WO2011118209A1 - Optical pickup device and optical disc device - Google Patents

Optical pickup device and optical disc device Download PDF

Info

Publication number
WO2011118209A1
WO2011118209A1 PCT/JP2011/001701 JP2011001701W WO2011118209A1 WO 2011118209 A1 WO2011118209 A1 WO 2011118209A1 JP 2011001701 W JP2011001701 W JP 2011001701W WO 2011118209 A1 WO2011118209 A1 WO 2011118209A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
objective lens
holder
tracking
coil
Prior art date
Application number
PCT/JP2011/001701
Other languages
French (fr)
Japanese (ja)
Inventor
若林 寛爾
佐野 晃正
冨田 浩稔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011118209A1 publication Critical patent/WO2011118209A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to an optical pickup device that reproduces or records information on an optical disc, and an optical disc device including the optical pickup device.
  • the conventional optical pickup device includes an objective lens actuator that drives and controls the objective lens in the focusing direction and the tracking direction.
  • the rising mirror disposed on the lower side of the objective lens is fixed to the optical base.
  • optical pickup devices include, for example, an optical control mechanism of an optical disc player described in Patent Document 1 and an objective lens driving device described in Patent Document 2.
  • a rising mirror that reflects laser light toward an objective lens is mounted on a block that moves in a tracking direction, and this block has an elasticity for focusing.
  • the member, the objective lens support member, and the objective lens are mounted, and laser light focusing is performed.
  • the optical control mechanism of Patent Document 1 uses an optical system light receiving element because the optical axis of the reflecting mirror and the optical axis of the objective lens do not deviate when the objective lens is displaced in the tracking direction by movement of the block in the tracking direction. A decrease in the amount of incident light can be prevented, and stable tracking is possible.
  • an objective lens support mechanism that supports the objective lens so as to be movable in the tracking direction and the focusing direction, and reflects light incident from the tracking direction in the focusing direction.
  • a reflection mirror supporting mechanism that supports the reflection mirror that makes light incident on the objective lens movably in the tracking direction is linked by the linkage means.
  • the objective lens driving device of Patent Document 2 improves the followability of the movement of the reflection mirror in the tracking direction with respect to the movement of the objective lens in the tracking direction, and reduces the deviation of the optical axis between the objective lens and the reflection mirror.
  • the tracking of the objective lens is performed in order to correct the eccentricity of the optical disc, the chucking error of the optical disc with respect to the spindle motor, and the tracking error of the traverse device.
  • the moving distance in the direction is required to be about 200 to 300 ⁇ m.
  • a deviation occurs between the optical axis of the objective lens and the optical axis of the incident light beam.
  • the wavefront aberration of the spot on the recording surface of the optical disc is deteriorated and the light amount is lost, and the recording performance and reproduction performance are lowered.
  • the numerical aperture is set to 1.5 to 2.0, and the spot diameter of the light beam is set to about 0.13 ⁇ m.
  • the allowable value of the total wavefront aberration in a blue laser compatible optical pickup device using a normal objective lens is, for example, about 30 m ⁇ , but a wavefront aberration of 90 m ⁇ occurs only when the optical axis is shifted by about 30 ⁇ m. Therefore, there is a possibility that it is not allowed to realize normal information recording or reproduction.
  • the optical control mechanism of the optical disc player described in Patent Document 1 proposed as an optical pickup device that does not cause an optical axis shift includes a rising mirror mounted on a block that moves in a tracking direction. Is mounted with an elastic member for focusing, an objective lens support member, and an objective lens. For this reason, the optical control mechanism of Patent Document 1 has a problem that it is difficult to reduce the size in the height direction. Further, in the optical control mechanism of Patent Document 1, the driving force during tracking driving of the objective lens is transmitted from the block on which the rising mirror is mounted to the objective lens holding member via the focusing elastic member. For this reason, unnecessary resonance occurs during tracking driving, and the frequency response performance deteriorates, making it difficult to transfer data at high speed.
  • the objective lens driving device described in Patent Document 2 proposed as an optical pickup device that has improved the frequency response performance of tracking driving of the objective lens while reducing the optical axis deviation is the same as that in the tracking direction.
  • An objective lens support mechanism that supports the rising mirror so as to be movable in the caching direction and a rising mirror support mechanism that supports the rising mirror so as to be movable in the tracking direction are linked by a linkage means.
  • the rise mirror supported by the rise mirror support mechanism moves in association with the tracking direction. Structure.
  • the driving force at the time of tracking drive of the raising mirror is transmitted from the objective lens holding member to the raising mirror holding member via the linking means. For this reason, unnecessary resonance occurs during tracking driving, and the frequency response performance is lowered, so that the tracking accuracy with respect to the displacement of the objective lens is lowered. Further, since the linking means applies a load to both the objective lens support mechanism and the rising mirror support mechanism, crosstalk, tilt, and unnecessary resonance are generated. It had the subject that performance deteriorated.
  • JP 58-98848 A Japanese Patent Laid-Open No. 10-49891
  • the present invention solves the conventional problems, and can suppress deterioration of servo performance due to the occurrence of crosstalk between the objective lens actuator and the mirror actuator, and can follow up the rising mirror with respect to the movement of the objective lens. It is an object of the present invention to provide an optical pickup device and an optical disc device that can suppress deterioration in accuracy.
  • An optical pickup device includes a light source that emits a light beam having a predetermined wavelength, a first objective lens that converges the light beam on a recording surface of an optical disc, and a radial direction of the optical disc.
  • a rising mirror having an inclined reflecting surface, and bending the optical axis of the light beam emitted from the light source by the reflecting surface to guide the first objective lens, and the recording surface by the first objective lens
  • a photodetector that receives the light beam converged above and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal, and the first objective lens are held.
  • An objective lens actuator comprising: a lens holder support mechanism that movably supports; a mirror holder drive mechanism that drives the lens holder in at least the focusing direction and the tracking direction; a mirror holder that holds the rising mirror;
  • a mirror actuator comprising a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, a mirror holder drive mechanism that drives the mirror holder in the tracking direction, and the rising mirror is the first objective lens
  • a mirror actuator driving unit that drives the mirror actuator so as to follow the movement in the tracking direction.
  • the light source emits a light beam having a predetermined wavelength.
  • the first objective lens converges the light beam on the recording surface of the optical disc.
  • the rising mirror has a reflecting surface inclined in the radial direction of the optical disk, and guides the optical axis of the light beam emitted from the light source to the first objective lens by bending the reflecting surface.
  • the photodetector receives the light beam converged on the recording surface by the first objective lens and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal.
  • the objective lens actuator includes a lens holder that holds the first objective lens, and a lens holder support that supports the lens holder so that the lens holder can move at least in a focusing direction that is perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. And a mirror holder driving mechanism for driving the lens holder at least in the focusing direction and the tracking direction.
  • the mirror actuator includes a mirror holder that holds the rising mirror, a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, and a mirror holder drive mechanism that drives the mirror holder in the tracking direction.
  • the mirror actuator driving unit drives the mirror actuator so that the rising mirror follows the movement of the first objective lens in the tracking direction.
  • the objective lens actuator and the mirror actuator each independently have a support mechanism and a drive mechanism and do not interfere with each other during operation, crosstalk between the objective lens actuator and the mirror actuator can be prevented. It is possible to suppress deterioration of servo performance due to occurrence, and to suppress deterioration of tracking accuracy of the rising mirror with respect to the movement of the objective lens.
  • FIG. 2 is an exploded perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view of an objective lens actuator and a mirror actuator of the optical pickup device in Embodiment 1 of the present invention.
  • It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 2 of this invention.
  • It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 3 of this invention.
  • Embodiment 4 shows the structure of the optical pick-up apparatus in Embodiment 4 of this invention.
  • It is a perspective view of the objective lens actuator and mirror actuator of the optical pickup device in Embodiment 5 of the present invention.
  • It is a figure which shows schematic structure of the optical disk apparatus in Embodiment 6 of this invention.
  • FIG. 1 is a block diagram showing a configuration of an optical pickup device according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to Embodiment 1 of the present invention
  • FIG. 3 is a perspective view of the objective lens actuator and the mirror actuator of the optical pickup device according to the first embodiment of the present invention.
  • the optical pickup device includes an objective lens 1, a lens holder 2, a rising mirror 10, a mirror holder 11, an objective lens actuator 17, a mirror actuator 18, a collimating lens actuator 19, a beam splitter 21, and a relay lens 22.
  • a correction data memory 34, a laser drive circuit 35, an optical pickup control circuit 36, and a mirror actuator drive circuit 37 are provided.
  • the mirror actuator drive circuit 37 includes a positional deviation control circuit 38 and a positional deviation amount monitoring unit 39.
  • the objective lens 1 converges the light beam on the recording surface of the optical disc 20.
  • the lens holder 2 holds the objective lens 1.
  • the objective lens 1 includes an aperture lens 1a and a solid immersion lens 1b.
  • the air gap existing between the exit end face of the solid immersion lens 1b and the surface of the optical disc 20 facing the exit end face is made shorter than the evanescent attenuation length, whereby light propagation by the evanescent light is performed.
  • the optical pickup device according to the first embodiment is an optical pickup device that supports ultra high density optical recording and ultra high density optical reproduction using near-field light.
  • the optical disc 20 is an optical disc that supports ultra-high density optical recording and ultra-high density optical reproduction using the solid immersion lens 1b.
  • the optical disc 20 includes two or more recording layers for improving the recording capacity.
  • the blue semiconductor laser diode 23 emits blue laser light having a wavelength of 405 nm, for example.
  • the optical pickup control circuit 36 outputs a drive signal for driving the blue semiconductor laser diode 23 to the laser drive circuit 35.
  • the laser drive circuit 35 drives the blue semiconductor laser diode 23 based on the drive signal from the optical pickup control circuit 36.
  • the light beam emitted from the blue semiconductor laser diode 23 passes through the relay lens 22, is reflected by the beam splitter 21, and travels toward the collimating lens 28.
  • the collimating lens 28 is mounted on the collimating lens actuator 19.
  • the collimating lens 28 is disposed on the optical path between the blue semiconductor laser diode 23 and the rising mirror 10, and changes the convergence of the light beam.
  • the collimator lens actuator 19 moves the collimator lens 28 in the optical axis direction on the optical path in accordance with the drive signal output by the collimator lens drive circuit 31.
  • the collimating lens drive circuit 31 outputs a drive signal according to the spherical aberration correction amount obtained from the spherical aberration correction data memory 34 that stores the spherical aberration correction data obtained in advance.
  • the collimating lens 28 is positioned at a predetermined position on the optical axis, and the light beam is changed to a predetermined divergence.
  • the objective lens 1 includes a solid immersion lens 1b. Therefore, the objective lens 1 is positioned close to the optical disc 20 so that the distance between the objective lens 1 and the optical disc 20 is about 30 nm.
  • the objective lens 1 is moved in the focusing direction to focus on the second and subsequent recording layers of the optical disc 20, the objective lens 1 collides with the optical disc 20, and the objective lens 1 is brought close to the optical disc 20. I can't. Therefore, focusing on the second and subsequent recording layers of the optical disc 20 is performed by moving the collimating lens 28. Accordingly, the collimating lens actuator 19 also performs a focusing operation when a driving signal based on the focusing error signal obtained from the optical pickup control circuit 36 is input from the collimating lens driving circuit 31.
  • the light beam passes through the collimator lens 28, is bent by the rising mirror 10, and travels toward the objective lens 1.
  • the objective lens 1 is mounted on the objective lens actuator 17.
  • the objective lens actuator 17 is capable of moving the lens holder 2 that holds the objective lens 1 and the lens holder 2 in at least a focusing direction F that is perpendicular to the optical disc 20 and a tracking direction T that is the radial direction of the optical disc 20.
  • the objective lens actuator 17 performs the focusing operation by driving the objective lens 1 in the focusing direction F, and performs the tracking operation by driving the objective lens 1 in the tracking direction T.
  • the objective lens actuator 17 performs a tilting operation by rotationally driving the objective lens 1 in the rotation direction R around the tangential direction.
  • the rising mirror 10 is mounted on the mirror actuator 18.
  • the mirror actuator 18 includes a mirror holder 11 that holds the rising mirror 10, a mirror holder support mechanism that supports the mirror holder 11 so as to be movable in the tracking direction T, and a mirror holder drive mechanism that drives the mirror holder 11 in the tracking direction T.
  • the mirror actuator drive circuit 37 drives the mirror actuator 18 so that the rising mirror 10 follows the movement of the objective lens 1 in the tracking direction T.
  • the mirror actuator 18 drives the rising mirror 10 in the tracking direction T to perform a tracking operation with respect to the displacement of the objective lens 1 in the tracking direction T.
  • the light beam is condensed on the recording surface of the optical disc 20 by the objective lens 1, and the reflected light from the recording surface is transmitted through the objective lens 1 and reflected by the rising mirror 10 in the same way as the forward path.
  • the light beam reflected by the rising mirror 10 passes through the collimator lens 28 and reaches the beam splitter 21.
  • the light beam passes through the beam splitter 21 and is split by the detection beam splitter 24.
  • One light beam split by the detection beam splitter 24 is directly incident on the photodetector 26, and the other light beam is given astigmatism by the detection lens 25 and is incident on the photodetector 26.
  • the photodetector 26 outputs an electrical signal obtained by photoelectrically converting the incident light beam to the optical pickup control circuit 36.
  • the optical pickup control circuit 36 generates a focusing error signal, a tracking error signal, and an optical disc reproduction signal based on the electrical signal output from the photodetector 26.
  • the focusing coil drive circuit 32 applies a current to the objective lens focusing coil 4 of the objective lens actuator 17 based on the focusing error signal output from the optical pickup control circuit 36.
  • the tracking coil drive circuit 33 applies a current to the objective lens tracking coil 3 of the objective lens actuator 17 based on the tracking error signal output from the optical pickup control circuit 36.
  • the objective lens 1 is held at the end of the lens holder 2.
  • an opening is provided for the common magnet 5 and the yoke portion 9 a of the yoke base 9 to be disposed therethrough.
  • An objective lens tracking coil 3 and first and second objective lens focusing coils 4a and 4b are fixed to the inner surface of the opening close to the objective lens 1.
  • the first and second objective lens focusing coils 4a and 4b are collectively referred to. It is called a focusing coil 4 for the objective lens. This is the same in other embodiments.
  • the objective lens actuator 17 includes an objective lens tracking coil 3 for driving the lens holder 2 in the tracking direction T and an objective lens focusing coil 4 for driving the lens holder 2 in the focusing direction F.
  • the objective lens tracking coil 3 and the objective lens focusing coil 4 are arranged to face the common magnet 5.
  • the shared magnet 5 applies a magnetic field to the objective lens tracking coil 3 and the objective lens focusing coil 4.
  • the objective lens tracking coil 3 is fixed to the side surface of the lens holder 2 perpendicular to the tangential direction K and has a winding axis along the tangential direction K.
  • the first and second objective lens focusing coils 4 a and 4 b are fixed to the side surface of the lens holder 2 perpendicular to the tangential direction K and have winding axes along the tangential direction K.
  • the common magnet 5 is multipolarly magnetized in the four magnetized regions 5 a, 5 b, 5 c, and 5 d by a cross-shaped boundary line, and is fixed to the yoke portion 9 a of the yoke base 9. Yes.
  • the objective lens tracking coil 3 and the objective lens focusing coil 4 are arranged at positions facing the common magnet 5.
  • the objective lens tracking coil 3 is disposed such that two sides along the focusing direction F are opposed to the first magnetized region 5a and the second magnetized region 5b, respectively, and magnetic fields in opposite directions are applied to each other.
  • the first and second objective lens focusing coils 4 a and 4 b are arranged side by side in the tracking direction T with the lower end portion of the objective lens tracking coil 3 interposed therebetween.
  • the first objective lens focusing coil 4a is disposed so that two sides along the tracking direction T are opposed to the first magnetized region 5a and the third magnetized region 5c, respectively, and magnetic fields in opposite directions to each other. Is granted.
  • the second objective lens focusing coil 4b is disposed so that two sides along the tracking direction T are opposed to the second magnetized region 5b and the fourth magnetized region 5d, respectively, and are opposite to each other.
  • the magnetic field is applied.
  • the lens holder 2 is driven in the tracking direction T when a current is applied to the objective lens tracking coil 3.
  • the lens holder 2 is driven in the focusing direction F when currents in opposite directions are applied to the first and second objective lens focusing coils 4a and 4b.
  • the lens holder 2 is tilted in the rotational direction R when currents in the same direction are applied to the first and second objective lens focusing coils 4a and 4b.
  • the lens holder 2 is rotated by the six objective lens support wires 6 with respect to the objective lens fixing member 7 in the rotation direction (tilting direction) with the focusing direction F, the tracking direction T and the tangential direction K of the optical disk 20 as the rotation axis.
  • R is elastically supported so as to be movable.
  • One end of the six objective lens support wires 6 is fixed to the objective lens terminal plate 8 fixed to the side surface of the lens holder 2, and the other end of the six objective lens support wires 6 is fixed to the objective lens. It is fixed to the member 7. That is, one end of the six objective lens support wires 6 is fixed to the objective lens fixing member 7, and the other end of the six objective lens support wires 6 is fixed to the lens holder 2.
  • the six objective lens support wires 6 are also used as power supply lines to the objective lens tracking coil 3 and the objective lens focusing coil 4.
  • the number of objective lens support wires 6 is not particularly limited to six, and may be any number.
  • the objective lens fixing member 7 is fixed to the yoke base 9.
  • the yoke base 9 is attached to a base portion (not shown) of the optical pickup device. Accordingly, the objective lens 1 is independently supported so as to be movable in the focusing direction F, the tracking direction T, and the rotation direction (tilting direction) R with respect to the base portion of the optical pickup device, and the focusing direction F and the tracking direction. Driven independently in T and rotation direction (tilting direction) R.
  • the inner surface of the lens holder 2 to which the objective lens tracking coil 3 and the first and second objective lens focusing coils 4a and 4b are attached is below the objective lens tracking coil 3 and the first and A notch 2a is provided in a portion located between the second objective lens focusing coils 4a and 4b.
  • the notch 2a can be set by the magnetization pattern of the shared magnet 5 and the coil arrangement.
  • the rising mirror 10 is held by the mirror holder 11.
  • First and second raised mirror coils 12 a and 12 b are fixed to both side surfaces of the mirror holder 11 that intersect the tangential direction K of the optical disk 20.
  • the rising mirror coil 12 is fixed to one side surface of the mirror holder 11 that intersects the tangential direction K of the optical disk 20, and includes a first rising mirror coil 12a having a winding axis along the tangential direction K, and a mirror.
  • a second rising mirror coil 12b that is fixed to the other side surface of the holder 11 that intersects the tangential direction K of the optical disc 20 and has a winding axis along the tangential direction K.
  • the first and second rising mirror coils 12a and 12b are collectively referred to. This is called a rising mirror coil 12. This is the same in other embodiments.
  • the rising mirror magnet 13 is multipolarized in two magnetized regions 13a and 13b by a linear magnetization boundary line along the focusing direction F.
  • the rising mirror magnet 13 is fixed to the yoke portion 9 b of the yoke base 9.
  • the rising mirror magnet 13 is disposed opposite to the second rising mirror coil 12b in the tangential direction K, and is opposite to both sides along the tracking direction T of the second rising mirror coil 12b. Apply a magnetic field in the direction.
  • the shared magnet 5 applies opposite magnetic fields to both sides along the tracking direction T of the first rising mirror coil 12a.
  • the first and second rising mirror coils 12a and 12b are disposed at positions facing the common magnet 5 and the rising mirror magnet 13, respectively.
  • the first rising mirror coil 12a is disposed such that two sides along the focusing direction F are opposed to the third magnetized region 5c and the fourth magnetized region 5d of the shared magnet 5, respectively.
  • a reverse magnetic field is applied.
  • the second rising mirror coil 12b is disposed so that two sides along the focusing direction F are opposed to the magnetized region 13a and the magnetized region 13b of the rising mirror magnet 13, respectively, and are opposite to each other. A magnetic field is applied.
  • the mirror holder 11 is driven in the tracking direction by applying a current to the first and second raised mirror coils 12a and 12b.
  • the mirror holder 11 is elastically supported by four rising mirror support wires 14 so as to be movable in the tracking direction T with respect to the rising mirror fixing member 15.
  • One end of the four raising mirror support wires 14 is fixed to the rising mirror terminal plate 16 fixed to the side surface of the mirror holder 11, and the other end of the four raising mirror support wires 14 is raised. It is fixed to the raising mirror fixing member 15. That is, one end of the four raising mirror support wires 14 is fixed to the raising mirror fixing member 15, and the other end of the four raising mirror support wires 14 is fixed to the mirror holder 11. .
  • At least two sets of upright mirror support wires 14 arranged non-parallel to each other on a plane perpendicular to the tracking direction T are arranged along the tracking direction T.
  • the two raising mirror support wires 14 are arranged on the plane perpendicular to the tracking direction T with a predetermined angle.
  • the two rising mirror support wires 14 have an elastic force along the tracking direction T greater than the elastic force along directions other than the tracking direction T (for example, the focusing direction F, the tangential direction K, and the rotation direction R). Arranged to be larger. It is preferable that the angle ⁇ formed by the two raising mirror support wires 14 satisfies 15 ° ⁇ ⁇ ⁇ 75 °.
  • the mirror holder 11 is placed in the focusing direction F, the tangential direction K, and the rotation direction R by disposing at least two rising mirror support wires 14 in a non-parallel manner on a plane perpendicular to the tracking direction T.
  • the movement can be further suppressed.
  • the mirror holder can be configured with a simple configuration. 11 can be easily moved in the tracking direction T, and the mirror holder 11 can be prevented from moving in directions other than the tracking direction T.
  • the number of rising mirror support wires 14 is not particularly limited to four, and may be any number.
  • the rising mirror support wire 14 may be a plate spring instead of a wire that is an example of a mirror-like elastic member for a mirror.
  • the fixed member 15 for the rising mirror is fixed to the yoke base 9.
  • the yoke base 9 is attached to a base portion (not shown) of the optical pickup device. Accordingly, the rising mirror 10 is independently supported so as to be movable in the tracking direction T with respect to the base portion of the optical pickup device, and is driven independently in the tracking direction T.
  • the first rising mirror coil 12 a disposed to face the shared magnet 5 is inserted into the notch 2 a of the lens holder 2 of the objective lens actuator 17. Arranged. As a result, the first rising mirror coil 12a can be made to face the common magnet 5 while maintaining the thin dimensions of the optical pickup device. That is, by providing the notch 2a in the lens holder 2, the shared magnet 5 is shared as the magnetic circuit of the objective lens actuator 17 and the mirror actuator 18, so that the optical pickup device can be made thinner and smaller.
  • a position sensor 27 is attached to the upper surface of the mirror holder 11.
  • the position sensor 27 includes a light emitting unit that emits light for measuring the amount of displacement, and a light receiving unit that receives reflected light from the object and detects the amount of displacement.
  • the position sensor 27 emits light from the light emitting unit toward the lens holder 2 of the objective lens actuator 17, and receives the reflected light from the lens holder 2 by the light receiving unit, thereby causing a relative positional shift between the mirror holder 11 and the lens holder 2. Detect the amount.
  • the position sensor 27 is mounted on the mirror holder 11 and detects the amount of relative positional deviation between the mirror holder 11 and the lens holder 2.
  • the mirror actuator drive circuit 37 includes a positional deviation amount monitoring unit 39 and a positional deviation control circuit 38.
  • the positional deviation amount monitoring unit 39 constantly monitors the relative positional deviation amount between the mirror holder 11 and the lens holder 2 detected by the position sensor 27.
  • the positional deviation amount monitoring unit 39 outputs the input relative positional deviation amount to the positional deviation control circuit 38.
  • the positional deviation control circuit 38 adjusts the current value output to the rising mirror coil 12 of the mirror actuator 18 so that the relative positional deviation amount becomes zero, and drives the mirror actuator 18 in the tracking direction T. Therefore, the rising mirror 10 always follows the objective lens 1 so as to minimize the relative distance along the tracking direction with the objective lens 1 even if the objective lens 1 is moved by tracking operation to the desired track position of the optical disc 20. To do.
  • the objective lens actuator 17 and the mirror actuator 18 are provided to be driven independently.
  • the objective lens 1 is elastically supported independently by the objective lens support wire 6 so as to be movable in the focusing direction F, the tracking direction T, and the rotation direction (tilting direction) R, and the objective lens tracking coil 3 and the objective lens.
  • the focusing coil 4 is independently driven in the focusing direction F, the tracking direction T, and the rotation direction R.
  • the rising mirror 10 is elastically supported independently by the rising mirror support wire 14 so as to be movable in the tracking direction T, and is driven independently in the tracking direction T by the rising mirror coil 12.
  • the optical pickup device of the present embodiment includes a light source (23) that emits a light beam having a predetermined wavelength, and a first objective lens (1) that converges the light beam on the recording surface of the optical disc (20). And a rising mirror that has a reflecting surface inclined in the radial direction of the optical disc (20) and guides the optical axis of the light beam emitted from the light source (23) to the first objective lens (1) by bending the optical axis with the reflecting surface. (10) and the light beam converged on the recording surface by the first objective lens (1) and further reflected by the recording surface via the first objective lens (1) and the rising mirror (10).
  • a photodetector (26) that receives light and converts it into an electrical signal, a lens holder (2) that holds the first objective lens (1), and a lens holder (2) that are at least perpendicular to the optical disc (20).
  • the Focusin Objective lens actuator (17) including a lens holder support mechanism that supports the lens holder movably in a tracking direction that is a radial direction of the optical disk and a mirror holder drive mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction.
  • a mirror holder (11) that holds the rising mirror (10), a mirror holder support mechanism that supports the mirror holder (11) so as to be movable in the tracking direction, and drives the mirror holder (11) in the tracking direction.
  • a mirror actuator (18) having a mirror holder driving mechanism and a mirror actuator for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction.
  • a drive circuit (37) having a mirror holder driving mechanism and a mirror actuator for driving
  • the objective lens actuator 17 and the mirror actuator 18 each independently have a support mechanism and a drive mechanism, they do not interfere with each other during operation. Therefore, there is no deterioration in servo performance due to the occurrence of crosstalk between the objective lens actuator 17 and the mirror actuator 18, and no deterioration in the tracking accuracy of the rising mirror 10 with respect to the movement of the objective lens 1, and good recording performance and reproduction performance. Can be realized.
  • the objective lens actuator 17 and the mirror actuator 18 do not interfere with each other in driving force, so that the objective lens 1 is not tilted and the rising mirror 10 is not tilted. Therefore, there is no deterioration of the light condensing performance due to the tilt of the objective lens 1 and no off-axis incidence of the light beam to the objective lens 1 due to the tilt of the rising mirror 10, and a good condensing spot can be obtained on the optical disk 20. As a result, good recording performance and reproduction performance can be realized.
  • the objective lens actuator 17 and the mirror actuator 18 do not mechanically interfere with each other, they are also independent as vibration transmission systems, so that unnecessary resonance hardly occurs and vibrations are not transmitted to each other. . Therefore, in both the objective lens actuator 17 and the mirror actuator 18, good drive frequency response characteristics can be obtained, and highly accurate servo performance can be obtained.
  • the optical pickup device detects the relative positional deviation amount between the objective lens 1 in the tracking direction T and the rising mirror 10 and always minimizes the relative distance between the objective lens 1 in the tracking direction T and the rising mirror 10.
  • the mirror actuator 18 is driven and controlled. Therefore, by eliminating the positional deviation between the objective lens 1 and the rising mirror 10, the optical axis deviation between the objective lens 1 and the light beam can be minimized.
  • the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens. Therefore, it is possible to obtain an optical pickup device that enables ultra high density optical recording and ultra high density optical reproduction.
  • the mirror holder driving mechanism is fixed to the side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20), and has a winding axis along the tangential direction.
  • the drive coil (12) and the mirror holder drive coil (12) are arranged so as to face each other in a tangential direction, and a permanent magnetic field is applied to both sides along the tracking direction of the mirror holder drive coil (12).
  • the mirror holder support mechanism includes a first fixing member (15) fixed to the yoke base (9) and one end fixed to the first fixing member (15). Moreover, you may provide the some rod-shaped elastic member (14) for mirrors which connected the other end with the mirror holder (11). At this time, at least two pairs of mirror-like elastic members (14) for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction may be arranged along the tracking direction.
  • the objective lens actuator (17) drives the tracking coil (3) for driving the lens holder (2) in the tracking direction and the lens holder (2) in the focusing direction.
  • a focusing coil (4) may be provided.
  • the tracking coil (3) and the focusing coil (4) may be arranged to face the permanent magnet (5).
  • the permanent magnet (5) may apply a magnetic field to the tracking coil (3) and the focusing coil (4).
  • the objective lens actuator (17) includes the second fixing member (7) fixed to the yoke base (9) and one end to the second fixing member (7).
  • a plurality of rod-shaped elastic members for lenses (6) that are fixed and fixed at the other end to the lens holder (2) may further be provided.
