WO2011114707A1 - Catalyst for olefin oligomerization reaction - Google Patents

Catalyst for olefin oligomerization reaction Download PDF

Info

Publication number
WO2011114707A1
WO2011114707A1 PCT/JP2011/001499 JP2011001499W WO2011114707A1 WO 2011114707 A1 WO2011114707 A1 WO 2011114707A1 JP 2011001499 W JP2011001499 W JP 2011001499W WO 2011114707 A1 WO2011114707 A1 WO 2011114707A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
olefin
reaction
isobutene
butene
Prior art date
Application number
PCT/JP2011/001499
Other languages
French (fr)
Japanese (ja)
Inventor
山川 文雄
金昌 古沢
雅俊 丸木
亜紀子 辰己
Original Assignee
出光興産株式会社
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 第一稀元素化学工業株式会社 filed Critical 出光興産株式会社
Priority to CN2011800142098A priority Critical patent/CN102791372A/en
Priority to KR1020127024021A priority patent/KR20120136363A/en
Priority to JP2012505505A priority patent/JP5746144B2/en
Publication of WO2011114707A1 publication Critical patent/WO2011114707A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/10Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a catalyst for olefin oligomerization reaction. More specifically, the present invention relates to a catalyst capable of selectively producing an oligomer of isobutene from a mixed C4 fraction.
  • Olefin oligomers are useful compounds that are widely used as raw materials for fuel oils such as gasoline and diesel, lubricating oils, solvents, and other chemicals.
  • isobutene oligomers are dimers such as 2,4,4-trimethyl-1-pentene or 2,4,4-trimethyl-2-pentene (commonly known as diisobutylene), which is a high octane gasoline base material. It is particularly useful as a raw material for lubricants and chemicals.
  • isobutene oligomers are particularly useful as raw materials for isoparaffin solvents and the like.
  • butene oligomers are obtained by polymerizing the remaining fraction obtained by extracting butadiene from the C4 fraction produced by naphtha decomposition (so-called spent BB fraction) or butane-butene mixed (BB) fraction as raw materials.
  • the resulting liquid polymer mixture has a molecular weight of about 100 to 2500.
  • a method for producing a butene oligomer various methods using an acid catalyst are known.
  • a homogeneous acid catalyst process there is a method in which a raw material consisting of a BB fraction is passed through a liquid slurry in which a Friedel-Craft catalyst such as anhydrous aluminum chloride is suspended (see, for example, Patent Document 1).
  • a heterogeneous solid catalyst process there is a method of contacting a solid catalyst made of dry chlorinated alumina (see, for example, Patent Document 2).
  • a method of contacting with a solid catalyst such as fluorinated alumina, alumina boron, silica alumina, solid phosphoric acid, chromium oxide, zinc oxide, zeolite, ion exchange resin, heteropolyacid, zirconia, etc. is known (for example, patent document). 3 and 4).
  • homogeneous Lewis acid catalysts such as aluminum chloride, boron trifluoride and sulfuric acid are used in homogeneous catalysts, they have industrial problems such as waste catalyst treatment and corrosion of manufacturing equipment.
  • heterogeneous solid catalysts silica alumina, phosphate diatomaceous earth, zeolite catalyst, etc. are used. Therefore, practical reaction conditions depend on the progress of side reactions such as isomerization, decomposition, and heavy product. A major problem is a decrease in economy and a significant decrease in activity due to the deposition of these products on the catalytic active sites.
  • Industrially, the standard method process and the Kosden process have been put to practical use as the aluminum chloride method, but there are problems in terms of waste catalyst treatment and equipment corrosion.
  • n-butenes since n-butenes reacted, other than the target product was produced. Since oligomers of n-butenes and oligomers produced by the reaction of isobutene and n-butenes have a different chemical structure from isobutene oligomers, various physical properties (boiling point, flash point, solubility, etc.) Etc.).
  • An object of the present invention is to provide a catalyst for oligomerization reaction that can selectively produce isobutene oligomer by selectively reacting isobutene.
  • the following catalysts for oligomerization reaction of olefins and the like are provided.
  • Olefin oligomer obtained by firing tungsten carrier (W) or molybdenum (Mo) supported on an oxide carrier obtained by combining titania (TiO 2 ) or silica (SiO 2 ) with zirconia (ZrO 2 ). Catalyst for chemical reaction.
  • a method for producing an olefin oligomer comprising a step of bringing a raw material olefin into contact with the olefin oligomerization reaction catalyst according to any one of 1 to 3 above. 5.
  • an oligomerization reaction catalyst capable of efficiently producing an isobutene oligomer from a raw olefin containing isobutene.
  • the catalyst for oligomerization reaction of an olefin of the present invention is a composite oxide support in which titania (TiO 2 ) or silica (SiO 2 ) is composited with zirconia (ZrO 2 ), tungsten (W) or molybdenum (Mo). The supported one is fired.
  • the composite oxide support, TiO 2 or SiO 2 compositional ratio ZrO 2 [TiO 2 / ZrO 2 , SiO 2 / ZrO 2 (mol)] is 1 / 9-9 / 1 is preferred. More preferably, it is 2/8 to 6/4, and further preferably 3/7 to 4/6.
  • composition ratio of TiO 2 or SiO 2 is less than 1/9, the effect of adding (compositing) TiO 2 or SiO 2 is not sufficiently exhibited.
  • the ratio is larger than 9/1, the interaction between W or Mo to be supported and ZrO 2 is lowered, and the catalytic activity is lowered.
  • the composition of ZrO 2 and TiO 2 or SiO 2 in the composite oxide support can be controlled by the raw material ratio at the time of preparing the support. For example, it can be controlled by measuring and mixing raw materials such as zirconium nitrate, zirconium oxychloride, titanium tetrachloride, titanium sulfate, sodium silicate, and silica powder in terms of oxides.
  • the amount of W or Mo supported on the composite oxide support is preferably 1 to 30 wt%, particularly 2 to 20 wt%, more preferably 10 to 15 wt% in terms of oxide (WO 3 or MoO 3 ). % Is preferred. Outside the above range, the activity may decrease and the efficiency may deteriorate.
  • the method for supporting W or Mo on the composite oxide support is not particularly limited, and methods known in the art, for example, an impregnation method, a coprecipitation method, an adsorption method and the like can be used.
  • a compound containing a W element or a Mo element may be mixed with a precursor of a composite oxide carrier, for example, a mixture of zirconium and titanium or silicon hydroxide. Even if this mixture is calcined, the catalyst of the present invention is obtained.
  • the compound containing W element or Mo element include ammonium tungstate, sodium tungstate, ammonium molybdate, sodium molybdate, and the like.
  • the composite oxide carrier carrying W or Mo is fired to obtain the reaction catalyst of the present invention.
  • the firing temperature is preferably 300 to 1000 ° C, particularly preferably 400 to 800 ° C, and more preferably 500 to 600 ° C.
  • the temperature is lower than 300 ° C, the catalyst is not acidified.
  • the temperature exceeds 1000 ° C, the specific surface area of the catalyst is reduced or the metal component is liable to sublimate.
  • the obtained catalyst may be used as a powder or may be used after molding.
  • the molding method include compression, extrusion, and tableting.
  • a binder can be used as necessary, and the binder may be organic or inorganic (alumina, silica, etc.).
  • the reaction catalyst of the present invention can reduce the bulk density of the catalyst. W) The amount used can be reduced. Therefore, the catalyst cost can be reduced.
  • the moldability of the catalyst is good, and there is a feature that it is easy to obtain industrially required molding strength.
  • the olefin oligomerization reaction catalyst of the present invention is an olefin having 4 to 12 carbon atoms, preferably 4 to 8 carbon atoms, particularly preferably an aliphatic olefin such as an ⁇ -olefin, an internal olefin, or a branched olefin.
  • butenes include (1-butene, trans-2-butene, cis-2-butene, isobutene).
  • a mixed raw material containing isobutene for example, a C4 fraction (referred to as BB, Raffinate, etc.) produced as a by-product from naphtha decomposition or the like is preferable because it has a characteristic of selectively reacting a branched olefin.
  • Olefin oligomerization can be carried out by bringing the raw material olefin into contact with the above-described catalyst for olefin oligomerization reaction of the present invention.
  • the reaction type may be either a continuous flow type or a batch type.
  • One reactor may be used, but two or more reactors may be used in combination in series or in parallel.
  • the reaction temperature varies depending on the type of raw material olefin and the catalyst used, but is usually 30 to 200 ° C., preferably 40 to 150 ° C., particularly preferably 50 to 100 ° C. If it is less than 30 degreeC, reaction rate may become slow and a conversion rate may fall.
  • the reaction pressure may be any pressure that can maintain the liquid phase, and is usually atmospheric pressure to 10 MPa, preferably 1 to 7 MPa, particularly preferably 2 to 5 MPa.
  • LHSV volumetric liquid space velocity
  • the catalyst concentration in the batch system is preferably 0.01 to 10 wt%, more preferably 0.1 to 5 wt%, and particularly preferably 0.5 to 2 wt% with respect to the raw material olefin. If the amount is too small, the reaction rate decreases and the productivity decreases. If the amount is too large, the conversion rate of n-butene increases, and a large amount of catalyst is consumed, resulting in a decrease in economic efficiency.
  • a solvent may be used or no solvent may be used. When a solvent is used, saturated hydrocarbons such as n-hexane and cyclohexane are preferable. Moreover, the temperature rise by the heat of polymerization can also be suppressed by recycling a part of the reaction product to dilute the reaction substrate.
  • the olefin oligomer containing the dimer, trimer, and tetramer of raw material olefin is obtained.
  • the catalyst for oligomerization reaction of olefin of the present invention can selectively increase the isobutene oligomer. Therefore, when a mixed C4 raw material is polymerized to produce a butene oligomer, an isobutene oligomer is selectively produced and the n-butenes hardly react. Therefore, n-butenes that have not reacted can be efficiently recovered.
  • Example 1 (1) Preparation of catalyst ⁇ Molybdenum oxide-supported titania-zirconia composite oxide catalyst (10 mol% MoO 3 / TiO 2 —ZrO 2 ) Preparation 10wt% zirconium nitrate solution in terms of zirconium oxide 60.7g, 10wt% titanium chloride solution 26.2 g in terms of titanium oxide were fractionated, and these two solutions were mixed. The total amount of the obtained mixed solution was dropped into 700 g of 25% aqueous ammonia to obtain a hydroxide slurry. The hydroxide slurry was separated by filtration and washed thoroughly with ion exchange water as appropriate to obtain a hydroxide from which impurities were removed.
  • Gas phase part / GC CP4900 manufactured by Varian ⁇ Detector: TCD (4ch.) -Column Ch. 1: MS-5A (length 10m) Temperature: 100 ° C., carrier gas: Ar Ch. 2: PoraPLOT-Q (length 10m) Temperature: 80 ° C., carrier gas: He Ch. 3: Al 2 O 3 / KCl (length 10 m) Temperature: 80 ° C., carrier gas: He Ch.
  • the conversion rate and product liquid composition were calculated by the following calculation formulas.
  • the composition of the product liquid was butene trimer (C12) as the main component (61.9%), and the selectivity of isobutene dimer (DIB) in the C8 oligomer was 54.1%.
  • Example 2 A catalyst was prepared in the same manner as in Example 1 except that the catalyst in which the calcination temperature of the catalyst in Example 1 was changed to 800 ° C. was used, and an oligomerization reaction was performed. As a result, 32 hours after the start of the reaction, the isobutene conversion rate was 92.2%, and the n-butene conversion rate at that time was 2.9%.
  • the composition of the product liquid was butene trimer (C12) as the main component (55.6%), and the DIB selectivity in the C8 oligomer was 41.2%.
  • Example 3 A catalyst was prepared in the same manner as in Example 1 except that the amount of ammonium molybdate solution added was changed to 2.4 g in terms of molybdenum oxide.
  • the composition of the obtained catalyst was 2.7 wt% as MoO 3 and 29.3 wt% as TiO 2 .
  • the oligomerization reaction was carried out in the same manner as in Example 1. 8 hours after the start of the reaction, the conversion of isobutene was 93.3%, and the conversion of n-butene at that time was 3.5%.
  • the composition of the product liquid was butene trimer (C12) as the main component (40.4%), but the amount of high oligomers having 20 or more carbon atoms increased.
  • the DIB selectivity in the C8 oligomer was 49.5%.
  • Example 4 (1) Preparation of catalyst-Preparation of tungsten oxide-supported titania-zirconia composite oxide catalyst (10 mol% WO 3 / TiO 2 -ZrO 2 )
  • 5 wt% tungsten instead of ammonium molybdate solution
  • a catalyst was prepared in the same manner as in Example 1 except that 19.6 g of ammonium acid solution was added in terms of tungsten oxide.
  • the composition of the obtained catalyst was 19.6 wt% as WO 3 , 24.3 wt% as TiO 2 , and the remaining 56.1 wt% was Zr (converted to ZrO 2 ).
  • Example 5 Preparation of tungsten oxide-supported silica-zirconia composite oxide catalyst (10 mol% WO 3 / SiO 2 -ZrO 2 ) 10 wt% zirconium nitrate solution in terms of zirconium oxide 77.2 g, 25 wt% sodium silicate solution in terms of silicon dioxide 4.7 g of each was taken and these two solutions were mixed. The total amount of the obtained mixed solution was dropped into 700 g of 25% aqueous ammonia to obtain a hydroxide slurry. The hydroxide slurry was separated by filtration and washed thoroughly with ion exchange water as appropriate to obtain a hydroxide from which impurities were removed.
  • Comparative Example 1 An oligomerization reaction was carried out in the same manner as in Example 1 except that a molybdenum-supported zirconia catalyst (10 mol% MoO 3 / ZrO 2 , manufactured by Daiichi Rare Element Chemical Industries, Ltd.) was used. However, the reaction temperature was 100 ° C. 8 hours after the start of the reaction, the conversion of isobutene was 96.7%, and the n-butene conversion at that time was 8.8%. The conversion rate of isobutene was similar to the results of the TiO 2 composite catalysts of Examples 1 to 3 at a reaction temperature of 50 ° C., and it was found that the activity was dramatically improved by combining with TiO 2 . It is also clear that the TiO 2 composite catalyst has a lower n-butene conversion rate and superior isobutene selectivity.
  • a molybdenum-supported zirconia catalyst 10 mol% MoO 3 / ZrO 2 , manufactured by Daiichi Rare Element Chemical Industries
  • Comparative Example 2 An oligomerization reaction was carried out in the same manner as in Example 4 except that a tungsten-supported zirconia catalyst (10 mol% WO 3 / ZrO 2 , manufactured by Daiichi Rare Element Chemical Co., Ltd.) was used. 16 hours after the start of the reaction, the conversion of isobutene was 93.6%, and the conversion of n-butene at that time was 7.1%. Compared to the TiO 2 or SiO 2 composite catalyst of Examples 4 and 5, the isobutene conversion is similar, but the n-butene conversion is high. Therefore, it is clear that the composite catalyst of the present invention is superior in isobutene selectivity.
  • Comparative Example 3 The same procedure as in Example 1 was performed except that Mo and W were not supported on a titania-zirconia support (40 mol% TiO 2 —ZrO 2 , manufactured by Daiichi Rare Element Chemical Co., Ltd.). It was found that even when the reaction temperature was 100 ° C., the reaction did not proceed at all, and the carrier alone had no activity. That is, it was confirmed that an isobutene oligomerization catalyst having extremely high activity and high selectivity was formed by loading Mo or W on a TiO 2 —ZrO 2 carrier.
  • a titania-zirconia support 40 mol% TiO 2 —ZrO 2 , manufactured by Daiichi Rare Element Chemical Co., Ltd.
  • Comparative Example 4 As a typical solid acid catalyst, an oligomerization reaction was carried out in the same manner as in Example 1 except that an industrially used silica alumina catalyst (SiO 2 90%) was used.
  • the composition of the product liquid was a mixture having butene dimer (C8) and trimer (C12) as main components and various isomer structures.
  • the DIB selectivity in the C8 oligomer was only 12.3%. Also from this result, it was confirmed that the catalysts of the examples had extremely high isobutene selectivity.
  • the composition of the product liquid was a mixture having butene dimer (C8) and trimer (C12) as main components and various isomer structures. Also from this result, it is clear that the catalyst described in the examples has extremely high isobutene selectivity.
  • Example 6 The same catalyst as in Example 1 was used.
  • the oligomerization reaction was performed in the same manner as in Example 1 except that the reaction conditions were changed as follows.
  • -Mixed C4 raw material composition 1-butene 20%, 2-butene 18%, isobutene 48%, butane 13%, others 1% ⁇
  • Raw material flow rate: 40cc / h (LHSV 2)
  • the mixed C4 raw material used in this example is a C4 fraction obtained from an ethylene unit (naphtha cracking) (BBR (butane-butene raffinate) (Raffinate-I) after butadiene extraction).
  • BBR butane-butene raffinate
  • Raffinate-I ethylene unit after butadiene extraction
  • Example 7 The catalyst having the same catalyst composition as in Example 2 was used, and the oligomerization reaction was performed in the same manner as in Example 6. As a result, 64 hours after the start of the reaction, the conversion rate of isobutene was 88.1%, and the conversion rate of n-butene was 4.9%. The DIB selectivity in the C8 oligomer was 88.3%.
  • Comparative Example 6 The same catalyst as in Comparative Example 4 was used, and the oligomerization reaction was performed in the same manner as in Example 6. As a result, 16 hours after the start of the reaction, the isobutene conversion rate was 81.9%, and the n-butene conversion rate at that time was 17.8%. The DIB selectivity in the C8 oligomer was 41.3%. Therefore, it can be seen that the catalyst of this example has very high isobutene selectivity.
  • Table 1 below shows the results of Examples 1 to 7 and Comparative Examples 1 to 6.
  • the olefin oligomerization reaction catalyst of the present invention can be suitably used for the production of olefin oligomers, particularly isobutene oligomers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A catalyst for an olefin oligomerization reaction, which is produced by supporting tungsten (W) or molybdenum (Mo) on an oxide carrier that is a complex of zirconia (ZrO2) and titania (TiO2) or silica (SiO2) and burning the supported product.

