planar cell 12 of the IGBT 10A together with the base region 21, the emitter region 61, and the body region 71 at both ends.
  • another gate electrode 52 continuously extends in the X direction orthogonal to the Y direction on the surface of the substrate.
  • the other gate electrode 52 is also provided on the trench gate TG, but the other gate insulating film 42 is removed at least on the gate electrode 51 to provide a contact hole CH ′. That is, in the region where the gate electrode 51 and the other gate electrode 52 intersect, these are overlapped and connected via the contact hole CH ′.
  • the other gate electrode 52 extends in the Y direction on the gate electrode 51 and is connected thereto.
  • the other gate electrode 52 continuously extends in the X direction, but the planar gate PG is provided only on the base region 21 adjacent in the Y direction.
  • An interlayer insulating film 3 is provided so as to cover the planar gate PG and the trench gate TG.
  • the interlayer insulating film 3 is provided with a contact hole CH (the second region r2 in FIG. 1A and a broken line in the third region r3) in which the emitter region 61 and the body region 71 are exposed in an island shape.
  • the pattern in plan view is a lattice pattern.
  • the gate electrode 51 and the other gate electrode 52 are formed so as to be connected to the gate routing wiring 8 formed around the IGBT 10A.
  • FIG. 2 is a cross-sectional view taken along the line aa in FIG.
  • a plurality of trench gates TG are provided on the surface of the drift layer 2 so as to be separated from each other.
  • the emitter region 61 is provided on both sides adjacent to the trench gate TG, and the body region 71 is provided between the adjacent emitter regions 61.
  • the depth of the base region 21 is shallower than the bottom of the trench 31, the depth of the body region 71 is shallower than the base region 21, and the depth of the emitter region 61 is shallower than the body region 71.
  • the trench gate TG and the base region 21, the emitter region 61, and the body region 71 sandwiched between the trench gates TG constitute the trench cell 11 of the IGBT 10A.
  • Another gate insulating film 42 is provided on the surface of the drift layer 2, and a part thereof is removed so that the gate electrode 51, the emitter region 61, and the body region 71 are exposed.
  • the other gate electrode 52 is patterned so as to overlap with the gate electrode 51 and is in contact with the gate electrode 51 through the contact hole CH ′ provided in the other gate insulating film 42.
  • Interlayer insulating film 3 is provided on another gate electrode 52, and contact hole CH is provided so that emitter region 61 and body region 71 are exposed.
  • the emitter electrode 4 is formed in a wide area so as to cover all the emitter regions 61.
  • the emitter electrode 4 is in contact with the emitter region 61 and the body region 71 through a contact hole CH provided in the interlayer insulating film 3.
  • a collector electrode 5 is provided on the back surface of the p ++ type semiconductor layer 1. Although illustration is omitted here, the guard ring 6 is formed to be deeper than the base region 21 around the IGBT 10A.
  • the gate routing wiring 8 is formed so that the upper and lower sides thereof are sandwiched between the interlayer insulating films 3 around the IGBT 10A.
  • FIG. 3 is a cross-sectional view taken along line bb in FIG.
  • a plurality of base regions 21 are formed separately from each other.
  • the body region 71 is formed so as to be positioned at the center on the surface of the base region 21.
  • the emitter region 61 is provided outside the body region 71 so as to surround it.
  • Another gate insulating film 42 is provided on the surface of the drift layer 2 between the adjacent base regions 21.
  • Another gate insulating film 42 is provided so as to cover the base region 21 and reach the end of the emitter region 61. Thereby, the emitter electrode 4 and the drift layer 2 are insulated.
  • Another gate electrode 52 is provided on the other gate insulating film 42 to constitute a planar gate PG.
  • An interlayer insulating film 3 is provided on the planar gate PG, and a contact hole CH in which the emitter region 61 and the body region 71 are exposed is provided in the interlayer insulating film 3.
  • the emitter electrode 4 is formed in a wide area so as to cover all the emitter regions 61. Then, the emitter region 61 and the body region 71 are contacted through a contact hole CH provided in the interlayer insulating film 3.
  • the planar gate PG, the base region 21, the emitter region 61, and the body region 71 at both ends thereof constitute the planar cell 12 of the IGBT 10A.
  • FIG. 4 is a cross-sectional view taken along the line cc of FIG.
  • FIG. 5 is a cross-sectional view taken along the line dd in FIG.
  • the base region 21, the emitter region 61, and the body region 71 are not formed.
  • the gate electrode 51 is formed so that one end and the other end thereof are connected to a gate routing wiring (not shown). Thereby, the gate electrode 51 is controlled according to the signal of the gate routing wiring.
  • the other gate electrode 52 provided on the surface of the drift layer 2 overlaps with and is connected to the gate electrode 51 in this cross section.
  • the other gate electrode 52 is also formed so that one end and the other end thereof are connected to the gate routing wiring, and is controlled according to the signal of the gate routing wiring.
  • Interlayer insulating film 3 is provided on another gate electrode 52, and emitter electrode 4 is provided thereon. Below, the effect
  • the base region 21 is connected to the emitter electrode 4, and holes injected into the drift layer 2 are discharged to the emitter electrode 4 through the nearest base region 21 that is a p-type impurity region.
  • the storage portion HA there is another gate between the emitter electrode 4 and the drift layer 2 (hereinafter referred to as the storage portion HA) between the base regions 21 indicated by the broken line.
  • the base region 21 is separated by the trench gate TG and the drift layer 2 and provided in an island shape, and the surface of the drift layer 2 where the base region 21 is not disposed is insulated from the emitter electrode 4.
  • holes may move between adjacent base regions 21, but in other regions, the holes move between one base region 21 and another base region 21, thereby forming an emitter electrode. There is no route discharged to 4.
  • FIG. 6 is a diagram illustrating a part of the IGBT 10B according to the second embodiment.
  • FIG. 6 is a diagram illustrating a part of the IGBT 10B according to the second embodiment.
  • FIG. 6A is a plan view
  • FIG. 6B is a part of the first region r1 in FIG. 6A. It is a perspective sectional view.
  • the illustration of the second region r2, the third region r3, and the fourth region r4 in FIG. 1A is the same as that in FIG. 7 is a cross-sectional view taken along the line c′-c ′ in FIG. 6, and
  • FIG. 8 is a cross-sectional view taken along the line d′-d ′ in FIG. 6.
  • the trench gate TG is separated into a plurality by the drift layer 2 in the Y direction.
  • Another gate insulating film 42 (not shown in FIG.
  • the other gate electrode 52 extends on the surface of the drift layer 2 between the separated trench gates TG.
  • the other gate electrode 52 overlaps with the gate electrode 51 at both ends, and extends on the gate electrode 51 in the Y direction.
  • the other gate insulating film 42 is not provided in the region where the other gate electrode 52 and the gate electrode 51 overlap. That is, the other gate electrode 52 and the gate electrode 51 are electrically connected through the contact hole CH ′ provided in the other gate insulating film 42. Since the configuration other than this is the same as that of the first embodiment, the description thereof is omitted.
  • the end portions (joint surfaces with the drift layer 2) of the base regions 21 adjacent to each other across the trench gate TG are provided so as to be aligned in the X plane direction.
  • the end of the trench 31 is provided so as to be aligned with the end of the base region 21 in the X direction.
  • a gate insulating film 41 is provided on the inner wall of the trench 31 and a gate electrode 51 is embedded.
  • the drift layer 2 extends in the X direction.
  • FIG. 7 a cross section taken along line c′-c ′ will be described. This cross section corresponds to a cross section taken along the line cc (FIG. 4) in the first embodiment.
  • the trench 31 is not provided in the drift layer 2.
  • Another gate insulating film 42 is provided on the surface of the drift layer 2.
  • the other gate insulating film 42 extends continuously in the X direction.
  • the d'-d 'line cross section is demonstrated. This cross section corresponds to a cross section taken along the line dd (FIG. 5) in the first embodiment.
  • the drift layer 2 is provided between adjacent trench gates TG, and the base region 21, the emitter region 61, and the body region 71 are not provided.
  • the gate electrode 51 is connected to the other gate electrode 52 through the contact hole CH ′ provided in the other gate insulating film 42.
  • the other gate insulating film 42, the other gate electrode 52, and the interlayer insulating film 3 are formed between the emitter electrode 4 and the drift layer 2 serving as the storage portion HA, holes are transferred to the base region. It is not discharged from the drift layer 2 between 21. For this reason, the effect of accumulating holes in the drift layer 2 serving as the accumulating portion HA can be enhanced.
  • the other configuration is the same as that of the first embodiment, the description thereof is omitted.
  • the operation of the IGBT 10B according to the second embodiment is the same as the operation of the IGBT 10A according to the first embodiment, and thus the description thereof is omitted.
  • the gate capacitance input capacitance
  • the trench gate TG is formed in the region where the transistor operation is not performed (inside the one-dot chain line). ing. For this reason, when a gate potential is applied to the gate electrode 51, a gate capacitance is generated although it does not contribute to the transistor operation.
  • the trench gate TG is omitted in a region where the base region 21 is not disposed (region not contributing to transistor operation: within a one-dot chain line). Thereby, an increase in useless gate capacity can be suppressed.
  • the other gate electrode 52 of the planar gate PG may be divided into a plurality of parts by the separation groove S. Thereby, an increase in gate capacitance (input capacitance) can be suppressed below the isolation trench S. Increasing the distance between two base regions 21 adjacent in the Y direction is advantageous for the hole accumulation effect in the accumulation portion HA. On the other hand, the width of the other gate electrode 52 is also widened, which causes an increase in gate capacitance in the central portion that does not overlap with the base region 21.
  • the isolation trench S in the central portion that does not contribute to channel formation, an increase in gate capacitance can be suppressed.
  • the other separated gate electrodes 521 and 522 are covered with one interlayer insulating film 3 and are connected, for example, at an inner portion of the gate routing wiring 8 of FIG. Since the other configuration is the same as that of the first embodiment or the second embodiment, the description thereof is omitted.
  • the gate routing wiring 8 is arranged outside the guard ring 6.
  • the present invention is not limited to this, and can be appropriately changed in design. Moreover, even if it is the structure which reversed said embodiment and the conductivity type, it can implement similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