  • the tracking coil (3) is fixed to a side surface perpendicular to the tangential direction of the lens holder (2), has a winding axis along the tangential direction, and the focusing coil (4) is tangential to the lens holder (2).
  • the first and second focusing coils (4a, 4b) may be included, which are fixed to the side surface perpendicular to the surface and have winding axes along the tangential direction.
  • the permanent magnet (5) has a yoke base (in a position tangentially opposed to the first and second focusing coils (4a, 4b), the tracking coil (3) and the mirror holder driving coil (12)).
  • the adjacent magnetized regions have different polarities, and the magnetized regions are multipolarly magnetized into four magnetized regions by a cross-shaped boundary line.
  • the first and second magnetized regions (5a, 5b) adjacent to each other along the tracking direction closer to the optical disc (20) are formed on the tracking coil (3). Apply opposite magnetic fields to both sides along the tracking direction.
  • the third and fourth magnetized regions (5c, 5d) adjacent in the tracking direction farther from the optical disc (20) are mirror holder drive coils (12 ) Is applied to opposite sides along the tracking direction.
  • the first and third magnetized regions (5a, 5c) adjacent in the focusing direction are along the focusing direction of the first focusing coil (4a). Apply opposite magnetic fields to both sides.
  • the second and fourth magnetized regions (5b, 5d) adjacent in the focusing direction are along the focusing direction of the second focusing coil (4b). Apply opposite magnetic fields to both sides.
  • the mirror holder driving coil (12) is fixed to one side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20), and is wound along the tangential direction.
  • a first mirror holder driving coil (12a) having an axis and a second axis having a winding axis along the tangential direction, which is fixed to the other side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20).
  • a mirror holder driving coil (12b) may be included.
  • the permanent magnet (5) applies opposite magnetic fields to both sides along the tracking direction of the first mirror holder drive coil (12a).
  • the mirror holder driving mechanism is disposed so as to be tangentially opposed to the second mirror holder driving coil (12b), and is opposite to both sides along the tracking direction of the second mirror holder driving coil (12b). It may further include a permanent magnet (13) for a mirror holder that applies a magnetic field in the direction.
  • a notch (2a) is provided on the side surface of the lens holder (2) that is adjacent to the tracking coil (3) and is far from the optical disc (20).
  • the mirror holder driving coil may be disposed in the notch (2a).
  • the shared magnet 5 is shared as a magnetic circuit for the objective lens actuator 17 and the mirror actuator 18, so that the optical pickup device can be made thinner and smaller.
  • the mirror actuator (18) is mounted on the mirror holder (11), and detects the amount of relative positional deviation between the mirror holder (11) and the lens holder (2).
  • a position sensor (27) may be provided.
  • the mirror actuator driving unit (37) includes a positional deviation amount monitoring unit (39) that monitors a relative positional deviation amount detected by the position sensor (27) and a relative amount monitored by the positional deviation amount monitoring unit (39).
  • a displacement control unit (38) that adjusts the current value output to the mirror holder drive coil (12) so that the amount of displacement is zero may be provided.
  • the mirror is always set so that the relative distance in the tracking direction between the rising mirror 10 and the objective lens 1 is minimized.
  • the actuator 18 can be driven and controlled.
  • the position sensor 27 having the light emitting part and the light receiving part is provided as a method for detecting the relative positional deviation amount between the rising mirror 10 and the objective lens 1, but the position sensor 27 is a relative position.
  • the position sensor 27 may include only a light receiving element, and the relative positional deviation amount may be detected using a light beam outside the effective diameter.
  • the optical pickup device of the present embodiment is arranged on the optical path between the light source (23) and the rising mirror (10), and a collimating lens (28) for changing the convergence of the light beam, and the collimating lens
  • a collimating lens actuator (19) for moving (28) in the optical axis direction on the optical path may be further provided.
  • the first objective lens (1) may include a solid immersion lens (1b) that collects light by near-field light.
  • the blue semiconductor laser diode 23 corresponds to an example of a light source
  • the objective lens 1 corresponds to an example of a first objective lens
  • the rising mirror 10 corresponds to an example of a rising mirror
  • the photodetector 26 corresponds to an example of a photodetector
  • the lens holder 2 corresponds to an example of a lens holder
  • the objective lens actuator 17 corresponds to an example of an objective lens actuator
  • the mirror holder 11 corresponds to an example of a mirror holder.
  • the mirror actuator 18 corresponds to an example of a mirror actuator
  • the mirror actuator drive circuit 37 corresponds to an example of a mirror actuator drive unit.
  • the rising mirror coil 12 corresponds to an example of a mirror holder drive coil
  • the shared magnet 5 corresponds to an example of a permanent magnet
  • the yoke base 9 corresponds to an example of a yoke base.
  • the raising mirror fixing member 15 corresponds to an example of a first fixing member
  • the rising mirror support wire 14 corresponds to an example of a rod-like elastic member for mirrors
  • the objective lens tracking coil 3 corresponds to an example of a tracking coil.
  • the objective lens focusing coil 4 corresponds to an example of a focusing coil
  • the objective lens fixing member 7 corresponds to an example of a second fixing member
  • the objective lens support wire 6 corresponds to an example of a lens rod-shaped elastic member.
  • the first and second objective lens focusing coils 4a and 4b correspond to an example of the first and second focusing coils. .
  • the notch 2a corresponds to an example of a notch
  • the first rising mirror coil 12a corresponds to an example of a first mirror holder driving coil
  • the second rising mirror corresponds to an example of a second mirror holder driving coil
  • the rising mirror magnet 13 corresponds to an example of a permanent magnet for a mirror holder
  • the position sensor 27 corresponds to an example of a position sensor.
  • the unit 39 corresponds to an example of a positional deviation amount monitoring unit
  • the positional deviation control circuit 38 corresponds to an example of a positional deviation control unit
  • the collimating lens 28 corresponds to an example of a collimating lens
  • the collimating lens actuator 19 is a collimating lens actuator.
  • the solid immersion lens 1b corresponds to an example of a solid immersion lens.
  • FIG. 4 is a block diagram showing the configuration of the optical pickup device according to the second embodiment of the present invention. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 4 differs from FIG. 1 in that a mirror actuator drive circuit 45 is provided in place of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
  • a mirror actuator drive circuit 45 amplifies a tracking error signal generated based on the output from the photodetector 26, and outputs the amplified tracking error signal to the rising mirror coil 12 as a drive current. 41 is comprised.
  • the optical pickup control circuit 36 outputs the generated tracking error signal to the tracking coil drive circuit 33 and simultaneously outputs the same tracking error signal to the mirror actuator drive circuit 45.
  • the amplifier 41 amplifies the value of the tracking error signal at a predetermined magnification, and outputs the amplified value to the rising mirror coil 12 as a drive current for the mirror actuator 18.
  • the mirror actuator 18 performs the same operation as the objective lens actuator 17 in the tracking direction T.
  • the rising mirror 10 always follows the displacement of the objective lens 1.
  • the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • (1) and a reflecting surface inclined in the radial direction of the optical disc (20) and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1).
  • the light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10).
  • the optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20).
  • Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction.
  • a mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction.
  • the mirror actuator driving section (45) amplifies the tracking error signal generated based on the output from the photodetector (26), and drives the amplified tracking error signal.
  • An amplifier (41) that outputs current to the mirror holder drive coil (12) is provided.
  • a tracking error signal amplified at an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simple configuration in which the mirror actuator drive circuit 45 includes only the amplifier 41. Therefore, the cost of the optical pickup device can be further reduced.
  • the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens. Therefore, it is possible to obtain an optical pickup device that enables ultrahigh density optical recording and ultrahigh density optical reproduction at a lower cost.
  • the mirror actuator drive circuit 45 corresponds to an example of a mirror actuator drive unit
  • the amplifier 41 corresponds to an example of an amplifier
  • FIG. 5 is a block diagram showing the configuration of the optical pickup device according to the third embodiment of the present invention.
  • FIG. 5 is different from FIG. 1 in that a mirror actuator drive circuit 46 is provided instead of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
  • the mirror actuator driving circuit 46 includes an amplifier 41, an adder 42, and an initial deviation amount memory 44.
  • the amplifier 41 which is a component of the mirror actuator drive circuit 46, is the same component as that in FIG. 4, and the difference from FIG. 4 is that an adder 42 and an initial deviation amount memory 44 are added.
  • the initial deviation amount memory 44 stores in advance the relative distance (initial deviation amount) between the rising mirror 10 and the objective lens 1 when the objective lens actuator 17 and the mirror actuator 18 are not operating.
  • the adder 42 adds the relative distance stored in the initial deviation amount memory 44 to the tracking error signal as an offset value, and outputs it to the amplifier 41.
  • the amplifier 41 amplifies the tracking error signal output by the adder 42 at a predetermined magnification, and outputs the amplified tracking error signal to the rising mirror coil 12 as a drive current for the mirror actuator 18.
  • the mirror actuator 18 is driven in the tracking direction T in consideration of the initial deviation amount. Therefore, the mirror actuator 18 performs the same operation as the objective lens actuator 17. As a result, the rising mirror 10 always follows the displacement of the objective lens 1 with no relative displacement.
  • the relative distance between the rising mirror 10 and the objective lens 1 when the objective lens actuator 17 and the mirror actuator 18 are not operating is measured in advance at the time of shipment of the optical pickup device and stored in the initial deviation amount memory 44. .
  • the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • (1) and a reflecting surface inclined in the radial direction of the optical disc (20) and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1).
  • the light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10).
  • the optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20).
  • Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction.
  • a mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction.
  • the mirror actuator driving section (46) amplifies the tracking error signal generated based on the output from the photodetector (26), and drives the amplified tracking error signal.
  • An amplifier (41) that outputs current to the mirror holder drive coil (12) is provided.
  • the mirror actuator driving section (46) is started up with the first objective lens (1) when the objective lens actuator (17) and the mirror actuator (18) are not operating.
  • An initial deviation amount memory (44) for storing the relative distance to the mirror (10) in advance, and the relative distance stored in the initial deviation amount memory (44) as an offset value is added to the tracking error signal to an amplifier (41).
  • an adder (42) for outputting to.
  • an offset value corresponding to the initial deviation amount is added to the tracking error signal, and a tracking error signal amplified by an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simpler configuration and higher accuracy. Therefore, it is possible to further reduce the cost of the optical pickup device and improve the tracking accuracy.
  • the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens.
  • the mirror actuator drive circuit 46 corresponds to an example of a mirror actuator drive unit
  • the amplifier 41 corresponds to an example of an amplifier
  • the adder 42 corresponds to an example of an adder
  • an initial deviation amount memory 44 corresponds to an example of an initial deviation amount memory.
  • FIG. 6 is a block diagram showing the configuration of the optical pickup device according to the fourth embodiment of the present invention.
  • FIG. 6 differs from FIG. 1 in that a mirror actuator drive circuit 47 is provided instead of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
  • the mirror actuator drive circuit 47 includes an optical disk eccentricity memory 48 and an amplifier 43.
  • the optical disk eccentricity memory 48 stores in advance the eccentricity with respect to the radial position of the optical disk 20.
  • the amplifier 43 amplifies an output signal representing the amount of eccentricity output from the optical disk eccentricity memory 48 at the time of operation of the mirror actuator 18 by an appropriate magnification, and the amplified output signal is used as a drive current for the mirror actuator 18 to raise the mirror. Output to the coil 12.
  • the mirror actuator 18 is driven with a displacement corresponding to the amount of eccentricity with respect to the radial position of the optical disc 20. Therefore, the mirror actuator 18 performs substantially the same operation as the objective lens actuator 17. As a result, the rising mirror 10 always follows the displacement of the objective lens 1.
  • the eccentricity with respect to the radial position of the optical disk 20 is measured when the optical disk 20 is inserted into the optical pickup device, and is stored in the optical disk eccentricity memory 48.
  • the optical pickup control circuit 36 outputs information on the radial position on the optical disc 20 irradiated with the light beam to the optical disc eccentricity memory 48, and the optical disc eccentricity memory 48 relates to the radial position output from the optical pickup control circuit 36.
  • the amount of eccentricity corresponding to the radial position included in the information is read and output to the amplifier 43.
  • the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • (1) and a reflecting surface inclined in the radial direction of the optical disc (20) and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1).
  • the light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10).
  • the optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20).
  • Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction.
  • a mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction.
  • the mirror actuator driving section (47) includes an optical disc eccentricity memory (48) for storing in advance an eccentricity with respect to the radial position of the optical disc (20), and an optical disc eccentricity memory (48). And an amplifier (43) for amplifying the output signal representing the amount of eccentricity output from the above and outputting the amplified output signal as a drive current to the mirror holder drive coil (12).
  • the rising mirror 10 can be made to follow the movement of the objective lens 1 in the tracking direction with higher accuracy.
  • the amount of eccentricity with respect to the radial position of the optical disk 20 is stored in advance, and the amount of eccentricity amplified at an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simple configuration and simple control. Therefore, the cost of the optical pickup device can be reduced. Further, the data transfer rate can be improved by shortening the control time.
  • the amount of optical axis misalignment between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens, thereby enabling a high transfer speed and low cost. It is possible to obtain an optical pickup device that enables ultrahigh density optical recording and ultrahigh density optical reproduction at a low cost.
  • the optical disk eccentricity memory 48 that stores a table of drive control values obtained in advance as the amount of eccentricity of the optical disk 20 is used.
  • the drive control values obtained in advance are obtained from the rising mirror 10 and the objective lens 1. Any value can be used as long as it corrects the relative positional deviation of the optical pickup and improves the recording / reproducing performance of the optical pickup.
  • the displacement amount of the rising mirror 10 that minimizes the jitter of the reproduction signal corresponding to the radial position of the optical disk may be used as the drive control value. In this case, it is possible to correct not only the deterioration of the reproduction signal jitter caused by the relative positional deviation between the rising mirror 10 and the objective lens 1, but also the deterioration of the reproduction signal jitter caused by other factors.
  • the tracking error signal amplitude may be used as a value according to the jitter value.
  • the displacement amount of the rising mirror 10 that maximizes the tracking error signal amplitude may be used as the drive control value, and the same effect as described above can be obtained.
  • the mirror actuator drive circuit 47 corresponds to an example of a mirror actuator drive unit
  • the amplifier 43 corresponds to an example of an amplifier
  • the optical disk eccentricity memory 48 corresponds to an example of an optical disk eccentricity memory.
  • FIG. 7 is a perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to the fifth embodiment of the present invention.
  • the same components as those in FIG. 7 are identical to FIG. 7 and the same components as those in FIG. 7;
  • FIG. 7 is different from FIG. 3 in that the objective lens 51 is mounted on the lens holder 52 in addition to the objective lens 1, and the rising mirror 50 is mounted on the mirror holder 53. It is.
  • the objective lens 51 is composed of only a normal condensing lens that does not include a solid immersion lens, and condenses a light beam such as blue laser light with a numerical aperture of about 0.85.
  • the objective lens 51 is disposed adjacent to the objective lens 1 along the tangential direction K of the optical disk, and is mounted on the lens holder 52.
  • the dimension of the rising mirror 50 in the tangential direction K is a length corresponding to both objective lenses so that the light beam traveling along the tracking direction T can be reflected toward the objective lens 51 and the objective lens 1.
  • the mirror holder 53 holds the rising mirror 50.
  • the longitudinal direction of the rising mirror 50 coincides with the tangential direction K.
  • the rising mirror 50 bends the light beam emitted from the blue semiconductor laser diode 23 by the reflecting surface and guides it to the objective lens 51.
  • the lens holder 52 holds the objective lens 1 and the objective lens 51.
  • the optical pickup device includes the mirror actuator drive circuit 37 according to the first embodiment.
  • the present invention is not particularly limited to this, and the mirror actuator drive circuit according to the second to fourth embodiments. 45 to 47 may be provided.
  • the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • the first objective lens that converges the light beam on the recording surface of the optical disc (20).
  • (1) and a reflecting surface inclined in the radial direction of the optical disc (20) and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1).
  • the light beam converged on the recording surface by the rising mirror (50) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (50).
  • the optical detector (26) that receives light via the light and converts it into an electrical signal, the lens holder (52) that holds the first objective lens (1), and the lens holder (52) are at least mounted on the optical disc (20).
  • the vertical direction Objective lens actuator comprising: a lens holder support mechanism that supports movement in the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder drive mechanism that drives the lens holder (52) in at least the focusing direction and the tracking direction. 17), a mirror holder (53) for holding the rising mirror (50), a mirror holder support mechanism for supporting the mirror holder (53) so as to be movable in the tracking direction, and driving the mirror holder (53) in the tracking direction.
  • a mirror actuator (18) having a mirror holder driving mechanism for driving the mirror actuator (18), and a mirror for driving the mirror actuator (18) so that the rising mirror (50) follows the movement of the first objective lens (1) in the tracking direction.
  • the optical pickup device of this embodiment further includes a second objective lens (51) disposed adjacent to the first objective lens along the tangential direction of the optical disc (20).
  • a second objective lens (51) disposed adjacent to the first objective lens along the tangential direction of the optical disc (20).
  • the longitudinal direction of the rising mirror (50) coincides with the tangential direction, and the rising mirror (50) bends the light beam emitted from the light source (23) by the reflecting surface, and the second objective lens.
  • Guide to (51) The lens holder (53) holds the first objective lens (1) and the second objective lens (51).
  • the optical pickup device includes, for example, the objective lens 1 including the solid immersion lens 1b and the objective lens 51 including only a normal condenser lens. It is possible to record or reproduce information by using at least two types of optical discs, ie, optical discs for high density optical recording and ultra high density optical reproduction, and optical discs compatible with ordinary condenser lenses.
  • the rising mirror 50 can be made to follow the displacement of the objective lens 1 by operating the mirror actuator 18. Therefore, the amount of optical axis misalignment between the objective lens 1 and the light beam can be suppressed within an allowable range in an optical pickup device using a solid immersion lens, and ultrahigh density optical recording and ultrahigh density optical reproduction are possible. Become.
  • the objective lens 51 corresponds to an example of a second objective lens
  • the rising mirror 50 corresponds to an example of a rising mirror
  • the lens holder 52 corresponds to an example of a lens holder.
  • the optical pickup device may control the distance between the objective lens 1 and the surface of the optical disc 20.
  • the photodetector 26 or a photodetector provided separately from the photodetector 26 detects the amount of return light from the region where the near-field light is generated, and the optical pickup control circuit 36 detects the light amount.
  • the focusing coil drive circuit 32 is driven based on the amount of return light to control the distance between the objective lens 1 and the surface of the optical disc 20.
  • FIG. 8 shows an embodiment of an optical disk device using the optical pickup device according to the first to fifth embodiments.
  • FIG. 8 is a diagram showing a schematic configuration of an optical disc apparatus according to Embodiment 6 of the present invention.
  • the optical disc apparatus 100 includes a drive device 101, an optical pickup device 102, an electric circuit (control unit) 103, and a motor 104.
  • the optical disk 20 is mounted on the turntable 105, held by the clamper 106, and rotated by the motor 104.
  • the optical pickup device 102 is the optical pickup device described in the first to fifth embodiments.
  • the drive device 101 transfers the optical pickup device 102 shown in the first to fifth embodiments to a track on the optical disc 20 where desired information exists.
  • the electric circuit 103 controls the optical pickup device 102 and the motor 104 based on a signal obtained from the optical pickup device 102.
  • the optical pickup device 102 sends a focusing error signal, a tracking error signal, a gap signal, and an RF signal to the electric circuit 103 in accordance with the positional relationship with the optical disc 20.
  • the electric circuit 103 sends a signal for driving an actuator that moves the objective lens to the optical pickup device 102.
  • the optical pickup device 102 performs focus control, tracking control, or tilt control on the optical disc 20, and reads information, writes information, or erases information.
  • An optical pickup device includes a light source that emits a light beam having a predetermined wavelength, a first objective lens that converges the light beam on a recording surface of an optical disc, and a radial direction of the optical disc.
  • a rising mirror having an inclined reflecting surface, and bending the optical axis of the light beam emitted from the light source by the reflecting surface to guide the first objective lens, and the recording surface by the first objective lens
  • a photodetector that receives the light beam converged above and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal, and the first objective lens are held.
  • An objective lens actuator comprising: a lens holder support mechanism that movably supports; a mirror holder drive mechanism that drives the lens holder in at least the focusing direction and the tracking direction; a mirror holder that holds the rising mirror;
  • a mirror actuator comprising a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, a mirror holder drive mechanism that drives the mirror holder in the tracking direction, and the rising mirror is the first objective lens
  • a mirror actuator driving unit that drives the mirror actuator so as to follow the movement in the tracking direction.
  • the light source emits a light beam having a predetermined wavelength.
  • the first objective lens converges the light beam on the recording surface of the optical disc.
  • the rising mirror has a reflecting surface inclined in the radial direction of the optical disk, and guides the optical axis of the light beam emitted from the light source to the first objective lens by bending the reflecting surface.
  • the photodetector receives the light beam converged on the recording surface by the first objective lens and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal.
  • the objective lens actuator includes a lens holder that holds the first objective lens, and a lens holder support that supports the lens holder so that the lens holder can move at least in a focusing direction that is perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. And a mirror holder driving mechanism for driving the lens holder at least in the focusing direction and the tracking direction.
  • the mirror actuator includes a mirror holder that holds the rising mirror, a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, and a mirror holder drive mechanism that drives the mirror holder in the tracking direction.
  • the mirror actuator driving unit drives the mirror actuator so that the rising mirror follows the movement of the first objective lens in the tracking direction.
  • the objective lens actuator and the mirror actuator each independently have a support mechanism and a drive mechanism and do not interfere with each other during operation, the servo performance due to the occurrence of crosstalk between the objective lens actuator and the mirror actuator. And the deterioration of the tracking accuracy of the rising mirror with respect to the movement of the objective lens can be suppressed.
  • the optical pickup device further includes a second objective lens disposed adjacent to the first objective lens along a tangential direction of the optical disc, and the rising mirror is emitted from the light source.
  • the light beam is bent by the reflecting surface and guided to the second objective lens, and the lens holder holds the first objective lens and the second objective lens.
  • the second objective lens is disposed adjacent to the first objective lens along the tangential direction of the optical disc.
  • the rising mirror bends the light beam emitted from the light source by the reflecting surface and guides it to the second objective lens.
  • the lens holder holds the first objective lens and the second objective lens.
  • optical discs ie, an optical disc corresponding to the first objective lens and an optical disc corresponding to the second objective lens.
  • the mirror holder driving mechanism is fixed to a side surface of the mirror holder that intersects the tangential direction of the optical disc, and has a winding shaft along the tangential direction, A permanent magnet disposed opposite to the tangential direction with respect to the mirror holder driving coil and applying a magnetic field in the opposite direction to both sides along the tracking direction of the mirror holder driving coil, and a yoke for fixing the permanent magnet It is preferable to provide a base.
  • the mirror holder driving coil having the winding axis along the tangential direction is fixed to the side surface of the mirror holder that intersects the tangential direction of the optical disk.
  • the permanent magnet is disposed so as to be opposed to the mirror holder driving coil in the tangential direction, and applies opposite magnetic fields to both sides along the tracking direction of the mirror holder driving coil.
  • the yoke base fixes the permanent magnet.
  • the mirror holder can be moved in the tracking direction, and the objective lens is moved in the tracking direction.
  • the mirror holder can be made to follow.
  • the mirror holder support mechanism includes a first fixing member fixed to the yoke base, one end fixed to the first fixing member, and the other end fixed to the mirror holder.
  • a plurality of mirror-like elastic members for mirrors, and at least two mirror-like elastic members for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction are arranged along the tracking direction. It is preferable.
  • the first fixing member is fixed to the yoke base.
  • One end of each of the plurality of mirror-like elastic members for mirror is fixed to the first fixing member, and the other end is fixed to the mirror holder.
  • At least two pairs of mirror-like elastic members for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction are arranged along the tracking direction.
  • the objective lens actuator includes a tracking coil for driving the lens holder in the tracking direction, and a focusing coil for driving the lens holder in the focusing direction,
  • the tracking coil and the focusing coil are arranged to face the permanent magnet, and the permanent magnet applies a magnetic field to the tracking coil and the focusing coil.
  • the tracking coil for driving the lens holder in the tracking direction and the focusing coil for driving the lens holder in the focusing direction are arranged to face the permanent magnet.
  • the permanent magnet applies a magnetic field to the tracking coil and the focusing coil.
  • the permanent magnet applies a magnetic field not only to the mirror holder driving coil but also to the tracking coil and the focusing coil, so that the mirror holder driving coil, the tracking coil and the focusing coil can share one permanent magnet,
  • the pickup device can be reduced in size.
  • the objective lens actuator includes a second fixing member fixed to the yoke base, one end fixed to the second fixing member, and the other end fixed to the lens holder.
  • a plurality of rod-shaped elastic members for lenses, and the tracking coil is fixed to a side surface of the lens holder perpendicular to the tangential direction, and has a winding axis along the tangential direction, and the focusing coil is , Including first and second focusing coils fixed to a side surface of the lens holder perpendicular to the tangential direction and having winding axes along the tangential direction, and the permanent magnet includes the first and second focusing coils.
  • the yoke base is located at a position facing the tangential direction with respect to the focusing coil, the tracking coil and the mirror holder driving coil.
  • the adjacent magnetized areas have different polarities, and the magnetized areas are multipolarly magnetized into four magnetized areas by a cross-shaped boundary line, and the four magnetized areas of the permanent magnet are
  • the first and second magnetized regions adjacent to each other along the tracking direction on the side close to the optical disk apply a reverse magnetic field to both sides along the tracking direction of the tracking coil, and the permanent magnet Of the four magnetized regions, the third and fourth magnetized regions adjacent to each other in the tracking direction far from the optical disc are opposite to both sides of the mirror holder drive coil along the tracking direction.
  • the first and third magnetized regions adjacent to each other in the focusing direction are the first focusing coil.
  • the second and fourth magnetized regions adjacent to each other along the focusing direction are the first and second magnetized regions of the permanent magnet.
  • opposite magnetic fields are applied to both sides along the focusing direction of the second focusing coil.
  • the second fixing member is fixed to the yoke base.
  • the plurality of rod-shaped elastic members for lenses have one end fixed to the second fixing member and the other end fixed to the lens holder.
  • a tracking coil having a winding axis along the tangential direction is fixed to the side surface of the lens holder perpendicular to the tangential direction.
  • the first and second focusing coils having winding axes along the tangential direction are fixed to the side surfaces of the lens holder perpendicular to the tangential direction.
  • the permanent magnet is fixed to the yoke base at a position that is tangentially opposed to the first and second focusing coils, the tracking coil, and the mirror holder drive coil, and the adjacent magnetized regions have different polarities and are magnetized.
  • the region is multipolarized into four magnetized regions by a cross-shaped boundary.
  • the first and second magnetized areas adjacent to each other along the tracking direction closer to the optical disc give opposite magnetic fields to both sides along the tracking direction of the tracking coil.
  • the third and fourth magnetized regions adjacent to each other along the tracking direction farther from the optical disk apply opposite magnetic fields to both sides along the tracking direction of the mirror holder drive coil.
  • the first and third magnetized regions adjacent to each other along the focusing direction apply opposite magnetic fields to both sides along the focusing direction of the first focusing coil.
  • the second and fourth magnetized regions adjacent to each other in the focusing direction apply opposite magnetic fields to both sides along the focusing direction of the second focusing coil.
  • the magnetic field is applied to the first and second focusing coils, the tracking coil, and the mirror holder driving coil by the permanent magnet, the first and second focusing coils, the tracking coil, and the mirror holder driving coil are one permanent.
  • a magnet can be shared and the optical pickup device can be miniaturized.
  • a notch is provided on a side surface of the lens holder that is adjacent to the tracking coil and is far from the optical disc, and the mirror holder driving coil It is preferable to arrange in the notch.
  • a notch is provided on the side surface of the lens holder that is adjacent to the tracking coil and is far from the optical disk.
  • the mirror holder driving coil is disposed in the notch.
  • the optical pickup device can be miniaturized.
  • the mirror holder driving coil is fixed to one side surface of the mirror holder that intersects the tangential direction of the optical disk, and has a winding axis along the tangential direction.
  • a drive coil, and a second mirror holder drive coil fixed to the other side surface of the mirror holder that intersects the tangential direction of the optical disk and having a winding axis along the tangential direction, and the permanent magnet The opposite magnetic fields are applied to both sides of the first mirror holder driving coil along the tracking direction, and the mirror holder driving mechanism is opposed to the second mirror holder driving coil in the tangential direction.
  • the mirror mirror is disposed and applies opposite magnetic fields to both sides along the tracking direction of the second mirror holder driving coil.
  • the first mirror holder driving coil having the winding axis along the tangential direction is fixed to one side surface of the mirror holder that intersects the tangential direction of the optical disk.
  • the second mirror holder drive coil having a winding axis along the tangential direction is fixed to the other side surface of the mirror holder that intersects the tangential direction of the optical disk.
  • the permanent magnet applies opposite magnetic fields to both sides along the tracking direction of the first mirror holder driving coil.