Description

オレフィンのオリゴマー化反応用触媒Olefin oligomerization catalyst
 本発明は、オレフィンのオリゴマー化反応用触媒に関する。さらに詳しくは、混合C4留分からイソブテンのオリゴマーを選択的に製造することができる触媒に関する。 The present invention relates to a catalyst for olefin oligomerization reaction. More specifically, the present invention relates to a catalyst capable of selectively producing an oligomer of isobutene from a mixed C4 fraction.
 オレフィンオリゴマーは、ガソリン、ディーゼル等の燃料油、潤滑油、溶剤、その他化学品の原料として、幅広く使用されている有用な化合物である。なかでも、イソブテンオリゴマーは、例えば、2量体である2,4,4-トリメチル-1-ペンテン又は2,4,4-トリメチル-2-ペンテン(通称、ジイソブチレン)は、高オクタン価ガソリン基材や潤滑油・化学品の原料等として特に有用である。3量体や4量体においても、イソブテンオリゴマーはイソパラフィン溶剤等の原料として特に有用である。 Olefin oligomers are useful compounds that are widely used as raw materials for fuel oils such as gasoline and diesel, lubricating oils, solvents, and other chemicals. Among them, isobutene oligomers are dimers such as 2,4,4-trimethyl-1-pentene or 2,4,4-trimethyl-2-pentene (commonly known as diisobutylene), which is a high octane gasoline base material. It is particularly useful as a raw material for lubricants and chemicals. Also in trimers and tetramers, isobutene oligomers are particularly useful as raw materials for isoparaffin solvents and the like.
 ブテンオリゴマーは、一般に、ナフサ分解で生成するC4留分からブタジエンを抽出した残りの留分(いわゆるスペントBB留分)、又はブタン-ブテン混合(BB)留分を原料として用い、これらを重合させて得られた分子量が100~2500程度の液状ポリマーの混合物である。 Generally, butene oligomers are obtained by polymerizing the remaining fraction obtained by extracting butadiene from the C4 fraction produced by naphtha decomposition (so-called spent BB fraction) or butane-butene mixed (BB) fraction as raw materials. The resulting liquid polymer mixture has a molecular weight of about 100 to 2500.
 ブテンオリゴマーの製造方法としては、酸触媒を用いる様々な方法が知られている。例えば、均一系酸触媒プロセスとして、BB留分からなる原料を、無水塩化アルミニウム等のフリーデル・クラフト触媒を懸濁させた液体スラリーに通す方法がある(例えば、特許文献1参照)。また、不均一系固体触媒プロセスとして、乾燥塩素化アルミナからなる固体触媒に接触させる方法がある(例えば、特許文献2参照)。さらに、フッ素化アルミナ、アルミナホウ素、シリカアルミナ、固体リン酸、酸化クロム、酸化亜鉛、ゼオライト、イオン交換樹脂、ヘテロポリ酸、ジルコニア等の固体触媒に接触させる方法が知られている(例えば、特許文献3、4参照)。 As a method for producing a butene oligomer, various methods using an acid catalyst are known. For example, as a homogeneous acid catalyst process, there is a method in which a raw material consisting of a BB fraction is passed through a liquid slurry in which a Friedel-Craft catalyst such as anhydrous aluminum chloride is suspended (see, for example, Patent Document 1). Further, as a heterogeneous solid catalyst process, there is a method of contacting a solid catalyst made of dry chlorinated alumina (see, for example, Patent Document 2). Furthermore, a method of contacting with a solid catalyst such as fluorinated alumina, alumina boron, silica alumina, solid phosphoric acid, chromium oxide, zinc oxide, zeolite, ion exchange resin, heteropolyacid, zirconia, etc. is known (for example, patent document). 3 and 4).
 しかしながら、均一系触媒では、塩化アルミニウム、三弗化硼素、硫酸等の強ルイス酸触媒が用いられているため、廃触媒処理や製造装置の腐食等の工業的問題を有している。
 一方、不均一系固体触媒では、シリカアルミナ、燐酸珪藻土、ゼオライト触媒等が用いられているため、実用的な反応条件化では、異性化、分解、生成物の重質化といった副反応の進行による経済性の低下と、それら生成物の触媒活性点への堆積による著しい活性低下が大きな課題である。
 尚、工業的には塩化アルミ法としてスタンダード法プロセスやコスデン法プロセスが実用化されているが、廃触媒処理や装置腐食等の点で問題がある。
However, since homogeneous Lewis acid catalysts such as aluminum chloride, boron trifluoride and sulfuric acid are used in homogeneous catalysts, they have industrial problems such as waste catalyst treatment and corrosion of manufacturing equipment.
On the other hand, in the case of heterogeneous solid catalysts, silica alumina, phosphate diatomaceous earth, zeolite catalyst, etc. are used. Therefore, practical reaction conditions depend on the progress of side reactions such as isomerization, decomposition, and heavy product. A major problem is a decrease in economy and a significant decrease in activity due to the deposition of these products on the catalytic active sites.
Industrially, the standard method process and the Kosden process have been put to practical use as the aluminum chloride method, but there are problems in terms of waste catalyst treatment and equipment corrosion.
 また、触媒反応によって得られるオリゴマー組成に関して、従来の製造方法では、いずれの触媒系も、原料組成とブテン転化率が決まれば、各オリゴマーの生成割合と異性体組成はほぼ決定されるため、イソブテンのみを選択的にオリゴマー化して、イソブテンオリゴマーのみの収率を増加させることができないという問題があった。即ち、混合C4留分中のイソブテンとn-ブテン類は、ある特定の割合(反応速度比)でオリゴマー化されるため、n-ブテン類をオリゴマー化せずにイソブテンオリゴマーのみを製造したい場合においても、n-ブテン類が反応するため、目的物以外のものが生成していた。n-ブテン類のオリゴマーや、イソブテンとn-ブテン類が反応して生成したオリゴマー類は、イソブテンオリゴマーとは化学構造が異なるため、溶剤等として用いる場合、各種物性(沸点、引火点、溶解性等)にも影響する。 In addition, regarding the oligomer composition obtained by catalytic reaction, in the conventional production method, since the formation ratio and isomer composition of each oligomer are almost determined in any catalyst system if the raw material composition and the butene conversion rate are determined, isobutene There was a problem that it was not possible to selectively oligomerize only, and increase the yield of isobutene oligomer alone. That is, since isobutene and n-butenes in the mixed C4 fraction are oligomerized at a specific ratio (reaction rate ratio), when it is desired to produce only isobutene oligomers without oligomerizing n-butenes. However, since n-butenes reacted, other than the target product was produced. Since oligomers of n-butenes and oligomers produced by the reaction of isobutene and n-butenes have a different chemical structure from isobutene oligomers, various physical properties (boiling point, flash point, solubility, etc.) Etc.).
特開昭60-124602号公報JP 60-124602 A 特開昭57-82325号公報JP-A-57-82325 特開昭56-40618号公報JP-A-56-40618 特開2005-15384号公報JP 2005-15384 A
 本発明の目的は、イソブテンを選択的に反応させ、イソブテンオリゴマーを効率的に製造できるオリゴマー化反応用触媒を提供することである。 An object of the present invention is to provide a catalyst for oligomerization reaction that can selectively produce isobutene oligomer by selectively reacting isobutene.
 本発明によれば、以下のオレフィンのオリゴマー化反応用触媒等が提供される。
1.ジルコニア(ZrO)に、チタニア(TiO)又はシリカ(SiO)を複合化した酸化物担体に、タングステン(W)又はモリブデン(Mo)を担持したものを焼成して得られる、オレフィンのオリゴマー化反応用触媒。
2.前記複合酸化物担体へのW又はMoの担持量が、酸化物換算(WO又はMoO)で1~30wt%である1に記載のオレフィンのオリゴマー化反応用触媒。
3.前記オレフィン中の、分岐型オレフィンを選択的にオリゴマー化する1又は2に記載のオレフィンのオリゴマー化反応用触媒。
4.上記1~3のいずれかに記載のオレフィンのオリゴマー化反応用触媒に、原料オレフィンを接触させる工程を有する、オレフィンオリゴマーの製造方法。
5.前記原料オレフィンが、炭素数4~12のオレフィン類である4に記載のオレフィンオリゴマーの製造方法。
6.前記原料オレフィンが、ナフサ分解等から副生するC4留分である4に記載のオレフィンオリゴマーの製造方法。
7.上記4~6のいずれかに記載のオレフィンオリゴマーの製造方法により得られ、原料オレフィンの2量体、3量体及び4量体を含むオレフィンオリゴマー。
According to the present invention, the following catalysts for oligomerization reaction of olefins and the like are provided.
1. Olefin oligomer obtained by firing tungsten carrier (W) or molybdenum (Mo) supported on an oxide carrier obtained by combining titania (TiO 2 ) or silica (SiO 2 ) with zirconia (ZrO 2 ). Catalyst for chemical reaction.
2. 2. The catalyst for olefin oligomerization reaction according to 1, wherein the amount of W or Mo supported on the composite oxide support is 1 to 30 wt% in terms of oxide (WO 3 or MoO 3 ).
3. 3. The catalyst for olefin oligomerization reaction according to 1 or 2, which selectively oligomerizes a branched olefin in the olefin.