In conventional IGBTs, accumulation quantity of holes is maintained by aggressively reducing the area rate of a main cell and suppressing the quantity of holes discharged to the emitter side, and conductivity modulation of a base layer is promoted. There has been, however, a problem of current density reduction due to the reduction of the area ratio of the main cell. Disclosed is an IGBT having a trench cell, wherein the base region is separated in the extending direction of the trench gate such that base regions are disposed in the direction that orthogonally intersects the extending direction of the trench gate. A planar gate is disposed on the drift layer surface between the separated base regions. The gate electrode of the planar gate and the gate electrode of the trench gate are connected on the trench gate.

Description

絶縁ゲート型バイポーラトランジスタInsulated gate bipolar transistor
 本発明は絶縁ゲート型バイポーラトランジスタに係り、特に正孔の蓄積効果を高めた絶縁ゲート型バイポーラトランジスタに関する。 The present invention relates to an insulated gate bipolar transistor, and more particularly to an insulated gate bipolar transistor having an enhanced hole accumulation effect.
 絶縁ゲート型バイポーラトランジスタ(以下、IGBT(Insulated−Gate Bipolar Transistor))は、パワーエレクトニクス分野におけるスイッチング素子として用いられている。
 IGBTは、PT(Punch Through)構造とNPT(Non Punchi Through)構造とに大別される。
 PT構造は、コレクタ層として半導体基板が用いられ、これにバッファ層、ドリフト層が順次エピタキシャル成長されたものである。ドリフト層は、高耐圧が要求されると、それに応じた厚さが必要となる。そうすると、ドリフト層のエピタキシャル成長によるコストが増大してしまう。
 これに対して、NPT構造では、ドリフト層は、FZ(Float Zoning)ウエハが研磨されて形成される。これにより、高耐圧が要求されても、製造コストの増大が抑制される。
 ところが、NPT構造では、コレクタ層は、p+型不純物が低ドーズ量でドリフト層に注入されることにより形成される。このため、NPT構造は、PT構造と比較すると、コレクタ層からドリフト層に注入される正孔の量が数桁低くなる。この場合、正孔がエミッタ電極から排出される量を無視できない。
 これを解決すべく、従来においても、正孔の排出を抑制する試みがなされてきた。例えば、特許文献1では、隣接するトレンチ間の第1領域ではエミッタ領域とエミッタ電極とを接続させることで当該領域をメインセルとする一方、隣接するトレンチ間であって第1領域と異なる第2領域ではエミッタ領域とエミッタ電極との間に層間絶縁膜を形成することで当該領域をダミーセルとする構成が開示されている。正孔はIGBTがオンの状態においてコレクタ側からベース層に注入されるわけであるが、このような構成によってメインセルの面積が減少するため、正孔がメインセルを通じてエミッタ側へ排出されにくくなる。
Insulated gate bipolar transistors (hereinafter referred to as IGBTs (Insulated-Gate Bipolar Transistors)) are used as switching elements in the field of power electronics.
The IGBT is roughly classified into a PT (Punch Through) structure and an NPT (Non Punch Through) structure.
In the PT structure, a semiconductor substrate is used as a collector layer, and a buffer layer and a drift layer are sequentially epitaxially grown thereon. When a high breakdown voltage is required, the drift layer needs to have a thickness corresponding to it. If it does so, the cost by the epitaxial growth of a drift layer will increase.
On the other hand, in the NPT structure, the drift layer is formed by polishing an FZ (Float Zoning) wafer. Thereby, even if a high breakdown voltage is required, an increase in manufacturing cost is suppressed.
However, in the NPT structure, the collector layer is formed by injecting p + type impurities into the drift layer with a low dose. For this reason, the amount of holes injected from the collector layer into the drift layer is several orders of magnitude lower in the NPT structure than in the PT structure. In this case, the amount of holes discharged from the emitter electrode cannot be ignored.
In order to solve this problem, attempts have been made in the past to suppress the discharge of holes. For example, in Patent Document 1, the emitter region and the emitter electrode are connected in the first region between adjacent trenches to make the region a main cell, while the second region that is between adjacent trenches and is different from the first region. In the region, a configuration is disclosed in which an interlayer insulating film is formed between the emitter region and the emitter electrode to make the region a dummy cell. Holes are injected into the base layer from the collector side when the IGBT is on. However, since the area of the main cell is reduced by such a configuration, holes are not easily discharged to the emitter side through the main cell. .
特開平8−167716号公報JP-A-8-167716
 上述のように、特許文献1に係る発明では、メインセルの面積比率を積極的に減少させることにより、正孔のエミッタ側への排出量を抑制して正孔の蓄積量を保ち、ベース層の伝導度変調を促進することができる。
 しかし、当該従来技術では、メインセルの面積比率が減少するため、電流密度が低下してしまう問題があった。
As described above, in the invention according to Patent Document 1, by actively reducing the area ratio of the main cell, the amount of holes discharged to the emitter side is suppressed, the amount of accumulated holes is maintained, and the base layer It is possible to promote conductivity modulation.
However, the conventional technique has a problem in that the current density decreases because the area ratio of the main cell decreases.
 本発明はかかる課題に鑑みてなされ、コレクタ領域となる一導電型半導体層と、該一導電型半導体層上に設けられた逆導電型半導体層と、前記逆導電型半導体層表面に設けられ該表面において第1方向に延在する複数のトレンチと、該トレンチ内に絶縁膜を介して設けられたゲート電極と、隣り合う前記トレンチ間の前記逆導電型半導体層表面に設けられ、前記第1方向において該逆導電型半導体層で互いに分離された一導電型のベース領域と、該ベース領域表面で前記トレンチに隣接して設けられた逆導電型のエミッタ領域と、前記第1方向において隣り合う前記ベース領域間の前記逆導電型半導体層上に設けられ前記両ベース領域の端部と重畳する他の絶縁膜と、該他の絶縁膜上に設けられた他のゲート電極と、を具備することにより解決するものである。
 本発明は、ストライプ状のトレンチ型セルを有するNPT構造のIGBTにおいて、正孔の流出経路となるベース領域をトレンチの延在方向において分離して設け、ベース領域が配置されないドリフト層表面にエミッタ電極との絶縁膜を設けて、トランジスタのオン時にドリフト層に注入された正孔の流出する経路を制限し、正孔の蓄積効果を高めるものである。
 更に、ベース領域が配置されないドリフト層表面に、プレーナー構造のトランジスタを配置して電子供給源を増やし、正孔の蓄積効果を高めつつ電流密度の低下を抑制するものである。
The present invention has been made in view of such a problem, and includes a one-conductivity-type semiconductor layer serving as a collector region, a reverse-conductivity-type semiconductor layer provided on the one-conductivity-type semiconductor layer, and a surface provided on the surface of the reverse-conductivity-type semiconductor layer. A plurality of trenches extending in the first direction on the surface, a gate electrode provided in the trench via an insulating film, and provided on the surface of the reverse conductivity type semiconductor layer between the adjacent trenches; One conductivity type base region separated from each other by the opposite conductivity type semiconductor layer in the direction, and an opposite conductivity type emitter region provided adjacent to the trench on the surface of the base region, adjacent in the first direction Another insulating film provided on the opposite conductivity type semiconductor layer between the base regions and overlapping an end portion of the both base regions, and another gate electrode provided on the other insulating film. By the solution It is intended to.
The present invention relates to an NPT-structure IGBT having a stripe-shaped trench cell, in which a base region serving as a hole outflow path is provided separately in the extending direction of the trench, and an emitter electrode is formed on the surface of the drift layer where the base region is not disposed. Is provided to limit the path through which holes injected into the drift layer flow when the transistor is turned on, thereby enhancing the hole accumulation effect.
Further, a planar structure transistor is disposed on the surface of the drift layer where the base region is not disposed to increase the number of electron supply sources, thereby suppressing the decrease in current density while enhancing the hole accumulation effect.
 本発明によれば、以下の効果が得られる、
 第1に、トレンチ型セルを有するNPT構造の絶縁ゲート型バイポーラトランジスタにおいて、トランジスタのオン時にドリフト層に注入された正孔の蓄積効果を高めることができる。
 すなわち、ストライプ状に延在するトレンチ(トレンチゲート)に隣接するベース領域を、トレンチの延在方向において分離して設け、分離された両ベース領域間のドリフト層表面にエミッタ電極とドリフト層を絶縁する絶縁膜を設ける。これにより、従来構造と比較して、p型不純物領域であるベース領域を介して正孔が引き抜かれる経路を制限できるので、コレクタ層から注入された正孔が蓄積され易い構造を実現できる。
 正孔は直近のp型不純物領域を介して、エミッタ電極へ流出するので、ベース領域を分離することにより、正孔の蓄積効果を高めることができる。また、ドリフト層上には、両ベース領域を接続する電極(エミッタ電極)が存在しているため、両ベース領域が配置されない領域間のドリフト層表面に、当該電極とドリフト層とを絶縁する絶縁膜を設け、正孔が離間した両ベース領域のみを経路として引き抜かれるように制限する。
 これにより、ドリフト層における正孔の蓄積効果を高めることができ、飽和電圧の低減を図ることができる。
 加えて、離間したベース領域間のドリフト層(絶縁膜)上にプレーナー型のIGBTのセルを設けることにより、トランジスタのオン時のチャネル(反転層)長を稼ぎ、電子供給源を増やすことができる。トレンチ型のセルにおいてベース領域間を離間することは、当該セルの間隔を離間することとなり、トランジスタのセル密度が減少することになる。しかし、ベース領域を離間した箇所にプレーナー構造の他のセルを配置することで、セル密度の大幅な減少を抑制できる。
 これにより、正孔蓄積効果を高めつつ、チャネル抵抗を低減し、電流密度の低下を抑制できる。
 第2に、トレンチ(トレンチゲート)を、トレンチの延在方向において複数に分離し、ベース領域が配置される領域のみに設けることにより、基板の端部までストライプ状にトレンチ(トレンチゲート)が延在しベース領域が選択的に配置される構造と比較して、両ベース領域が配置されない領域(トランジスタ動作に寄与しない領域)におけるゲート容量の増加を抑制できる。
According to the present invention, the following effects can be obtained.
First, in an NPT structure insulated gate bipolar transistor having a trench type cell, the effect of accumulating holes injected into the drift layer when the transistor is turned on can be enhanced.