  • the permanent magnet for the mirror holder is disposed so as to face the second mirror holder driving coil in the tangential direction, and applies opposite magnetic fields to both sides along the tracking direction of the second mirror holder driving coil.
  • the mirror holder since the mirror holder is driven by the two coils of the first mirror holder driving coil and the second mirror holder driving coil, the mirror holder can be moved accurately and reliably.
  • the mirror actuator driving unit amplifies a tracking error signal generated based on an output from the photodetector, and drives the mirror holder using the amplified tracking error signal as a driving current. It is preferable to provide an amplifier that outputs to the coil.
  • the amplifier amplifies the tracking error signal generated based on the output from the photodetector, and outputs the amplified tracking error signal to the mirror holder driving coil as a driving current.
  • the mirror actuator driving unit includes only an amplifier, the rising mirror can always follow the displacement of the objective lens, and the cost of the optical pickup device can be further reduced.
  • the mirror actuator driving unit stores in advance the relative distance between the first objective lens and the rising mirror when the objective lens actuator and the mirror actuator are not operating. It is preferable to further include a deviation amount memory and an adder that adds the relative distance stored in the initial deviation amount memory to the tracking error signal as an offset value and outputs the added value to the amplifier.
  • the initial deviation amount memory stores in advance the relative distance between the first objective lens and the rising mirror when the objective lens actuator and the mirror actuator are not operating.
  • the adder adds the relative distance stored in the initial deviation amount memory as an offset value to the tracking error signal and outputs the result to the amplifier.
  • the mirror actuator is mounted on the mirror holder and includes a position sensor that detects a relative positional deviation amount between the mirror holder and the lens holder
  • the mirror actuator driving unit includes: A positional deviation amount monitoring unit that monitors the relative positional deviation amount detected by the position sensor, and the mirror holder driving coil so that the relative positional deviation amount monitored by the positional deviation amount monitoring unit becomes zero. It is preferable to provide a displacement control unit that adjusts the current value to be output.
  • the position sensor is mounted on the mirror holder and detects the amount of relative positional deviation between the mirror holder and the lens holder.
  • the positional deviation amount monitoring unit monitors the relative positional deviation amount detected by the position sensor.
  • the positional deviation control unit adjusts the current value output to the mirror holder driving coil so that the relative positional deviation amount monitored by the positional deviation amount monitoring unit becomes zero.
  • the mirror actuator is driven and controlled so that the relative distance in the tracking direction between the rising mirror and the objective lens is always minimized. Can do.
  • the mirror actuator driving unit includes an optical disc eccentricity memory for storing in advance an eccentricity with respect to a radial position of the optical disc, and an output signal representing the eccentricity output from the optical disc eccentricity memory. And an amplifier that outputs the amplified output signal as a drive current to the mirror holder drive coil.
  • the optical disk eccentricity memory stores in advance the eccentricity with respect to the radial position of the optical disk.
  • the amplifier amplifies an output signal representing the amount of eccentricity output from the optical disk eccentricity amount memory, and outputs the amplified output signal to the mirror holder drive coil as a drive current.
  • the light source emits blue laser light having a wavelength of 405 nm.
  • information can be recorded on or reproduced from the optical disk using blue laser light having a wavelength of 405 nm.
  • a collimating lens disposed on an optical path between the light source and the rising mirror and changing a convergence degree of a light beam, and the collimating lens on the optical path in the optical axis direction It is preferable to further include a collimating lens actuator to be moved to the position.
  • the collimating lens is disposed on the optical path between the light source and the rising mirror, and changes the convergence of the light beam.
  • the collimating lens actuator moves the collimating lens in the optical axis direction on the optical path.
  • the optical disc has a plurality of recording surfaces and the distance between the objective lens and the surface of the optical disc is short, the light beam is condensed on the desired recording surface by moving the collimating lens in the optical axis direction. be able to.
  • the first objective lens includes a solid immersion lens that collects light by near-field light.
  • the optical axis misalignment between the objective lens and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens, and ultra-high density optical recording and ultra-high density light can be achieved. Playback is possible.
  • An optical disc device provides an optical pickup device according to any one of the above, a motor for rotating an optical disc, and the motor and the optical pickup device based on a signal obtained from the optical pickup device. And a control unit for controlling.
  • the above optical pickup device can be applied to an optical disk device.
  • the optical pickup device is capable of recording or reproducing information with respect to a plurality of types of optical discs having different substrate thicknesses, corresponding wavelengths, recording densities, and the like, and in particular, an ultra pickup using a solid immersion lens. Useful in high density recording and ultra high density reproduction. Furthermore, an optical disk device using this optical pickup device can record or reproduce a large amount of information, such as a computer, an optical disk player, an optical disk recorder, a car navigation system, an editing system, an optical disk server, and an AV component.
  • the present invention can be applied to any system that records or reproduces information.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

Disclosed are an optical pickup device and an optical disc device which suppress the deterioration of servo performance due to the occurrence of crosstalk between an objective lens actuator and a mirror actuator, and suppress the deterioration of the tracking accuracy of a standing mirror in response to the movement of the objective lens. An objective lens actuator (17) is provided with a lens holder supporting body which supports an objective lens (1) movably in the focusing direction and the tracking direction, and a lens holder driving body which drives a lens holder (2) in the focusing direction and the tracking direction. A mirror actuator (18) is provided with a mirror holder supporting body which supports a standing mirror (10) movably in the tracking direction, and a mirror holder driving body which drives a mirror holder (11) in the tracking direction. A mirror actuator driving circuit (37) drives the mirror actuator (18) such that the standing mirror (10) follows the movement of the objective lens (1) in the tracking direction.

Description

光ピックアップ装置及び光ディスク装置Optical pickup device and optical disk device
 本発明は、光ディスクに対して情報を再生又は記録する光ピックアップ装置、及び当該光ピックアップ装置を備える光ディスク装置に関するものである。 The present invention relates to an optical pickup device that reproduces or records information on an optical disc, and an optical disc device including the optical pickup device.
 従来の光ピックアップ装置は、対物レンズをフォーカシング方向及びトラッキング方向に駆動制御する対物レンズアクチュエータを備えている。従来の光ピックアップ装置では、対物レンズの下側に配置される立上げミラーは光学ベースに固定されている。 The conventional optical pickup device includes an objective lens actuator that drives and controls the objective lens in the focusing direction and the tracking direction. In the conventional optical pickup device, the rising mirror disposed on the lower side of the objective lens is fixed to the optical base.
 また、その他の光ピックアップ装置としては、例えば特許文献1に記載された光学式ディスクプレーヤの光学制御機構及び特特許文献2に記載された対物レンズ駆動装置がある。 Other optical pickup devices include, for example, an optical control mechanism of an optical disc player described in Patent Document 1 and an objective lens driving device described in Patent Document 2.
 特許文献1に記載された光学式ディスクプレーヤの光学制御機構では、レーザ光を対物レンズに向けて反射する立上げミラーが、トラッキング方向に移動するブロックに搭載され、このブロックにはフォーカシング用の弾性部材、対物レンズ支持部材及び対物レンズが搭載され、レーザ光のフォーカシングが行われる。そして、特許文献1の光学制御機構は、ブロックのトラッキング方向の移動により対物レンズがトラッキング方向に変位する時、反射ミラーの光軸と対物レンズの光軸とがずれないため、光学系受光素子に入射する光量低下を防止することができ、安定なトラッキングが可能となっている。 In the optical control mechanism of an optical disc player described in Patent Document 1, a rising mirror that reflects laser light toward an objective lens is mounted on a block that moves in a tracking direction, and this block has an elasticity for focusing. The member, the objective lens support member, and the objective lens are mounted, and laser light focusing is performed. The optical control mechanism of Patent Document 1 uses an optical system light receiving element because the optical axis of the reflecting mirror and the optical axis of the objective lens do not deviate when the objective lens is displaced in the tracking direction by movement of the block in the tracking direction. A decrease in the amount of incident light can be prevented, and stable tracking is possible.
 また、特許文献2に記載された対物レンズ駆動装置では、対物レンズをトラッキング方向とフォーカッシング方向とに移動可能に支持する対物レンズ支持機構と、トラッキング方向から入射される光をフォーカッシング方向に反射させることにより光を対物レンズに入射させる反射ミラーをトラッキング方向に移動可能に支持する反射ミラー支持機構とが連係手段により連係される。対物レンズ支持機構に支持された対物レンズがトラッキング方向に移動すると、反射ミラー支持機構に支持された反射ミラーは、トラッキング方向に連係して移動する。特許文献2の対物レンズ駆動装置は、対物レンズのトラッキング方向への移動に対する反射ミラーのトラッキング方向への移動の追従性を向上させ、対物レンズと反射ミラーとの光軸のずれを低減している。 In the objective lens driving device described in Patent Document 2, an objective lens support mechanism that supports the objective lens so as to be movable in the tracking direction and the focusing direction, and reflects light incident from the tracking direction in the focusing direction. Accordingly, a reflection mirror supporting mechanism that supports the reflection mirror that makes light incident on the objective lens movably in the tracking direction is linked by the linkage means. When the objective lens supported by the objective lens support mechanism moves in the tracking direction, the reflection mirror supported by the reflection mirror support mechanism moves in association with the tracking direction. The objective lens driving device of Patent Document 2 improves the followability of the movement of the reflection mirror in the tracking direction with respect to the movement of the objective lens in the tracking direction, and reduces the deviation of the optical axis between the objective lens and the reflection mirror. .
 しかしながら、立上げミラーが光学ベースに固定されている従来の光ピックアップ装置の場合、光ディスクの偏心、スピンドルモータに対する光ディスクのチャッキング誤差、及びトラバース装置の追従誤差を補正するために、対物レンズのトラッキング方向への移動距離は200~300μm程度必要となる。対物レンズがトラッキング方向に移動することにより、対物レンズの光軸と入射光ビームの光軸との間にずれが発生する。その結果、光ディスクの記録面上におけるスポットの波面収差の劣化及び光量ロスが発生し、記録性能及び再生性能を低下させることとなる。 However, in the case of the conventional optical pickup device in which the rising mirror is fixed to the optical base, the tracking of the objective lens is performed in order to correct the eccentricity of the optical disc, the chucking error of the optical disc with respect to the spindle motor, and the tracking error of the traverse device. The moving distance in the direction is required to be about 200 to 300 μm. As the objective lens moves in the tracking direction, a deviation occurs between the optical axis of the objective lens and the optical axis of the incident light beam. As a result, the wavefront aberration of the spot on the recording surface of the optical disc is deteriorated and the light amount is lost, and the recording performance and reproduction performance are lowered.
 特に、近年更なる光ディスクの高密度化技術として注目されているソリッドイマージョンレンズを用いた光ピックアップ装置では、開口数を1.5~2.0とし、光ビームのスポット径を0.13μm程度にまで集光することにより、超高密度記録又は超高密度記録再生を実現する。しかしながら、光ビームの中心から離れた周辺領域では波面の曲率が大きく、光軸ずれが波面収差に与える影響が大きい。その結果、通常の対物レンズを用いた青色レーザ対応の光ピックアップ装置におけるトータルの波面収差の許容値は例えば30mλ程度であるが、光軸が30μm程度ずれただけで90mλもの波面収差が発生する場合があり、正常な情報の記録又は再生を実現するためには許容されない可能性があった。 In particular, in an optical pickup device using a solid immersion lens that has been attracting attention as a technology for further increasing the density of optical disks in recent years, the numerical aperture is set to 1.5 to 2.0, and the spot diameter of the light beam is set to about 0.13 μm. By condensing up to the above, ultra-high density recording or ultra-high density recording / reproduction is realized. However, the curvature of the wavefront is large in the peripheral region away from the center of the light beam, and the influence of the optical axis shift on the wavefront aberration is large. As a result, the allowable value of the total wavefront aberration in a blue laser compatible optical pickup device using a normal objective lens is, for example, about 30 mλ, but a wavefront aberration of 90 mλ occurs only when the optical axis is shifted by about 30 μm. Therefore, there is a possibility that it is not allowed to realize normal information recording or reproduction.
 また、光軸ずれを起こさない光ピックアップ装置として提案された特許文献1に記載された光学式ディスクプレーヤの光学制御機構は、立上げミラーをトラッキング方向に移動するブロックに搭載しており、このブロックにはフォーカシング用の弾性部材、対物レンズ支持部材及び対物レンズが搭載される。そのため、特許文献1の光学制御機構では、高さ方向の小型化が困難であるという課題を有している。さらに、特許文献1の光学制御機構では、対物レンズのトラッキング駆動時の駆動力が立上げミラーを搭載したブロックからフォーカシング用弾性部材を介して対物レンズ保持部材に伝達される。そのため、トラッキング駆動時に不要な共振が発生し、周波数応答性能が低下するため、データの高速転送が困難となる。 In addition, the optical control mechanism of the optical disc player described in Patent Document 1 proposed as an optical pickup device that does not cause an optical axis shift includes a rising mirror mounted on a block that moves in a tracking direction. Is mounted with an elastic member for focusing, an objective lens support member, and an objective lens. For this reason, the optical control mechanism of Patent Document 1 has a problem that it is difficult to reduce the size in the height direction. Further, in the optical control mechanism of Patent Document 1, the driving force during tracking driving of the objective lens is transmitted from the block on which the rising mirror is mounted to the objective lens holding member via the focusing elastic member. For this reason, unnecessary resonance occurs during tracking driving, and the frequency response performance deteriorates, making it difficult to transfer data at high speed.
 更に、光軸ずれを低減しつつ、対物レンズのトラッキング駆動の周波数応答性能を向上させた光ピックアップ装置として提案された特許文献2に記載された対物レンズ駆動装置は、対物レンズをトラッキング方向とフォーカッシング方向とに移動可能に支持する対物レンズ支持機構と、立上げミラーをトラッキング方向に移動可能に支持する立上げミラー支持機構とを連係手段により連係させる。そして、特許文献2の対物レンズ駆動装置は、対物レンズ支持機構に支持された対物レンズがトラッキング方向に移動すると、立上げミラー支持機構に支持された立上げミラーをトラッキング方向に連係して移動させる構造である。 Furthermore, the objective lens driving device described in Patent Document 2 proposed as an optical pickup device that has improved the frequency response performance of tracking driving of the objective lens while reducing the optical axis deviation is the same as that in the tracking direction. An objective lens support mechanism that supports the rising mirror so as to be movable in the caching direction and a rising mirror support mechanism that supports the rising mirror so as to be movable in the tracking direction are linked by a linkage means. In the objective lens driving device of Patent Document 2, when the objective lens supported by the objective lens support mechanism moves in the tracking direction, the rise mirror supported by the rise mirror support mechanism moves in association with the tracking direction. Structure.
 この場合、立上げミラーのトラッキング駆動時の駆動力は、対物レンズ保持部材から連係手段を介して立上げミラー保持部材に伝達される。そのため、トラッキング駆動時に不要な共振が発生し、周波数応答性能が低下するため、対物レンズの変位に対する追従精度が低下する。また、連係手段は対物レンズ支持機構及び立上げミラー支持機構の双方に負荷を与えるため、クロストーク、チルト及び不要共振が発生することとなり、特許文献2の対物レンズ駆動装置は、記録性能及び再生性能が劣化するという課題を有していた。 In this case, the driving force at the time of tracking drive of the raising mirror is transmitted from the objective lens holding member to the raising mirror holding member via the linking means. For this reason, unnecessary resonance occurs during tracking driving, and the frequency response performance is lowered, so that the tracking accuracy with respect to the displacement of the objective lens is lowered. Further, since the linking means applies a load to both the objective lens support mechanism and the rising mirror support mechanism, crosstalk, tilt, and unnecessary resonance are generated. It had the subject that performance deteriorated.
特開昭58-98848号公報JP 58-98848 A 特開平10-49891号公報Japanese Patent Laid-Open No. 10-49891
 本発明は、従来の課題を解決するもので、対物レンズアクチュエータとミラーアクチュエータとの間のクロストークの発生によるサーボ性能の劣化を抑制することができるとともに、対物レンズの移動に対する立上げミラーの追従精度の劣化を抑制することができる光ピックアップ装置及び光ディスク装置を提供することを目的とする。 The present invention solves the conventional problems, and can suppress deterioration of servo performance due to the occurrence of crosstalk between the objective lens actuator and the mirror actuator, and can follow up the rising mirror with respect to the movement of the objective lens. It is an object of the present invention to provide an optical pickup device and an optical disc device that can suppress deterioration in accuracy.
 本発明の一局面に係る光ピックアップ装置は、所定の波長を有する光ビームを出射する光源と、光ディスクの記録面上に前記光ビームを収束させる第1の対物レンズと、前記光ディスクの半径方向に傾斜した反射面を有し、前記光源から出射された前記光ビームの光軸を前記反射面によって折り曲げて前記第1の対物レンズに導く立上げミラーと、前記第1の対物レンズによって前記記録面上に収束され、さらに前記記録面で反射された光ビームを前記第1の対物レンズ及び前記立上げミラーを介して受光し電気信号に変換する光検出器と、前記第1の対物レンズを保持するレンズホルダと、前記レンズホルダを、少なくとも前記光ディスクに垂直な方向であるフォーカシング方向と前記光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、前記レンズホルダを少なくとも前記フォーカシング方向及び前記トラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータと、前記立上げミラーを保持するミラーホルダと、前記ミラーホルダを前記トラッキング方向に移動可能に支持するミラーホルダ支持機構と、前記ミラーホルダを前記トラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータと、前記立上げミラーが前記第1の対物レンズの前記トラッキング方向の移動に追従するように、前記ミラーアクチュエータを駆動させるミラーアクチュエータ駆動部とを備える。 An optical pickup device according to one aspect of the present invention includes a light source that emits a light beam having a predetermined wavelength, a first objective lens that converges the light beam on a recording surface of an optical disc, and a radial direction of the optical disc. A rising mirror having an inclined reflecting surface, and bending the optical axis of the light beam emitted from the light source by the reflecting surface to guide the first objective lens, and the recording surface by the first objective lens A photodetector that receives the light beam converged above and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal, and the first objective lens are held. The lens holder, and at least a focusing direction that is a direction perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. An objective lens actuator comprising: a lens holder support mechanism that movably supports; a mirror holder drive mechanism that drives the lens holder in at least the focusing direction and the tracking direction; a mirror holder that holds the rising mirror; A mirror actuator comprising a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, a mirror holder drive mechanism that drives the mirror holder in the tracking direction, and the rising mirror is the first objective lens A mirror actuator driving unit that drives the mirror actuator so as to follow the movement in the tracking direction.
 この構成によれば、光源は、所定の波長を有する光ビームを出射する。第1の対物レンズは、光ディスクの記録面上に光ビームを収束させる。立上げミラーは、光ディスクの半径方向に傾斜した反射面を有し、光源から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズに導く。光検出器は、第1の対物レンズによって記録面上に収束され、さらに記録面で反射された光ビームを第1の対物レンズ及び立上げミラーを介して受光し電気信号に変換する。対物レンズアクチュエータは、第1の対物レンズを保持するレンズホルダと、レンズホルダを、少なくとも光ディスクに垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダを少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える。ミラーアクチュエータは、立上げミラーを保持するミラーホルダと、ミラーホルダをトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダをトラッキング方向に駆動するミラーホルダ駆動機構とを備える。ミラーアクチュエータ駆動部は、立上げミラーが第1の対物レンズのトラッキング方向の移動に追従するように、ミラーアクチュエータを駆動させる。 According to this configuration, the light source emits a light beam having a predetermined wavelength. The first objective lens converges the light beam on the recording surface of the optical disc. The rising mirror has a reflecting surface inclined in the radial direction of the optical disk, and guides the optical axis of the light beam emitted from the light source to the first objective lens by bending the reflecting surface. The photodetector receives the light beam converged on the recording surface by the first objective lens and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal. The objective lens actuator includes a lens holder that holds the first objective lens, and a lens holder support that supports the lens holder so that the lens holder can move at least in a focusing direction that is perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. And a mirror holder driving mechanism for driving the lens holder at least in the focusing direction and the tracking direction. The mirror actuator includes a mirror holder that holds the rising mirror, a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, and a mirror holder drive mechanism that drives the mirror holder in the tracking direction. The mirror actuator driving unit drives the mirror actuator so that the rising mirror follows the movement of the first objective lens in the tracking direction.
 本発明によれば、対物レンズアクチュエータ及びミラーアクチュエータが各々独立に支持機構及び駆動機構を有しており、動作時に互いに干渉することがないので、対物レンズアクチュエータとミラーアクチュエータとの間のクロストークの発生によるサーボ性能の劣化を抑制することができるとともに、対物レンズの移動に対する立上げミラーの追従精度の劣化を抑制することができる。 According to the present invention, since the objective lens actuator and the mirror actuator each independently have a support mechanism and a drive mechanism and do not interfere with each other during operation, crosstalk between the objective lens actuator and the mirror actuator can be prevented. It is possible to suppress deterioration of servo performance due to occurrence, and to suppress deterioration of tracking accuracy of the rising mirror with respect to the movement of the objective lens.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1における光ピックアップ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの分解斜視図である。FIG. 2 is an exploded perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to Embodiment 1 of the present invention. 本発明の実施の形態1における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの斜視図である。FIG. 3 is a perspective view of an objective lens actuator and a mirror actuator of the optical pickup device in Embodiment 1 of the present invention. 本発明の実施の形態2における光ピックアップ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における光ピックアップ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 3 of this invention. 本発明の実施の形態4における光ピックアップ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical pick-up apparatus in Embodiment 4 of this invention. 本発明の実施の形態5における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの斜視図である。It is a perspective view of the objective lens actuator and mirror actuator of the optical pickup device in Embodiment 5 of the present invention. 本発明の実施の形態6における光ディスク装置の概略構成を示す図である。It is a figure which shows schematic structure of the optical disk apparatus in Embodiment 6 of this invention.
 以下本発明の実施の形態について、図面を参照しながら説明する。尚、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the following embodiment is an example which actualized this invention, Comprising: It is not the thing of the character which limits the technical scope of this invention.
 (実施の形態1)
 図1は、本発明の実施の形態1における光ピックアップ装置の構成を示すブロック図であり、図2は、本発明の実施の形態1における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの分解斜視図であり、図3は、本発明の実施の形態1における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの斜視図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of an optical pickup device according to Embodiment 1 of the present invention, and FIG. 2 is an exploded perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to Embodiment 1 of the present invention. FIG. 3 is a perspective view of the objective lens actuator and the mirror actuator of the optical pickup device according to the first embodiment of the present invention.
 図1~図3において、光ピックアップ装置は、対物レンズ1、レンズホルダ2、立上げミラー10、ミラーホルダ11、対物レンズアクチュエータ17、ミラーアクチュエータ18、コリメートレンズアクチュエータ19、ビームスプリッタ21、リレーレンズ22、青色半導体レーザダイオード23、検出用ビームスプリッタ24、検出レンズ25、光検出器26、位置センサ27、コリメートレンズ28、コリメートレンズ駆動回路31、フォーカシングコイル駆動回路32、トラッキングコイル駆動回路33、球面収差補正データメモリ34、レーザ駆動回路35、光ピックアップ制御回路36及びミラーアクチュエータ駆動回路37を備える。ミラーアクチュエータ駆動回路37は、位置ずれ制御回路38及び位置ずれ量監視部39を備える。 1 to 3, the optical pickup device includes an objective lens 1, a lens holder 2, a rising mirror 10, a mirror holder 11, an objective lens actuator 17, a mirror actuator 18, a collimating lens actuator 19, a beam splitter 21, and a relay lens 22. , Blue semiconductor laser diode 23, detection beam splitter 24, detection lens 25, photodetector 26, position sensor 27, collimator lens 28, collimator lens drive circuit 31, focusing coil drive circuit 32, tracking coil drive circuit 33, spherical aberration A correction data memory 34, a laser drive circuit 35, an optical pickup control circuit 36, and a mirror actuator drive circuit 37 are provided. The mirror actuator drive circuit 37 includes a positional deviation control circuit 38 and a positional deviation amount monitoring unit 39.
 対物レンズ1は、光ディスク20の記録面上に光ビームを収束させる。レンズホルダ2は、対物レンズ1を保持する。対物レンズ1は、絞りレンズ1a及びソリッドイマージョンレンズ1bを含む。ソリッドイマージョンレンズ1bの出射端面と、当該出射端面に対向する光ディスク20の表面との間に存在するエアギャップがエバネッセント減衰長さより短くされることにより、エバネッセント光による光伝播が行われる。本実施の形態1の光ピックアップ装置は、近接場光を用いた超高密度光記録及び超高密度光再生に対応した光ピックアップ装置である。 The objective lens 1 converges the light beam on the recording surface of the optical disc 20. The lens holder 2 holds the objective lens 1. The objective lens 1 includes an aperture lens 1a and a solid immersion lens 1b. The air gap existing between the exit end face of the solid immersion lens 1b and the surface of the optical disc 20 facing the exit end face is made shorter than the evanescent attenuation length, whereby light propagation by the evanescent light is performed. The optical pickup device according to the first embodiment is an optical pickup device that supports ultra high density optical recording and ultra high density optical reproduction using near-field light.
 また、光ディスク20は、ソリッドイマージョンレンズ1bを用いた超高密度光記録及び超高密度光再生に対応した光ディスクである。光ディスク20は、記録容量向上のため2層以上の記録層を備えている。 The optical disc 20 is an optical disc that supports ultra-high density optical recording and ultra-high density optical reproduction using the solid immersion lens 1b. The optical disc 20 includes two or more recording layers for improving the recording capacity.
 青色半導体レーザダイオード23は、例えば405nmの波長を有する青色レーザ光を出射する。光ピックアップ制御回路36は、青色半導体レーザダイオード23を駆動するための駆動信号をレーザ駆動回路35へ出力する。レーザ駆動回路35は、光ピックアップ制御回路36からの駆動信号に基づいて青色半導体レーザダイオード23を駆動する。 The blue semiconductor laser diode 23 emits blue laser light having a wavelength of 405 nm, for example. The optical pickup control circuit 36 outputs a drive signal for driving the blue semiconductor laser diode 23 to the laser drive circuit 35. The laser drive circuit 35 drives the blue semiconductor laser diode 23 based on the drive signal from the optical pickup control circuit 36.
 青色半導体レーザダイオード23から出射された光ビームは、リレーレンズ22を通過してビームスプリッタ21で反射し、コリメートレンズ28に向かう。ここで、コリメートレンズ28は、コリメートレンズアクチュエータ19に搭載されている。コリメートレンズ28は、青色半導体レーザダイオード23と立上げミラー10との間の光路上に配置され、光ビームの収斂度を変化させる。コリメートレンズアクチュエータ19は、コリメートレンズ駆動回路31によって出力される駆動信号に応じて、コリメートレンズ28を光路上で光軸方向に移動させる。コリメートレンズ駆動回路31は、予め得られた球面収差補正データを記憶した球面収差補正データメモリ34から得られる球面収差補正量に従って駆動信号を出力する。以上により、コリメートレンズ28は、光軸上の所定の位置に位置決めされ、光ビームは、所定の発散度に変化される。 The light beam emitted from the blue semiconductor laser diode 23 passes through the relay lens 22, is reflected by the beam splitter 21, and travels toward the collimating lens 28. Here, the collimating lens 28 is mounted on the collimating lens actuator 19. The collimating lens 28 is disposed on the optical path between the blue semiconductor laser diode 23 and the rising mirror 10, and changes the convergence of the light beam. The collimator lens actuator 19 moves the collimator lens 28 in the optical axis direction on the optical path in accordance with the drive signal output by the collimator lens drive circuit 31. The collimating lens drive circuit 31 outputs a drive signal according to the spherical aberration correction amount obtained from the spherical aberration correction data memory 34 that stores the spherical aberration correction data obtained in advance. As described above, the collimating lens 28 is positioned at a predetermined position on the optical axis, and the light beam is changed to a predetermined divergence.
 また、対物レンズ1は、ソリッドイマージョンレンズ1bを含む。そのため、対物レンズ1と光ディスク20との距離が30nm程度になるように、対物レンズ1は、光ディスク20に近接して位置決めされている。対物レンズ1をフォーカシング方向へ移動させることにより、光ディスク20の2層目以降の記録層に集光する場合、対物レンズ1が光ディスク20に衝突してしまい、対物レンズ1を光ディスク20に近接させることができない。そのため、光ディスク20の2層目以降の記録層に対するフォーカシングは、コリメートレンズ28の移動により行われる。従って、コリメートレンズアクチュエータ19は、光ピックアップ制御回路36から得られるフォーカシングエラー信号に基づいた駆動信号をコリメートレンズ駆動回路31から入力されることによってフォーカシング動作も行う。 The objective lens 1 includes a solid immersion lens 1b. Therefore, the objective lens 1 is positioned close to the optical disc 20 so that the distance between the objective lens 1 and the optical disc 20 is about 30 nm. When the objective lens 1 is moved in the focusing direction to focus on the second and subsequent recording layers of the optical disc 20, the objective lens 1 collides with the optical disc 20, and the objective lens 1 is brought close to the optical disc 20. I can't. Therefore, focusing on the second and subsequent recording layers of the optical disc 20 is performed by moving the collimating lens 28. Accordingly, the collimating lens actuator 19 also performs a focusing operation when a driving signal based on the focusing error signal obtained from the optical pickup control circuit 36 is input from the collimating lens driving circuit 31.