4). A method for producing an olefin oligomer, comprising a step of bringing a raw material olefin into contact with the olefin oligomerization reaction catalyst according to any one of 1 to 3 above.
5. 5. The method for producing an olefin oligomer according to 4, wherein the raw material olefin is an olefin having 4 to 12 carbon atoms.
6). 5. The method for producing an olefin oligomer according to 4, wherein the raw material olefin is a C4 fraction by-produced from naphtha cracking or the like.
7). An olefin oligomer obtained by the method for producing an olefin oligomer according to any one of 4 to 6 above and comprising a dimer, trimer and tetramer of raw material olefins.
 本発明によれば、イソブテンを含有する原料オレフィンから、イソブテンオリゴマーを効率的に製造できるオリゴマー化反応用触媒を提供することが提供できる。 According to the present invention, it is possible to provide an oligomerization reaction catalyst capable of efficiently producing an isobutene oligomer from a raw olefin containing isobutene.
 本発明のオレフィンのオリゴマー化反応用触媒は、ジルコニア(ZrO)に、チタニア(TiO)又はシリカ(SiO)を複合化した複合酸化物担体に、タングステン(W)又はモリブデン(Mo)を担持したものを焼成したものである。
 複合酸化物担体について、ZrOに対するTiO又はSiOの組成比[TiO/ZrO、SiO/ZrO(mol)]は、1/9~9/1が好ましい。より好ましくは、2/8~6/4であり、さらに好ましくは3/7~4/6である。TiO又はSiOの組成比が1/9未満では、TiOやSiOの添加(複合化)効果が充分に発現しない。一方、9/1より大きいと担持させるW又はMoと、ZrOとの相互作用が低下して触媒活性が低下する。
The catalyst for oligomerization reaction of an olefin of the present invention is a composite oxide support in which titania (TiO 2 ) or silica (SiO 2 ) is composited with zirconia (ZrO 2 ), tungsten (W) or molybdenum (Mo). The supported one is fired.
The composite oxide support, TiO 2 or SiO 2 compositional ratio ZrO 2 [TiO 2 / ZrO 2 , SiO 2 / ZrO 2 (mol)] is 1 / 9-9 / 1 is preferred. More preferably, it is 2/8 to 6/4, and further preferably 3/7 to 4/6. When the composition ratio of TiO 2 or SiO 2 is less than 1/9, the effect of adding (compositing) TiO 2 or SiO 2 is not sufficiently exhibited. On the other hand, when the ratio is larger than 9/1, the interaction between W or Mo to be supported and ZrO 2 is lowered, and the catalytic activity is lowered.
 複合酸化物担体におけるZrO及びTiO又はSiOの組成は、担体調製時の原料比によって制御できる。例えば、原料となる、硝酸ジルコニウム、オキシ塩化ジルコニウム、四塩化チタン、硫酸チタン、ケイ酸ナトリウム、シリカ粉末等を酸化物換算で計量し、混合することにより制御できる。 The composition of ZrO 2 and TiO 2 or SiO 2 in the composite oxide support can be controlled by the raw material ratio at the time of preparing the support. For example, it can be controlled by measuring and mixing raw materials such as zirconium nitrate, zirconium oxychloride, titanium tetrachloride, titanium sulfate, sodium silicate, and silica powder in terms of oxides.
 複合酸化物担体へのW又はMoの担持量は、酸化物(WO又はMoO)換算で1~30wt%であることが好ましく、特に2~20wt%であることが好ましく、さらに10~15wt%であることが好ましい。上記範囲外では、活性が低下して効率が悪くなるおそれがある。 The amount of W or Mo supported on the composite oxide support is preferably 1 to 30 wt%, particularly 2 to 20 wt%, more preferably 10 to 15 wt% in terms of oxide (WO 3 or MoO 3 ). % Is preferred. Outside the above range, the activity may decrease and the efficiency may deteriorate.
 複合酸化物担体にW又はMoの担持させる方法は、特に限定はなく、本技術分野で公知である方法、例えば、含浸法、共沈法、吸着法等を用いることができる。
 尚、複合酸化物担体の前駆体、例えば、ジルコニウム及びチタン又はケイ素の水酸化物の混合物に、W元素又はMo元素を含有する化合物を混合してもよい。この混合物を焼成しても本発明の触媒が得られる。
 W元素又はMo元素を含有する化合物としては、例えば、タングステン酸アンモニウム、タングステン酸ナトリウム、モリブデン酸アンモニウム、モリブデン酸ナトリウム等が使用できる。
The method for supporting W or Mo on the composite oxide support is not particularly limited, and methods known in the art, for example, an impregnation method, a coprecipitation method, an adsorption method and the like can be used.
A compound containing a W element or a Mo element may be mixed with a precursor of a composite oxide carrier, for example, a mixture of zirconium and titanium or silicon hydroxide. Even if this mixture is calcined, the catalyst of the present invention is obtained.
Examples of the compound containing W element or Mo element include ammonium tungstate, sodium tungstate, ammonium molybdate, sodium molybdate, and the like.
 W又はMoを担持させた複合酸化物担体を焼成し、本発明の反応用触媒とする。焼成温度は300~1000℃が好ましく、特に400℃~800℃が好ましく、さらに500~600℃が好ましい。300℃よりも低いと触媒が酸性化せず、一方、1000℃を超えると触媒の比表面積が低下したり、金属成分の昇華が起こりやすいため、活性が低下することがある。 The composite oxide carrier carrying W or Mo is fired to obtain the reaction catalyst of the present invention. The firing temperature is preferably 300 to 1000 ° C, particularly preferably 400 to 800 ° C, and more preferably 500 to 600 ° C. When the temperature is lower than 300 ° C, the catalyst is not acidified. On the other hand, when the temperature exceeds 1000 ° C, the specific surface area of the catalyst is reduced or the metal component is liable to sublimate.
 得られた触媒は粉末のままで使用してもよく、成型して使用してもよい。成型方法としては、圧縮、押し出し、打錠等の方法がある。
 必要に応じてバインダーを用いることもでき、バインダーは有機系、無機系(アルミナ、シリカ等)のいずれを用いてもよい。
 本発明の反応用触媒は、TiO又はSiOを添加しないZrOにMo又はWを担持させた触媒と比較して、触媒の嵩密度を軽くすることができ、体積当りの金属(Mo,W)使用量を減らすことができる。従って、触媒コストの低減が可能となる。また、触媒の成型性もよく、工業的に必要な成型強度が得やすいという特徴もある。
The obtained catalyst may be used as a powder or may be used after molding. Examples of the molding method include compression, extrusion, and tableting.
A binder can be used as necessary, and the binder may be organic or inorganic (alumina, silica, etc.).
Compared with a catalyst in which Mo or W is supported on ZrO 2 to which TiO 2 or SiO 2 is not added, the reaction catalyst of the present invention can reduce the bulk density of the catalyst. W) The amount used can be reduced. Therefore, the catalyst cost can be reduced. In addition, the moldability of the catalyst is good, and there is a feature that it is easy to obtain industrially required molding strength.
 本発明のオレフィンのオリゴマー化反応用触媒は、炭素数4~12、好ましくは炭素数4~8、特に好ましくは炭素数4のオレフィン類(α-オレフィン、内部オレフィン、分岐オレフィン等の脂肪族オレフィン)のオリゴマー化に好適に使用できる。ブテン類としては、(1-ブテン、trans-2-ブテン、cis-2-ブテン、イソブテン)等がある。特に、分岐型オレフィンを選択的に反応させる特性があるため、イソブテンを含む混合原料、例えば、ナフサ分解等から副生するC4(BB,Raffinate等と呼ばれる)留分が好ましい。 The olefin oligomerization reaction catalyst of the present invention is an olefin having 4 to 12 carbon atoms, preferably 4 to 8 carbon atoms, particularly preferably an aliphatic olefin such as an α-olefin, an internal olefin, or a branched olefin. ) Can be suitably used for oligomerization. Examples of butenes include (1-butene, trans-2-butene, cis-2-butene, isobutene). In particular, a mixed raw material containing isobutene, for example, a C4 fraction (referred to as BB, Raffinate, etc.) produced as a by-product from naphtha decomposition or the like is preferable because it has a characteristic of selectively reacting a branched olefin.
 オレフィンのオリゴマー化は、上述した本発明のオレフィンのオリゴマー化反応用触媒に、原料オレフィンを接触させることにより実施できる。
 反応型式は連続流通式でも回分式でもどちらでもよい。反応器は一つでもよいが、二つ以上を直列又は並列に組み合わせて使うこともできる。
 反応温度は、原料オレフィンの種類や用いる触媒によって異なるが、通常、30~200℃であり、好ましくは40~150℃、特に好ましくは50~100℃である。30℃未満では、反応速度が遅くなり、転化率が低下することがある。200℃超では、n-ブテンのオリゴマー化が進行し、n-ブテンの転化率が上がってしまうことがある。
 反応圧力は、液相を維持できる圧力であればよく、通常、大気圧~10MPaであり、好ましくは1~7MPa、特に好ましくは2~5MPaである。
Olefin oligomerization can be carried out by bringing the raw material olefin into contact with the above-described catalyst for olefin oligomerization reaction of the present invention.