That is, a base region adjacent to a trench (trench gate) extending in a stripe shape is provided separately in the extending direction of the trench, and the emitter electrode and the drift layer are insulated from the surface of the drift layer between the two separated base regions. An insulating film is provided. As a result, the path through which holes are extracted through the base region, which is a p-type impurity region, can be limited as compared with the conventional structure, so that a structure in which holes injected from the collector layer are easily accumulated can be realized.
Since holes flow out to the emitter electrode through the nearest p-type impurity region, the effect of accumulating holes can be enhanced by separating the base region. In addition, since there is an electrode (emitter electrode) that connects both base regions on the drift layer, insulation that insulates the electrode and the drift layer from the surface of the drift layer between regions where both base regions are not disposed. A film is provided, and the base region where holes are separated from each other is limited to be drawn out as a path.
Thereby, the hole accumulation effect in the drift layer can be enhanced, and the saturation voltage can be reduced.
In addition, by providing a planar IGBT cell on the drift layer (insulating film) between the separated base regions, the channel (inversion layer) length when the transistor is on can be increased, and the number of electron supply sources can be increased. . Separation between the base regions in the trench type cell results in separation of the interval between the cells, and the cell density of the transistor is reduced. However, a significant reduction in cell density can be suppressed by arranging other cells of the planar structure at locations apart from the base region.
Thereby, it is possible to reduce channel resistance and suppress a decrease in current density while enhancing the hole accumulation effect.
Second, the trench (trench gate) is separated into a plurality of portions in the direction in which the trench extends and is provided only in the region where the base region is disposed, so that the trench (trench gate) extends in a stripe shape to the edge of the substrate. Compared with the structure in which the existing base region is selectively disposed, an increase in gate capacitance in a region where both base regions are not disposed (region not contributing to transistor operation) can be suppressed.
 図1は本発明の第1の実施形態の絶縁ゲート型バイポーラトランジスタを説明する(A)平面図、(B)斜視断面図である。
 図2は本発明の第1の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図3は本発明の第1の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図4は本発明の第1の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図5は本発明の第1の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図6は本発明の第2の実施形態の絶縁ゲート型バイポーラトランジスタを説明する(A)平面図、(B)斜視断面図である。
 図7は本発明の第2の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図8は本発明の第2の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
 図9は本発明の第3の実施形態の絶縁ゲート型バイポーラトランジスタを説明する断面図である。
FIG. 1A is a plan view and FIG. 1B is a perspective sectional view for explaining an insulated gate bipolar transistor according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating the insulated gate bipolar transistor according to the first embodiment of the present invention.
FIG. 3 is a sectional view for explaining an insulated gate bipolar transistor according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view illustrating the insulated gate bipolar transistor according to the first embodiment of the present invention.
FIG. 5 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the first embodiment of the present invention.
6A is a plan view and FIG. 6B is a perspective sectional view for explaining an insulated gate bipolar transistor according to a second embodiment of the present invention.
FIG. 7 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the second embodiment of the present invention.
FIG. 8 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the second embodiment of the present invention.
FIG. 9 is a cross-sectional view illustrating an insulated gate bipolar transistor according to the third embodiment of the present invention.
 以下、図1から図9を参照して、本発明の実施形態について、nチャネル型NPT−IGBTを例に詳述する。
 はじめに、本発明の第1実施形態に係るIGBT10Aの構成について、図1から図5を参照して具体的に説明する。図1はIGBT10Aを示す図であり、図1(A)がIGBT10Aの基板の主面(表面)側の平面図であり、図1(B)が図1の第1領域r1の一部を示す斜視断面図である。
 図1を参照して、IGBT10Aは、一導電型半導体層1と、逆導電型半導体層2と、トレンチ31と、絶縁膜41と、ゲート電極51と、ベース領域21と、エミッタ領域61と、他の絶縁膜42と、他のゲート電極52を有する。
 基板は、コレクタ層となる高濃度のp型(p++型)半導体層1の上に、n−型半導体層2を積層してなる。n−型半導体層2はIGBT10Aのドリフト層となる(図1(B))。
 尚、本実施形態のIGBT10Aは、NPT構造であり、n−型のFZウエハ(シリコンウエハ)に、p++型不純物のイオン注入によりp++型半導体層1を形成している。
 ここで、図1(A)においては、第2領域r2にドリフト層(n−型半導体層)2表面に設けられる構成を示し、第3領域r3にドリフト層2表面に設けられる他のゲート電極52のパターン重ねて示した。また第4領域r4に他のゲート電極52上の層間絶縁膜3のパターンを示し、他のゲート電極52を一点鎖線で示した。図1(A)および図1(B)において、基板表面のエミッタ電極は省略している。
 複数のトレンチ31は、ドリフト層2表面に、当該表面の平面視においてY方向に延びるストライプ状で、互いに平行に設けられる。トレンチ31内は、例えば酸化膜などによるゲート絶縁膜41で被覆され、不純物をドープしたポリシリコン層などによるゲート電極51が埋設される。トレンチ31とゲート絶縁膜41とゲート電極51によってトレンチゲートTGが構成される。トレンチゲートTGは、隣接するエミッタ領域61、ベース領域21、ボディ領域71とともにIGBT10Aのトレンチセル11を構成する。
 ベース領域21は、隣り合うトレンチ31間のドリフト層2表面に設けられたp型不純物領域である。ベース領域21は、トレンチゲートTGが延在するY方向において、ドリフト層2によって複数に分離され、トレンチゲートTGの一部と隣接する。複数のベース領域21は、トレンチゲートTGとドリフト層2によって、互いに島状に分離した領域として存在する。
 トレンチゲートTGを挟んで隣り合うベース領域21の端部(ドリフト層2との接合面)は、X平方向において揃うように設けられる。
 エミッタ領域61は、トレンチ31(トレンチゲートTG)に隣接してベース領域21表面に設けられた高濃度のn型(n+型)不純物領域である。エミッタ領域61は、ベース領域21の内側に設けられた島状の領域として存在する。
 ボディ領域71は、ベース領域21表面で隣り合うエミッタ領域61の間に設けられた高濃度のp型(p+型)不純物領域である。
 他のゲート絶縁膜42(図1(A)では省略)は、Y方向において隣り合うベース領域21間のドリフト層2上に設けられる。他のゲート絶縁膜42は、隣り合う両ベース領域41の端部と重畳し、それぞれのベース領域21に設けられたエミッタ領域61の端部までを覆う。
 他のゲート電極52は、他のゲート絶縁膜42上に設けられる。他のゲート絶縁膜42と他のゲート電極52によってプレーナゲートPGが構成される。プレーナゲートPGは、両端のベース領域21およびエミッタ領域61、ボディ領域71とともにIGBT10Aのプレーナセル12を構成する。
 図1では一部を省略しているが、図1(B)を参照して、他のゲート電極52は、基板の表面において、Y方向に直交するX方向に連続して延在する。他のゲート電極52はトレンチゲートTG上にも設けられるが、他のゲート絶縁膜42は、少なくともゲート電極51上では取り除かれ、コンタクトホールCH’が設けられる。つまり、ゲート電極51と他のゲート電極52が交差する領域では、これらがコンタクトホールCH’を介して重畳して接続する。他のゲート電極52は、ゲート電極51上においてY方向にも延在して、これと接続する。
 このように本実施形態では、他のゲート電極52はX方向に連続して延在するが、プレーナゲートPGは、Y方向において隣り合うベース領域21上にのみ、設けられる。
 プレーナゲートPGおよびトレンチゲートTG上を覆って、層間絶縁膜3が設けられる。層間絶縁膜3にはエミッタ領域61およびボディ領域71が島状に露出するコンタクトホールCH(図1(A)の第2領域r2、第3領域r3では破線)が設けられ、層間絶縁膜3の平面視におけるパターンは格子状となる。
 ゲート電極51および他のゲート電極52は、IGBT10Aの周囲に形成されたゲート引き回し配線8と接続されるように形成される。これにより、ゲート電極51および他のゲート電極52は、ゲート引き回し配線8の信号に応じて制御される。また、p+型不純物領域であるガードリング6は、ゲート引き回し配線8に囲まれた領域であって基板の周囲に形成される。
 図2は、図1(A)のa−a線の断面図である。
 トレンチゲートTGは、ドリフト層2表面に互いに離間して複数設けられる。エミッタ領域61は、トレンチゲートTGに隣接してその両側に設けられ、ボディ領域71は、隣り合うエミッタ領域61間に設けられる。ベース領域21の深さは、トレンチ31の底部より浅く、ボディ領域71の深さはベース領域21より浅く、エミッタ領域61の深さはボディ領域71より浅い。
 トレンチゲートTGと、これに挟まれたベース領域21、エミッタ領域61およびボディ領域71は、IGBT10Aのトレンチセル11を構成する。
 ドリフト層2表面に他のゲート絶縁膜42が設けられ、ゲート電極51とエミッタ領域61およびボディ領域71が露出するようにその一部が取り除かれる。他のゲート電極52は、ゲート電極51と重畳するようにパターンニングされ、他のゲート絶縁膜42に設けられたコンタクトホールCH’を介してゲート電極51とコンタクトする。他のゲート電極52上に層間絶縁膜3が設けられ、エミッタ領域61およびボディ領域71が露出するようにコンタクトホールCHが設けられる。
 エミッタ電極4は、全てのエミッタ領域61を覆うことができる程度の面積にて幅広く形成される。そして、エミッタ電極4は、層間絶縁膜3に設けたコンタクトホールCHを介して、エミッタ領域61およびボディ領域71とコンタクトする。p++型半導体層1の裏面にはコレクタ電極5が設けられる。
 ここでの図示は省略するが、ガードリング6は、IGBT10Aの周囲において、ベース領域21よりも深くなるように形成される。また、ゲート引き回し配線8は、IGBT10Aの周囲において、その上下が層間絶縁膜3に挟まれるように形成される。
 図3は、図1(A)のb−b線の断面図である。
 ベース領域21は、それぞれが離間して複数形成される。また、ボディ領域71は、ベース領域21の表面において、中心に位置するように形成される。エミッタ領域61は、ボディ領域71の外側でこれを囲んで設けられる。
 隣り合うベース領域21間のドリフト層2表面に他のゲート絶縁膜42が設けられる。他のゲート絶縁膜42は、ベース領域21上を覆い、エミッタ領域61の端部に達して設けられる。これにより、エミッタ電極4とドリフト層2は絶縁される。
 他のゲート絶縁膜42上には他のゲート電極52が設けられてプレーナゲートPGを構成する。
 プレーナゲートPG上には層間絶縁膜3が設けられ、層間絶縁膜3にはエミッタ領域61とボディ領域71が露出するコンタクトホールCHが設けられる。エミッタ電極4は、全てのエミッタ領域61を覆うことができる程度の面積にて幅広く形成される。そして、層間絶縁膜3に設けられたコンタクトホールCHを介して、エミッタ領域61およびボディ領域71とコンタクトする。
 プレーナゲートPGと、その両端のベース領域21、エミッタ領域61、ボディ領域71は、IGBT10Aのプレーナセル12を構成する。
 図4は、図1(A)のc−c線の断面図である。
 ドリフト層2の表面において、トレンチゲートTGは、離間して複数設けられ、この断面においてはベース領域21、エミッタ領域61およびボディ領域71は形成されない。
 トレンチゲートTG間のドリフト層2表面に、他のゲート絶縁膜42が設けられ、トレンチゲートTGおよびドリフト層2上に他のゲート電極52が設けられる。他のゲート電極52は、他のゲート絶縁膜42に設けられたコンタクトホールCH’を介してゲート電極51上でこれとコンタクトする。
 層間絶縁膜3が他のゲート電極52を全て覆って設けられ、その上にエミッタ電極4が設けられる。エミッタ電極4は、この断面においてドリフト層2と絶縁されている。
 図5は、図1(A)のd−d線の断面図である。
 この断面においては、ベース領域21、エミッタ領域61及びボディ領域71は形成されない。一方、ゲート電極51は、その一端及び他端が不図示のゲート引き回し配線と接続されるように形成される。これにより、ゲート電極51は、ゲート引き回し配線の信号に応じて制御される。
 ドリフト層2の表面上に設けられる他のゲート電極52は、この断面においては、ゲート電極51と重畳し、これと接続する。また他のゲート電極52も一端及び他端がゲート引き回し配線と接続されるように形成され、ゲート引き回し配線の信号に応じて制御される。
 他のゲート電極52上に層間絶縁膜3が設けられ、その上にエミッタ電極4が設けられる。
 以下に、当該構成による作用について説明する。