 光ビームは、コリメートレンズ28を透過した後、立上げミラー10によって折り曲げられて対物レンズ1に向かう。ここで、対物レンズ1は、対物レンズアクチュエータ17に搭載されている。対物レンズアクチュエータ17は、対物レンズ1を保持するレンズホルダ2と、レンズホルダ2を、少なくとも光ディスク20に垂直な方向であるフォーカシング方向Fと光ディスク20の半径方向であるトラッキング方向Tとに移動可能に支持するレンズホルダ支持機構と、レンズホルダ2を少なくともフォーカシング方向F及びトラッキング方向Tに駆動するミラーホルダ駆動機構とを備える。対物レンズアクチュエータ17は、対物レンズ1をフォーカシング方向Fに駆動してフォーカシング動作を行うとともに、対物レンズ1をトラッキング方向Tに駆動してトラッキング動作を行う。また、対物レンズアクチュエータ17は、対物レンズ1をタンジェンシャル方向周りの回転方向Rに回転駆動してチルティング動作を行う。 The light beam passes through the collimator lens 28, is bent by the rising mirror 10, and travels toward the objective lens 1. Here, the objective lens 1 is mounted on the objective lens actuator 17. The objective lens actuator 17 is capable of moving the lens holder 2 that holds the objective lens 1 and the lens holder 2 in at least a focusing direction F that is perpendicular to the optical disc 20 and a tracking direction T that is the radial direction of the optical disc 20. A lens holder supporting mechanism for supporting the lens holder; and a mirror holder driving mechanism for driving the lens holder 2 in at least the focusing direction F and the tracking direction T. The objective lens actuator 17 performs the focusing operation by driving the objective lens 1 in the focusing direction F, and performs the tracking operation by driving the objective lens 1 in the tracking direction T. The objective lens actuator 17 performs a tilting operation by rotationally driving the objective lens 1 in the rotation direction R around the tangential direction.
 さらに、立上げミラー10は、ミラーアクチュエータ18に搭載されている。ミラーアクチュエータ18は、立上げミラー10を保持するミラーホルダ11と、ミラーホルダ11をトラッキング方向Tに移動可能に支持するミラーホルダ支持機構と、ミラーホルダ11をトラッキング方向Tに駆動するミラーホルダ駆動機構とを備える。ミラーアクチュエータ駆動回路37は、立上げミラー10が対物レンズ1のトラッキング方向Tの移動に追従するように、ミラーアクチュエータ18を駆動させる。ミラーアクチュエータ18は、立上げミラー10をトラッキング方向Tに駆動して対物レンズ1のトラッキング方向Tの変位に対する追従動作を行う。 Furthermore, the rising mirror 10 is mounted on the mirror actuator 18. The mirror actuator 18 includes a mirror holder 11 that holds the rising mirror 10, a mirror holder support mechanism that supports the mirror holder 11 so as to be movable in the tracking direction T, and a mirror holder drive mechanism that drives the mirror holder 11 in the tracking direction T. With. The mirror actuator drive circuit 37 drives the mirror actuator 18 so that the rising mirror 10 follows the movement of the objective lens 1 in the tracking direction T. The mirror actuator 18 drives the rising mirror 10 in the tracking direction T to perform a tracking operation with respect to the displacement of the objective lens 1 in the tracking direction T.
 そして、光ビームは、対物レンズ1によって光ディスク20の記録面上に集光され、記録面からの反射光は往路と同様に対物レンズ1を透過し、立ち上げミラー10で反射する。立ち上げミラー10で反射した光ビームは、コリメートレンズ28を透過してビームスプリッタ21に至る。復路では、光ビームは、ビームスプリッタ21を透過し、検出用ビームスプリッタ24によって分割される。検出用ビームスプリッタ24によって分割された一方の光ビームは、光検出器26に直接入射し、他方の光ビームは、検出レンズ25により非点収差が付与されて光検出器26に入射する。光検出器26は、入射した光ビームを光電変換した電気信号を光ピックアップ制御回路36に出力する。光ピックアップ制御回路36は、光検出器26から出力された電気信号に基づいて、フォーカシングエラー信号、トラッキングエラー信号及び光ディスク再生信号を生成する。 Then, the light beam is condensed on the recording surface of the optical disc 20 by the objective lens 1, and the reflected light from the recording surface is transmitted through the objective lens 1 and reflected by the rising mirror 10 in the same way as the forward path. The light beam reflected by the rising mirror 10 passes through the collimator lens 28 and reaches the beam splitter 21. In the return path, the light beam passes through the beam splitter 21 and is split by the detection beam splitter 24. One light beam split by the detection beam splitter 24 is directly incident on the photodetector 26, and the other light beam is given astigmatism by the detection lens 25 and is incident on the photodetector 26. The photodetector 26 outputs an electrical signal obtained by photoelectrically converting the incident light beam to the optical pickup control circuit 36. The optical pickup control circuit 36 generates a focusing error signal, a tracking error signal, and an optical disc reproduction signal based on the electrical signal output from the photodetector 26.
 フォーカシングコイル駆動回路32は、光ピックアップ制御回路36から出力されたフォーカシングエラー信号に基づいて、対物レンズアクチュエータ17の対物レンズ用フォーカシングコイル4に電流を印加する。 The focusing coil drive circuit 32 applies a current to the objective lens focusing coil 4 of the objective lens actuator 17 based on the focusing error signal output from the optical pickup control circuit 36.
 トラッキングコイル駆動回路33は、光ピックアップ制御回路36から出力されたトラッキングエラー信号に基づいて、対物レンズアクチュエータ17の対物レンズ用トラッキングコイル3に電流を印加する。 The tracking coil drive circuit 33 applies a current to the objective lens tracking coil 3 of the objective lens actuator 17 based on the tracking error signal output from the optical pickup control circuit 36.
 ここで、対物レンズアクチュエータ17の詳細な構成について図2及び図3を用いて説明する。 Here, a detailed configuration of the objective lens actuator 17 will be described with reference to FIGS.
 図2及び図3において、対物レンズ1はレンズホルダ2の端部に保持されている。対物レンズ1の保持位置とは逆のレンズホルダ2の端部には、共用マグネット5及びヨークベース9のヨーク部9aが貫通して配置されるための開口が設けられている。この開口の対物レンズ1に近い側の内側面には、対物レンズ用トラッキングコイル3及び第1及び第2の対物レンズ用フォーカシングコイル4a,4bが固着されている。 2 and 3, the objective lens 1 is held at the end of the lens holder 2. At the end of the lens holder 2 opposite to the holding position of the objective lens 1, an opening is provided for the common magnet 5 and the yoke portion 9 a of the yoke base 9 to be disposed therethrough. An objective lens tracking coil 3 and first and second objective lens focusing coils 4a and 4b are fixed to the inner surface of the opening close to the objective lens 1.
 なお、本実施の形態において、第1及び第2の対物レンズ用フォーカシングコイル4a,4bを区別する必要がない場合には、第1及び第2の対物レンズ用フォーカシングコイル4a,4bを総称して対物レンズ用フォーカシングコイル4と呼ぶ。このことは、他の実施の形態においても同様である。 In the present embodiment, when it is not necessary to distinguish the first and second objective lens focusing coils 4a and 4b, the first and second objective lens focusing coils 4a and 4b are collectively referred to. It is called a focusing coil 4 for the objective lens. This is the same in other embodiments.
 対物レンズアクチュエータ17は、レンズホルダ2をトラッキング方向Tへ駆動するための対物レンズ用トラッキングコイル3と、レンズホルダ2をフォーカシング方向Fへ駆動するための対物レンズ用フォーカシングコイル4とを備える。対物レンズ用トラッキングコイル3及び対物レンズ用フォーカシングコイル4は、共用マグネット5に対向して配置される。共用マグネット5は、対物レンズ用トラッキングコイル3及び対物レンズ用フォーカシングコイル4に磁界を付与する。 The objective lens actuator 17 includes an objective lens tracking coil 3 for driving the lens holder 2 in the tracking direction T and an objective lens focusing coil 4 for driving the lens holder 2 in the focusing direction F. The objective lens tracking coil 3 and the objective lens focusing coil 4 are arranged to face the common magnet 5. The shared magnet 5 applies a magnetic field to the objective lens tracking coil 3 and the objective lens focusing coil 4.
 対物レンズ用トラッキングコイル3は、接線方向Kに垂直なレンズホルダ2の側面に固着され、接線方向Kに沿った巻回軸を有する。第1及び第2の対物レンズ用フォーカシングコイル4a,4bは、接線方向Kに垂直なレンズホルダ2の側面に固着され、接線方向Kに沿った巻回軸を有する。 The objective lens tracking coil 3 is fixed to the side surface of the lens holder 2 perpendicular to the tangential direction K and has a winding axis along the tangential direction K. The first and second objective lens focusing coils 4 a and 4 b are fixed to the side surface of the lens holder 2 perpendicular to the tangential direction K and have winding axes along the tangential direction K.
 一方、共用マグネット5は、着磁境界線が十字形状の境界線によって4つの着磁領域5a,5b,5c,5dに多極着磁されており、ヨークベース9のヨーク部9aに固定されている。 On the other hand, the common magnet 5 is multipolarly magnetized in the four magnetized regions 5 a, 5 b, 5 c, and 5 d by a cross-shaped boundary line, and is fixed to the yoke portion 9 a of the yoke base 9. Yes.
 対物レンズ用トラッキングコイル3及び対物レンズ用フォーカシングコイル4は、共用マグネット5に対向する位置に配置されている。対物レンズ用トラッキングコイル3は、フォーカシング方向Fに沿った2辺が各々第1の着磁領域5aと第2の着磁領域5bとに対向するように配置され、互いに逆向きの磁界が付与される。第1及び第2の対物レンズ用フォーカシングコイル4a,4bは、対物レンズ用トラッキングコイル3の下端部を挟んで、トラッキング方向Tに並んで配置される。第1の対物レンズ用フォーカシングコイル4aは、トラッキング方向Tに沿った2辺が各々第1の着磁領域5aと第3の着磁領域5cとに対向するように配置され、互いに逆向きの磁界が付与される。また、第2の対物レンズ用フォーカシングコイル4bは、トラッキング方向Tに沿った2辺が各々第2の着磁領域5bと第4の着磁領域5dとに対向するように配置され、互いに逆向きの磁界が付与される。 The objective lens tracking coil 3 and the objective lens focusing coil 4 are arranged at positions facing the common magnet 5. The objective lens tracking coil 3 is disposed such that two sides along the focusing direction F are opposed to the first magnetized region 5a and the second magnetized region 5b, respectively, and magnetic fields in opposite directions are applied to each other. The The first and second objective lens focusing coils 4 a and 4 b are arranged side by side in the tracking direction T with the lower end portion of the objective lens tracking coil 3 interposed therebetween. The first objective lens focusing coil 4a is disposed so that two sides along the tracking direction T are opposed to the first magnetized region 5a and the third magnetized region 5c, respectively, and magnetic fields in opposite directions to each other. Is granted. Further, the second objective lens focusing coil 4b is disposed so that two sides along the tracking direction T are opposed to the second magnetized region 5b and the fourth magnetized region 5d, respectively, and are opposite to each other. The magnetic field is applied.
 レンズホルダ2は、対物レンズ用トラッキングコイル3に電流が印可されることによりトラッキング方向Tに駆動される。また、レンズホルダ2は、第1及び第2の対物レンズ用フォーカシングコイル4a,4bに互いに逆方向の電流が印可されることによりフォーカシング方向Fに駆動される。さらに、レンズホルダ2は、第1及び第2の対物レンズ用フォーカシングコイル4a,4bに互いに同一方向の電流が印可されることにより回転方向Rにチルティング駆動される。 The lens holder 2 is driven in the tracking direction T when a current is applied to the objective lens tracking coil 3. The lens holder 2 is driven in the focusing direction F when currents in opposite directions are applied to the first and second objective lens focusing coils 4a and 4b. Furthermore, the lens holder 2 is tilted in the rotational direction R when currents in the same direction are applied to the first and second objective lens focusing coils 4a and 4b.
 レンズホルダ2は、6本の対物レンズ用支持ワイヤ6によって対物レンズ用固定部材7に対してフォーカシング方向F、トラッキング方向T及び光ディスク20の接線方向Kを回転軸とする回転方向(チルティング方向)Rに移動可能に弾性支持されている。6本の対物レンズ用支持ワイヤ6の一端は、レンズホルダ2の側面に固着された対物レンズ用端子板8に固定され、6本の対物レンズ用支持ワイヤ6の他端は、対物レンズ用固定部材7に固定されている。すなわち、6本の対物レンズ用支持ワイヤ6の一端は、対物レンズ用固定部材7に固定され、6本の対物レンズ用支持ワイヤ6の他端は、レンズホルダ2に固定されている。6本の対物レンズ用支持ワイヤ6は、対物レンズ用トラッキングコイル3及び対物レンズ用フォーカシングコイル4への給電線としても利用される。 The lens holder 2 is rotated by the six objective lens support wires 6 with respect to the objective lens fixing member 7 in the rotation direction (tilting direction) with the focusing direction F, the tracking direction T and the tangential direction K of the optical disk 20 as the rotation axis. R is elastically supported so as to be movable. One end of the six objective lens support wires 6 is fixed to the objective lens terminal plate 8 fixed to the side surface of the lens holder 2, and the other end of the six objective lens support wires 6 is fixed to the objective lens. It is fixed to the member 7. That is, one end of the six objective lens support wires 6 is fixed to the objective lens fixing member 7, and the other end of the six objective lens support wires 6 is fixed to the lens holder 2. The six objective lens support wires 6 are also used as power supply lines to the objective lens tracking coil 3 and the objective lens focusing coil 4.
 なお、本実施の形態において、対物レンズ用支持ワイヤ6の数は、特に6本に限定されず、何本であってもよい。 In the present embodiment, the number of objective lens support wires 6 is not particularly limited to six, and may be any number.
 対物レンズ用固定部材7は、ヨークベース9に固定されている。ヨークベース9は、光ピックアップ装置のベース部(図示せず)に取り付けられている。従って、対物レンズ1は、光ピックアップ装置のベース部に対してフォーカシング方向F、トラッキング方向T及び回転方向(チルティング方向)Rに移動可能に独立に支持されており、かつフォーカシング方向F、トラッキング方向T及び回転方向(チルティング方向)Rに独立に駆動される。 The objective lens fixing member 7 is fixed to the yoke base 9. The yoke base 9 is attached to a base portion (not shown) of the optical pickup device. Accordingly, the objective lens 1 is independently supported so as to be movable in the focusing direction F, the tracking direction T, and the rotation direction (tilting direction) R with respect to the base portion of the optical pickup device, and the focusing direction F and the tracking direction. Driven independently in T and rotation direction (tilting direction) R.
 また、対物レンズ用トラッキングコイル3及び第1及び第2の対物レンズ用フォーカシングコイル4a,4bが取り付けられたレンズホルダ2の内側面には、対物レンズ用トラッキングコイル3の下方でありかつ第1及び第2の対物レンズ用フォーカシングコイル4a,4bの間に位置する部位に切欠き2aが設けられている。切欠き2aは、上記の共用マグネット5の着磁パターン及び上記のコイル配置によって設定可能となる。 Further, the inner surface of the lens holder 2 to which the objective lens tracking coil 3 and the first and second objective lens focusing coils 4a and 4b are attached is below the objective lens tracking coil 3 and the first and A notch 2a is provided in a portion located between the second objective lens focusing coils 4a and 4b. The notch 2a can be set by the magnetization pattern of the shared magnet 5 and the coil arrangement.
 次に、ミラーアクチュエータ18の詳細な構成について図2及び図3を用いて説明する。 Next, a detailed configuration of the mirror actuator 18 will be described with reference to FIGS.
 図2及び図3において、立上げミラー10は、ミラーホルダ11に保持されている。ミラーホルダ11の光ディスク20の接線方向Kに交わる両側面には、第1及び第2の立上げミラー用コイル12a,12bが固着されている。立上げミラー用コイル12は、ミラーホルダ11の光ディスク20の接線方向Kに交わる一方の側面に固着され、接線方向Kに沿った巻回軸を有する第1の立上げミラー用コイル12aと、ミラーホルダ11の光ディスク20の接線方向Kに交わる他方の側面に固着され、接線方向Kに沿った巻回軸を有する第2の立上げミラー用コイル12bとを含む。なお、本実施の形態において、第1及び第2の立上げミラー用コイル12a,12bを区別する必要がない場合には、第1及び第2の立上げミラー用コイル12a,12bを総称して立上げミラー用コイル12と呼ぶ。このことは、他の実施の形態においても同様である。 2 and 3, the rising mirror 10 is held by the mirror holder 11. First and second raised mirror coils 12 a and 12 b are fixed to both side surfaces of the mirror holder 11 that intersect the tangential direction K of the optical disk 20. The rising mirror coil 12 is fixed to one side surface of the mirror holder 11 that intersects the tangential direction K of the optical disk 20, and includes a first rising mirror coil 12a having a winding axis along the tangential direction K, and a mirror. A second rising mirror coil 12b that is fixed to the other side surface of the holder 11 that intersects the tangential direction K of the optical disc 20 and has a winding axis along the tangential direction K. In the present embodiment, when it is not necessary to distinguish the first and second rising mirror coils 12a and 12b, the first and second rising mirror coils 12a and 12b are collectively referred to. This is called a rising mirror coil 12. This is the same in other embodiments.
 立上げミラー用マグネット13は、フォーカシング方向Fに沿った直線状の着磁境界線によって2つの着磁領域13a及び13bに多極着磁されている。立上げミラー用マグネット13は、ヨークベース9のヨーク部9bに固定されている。立上げミラー用マグネット13は、第2の立上げミラー用コイル12bに対して接線方向Kに対向して配置され、第2の立上げミラー用コイル12bのトラッキング方向Tに沿った両辺に各々逆向きの磁界を付与する。また、共用マグネット5は、第1の立上げミラー用コイル12aのトラッキング方向Tに沿った両辺に各々逆向きの磁界を付与する。 The rising mirror magnet 13 is multipolarized in two magnetized regions 13a and 13b by a linear magnetization boundary line along the focusing direction F. The rising mirror magnet 13 is fixed to the yoke portion 9 b of the yoke base 9. The rising mirror magnet 13 is disposed opposite to the second rising mirror coil 12b in the tangential direction K, and is opposite to both sides along the tracking direction T of the second rising mirror coil 12b. Apply a magnetic field in the direction. The shared magnet 5 applies opposite magnetic fields to both sides along the tracking direction T of the first rising mirror coil 12a.
 第1及び第2の立上げミラー用コイル12a,12bは、それぞれ共用マグネット5及び立上げミラー用マグネット13に対向する位置に配置されている。第1の立上げミラー用コイル12aは、フォーカシング方向Fに沿った2辺が各々共用マグネット5の第3の着磁領域5cと第4の着磁領域5dとに対向するように配置され、互いに逆向きの磁界が付与される。第2の立上げミラー用コイル12bは、フォーカシング方向Fに沿った2辺が各々立上げミラー用マグネット13の着磁領域13aと着磁領域13bとに対向するように配置され、互いに逆向きの磁界が付与される。 The first and second rising mirror coils 12a and 12b are disposed at positions facing the common magnet 5 and the rising mirror magnet 13, respectively. The first rising mirror coil 12a is disposed such that two sides along the focusing direction F are opposed to the third magnetized region 5c and the fourth magnetized region 5d of the shared magnet 5, respectively. A reverse magnetic field is applied. The second rising mirror coil 12b is disposed so that two sides along the focusing direction F are opposed to the magnetized region 13a and the magnetized region 13b of the rising mirror magnet 13, respectively, and are opposite to each other. A magnetic field is applied.
 ミラーホルダ11は、第1及び第2の立上げミラー用コイル12a,12bに電流が印加されることによりトラッキング方向に駆動される。 The mirror holder 11 is driven in the tracking direction by applying a current to the first and second raised mirror coils 12a and 12b.
 ミラーホルダ11は、4本の立上げミラー用支持ワイヤ14によって立上げミラー用固定部材15に対してトラッキング方向Tに移動可能に弾性支持されている。4本の立上げミラー用支持ワイヤ14の一端は、ミラーホルダ11の側面に固着された立上げミラー用端子板16に固定され、4本の立上げミラー用支持ワイヤ14の他端は、立上げミラー用固定部材15に固定されている。すなわち、4本の立上げミラー用支持ワイヤ14の一端は、立上げミラー用固定部材15に固定され、4本の立上げミラー用支持ワイヤ14の他端は、ミラーホルダ11に固定されている。 The mirror holder 11 is elastically supported by four rising mirror support wires 14 so as to be movable in the tracking direction T with respect to the rising mirror fixing member 15. One end of the four raising mirror support wires 14 is fixed to the rising mirror terminal plate 16 fixed to the side surface of the mirror holder 11, and the other end of the four raising mirror support wires 14 is raised. It is fixed to the raising mirror fixing member 15. That is, one end of the four raising mirror support wires 14 is fixed to the raising mirror fixing member 15, and the other end of the four raising mirror support wires 14 is fixed to the mirror holder 11. .
 トラッキング方向Tに垂直な平面上で互いに非平行に配置された少なくとも2本の立上げミラー用支持ワイヤ14が、トラッキング方向Tに沿って少なくとも2組み配置されている。2本の立上げミラー用支持ワイヤ14は、トラッキング方向Tに垂直な平面上に所定の角度を有して配置される。2本の立上げミラー用支持ワイヤ14は、トラッキング方向Tに沿った弾性力が、トラッキング方向T以外の方向(例えば、フォーカシング方向F、接線方向K及び回転方向R)に沿った弾性力よりも大きくなるように配置される。2本の立上げミラー用支持ワイヤ14が互いになす角度θは、15度≦θ≦75度を満たすことが好ましい。 At least two sets of upright mirror support wires 14 arranged non-parallel to each other on a plane perpendicular to the tracking direction T are arranged along the tracking direction T. The two raising mirror support wires 14 are arranged on the plane perpendicular to the tracking direction T with a predetermined angle. The two rising mirror support wires 14 have an elastic force along the tracking direction T greater than the elastic force along directions other than the tracking direction T (for example, the focusing direction F, the tangential direction K, and the rotation direction R). Arranged to be larger. It is preferable that the angle θ formed by the two raising mirror support wires 14 satisfies 15 ° ≦ θ ≦ 75 °.
 このように、少なくとも2本の立上げミラー用支持ワイヤ14をトラッキング方向Tに垂直な平面上で互いに非平行に配置することにより、ミラーホルダ11がフォーカシング方向F、接線方向K及び回転方向Rに移動するのをより抑制することができる。 In this way, the mirror holder 11 is placed in the focusing direction F, the tangential direction K, and the rotation direction R by disposing at least two rising mirror support wires 14 in a non-parallel manner on a plane perpendicular to the tracking direction T. The movement can be further suppressed.
 特に、トラッキング方向Tに沿った弾性力が、トラッキング方向T以外の方向(例えば、フォーカシング方向F、接線方向K及び回転方向R)に沿った弾性力よりも大きいので、簡単な構成で、ミラーホルダ11をトラッキング方向Tに容易に移動させるとともに、ミラーホルダ11がトラッキング方向T以外の方向に移動するのを抑制することができる。 In particular, since the elastic force along the tracking direction T is larger than the elastic force along directions other than the tracking direction T (for example, the focusing direction F, the tangential direction K, and the rotation direction R), the mirror holder can be configured with a simple configuration. 11 can be easily moved in the tracking direction T, and the mirror holder 11 can be prevented from moving in directions other than the tracking direction T.
 なお、本実施の形態において、立上げミラー用支持ワイヤ14の数は、特に4本に限定されず、何本であってもよい。また、立上げミラー用支持ワイヤ14はミラー用棒状弾性部材の一例であるワイヤではなく、板バネを用いてもよい。 In the present embodiment, the number of rising mirror support wires 14 is not particularly limited to four, and may be any number. The rising mirror support wire 14 may be a plate spring instead of a wire that is an example of a mirror-like elastic member for a mirror.
 立上げミラー用固定部材15は、ヨークベース9に固定されている。ヨークベース9は、光ピックアップ装置のベース部(図示せず)に取り付けられている。従って、立上げミラー10は、光ピックアップ装置のベース部に対してトラッキング方向Tに移動可能に独立に支持されており、かつトラッキング方向Tに独立に駆動される。 The fixed member 15 for the rising mirror is fixed to the yoke base 9. The yoke base 9 is attached to a base portion (not shown) of the optical pickup device. Accordingly, the rising mirror 10 is independently supported so as to be movable in the tracking direction T with respect to the base portion of the optical pickup device, and is driven independently in the tracking direction T.
 第1及び第2の立上げミラー用コイル12a,12bのうち共用マグネット5に対向配置される第1の立上げミラー用コイル12aは、対物レンズアクチュエータ17のレンズホルダ2の切欠き2aに挿入されて配置される。これにより、光ピックアップ装置の薄型寸法を維持した状態で、第1の立上げミラー用コイル12aを共用マグネット5に対向させることが可能となる。すなわち、レンズホルダ2に切欠き2aを設けることにより、共用マグネット5が対物レンズアクチュエータ17及びミラーアクチュエータ18の磁気回路として共用化されるので光ピックアップ装置の薄型化及び小型化が可能となる。 Of the first and second rising mirror coils 12 a and 12 b, the first rising mirror coil 12 a disposed to face the shared magnet 5 is inserted into the notch 2 a of the lens holder 2 of the objective lens actuator 17. Arranged. As a result, the first rising mirror coil 12a can be made to face the common magnet 5 while maintaining the thin dimensions of the optical pickup device. That is, by providing the notch 2a in the lens holder 2, the shared magnet 5 is shared as the magnetic circuit of the objective lens actuator 17 and the mirror actuator 18, so that the optical pickup device can be made thinner and smaller.
 ミラーホルダ11の上面には、位置センサ27が取り付けられている。位置センサ27は、変位量を測定するための光を発光する発光部と、対象物からの反射光を受光して変位量を検出する受光部とからなっている。位置センサ27は、発光部から対物レンズアクチュエータ17のレンズホルダ2に向けて発光し、レンズホルダ2からの反射光を受光部で受光することにより、ミラーホルダ11とレンズホルダ2との相対位置ずれ量を検出する。位置センサ27は、ミラーホルダ11に搭載されるとともに、ミラーホルダ11とレンズホルダ2との相対位置ずれ量を検出する。 A position sensor 27 is attached to the upper surface of the mirror holder 11. The position sensor 27 includes a light emitting unit that emits light for measuring the amount of displacement, and a light receiving unit that receives reflected light from the object and detects the amount of displacement. The position sensor 27 emits light from the light emitting unit toward the lens holder 2 of the objective lens actuator 17, and receives the reflected light from the lens holder 2 by the light receiving unit, thereby causing a relative positional shift between the mirror holder 11 and the lens holder 2. Detect the amount. The position sensor 27 is mounted on the mirror holder 11 and detects the amount of relative positional deviation between the mirror holder 11 and the lens holder 2.
 さらに、ミラーアクチュエータ駆動回路37の詳細な構成について図1を用いて説明する。 Further, the detailed configuration of the mirror actuator drive circuit 37 will be described with reference to FIG.
 図1において、ミラーアクチュエータ駆動回路37は、位置ずれ量監視部39と位置ずれ制御回路38とにより構成されている。位置ずれ量監視部39は、位置センサ27によって検出されたミラーホルダ11とレンズホルダ2との相対位置ずれ量を常時モニタしている。位置ずれ量監視部39は、入力された相対位置ずれ量を位置ずれ制御回路38に出力する。位置ずれ制御回路38は、相対位置ずれ量がゼロになるようにミラーアクチュエータ18の立上げミラー用コイル12に出力する電流値を調整し、ミラーアクチュエータ18をトラッキング方向Tに駆動する。よって、立上げミラー10は、対物レンズ1が光ディスク20の所望のトラック位置へトラッキング動作することによって移動しても、常に対物レンズ1とのトラッキング方向に沿った相対距離を極小化するように追従する。 In FIG. 1, the mirror actuator drive circuit 37 includes a positional deviation amount monitoring unit 39 and a positional deviation control circuit 38. The positional deviation amount monitoring unit 39 constantly monitors the relative positional deviation amount between the mirror holder 11 and the lens holder 2 detected by the position sensor 27. The positional deviation amount monitoring unit 39 outputs the input relative positional deviation amount to the positional deviation control circuit 38. The positional deviation control circuit 38 adjusts the current value output to the rising mirror coil 12 of the mirror actuator 18 so that the relative positional deviation amount becomes zero, and drives the mirror actuator 18 in the tracking direction T. Therefore, the rising mirror 10 always follows the objective lens 1 so as to minimize the relative distance along the tracking direction with the objective lens 1 even if the objective lens 1 is moved by tracking operation to the desired track position of the optical disc 20. To do.