The reaction type may be either a continuous flow type or a batch type. One reactor may be used, but two or more reactors may be used in combination in series or in parallel.
The reaction temperature varies depending on the type of raw material olefin and the catalyst used, but is usually 30 to 200 ° C., preferably 40 to 150 ° C., particularly preferably 50 to 100 ° C. If it is less than 30 degreeC, reaction rate may become slow and a conversion rate may fall. If it exceeds 200 ° C., the oligomerization of n-butene proceeds and the conversion of n-butene may increase.
The reaction pressure may be any pressure that can maintain the liquid phase, and is usually atmospheric pressure to 10 MPa, preferably 1 to 7 MPa, particularly preferably 2 to 5 MPa.
 反応時間(連続流通式の場合は液滞留時間)は、2分~10時間が好ましい(触媒に対する原料供給量は、体積基準の液空間速度(LHSV)で0.1~30)。特に、好ましくは3分~5時間(LHSV=0.2~20)である。さらに好ましくは4分~1時間(LHSV=1~15)である。反応時間が短すぎるとイソブテン転化率が低下し、オリゴマー生成量が低下することがある。反応時間が長すぎると、n-ブテンの転化率が上がってしまうことがある。上記反応時間は、触媒量当たり原料が接触する時間を示す。
 回分式の場合の触媒濃度は、原料オレフィンに対して0.01~10wt%が好ましく、0.1~5wt%がより好ましく、0.5~2wt%が特に好ましい。少なすぎると、反応速度が低下し、生産性が低下する。多すぎると、n-ブテンの転化率が上がったり、触媒を多量に消費するため経済性が低下する。
 反応には溶媒を使用してもよく、無溶媒でもよい。溶媒を用いる場合は、n-ヘキサン、シクロヘキサン等の飽和炭化水素が好ましい。また、反応生成物の一部をリサイクルして反応基質を希釈することで、重合熱による温度上昇を抑制することもできる。
The reaction time (liquid retention time in the case of a continuous flow system) is preferably 2 minutes to 10 hours (the amount of raw material supplied to the catalyst is 0.1 to 30 in terms of volumetric liquid space velocity (LHSV)). In particular, it is preferably 3 minutes to 5 hours (LHSV = 0.2 to 20). More preferably, it is 4 minutes to 1 hour (LHSV = 1 to 15). If the reaction time is too short, the isobutene conversion rate may decrease and the amount of oligomer formation may decrease. If the reaction time is too long, the conversion of n-butene may increase. The said reaction time shows the time when a raw material contacts per catalyst amount.
The catalyst concentration in the batch system is preferably 0.01 to 10 wt%, more preferably 0.1 to 5 wt%, and particularly preferably 0.5 to 2 wt% with respect to the raw material olefin. If the amount is too small, the reaction rate decreases and the productivity decreases. If the amount is too large, the conversion rate of n-butene increases, and a large amount of catalyst is consumed, resulting in a decrease in economic efficiency.
In the reaction, a solvent may be used or no solvent may be used. When a solvent is used, saturated hydrocarbons such as n-hexane and cyclohexane are preferable. Moreover, the temperature rise by the heat of polymerization can also be suppressed by recycling a part of the reaction product to dilute the reaction substrate.
 上記の反応により、原料オレフィンの2量体、3量体及び4量体を含むオレフィンオリゴマーが得られる。
 本発明のオレフィンのオリゴマー化反応用触媒は、特に、イソブテンオリゴマーを選択的に増加させることができる。従って、混合C4原料を重合させてブテンオリゴマーを製造すると、イソブテンオリゴマーが選択的に生成し、n-ブテン類はほとんど反応しない。そのため、反応しなかったn-ブテン類を効率よく回収できる。
By said reaction, the olefin oligomer containing the dimer, trimer, and tetramer of raw material olefin is obtained.
In particular, the catalyst for oligomerization reaction of olefin of the present invention can selectively increase the isobutene oligomer. Therefore, when a mixed C4 raw material is polymerized to produce a butene oligomer, an isobutene oligomer is selectively produced and the n-butenes hardly react. Therefore, n-butenes that have not reacted can be efficiently recovered.
実施例1
(1)触媒の調製
・酸化モリブデン担持チタニア-ジルコニア複合酸化物触媒(10mol%MoO/TiO-ZrO)の調製
 10wt%硝酸ジルコニウム溶液を酸化ジルコニウム換算で60.7g、10wt%塩化チタン溶液を酸化チタン換算で26.2g、それぞれ分取し、これら2つの溶液を混合した。得られた混合溶液を25%アンモニア水700gに全量滴下し、水酸化物スラリーを得た。水酸化物スラリーをろ別し、適宜イオン交換水で十分に水洗し、不純物を除去した水酸化物を得た。
 得られた水酸化物に5wt%のモリブデン酸アンモニウム溶液を酸化モリブデン換算で13.1g添加し、混練した後、150℃で恒量になるまで乾燥した。
 その後、600℃で焼成し、触媒であるモリブデン担持チタニア-ジルコニア複合酸化物を得た。
 この触媒の組成を蛍光X線分析(XRF)で分析した。各金属成分の含有率は、Moが13.1wt%(MoO換算)、Tiが26.2wt%(TiO換算)であり、残りの60.7wt%がZr(ZrO換算)であった。
Example 1
(1) Preparation of catalyst ・ Molybdenum oxide-supported titania-zirconia composite oxide catalyst (10 mol% MoO 3 / TiO 2 —ZrO 2 ) Preparation 10wt% zirconium nitrate solution in terms of zirconium oxide 60.7g, 10wt% titanium chloride solution 26.2 g in terms of titanium oxide were fractionated, and these two solutions were mixed. The total amount of the obtained mixed solution was dropped into 700 g of 25% aqueous ammonia to obtain a hydroxide slurry. The hydroxide slurry was separated by filtration and washed thoroughly with ion exchange water as appropriate to obtain a hydroxide from which impurities were removed.
13.1 g of 5 wt% ammonium molybdate solution was added to the obtained hydroxide in terms of molybdenum oxide, kneaded, and then dried at 150 ° C. until a constant weight was obtained.
Thereafter, it was calcined at 600 ° C. to obtain a molybdenum-supporting titania-zirconia composite oxide as a catalyst.
The composition of this catalyst was analyzed by X-ray fluorescence analysis (XRF). As for the content of each metal component, Mo was 13.1 wt% (MoO 3 equivalent), Ti was 26.2 wt% (TiO 2 equivalent), and the remaining 60.7 wt% was Zr (ZrO 2 equivalent). .
(2)オリゴマー化反応
 固定床高圧流通反応装置を用いて、上記で調製した触媒の反応成績を調べた。ステンレス製反応管(内径10mm、長さ100cm)に触媒を20cc(16g)充填し、N流通下250℃に加熱して前処理した。その後、3MPa加圧下で、混合C4原料(1-ブテン13vol%、2-ブテン26vol%、イソブテン12vol%、ブタン48vol%、その他1vol%)を80cc/h(液)の流量で供給した(LHSV=4)。その後、触媒層内温が50℃になるよう、反応管ヒーターを調節して反応させた。得られた反応生成物(気相及び液相)の組成を、ガスクロマトグラフを用いて分析した。
 尚、上記混合C4原料はFCC(流動接触分解)装置から得られるC4留分(FCC-BB)である。
(2) Oligomerization reaction Using a fixed bed high-pressure flow reactor, the reaction results of the catalyst prepared above were examined. A stainless steel reaction tube (inner diameter 10 mm, length 100 cm) was filled with 20 cc (16 g) of catalyst, and pretreated by heating to 250 ° C. under N 2 flow. Thereafter, mixed C4 raw material (1-butene 13 vol%, 2-butene 26 vol%, isobutene 12 vol%, butane 48 vol%, other 1 vol%) was supplied at a flow rate of 80 cc / h (liquid) under a pressure of 3 MPa (LHSV = 4). Thereafter, the reaction was performed by adjusting the reaction tube heater so that the internal temperature of the catalyst layer was 50 ° C. The composition of the obtained reaction product (gas phase and liquid phase) was analyzed using a gas chromatograph.
The mixed C4 raw material is a C4 fraction (FCC-BB) obtained from an FCC (fluid catalytic cracking) apparatus.
 分析には2台のガスクロマトグラフ(GC)を用いた。「気相部」は主にC4異性体の分析に、「液相部」は主にC4オリゴマー(C8~C20+)の分析に用いた。
1.気相部
・GC:Varian社製 CP4900
・検出器:TCD(4ch.)
・カラム
 Ch.1:MS-5A(長さ10m)
      温度:100℃、キャリアガス:Ar
 Ch.2:PoraPLOT-Q(長さ10m)
      温度:80℃、キャリアガス:He
 Ch.3:Al/KCl(長さ10m)
      温度:80℃、キャリアガス:He
 Ch.4:CP-Sill 5CB(長さ8m)
      温度:120℃、キャリアガス:He
2.液相部
・GC:Agilent Technologies社製 6850GC
・カラム:HP-1(30m,0.25mm,0.25μm)
     キャリアガス:He(1.5cc/min)
     注入口温度:280℃:Split:1/20
・オーブン:50℃で5分間保持し、10℃/minで昇温し、300℃で10分間保持した。
・検出器:FID,300℃
Two gas chromatographs (GC) were used for the analysis. The “gas phase part” was mainly used for analysis of C4 isomers, and the “liquid phase part” was mainly used for analysis of C4 oligomers (C8 to C20 +).