 図2を参照して、IGBT10Aがオン状態のとき、すなわち、エミッタ電極4がアースに接続され、コレクタ電極5に正電圧が印加されると、ドリフト層2とベース領域21とからなるpn接合は逆バイアスとなる。この状態においてゲート電極51にエミッタ電極4との間で閾値以上の正電圧が印加されると、ドリフト層2にはゲート電極51に沿ってn型に反転したチャネルが形成される。すると、当該チャネルを介して、エミッタ領域61からドリフト層2に電子が注入される。電子は、主に矢印の如く、ベース領域21下方のドリフト層2を経路として移動する。これにより、コレクタ層1からドリフト層2に正孔が注入され、ドリフト層2において伝導度変調が生じて、ドリフト層2の抵抗が低くなる。
 ベース領域21はエミッタ電極4と接続しており、ドリフト層2に注入された正孔は、p型不純物領域である直近のベース領域21を介してエミッタ電極4に排出される。
 このとき、b−b線における断面(図3)を参照すると、エミッタ電極4と、破線で示すベース領域21間のドリフト層2(以下、蓄積部HAと称する)との間には他のゲート絶縁膜42、他のゲート電極52および層間絶縁膜3が形成されているため、正孔は、ベース領域21間のドリフト層2からは排出されない。
 また、c−c線における断面(図4)においても、ベース領域21が配置されないため正孔が排出される経路がない。つまり、正孔の排出経路は島状に分離されたベース領域21(図2)のみに制限されるため、正孔のエミッタ電極4への排出が抑制され、蓄積部HAとなるドリフト層2における正孔の蓄積効果を高めることができる。
 従って、本実施形態では、IGBT10Aのオン状態において、蓄積部HAに正孔が蓄積されやすく、エミッタ電極4から正孔が排出されにくい(正孔の排出経路が制限される)ため、伝導度変調効果が良好であり、飽和電圧の低減を図ることができる。
 本実施形態では、ベース領域21をトレンチゲートTGとドリフト層2で分離して島状に設け、ベース領域21が配置されないドリフト層2表面をエミッタ電極4と絶縁している。例えば図3の断面では隣り合うベース領域21間を正孔が移動することもあるが、これ以外の領域において、1つのベース領域21と他のベース領域21間を正孔が移動してエミッタ電極4に排出される経路は有さない。つまり、正孔の排出経路は、島状のベース領域21のみに制限されるので、良好に正孔を蓄積することができる。
 更に、本実施形態ではプレーナセル12によって、電子供給源を確保できる。
 図2および図3を参照して説明する。a−a線断面(図2)において、IGBT10Aのオン時には、トレンチセル11にチャネルが形成されてドリフト層2に電子が注入される。同時に、b−b線断面(図3)においては、プレーナゲートPG両端のベース領域21もn型に反転し、チャネルが形成される。そして、チャネルを介して、エミッタ領域61からドリフト層2に電子が注入される(矢印)。つまり、ベース領域21が配置されないドリフト層2においても、電子を多く供給することができる。
 正孔の排出経路となるベース領域21は、その距離が離間している方が正孔の蓄積効果が高くなる。しかし、ベース領域21間を離間することは、トレンチセル11として動作する領域が低減することとなる。しかし、トレンチセル11として動作しない領域に、プレーナセル12を配置することにより、電子供給源を確保し、セル密度の減少を抑制できる。
 これにより、正孔蓄積効果を高めつつ、チャネル抵抗を低減し、電流密度の低下を抑制できる。
 図6から図8を参照して、本発明の第2の実施形態について説明する。図6は、第2の実施形態のIGBT10Bの一部を示す図であり、図6(A)が平面図、図6(B)が図6(A)の第1領域r1の一部を示す斜視断面図である。また、図1(A)の第2領域r2、第3領域r3、第4領域r4の図示についての説明は図1(A)と同様である。
 また、図7は、図6のc’−c’線断面図であり、図8は、図6のd’−d’線断面図である。
 図6を参照して本実施形態では、トレンチゲートTGは、Y方向においてドリフト層2によって複数に分離される。分離されたトレンチゲートTG間のドリフト層2表面には、他のゲート絶縁膜42(図6(A)では省略)が延在する。図6(B)を参照して他のゲート電極52は両端がゲート電極51と重畳し、ゲート電極51上をY方向にも延在する。他のゲート電極52とゲート電極51が重畳する領域には他のゲート絶縁膜42は設けられない。つまり他のゲート絶縁膜42に設けたコンタクトホールCH’を介して、他のゲート電極52とゲート電極51は電気的に接続する。これ以外の構成は、第1の実施形態と同様であるので、説明は省略する。
 第1の実施形態と同様に、トレンチゲートTGを挟んで隣り合うベース領域21の端部(ドリフト層2との接合面)は、X平方向において揃うように設けられる。そして本実施形態では、トレンチ31の端部はX方向においてベース領域21の端部と揃うように設けられる。トレンチ31内壁にゲート絶縁膜41が設けられ、ゲート電極51が埋設される。Y方向において隣り合うトレンチゲートTGとベース領域21の間に、ドリフト層2がX方向に延在する。
 図7を参照して、c’−c’線断面について説明する。この断面は、第1の実施形態のではc−c線断面(図4)に相当する。
 この断面において、ドリフト層2にはトレンチ31が設けられない。ドリフト層2表面には、他のゲート絶縁膜42が設けられる。他のゲート絶縁膜42は、X方向に連続して延在する。
 図8を参照して、d’−d’線断面について説明する。この断面は、第1の実施形態のではd−d線断面(図5)に相当する。
 この断面において、隣り合うトレンチゲートTG間にドリフト層2が設けられ、ベース領域21、エミッタ領域61およびボディ領域71は設けられない。ゲート電極51は、他のゲート絶縁膜42に設けられたコンタクトホールCH’を介して、他のゲート電極52と接続する。
 すなわち、エミッタ電極4と、蓄積部HAとなるドリフト層2との間には他のゲート絶縁膜42、他のゲート電極52および層間絶縁膜3が形成されているため、正孔は、ベース領域21間のドリフト層2からは排出されない。このため、蓄積部HAとなるドリフト層2における正孔の蓄積効果を高めることができる。
 これ以外の構成は、第1の実施形態と同様であるので説明は省略する。また、第2実施形態のIGBT10Bの動作は、第1の実施形態のIGBT10Aの動作と同様であるので、説明は省略する。
 第2の実施形態では、第1の実施形態と比較して、ゲート容量(入力容量)を低減できる。図8と、第1の実施形態の図5を比較すると、第1の実施形態では、ベース領域21が設けられないためトランジスタ動作を行わない領域(一点鎖線内)に、トレンチゲートTGが形成されている。このため、ゲート電極51にゲート電位が印加されると、トランジスタ動作に寄与しないにもかかわらず、ゲート容量は、発生してしまう。
 これに対し、第2の実施形態(図8)では、ベース領域21が配置されない領域(トランジスタ動作に寄与しない領域:一点鎖線内)において、トレンチゲートTGを省いている。これにより、無駄なゲート容量の増加を抑制できる。
 図9は、第3の実施形態のIGBT10Cを示す図であり、図1のb−b線に相当する断面図である。
 プレーナゲートPGの他のゲート電極52は、分離溝Sによって複数に分割された構造であってもよい。これにより、分離溝S下方において、ゲート容量(入力容量)の増加を抑制することができる。Y方向において隣り合う2つのベース領域21間の距離を広げると、蓄積部HAにおける正孔の蓄積効果には有利である。一方で、他のゲート電極52もその幅が広くなり、ベース領域21と重畳していない中央部分においてはゲート容量の増加の原因となる。そこでチャネル形成に寄与しない中央部分に分離溝Sを設けることで、ゲート容量の増加を抑制できる。
 この場合、分離された他のゲート電極521、522は1つの層間絶縁膜3で被覆され、例えば図1のゲート引き回し配線8の内側部分において連結される。
 これ以外の構成は、第1の実施形態または第2の実施形態と同様であるので説明は省略する。
 尚、上記実施形態では、ゲート引き回し配線8がガードリング6の外側に配置されていた。しかし、本発明はこれに限定されず、設計上、適宜変更できる。
 また、上記の実施形態と導電型を逆にした構造であっても同様に実施できる。
Hereinafter, an embodiment of the present invention will be described in detail by taking an n-channel NPT-IGBT as an example with reference to FIGS.
First, the configuration of the IGBT 10A according to the first embodiment of the present invention will be specifically described with reference to FIGS. FIG. 1 is a diagram showing the IGBT 10A, FIG. 1A is a plan view of the main surface (front surface) side of the substrate of the IGBT 10A, and FIG. 1B shows a part of the first region r1 in FIG. It is a perspective sectional view.
Referring to FIG. 1, IGBT 10 </ b> A includes one-conductivity-type semiconductor layer 1, reverse-conductivity-type semiconductor layer 2, trench 31, insulating film 41, gate electrode 51, base region 21, emitter region 61, Another insulating film 42 and another gate electrode 52 are provided.
The substrate is formed by laminating an n− type semiconductor layer 2 on a high concentration p type (p ++ type) semiconductor layer 1 serving as a collector layer. The n − type semiconductor layer 2 becomes a drift layer of the IGBT 10A (FIG. 1B).
The IGBT 10A of the present embodiment has an NPT structure, and the p ++ type semiconductor layer 1 is formed on an n− type FZ wafer (silicon wafer) by ion implantation of p ++ type impurities.
Here, FIG. 1A shows a configuration in which the second region r2 is provided on the surface of the drift layer (n− type semiconductor layer) 2 and another gate electrode provided in the third region r3 on the surface of the drift layer 2. 52 patterns are shown superimposed. Further, the pattern of the interlayer insulating film 3 on the other gate electrode 52 is shown in the fourth region r4, and the other gate electrode 52 is shown by a one-dot chain line. In FIGS. 1A and 1B, the emitter electrode on the substrate surface is omitted.
The plurality of trenches 31 are provided on the surface of the drift layer 2 in parallel with each other in a stripe shape extending in the Y direction in a plan view of the surface. The trench 31 is covered with a gate insulating film 41 made of an oxide film, for example, and a gate electrode 51 made of a polysilicon layer doped with impurities is buried. The trench 31, the gate insulating film 41 and the gate electrode 51 constitute a trench gate TG. The trench gate TG constitutes the trench cell 11 of the IGBT 10A together with the adjacent emitter region 61, base region 21, and body region 71.
Base region 21 is a p-type impurity region provided on the surface of drift layer 2 between adjacent trenches 31. The base region 21 is separated into a plurality by the drift layer 2 in the Y direction in which the trench gate TG extends, and is adjacent to a part of the trench gate TG. The plurality of base regions 21 exist as regions separated from each other in an island shape by the trench gate TG and the drift layer 2.
End portions of the base regions 21 adjacent to each other with the trench gate TG interposed therebetween (joint surface with the drift layer 2) are provided so as to be aligned in the X-plane direction.
The emitter region 61 is a high-concentration n-type (n + -type) impurity region provided on the surface of the base region 21 adjacent to the trench 31 (trench gate TG). The emitter region 61 exists as an island-like region provided inside the base region 21.
Body region 71 is a high-concentration p-type (p + -type) impurity region provided between adjacent emitter regions 61 on the surface of base region 21.
Another gate insulating film 42 (not shown in FIG. 1A) is provided on the drift layer 2 between the base regions 21 adjacent in the Y direction. The other gate insulating film 42 overlaps with the end portions of both adjacent base regions 41 and covers up to the end portions of the emitter regions 61 provided in the respective base regions 21.
The other gate electrode 52 is provided on the other gate insulating film 42. The other gate insulating film 42 and the other gate electrode 52 constitute a planar gate PG. The planar gate PG constitutes the planar cell 12 of the IGBT 10A together with the base region 21, the emitter region 61, and the body region 71 at both ends.
Although a part is omitted in FIG. 1, with reference to FIG. 1B, another gate electrode 52 continuously extends in the X direction orthogonal to the Y direction on the surface of the substrate. The other gate electrode 52 is also provided on the trench gate TG, but the other gate insulating film 42 is removed at least on the gate electrode 51 to provide a contact hole CH ′. That is, in the region where the gate electrode 51 and the other gate electrode 52 intersect, these are overlapped and connected via the contact hole CH ′. The other gate electrode 52 extends in the Y direction on the gate electrode 51 and is connected thereto.