 かかる構成によれば、対物レンズアクチュエータ17及びミラーアクチュエータ18は各々独立に駆動するように設けられている。対物レンズ1は、対物レンズ用支持ワイヤ6によってフォーカシング方向F、トラッキング方向T及び回転方向(チルティング方向)Rに移動可能に独立に弾性支持されており、かつ対物レンズ用トラッキングコイル3及び対物レンズ用フォーカシングコイル4によってフォーカシング方向F、トラッキング方向T及び回転方向Rに独立に駆動される。また、立上げミラー10は、立上げミラー用支持ワイヤ14によってトラッキング方向Tに移動可能に独立に弾性支持されており、かつ立上げミラー用コイル12によってトラッキング方向Tに独立に駆動される。 According to such a configuration, the objective lens actuator 17 and the mirror actuator 18 are provided to be driven independently. The objective lens 1 is elastically supported independently by the objective lens support wire 6 so as to be movable in the focusing direction F, the tracking direction T, and the rotation direction (tilting direction) R, and the objective lens tracking coil 3 and the objective lens. The focusing coil 4 is independently driven in the focusing direction F, the tracking direction T, and the rotation direction R. The rising mirror 10 is elastically supported independently by the rising mirror support wire 14 so as to be movable in the tracking direction T, and is driven independently in the tracking direction T by the rising mirror coil 12.
 すなわち、本実施の形態の光ピックアップ装置は、所定の波長を有する光ビームを出射する光源(23)と、光ディスク(20)の記録面上に光ビームを収束させる第1の対物レンズ(1)と、光ディスク(20)の半径方向に傾斜した反射面を有し、光源(23)から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズ(1)に導く立上げミラー(10)と、第1の対物レンズ(1)によって記録面上に収束され、さらに記録面で反射された光ビームを、第1の対物レンズ(1)及び立上げミラー(10)を介して受光し、電気信号に変換する光検出器(26)と、第1の対物レンズ(1)を保持するレンズホルダ(2)と、レンズホルダ(2)を、少なくとも光ディスク(20)に垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダ(2)を少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータ(17)と、立上げミラー(10)を保持するミラーホルダ(11)と、ミラーホルダ(11)をトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダ(11)をトラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータ(18)と、立上げミラー(10)が第1の対物レンズ(1)のトラッキング方向の移動に追従するように、ミラーアクチュエータ(18)を駆動させるミラーアクチュエータ駆動回路(37)とを備える。 That is, the optical pickup device of the present embodiment includes a light source (23) that emits a light beam having a predetermined wavelength, and a first objective lens (1) that converges the light beam on the recording surface of the optical disc (20). And a rising mirror that has a reflecting surface inclined in the radial direction of the optical disc (20) and guides the optical axis of the light beam emitted from the light source (23) to the first objective lens (1) by bending the optical axis with the reflecting surface. (10) and the light beam converged on the recording surface by the first objective lens (1) and further reflected by the recording surface via the first objective lens (1) and the rising mirror (10). A photodetector (26) that receives light and converts it into an electrical signal, a lens holder (2) that holds the first objective lens (1), and a lens holder (2) that are at least perpendicular to the optical disc (20). Is the Focusin Objective lens actuator (17) including a lens holder support mechanism that supports the lens holder movably in a tracking direction that is a radial direction of the optical disk and a mirror holder drive mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. ), A mirror holder (11) that holds the rising mirror (10), a mirror holder support mechanism that supports the mirror holder (11) so as to be movable in the tracking direction, and drives the mirror holder (11) in the tracking direction. A mirror actuator (18) having a mirror holder driving mechanism and a mirror actuator for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction. And a drive circuit (37).
 従って、対物レンズアクチュエータ17及びミラーアクチュエータ18が各々独立に支持機構及び駆動機構を有していることから、動作時に互いに干渉することがない。よって、対物レンズアクチュエータ17とミラーアクチュエータ18との間のクロストークの発生によるサーボ性能の劣化、及び対物レンズ1の移動に対する立上げミラー10の追従精度の劣化がなく、良好な記録性能及び再生性能を実現できる。 Therefore, since the objective lens actuator 17 and the mirror actuator 18 each independently have a support mechanism and a drive mechanism, they do not interfere with each other during operation. Therefore, there is no deterioration in servo performance due to the occurrence of crosstalk between the objective lens actuator 17 and the mirror actuator 18, and no deterioration in the tracking accuracy of the rising mirror 10 with respect to the movement of the objective lens 1, and good recording performance and reproduction performance. Can be realized.
 また、動作時において対物レンズアクチュエータ17及びミラーアクチュエータ18は相互に駆動力が干渉しないので、対物レンズ1のチルト及び立上げミラー10の傾斜が発生しない。従って、対物レンズ1のチルトによる集光性能の劣化及び立上げミラー10の傾斜による対物レンズ1への光ビームの軸外入射がなく、光ディスク20上に良好な集光スポットを得ることができる。その結果、良好な記録性能及び再生性能を実現できる。 Further, during operation, the objective lens actuator 17 and the mirror actuator 18 do not interfere with each other in driving force, so that the objective lens 1 is not tilted and the rising mirror 10 is not tilted. Therefore, there is no deterioration of the light condensing performance due to the tilt of the objective lens 1 and no off-axis incidence of the light beam to the objective lens 1 due to the tilt of the rising mirror 10, and a good condensing spot can be obtained on the optical disk 20. As a result, good recording performance and reproduction performance can be realized.
 更に、対物レンズアクチュエータ17及びミラーアクチュエータ18は相互に機械的に干渉しないので、各々の振動伝達系としても独立しており、不要な共振が発生しにくく、相互に振動を伝達し合うこともない。従って、対物レンズアクチュエータ17及びミラーアクチュエータ18の双方において、良好な駆動周波数応答特性を得ることができ、高精度のサーボ性能を得ることができる。 Further, since the objective lens actuator 17 and the mirror actuator 18 do not mechanically interfere with each other, they are also independent as vibration transmission systems, so that unnecessary resonance hardly occurs and vibrations are not transmitted to each other. . Therefore, in both the objective lens actuator 17 and the mirror actuator 18, good drive frequency response characteristics can be obtained, and highly accurate servo performance can be obtained.
 また、光ピックアップ装置は、トラッキング方向Tの対物レンズ1と立上げミラー10との相対位置ずれ量を検出し、常にトラッキング方向Tの対物レンズ1と立上げミラー10との相対距離を極小化するようにミラーアクチュエータ18を駆動制御する。したがって、対物レンズ1と立上げミラー10との位置ずれをなくすことにより、対物レンズ1と光ビームとの光軸ずれを極小化することができる。 Further, the optical pickup device detects the relative positional deviation amount between the objective lens 1 in the tracking direction T and the rising mirror 10 and always minimizes the relative distance between the objective lens 1 in the tracking direction T and the rising mirror 10. Thus, the mirror actuator 18 is driven and controlled. Therefore, by eliminating the positional deviation between the objective lens 1 and the rising mirror 10, the optical axis deviation between the objective lens 1 and the light beam can be minimized.
 従って、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズ1と光ビームとの光軸ずれ量を抑えることができる。これにより、超高密度光記録及び超高密度光再生を可能とする光ピックアップ装置を得ることができる。 Therefore, the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens. Thereby, it is possible to obtain an optical pickup device that enables ultra high density optical recording and ultra high density optical reproduction.
 また、本実施の形態の光ピックアップ装置において、ミラーホルダ駆動機構は、ミラーホルダ(11)の光ディスク(20)の接線方向に交わる側面に固着され、接線方向に沿った巻回軸を有するミラーホルダ駆動コイル(12)と、ミラーホルダ駆動コイル(12)に対して接線方向に対向して配置され、ミラーホルダ駆動コイル(12)のトラッキング方向に沿った両辺に各々逆向きの磁界を付与する永久磁石(5)と、永久磁石(5)を固定するヨークベース(9)とを備えても良い。 In the optical pickup device of the present embodiment, the mirror holder driving mechanism is fixed to the side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20), and has a winding axis along the tangential direction. The drive coil (12) and the mirror holder drive coil (12) are arranged so as to face each other in a tangential direction, and a permanent magnetic field is applied to both sides along the tracking direction of the mirror holder drive coil (12). You may provide the magnet (5) and the yoke base (9) which fixes a permanent magnet (5).
 また、本実施の形態の光ピックアップ装置において、ミラーホルダ支持機構は、ヨークベース(9)に固定された第1の固定部材(15)と、一端を第1の固定部材(15)に固定され、他端をミラーホルダ(11)と連結された複数のミラー用棒状弾性部材(14)とを備えても良い。このとき、トラッキング方向に垂直な平面上で互いに非平行に配置された少なくとも2本のミラー用棒状弾性部材(14)が、トラッキング方向に沿って少なくとも2組み配置されていても良い。 In the optical pickup device of the present embodiment, the mirror holder support mechanism includes a first fixing member (15) fixed to the yoke base (9) and one end fixed to the first fixing member (15). Moreover, you may provide the some rod-shaped elastic member (14) for mirrors which connected the other end with the mirror holder (11). At this time, at least two pairs of mirror-like elastic members (14) for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction may be arranged along the tracking direction.
 また、本実施の形態の光ピックアップ装置において、対物レンズアクチュエータ(17)は、レンズホルダ(2)をトラッキング方向へ駆動するためのトラッキングコイル(3)と、レンズホルダ(2)をフォーカシング方向へ駆動するためのフォーカシングコイル(4)とを備えても良い。このとき、トラッキングコイル(3)及びフォーカシングコイル(4)は、永久磁石(5)に対向して配置されても良い。また、永久磁石(5)は、トラッキングコイル(3)及びフォーカシングコイル(4)に磁界を付与しても良い。 In the optical pickup device of the present embodiment, the objective lens actuator (17) drives the tracking coil (3) for driving the lens holder (2) in the tracking direction and the lens holder (2) in the focusing direction. A focusing coil (4) may be provided. At this time, the tracking coil (3) and the focusing coil (4) may be arranged to face the permanent magnet (5). The permanent magnet (5) may apply a magnetic field to the tracking coil (3) and the focusing coil (4).
 また、本実施の形態の光ピックアップ装置において、対物レンズアクチュエータ(17)は、ヨークベース(9)に固定された第2の固定部材(7)と、一端を第2の固定部材(7)に固定され、他端をレンズホルダ(2)に固定された複数のレンズ用棒状弾性部材(6)とをさらに備えてもよい。トラッキングコイル(3)は、レンズホルダ(2)の接線方向に垂直な側面に固着され、接線方向に沿った巻回軸を有し、フォーカシングコイル(4)は、レンズホルダ(2)の接線方向に垂直な側面に固着され、接線方向に沿った巻回軸を有する第1及び第2のフォーカシングコイル(4a,4b)を含んでもよい。このとき、永久磁石(5)は、第1及び第2のフォーカシングコイル(4a,4b)、トラッキングコイル(3)及びミラーホルダ駆動コイル(12)に対して接線方向に対向する位置にヨークベース(9)に固定され、隣接する着磁領域が互いに異極であり、且つ着磁領域が十字形状の境界線によって4つの着磁領域に多極着磁されている。永久磁石(5)の4つの着磁領域のうち光ディスク(20)に近い側のトラッキング方向に沿って隣接した第1及び第2の着磁領域(5a,5b)は、トラッキングコイル(3)のトラッキング方向に沿った両辺に逆向きの磁界を付与する。永久磁石(5)の4つの着磁領域のうち光ディスク(20)から遠い側のトラッキング方向に沿って隣接した第3及び第4の着磁領域(5c,5d)は、ミラーホルダ駆動コイル(12)のトラッキング方向に沿った両辺に逆向きの磁界を付与する。永久磁石(5)の4つの着磁領域のうちフォーカシング方向に沿って隣接した第1及び第3の着磁領域(5a,5c)は、第1のフォーカシングコイル(4a)のフォーカシング方向に沿った両辺に逆向きの磁界を付与する。永久磁石(5)の4つの着磁領域のうちフォーカシング方向に沿って隣接した第2及び第4の着磁領域(5b,5d)は、第2のフォーカシングコイル(4b)のフォーカシング方向に沿った両辺に逆向きの磁界を付与する。 In the optical pickup device of the present embodiment, the objective lens actuator (17) includes the second fixing member (7) fixed to the yoke base (9) and one end to the second fixing member (7). A plurality of rod-shaped elastic members for lenses (6) that are fixed and fixed at the other end to the lens holder (2) may further be provided. The tracking coil (3) is fixed to a side surface perpendicular to the tangential direction of the lens holder (2), has a winding axis along the tangential direction, and the focusing coil (4) is tangential to the lens holder (2). The first and second focusing coils (4a, 4b) may be included, which are fixed to the side surface perpendicular to the surface and have winding axes along the tangential direction. At this time, the permanent magnet (5) has a yoke base (in a position tangentially opposed to the first and second focusing coils (4a, 4b), the tracking coil (3) and the mirror holder driving coil (12)). 9), the adjacent magnetized regions have different polarities, and the magnetized regions are multipolarly magnetized into four magnetized regions by a cross-shaped boundary line. Of the four magnetized regions of the permanent magnet (5), the first and second magnetized regions (5a, 5b) adjacent to each other along the tracking direction closer to the optical disc (20) are formed on the tracking coil (3). Apply opposite magnetic fields to both sides along the tracking direction. Of the four magnetized regions of the permanent magnet (5), the third and fourth magnetized regions (5c, 5d) adjacent in the tracking direction farther from the optical disc (20) are mirror holder drive coils (12 ) Is applied to opposite sides along the tracking direction. Of the four magnetized regions of the permanent magnet (5), the first and third magnetized regions (5a, 5c) adjacent in the focusing direction are along the focusing direction of the first focusing coil (4a). Apply opposite magnetic fields to both sides. Of the four magnetized regions of the permanent magnet (5), the second and fourth magnetized regions (5b, 5d) adjacent in the focusing direction are along the focusing direction of the second focusing coil (4b). Apply opposite magnetic fields to both sides.
 また、本実施の形態の光ピックアップ装置において、ミラーホルダ駆動コイル(12)は、ミラーホルダ(11)の光ディスク(20)の接線方向に交わる一方の側面に固着され、接線方向に沿った巻回軸を有する第1のミラーホルダ駆動コイル(12a)と、ミラーホルダ(11)の光ディスク(20)の接線方向に交わる他方の側面に固着され、接線方向に沿った巻回軸を有する第2のミラーホルダ駆動コイル(12b)とを含んでもよい。このとき、永久磁石(5)は、第1のミラーホルダ駆動コイル(12a)のトラッキング方向に沿った両辺に各々逆向きの磁界を付与する。また、ミラーホルダ駆動機構は、第2のミラーホルダ駆動コイル(12b)に対して接線方向に対向して配置され、第2のミラーホルダ駆動コイル(12b)のトラッキング方向に沿った両辺に各々逆向きの磁界を付与するミラーホルダ用永久磁石(13)をさらに含んでもよい。 In the optical pickup device of the present embodiment, the mirror holder driving coil (12) is fixed to one side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20), and is wound along the tangential direction. A first mirror holder driving coil (12a) having an axis and a second axis having a winding axis along the tangential direction, which is fixed to the other side surface of the mirror holder (11) that intersects the tangential direction of the optical disk (20). A mirror holder driving coil (12b) may be included. At this time, the permanent magnet (5) applies opposite magnetic fields to both sides along the tracking direction of the first mirror holder drive coil (12a). The mirror holder driving mechanism is disposed so as to be tangentially opposed to the second mirror holder driving coil (12b), and is opposite to both sides along the tracking direction of the second mirror holder driving coil (12b). It may further include a permanent magnet (13) for a mirror holder that applies a magnetic field in the direction.
 また、本実施の形態の光ピックアップ装置において、トラッキングコイル(3)に隣接する部分であり、かつ光ディスク(20)から遠い側のレンズホルダ(2)の側面には切欠き(2a)が設けられており、ミラーホルダ駆動コイルは、切欠き(2a)内に配置されても良い。 Further, in the optical pickup device of the present embodiment, a notch (2a) is provided on the side surface of the lens holder (2) that is adjacent to the tracking coil (3) and is far from the optical disc (20). The mirror holder driving coil may be disposed in the notch (2a).
 この構成により、共用マグネット5が対物レンズアクチュエータ17及びミラーアクチュエータ18の磁気回路として共用化されるので、光ピックアップ装置の薄型化及び小型化が可能となる。 With this configuration, the shared magnet 5 is shared as a magnetic circuit for the objective lens actuator 17 and the mirror actuator 18, so that the optical pickup device can be made thinner and smaller.
 また、本実施の形態の光ピックアップ装置において、ミラーアクチュエータ(18)は、ミラーホルダ(11)に搭載されるとともに、ミラーホルダ(11)とレンズホルダ(2)との相対位置ずれ量を検出する位置センサ(27)を備えても良い。さらに、ミラーアクチュエータ駆動部(37)は、位置センサ(27)によって検出される相対位置ずれ量を監視する位置ずれ量監視部(39)と、位置ずれ量監視部(39)によって監視される相対位置ずれ量がゼロになるようにミラーホルダ駆動コイル(12)に出力する電流値を調整する位置ずれ制御部(38)とを備えても良い。 In the optical pickup device of the present embodiment, the mirror actuator (18) is mounted on the mirror holder (11), and detects the amount of relative positional deviation between the mirror holder (11) and the lens holder (2). A position sensor (27) may be provided. Further, the mirror actuator driving unit (37) includes a positional deviation amount monitoring unit (39) that monitors a relative positional deviation amount detected by the position sensor (27) and a relative amount monitored by the positional deviation amount monitoring unit (39). A displacement control unit (38) that adjusts the current value output to the mirror holder drive coil (12) so that the amount of displacement is zero may be provided.
 この構成により、光ディスク20の所望のトラック位置へのトラッキング動作によって対物レンズ1が移動しても、常に、立上げミラー10と対物レンズ1とのトラッキング方向の相対距離を極小化するように、ミラーアクチュエータ18を駆動制御することができる。 With this configuration, even if the objective lens 1 is moved by the tracking operation to the desired track position of the optical disc 20, the mirror is always set so that the relative distance in the tracking direction between the rising mirror 10 and the objective lens 1 is minimized. The actuator 18 can be driven and controlled.
 なお、本実施の形態において、立上げミラー10と対物レンズ1との相対位置ずれ量を検出する方法として、発光部と受光部とを有する位置センサ27を設けたが、位置センサ27は相対位置ずれ量が検出できれば良く、例えば位置センサ27は受光素子のみを有し、有効径外の光ビームを用いて相対位置ずれ量を検出しても良い。 In the present embodiment, the position sensor 27 having the light emitting part and the light receiving part is provided as a method for detecting the relative positional deviation amount between the rising mirror 10 and the objective lens 1, but the position sensor 27 is a relative position. For example, the position sensor 27 may include only a light receiving element, and the relative positional deviation amount may be detected using a light beam outside the effective diameter.
 また、本実施の形態の光ピックアップ装置は、光源(23)と立上げミラー(10)との間の光路上に配置され、光ビームの収斂度を変化させるコリメートレンズ(28)と、コリメートレンズ(28)を光路上で光軸方向に移動させるコリメートレンズアクチュエータ(19)とをさらに備えても良い。 Further, the optical pickup device of the present embodiment is arranged on the optical path between the light source (23) and the rising mirror (10), and a collimating lens (28) for changing the convergence of the light beam, and the collimating lens A collimating lens actuator (19) for moving (28) in the optical axis direction on the optical path may be further provided.
 また、本実施の形態の光ピックアップ装置において、第1の対物レンズ(1)は、近接場光によって光を集光するソリッドイマージョンレンズ(1b)を含んでも良い。 In the optical pickup device of the present embodiment, the first objective lens (1) may include a solid immersion lens (1b) that collects light by near-field light.
 なお、本実施の形態において、青色半導体レーザダイオード23が光源の一例に相当し、対物レンズ1が第1の対物レンズの一例に相当し、立上げミラー10が立上げミラーの一例に相当し、光検出器26が光検出器の一例に相当し、レンズホルダ2がレンズホルダの一例に相当し、対物レンズアクチュエータ17が対物レンズアクチュエータの一例に相当し、ミラーホルダ11がミラーホルダの一例に相当し、ミラーアクチュエータ18がミラーアクチュエータの一例に相当し、ミラーアクチュエータ駆動回路37がミラーアクチュエータ駆動部の一例に相当する。 In the present embodiment, the blue semiconductor laser diode 23 corresponds to an example of a light source, the objective lens 1 corresponds to an example of a first objective lens, the rising mirror 10 corresponds to an example of a rising mirror, The photodetector 26 corresponds to an example of a photodetector, the lens holder 2 corresponds to an example of a lens holder, the objective lens actuator 17 corresponds to an example of an objective lens actuator, and the mirror holder 11 corresponds to an example of a mirror holder. The mirror actuator 18 corresponds to an example of a mirror actuator, and the mirror actuator drive circuit 37 corresponds to an example of a mirror actuator drive unit.
 また、本実施の形態において、立上げミラー用コイル12がミラーホルダ駆動コイルの一例に相当し、共用マグネット5が永久磁石の一例に相当し、ヨークベース9がヨークベースの一例に相当し、立上げミラー用固定部材15が第1の固定部材の一例に相当し、立上げミラー用支持ワイヤ14がミラー用棒状弾性部材の一例に相当し、対物レンズ用トラッキングコイル3がトラッキングコイルの一例に相当し、対物レンズ用フォーカシングコイル4がフォーカシングコイルの一例に相当し、対物レンズ用固定部材7が第2の固定部材の一例に相当し、対物レンズ用支持ワイヤ6がレンズ用棒状弾性部材の一例に相当し、第1及び第2の対物レンズ用フォーカシングコイル4a,4bが第1及び第2のフォーカシングコイルの一例に相当する。 In the present embodiment, the rising mirror coil 12 corresponds to an example of a mirror holder drive coil, the shared magnet 5 corresponds to an example of a permanent magnet, and the yoke base 9 corresponds to an example of a yoke base. The raising mirror fixing member 15 corresponds to an example of a first fixing member, the rising mirror support wire 14 corresponds to an example of a rod-like elastic member for mirrors, and the objective lens tracking coil 3 corresponds to an example of a tracking coil. The objective lens focusing coil 4 corresponds to an example of a focusing coil, the objective lens fixing member 7 corresponds to an example of a second fixing member, and the objective lens support wire 6 corresponds to an example of a lens rod-shaped elastic member. The first and second objective lens focusing coils 4a and 4b correspond to an example of the first and second focusing coils. .
 また、本実施の形態において、切欠き2aが切欠きの一例に相当し、第1の立上げミラー用コイル12aが第1のミラーホルダ駆動コイルの一例に相当し、第2の立上げミラー用コイル12bが第2のミラーホルダ駆動コイルの一例に相当し、立上げミラー用マグネット13がミラーホルダ用永久磁石の一例に相当し、位置センサ27が位置センサの一例に相当し、位置ずれ量監視部39が位置ずれ量監視部の一例に相当し、位置ずれ制御回路38が位置ずれ制御部の一例に相当し、コリメートレンズ28がコリメートレンズの一例に相当し、コリメートレンズアクチュエータ19がコリメートレンズアクチュエータの一例に相当し、ソリッドイマージョンレンズ1bがソリッドイマージョンレンズの一例に相当する。 In the present embodiment, the notch 2a corresponds to an example of a notch, the first rising mirror coil 12a corresponds to an example of a first mirror holder driving coil, and the second rising mirror The coil 12b corresponds to an example of a second mirror holder driving coil, the rising mirror magnet 13 corresponds to an example of a permanent magnet for a mirror holder, and the position sensor 27 corresponds to an example of a position sensor. The unit 39 corresponds to an example of a positional deviation amount monitoring unit, the positional deviation control circuit 38 corresponds to an example of a positional deviation control unit, the collimating lens 28 corresponds to an example of a collimating lens, and the collimating lens actuator 19 is a collimating lens actuator. The solid immersion lens 1b corresponds to an example of a solid immersion lens.
 (実施の形態2)
 図4は、本発明の実施の形態2における光ピックアップ装置の構成を示すブロック図である。図4において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 4 is a block diagram showing the configuration of the optical pickup device according to the second embodiment of the present invention. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 図4の構成において、図1との相違点は、ミラーアクチュエータ駆動回路37に替えてミラーアクチュエータ駆動回路45を備えている点と、ミラーアクチュエータ18に位置センサ27が設けられていない点とである。 4 differs from FIG. 1 in that a mirror actuator drive circuit 45 is provided in place of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
 従って、ミラーアクチュエータ駆動回路45の詳細な構成について図4を用いて説明する。 Therefore, a detailed configuration of the mirror actuator drive circuit 45 will be described with reference to FIG.
 図4において、ミラーアクチュエータ駆動回路45は、光検出器26からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅したトラッキングエラー信号を駆動電流として立上げミラー用コイル12に出力する増幅器41を備えて構成されている。 In FIG. 4, a mirror actuator drive circuit 45 amplifies a tracking error signal generated based on the output from the photodetector 26, and outputs the amplified tracking error signal to the rising mirror coil 12 as a drive current. 41 is comprised.
 光ピックアップ制御回路36は、生成したトラッキングエラー信号をトラッキングコイル駆動回路33に出力すると同時に、同一のトラッキングエラー信号をミラーアクチュエータ駆動回路45にも出力する。増幅器41は、トラッキングエラー信号の値を所定の倍率で増幅し、増幅した値をミラーアクチュエータ18の駆動電流として立上げミラー用コイル12に出力する。 The optical pickup control circuit 36 outputs the generated tracking error signal to the tracking coil drive circuit 33 and simultaneously outputs the same tracking error signal to the mirror actuator drive circuit 45. The amplifier 41 amplifies the value of the tracking error signal at a predetermined magnification, and outputs the amplified value to the rising mirror coil 12 as a drive current for the mirror actuator 18.
 従って、増幅器41の倍率を適切に定めることにより、トラッキング方向Tにおいて、ミラーアクチュエータ18は、対物レンズアクチュエータ17と同一の動作を行う。その結果、対物レンズ1の変位に対して立上げミラー10が常に追従することとなる。 Therefore, by appropriately determining the magnification of the amplifier 41, the mirror actuator 18 performs the same operation as the objective lens actuator 17 in the tracking direction T. As a result, the rising mirror 10 always follows the displacement of the objective lens 1.
 以上のように、本実施の形態の光ピックアップ装置は、所定の波長を有する光ビームを出射する光源(23)と、光ディスク(20)の記録面上に光ビームを収束させる第1の対物レンズ(1)と、光ディスク(20)の半径方向に傾斜した反射面を有し、光源(23)から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズ(1)に導く立上げミラー(10)と、第1の対物レンズ(1)によって記録面上に収束され、さらに記録面で反射された光ビームを、第1の対物レンズ(1)及び立上げミラー(10)を介して受光し、電気信号に変換する光検出器(26)と、第1の対物レンズ(1)を保持するレンズホルダ(2)と、レンズホルダ(2)を、少なくとも光ディスク(20)に垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダ(2)を少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータ(17)と、立上げミラー(10)を保持するミラーホルダ(11)と、ミラーホルダ(11)をトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダ(11)をトラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータ(18)と、立上げミラー(10)が第1の対物レンズ(1)のトラッキング方向の移動に追従するように、ミラーアクチュエータ(18)を駆動させるミラーアクチュエータ駆動部(45)とを備える。 As described above, the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20). (1) and a reflecting surface inclined in the radial direction of the optical disc (20), and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1). The light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10). The optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20). Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction. A mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction. An actuator driving unit (45).
 さらに、本実施の形態の光ピックアップ装置において、ミラーアクチュエータ駆動部(45)は、光検出器(26)からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅したトラッキングエラー信号を駆動電流としてミラーホルダ駆動コイル(12)に出力する増幅器(41)を備える。 Further, in the optical pickup device of the present embodiment, the mirror actuator driving section (45) amplifies the tracking error signal generated based on the output from the photodetector (26), and drives the amplified tracking error signal. An amplifier (41) that outputs current to the mirror holder drive coil (12) is provided.
 以上の構成により、適切な倍率で増幅したトラッキングエラー信号が、ミラーアクチュエータ18を駆動する駆動電流として立上げミラー用コイル12に出力される。したがって、ミラーアクチュエータ駆動回路45が増幅器41のみを備える簡素な構成で対物レンズ1の変位に対して立上げミラー10を常に追従させることができる。よって、光ピックアップ装置のさらなるコストダウンが可能となる。 With the above configuration, a tracking error signal amplified at an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simple configuration in which the mirror actuator drive circuit 45 includes only the amplifier 41. Therefore, the cost of the optical pickup device can be further reduced.
 従って、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズ1と光ビームとの光軸ずれ量を抑えることができる。これにより、より安価なコストで超高密度光記録及び超高密度光再生を可能とする光ピックアップ装置を得ることができる。 Therefore, the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens. Thereby, it is possible to obtain an optical pickup device that enables ultrahigh density optical recording and ultrahigh density optical reproduction at a lower cost.
 なお、本実施の形態において、ミラーアクチュエータ駆動回路45がミラーアクチュエータ駆動部の一例に相当し、増幅器41が増幅器の一例に相当する。 In the present embodiment, the mirror actuator drive circuit 45 corresponds to an example of a mirror actuator drive unit, and the amplifier 41 corresponds to an example of an amplifier.