1. Gas phase part / GC: CP4900 manufactured by Varian
・ Detector: TCD (4ch.)
-Column Ch. 1: MS-5A (length 10m)
Temperature: 100 ° C., carrier gas: Ar
Ch. 2: PoraPLOT-Q (length 10m)
Temperature: 80 ° C., carrier gas: He
Ch. 3: Al 2 O 3 / KCl (length 10 m)
Temperature: 80 ° C., carrier gas: He
Ch. 4: CP-Sill 5CB (length 8m)
Temperature: 120 ° C., carrier gas: He
2. Liquid phase part / GC: 6850GC manufactured by Agilent Technologies
Column: HP-1 (30m, 0.25mm, 0.25μm)
Carrier gas: He (1.5 cc / min)
Inlet temperature: 280 ° C .: Split: 1/20
Oven: held at 50 ° C. for 5 minutes, heated at 10 ° C./min, and held at 300 ° C. for 10 minutes.
-Detector: FID, 300 ° C
 転化率、生成液組成は以下の計算式にて算出した。
Figure JPOXMLDOC01-appb-M000001
The conversion rate and product liquid composition were calculated by the following calculation formulas.
Figure JPOXMLDOC01-appb-M000001
 反応開始から49時間後、イソブテン転化率は95.0%で、その時のn-ブテン転化率はわずか1.9%しかなく、イソブテンが極めて高選択的にオリゴマー化された。生成液の組成はブテン3量体(C12)が主成分であり(61.9%)、C8オリゴマー中のイソブテン2量体(DIB)の選択率は54.1%であった。 49 hours after the start of the reaction, the conversion of isobutene was 95.0%, the conversion of n-butene was only 1.9%, and isobutene was oligomerized very highly selectively. The composition of the product liquid was butene trimer (C12) as the main component (61.9%), and the selectivity of isobutene dimer (DIB) in the C8 oligomer was 54.1%.
実施例2
 実施例1の触媒の焼成温度を800℃に変えた触媒を用いた以外は、実施例1と同様にして触媒を調製し、オリゴマー化反応を実施した。
 その結果、反応開始から32時間後、イソブテン転化率は92.2%で、その時のn-ブテン転化率は2.9%であった。生成液の組成はブテン3量体(C12)が主成分であり(55.6%)、C8オリゴマー中のDIB選択率は41.2%であった。
Example 2
A catalyst was prepared in the same manner as in Example 1 except that the catalyst in which the calcination temperature of the catalyst in Example 1 was changed to 800 ° C. was used, and an oligomerization reaction was performed.
As a result, 32 hours after the start of the reaction, the isobutene conversion rate was 92.2%, and the n-butene conversion rate at that time was 2.9%. The composition of the product liquid was butene trimer (C12) as the main component (55.6%), and the DIB selectivity in the C8 oligomer was 41.2%.
実施例3
 モリブデン酸アンモニウム溶液の添加量を酸化モリブデン換算で2.4gに変更した以外は、実施例1と同様にして触媒を調製した。得られた触媒の組成は、MoOとして2.7wt%、TiOとして29.3wt%であった。
 また、実施例1と同様にしてオリゴマー化反応を実施した。反応開始から8時間後、イソブテン転化率は93.3%で、その時のn-ブテン転化率は3.5%であった。生成液の組成はブテン3量体(C12)が主成分であったが(40.4%)、炭素数20以上の高オリゴマーの生成量が増大した。C8オリゴマー中のDIB選択率は49.5%であった。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that the amount of ammonium molybdate solution added was changed to 2.4 g in terms of molybdenum oxide. The composition of the obtained catalyst was 2.7 wt% as MoO 3 and 29.3 wt% as TiO 2 .
Further, the oligomerization reaction was carried out in the same manner as in Example 1. 8 hours after the start of the reaction, the conversion of isobutene was 93.3%, and the conversion of n-butene at that time was 3.5%. The composition of the product liquid was butene trimer (C12) as the main component (40.4%), but the amount of high oligomers having 20 or more carbon atoms increased. The DIB selectivity in the C8 oligomer was 49.5%.
実施例4
(1)触媒の調製
・酸化タングステン担持チタニア-ジルコニア複合酸化物触媒(10mol%WO/TiO-ZrO)の調製
 実施例1の触媒調製において、モリブデン酸アンモニウム溶液の代わりに5wt%のタングステン酸アンモニウム溶液を酸化タングステン換算で19.6g添加した他は、実施例1と同様にして触媒を調製した。得られた触媒の組成は、WOとして19.6wt%、TiOとして24.3wt%であり、残りの56.1wt%がZr(ZrO換算)であった。
Example 4
(1) Preparation of catalyst-Preparation of tungsten oxide-supported titania-zirconia composite oxide catalyst (10 mol% WO 3 / TiO 2 -ZrO 2 ) In the catalyst preparation of Example 1, 5 wt% tungsten instead of ammonium molybdate solution A catalyst was prepared in the same manner as in Example 1 except that 19.6 g of ammonium acid solution was added in terms of tungsten oxide. The composition of the obtained catalyst was 19.6 wt% as WO 3 , 24.3 wt% as TiO 2 , and the remaining 56.1 wt% was Zr (converted to ZrO 2 ).
(2)オリゴマー化反応
 反応条件は、触媒充填量を5ccとしてLHSV=16、反応温度を60℃に変えた以外は、実施例1と同様にした。
 反応開始から44時間後、イソブテン転化率は93.7%で、その時のn-ブテン転化率は4.2%であった。生成液の組成はブテン3量体(C12)が主成分であった(58.5%)。
(2) Oligomerization reaction The reaction conditions were the same as in Example 1 except that the catalyst loading was 5 cc, LHSV = 16, and the reaction temperature was changed to 60 ° C.
44 hours after the start of the reaction, the conversion of isobutene was 93.7%, and the conversion of n-butene at that time was 4.2%. The composition of the product liquid was butene trimer (C12) as a main component (58.5%).
実施例5
・酸化タングステン担持シリカ-ジルコニア複合酸化物触媒(10mol%WO/SiO-ZrO)の調製
 10wt%硝酸ジルコニウム溶液を酸化ジルコニウム換算で77.2g、25wt%ケイ酸ナトリウム溶液を二酸化ケイ素換算で4.7g、それぞれ分取し、これら2つの溶液を混合した。得られた混合溶液を25%アンモニア水700gに全量滴下し、水酸化物スラリーを得た。水酸化物スラリーをろ別し、適宜イオン交換水で十分に水洗し、不純物を除去した水酸化物を得た。
 得られた水酸化物に5wt%のタングステン酸アンモニウム溶液を酸化タングステン換算で18.1g添加し、混練した後、150℃で恒量になるまで乾燥した。
 その後、600℃で焼成し、触媒であるタングステン担持シリカ-ジルコニア複合酸化物を得た。
 得られた触媒の組成は、WOとして18.1wt%、SiOとして4.7wt%であった。
(2)オリゴマー化反応
 実施例4と同様にしてオリゴマー化反応を行った。
 反応開始から48時間後、イソブテン転化率は94.7%で、その時のn-ブテン転化率は5.3%であった。生成液の組成はブテン3量体(C12)が主成分であった(57.9%)。
Example 5
Preparation of tungsten oxide-supported silica-zirconia composite oxide catalyst (10 mol% WO 3 / SiO 2 -ZrO 2 ) 10 wt% zirconium nitrate solution in terms of zirconium oxide 77.2 g, 25 wt% sodium silicate solution in terms of silicon dioxide 4.7 g of each was taken and these two solutions were mixed. The total amount of the obtained mixed solution was dropped into 700 g of 25% aqueous ammonia to obtain a hydroxide slurry. The hydroxide slurry was separated by filtration and washed thoroughly with ion exchange water as appropriate to obtain a hydroxide from which impurities were removed.
18.1 g of a 5 wt% ammonium tungstate solution was added to the obtained hydroxide in terms of tungsten oxide, kneaded, and dried at 150 ° C. until a constant weight was obtained.
Thereafter, firing was performed at 600 ° C. to obtain a tungsten-supported silica-zirconia composite oxide as a catalyst.
The composition of the obtained catalyst was 18.1 wt% as WO 3 and 4.7 wt% as SiO 2 .
(2) Oligomerization reaction An oligomerization reaction was carried out in the same manner as in Example 4.
48 hours after the start of the reaction, the conversion of isobutene was 94.7%, and the conversion of n-butene at that time was 5.3%. The composition of the product liquid was butene trimer (C12) as a main component (57.9%).
比較例1
 モリブデン担持ジルコニア触媒(10mol%MoO/ZrO、第一稀元素化学工業株式会社製)を使用した以外は、実施例1と同様にオリゴマー化反応を実施した。但し、反応温度は100℃とした。
 反応開始から8時間後、イソブテン転化率は96.7%で、その時のn-ブテン転化率は8.8%であった。
 イソブテン転化率は、実施例1~3のTiO複合化触媒の反応温度50℃での結果と同程度であり、TiOと複合化させることにより活性が飛躍的に向上することが分かった。また、TiO複合化触媒の方がn-ブテン転化率が低く、イソブテン選択性が優れていることが明らかである。
Comparative Example 1
An oligomerization reaction was carried out in the same manner as in Example 1 except that a molybdenum-supported zirconia catalyst (10 mol% MoO 3 / ZrO 2 , manufactured by Daiichi Rare Element Chemical Industries, Ltd.) was used. However, the reaction temperature was 100 ° C.
8 hours after the start of the reaction, the conversion of isobutene was 96.7%, and the n-butene conversion at that time was 8.8%.