As described above, in the present embodiment, the other gate electrode 52 continuously extends in the X direction, but the planar gate PG is provided only on the base region 21 adjacent in the Y direction.
An interlayer insulating film 3 is provided so as to cover the planar gate PG and the trench gate TG. The interlayer insulating film 3 is provided with a contact hole CH (the second region r2 in FIG. 1A and a broken line in the third region r3) in which the emitter region 61 and the body region 71 are exposed in an island shape. The pattern in plan view is a lattice pattern.
The gate electrode 51 and the other gate electrode 52 are formed so as to be connected to the gate routing wiring 8 formed around the IGBT 10A. Thereby, the gate electrode 51 and the other gate electrode 52 are controlled according to the signal of the gate routing wiring 8. The guard ring 6 which is a p + type impurity region is a region surrounded by the gate routing wiring 8 and is formed around the substrate.
FIG. 2 is a cross-sectional view taken along the line aa in FIG.
A plurality of trench gates TG are provided on the surface of the drift layer 2 so as to be separated from each other. The emitter region 61 is provided on both sides adjacent to the trench gate TG, and the body region 71 is provided between the adjacent emitter regions 61. The depth of the base region 21 is shallower than the bottom of the trench 31, the depth of the body region 71 is shallower than the base region 21, and the depth of the emitter region 61 is shallower than the body region 71.
The trench gate TG and the base region 21, the emitter region 61, and the body region 71 sandwiched between the trench gates TG constitute the trench cell 11 of the IGBT 10A.
Another gate insulating film 42 is provided on the surface of the drift layer 2, and a part thereof is removed so that the gate electrode 51, the emitter region 61, and the body region 71 are exposed. The other gate electrode 52 is patterned so as to overlap with the gate electrode 51 and is in contact with the gate electrode 51 through the contact hole CH ′ provided in the other gate insulating film 42. Interlayer insulating film 3 is provided on another gate electrode 52, and contact hole CH is provided so that emitter region 61 and body region 71 are exposed.
The emitter electrode 4 is formed in a wide area so as to cover all the emitter regions 61. The emitter electrode 4 is in contact with the emitter region 61 and the body region 71 through a contact hole CH provided in the interlayer insulating film 3. A collector electrode 5 is provided on the back surface of the p ++ type semiconductor layer 1.
Although illustration is omitted here, the guard ring 6 is formed to be deeper than the base region 21 around the IGBT 10A. The gate routing wiring 8 is formed so that the upper and lower sides thereof are sandwiched between the interlayer insulating films 3 around the IGBT 10A.
FIG. 3 is a cross-sectional view taken along line bb in FIG.
A plurality of base regions 21 are formed separately from each other. The body region 71 is formed so as to be positioned at the center on the surface of the base region 21. The emitter region 61 is provided outside the body region 71 so as to surround it.
Another gate insulating film 42 is provided on the surface of the drift layer 2 between the adjacent base regions 21. Another gate insulating film 42 is provided so as to cover the base region 21 and reach the end of the emitter region 61. Thereby, the emitter electrode 4 and the drift layer 2 are insulated.
Another gate electrode 52 is provided on the other gate insulating film 42 to constitute a planar gate PG.
An interlayer insulating film 3 is provided on the planar gate PG, and a contact hole CH in which the emitter region 61 and the body region 71 are exposed is provided in the interlayer insulating film 3. The emitter electrode 4 is formed in a wide area so as to cover all the emitter regions 61. Then, the emitter region 61 and the body region 71 are contacted through a contact hole CH provided in the interlayer insulating film 3.
The planar gate PG, the base region 21, the emitter region 61, and the body region 71 at both ends thereof constitute the planar cell 12 of the IGBT 10A.
FIG. 4 is a cross-sectional view taken along the line cc of FIG.
On the surface of the drift layer 2, a plurality of trench gates TG are provided apart from each other, and the base region 21, the emitter region 61, and the body region 71 are not formed in this cross section.
Another gate insulating film 42 is provided on the surface of the drift layer 2 between the trench gates TG, and another gate electrode 52 is provided on the trench gate TG and the drift layer 2. The other gate electrode 52 is in contact with the gate electrode 51 through the contact hole CH ′ provided in the other gate insulating film 42.
Interlayer insulating film 3 is provided to cover all other gate electrodes 52, and emitter electrode 4 is provided thereon. The emitter electrode 4 is insulated from the drift layer 2 in this cross section.
FIG. 5 is a cross-sectional view taken along the line dd in FIG.
In this cross section, the base region 21, the emitter region 61, and the body region 71 are not formed. On the other hand, the gate electrode 51 is formed so that one end and the other end thereof are connected to a gate routing wiring (not shown). Thereby, the gate electrode 51 is controlled according to the signal of the gate routing wiring.
The other gate electrode 52 provided on the surface of the drift layer 2 overlaps with and is connected to the gate electrode 51 in this cross section. The other gate electrode 52 is also formed so that one end and the other end thereof are connected to the gate routing wiring, and is controlled according to the signal of the gate routing wiring.
Interlayer insulating film 3 is provided on another gate electrode 52, and emitter electrode 4 is provided thereon.
Below, the effect | action by the said structure is demonstrated.
Referring to FIG. 2, when IGBT 10A is on, that is, when emitter electrode 4 is connected to ground and a positive voltage is applied to collector electrode 5, the pn junction consisting of drift layer 2 and base region 21 is Reverse bias. In this state, when a positive voltage equal to or higher than the threshold value is applied to the gate electrode 51 between the emitter electrode 4, an n-type inverted channel is formed in the drift layer 2 along the gate electrode 51. Then, electrons are injected from the emitter region 61 into the drift layer 2 through the channel. Electrons move using the drift layer 2 below the base region 21 as a path, mainly as indicated by arrows. As a result, holes are injected from the collector layer 1 into the drift layer 2, conductivity modulation occurs in the drift layer 2, and the resistance of the drift layer 2 decreases.
The base region 21 is connected to the emitter electrode 4, and holes injected into the drift layer 2 are discharged to the emitter electrode 4 through the nearest base region 21 that is a p-type impurity region.
At this time, referring to the cross section taken along the line bb (FIG. 3), there is another gate between the emitter electrode 4 and the drift layer 2 (hereinafter referred to as the storage portion HA) between the base regions 21 indicated by the broken line. Since the insulating film 42, the other gate electrode 52, and the interlayer insulating film 3 are formed, holes are not discharged from the drift layer 2 between the base regions 21.
Also, in the cross section along the line cc (FIG. 4), there is no path through which holes are discharged because the base region 21 is not disposed. That is, since the hole discharge path is limited to only the base region 21 (FIG. 2) separated in an island shape, the discharge of holes to the emitter electrode 4 is suppressed, and in the drift layer 2 serving as the storage portion HA. The hole accumulation effect can be enhanced.
Therefore, in the present embodiment, in the ON state of the IGBT 10A, holes are easily accumulated in the accumulating portion HA, and holes are not easily discharged from the emitter electrode 4 (a hole discharge path is limited). The effect is good and the saturation voltage can be reduced.