 (実施の形態3)
 図5は、本発明の実施の形態3における光ピックアップ装置の構成を示すブロック図である。図5において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 5 is a block diagram showing the configuration of the optical pickup device according to the third embodiment of the present invention. In FIG. 5, the same components as those in FIG.
 図5の構成において、図1との相違点は、ミラーアクチュエータ駆動回路37に替えてミラーアクチュエータ駆動回路46を備えている点と、ミラーアクチュエータ18に位置センサ27が設けられていない点とである。 5 is different from FIG. 1 in that a mirror actuator drive circuit 46 is provided instead of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
 従って、ミラーアクチュエータ駆動回路46の詳細な構成について図5を用いて説明する。 Therefore, the detailed configuration of the mirror actuator drive circuit 46 will be described with reference to FIG.
 図5において、ミラーアクチュエータ駆動回路46は、増幅器41と加算器42と初期ずれ量メモリ44とを備える。ミラーアクチュエータ駆動回路46の構成要素である増幅器41は、図4と同じ構成要素であり、図4との相違点は、加算器42及び初期ずれ量メモリ44を追加した点である。 5, the mirror actuator driving circuit 46 includes an amplifier 41, an adder 42, and an initial deviation amount memory 44. The amplifier 41, which is a component of the mirror actuator drive circuit 46, is the same component as that in FIG. 4, and the difference from FIG. 4 is that an adder 42 and an initial deviation amount memory 44 are added.
 初期ずれ量メモリ44は、対物レンズアクチュエータ17及びミラーアクチュエータ18の非動作状態時における立上げミラー10と対物レンズ1との相対距離(初期ずれ量)を予め記憶している。加算器42は、初期ずれ量メモリ44に記憶されている相対距離をオフセット値としてトラッキングエラー信号に加算して増幅器41に出力する。増幅器41は、加算器42によって出力されたトラッキングエラー信号を所定の倍率で増幅し、増幅したトラッキングエラー信号をミラーアクチュエータ18の駆動電流として立上げミラー用コイル12に出力する。 The initial deviation amount memory 44 stores in advance the relative distance (initial deviation amount) between the rising mirror 10 and the objective lens 1 when the objective lens actuator 17 and the mirror actuator 18 are not operating. The adder 42 adds the relative distance stored in the initial deviation amount memory 44 to the tracking error signal as an offset value, and outputs it to the amplifier 41. The amplifier 41 amplifies the tracking error signal output by the adder 42 at a predetermined magnification, and outputs the amplified tracking error signal to the rising mirror coil 12 as a drive current for the mirror actuator 18.
 従って、増幅器41の倍率を適切に定めることにより、トラッキング方向Tにおいて、ミラーアクチュエータ18は、初期ずれ量を考慮して駆動される。そのため、ミラーアクチュエータ18は、対物レンズアクチュエータ17と同一の動作を行う。その結果、対物レンズ1の変位に対して立上げミラー10が常に相対位置ずれのない状態で追従することとなる。 Accordingly, by appropriately determining the magnification of the amplifier 41, the mirror actuator 18 is driven in the tracking direction T in consideration of the initial deviation amount. Therefore, the mirror actuator 18 performs the same operation as the objective lens actuator 17. As a result, the rising mirror 10 always follows the displacement of the objective lens 1 with no relative displacement.
 なお、対物レンズアクチュエータ17及びミラーアクチュエータ18の非動作状態時における立上げミラー10と対物レンズ1との相対距離は、光ピックアップ装置の工場出荷時に予め測定され、初期ずれ量メモリ44に記憶される。 The relative distance between the rising mirror 10 and the objective lens 1 when the objective lens actuator 17 and the mirror actuator 18 are not operating is measured in advance at the time of shipment of the optical pickup device and stored in the initial deviation amount memory 44. .
 以上のように、本実施の形態の光ピックアップ装置は、所定の波長を有する光ビームを出射する光源(23)と、光ディスク(20)の記録面上に光ビームを収束させる第1の対物レンズ(1)と、光ディスク(20)の半径方向に傾斜した反射面を有し、光源(23)から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズ(1)に導く立上げミラー(10)と、第1の対物レンズ(1)によって記録面上に収束され、さらに記録面で反射された光ビームを、第1の対物レンズ(1)及び立上げミラー(10)を介して受光し、電気信号に変換する光検出器(26)と、第1の対物レンズ(1)を保持するレンズホルダ(2)と、レンズホルダ(2)を、少なくとも光ディスク(20)に垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダ(2)を少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータ(17)と、立上げミラー(10)を保持するミラーホルダ(11)と、ミラーホルダ(11)をトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダ(11)をトラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータ(18)と、立上げミラー(10)が第1の対物レンズ(1)のトラッキング方向の移動に追従するように、ミラーアクチュエータ(18)を駆動させるミラーアクチュエータ駆動部(46)とを備える。 As described above, the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20). (1) and a reflecting surface inclined in the radial direction of the optical disc (20), and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1). The light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10). The optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20). Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction. A mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction. An actuator driving section (46).
 さらに、本実施の形態の光ピックアップ装置において、ミラーアクチュエータ駆動部(46)は、光検出器(26)からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅したトラッキングエラー信号を駆動電流としてミラーホルダ駆動コイル(12)に出力する増幅器(41)を備える。 Further, in the optical pickup device of the present embodiment, the mirror actuator driving section (46) amplifies the tracking error signal generated based on the output from the photodetector (26), and drives the amplified tracking error signal. An amplifier (41) that outputs current to the mirror holder drive coil (12) is provided.
 さらに、本実施の形態の光ピックアップ装置において、ミラーアクチュエータ駆動部(46)は、対物レンズアクチュエータ(17)及びミラーアクチュエータ(18)の非動作状態時における第1の対物レンズ(1)と立上げミラー(10)との相対距離を予め記憶する初期ずれ量メモリ(44)と、初期ずれ量メモリ(44)に記憶されている相対距離をオフセット値としてトラッキングエラー信号に加算して増幅器(41)に出力する加算器(42)とをさらに備えている。 Further, in the optical pickup device of the present embodiment, the mirror actuator driving section (46) is started up with the first objective lens (1) when the objective lens actuator (17) and the mirror actuator (18) are not operating. An initial deviation amount memory (44) for storing the relative distance to the mirror (10) in advance, and the relative distance stored in the initial deviation amount memory (44) as an offset value is added to the tracking error signal to an amplifier (41). And an adder (42) for outputting to.
 以上の構成により、対物レンズアクチュエータ17及びミラーアクチュエータ18の非動作状態時において、立上げミラー10と対物レンズ1とに相対位置ずれがある場合でも、当該非動作状態時における相対位置ずれの影響を低減することができる。これにより、より精度良く立上げミラー10を対物レンズ1のトラッキング方向の移動に追従させることができる。 With the above configuration, even when there is a relative positional shift between the rising mirror 10 and the objective lens 1 when the objective lens actuator 17 and the mirror actuator 18 are in a non-operating state, the relative positional shift in the non-operating state is affected. Can be reduced. Thereby, the rising mirror 10 can be made to follow the movement of the objective lens 1 in the tracking direction with higher accuracy.
 すなわち、初期ずれ量に相当するオフセット値がトラッキングエラー信号に加算され、適切な倍率で増幅したトラッキングエラー信号が、ミラーアクチュエータ18を駆動する駆動電流として立上げミラー用コイル12に出力される。したがって、より簡素な構成でかつより高精度に対物レンズ1の変位に対して立上げミラー10を常に追従させることができる。よって、光ピックアップ装置のさらなるコストダウンと追従精度の向上とが可能となる。 That is, an offset value corresponding to the initial deviation amount is added to the tracking error signal, and a tracking error signal amplified by an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simpler configuration and higher accuracy. Therefore, it is possible to further reduce the cost of the optical pickup device and improve the tracking accuracy.
 従って、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズ1と光ビームとの光軸ずれ量を抑えることができる。これにより、より安価なコストでより性能が向上した超高密度光記録及び超高密度光再生を可能とする光ピックアップ装置を得ることができる。 Therefore, the amount of optical axis deviation between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens. As a result, it is possible to obtain an optical pickup device that enables ultrahigh density optical recording and ultrahigh density optical reproduction with improved performance at a lower cost.
 なお、本実施の形態において、ミラーアクチュエータ駆動回路46がミラーアクチュエータ駆動部の一例に相当し、増幅器41が増幅器の一例に相当し、加算器42が加算器の一例に相当し、初期ずれ量メモリ44が初期ずれ量メモリの一例に相当する。 In the present embodiment, the mirror actuator drive circuit 46 corresponds to an example of a mirror actuator drive unit, the amplifier 41 corresponds to an example of an amplifier, the adder 42 corresponds to an example of an adder, and an initial deviation amount memory 44 corresponds to an example of an initial deviation amount memory.
 (実施の形態4)
 図6は、本発明の実施の形態4における光ピックアップ装置の構成を示すブロック図である。図6において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 4)
FIG. 6 is a block diagram showing the configuration of the optical pickup device according to the fourth embodiment of the present invention. In FIG. 6, the same components as those in FIG.
 図6の構成において、図1との相違点は、ミラーアクチュエータ駆動回路37に変えてミラーアクチュエータ駆動回路47を備えている点と、ミラーアクチュエータ18に位置センサ27が設けられていない点とである。 6 differs from FIG. 1 in that a mirror actuator drive circuit 47 is provided instead of the mirror actuator drive circuit 37 and that the position sensor 27 is not provided in the mirror actuator 18. .
 従って、ミラーアクチュエータ駆動回路47の詳細な構成について図6を用いて説明する。 Therefore, the detailed configuration of the mirror actuator drive circuit 47 will be described with reference to FIG.
 図6において、ミラーアクチュエータ駆動回路47は、光ディスク偏心量メモリ48と増幅器43とにより構成されている。光ディスク偏心量メモリ48は、光ディスク20の半径位置に対する偏心量を予め記憶している。増幅器43は、ミラーアクチュエータ18の動作時において、光ディスク偏心量メモリ48から出力される偏心量を表す出力信号を適切な倍率で増幅し、増幅した出力信号をミラーアクチュエータ18の駆動電流として立上げミラー用コイル12に出力する。 In FIG. 6, the mirror actuator drive circuit 47 includes an optical disk eccentricity memory 48 and an amplifier 43. The optical disk eccentricity memory 48 stores in advance the eccentricity with respect to the radial position of the optical disk 20. The amplifier 43 amplifies an output signal representing the amount of eccentricity output from the optical disk eccentricity memory 48 at the time of operation of the mirror actuator 18 by an appropriate magnification, and the amplified output signal is used as a drive current for the mirror actuator 18 to raise the mirror. Output to the coil 12.
 従って、増幅器43の倍率を適切に定めることにより、トラッキング方向Tにおいて、ミラーアクチュエータ18は、光ディスク20の半径位置に対する偏心量に相当する変位量で駆動される。そのため、ミラーアクチュエータ18は、対物レンズアクチュエータ17と略同一の動作を行う。その結果、対物レンズ1の変位に対して立上げミラー10が常に追従することとなる。 Therefore, by appropriately determining the magnification of the amplifier 43, in the tracking direction T, the mirror actuator 18 is driven with a displacement corresponding to the amount of eccentricity with respect to the radial position of the optical disc 20. Therefore, the mirror actuator 18 performs substantially the same operation as the objective lens actuator 17. As a result, the rising mirror 10 always follows the displacement of the objective lens 1.
 なお、光ディスク20の半径位置に対する偏心量は、光ピックアップ装置に光ディスク20が挿入された際に測定され、光ディスク偏心量メモリ48に記憶される。光ピックアップ制御回路36は、光ビームが照射される光ディスク20上の半径位置に関する情報を光ディスク偏心量メモリ48へ出力し、光ディスク偏心量メモリ48は、光ピックアップ制御回路36から出力された半径位置に関する情報に含まれる半径位置に対応する偏心量を読み出し、増幅器43へ出力する。 The eccentricity with respect to the radial position of the optical disk 20 is measured when the optical disk 20 is inserted into the optical pickup device, and is stored in the optical disk eccentricity memory 48. The optical pickup control circuit 36 outputs information on the radial position on the optical disc 20 irradiated with the light beam to the optical disc eccentricity memory 48, and the optical disc eccentricity memory 48 relates to the radial position output from the optical pickup control circuit 36. The amount of eccentricity corresponding to the radial position included in the information is read and output to the amplifier 43.
 以上のように、本実施の形態の光ピックアップ装置は、所定の波長を有する光ビームを出射する光源(23)と、光ディスク(20)の記録面上に光ビームを収束させる第1の対物レンズ(1)と、光ディスク(20)の半径方向に傾斜した反射面を有し、光源(23)から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズ(1)に導く立上げミラー(10)と、第1の対物レンズ(1)によって記録面上に収束され、さらに記録面で反射された光ビームを、第1の対物レンズ(1)及び立上げミラー(10)を介して受光し、電気信号に変換する光検出器(26)と、第1の対物レンズ(1)を保持するレンズホルダ(2)と、レンズホルダ(2)を、少なくとも光ディスク(20)に垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダ(2)を少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータ(17)と、立上げミラー(10)を保持するミラーホルダ(11)と、ミラーホルダ(11)をトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダ(11)をトラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータ(18)と、立上げミラー(10)が第1の対物レンズ(1)のトラッキング方向の移動に追従するように、ミラーアクチュエータ(18)を駆動させるミラーアクチュエータ駆動部(47)とを備える。 As described above, the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20). (1) and a reflecting surface inclined in the radial direction of the optical disc (20), and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1). The light beam converged on the recording surface by the rising mirror (10) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (10). The optical detector (26) that receives light via the light source and converts it into an electrical signal, the lens holder (2) that holds the first objective lens (1), and the lens holder (2) are attached to at least the optical disc (20). Focuser is the vertical direction Objective lens actuator comprising: a lens holder supporting mechanism that movably supports the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder driving mechanism that drives the lens holder (2) at least in the focusing direction and the tracking direction. 17), a mirror holder (11) for holding the rising mirror (10), a mirror holder support mechanism for supporting the mirror holder (11) so as to be movable in the tracking direction, and driving the mirror holder (11) in the tracking direction. A mirror actuator (18) having a mirror holder driving mechanism for driving, and a mirror for driving the mirror actuator (18) so that the rising mirror (10) follows the movement of the first objective lens (1) in the tracking direction. An actuator driving unit (47).
 さらに、本実施の形態の光ピックアップ装置において、ミラーアクチュエータ駆動部(47)は、光ディスク(20)の半径位置に対する偏心量を予め記憶する光ディスク偏心量メモリ(48)と、光ディスク偏心量メモリ(48)から出力される偏心量を表す出力信号を増幅し、増幅した出力信号を駆動電流としてミラーホルダ駆動コイル(12)に出力する増幅器(43)とを備える。 Furthermore, in the optical pickup device of the present embodiment, the mirror actuator driving section (47) includes an optical disc eccentricity memory (48) for storing in advance an eccentricity with respect to the radial position of the optical disc (20), and an optical disc eccentricity memory (48). And an amplifier (43) for amplifying the output signal representing the amount of eccentricity output from the above and outputting the amplified output signal as a drive current to the mirror holder drive coil (12).
 以上の構成により、光ディスク20に偏心がある場合でも、この偏心の影響を低減することができる。これにより、より精度良く立上げミラー10を対物レンズ1のトラッキング方向の移動に追従させることができる。 With the above configuration, even when the optical disk 20 is eccentric, the influence of this eccentricity can be reduced. Thereby, the rising mirror 10 can be made to follow the movement of the objective lens 1 in the tracking direction with higher accuracy.
 すなわち、光ディスク20の半径位置に対する偏心量が予め記憶されており、適切な倍率で増幅した偏心量が、ミラーアクチュエータ18を駆動する駆動電流として立上げミラー用コイル12に出力される。したがって、簡素な構成でかつ簡素な制御により対物レンズ1の変位に対して立上げミラー10を常に追従させることができる。よって、光ピックアップ装置のコストダウンが可能となる。また、制御時間の短縮によりデータ転送速度の向上が可能となる。 That is, the amount of eccentricity with respect to the radial position of the optical disk 20 is stored in advance, and the amount of eccentricity amplified at an appropriate magnification is output to the rising mirror coil 12 as a drive current for driving the mirror actuator 18. Therefore, the rising mirror 10 can always follow the displacement of the objective lens 1 with a simple configuration and simple control. Therefore, the cost of the optical pickup device can be reduced. Further, the data transfer rate can be improved by shortening the control time.
 従って、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズ1と光ビームとの光軸ずれ量を抑えることができ、これにより、高転送速度を可能とするとともに、安価なコストで超高密度光記録及び超高密度光再生を可能とする光ピックアップ装置を得ることができる。 Accordingly, the amount of optical axis misalignment between the objective lens 1 and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens, thereby enabling a high transfer speed and low cost. It is possible to obtain an optical pickup device that enables ultrahigh density optical recording and ultrahigh density optical reproduction at a low cost.
 なお、本実施の形態において、予め得られる駆動制御値のテーブルを光ディスク20の偏心量として記憶する光ディスク偏心量メモリ48を用いたが、予め得られる駆動制御値は立上げミラー10と対物レンズ1との相対位置ずれを補正して光ピックアップの記録再生性能を向上する値であれば良い。例えば、光ディスクの半径位置に対応して再生信号のジッタを最小とする立上げミラー10の変位量を駆動制御値として用いても良い。この場合、立上げミラー10と対物レンズ1との相対位置ずれに起因する再生信号のジッタの劣化のみならず、他の要因に起因した再生信号のジッタの劣化も補正することができる。 In the present embodiment, the optical disk eccentricity memory 48 that stores a table of drive control values obtained in advance as the amount of eccentricity of the optical disk 20 is used. However, the drive control values obtained in advance are obtained from the rising mirror 10 and the objective lens 1. Any value can be used as long as it corrects the relative positional deviation of the optical pickup and improves the recording / reproducing performance of the optical pickup. For example, the displacement amount of the rising mirror 10 that minimizes the jitter of the reproduction signal corresponding to the radial position of the optical disk may be used as the drive control value. In this case, it is possible to correct not only the deterioration of the reproduction signal jitter caused by the relative positional deviation between the rising mirror 10 and the objective lens 1, but also the deterioration of the reproduction signal jitter caused by other factors.
 また、ジッタ値に準ずる値としてトラッキングエラー信号振幅を用いてもよい。例えば、トラッキングエラー信号振幅を最大とする立上げミラー10の変位量を駆動制御値として用いても良く、上記と同様の効果を得ることができる。 Also, the tracking error signal amplitude may be used as a value according to the jitter value. For example, the displacement amount of the rising mirror 10 that maximizes the tracking error signal amplitude may be used as the drive control value, and the same effect as described above can be obtained.
 なお、本実施の形態において、ミラーアクチュエータ駆動回路47がミラーアクチュエータ駆動部の一例に相当し、増幅器43が増幅器の一例に相当し、光ディスク偏心量メモリ48が光ディスク偏心量メモリの一例に相当する。 In the present embodiment, the mirror actuator drive circuit 47 corresponds to an example of a mirror actuator drive unit, the amplifier 43 corresponds to an example of an amplifier, and the optical disk eccentricity memory 48 corresponds to an example of an optical disk eccentricity memory.
 (実施の形態5)
 図7は、本発明の実施の形態5における光ピックアップ装置の対物レンズアクチュエータ及びミラーアクチュエータの斜視図である。図7において、図3と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 5)
FIG. 7 is a perspective view of an objective lens actuator and a mirror actuator of the optical pickup device according to the fifth embodiment of the present invention. In FIG. 7, the same components as those in FIG.
 図7の構成において、図3との相違点は、レンズホルダ52に対物レンズ1に加えて対物レンズ51が搭載されている点と、ミラーホルダ53に立上げミラー50が搭載されている点とである。 7 is different from FIG. 3 in that the objective lens 51 is mounted on the lens holder 52 in addition to the objective lens 1, and the rising mirror 50 is mounted on the mirror holder 53. It is.
 従って、上記の相違点について図7を用いて説明する。 Therefore, the above differences will be described with reference to FIG.
 図7において、対物レンズ51は、ソリッドイマージョンレンズを含まない通常の集光レンズのみで構成され、青色レーザ光などの光ビームを0.85程度の開口数で集光する。対物レンズ51は、光ディスクの接線方向Kに沿って対物レンズ1に隣接して配置され、レンズホルダ52に搭載されている。 7, the objective lens 51 is composed of only a normal condensing lens that does not include a solid immersion lens, and condenses a light beam such as blue laser light with a numerical aperture of about 0.85. The objective lens 51 is disposed adjacent to the objective lens 1 along the tangential direction K of the optical disk, and is mounted on the lens holder 52.
 一方、立ち上げミラー50の接線方向Kの寸法は、トラッキング方向Tに沿って進む光ビームを対物レンズ51及び対物レンズ1に向けて反射できるように両方の対物レンズに対応した長さとなっている。ミラーホルダ53は、立上げミラー50を保持する。立上げミラー50の長手方向は接線方向Kに一致する。立上げミラー50は、青色半導体レーザダイオード23から出射された光ビームを、反射面によって折り曲げて、対物レンズ51に導く。レンズホルダ52は、対物レンズ1及び対物レンズ51を保持する。 On the other hand, the dimension of the rising mirror 50 in the tangential direction K is a length corresponding to both objective lenses so that the light beam traveling along the tracking direction T can be reflected toward the objective lens 51 and the objective lens 1. . The mirror holder 53 holds the rising mirror 50. The longitudinal direction of the rising mirror 50 coincides with the tangential direction K. The rising mirror 50 bends the light beam emitted from the blue semiconductor laser diode 23 by the reflecting surface and guides it to the objective lens 51. The lens holder 52 holds the objective lens 1 and the objective lens 51.
 なお、本実施の形態5における光ピックアップ装置は、実施の形態1におけるミラーアクチュエータ駆動回路37を備えているが、本発明は特にこれに限定されず、実施の形態2~4におけるミラーアクチュエータ駆動回路45~47を備えてもよい。 The optical pickup device according to the fifth embodiment includes the mirror actuator drive circuit 37 according to the first embodiment. However, the present invention is not particularly limited to this, and the mirror actuator drive circuit according to the second to fourth embodiments. 45 to 47 may be provided.
 以上のように、本実施の形態の光ピックアップ装置は、所定の波長を有する光ビームを出射する光源(23)と、光ディスク(20)の記録面上に光ビームを収束させる第1の対物レンズ(1)と、光ディスク(20)の半径方向に傾斜した反射面を有し、光源(23)から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズ(1)に導く立上げミラー(50)と、第1の対物レンズ(1)によって記録面上に収束され、さらに記録面で反射された光ビームを、第1の対物レンズ(1)及び立上げミラー(50)を介して受光し、電気信号に変換する光検出器(26)と、第1の対物レンズ(1)を保持するレンズホルダ(52)と、レンズホルダ(52)を、少なくとも光ディスク(20)に垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダ(52)を少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータ(17)と、立上げミラー(50)を保持するミラーホルダ(53)と、ミラーホルダ(53)をトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダ(53)をトラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータ(18)と、立上げミラー(50)が第1の対物レンズ(1)のトラッキング方向の移動に追従するように、ミラーアクチュエータ(18)を駆動させるミラーアクチュエータ駆動部(37)とを備える。 As described above, the optical pickup device of the present embodiment includes the light source (23) that emits a light beam having a predetermined wavelength, and the first objective lens that converges the light beam on the recording surface of the optical disc (20). (1) and a reflecting surface inclined in the radial direction of the optical disc (20), and the optical axis of the light beam emitted from the light source (23) is bent by the reflecting surface and guided to the first objective lens (1). The light beam converged on the recording surface by the rising mirror (50) and the first objective lens (1) and further reflected by the recording surface is converted into the first objective lens (1) and the rising mirror (50). The optical detector (26) that receives light via the light and converts it into an electrical signal, the lens holder (52) that holds the first objective lens (1), and the lens holder (52) are at least mounted on the optical disc (20). The vertical direction Objective lens actuator comprising: a lens holder support mechanism that supports movement in the focusing direction and the tracking direction that is the radial direction of the optical disc; and a mirror holder drive mechanism that drives the lens holder (52) in at least the focusing direction and the tracking direction. 17), a mirror holder (53) for holding the rising mirror (50), a mirror holder support mechanism for supporting the mirror holder (53) so as to be movable in the tracking direction, and driving the mirror holder (53) in the tracking direction. A mirror actuator (18) having a mirror holder driving mechanism for driving the mirror actuator (18), and a mirror for driving the mirror actuator (18) so that the rising mirror (50) follows the movement of the first objective lens (1) in the tracking direction. An actuator driving unit (37).
 さらに、本実施形態の光ピックアップ装置は、光ディスク(20)の接線方向に沿って第1の対物レンズに隣接して配置される第2の対物レンズ(51)をさらに備える。このとき、立上げミラー(50)の長手方向は接線方向に一致し、立上げミラー(50)は、光源(23)から出射された光ビームを、反射面によって折り曲げて、第2の対物レンズ(51)に導く。レンズホルダ(53)は、第1の対物レンズ(1)及び第2の対物レンズ(51)を保持する。 Furthermore, the optical pickup device of this embodiment further includes a second objective lens (51) disposed adjacent to the first objective lens along the tangential direction of the optical disc (20). At this time, the longitudinal direction of the rising mirror (50) coincides with the tangential direction, and the rising mirror (50) bends the light beam emitted from the light source (23) by the reflecting surface, and the second objective lens. Guide to (51). The lens holder (53) holds the first objective lens (1) and the second objective lens (51).
 以上の構成により、光ピックアップ装置が、例えば、ソリッドイマージョンレンズ1bを含む対物レンズ1と、通常の集光レンズのみで構成される対物レンズ51とを備えることにより、ソリッドイマージョンレンズに対応した超高密度光記録及び超高密度光再生用の光ディスクと、通常の集光レンズに対応した光ディスクとの2種類以上の光ディスクを互換して情報を記録又は再生することが可能となる。 With the above configuration, the optical pickup device includes, for example, the objective lens 1 including the solid immersion lens 1b and the objective lens 51 including only a normal condenser lens. It is possible to record or reproduce information by using at least two types of optical discs, ie, optical discs for high density optical recording and ultra high density optical reproduction, and optical discs compatible with ordinary condenser lenses.
 ソリッドイマージョンレンズに対応した光ディスクに情報を記録又は再生する場合は、ミラーアクチュエータ18を動作させることにより、対物レンズ1の変位に対して立上げミラー50を追従させることができる。従って、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズ1と光ビームとの光軸ずれ量を抑えることができ、超高密度光記録及び超高密度光再生が可能なる。 In the case of recording or reproducing information on an optical disc corresponding to a solid immersion lens, the rising mirror 50 can be made to follow the displacement of the objective lens 1 by operating the mirror actuator 18. Therefore, the amount of optical axis misalignment between the objective lens 1 and the light beam can be suppressed within an allowable range in an optical pickup device using a solid immersion lens, and ultrahigh density optical recording and ultrahigh density optical reproduction are possible. Become.
 また、通常の集光レンズに対応した光ディスクに情報を記録又は再生する場合は、ミラーアクチュエータ18を動作させないことにより、消費電力の低減が可能となる。あるいは、通常の集光レンズに対応した光ディスクに情報を記録又は再生する場合であっても、ミラーアクチュエータ18を動作させることにより、対物レンズ51のトラッキング動作時の記録性能及び再生性能を向上させることができ、光ピックアップ装置として良好な信頼性を得ることができる。 Further, when information is recorded or reproduced on an optical disk corresponding to a normal condenser lens, power consumption can be reduced by not operating the mirror actuator 18. Alternatively, even when information is recorded or reproduced on an optical disc corresponding to a normal condenser lens, the recording performance and the reproduction performance during the tracking operation of the objective lens 51 can be improved by operating the mirror actuator 18. And good reliability as an optical pickup device can be obtained.
 なお、本実施の形態において、対物レンズ51が第2の対物レンズの一例に相当し、立ち上げミラー50が立上げミラーの一例に相当し、レンズホルダ52がレンズホルダの一例に相当する。 In the present embodiment, the objective lens 51 corresponds to an example of a second objective lens, the rising mirror 50 corresponds to an example of a rising mirror, and the lens holder 52 corresponds to an example of a lens holder.
 なお、実施の形態1~実施の形態5において、光ピックアップ装置は、対物レンズ1と光ディスク20の表面との間の距離を制御してもよい。この場合、光検出器26又は光検出器26とは別に設けられた光検出器は、近接場光が生成される領域からの戻り光の光量を検出し、光ピックアップ制御回路36は、検出される戻り光の光量に基づいてフォーカシングコイル駆動回路32を駆動し、対物レンズ1と光ディスク20の表面との間の距離を制御する。 In the first to fifth embodiments, the optical pickup device may control the distance between the objective lens 1 and the surface of the optical disc 20. In this case, the photodetector 26 or a photodetector provided separately from the photodetector 26 detects the amount of return light from the region where the near-field light is generated, and the optical pickup control circuit 36 detects the light amount. The focusing coil drive circuit 32 is driven based on the amount of return light to control the distance between the objective lens 1 and the surface of the optical disc 20.