The conversion rate of isobutene was similar to the results of the TiO 2 composite catalysts of Examples 1 to 3 at a reaction temperature of 50 ° C., and it was found that the activity was dramatically improved by combining with TiO 2 . It is also clear that the TiO 2 composite catalyst has a lower n-butene conversion rate and superior isobutene selectivity.
比較例2
 タングステン担持ジルコニア触媒(10mol%WO/ZrO、第一稀元素化学工業株式会社製)を使用した以外は、実施例4と同様にオリゴマー化反応を実施した。
 反応開始から16時間後、イソブテン転化率は93.6%で、その時のn-ブテン転化率は7.1%であった。実施例4及び5のTiO又はSiO複合化触媒と比較して、イソブテン転化率は同程度であるが、n-ブテン転化率が高い。従って、本発明の複合化触媒の方がイソブテン選択性に優れていることが明らかである。
Comparative Example 2
An oligomerization reaction was carried out in the same manner as in Example 4 except that a tungsten-supported zirconia catalyst (10 mol% WO 3 / ZrO 2 , manufactured by Daiichi Rare Element Chemical Co., Ltd.) was used.
16 hours after the start of the reaction, the conversion of isobutene was 93.6%, and the conversion of n-butene at that time was 7.1%. Compared to the TiO 2 or SiO 2 composite catalyst of Examples 4 and 5, the isobutene conversion is similar, but the n-butene conversion is high. Therefore, it is clear that the composite catalyst of the present invention is superior in isobutene selectivity.
比較例3
 チタニア-ジルコニア担体(40mol%TiO-ZrO、第一稀元素化学工業株式会社製)にMoやWを担持させずに用いた以外は、実施例1と同様に実施した。
 反応温度が100℃であっても反応は全く進行せず、担体のみでは活性を有していないことが分かった。即ち、TiO-ZrO担体にMo又はWを担持することにより、極めて高活性・高選択性を有するイソブテンのオリゴマー化触媒が形成されることが確認できた。
Comparative Example 3
The same procedure as in Example 1 was performed except that Mo and W were not supported on a titania-zirconia support (40 mol% TiO 2 —ZrO 2 , manufactured by Daiichi Rare Element Chemical Co., Ltd.).
It was found that even when the reaction temperature was 100 ° C., the reaction did not proceed at all, and the carrier alone had no activity. That is, it was confirmed that an isobutene oligomerization catalyst having extremely high activity and high selectivity was formed by loading Mo or W on a TiO 2 —ZrO 2 carrier.
比較例4
 代表的な固体酸触媒として、工業的に使用されているシリカアルミナ触媒(SiO 90%)を使用した以外は、実施例1と同様にオリゴマー化反応を実施した。
 触媒充填量は実施例1~3、比較例1のMo系触媒の実験に合わせて20cc(LHSV=4)とし、反応温度は80℃で実施した。
 反応開始から20時間後、イソブテン転化率は98.0%で、その時のn-ブテン転化率は26.0%であった。生成液の組成はブテン2量体(C8)及び3量体(C12)が主成分で、多種多様な異性体構造を有する混合物となっていた。C8オリゴマー中のDIB選択率は12.3%しかなかった。この結果からも、実施例の触媒が、極めて高いイソブテン選択性を有していることが確認できた。
Comparative Example 4
As a typical solid acid catalyst, an oligomerization reaction was carried out in the same manner as in Example 1 except that an industrially used silica alumina catalyst (SiO 2 90%) was used.
The catalyst charge was 20 cc (LHSV = 4) in accordance with the experiments of the Mo-based catalyst of Examples 1 to 3 and Comparative Example 1, and the reaction temperature was 80 ° C.
20 hours after the start of the reaction, the conversion of isobutene was 98.0%, and the n-butene conversion at that time was 26.0%. The composition of the product liquid was a mixture having butene dimer (C8) and trimer (C12) as main components and various isomer structures. The DIB selectivity in the C8 oligomer was only 12.3%. Also from this result, it was confirmed that the catalysts of the examples had extremely high isobutene selectivity.
比較例5
 比較例4と同じ触媒を用い、触媒充填量を実施例4及び5、比較例2のW系触媒の実験に合わせて5cc(LHSV=16)とし、反応温度は80℃でオリゴマー化反応を実施した。
 反応開始から16時間後、イソブテン転化率は81.5%で、その時のn-ブテン転化率は11.8%であった。生成液の組成はブテン2量体(C8)及び3量体(C12)が主成分で、多種多様な異性体構造を有する混合物となっていた。この結果からも、実施例に記載した触媒が、極めて高いイソブテン選択性を有していることが明らかである。
Comparative Example 5
The same catalyst as in Comparative Example 4 was used, the catalyst filling amount was 5 cc (LHSV = 16) in accordance with the experiments of the W-based catalyst of Examples 4 and 5 and Comparative Example 2, and the oligomerization reaction was carried out at a reaction temperature of 80 ° C. did.
16 hours after the start of the reaction, the isobutene conversion rate was 81.5%, and the n-butene conversion rate at that time was 11.8%. The composition of the product liquid was a mixture having butene dimer (C8) and trimer (C12) as main components and various isomer structures. Also from this result, it is clear that the catalyst described in the examples has extremely high isobutene selectivity.
実施例6
 触媒は実施例1と同じものを用いた。
 以下のように反応条件を変更した他は、実施例1と同様にしてオリゴマー化反応を行った。
・反応管内径:14mm
・反応圧力:2MPa
・混合C4原料組成:1-ブテン20%、2-ブテン18%、イソブテン48%、ブタン13%、他1%
・原料流量:40cc/h(LHSV=2)
 尚、本実施例で用いた混合C4原料は、エチレン装置(ナフサ分解)から得られるC4留分(ブタジエン抽出後のBBR(ブタン-ブテンラフィネート)(Raffinate-I))である。
 その結果、反応開始から112時間後、イソブテン転化率は87.3%で、その時のn-ブテン転化率は3.0%であった。また、C8オリゴマー中のDIB選択率は92.0%であった。
Example 6
The same catalyst as in Example 1 was used.
The oligomerization reaction was performed in the same manner as in Example 1 except that the reaction conditions were changed as follows.
-Reaction tube inner diameter: 14 mm
・ Reaction pressure: 2 MPa
-Mixed C4 raw material composition: 1-butene 20%, 2-butene 18%, isobutene 48%, butane 13%, others 1%
・ Raw material flow rate: 40cc / h (LHSV = 2)
The mixed C4 raw material used in this example is a C4 fraction obtained from an ethylene unit (naphtha cracking) (BBR (butane-butene raffinate) (Raffinate-I) after butadiene extraction).
As a result, 112 hours after the start of the reaction, the isobutene conversion was 87.3%, and the n-butene conversion at that time was 3.0%. The DIB selectivity in the C8 oligomer was 92.0%.
実施例7
 触媒は実施例2と同じ触媒組成のものを用い、実施例6と同様にしてオリゴマー化反応を行った。
 その結果、反応開始から64時間後、イソブテン転化率は88.1%で、その時のn-ブテン転化率は4.9%であった。また、C8オリゴマー中のDIB選択率は88.3%であった。
Example 7
The catalyst having the same catalyst composition as in Example 2 was used, and the oligomerization reaction was performed in the same manner as in Example 6.
As a result, 64 hours after the start of the reaction, the conversion rate of isobutene was 88.1%, and the conversion rate of n-butene was 4.9%. The DIB selectivity in the C8 oligomer was 88.3%.
比較例6
 触媒は比較例4と同じものを用い、実施例6と同様にしてオリゴマー化反応を行った。
 その結果、反応開始から16時間後、イソブテン転化率は81.9%で、その時のn-ブテン転化率は17.8%であった。また、C8オリゴマー中のDIB選択率は41.3%であった。
 従って、本実施例の触媒はイソブテン選択性が極めて高いことが分かる。
Comparative Example 6
The same catalyst as in Comparative Example 4 was used, and the oligomerization reaction was performed in the same manner as in Example 6.
As a result, 16 hours after the start of the reaction, the isobutene conversion rate was 81.9%, and the n-butene conversion rate at that time was 17.8%. The DIB selectivity in the C8 oligomer was 41.3%.
Therefore, it can be seen that the catalyst of this example has very high isobutene selectivity.
 以下表1に、実施例1~7及び比較例1~6の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the results of Examples 1 to 7 and Comparative Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000001
 本発明のオレフィンのオリゴマー化反応用触媒は、オレフィンオリゴマー、特に、イソブテンオリゴマーの製造に好適に使用できる。 The olefin oligomerization reaction catalyst of the present invention can be suitably used for the production of olefin oligomers, particularly isobutene oligomers.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will recognize that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein.