In this embodiment, the base region 21 is separated by the trench gate TG and the drift layer 2 and provided in an island shape, and the surface of the drift layer 2 where the base region 21 is not disposed is insulated from the emitter electrode 4. For example, in the cross section of FIG. 3, holes may move between adjacent base regions 21, but in other regions, the holes move between one base region 21 and another base region 21, thereby forming an emitter electrode. There is no route discharged to 4. That is, since the hole discharge path is limited to the island-shaped base region 21, holes can be stored well.
Furthermore, in this embodiment, an electron supply source can be secured by the planar cell 12.
This will be described with reference to FIGS. In the cross section taken along the line aa (FIG. 2), when the IGBT 10A is turned on, a channel is formed in the trench cell 11 and electrons are injected into the drift layer 2. At the same time, in the cross section taken along the line bb (FIG. 3), the base regions 21 at both ends of the planar gate PG are also inverted to the n-type to form a channel. Then, electrons are injected from the emitter region 61 into the drift layer 2 through the channel (arrow). That is, a large amount of electrons can be supplied even in the drift layer 2 in which the base region 21 is not disposed.
The base region 21 serving as a hole discharge path has a higher hole accumulation effect when the distance is longer. However, separating the base regions 21 reduces the region operating as the trench cell 11. However, by arranging the planar cell 12 in a region that does not operate as the trench cell 11, an electron supply source can be secured and a decrease in cell density can be suppressed.
Thereby, it is possible to reduce channel resistance and suppress a decrease in current density while enhancing the hole accumulation effect.
A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a diagram illustrating a part of the IGBT 10B according to the second embodiment. FIG. 6A is a plan view, and FIG. 6B is a part of the first region r1 in FIG. 6A. It is a perspective sectional view. Further, the illustration of the second region r2, the third region r3, and the fourth region r4 in FIG. 1A is the same as that in FIG.
7 is a cross-sectional view taken along the line c′-c ′ in FIG. 6, and FIG. 8 is a cross-sectional view taken along the line d′-d ′ in FIG. 6.
With reference to FIG. 6, in the present embodiment, the trench gate TG is separated into a plurality by the drift layer 2 in the Y direction. Another gate insulating film 42 (not shown in FIG. 6A) extends on the surface of the drift layer 2 between the separated trench gates TG. Referring to FIG. 6B, the other gate electrode 52 overlaps with the gate electrode 51 at both ends, and extends on the gate electrode 51 in the Y direction. The other gate insulating film 42 is not provided in the region where the other gate electrode 52 and the gate electrode 51 overlap. That is, the other gate electrode 52 and the gate electrode 51 are electrically connected through the contact hole CH ′ provided in the other gate insulating film 42. Since the configuration other than this is the same as that of the first embodiment, the description thereof is omitted.
Similarly to the first embodiment, the end portions (joint surfaces with the drift layer 2) of the base regions 21 adjacent to each other across the trench gate TG are provided so as to be aligned in the X plane direction. In this embodiment, the end of the trench 31 is provided so as to be aligned with the end of the base region 21 in the X direction. A gate insulating film 41 is provided on the inner wall of the trench 31 and a gate electrode 51 is embedded. Between the trench gate TG and the base region 21 adjacent in the Y direction, the drift layer 2 extends in the X direction.
With reference to FIG. 7, a cross section taken along line c′-c ′ will be described. This cross section corresponds to a cross section taken along the line cc (FIG. 4) in the first embodiment.
In this cross section, the trench 31 is not provided in the drift layer 2. Another gate insulating film 42 is provided on the surface of the drift layer 2. The other gate insulating film 42 extends continuously in the X direction.
With reference to FIG. 8, the d'-d 'line cross section is demonstrated. This cross section corresponds to a cross section taken along the line dd (FIG. 5) in the first embodiment.
In this cross section, the drift layer 2 is provided between adjacent trench gates TG, and the base region 21, the emitter region 61, and the body region 71 are not provided. The gate electrode 51 is connected to the other gate electrode 52 through the contact hole CH ′ provided in the other gate insulating film 42.
That is, since the other gate insulating film 42, the other gate electrode 52, and the interlayer insulating film 3 are formed between the emitter electrode 4 and the drift layer 2 serving as the storage portion HA, holes are transferred to the base region. It is not discharged from the drift layer 2 between 21. For this reason, the effect of accumulating holes in the drift layer 2 serving as the accumulating portion HA can be enhanced.
Since the other configuration is the same as that of the first embodiment, the description thereof is omitted. The operation of the IGBT 10B according to the second embodiment is the same as the operation of the IGBT 10A according to the first embodiment, and thus the description thereof is omitted.
In the second embodiment, the gate capacitance (input capacitance) can be reduced as compared with the first embodiment. Comparing FIG. 8 with FIG. 5 of the first embodiment, in the first embodiment, since the base region 21 is not provided, the trench gate TG is formed in the region where the transistor operation is not performed (inside the one-dot chain line). ing. For this reason, when a gate potential is applied to the gate electrode 51, a gate capacitance is generated although it does not contribute to the transistor operation.
On the other hand, in the second embodiment (FIG. 8), the trench gate TG is omitted in a region where the base region 21 is not disposed (region not contributing to transistor operation: within a one-dot chain line). Thereby, an increase in useless gate capacity can be suppressed.
FIG. 9 is a view showing the IGBT 10C of the third embodiment, and is a cross-sectional view corresponding to the line bb of FIG.
The other gate electrode 52 of the planar gate PG may be divided into a plurality of parts by the separation groove S. Thereby, an increase in gate capacitance (input capacitance) can be suppressed below the isolation trench S. Increasing the distance between two base regions 21 adjacent in the Y direction is advantageous for the hole accumulation effect in the accumulation portion HA. On the other hand, the width of the other gate electrode 52 is also widened, which causes an increase in gate capacitance in the central portion that does not overlap with the base region 21. Therefore, by providing the isolation trench S in the central portion that does not contribute to channel formation, an increase in gate capacitance can be suppressed.
In this case, the other separated gate electrodes 521 and 522 are covered with one interlayer insulating film 3 and are connected, for example, at an inner portion of the gate routing wiring 8 of FIG.
Since the other configuration is the same as that of the first embodiment or the second embodiment, the description thereof is omitted.
In the above embodiment, the gate routing wiring 8 is arranged outside the guard ring 6. However, the present invention is not limited to this, and can be appropriately changed in design.
Moreover, even if it is the structure which reversed said embodiment and the conductivity type, it can implement similarly.
1    p+型半導体層
2    n−型半導体層(ドリフト層)
3    層間絶縁膜
4    エミッタ電極
5    コレクタ電極
10A~10C   IGBT
11   トレンチセル
12   プレーナセル
21   ベース領域
31   トレンチ
41   ゲート絶縁膜
42   他のゲート絶縁膜
51   ゲート電極
52   他のゲート電極
61   エミッタ領域
71   ボディ領域
TG   トレンチゲート
PG   プレーナゲート
1 p + type semiconductor layer 2 n− type semiconductor layer (drift layer)
3 Interlayer insulation film 4 Emitter electrode 5 Collector electrode 10A to 10C IGBT
11 trench cell 12 planar cell 21 base region 31 trench 41 gate insulating film 42 other gate insulating film 51 gate electrode 52 other gate electrode 61 emitter region 71 body region TG trench gate PG planar gate

Claims (5)

  1.  コレクタ領域となる一導電型半導体層と、
     該一導電型半導体層上に設けられた逆導電型半導体層と、
     前記逆導電型半導体層表面に設けられ該表面において第1方向に延在する複数のトレンチと、
     該トレンチ内に絶縁膜を介して設けられたゲート電極と、
     隣り合う前記トレンチ間の前記逆導電型半導体層表面に設けられ、前記第1方向において該逆導電型半導体層で互いに分離された一導電型のベース領域と、
     該ベース領域表面で前記トレンチに隣接して設けられた逆導電型のエミッタ領域と、
     前記第1方向において隣り合う前記ベース領域間の前記逆導電型半導体層上に設けられ前記両ベース領域の端部と重畳する他の絶縁膜と、
     該他の絶縁膜上に設けられた他のゲート電極と、
    を具備することを特徴とする絶縁ゲート型バイポーラトランジスタ。
    One conductivity type semiconductor layer to be a collector region;
    A reverse conductivity type semiconductor layer provided on the one conductivity type semiconductor layer;
    A plurality of trenches provided on the surface of the reverse conductivity type semiconductor layer and extending in the first direction on the surface;
    A gate electrode provided in the trench via an insulating film;
    A base region of one conductivity type provided on the surface of the opposite conductivity type semiconductor layer between adjacent trenches and separated from each other by the opposite conductivity type semiconductor layer in the first direction;
    An emitter region of a reverse conductivity type provided adjacent to the trench at the surface of the base region;
    Another insulating film provided on the opposite conductivity type semiconductor layer between the base regions adjacent in the first direction and overlapping with end portions of both the base regions;
    Another gate electrode provided on the other insulating film;
    An insulated gate bipolar transistor comprising:
  2.  前記他のゲート電極は、前記ゲート電極上を前記第1方向に延在し、前記ゲート電極と接続することを特徴とする請求項1に記載の絶縁ゲート型バイポーラトランジスタ。 The insulated gate bipolar transistor according to claim 1, wherein the other gate electrode extends on the gate electrode in the first direction and is connected to the gate electrode.
  3.  前記他のゲート電極は、前記表面において前記第1方向に直交する第2方向に連続して延在することを特徴とする請求項2に記載の絶縁ゲート型バイポーラトランジスタ。 3. The insulated gate bipolar transistor according to claim 2, wherein the other gate electrode continuously extends in a second direction orthogonal to the first direction on the surface.
  4.  前記トレンチは、前記第1方向において前記逆導電型半導体層で複数に分離されることを特徴とする請求項3に記載の絶縁ゲート型バイポーラトランジスタ。 4. The insulated gate bipolar transistor according to claim 3, wherein the trench is separated into a plurality by the reverse conductivity type semiconductor layer in the first direction.
  5.  前記第2方向において前記トレンチの端部と前記ベース領域の端部が揃うことを特徴とする請求項4に記載の絶縁ゲート型バイポーラトランジスタ。 5. The insulated gate bipolar transistor according to claim 4, wherein an end portion of the trench and an end portion of the base region are aligned in the second direction.
PCT/JP2011/056503 2010-03-24 2011-03-11 Insulated gate bipolar transistor WO2011118512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-068349 2010-03-24
JP2010068349A JP2011204761A (en) 2010-03-24 2010-03-24 Insulated gate bipolar transistor

Publications (1)

Publication Number Publication Date
WO2011118512A1 true WO2011118512A1 (en) 2011-09-29

Family

ID=44673067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056503 WO2011118512A1 (en) 2010-03-24 2011-03-11 Insulated gate bipolar transistor

Country Status (2)

Country Link
JP (1) JP2011204761A (en)
WO (1) WO2011118512A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681825A (en) * 2012-09-19 2014-03-26 株式会社东芝 Semiconductor device
CN104332497A (en) * 2014-11-05 2015-02-04 中国东方电气集团有限公司 Injection reinforced bipolar transistor of insulated gate
CN107706237A (en) * 2017-10-31 2018-02-16 珠海格力电器股份有限公司 Insulated-gate bipolar transistor device and preparation method thereof, power electronic equipment
CN108538910B (en) * 2018-02-13 2020-08-14 株洲中车时代电气股份有限公司 IGBT chip with composite gate
WO2022123026A1 (en) * 2020-12-11 2022-06-16 Mqsemi Ag Semiconductor device
GB2602663A (en) * 2021-01-11 2022-07-13 Mqsemi Ag Semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687582B2 (en) * 2010-09-21 2015-03-18 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2013258333A (en) * 2012-06-13 2013-12-26 Toshiba Corp Power semiconductor device
KR101875638B1 (en) 2016-10-14 2018-07-06 현대자동차 주식회사 Semiconductor device and method manufacturing the same
JP6971868B2 (en) 2018-01-26 2021-11-24 三菱電機株式会社 Semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228519A (en) * 1999-02-05 2000-08-15 Fuji Electric Co Ltd Trench insulated gate bipolar transistor
JP2001274400A (en) * 2000-03-28 2001-10-05 Toshiba Corp Semiconductor device
JP2001274398A (en) * 1999-10-19 2001-10-05 Denso Corp Semiconductor device and its manufacturing method
JP2004031385A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005057059A (en) * 2003-08-05 2005-03-03 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2005236267A (en) * 2004-01-23 2005-09-02 Toshiba Corp Semiconductor device
JP2005286056A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2009188294A (en) * 2008-02-08 2009-08-20 Nec Electronics Corp Power mosfet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228519A (en) * 1999-02-05 2000-08-15 Fuji Electric Co Ltd Trench insulated gate bipolar transistor
JP2001274398A (en) * 1999-10-19 2001-10-05 Denso Corp Semiconductor device and its manufacturing method
JP2001274400A (en) * 2000-03-28 2001-10-05 Toshiba Corp Semiconductor device
JP2004031385A (en) * 2002-06-21 2004-01-29 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2005057059A (en) * 2003-08-05 2005-03-03 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2005236267A (en) * 2004-01-23 2005-09-02 Toshiba Corp Semiconductor device
JP2005286056A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2009188294A (en) * 2008-02-08 2009-08-20 Nec Electronics Corp Power mosfet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681825A (en) * 2012-09-19 2014-03-26 株式会社东芝 Semiconductor device
JP2014060336A (en) * 2012-09-19 2014-04-03 Toshiba Corp Semiconductor device
CN104332497A (en) * 2014-11-05 2015-02-04 中国东方电气集团有限公司 Injection reinforced bipolar transistor of insulated gate
CN107706237A (en) * 2017-10-31 2018-02-16 珠海格力电器股份有限公司 Insulated-gate bipolar transistor device and preparation method thereof, power electronic equipment
WO2019085577A1 (en) * 2017-10-31 2019-05-09 格力电器(武汉)有限公司 Insulated gate bipolar transistor device and manufacturing method therefor, and power electronic equipment
CN107706237B (en) * 2017-10-31 2024-03-29 珠海零边界集成电路有限公司 Insulated gate bipolar transistor device, manufacturing method thereof and power electronic equipment
CN108538910B (en) * 2018-02-13 2020-08-14 株洲中车时代电气股份有限公司 IGBT chip with composite gate
WO2022123026A1 (en) * 2020-12-11 2022-06-16 Mqsemi Ag Semiconductor device
GB2602663A (en) * 2021-01-11 2022-07-13 Mqsemi Ag Semiconductor device

Also Published As

Publication number Publication date
JP2011204761A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2011118512A1 (en) Insulated gate bipolar transistor
JP5055786B2 (en) MOS type semiconductor device and manufacturing method thereof
JP4066946B2 (en) Semiconductor device
JP5604892B2 (en) Insulated gate bipolar transistor
JP6047297B2 (en) Semiconductor device
JP2007184486A (en) Semiconductor device
JP6356803B2 (en) Insulated gate bipolar transistor
US7816741B2 (en) Semiconductor device
JP2004022941A (en) Semiconductor device
JP6953499B2 (en) Semiconductor device
EP3340311B1 (en) Trench gate igbt
JP2013080796A (en) Semiconductor device
JP2010232335A (en) Insulated gate bipolar transistor
KR20140003568A (en) A power semiconductor device
JP3934613B2 (en) Semiconductor device
CN113517272A (en) Isolation structure for IGBT device with integrated diode
JP2008244466A (en) Semiconductor device
JP7327672B2 (en) semiconductor equipment
JP5774422B2 (en) Semiconductor device
JP6299658B2 (en) Insulated gate type switching element
US8853775B2 (en) Insulated gate bipolar transistor having control electrode disposed in trench
JP5568904B2 (en) Semiconductor device
US11101373B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP2009071082A (en) Semiconductor device
JP6458994B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759318

Country of ref document: EP

Kind code of ref document: A1