 (実施の形態6)
 実施の形態1~実施の形態5の光ピックアップ装置を用いた光ディスク装置の実施の形態を図8に示す。図8は、本発明の実施の形態6における光ディスク装置の概略構成を示す図である。図8において、光ディスク装置100は、駆動装置101、光ピックアップ装置102、電気回路(制御部)103及びモータ104を備える。
(Embodiment 6)
FIG. 8 shows an embodiment of an optical disk device using the optical pickup device according to the first to fifth embodiments. FIG. 8 is a diagram showing a schematic configuration of an optical disc apparatus according to Embodiment 6 of the present invention. In FIG. 8, the optical disc apparatus 100 includes a drive device 101, an optical pickup device 102, an electric circuit (control unit) 103, and a motor 104.
 光ディスク20は、ターンテーブル105に搭載され、クランパー106により保持され、モータ104によって回転される。光ピックアップ装置102は、実施の形態1~実施の形態5で述べた光ピックアップ装置である。駆動装置101は、実施の形態1~実施の形態5に示した光ピックアップ装置102を、光ディスク20の所望の情報の存在するトラックのところまで移送する。 The optical disk 20 is mounted on the turntable 105, held by the clamper 106, and rotated by the motor 104. The optical pickup device 102 is the optical pickup device described in the first to fifth embodiments. The drive device 101 transfers the optical pickup device 102 shown in the first to fifth embodiments to a track on the optical disc 20 where desired information exists.
 電気回路103は、光ピックアップ装置102から得られる信号に基づいて、光ピックアップ装置102とモータ104とを制御する。光ピックアップ装置102は、光ディスク20との位置関係に対応して、フォーカシングエラー信号、トラッキングエラー信号、ギャップ信号及びRF信号を電気回路103へ送る。電気回路103は、これらの信号に対応して、光ピックアップ装置102へ、対物レンズを移動させるアクチュエータを駆動させるための信号を送る。この信号によって、光ピックアップ装置102は、光ディスク20に対してフォーカス制御、トラッキング制御又はチルト制御を行い、情報の読み出し、情報の書き込み又は情報の消去を行う。 The electric circuit 103 controls the optical pickup device 102 and the motor 104 based on a signal obtained from the optical pickup device 102. The optical pickup device 102 sends a focusing error signal, a tracking error signal, a gap signal, and an RF signal to the electric circuit 103 in accordance with the positional relationship with the optical disc 20. In response to these signals, the electric circuit 103 sends a signal for driving an actuator that moves the objective lens to the optical pickup device 102. In response to this signal, the optical pickup device 102 performs focus control, tracking control, or tilt control on the optical disc 20, and reads information, writes information, or erases information.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る光ピックアップ装置は、所定の波長を有する光ビームを出射する光源と、光ディスクの記録面上に前記光ビームを収束させる第1の対物レンズと、前記光ディスクの半径方向に傾斜した反射面を有し、前記光源から出射された前記光ビームの光軸を前記反射面によって折り曲げて前記第1の対物レンズに導く立上げミラーと、前記第1の対物レンズによって前記記録面上に収束され、さらに前記記録面で反射された光ビームを前記第1の対物レンズ及び前記立上げミラーを介して受光し電気信号に変換する光検出器と、前記第1の対物レンズを保持するレンズホルダと、前記レンズホルダを、少なくとも前記光ディスクに垂直な方向であるフォーカシング方向と前記光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、前記レンズホルダを少なくとも前記フォーカシング方向及び前記トラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータと、前記立上げミラーを保持するミラーホルダと、前記ミラーホルダを前記トラッキング方向に移動可能に支持するミラーホルダ支持機構と、前記ミラーホルダを前記トラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータと、前記立上げミラーが前記第1の対物レンズの前記トラッキング方向の移動に追従するように、前記ミラーアクチュエータを駆動させるミラーアクチュエータ駆動部とを備える。 An optical pickup device according to one aspect of the present invention includes a light source that emits a light beam having a predetermined wavelength, a first objective lens that converges the light beam on a recording surface of an optical disc, and a radial direction of the optical disc. A rising mirror having an inclined reflecting surface, and bending the optical axis of the light beam emitted from the light source by the reflecting surface to guide the first objective lens, and the recording surface by the first objective lens A photodetector that receives the light beam converged above and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal, and the first objective lens are held. The lens holder, and at least a focusing direction that is a direction perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. An objective lens actuator comprising: a lens holder support mechanism that movably supports; a mirror holder drive mechanism that drives the lens holder in at least the focusing direction and the tracking direction; a mirror holder that holds the rising mirror; A mirror actuator comprising a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, a mirror holder drive mechanism that drives the mirror holder in the tracking direction, and the rising mirror is the first objective lens A mirror actuator driving unit that drives the mirror actuator so as to follow the movement in the tracking direction.
 この構成によれば、光源は、所定の波長を有する光ビームを出射する。第1の対物レンズは、光ディスクの記録面上に光ビームを収束させる。立上げミラーは、光ディスクの半径方向に傾斜した反射面を有し、光源から出射された光ビームの光軸を反射面によって折り曲げて第1の対物レンズに導く。光検出器は、第1の対物レンズによって記録面上に収束され、さらに記録面で反射された光ビームを第1の対物レンズ及び立上げミラーを介して受光し電気信号に変換する。対物レンズアクチュエータは、第1の対物レンズを保持するレンズホルダと、レンズホルダを、少なくとも光ディスクに垂直な方向であるフォーカシング方向と光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、レンズホルダを少なくともフォーカシング方向及びトラッキング方向に駆動するミラーホルダ駆動機構とを備える。ミラーアクチュエータは、立上げミラーを保持するミラーホルダと、ミラーホルダをトラッキング方向に移動可能に支持するミラーホルダ支持機構と、ミラーホルダをトラッキング方向に駆動するミラーホルダ駆動機構とを備える。ミラーアクチュエータ駆動部は、立上げミラーが第1の対物レンズのトラッキング方向の移動に追従するように、ミラーアクチュエータを駆動させる。 According to this configuration, the light source emits a light beam having a predetermined wavelength. The first objective lens converges the light beam on the recording surface of the optical disc. The rising mirror has a reflecting surface inclined in the radial direction of the optical disk, and guides the optical axis of the light beam emitted from the light source to the first objective lens by bending the reflecting surface. The photodetector receives the light beam converged on the recording surface by the first objective lens and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal. The objective lens actuator includes a lens holder that holds the first objective lens, and a lens holder support that supports the lens holder so that the lens holder can move at least in a focusing direction that is perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. And a mirror holder driving mechanism for driving the lens holder at least in the focusing direction and the tracking direction. The mirror actuator includes a mirror holder that holds the rising mirror, a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction, and a mirror holder drive mechanism that drives the mirror holder in the tracking direction. The mirror actuator driving unit drives the mirror actuator so that the rising mirror follows the movement of the first objective lens in the tracking direction.
 したがって、対物レンズアクチュエータ及びミラーアクチュエータが各々独立に支持機構及び駆動機構を有しており、動作時に互いに干渉することがないので、対物レンズアクチュエータとミラーアクチュエータとの間のクロストークの発生によるサーボ性能の劣化を抑制することができるとともに、対物レンズの移動に対する立上げミラーの追従精度の劣化を抑制することができる。 Accordingly, since the objective lens actuator and the mirror actuator each independently have a support mechanism and a drive mechanism and do not interfere with each other during operation, the servo performance due to the occurrence of crosstalk between the objective lens actuator and the mirror actuator. And the deterioration of the tracking accuracy of the rising mirror with respect to the movement of the objective lens can be suppressed.
 また、上記の光ピックアップ装置において、前記光ディスクの接線方向に沿って前記第1の対物レンズに隣接して配置される第2の対物レンズをさらに備え、前記立上げミラーは、前記光源から出射された前記光ビームを、前記反射面によって折り曲げて、前記第2の対物レンズに導き、前記レンズホルダは、前記第1の対物レンズ及び前記第2の対物レンズを保持することが好ましい。 The optical pickup device further includes a second objective lens disposed adjacent to the first objective lens along a tangential direction of the optical disc, and the rising mirror is emitted from the light source. Preferably, the light beam is bent by the reflecting surface and guided to the second objective lens, and the lens holder holds the first objective lens and the second objective lens.
 この構成によれば、第2の対物レンズは、光ディスクの接線方向に沿って第1の対物レンズに隣接して配置される。立上げミラーは、光源から出射された光ビームを、反射面によって折り曲げて、第2の対物レンズに導く。レンズホルダは、第1の対物レンズ及び第2の対物レンズを保持する。 According to this configuration, the second objective lens is disposed adjacent to the first objective lens along the tangential direction of the optical disc. The rising mirror bends the light beam emitted from the light source by the reflecting surface and guides it to the second objective lens. The lens holder holds the first objective lens and the second objective lens.
 したがって、第1の対物レンズに対応した光ディスクと、第2の対物レンズに対応した光ディスクとの2種類以上の光ディスクを互換して情報を記録又は再生することができる。 Therefore, it is possible to record or reproduce information by using at least two types of optical discs, ie, an optical disc corresponding to the first objective lens and an optical disc corresponding to the second objective lens.
 また、上記の光ピックアップ装置において、前記ミラーホルダ駆動機構は、前記ミラーホルダの前記光ディスクの接線方向に交わる側面に固着され、前記接線方向に沿った巻回軸を有するミラーホルダ駆動コイルと、前記ミラーホルダ駆動コイルに対して前記接線方向に対向して配置され、前記ミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与する永久磁石と、前記永久磁石を固定するヨークベースとを備えることが好ましい。 In the above optical pickup device, the mirror holder driving mechanism is fixed to a side surface of the mirror holder that intersects the tangential direction of the optical disc, and has a winding shaft along the tangential direction, A permanent magnet disposed opposite to the tangential direction with respect to the mirror holder driving coil and applying a magnetic field in the opposite direction to both sides along the tracking direction of the mirror holder driving coil, and a yoke for fixing the permanent magnet It is preferable to provide a base.
 この構成によれば、接線方向に沿った巻回軸を有するミラーホルダ駆動コイルは、ミラーホルダの光ディスクの接線方向に交わる側面に固着される。永久磁石は、ミラーホルダ駆動コイルに対して接線方向に対向して配置され、ミラーホルダ駆動コイルのトラッキング方向に沿った両辺に各々逆向きの磁界を付与する。ヨークベースは、永久磁石を固定する。 According to this configuration, the mirror holder driving coil having the winding axis along the tangential direction is fixed to the side surface of the mirror holder that intersects the tangential direction of the optical disk. The permanent magnet is disposed so as to be opposed to the mirror holder driving coil in the tangential direction, and applies opposite magnetic fields to both sides along the tracking direction of the mirror holder driving coil. The yoke base fixes the permanent magnet.
 したがって、永久磁石によって、ミラーホルダ駆動コイルのトラッキング方向に沿った両辺に各々逆向きの磁界が付与されることにより、ミラーホルダをトラッキング方向へ移動させることができ、対物レンズのトラッキング方向への移動にミラーホルダを追従させることができる。 Therefore, by applying a magnetic field in the opposite direction to each side along the tracking direction of the mirror holder drive coil by the permanent magnet, the mirror holder can be moved in the tracking direction, and the objective lens is moved in the tracking direction. The mirror holder can be made to follow.
 また、上記の光ピックアップ装置において、ミラーホルダ支持機構は、前記ヨークベースに固定された第1の固定部材と、一端を前記第1の固定部材に固定され、他端を前記ミラーホルダに固定された複数のミラー用棒状弾性部材とを備え、前記トラッキング方向に垂直な平面上で互いに非平行に配置された少なくとも2本のミラー用棒状弾性部材が、前記トラッキング方向に沿って少なくとも2組み配置されていることが好ましい。 Further, in the above optical pickup device, the mirror holder support mechanism includes a first fixing member fixed to the yoke base, one end fixed to the first fixing member, and the other end fixed to the mirror holder. A plurality of mirror-like elastic members for mirrors, and at least two mirror-like elastic members for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction are arranged along the tracking direction. It is preferable.
 この構成によれば、第1の固定部材は、ヨークベースに固定されている。複数のミラー用棒状弾性部材は、一端を第1の固定部材に固定され、他端をミラーホルダに固定されている。トラッキング方向に垂直な平面上で互いに非平行に配置された少なくとも2本のミラー用棒状弾性部材が、トラッキング方向に沿って少なくとも2組み配置されている。 According to this configuration, the first fixing member is fixed to the yoke base. One end of each of the plurality of mirror-like elastic members for mirror is fixed to the first fixing member, and the other end is fixed to the mirror holder. At least two pairs of mirror-like elastic members for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction are arranged along the tracking direction.
 したがって、ミラーホルダがフォーカシング方向などのトラッキング方向以外の方向に移動するのを抑制しつつ、ミラーホルダをトラッキング方向へ移動させることができる。 Therefore, it is possible to move the mirror holder in the tracking direction while suppressing the mirror holder from moving in a direction other than the tracking direction such as the focusing direction.
 また、上記の光ピックアップ装置において、前記対物レンズアクチュエータは、前記レンズホルダを前記トラッキング方向へ駆動するためのトラッキングコイルと、前記レンズホルダを前記フォーカシング方向へ駆動するためのフォーカシングコイルとを備え、前記トラッキングコイル及び前記フォーカシングコイルは、前記永久磁石に対向して配置され、前記永久磁石は、前記トラッキングコイル及び前記フォーカシングコイルに磁界を付与することが好ましい。 In the above optical pickup device, the objective lens actuator includes a tracking coil for driving the lens holder in the tracking direction, and a focusing coil for driving the lens holder in the focusing direction, Preferably, the tracking coil and the focusing coil are arranged to face the permanent magnet, and the permanent magnet applies a magnetic field to the tracking coil and the focusing coil.
 この構成によれば、レンズホルダをトラッキング方向へ駆動するためのトラッキングコイルと、レンズホルダをフォーカシング方向へ駆動するためのフォーカシングコイルとは、永久磁石に対向して配置される。永久磁石は、トラッキングコイル及びフォーカシングコイルに磁界を付与する。 According to this configuration, the tracking coil for driving the lens holder in the tracking direction and the focusing coil for driving the lens holder in the focusing direction are arranged to face the permanent magnet. The permanent magnet applies a magnetic field to the tracking coil and the focusing coil.
 したがって、永久磁石は、ミラーホルダ駆動コイルだけでなく、トラッキングコイル及びフォーカシングコイルにも磁界を付与するので、ミラーホルダ駆動コイル、トラッキングコイル及びフォーカシングコイルが1つの永久磁石を共用することができ、光ピックアップ装置を小型化することができる。 Therefore, the permanent magnet applies a magnetic field not only to the mirror holder driving coil but also to the tracking coil and the focusing coil, so that the mirror holder driving coil, the tracking coil and the focusing coil can share one permanent magnet, The pickup device can be reduced in size.
 また、上記の光ピックアップ装置において、前記対物レンズアクチュエータは、前記ヨークベースに固定された第2の固定部材と、一端を前記第2の固定部材に固定され、他端を前記レンズホルダに固定された複数のレンズ用棒状弾性部材とをさらに備え、前記トラッキングコイルは、前記接線方向に垂直な前記レンズホルダの側面に固着され、前記接線方向に沿った巻回軸を有し、前記フォーカシングコイルは、前記接線方向に垂直な前記レンズホルダの側面に固着され、前記接線方向に沿った巻回軸を有する第1及び第2のフォーカシングコイルを含み、前記永久磁石は、前記第1及び第2のフォーカシングコイル、前記トラッキングコイル及び前記ミラーホルダ駆動コイルに対して前記接線方向に対向する位置に前記ヨークベースに固定され、隣接する着磁領域が互いに異極であり且つ前記着磁領域が十字形状の境界線によって4つの着磁領域に多極着磁されており、前記永久磁石の前記4つの着磁領域のうち前記光ディスクに近い側の前記トラッキング方向に沿って隣接した第1及び第2の着磁領域は、前記トラッキングコイルの前記トラッキング方向に沿った両辺に逆向きの磁界を付与し、前記永久磁石の前記4つの着磁領域のうち前記光ディスクから遠い側の前記トラッキング方向に沿って隣接した第3及び第4の着磁領域は、前記ミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に逆向きの磁界を付与し、前記永久磁石の前記4つの着磁領域のうち前記フォーカシング方向に沿って隣接した第1及び第3の着磁領域は、前記第1のフォーカシングコイルの前記フォーカシング方向に沿った両辺に逆向きの磁界を付与し、前記永久磁石の前記4つの着磁領域のうち前記フォーカシング方向に沿って隣接した第2及び第4の着磁領域は、前記第2のフォーカシングコイルの前記フォーカシング方向に沿った両辺に逆向きの磁界を付与することが好ましい。 In the optical pickup device, the objective lens actuator includes a second fixing member fixed to the yoke base, one end fixed to the second fixing member, and the other end fixed to the lens holder. A plurality of rod-shaped elastic members for lenses, and the tracking coil is fixed to a side surface of the lens holder perpendicular to the tangential direction, and has a winding axis along the tangential direction, and the focusing coil is , Including first and second focusing coils fixed to a side surface of the lens holder perpendicular to the tangential direction and having winding axes along the tangential direction, and the permanent magnet includes the first and second focusing coils. The yoke base is located at a position facing the tangential direction with respect to the focusing coil, the tracking coil and the mirror holder driving coil. The adjacent magnetized areas have different polarities, and the magnetized areas are multipolarly magnetized into four magnetized areas by a cross-shaped boundary line, and the four magnetized areas of the permanent magnet are The first and second magnetized regions adjacent to each other along the tracking direction on the side close to the optical disk apply a reverse magnetic field to both sides along the tracking direction of the tracking coil, and the permanent magnet Of the four magnetized regions, the third and fourth magnetized regions adjacent to each other in the tracking direction far from the optical disc are opposite to both sides of the mirror holder drive coil along the tracking direction. Of the four magnetized regions of the permanent magnet, the first and third magnetized regions adjacent to each other in the focusing direction are the first focusing coil. Of the four magnetized regions of the permanent magnet, the second and fourth magnetized regions adjacent to each other along the focusing direction are the first and second magnetized regions of the permanent magnet. Preferably, opposite magnetic fields are applied to both sides along the focusing direction of the second focusing coil.
 この構成によれば、第2の固定部材は、ヨークベースに固定されている。複数のレンズ用棒状弾性部材は、一端を第2の固定部材に固定され、他端をレンズホルダに固定されている。接線方向に沿った巻回軸を有するトラッキングコイルは、接線方向に垂直なレンズホルダの側面に固着されている。接線方向に沿った巻回軸を有する第1及び第2のフォーカシングコイルは、接線方向に垂直なレンズホルダの側面に固着されている。永久磁石は、第1及び第2のフォーカシングコイル、トラッキングコイル及びミラーホルダ駆動コイルに対して接線方向に対向する位置にヨークベースに固定され、隣接する着磁領域が互いに異極であり且つ着磁領域が十字形状の境界線によって4つの着磁領域に多極着磁されている。永久磁石の4つの着磁領域のうち光ディスクに近い側のトラッキング方向に沿って隣接した第1及び第2の着磁領域は、トラッキングコイルのトラッキング方向に沿った両辺に逆向きの磁界を付与する。永久磁石の4つの着磁領域のうち光ディスクから遠い側のトラッキング方向に沿って隣接した第3及び第4の着磁領域は、ミラーホルダ駆動コイルのトラッキング方向に沿った両辺に逆向きの磁界を付与する。永久磁石の4つの着磁領域のうちフォーカシング方向に沿って隣接した第1及び第3の着磁領域は、第1のフォーカシングコイルのフォーカシング方向に沿った両辺に逆向きの磁界を付与する。永久磁石の4つの着磁領域のうちフォーカシング方向に沿って隣接した第2及び第4の着磁領域は、第2のフォーカシングコイルのフォーカシング方向に沿った両辺に逆向きの磁界を付与する。 According to this configuration, the second fixing member is fixed to the yoke base. The plurality of rod-shaped elastic members for lenses have one end fixed to the second fixing member and the other end fixed to the lens holder. A tracking coil having a winding axis along the tangential direction is fixed to the side surface of the lens holder perpendicular to the tangential direction. The first and second focusing coils having winding axes along the tangential direction are fixed to the side surfaces of the lens holder perpendicular to the tangential direction. The permanent magnet is fixed to the yoke base at a position that is tangentially opposed to the first and second focusing coils, the tracking coil, and the mirror holder drive coil, and the adjacent magnetized regions have different polarities and are magnetized. The region is multipolarized into four magnetized regions by a cross-shaped boundary. Of the four magnetized areas of the permanent magnet, the first and second magnetized areas adjacent to each other along the tracking direction closer to the optical disc give opposite magnetic fields to both sides along the tracking direction of the tracking coil. . Of the four magnetized regions of the permanent magnet, the third and fourth magnetized regions adjacent to each other along the tracking direction farther from the optical disk apply opposite magnetic fields to both sides along the tracking direction of the mirror holder drive coil. Give. Of the four magnetized regions of the permanent magnet, the first and third magnetized regions adjacent to each other along the focusing direction apply opposite magnetic fields to both sides along the focusing direction of the first focusing coil. Of the four magnetized regions of the permanent magnet, the second and fourth magnetized regions adjacent to each other in the focusing direction apply opposite magnetic fields to both sides along the focusing direction of the second focusing coil.
 したがって、永久磁石によって、第1及び第2のフォーカシングコイル、トラッキングコイル及びミラーホルダ駆動コイルに磁界が付与されるので、第1及び第2のフォーカシングコイル、トラッキングコイル及びミラーホルダ駆動コイルが1つの永久磁石を共用することができ、光ピックアップ装置を小型化することができる。 Therefore, since the magnetic field is applied to the first and second focusing coils, the tracking coil, and the mirror holder driving coil by the permanent magnet, the first and second focusing coils, the tracking coil, and the mirror holder driving coil are one permanent. A magnet can be shared and the optical pickup device can be miniaturized.
 また、上記の光ピックアップ装置において、前記トラッキングコイルに隣接する部分であり、かつ前記光ディスクから遠い側の前記レンズホルダの側面には切欠きが設けられており、前記ミラーホルダ駆動コイルは、前記切欠き内に配置されることが好ましい。 In the optical pickup device, a notch is provided on a side surface of the lens holder that is adjacent to the tracking coil and is far from the optical disc, and the mirror holder driving coil It is preferable to arrange in the notch.
 この構成によれば、トラッキングコイルに隣接する部分であり、かつ光ディスクから遠い側のレンズホルダの側面には切欠きが設けられている。ミラーホルダ駆動コイルは、切欠き内に配置される。 According to this configuration, a notch is provided on the side surface of the lens holder that is adjacent to the tracking coil and is far from the optical disk. The mirror holder driving coil is disposed in the notch.
 したがって、レンズホルダに設けられた切欠き内にミラーホルダ駆動コイルが配置されるので、光ピックアップ装置を小型化することができる。 Therefore, since the mirror holder driving coil is disposed in the notch provided in the lens holder, the optical pickup device can be miniaturized.
 また、上記の光ピックアップ装置において、前記ミラーホルダ駆動コイルは、前記ミラーホルダの前記光ディスクの接線方向に交わる一方の側面に固着され、前記接線方向に沿った巻回軸を有する第1のミラーホルダ駆動コイルと、前記ミラーホルダの前記光ディスクの接線方向に交わる他方の側面に固着され、前記接線方向に沿った巻回軸を有する第2のミラーホルダ駆動コイルとを含み、前記永久磁石は、前記第1のミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与し、前記ミラーホルダ駆動機構は、前記第2のミラーホルダ駆動コイルに対して前記接線方向に対向して配置され、前記第2のミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与するミラーホルダ用永久磁石をさらに含むことが好ましい。 In the above optical pickup device, the mirror holder driving coil is fixed to one side surface of the mirror holder that intersects the tangential direction of the optical disk, and has a winding axis along the tangential direction. A drive coil, and a second mirror holder drive coil fixed to the other side surface of the mirror holder that intersects the tangential direction of the optical disk and having a winding axis along the tangential direction, and the permanent magnet The opposite magnetic fields are applied to both sides of the first mirror holder driving coil along the tracking direction, and the mirror holder driving mechanism is opposed to the second mirror holder driving coil in the tangential direction. The mirror mirror is disposed and applies opposite magnetic fields to both sides along the tracking direction of the second mirror holder driving coil. Preferably further comprising a permanent magnet for da.
 この構成によれば、接線方向に沿った巻回軸を有する第1のミラーホルダ駆動コイルは、ミラーホルダの光ディスクの接線方向に交わる一方の側面に固着される。接線方向に沿った巻回軸を有する第2のミラーホルダ駆動コイルは、ミラーホルダの光ディスクの接線方向に交わる他方の側面に固着される。永久磁石は、第1のミラーホルダ駆動コイルのトラッキング方向に沿った両辺に各々逆向きの磁界を付与する。ミラーホルダ用永久磁石は、第2のミラーホルダ駆動コイルに対して接線方向に対向して配置され、第2のミラーホルダ駆動コイルのトラッキング方向に沿った両辺に各々逆向きの磁界を付与する。 According to this configuration, the first mirror holder driving coil having the winding axis along the tangential direction is fixed to one side surface of the mirror holder that intersects the tangential direction of the optical disk. The second mirror holder drive coil having a winding axis along the tangential direction is fixed to the other side surface of the mirror holder that intersects the tangential direction of the optical disk. The permanent magnet applies opposite magnetic fields to both sides along the tracking direction of the first mirror holder driving coil. The permanent magnet for the mirror holder is disposed so as to face the second mirror holder driving coil in the tangential direction, and applies opposite magnetic fields to both sides along the tracking direction of the second mirror holder driving coil.
 したがって、第1のミラーホルダ駆動コイル及び第2のミラーホルダ駆動コイルの2つのコイルによってミラーホルダが駆動されるので、ミラーホルダを精度よく確実に移動させることができる。 Therefore, since the mirror holder is driven by the two coils of the first mirror holder driving coil and the second mirror holder driving coil, the mirror holder can be moved accurately and reliably.
 また、上記の光ピックアップ装置において、前記ミラーアクチュエータ駆動部は、前記光検出器からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅した前記トラッキングエラー信号を駆動電流として前記ミラーホルダ駆動コイルに出力する増幅器を備えることが好ましい。 In the optical pickup device, the mirror actuator driving unit amplifies a tracking error signal generated based on an output from the photodetector, and drives the mirror holder using the amplified tracking error signal as a driving current. It is preferable to provide an amplifier that outputs to the coil.
 この構成によれば、増幅器は、光検出器からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅したトラッキングエラー信号を駆動電流としてミラーホルダ駆動コイルに出力する。 According to this configuration, the amplifier amplifies the tracking error signal generated based on the output from the photodetector, and outputs the amplified tracking error signal to the mirror holder driving coil as a driving current.
 したがって、ミラーアクチュエータ駆動部が増幅器のみを備える簡素な構成で対物レンズの変位に対して立上げミラーを常に追従させることができ、光ピックアップ装置のさらなるコストダウンが可能となる。 Therefore, with a simple configuration in which the mirror actuator driving unit includes only an amplifier, the rising mirror can always follow the displacement of the objective lens, and the cost of the optical pickup device can be further reduced.
 また、上記の光ピックアップ装置において、前記ミラーアクチュエータ駆動部は、前記対物レンズアクチュエータ及び前記ミラーアクチュエータの非動作状態時における前記第1の対物レンズと前記立上げミラーとの相対距離を予め記憶する初期ずれ量メモリと、前記初期ずれ量メモリに記憶されている前記相対距離をオフセット値として前記トラッキングエラー信号に加算して前記増幅器に出力する加算器とをさらに備えることが好ましい。 In the above optical pickup device, the mirror actuator driving unit stores in advance the relative distance between the first objective lens and the rising mirror when the objective lens actuator and the mirror actuator are not operating. It is preferable to further include a deviation amount memory and an adder that adds the relative distance stored in the initial deviation amount memory to the tracking error signal as an offset value and outputs the added value to the amplifier.
 この構成によれば、初期ずれ量メモリは、対物レンズアクチュエータ及びミラーアクチュエータの非動作状態時における第1の対物レンズと立上げミラーとの相対距離を予め記憶する。加算器は、初期ずれ量メモリに記憶されている相対距離をオフセット値としてトラッキングエラー信号に加算して増幅器に出力する。 According to this configuration, the initial deviation amount memory stores in advance the relative distance between the first objective lens and the rising mirror when the objective lens actuator and the mirror actuator are not operating. The adder adds the relative distance stored in the initial deviation amount memory as an offset value to the tracking error signal and outputs the result to the amplifier.
 したがって、対物レンズアクチュエータ及びミラーアクチュエータの非動作状態時において、立上げミラーと対物レンズとに相対位置ずれがある場合でも、当該非動作状態時における相対位置ずれの影響を低減することができる。 Therefore, even when the objective lens actuator and the mirror actuator are in a non-operating state, even when there is a relative positional shift between the rising mirror and the objective lens, the influence of the relative positional shift in the non-operating state can be reduced.