Claims (7)

  1.  ジルコニア(ZrO)に、チタニア(TiO)又はシリカ(SiO)を複合化した酸化物担体に、タングステン(W)又はモリブデン(Mo)を担持したものを焼成して得られる、オレフィンのオリゴマー化反応用触媒。 Olefin oligomer obtained by firing tungsten carrier (W) or molybdenum (Mo) supported on an oxide carrier obtained by combining titania (TiO 2 ) or silica (SiO 2 ) with zirconia (ZrO 2 ). Catalyst for chemical reaction.
  2.  前記複合酸化物担体へのW又はMoの担持量が、酸化物換算(WO又はMoO)で1~30wt%である請求項1に記載のオレフィンのオリゴマー化反応用触媒。 The catalyst for olefin oligomerization reaction according to claim 1, wherein the amount of W or Mo supported on the composite oxide support is 1 to 30 wt% in terms of oxide (WO 3 or MoO 3 ).
  3.  前記オレフィン中の、分岐型オレフィンを選択的にオリゴマー化する請求項1又は2に記載のオレフィンのオリゴマー化反応用触媒。 The olefin oligomerization reaction catalyst according to claim 1 or 2, wherein a branched olefin in the olefin is selectively oligomerized.
  4.  請求項1~3のいずれかに記載のオレフィンのオリゴマー化反応用触媒に、原料オレフィンを接触させる工程を有する、オレフィンオリゴマーの製造方法。 A method for producing an olefin oligomer, comprising a step of bringing a raw material olefin into contact with the olefin oligomerization reaction catalyst according to any one of claims 1 to 3.
  5.  前記原料オレフィンが、炭素数4~12のオレフィン類である請求項4に記載のオレフィンオリゴマーの製造方法。 The method for producing an olefin oligomer according to claim 4, wherein the raw material olefin is an olefin having 4 to 12 carbon atoms.
  6.  前記原料オレフィンが、ナフサ分解等から副生するC4留分である請求項4に記載のオレフィンオリゴマーの製造方法。 The method for producing an olefin oligomer according to claim 4, wherein the raw material olefin is a C4 fraction by-produced from naphtha cracking or the like.
  7.  請求項4~6のいずれかに記載のオレフィンオリゴマーの製造方法により得られ、原料オレフィンの2量体、3量体及び4量体を含むオレフィンオリゴマー。 An olefin oligomer obtained by the method for producing an olefin oligomer according to any one of claims 4 to 6 and comprising a dimer, a trimer and a tetramer of raw material olefins.
PCT/JP2011/001499 2010-03-17 2011-03-15 Catalyst for olefin oligomerization reaction WO2011114707A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800142098A CN102791372A (en) 2010-03-17 2011-03-15 Catalyst for oligomerization of olefins
KR1020127024021A KR20120136363A (en) 2010-03-17 2011-03-15 Catalyst for olefin oligomerization reaction
JP2012505505A JP5746144B2 (en) 2010-03-17 2011-03-15 Olefin oligomerization catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010060966 2010-03-17
JP2010-060966 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011114707A1 true WO2011114707A1 (en) 2011-09-22

Family

ID=44648819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001499 WO2011114707A1 (en) 2010-03-17 2011-03-15 Catalyst for olefin oligomerization reaction

Country Status (5)

Country Link
JP (1) JP5746144B2 (en)
KR (1) KR20120136363A (en)
CN (1) CN102791372A (en)
TW (1) TW201201909A (en)
WO (1) WO2011114707A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946642A (en) * 2017-03-12 2017-07-14 山东成泰化工有限公司 A kind of isobutene polymerisation prepares triisobutylene and the method and device of four isobutenes
JP2019094320A (en) * 2017-11-21 2019-06-20 ハンファ トータル ペトロケミカル カンパニー リミテッド Method of producing isobutene oligomers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201903179WA (en) * 2016-10-14 2019-05-30 Gevo Inc Conversion of mixtures of c2-c8 olefins to jet fuel and/or diesel fuel in high yield from bio-based alcohols
CN106905101A (en) * 2017-03-12 2017-06-30 山东成泰化工有限公司 A kind of isobutene polymerisation prepares the method and device of four isobutenes
CN106938968A (en) * 2017-03-12 2017-07-11 山东成泰化工有限公司 A kind of isobutene polymerisation prepares the method and device of diisobutylene, triisobutylene and four isobutenes
CN106995359A (en) * 2017-03-12 2017-08-01 山东成泰化工有限公司 A kind of isobutene polymerisation prepares the method and device of triisobutylene sum
CN111377786B (en) * 2018-12-28 2023-04-07 中国石油化工股份有限公司 Method for oligomerization of isobutene
CN111377787B (en) * 2018-12-28 2023-04-07 中国石油化工股份有限公司 Oligomerization reaction method of isobutene
CN113024336B (en) * 2021-03-19 2022-09-27 常州大学 Method for preparing isodecene by catalyzing isoamylene dimerization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896475A (en) * 1972-02-08 1973-12-10
JPH10130209A (en) * 1996-06-18 1998-05-19 Basf Ag Production of amine
JP2005015384A (en) * 2003-06-26 2005-01-20 Idemitsu Kosan Co Ltd Method for producing olefin oligomer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281309B1 (en) * 1997-01-08 2001-08-28 Eastman Chemical Company Flourinated solid acids as catalysts for the preparation of hydrocarbon resins
CN1076634C (en) * 1998-08-27 2001-12-26 中国石油化工集团公司 Process for preparing carried superstrong solid acid
US8183173B2 (en) * 2007-12-21 2012-05-22 Chevron Phillips Chemical Company Lp Fast activating catalyst
CN101254468A (en) * 2008-03-20 2008-09-03 山西大学 Nano load phosphotungstic acid catalyst and method of preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896475A (en) * 1972-02-08 1973-12-10
JPH10130209A (en) * 1996-06-18 1998-05-19 Basf Ag Production of amine
JP2005015384A (en) * 2003-06-26 2005-01-20 Idemitsu Kosan Co Ltd Method for producing olefin oligomer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. BACHILLER-BAEZA: "FTIR and Reaction Studies of Styrene and Toluene over Silica-Zirconia- Supported Heteropoly Acid Catalysts", JOURNAL OF CATALYSIS, vol. 212, no. 2, 2002, pages 231 - 239 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946642A (en) * 2017-03-12 2017-07-14 山东成泰化工有限公司 A kind of isobutene polymerisation prepares triisobutylene and the method and device of four isobutenes
JP2019094320A (en) * 2017-11-21 2019-06-20 ハンファ トータル ペトロケミカル カンパニー リミテッド Method of producing isobutene oligomers

Also Published As

Publication number Publication date
TW201201909A (en) 2012-01-16
KR20120136363A (en) 2012-12-18
JP5746144B2 (en) 2015-07-08
CN102791372A (en) 2012-11-21
JPWO2011114707A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5746144B2 (en) Olefin oligomerization catalyst
KR102184256B1 (en) Oligomerizatoin of c4 flows having minimal 1-butene content
US5510555A (en) Catalyst and process for oligomerizing olefins
JP6095808B2 (en) A method of producing a combination of at least butene and octene from ethene
KR20200011887A (en) Process for oligomerization of butene with determination of the proportion of acidic catalysis
JP2011148720A (en) Method for producing butadiene
JPH0288529A (en) Oligomerization of olefin
JP2011510918A (en) Method for oligomerizing alkenes
US4613580A (en) Process for the oligomerization of olefins and a catalyst thereof
CA2990185C (en) Process for manufacturing methyl tertiary-butyl ether (mtbe) and hydrocarbons
US4048109A (en) Oligomerization process and catalysts therefor
US4423267A (en) Supported ferric sulfate and cobalt sulfate catalysts for the oligomerization of olefins
WO2009091716A1 (en) Propylene oligomerization process
US4463212A (en) Selective oligomerization of olefins
JP4293851B2 (en) Method for producing olefin oligomer
US11406970B2 (en) Phosphate-promoted nickel catalyst for high temperature oligomerization
JP5410150B2 (en) Alkali metal salt of heteropolyacid and catalyst for olefin oligomerization comprising the same
US9890093B2 (en) Olefin oligomerizations using chemically-treated solid oxides
Szeto et al. Tailoring the selectivity in 2-butene conversion over supported d 0 group 4, 5 and 6 metal hydrides: from dimerization to metathesis
JP2005015384A (en) Method for producing olefin oligomer
TW202342560A (en) Butene oligomer production method
JPH024583B2 (en)
US11135573B2 (en) Phosphate-promoted nickel catalyst for high temperature oligomerization
EP3536678B1 (en) Process for producing propylene and alkylate
SU382598A1 (en) METHOD OF OBTAINING OLEFINES S. — Cg

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014209.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505505

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127024021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755898

Country of ref document: EP

Kind code of ref document: A1