 また、上記の光ピックアップ装置において、前記ミラーアクチュエータは、前記ミラーホルダに搭載されるとともに、前記ミラーホルダと前記レンズホルダとの相対位置ずれ量を検出する位置センサを備え、前記ミラーアクチュエータ駆動部は、前記位置センサによって検出される前記相対位置ずれ量を監視する位置ずれ量監視部と、前記位置ずれ量監視部によって監視される前記相対位置ずれ量がゼロになるように前記ミラーホルダ駆動コイルに出力する電流値を調整する位置ずれ制御部とを備えることが好ましい。 Further, in the above optical pickup device, the mirror actuator is mounted on the mirror holder and includes a position sensor that detects a relative positional deviation amount between the mirror holder and the lens holder, and the mirror actuator driving unit includes: A positional deviation amount monitoring unit that monitors the relative positional deviation amount detected by the position sensor, and the mirror holder driving coil so that the relative positional deviation amount monitored by the positional deviation amount monitoring unit becomes zero. It is preferable to provide a displacement control unit that adjusts the current value to be output.
 この構成によれば、位置センサは、ミラーホルダに搭載されるとともに、ミラーホルダとレンズホルダとの相対位置ずれ量を検出する。位置ずれ量監視部は、位置センサによって検出される相対位置ずれ量を監視する。位置ずれ制御部は、位置ずれ量監視部によって監視される相対位置ずれ量がゼロになるようにミラーホルダ駆動コイルに出力する電流値を調整する。 According to this configuration, the position sensor is mounted on the mirror holder and detects the amount of relative positional deviation between the mirror holder and the lens holder. The positional deviation amount monitoring unit monitors the relative positional deviation amount detected by the position sensor. The positional deviation control unit adjusts the current value output to the mirror holder driving coil so that the relative positional deviation amount monitored by the positional deviation amount monitoring unit becomes zero.
 したがって、光ディスクの所望のトラック位置へのトラッキング動作によって対物レンズが移動しても、常に、立上げミラーと対物レンズとのトラッキング方向の相対距離を極小化するように、ミラーアクチュエータを駆動制御することができる。 Therefore, even if the objective lens is moved by the tracking operation to the desired track position of the optical disc, the mirror actuator is driven and controlled so that the relative distance in the tracking direction between the rising mirror and the objective lens is always minimized. Can do.
 また、上記の光ピックアップ装置において、前記ミラーアクチュエータ駆動部は、前記光ディスクの半径位置に対する偏心量を予め記憶する光ディスク偏心量メモリと、前記光ディスク偏心量メモリから出力される前記偏心量を表す出力信号を増幅し、増幅した前記出力信号を駆動電流として前記ミラーホルダ駆動コイルに出力する増幅器とを備えることが好ましい。 Further, in the above optical pickup device, the mirror actuator driving unit includes an optical disc eccentricity memory for storing in advance an eccentricity with respect to a radial position of the optical disc, and an output signal representing the eccentricity output from the optical disc eccentricity memory. And an amplifier that outputs the amplified output signal as a drive current to the mirror holder drive coil.
 この構成によれば、光ディスク偏心量メモリは、光ディスクの半径位置に対する偏心量を予め記憶する。増幅器は、光ディスク偏心量メモリから出力される偏心量を表す出力信号を増幅し、増幅した出力信号を駆動電流としてミラーホルダ駆動コイルに出力する。 According to this configuration, the optical disk eccentricity memory stores in advance the eccentricity with respect to the radial position of the optical disk. The amplifier amplifies an output signal representing the amount of eccentricity output from the optical disk eccentricity amount memory, and outputs the amplified output signal to the mirror holder drive coil as a drive current.
 したがって、光ディスクに偏心がある場合でも、この偏心の影響を低減することができるので、より精度良く立上げミラーを対物レンズのトラッキング方向の移動に追従させることができる。 Therefore, even when the optical disk has an eccentricity, the influence of the eccentricity can be reduced, so that the rising mirror can follow the movement of the objective lens in the tracking direction with higher accuracy.
 また、上記の光ピックアップ装置において、前記光源は、405nmの波長を有する青色レーザ光を出射することが好ましい。 In the above optical pickup device, it is preferable that the light source emits blue laser light having a wavelength of 405 nm.
 この構成によれば、405nmの波長を有する青色レーザ光を用いて光ディスクに情報を記録又は再生することができる。 According to this configuration, information can be recorded on or reproduced from the optical disk using blue laser light having a wavelength of 405 nm.
 また、上記の光ピックアップ装置において、前記光源と前記立上げミラーとの間の光路上に配置され、光ビームの収斂度を変化させるコリメートレンズと、前記コリメートレンズを前記光路上で前記光軸方向に移動させるコリメートレンズアクチュエータとをさらに備えることが好ましい。 Further, in the above optical pickup device, a collimating lens disposed on an optical path between the light source and the rising mirror and changing a convergence degree of a light beam, and the collimating lens on the optical path in the optical axis direction It is preferable to further include a collimating lens actuator to be moved to the position.
 この構成によれば、コリメートレンズは、光源と立上げミラーとの間の光路上に配置され、光ビームの収斂度を変化させる。コリメートレンズアクチュエータは、コリメートレンズを光路上で光軸方向に移動させる。 According to this configuration, the collimating lens is disposed on the optical path between the light source and the rising mirror, and changes the convergence of the light beam. The collimating lens actuator moves the collimating lens in the optical axis direction on the optical path.
 したがって、光ディスクが複数の記録面を有し、かつ対物レンズと光ディスクの表面との距離が短い場合に、コリメートレンズを光軸方向へ移動させることにより、所望の記録面に光ビームを集光させることができる。 Therefore, when the optical disc has a plurality of recording surfaces and the distance between the objective lens and the surface of the optical disc is short, the light beam is condensed on the desired recording surface by moving the collimating lens in the optical axis direction. be able to.
 また、上記の光ピックアップ装置において、前記第1の対物レンズは、近接場光によって光を集光するソリッドイマージョンレンズを含むことが好ましい。 In the above optical pickup device, it is preferable that the first objective lens includes a solid immersion lens that collects light by near-field light.
 この構成によれば、ソリッドイマージョンレンズを用いた光ピックアップ装置において許容される範囲内に、対物レンズと光ビームとの光軸ずれ量を抑えることができ、超高密度光記録及び超高密度光再生が可能なる。 According to this configuration, the optical axis misalignment between the objective lens and the light beam can be suppressed within an allowable range in the optical pickup device using the solid immersion lens, and ultra-high density optical recording and ultra-high density light can be achieved. Playback is possible.
 本発明の他の局面に係る光ディスク装置は、上記のいずれかに記載の光ピックアップ装置と、光ディスクを回転させるモータと、前記光ピックアップ装置から得られる信号に基づいて、前記モータ及び前記光ピックアップ装置を制御する制御部とを備える。 An optical disc device according to another aspect of the present invention provides an optical pickup device according to any one of the above, a motor for rotating an optical disc, and the motor and the optical pickup device based on a signal obtained from the optical pickup device. And a control unit for controlling.
 この構成によれば、上記の光ピックアップ装置を光ディスク装置に適用することができる。 According to this configuration, the above optical pickup device can be applied to an optical disk device.
 なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。 Note that the specific embodiments or examples made in the section for carrying out the invention are to clarify the technical contents of the present invention, and are limited to such specific examples. The present invention should not be interpreted in a narrow sense, and various modifications can be made within the spirit and scope of the present invention.
 本発明に係る光ピックアップ装置は、基材厚、対応波長及び記録密度などが互いに異なる複数種類の光ディスクに対して情報を記録又は再生することが可能であり、特に、ソリッドイマージョンレンズを用いた超高密度記録及び超高密度再生において有用である。さらに、この光ピックアップ装置を用いた光ディスク装置は、大容量の情報を記録又は再生することが可能であり、コンピュータ、光ディスクプレーヤ、光ディスクレコーダ、カーナビゲーションシステム、編集システム、光ディスクサーバ及びAVコンポーネントなど、情報を記録又は再生するあらゆるシステムに応用展開可能である。 The optical pickup device according to the present invention is capable of recording or reproducing information with respect to a plurality of types of optical discs having different substrate thicknesses, corresponding wavelengths, recording densities, and the like, and in particular, an ultra pickup using a solid immersion lens. Useful in high density recording and ultra high density reproduction. Furthermore, an optical disk device using this optical pickup device can record or reproduce a large amount of information, such as a computer, an optical disk player, an optical disk recorder, a car navigation system, an editing system, an optical disk server, and an AV component. The present invention can be applied to any system that records or reproduces information.

Claims (16)

  1.  所定の波長を有する光ビームを出射する光源と、
     光ディスクの記録面上に前記光ビームを収束させる第1の対物レンズと、
     前記光ディスクの半径方向に傾斜した反射面を有し、前記光源から出射された前記光ビームの光軸を前記反射面によって折り曲げて前記第1の対物レンズに導く立上げミラーと、
     前記第1の対物レンズによって前記記録面上に収束され、さらに前記記録面で反射された光ビームを前記第1の対物レンズ及び前記立上げミラーを介して受光し電気信号に変換する光検出器と、
     前記第1の対物レンズを保持するレンズホルダと、前記レンズホルダを、少なくとも前記光ディスクに垂直な方向であるフォーカシング方向と前記光ディスクの半径方向であるトラッキング方向とに移動可能に支持するレンズホルダ支持機構と、前記レンズホルダを少なくとも前記フォーカシング方向及び前記トラッキング方向に駆動するミラーホルダ駆動機構とを備える対物レンズアクチュエータと、
     前記立上げミラーを保持するミラーホルダと、前記ミラーホルダを前記トラッキング方向に移動可能に支持するミラーホルダ支持機構と、前記ミラーホルダを前記トラッキング方向に駆動するミラーホルダ駆動機構とを備えるミラーアクチュエータと、
     前記立上げミラーが前記第1の対物レンズの前記トラッキング方向の移動に追従するように、前記ミラーアクチュエータを駆動させるミラーアクチュエータ駆動部とを備えることを特徴とする光ピックアップ装置。
    A light source that emits a light beam having a predetermined wavelength;
    A first objective lens for focusing the light beam on the recording surface of the optical disc;
    A rising mirror having a reflecting surface inclined in the radial direction of the optical disc, and bending the optical axis of the light beam emitted from the light source by the reflecting surface to guide the first objective lens;
    A photodetector that receives a light beam converged on the recording surface by the first objective lens and reflected by the recording surface through the first objective lens and the rising mirror and converts it into an electrical signal. When,
    A lens holder that holds the first objective lens, and a lens holder support mechanism that supports the lens holder so as to be movable in at least a focusing direction that is perpendicular to the optical disc and a tracking direction that is a radial direction of the optical disc. And an objective lens actuator comprising a mirror holder driving mechanism that drives the lens holder in at least the focusing direction and the tracking direction,
    A mirror actuator comprising: a mirror holder that holds the rising mirror; a mirror holder support mechanism that supports the mirror holder so as to be movable in the tracking direction; and a mirror holder drive mechanism that drives the mirror holder in the tracking direction; ,
    An optical pickup device comprising: a mirror actuator driving unit that drives the mirror actuator so that the rising mirror follows the movement of the first objective lens in the tracking direction.
  2.  前記光ディスクの接線方向に沿って前記第1の対物レンズに隣接して配置される第2の対物レンズをさらに備え、
     前記立上げミラーは、前記光源から出射された前記光ビームを、前記反射面によって折り曲げて、前記第2の対物レンズに導き、
     前記レンズホルダは、前記第1の対物レンズ及び前記第2の対物レンズを保持することを特徴とする請求項1に記載の光ピックアップ装置。
    A second objective lens disposed adjacent to the first objective lens along a tangential direction of the optical disc;
    The rising mirror bends the light beam emitted from the light source by the reflecting surface and guides it to the second objective lens,
    The optical pickup device according to claim 1, wherein the lens holder holds the first objective lens and the second objective lens.
  3.  前記ミラーホルダ駆動機構は、
     前記ミラーホルダの前記光ディスクの接線方向に交わる側面に固着され、前記接線方向に沿った巻回軸を有するミラーホルダ駆動コイルと、
     前記ミラーホルダ駆動コイルに対して前記接線方向に対向して配置され、前記ミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与する永久磁石と、
     前記永久磁石を固定するヨークベースとを備えることを特徴とする請求項1又は2記載の光ピックアップ装置。
    The mirror holder driving mechanism is
    A mirror holder driving coil fixed to a side surface of the mirror holder that intersects the tangential direction of the optical disc, and having a winding axis along the tangential direction;
    A permanent magnet that is disposed opposite to the tangential direction with respect to the mirror holder driving coil, and that applies a magnetic field in opposite directions to both sides along the tracking direction of the mirror holder driving coil;
    The optical pickup device according to claim 1, further comprising a yoke base that fixes the permanent magnet.
  4.  ミラーホルダ支持機構は、
     前記ヨークベースに固定された第1の固定部材と、
     一端を前記第1の固定部材に固定され、他端を前記ミラーホルダに固定された複数のミラー用棒状弾性部材とを備え、
     前記トラッキング方向に垂直な平面上で互いに非平行に配置された少なくとも2本のミラー用棒状弾性部材が、前記トラッキング方向に沿って少なくとも2組み配置されていることを特徴とする請求項3記載の光ピックアップ装置。
    The mirror holder support mechanism
    A first fixing member fixed to the yoke base;
    A plurality of mirror-like elastic members for mirrors having one end fixed to the first fixing member and the other end fixed to the mirror holder;
    The at least two mirror-like elastic members for mirrors arranged non-parallel to each other on a plane perpendicular to the tracking direction are arranged in at least two sets along the tracking direction. Optical pickup device.
  5.  前記対物レンズアクチュエータは、
     前記レンズホルダを前記トラッキング方向へ駆動するためのトラッキングコイルと、
     前記レンズホルダを前記フォーカシング方向へ駆動するためのフォーカシングコイルとを備え、
     前記トラッキングコイル及び前記フォーカシングコイルは、前記永久磁石に対向して配置され、
     前記永久磁石は、前記トラッキングコイル及び前記フォーカシングコイルに磁界を付与することを特徴とする請求項3又は4記載の光ピックアップ装置。
    The objective lens actuator is
    A tracking coil for driving the lens holder in the tracking direction;
    A focusing coil for driving the lens holder in the focusing direction;
    The tracking coil and the focusing coil are arranged to face the permanent magnet,
    5. The optical pickup device according to claim 3, wherein the permanent magnet applies a magnetic field to the tracking coil and the focusing coil.
  6.  前記対物レンズアクチュエータは、
     前記ヨークベースに固定された第2の固定部材と、
     一端を前記第2の固定部材に固定され、他端を前記レンズホルダに固定された複数のレンズ用棒状弾性部材とをさらに備え、
     前記トラッキングコイルは、前記接線方向に垂直な前記レンズホルダの側面に固着され、前記接線方向に沿った巻回軸を有し、
     前記フォーカシングコイルは、前記接線方向に垂直な前記レンズホルダの側面に固着され、前記接線方向に沿った巻回軸を有する第1及び第2のフォーカシングコイルを含み、
     前記永久磁石は、前記第1及び第2のフォーカシングコイル、前記トラッキングコイル及び前記ミラーホルダ駆動コイルに対して前記接線方向に対向する位置に前記ヨークベースに固定され、隣接する着磁領域が互いに異極であり且つ前記着磁領域が十字形状の境界線によって4つの着磁領域に多極着磁されており、
     前記永久磁石の前記4つの着磁領域のうち前記光ディスクに近い側の前記トラッキング方向に沿って隣接した第1及び第2の着磁領域は、前記トラッキングコイルの前記トラッキング方向に沿った両辺に逆向きの磁界を付与し、
     前記永久磁石の前記4つの着磁領域のうち前記光ディスクから遠い側の前記トラッキング方向に沿って隣接した第3及び第4の着磁領域は、前記ミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に逆向きの磁界を付与し、
     前記永久磁石の前記4つの着磁領域のうち前記フォーカシング方向に沿って隣接した第1及び第3の着磁領域は、前記第1のフォーカシングコイルの前記フォーカシング方向に沿った両辺に逆向きの磁界を付与し、
     前記永久磁石の前記4つの着磁領域のうち前記フォーカシング方向に沿って隣接した第2及び第4の着磁領域は、前記第2のフォーカシングコイルの前記フォーカシング方向に沿った両辺に逆向きの磁界を付与することを特徴とする請求項5記載の光ピックアップ装置。
    The objective lens actuator is
    A second fixing member fixed to the yoke base;
    A plurality of rod-shaped elastic members for lenses each having one end fixed to the second fixing member and the other end fixed to the lens holder;
    The tracking coil is fixed to a side surface of the lens holder perpendicular to the tangential direction, and has a winding axis along the tangential direction,
    The focusing coil includes first and second focusing coils fixed to a side surface of the lens holder perpendicular to the tangential direction and having a winding axis along the tangential direction;
    The permanent magnet is fixed to the yoke base at a position facing the tangential direction with respect to the first and second focusing coils, the tracking coil, and the mirror holder driving coil, and adjacent magnetized regions are different from each other. And the magnetized region is multipolarly magnetized into four magnetized regions by a cross-shaped boundary line,
    Of the four magnetized regions of the permanent magnet, the first and second magnetized regions adjacent to each other along the tracking direction on the side closer to the optical disc are opposite to both sides of the tracking coil along the tracking direction. Applying a magnetic field of direction,
    Of the four magnetized regions of the permanent magnet, the third and fourth magnetized regions adjacent to each other in the tracking direction on the side far from the optical disc are both sides along the tracking direction of the mirror holder drive coil. Apply a reverse magnetic field to
    Of the four magnetized regions of the permanent magnet, the first and third magnetized regions adjacent to each other in the focusing direction are magnetic fields opposite to both sides of the first focusing coil along the focusing direction. And grant
    Of the four magnetized regions of the permanent magnet, the second and fourth magnetized regions adjacent to each other in the focusing direction are magnetic fields opposite to both sides of the second focusing coil along the focusing direction. The optical pickup device according to claim 5, wherein:
  7.  前記トラッキングコイルに隣接する部分であり、かつ前記光ディスクから遠い側の前記レンズホルダの側面には切欠きが設けられており、
     前記ミラーホルダ駆動コイルは、前記切欠き内に配置されることを特徴とする請求項6記載の光ピックアップ装置。
    A notch is provided on a side surface of the lens holder which is a portion adjacent to the tracking coil and which is far from the optical disc,
    The optical pickup device according to claim 6, wherein the mirror holder driving coil is disposed in the notch.
  8.  前記ミラーホルダ駆動コイルは、前記ミラーホルダの前記光ディスクの接線方向に交わる一方の側面に固着され、前記接線方向に沿った巻回軸を有する第1のミラーホルダ駆動コイルと、前記ミラーホルダの前記光ディスクの接線方向に交わる他方の側面に固着され、前記接線方向に沿った巻回軸を有する第2のミラーホルダ駆動コイルとを含み、
     前記永久磁石は、前記第1のミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与し、
     前記ミラーホルダ駆動機構は、前記第2のミラーホルダ駆動コイルに対して前記接線方向に対向して配置され、前記第2のミラーホルダ駆動コイルの前記トラッキング方向に沿った両辺に各々逆向きの磁界を付与するミラーホルダ用永久磁石をさらに含むことを特徴とする請求項3記載の光ピックアップ装置。
    The mirror holder driving coil is fixed to one side surface of the mirror holder that intersects the tangential direction of the optical disc, and includes a first mirror holder driving coil having a winding axis along the tangential direction, and the mirror holder A second mirror holder drive coil fixed to the other side surface intersecting the tangential direction of the optical disc and having a winding axis along the tangential direction;
    The permanent magnets apply opposite magnetic fields to both sides along the tracking direction of the first mirror holder drive coil,
    The mirror holder driving mechanism is disposed to face the tangential direction with respect to the second mirror holder driving coil, and has a magnetic field opposite to each of both sides along the tracking direction of the second mirror holder driving coil. The optical pickup device according to claim 3, further comprising a permanent magnet for a mirror holder that imparts light.
  9.  前記ミラーアクチュエータ駆動部は、前記光検出器からの出力に基づいて生成されるトラッキングエラー信号を増幅し、増幅した前記トラッキングエラー信号を駆動電流として前記ミラーホルダ駆動コイルに出力する増幅器を備えることを特徴とする請求項3~8のいずれかに記載の光ピックアップ装置。 The mirror actuator driving unit includes an amplifier that amplifies a tracking error signal generated based on an output from the photodetector and outputs the amplified tracking error signal to the mirror holder driving coil as a driving current. The optical pickup device according to any one of claims 3 to 8, characterized in that:
  10.  前記ミラーアクチュエータ駆動部は、前記対物レンズアクチュエータ及び前記ミラーアクチュエータの非動作状態時における前記第1の対物レンズと前記立上げミラーとの相対距離を予め記憶する初期ずれ量メモリと、
     前記初期ずれ量メモリに記憶されている前記相対距離をオフセット値として前記トラッキングエラー信号に加算して前記増幅器に出力する加算器とをさらに備えることを特徴とする請求項9記載の光ピックアップ装置。
    The mirror actuator driving unit includes an initial deviation amount memory that stores in advance a relative distance between the first objective lens and the rising mirror when the objective lens actuator and the mirror actuator are in a non-operating state;
    The optical pickup device according to claim 9, further comprising an adder that adds the relative distance stored in the initial deviation amount memory as an offset value to the tracking error signal and outputs the same to the amplifier.
  11.  前記ミラーアクチュエータは、前記ミラーホルダに搭載されるとともに、前記ミラーホルダと前記レンズホルダとの相対位置ずれ量を検出する位置センサを備え、
     前記ミラーアクチュエータ駆動部は、
     前記位置センサによって検出される前記相対位置ずれ量を監視する位置ずれ量監視部と、
     前記位置ずれ量監視部によって監視される前記相対位置ずれ量がゼロになるように前記ミラーホルダ駆動コイルに出力する電流値を調整する位置ずれ制御部とを備えることを特徴とする請求項3~8のいずれかに記載の光ピックアップ装置。
    The mirror actuator is mounted on the mirror holder, and includes a position sensor that detects a relative positional deviation amount between the mirror holder and the lens holder,
    The mirror actuator driving unit is
    A positional deviation amount monitoring unit for monitoring the relative positional deviation amount detected by the position sensor;
    A misregistration control unit that adjusts a current value output to the mirror holder drive coil so that the relative misregistration amount monitored by the misregistration amount monitoring unit becomes zero. 9. The optical pickup device according to any one of 8.
  12.  前記ミラーアクチュエータ駆動部は、
     前記光ディスクの半径位置に対する偏心量を予め記憶する光ディスク偏心量メモリと、
     前記光ディスク偏心量メモリから出力される前記偏心量を表す出力信号を増幅し、増幅した前記出力信号を駆動電流として前記ミラーホルダ駆動コイルに出力する増幅器とを備えることを特徴とする請求項3~8のいずれかに記載の光ピックアップ装置。
    The mirror actuator driving unit is
    An optical disk eccentricity memory for storing in advance an eccentricity with respect to the radial position of the optical disk;
    An amplifier for amplifying an output signal representing the amount of eccentricity output from the optical disk eccentricity memory and outputting the amplified output signal to the mirror holder drive coil as a drive current. 9. The optical pickup device according to any one of 8.
  13.  前記光源は、405nmの波長を有する青色レーザ光を出射することを特徴とする請求項1~12のいずれかに記載の光ピックアップ装置。 13. The optical pickup device according to claim 1, wherein the light source emits blue laser light having a wavelength of 405 nm.
  14.  前記光源と前記立上げミラーとの間の光路上に配置され、光ビームの収斂度を変化させるコリメートレンズと、
     前記コリメートレンズを前記光路上で前記光軸方向に移動させるコリメートレンズアクチュエータとをさらに備えることを特徴とする請求項1~13のいずれかに記載の光ピックアップ装置。
    A collimating lens that is disposed on the optical path between the light source and the rising mirror and changes the convergence of the light beam;
    The optical pickup device according to any one of claims 1 to 13, further comprising a collimating lens actuator that moves the collimating lens in the optical axis direction on the optical path.
  15.  前記第1の対物レンズは、近接場光によって光を集光するソリッドイマージョンレンズを含むことを特徴とする請求項1~14のいずれかに記載の光ピックアップ装置。 15. The optical pickup device according to claim 1, wherein the first objective lens includes a solid immersion lens that collects light by near-field light.
  16.  請求項1~15のいずれかに記載の光ピックアップ装置と、
     光ディスクを回転させるモータと、
     前記光ピックアップ装置から得られる信号に基づいて、前記モータ及び前記光ピックアップ装置を制御する制御部とを備えることを特徴とする光ディスク装置。
    An optical pickup device according to any one of claims 1 to 15,
    A motor for rotating the optical disc;
    An optical disc apparatus comprising: a motor and a control unit that controls the optical pickup apparatus based on a signal obtained from the optical pickup apparatus.
PCT/JP2011/001701 2010-03-25 2011-03-23 Optical pickup device and optical disc device WO2011118209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-069993 2010-03-25
JP2010069993 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118209A1 true WO2011118209A1 (en) 2011-09-29

Family

ID=44672787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001701 WO2011118209A1 (en) 2010-03-25 2011-03-23 Optical pickup device and optical disc device

Country Status (1)

Country Link
WO (1) WO2011118209A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177648A (en) * 1985-01-31 1986-08-09 Fujitsu Ltd Tracking control system of optical head
JPS6466833A (en) * 1987-09-07 1989-03-13 Toshiba Corp Optical information recording and reproducing device
JPH0660405A (en) * 1992-08-05 1994-03-04 Olympus Optical Co Ltd Mirror driving device
JPH1091982A (en) * 1996-09-13 1998-04-10 Toshiba Corp Optical disk device
JP2001176121A (en) * 1999-12-17 2001-06-29 Olympus Optical Co Ltd Support device of optical element for information recorder-reproducer
JP2001319358A (en) * 2000-05-09 2001-11-16 Olympus Optical Co Ltd Optical pickup
JP2001351261A (en) * 2000-06-08 2001-12-21 Pulstec Industrial Co Ltd Optical pickup head device
WO2008081859A1 (en) * 2006-12-29 2008-07-10 Panasonic Corporation Optical pickup, optical disc device, compound coupling lens, compound prism and optical information apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177648A (en) * 1985-01-31 1986-08-09 Fujitsu Ltd Tracking control system of optical head
JPS6466833A (en) * 1987-09-07 1989-03-13 Toshiba Corp Optical information recording and reproducing device
JPH0660405A (en) * 1992-08-05 1994-03-04 Olympus Optical Co Ltd Mirror driving device
JPH1091982A (en) * 1996-09-13 1998-04-10 Toshiba Corp Optical disk device
JP2001176121A (en) * 1999-12-17 2001-06-29 Olympus Optical Co Ltd Support device of optical element for information recorder-reproducer
JP2001319358A (en) * 2000-05-09 2001-11-16 Olympus Optical Co Ltd Optical pickup
JP2001351261A (en) * 2000-06-08 2001-12-21 Pulstec Industrial Co Ltd Optical pickup head device
WO2008081859A1 (en) * 2006-12-29 2008-07-10 Panasonic Corporation Optical pickup, optical disc device, compound coupling lens, compound prism and optical information apparatus

Similar Documents

Publication Publication Date Title
JP2008084368A (en) Objective lens actuator and optical pickup device having the same
KR20060051246A (en) Optical pickup and disc drive apparatus
US8144564B2 (en) Optical head and optical information device
JPWO2002063619A1 (en) Optical storage device
JPWO2007099947A1 (en) Optical head device, optical information device, optical disc player, car navigation system, optical disc recorder, and optical disc server
JP2002245650A (en) Object lens driving device and optical disk device
WO2011118209A1 (en) Optical pickup device and optical disc device
US20080080334A1 (en) Optical pickup actuator capable of preventing adhesive agent in supporting portions of a damper base from deteriorating in strength
JP3624624B2 (en) Optical pickup and disc player
US8938746B2 (en) Object lens driving device and optical disc drive including the same
EP1950751B1 (en) Objective lens actuator and optical pickup device having the same
JP2008112555A (en) Optical pickup, optical disk drive, optical information recording/reproducing device, and tilt adjusting method
CN100394482C (en) Optical pickup and disc drive apparatus
US6704268B2 (en) Optical storage device and optical pickup unit having track control
JP2009015934A (en) Lens holder for optical pickup and optical pickup having same
JP4807398B2 (en) Optical pickup
JP4569166B2 (en) Optical pickup and optical disk apparatus
JP3810055B2 (en) Optical disk device
JP5954060B2 (en) Optical pickup
JP2010257512A (en) Optical pickup
JP6186923B2 (en) Optical pickup device
JP2009146531A (en) Lens holder for optical pickup and optical pickup provided with the same
JP2007184064A (en) Optical pickup device
JP2006107615A (en) Optical head
JP2008269733A (en) Optical pickup and objective lens unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP