WO2011111889A1 - Method for manufacturing a cigs thin film - Google Patents

Method for manufacturing a cigs thin film Download PDF

Info

Publication number
WO2011111889A1
WO2011111889A1 PCT/KR2010/001544 KR2010001544W WO2011111889A1 WO 2011111889 A1 WO2011111889 A1 WO 2011111889A1 KR 2010001544 W KR2010001544 W KR 2010001544W WO 2011111889 A1 WO2011111889 A1 WO 2011111889A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
copper
thin film
formula
group
Prior art date
Application number
PCT/KR2010/001544
Other languages
French (fr)
Korean (ko)
Inventor
장혁규
김현창
이주영
Original Assignee
주식회사 메카로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메카로닉스 filed Critical 주식회사 메카로닉스
Priority to PCT/KR2010/001544 priority Critical patent/WO2011111889A1/en
Publication of WO2011111889A1 publication Critical patent/WO2011111889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a CIGS thin film using chemical vapor deposition or atomic layer deposition while simultaneously supplying or sequentially supplying each precursor into a chamber.
  • compound I-III-VI group 2 (I: Ag, Cu; III: Al, Ga, In; VI: S, Se, Te) compound semiconductors have a chalcopyrite structure under atmospheric pressure. It is applied in a wide range of fields because it shows various physical properties according to different member elements.
  • the I-III-VI group 2 compound semiconductor was first synthesized by Hahn et al in 1953, and since its availability has been suggested by Goodman et al., It has been applied to an infrared detector, a light emitting diode, a nonlinear optical device, and a solar cell.
  • CuInSe 2 (hereinafter referred to as “CIS”) or CuIn 1 because the energy band spacing is about 1 to 2.5 eV at room temperature and the linear light absorption coefficient is about 10 to 100 times larger than other semiconductors.
  • CIS CuInSe 2
  • CIGS -x Ga x Se 2
  • thin film solar cells using CIGS thin films can be manufactured with a thickness of 10 ⁇ m or less unlike conventional solar cells using silicon crystals, and have stable characteristics even when used for a long time. As it shows energy conversion efficiency, it is known that it is highly commercialized as a low-cost, high-efficiency thin-film solar cell that can replace a silicon crystalline solar cell.
  • CIGS thin film solar cells are difficult to manufacture high quality thin films in an economical way, and thus are not widely used.
  • a method for manufacturing a CIGS thin film a physical vapor deposition method in which each element is simultaneously vaporized and deposited on a substrate in a vacuum atmosphere is used.
  • the physical vapor deposition method is not only difficult to mass production, but also has a problem of poor film quality.
  • the problem to be solved by the present invention is to provide a CIGS thin film manufacturing method capable of forming a large area thin film having a short manufacturing time, mass production, low manufacturing cost, excellent film quality.
  • the CIGS thin film manufacturing method is to produce a thin film by vapor deposition while supplying a precursor, a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and selenium on a substrate mounted in a vacuum chamber (Se) to prepare a thin film using a chemical vapor deposition method while supplying the precursor at the same time or a combination of two or more of them,
  • the copper, indium, gallium, and selenium precursors may be supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
  • steps 3), 5), 7), and 9 nitrogen (N 2 ) gas or argon (Ar) gas, which is an inert gas, is converted into 1 sccm (standard cubic centimeter per minute) to 1000 slm (standard liter per minute). It can be injected for 0.1 ⁇ 200 seconds at the flow rate and discharged by pump
  • a purging gas may be injected into the vacuum chamber, and a gas present in the vacuum chamber may be sucked and removed using a vacuum pump provided in the vacuum chamber.
  • the process may be performed while maintaining the pressure of the vacuum chamber at 0.01mtorr to atmospheric pressure.
  • the copper precursor has a structure of Formula 1-1 or 1-2
  • the indium precursor has a structure of Formula 2-1
  • a gallium precursor has a structure of Formula 3-1
  • the selenium precursor has a structure of Formula 4-1 or 4 It may have a structure of -2, the details thereof will be described later.
  • the copper precursor, indium precursor or gallium precursor can be supplied while maintaining the canister temperature at -40 ⁇ 200 °C, supply line temperature at room temperature ⁇ 400 °C, the selenium precursor, -60 ⁇ 200 °C , Can be supplied while maintaining the supply line temperature at room temperature ⁇ 400 °C.
  • the temperature of the substrate can be maintained at room temperature ⁇ 600 °C.
  • the manufacturing time is short, the productivity is high, the manufacturing cost is relatively low, and there is an effect of easily forming a large-area thin film excellent in film quality.
  • FIG. 1 is a cross-sectional view showing a deposition apparatus used in the CIGS thin film manufacturing method of the present invention.
  • a chemical vapor deposition apparatus or an atomic layer deposition apparatus (hereinafter, referred to as a “deposition apparatus”) as illustrated in FIG. 1 may be used.
  • the deposition apparatus is provided with a vacuum chamber 10 capable of keeping the interior in a vacuum state, and a substrate chuck 20 on which the substrate S is mounted is provided below the chamber.
  • the substrate S is carried into the chamber 10 through a gate (not shown) provided at one side of the chamber 10, placed on the substrate chuck 20, and then fixed. After the substrate S is loaded into the chamber 10, the gate is closed, and the inside of the chamber 10 is decompressed, and the pressure inside the chamber is preferably maintained at 0.01 mtorr to atmospheric pressure. On the other hand, the temperature of the substrate is preferably maintained at room temperature to 600 °C.
  • the upper portion of the chamber 10 is provided with a shower head 30 through which a process gas (and purging gas) can be supplied, and the shower head 30 has a myriad of minute holes having a diameter of about 0.5 to 1 mm. have. Therefore, the process gas (and purging gas) can be uniformly supplied to the substrate through the shower head 30.
  • the shower head 30 is connected to a plurality of canisters 40, 50, 60, and 70 disposed outside, and has a structure capable of receiving process gas from each canister. .
  • the process gas that is, the copper precursor, the indium precursor, the gallium precursor, and the selenium precursor are supplied through the shower head 30 while the substrate S is mounted in the chamber 10.
  • a thin film is manufactured by chemical vapor deposition while supplying the precursors simultaneously or in a combination of two or more thereof, or a thin film is manufactured by atomic layer deposition while supplying sequentially in a pulse form.
  • the “sequential supply in the form of a pulse” means that the copper precursor is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber to purge at least once.
  • the indium precursor like the copper precursor, is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber for purging. This is repeated one or more times to react the indium compound on the copper compound thin film, and to proceed in the same manner for the gallium precursor and selenium precursor.
  • it refers to an intermittent supply of supplying and shutting off for a short time, rather than supplying a single process gas continuously, while removing unreacted gas and reaction by-products while the process gas is not supplied and no longer reacting.
  • the purging process is repeated so as not to proceed.
  • the copper, indium, gallium, and selenium precursors are preferably supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
  • any one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ) may be used.
  • a purging method a method of injecting purging gas into the vacuum chamber 10 and sucking and removing gas present in the vacuum chamber by using a vacuum pump (not shown) provided in the vacuum chamber 10 may be employed. It is desirable to be able to purge into the vacuum chamber most efficiently. More preferably, inert gas (N 2 ) gas or argon (Ar) gas is injected at a flow rate of 1 sccm to 1000 slm for about 0.1 to 200 seconds and discharged to a pump.
  • the temperature of the canister 40 In the copper precursor canister 40 that supplies the copper precursor, it is preferable to maintain the temperature of the canister at about -40 to 200 ° C in order to supply an appropriate copper precursor.
  • the temperature of the supply line 44 through which the copper precursor leaving the canister 40 passes to reach the showerhead 30 is preferably maintained at a temperature higher than room temperature to about 400 ° C.
  • the copper precursor is preferably supplied to the inside of the chamber through a carrier gas from the first carrier gas source 42, as shown in FIG. 1, rather than alone, such a carrier gas may include argon (Ar), Helium (He) or nitrogen (N 2 ) gas, etc. may be used alone or in combination of two or more.
  • a carrier gas may include argon (Ar), Helium (He) or nitrogen (N 2 ) gas, etc. may be used alone or in combination of two or more.
  • the copper precursor may be supplied by being mixed with a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the above-described gases may be It may be supplied into the chamber together with the carrier gas or alone.
  • a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the above-described gases may be It may be supplied into the chamber together with the carrier gas or alone.
  • X is selected from ⁇ -dichitonate, ⁇ -chitoiminate, dialkylamidinate, dialkylaminoalkoxide, alkoxyalkoxide, and (alkyl) cyclopentadienyl L may be any one selected from alkenes, alkynes, cyclo (di) alkenes, trialkylphosphines, trialkylphosphites, alkylsilylalkenes, and alkylsilylalkynes having 5 to 12 carbon atoms as a neutral ligand.
  • Bis (2,2,6,6-tetramethylheptandionato) copper Bis (hexafluoroacetylacetonato) copper, (hexafluoroacetylacetonato) copper (vinyltrimethylsilane),
  • One or a mixture of two or more selected from the group consisting of may be used, but is not necessarily limited thereto.
  • the canisters 50 and 60 supplying the indium precursor or the gallium precursor may also maintain the temperature of the canister at about ⁇ 40 to 200 ° C. in order to supply an efficient precursor.
  • the indium precursor or the gallium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
  • the indium precursor it is preferable to use a compound having a structure of Formula 2-1.
  • R in Chemical Formula 2-1 One , R 2 , R 3 Are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein R One , R 2 , R 3
  • Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
  • L is a Lewis base as a neutral ligand, and is an amine-based compound capable of providing a lone pair of electrons to an indium metal center.
  • n is preferably an integer of 0 to 2.
  • L in the formula (2-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 2-2.
  • R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso), and R x and R y are mutually Either the same or different is selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, iso).
  • z is preferably an integer of 2 to 5.
  • Preferred structure of L in the present invention is represented by the following formula 2-3 2-3.
  • R in Chemical Formula 3-1 One , R 2 , R 3 are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein R One , R 2 , R 3
  • Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
  • L is a neutral base, a Lewis base, and is an amine-based compound capable of providing a lone pair of electrons to a gallium metal center.
  • n is preferably an integer of 0 to 2.
  • L in the formula (3-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 3-2.
  • R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso), and R x and R y are each other Either the same or different is selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, iso).
  • z is preferably an integer of 2 to 5.
  • Preferred structure of L in the present invention is represented by the following formulas (3-3 to 3-6).
  • the canister 70 for supplying the selenium precursor also preferably maintains the temperature of the canister at about ⁇ 60 to 200 ° C. for efficient supply of the selenium precursor.
  • the temperature of the supply line 74 is also slightly higher than the temperature of the canister and maintained at room temperature to about 400 ° C.
  • the selenium precursor like other precursors, is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
  • selenium precursor it is preferable to use a compound having a structure of Formula 4-1 or 4-2.
  • R 1 and R 2 are the same as or different from each other, and each selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen.
  • the alkyl group of each of R 1 , R 2 may be in the form of a chain, a branched chain, and a cyclic compound.
  • the selenium precursor is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoe
  • Any one or more mixtures selected from the group consisting of Dimethylselenide, Diethylselenide, Diisopropylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, and Tertiarybutylselenol may be used, but is not necessarily limited thereto.

Abstract

The present invention relates to a method for manufacturing a CIGS thin film using chemical vapor deposition or atomic layer deposition by simultaneously or sequentially feeding respective precursors into a chamber. More particularly, the present invention relates to a method for manufacturing a CIGS thin film using chemical vapor deposition by simultaneously feeding a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and a selenium (Se) precursor onto a substrate mounted inside a vacuum chamber or by feeding a combination of at least two of the precursors, or relates to a method for manufacturing a CIGS thin film on a substrate by using atomic layer deposition, wherein the method includes the steps of: 1) positioning a substrate in a vacuum chamber and maintaining the substrate at a specific reaction temperature; 2) feeding a copper precursor into the vacuum chamber and allowing the copper precursor to react with the substrate; 3) performing a first purge for removing unreacted substances and by-products; 4) feeding an indium precursor into the vacuum chamber and allowing the indium precursor to react with the substrate; 5) performing a second purge for removing unreacted substances and by-products; 6) feeding a gallium precursor into the vacuum chamber and allowing the gallium precursor to react with the substrate; 7) performing a third purge for removing unreacted substances and by-products; 8) supplying a selenium precursor into the vacuum chamber and allowing the selenium precursor to react with the substrate; and 9) performing a fourth purge for removing unreacted substances and by-products. According to the present invention, a large area thin film can be provided with a short manufacturing time, high productivity, low manufacturing costs, and excellent film quality.

Description

CIGS 박막 제조방법CIGS thin film manufacturing method
본 발명은 각 전구체를 챔버 내부에 동시 공급 또는 순차 공급하면서 화학기상 증착법 또는 원자층 증착법을 이용하여 CIGS 박막을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a CIGS thin film using chemical vapor deposition or atomic layer deposition while simultaneously supplying or sequentially supplying each precursor into a chamber.
일반적으로 I-III-VI2족(I: Ag, Cu ; III: Al, Ga, In ; VI: S, Se, Te) 화합물 반도체는 상온 대기압 하에서 켈커파이라이트(chalcopyrite) 구조를 가지고 있으며, 그 구성원소를 달리함에 따라 다양한 물성을 보여주기 때문에 폭넓은 분야에서 응용되고 있다.Generally, compound I-III-VI group 2 (I: Ag, Cu; III: Al, Ga, In; VI: S, Se, Te) compound semiconductors have a chalcopyrite structure under atmospheric pressure. It is applied in a wide range of fields because it shows various physical properties according to different member elements.
이러한 I-III-VI2족 화합물 반도체는 1953년 Hahn 등에 의하여 처음 합성되었고, Goodman 등에 의하여 반도체로서 이용가능성이 제시된 이후, 적외선 검출기를 비롯하여 발광다이오드, 비선형광학소자 및 태양전지 등에 응용되고 있다. The I-III-VI group 2 compound semiconductor was first synthesized by Hahn et al in 1953, and since its availability has been suggested by Goodman et al., It has been applied to an infrared detector, a light emitting diode, a nonlinear optical device, and a solar cell.
이 중에서 태양전지에는, 상온에서 에너지 띠 간격이 약 1 ~ 2.5 eV 이고, 선형 광흡수계수가 다른 반도체에 비하여 10 ~ 100배 정도 크기 때문에, CuInSe2(이하, "CIS"라고 함) 또는 CuIn1-xGaxSe2(이하, "CIGS"라고 함) 화합물 반도체가 많이 사용되고 있다. Among them, CuInSe 2 (hereinafter referred to as “CIS”) or CuIn 1 because the energy band spacing is about 1 to 2.5 eV at room temperature and the linear light absorption coefficient is about 10 to 100 times larger than other semiconductors. -x Ga x Se 2 (hereinafter referred to as "CIGS") Compound Semiconductors are used a lot.
특히, CIGS 박막을 사용하는 박막형 태양전지는 기존의 실리콘 결정을 사용하는 태양전지와는 달리 10㎛ 이하의 두께로 제작 가능하고 장시간 사용시에도 안정적인 특성이 있으며, 최근 박막형 태양전지 중 가장 높은 19.5%의 에너지 변환 효율을 보임에 따라 실리콘 결정질 태양전지를 대체할 수 있는 저가형 고효율 박막형 태양전지로서 상업화 가능성이 아주 높은 것을 알려져 있다.  In particular, thin film solar cells using CIGS thin films can be manufactured with a thickness of 10 μm or less unlike conventional solar cells using silicon crystals, and have stable characteristics even when used for a long time. As it shows energy conversion efficiency, it is known that it is highly commercialized as a low-cost, high-efficiency thin-film solar cell that can replace a silicon crystalline solar cell.
그런데, 이러한 우수한 특성이 있는데도 CIGS 박막 태양전지는 양질의 박막을 경제적인 방법으로 제조하기가 어려워 폭넓게 활용되지는 못하고 있다. 종래 CIGS 박막을 제조하기 위한 방법으로는 진공 분위기에서 각각의 원소를 동시에 증발시켜 기판에 증착시키는 물리적 증착방법이 많이 사용되고 있다. 그러나 이러한 물리적 증착 방법은 대량생산이 어려울 뿐만 아니라, 막질의 특성이 나쁜 문제점이 있다.  However, despite these excellent characteristics, CIGS thin film solar cells are difficult to manufacture high quality thin films in an economical way, and thus are not widely used. Conventionally, as a method for manufacturing a CIGS thin film, a physical vapor deposition method in which each element is simultaneously vaporized and deposited on a substrate in a vacuum atmosphere is used. However, the physical vapor deposition method is not only difficult to mass production, but also has a problem of poor film quality.
본 발명이 해결하고자 하는 과제는 제조시간이 짧아 대량생산이 가능하고, 제조단가가 낮으며, 막질이 우수한 대면적 박막을 형성할 수 있는 CIGS 박막 제조방법을 제공하는 것이다. The problem to be solved by the present invention is to provide a CIGS thin film manufacturing method capable of forming a large area thin film having a short manufacturing time, mass production, low manufacturing cost, excellent film quality.
본 발명에 따른 CIGS 박막 제조방법은 전구체를 공급하면서 증착법에 의해 박막을 제조하는 것으로서, 진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 셀레늄(Se) 전구체를 동시에 또는 이들 중 2가지 이상의 조합으로 공급하면서 화학기상 증착법을 이용하여 박막을 제조하거나,  The CIGS thin film manufacturing method according to the present invention is to produce a thin film by vapor deposition while supplying a precursor, a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and selenium on a substrate mounted in a vacuum chamber (Se) to prepare a thin film using a chemical vapor deposition method while supplying the precursor at the same time or a combination of two or more of them,
1) 진공 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계; 2) 진공 챔버 내부로 구리 전구체를 공급하고 반응시키는 단계; 3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계; 4) 진공 챔버 내부로 인듐 전구체를 공급하고 반응시키는 단계; 5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계; 6) 진공 챔버 내부로 갈륨 전구체를 공급하고 반응시키는 단계; 7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계; 및 8) 진공 챔버 내부로 셀레늄 전구체를 공급하고 반응시키는 단계; 9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하고, 원자층 증착법을 이용하여 기판상에 박막을 제조하는 것을 특징으로 하는 것이다.1) placing a substrate inside the vacuum chamber and maintaining the substrate at a specific reaction temperature; 2) supplying and reacting a copper precursor into the vacuum chamber; 3) a first purging step to remove unreacted material and by-products; 4) supplying and reacting the indium precursor into the vacuum chamber; 5) a second purging step to remove unreacted material and by-products; 6) supplying and reacting a gallium precursor into the vacuum chamber; 7) third purging step to remove unreacted material and by-products; And 8) supplying and reacting a selenium precursor into the vacuum chamber; 9) a fourth purging step of removing unreacted materials and by-products, characterized in that to produce a thin film on the substrate using an atomic layer deposition method.
또한, 상기 2), 4), 6), 8) 단계에서, 상기 구리, 인듐, 갈륨, 셀레늄 전구체를 공급시에 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급할 수 있다. In addition, in steps 2), 4), 6), and 8), the copper, indium, gallium, and selenium precursors may be supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
그리고, 상기 3), 5), 7), 9) 단계에서, 불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm(standard cubic centimeter per minute) ~ 1000slm(standard liter per minute)의 유량으로 0.1 ~ 200초간 주입하고 펌프로 배출할 수 있다.In addition, in steps 3), 5), 7), and 9), nitrogen (N 2 ) gas or argon (Ar) gas, which is an inert gas, is converted into 1 sccm (standard cubic centimeter per minute) to 1000 slm (standard liter per minute). It can be injected for 0.1 ~ 200 seconds at the flow rate and discharged by pump
아울러, 상기 제1, 2, 3 퍼징 단계에서는, 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 1종 이상의 퍼징가스를 상기 진공 챔버 내부로 주입하고, 진공 챔버에 마련되는 진공 펌프를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거할 수 있다.In addition, in the first, second, third purging step, at least one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ). A purging gas may be injected into the vacuum chamber, and a gas present in the vacuum chamber may be sucked and removed using a vacuum pump provided in the vacuum chamber.
한편, 본 발명에 따른 CIGS 박막 제조방법에 있어서, 상기 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 셀레늄 전구체의 공급시에 아르곤(Ar) 가스, 헬륨(He) 가스 또는 질소(N2) 가스 중 1종 이상을 운반가스로 사용할 수 있다. On the other hand, in the CIGS thin film manufacturing method according to the present invention, 1 of the argon (Ar) gas, helium (He) gas or nitrogen (N 2 ) gas at the time of supplying the copper precursor, indium precursor, gallium precursor, and selenium precursor. More than one species may be used as the carrier gas.
또한, 상기 진공 챔버의 압력을 0.01mtorr ~ 대기압으로 유지하면서 공정을 진행할 수 있다. In addition, the process may be performed while maintaining the pressure of the vacuum chamber at 0.01mtorr to atmospheric pressure.
그리고, 상기 구리 전구체는 화학식 1-1 또는 1-2의 구조를, 상기 인듐 전구체는 화학식 2-1의 구조를, 갈륨 전구체는 화학식 3-1의 구조를, 셀레늄 전구체는 화학식 4-1 또는 4-2의 구조를 가지는 것일 수 있으며, 이에 대한 구체적인 내용은 후술하기로 한다.  The copper precursor has a structure of Formula 1-1 or 1-2, the indium precursor has a structure of Formula 2-1, a gallium precursor has a structure of Formula 3-1, and the selenium precursor has a structure of Formula 4-1 or 4 It may have a structure of -2, the details thereof will be described later.
한편, 상기 구리 전구체, 인듐 전구체 또는 갈륨 전구체는, 캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급할 수 있고, 상기 셀레늄 전구체는, 캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급할 수 있다. On the other hand, the copper precursor, indium precursor or gallium precursor can be supplied while maintaining the canister temperature at -40 ~ 200 ℃, supply line temperature at room temperature ~ 400 ℃, the selenium precursor, -60 ~ 200 ℃ , Can be supplied while maintaining the supply line temperature at room temperature ~ 400 ℃.
또한, 상기 기판의 온도는 상온 ~ 600℃로 유지할 수 있다. In addition, the temperature of the substrate can be maintained at room temperature ~ 600 ℃.
본 발명에 따르면 제조시간이 짧고, 생산성이 높으며, 상대적으로 제조단가가 낮고, 막질이 우수한 대면적 박막을 용이하게 형성할 수 있는 효과가 있다. According to the present invention, the manufacturing time is short, the productivity is high, the manufacturing cost is relatively low, and there is an effect of easily forming a large-area thin film excellent in film quality.
도 1은 본 발명의 CIGS 박막 제조방법에 사용되는 증착 장치를 나타내는 단면도이다.  1 is a cross-sectional view showing a deposition apparatus used in the CIGS thin film manufacturing method of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예에 대해 상세히 설명한다.  Hereinafter, with reference to the accompanying drawings will be described in detail a specific embodiment of the present invention.
본 실시예에 따른 CIGS 박막 제조방법에는 도 1에 도시된 바와 같은 화학기상 증착 장치 또는 원자층 증착 장치(이하 '증착 장치'라 통칭함)가 사용될 수 있다. 이러한 증착 장치에는 내부를 진공 상태로 유지할 수 있는 진공 챔버(10)가 구비되고, 이 챔버 내부의 하측에는 기판(S)이 장착될 수 있는 기판척(20)이 구비된다. In the CIGS thin film manufacturing method according to the present embodiment, a chemical vapor deposition apparatus or an atomic layer deposition apparatus (hereinafter, referred to as a “deposition apparatus”) as illustrated in FIG. 1 may be used. The deposition apparatus is provided with a vacuum chamber 10 capable of keeping the interior in a vacuum state, and a substrate chuck 20 on which the substrate S is mounted is provided below the chamber.
기판(S)은 챔버(10) 일측에 구비되어 있는 게이트(미도시)를 통하여 챔버(10) 내부로 반입되고, 기판척(20)에 놓여진 후 고정된다. 기판(S)이 챔버(10) 내부로 반입된 후 게이트가 밀폐되고, 챔버(10) 내부는 감압되는데, 챔버 내부의 압력이 0.01mtorr ~ 대기압 정도로 유지되는 것이 바람직하다. 한편 기판의 온도는 상온 ~ 600℃로 유지하는 것이 바람직하다. The substrate S is carried into the chamber 10 through a gate (not shown) provided at one side of the chamber 10, placed on the substrate chuck 20, and then fixed. After the substrate S is loaded into the chamber 10, the gate is closed, and the inside of the chamber 10 is decompressed, and the pressure inside the chamber is preferably maintained at 0.01 mtorr to atmospheric pressure. On the other hand, the temperature of the substrate is preferably maintained at room temperature to 600 ℃.
그리고, 챔버(10)의 상부에는 공정가스(및 퍼징가스)가 공급될 수 있는 샤워헤드(30)가 구비되는데, 이 샤워헤드(30)에는 직경 0.5 ~ 1mm 정도의 미세한 홀이 무수하게 형성되어 있다. 따라서 이 샤워헤드(30)를 통하여 공정가스(및 퍼징가스)가 기판에 전체적으로 균일하게 공급될 수 있다.  In addition, the upper portion of the chamber 10 is provided with a shower head 30 through which a process gas (and purging gas) can be supplied, and the shower head 30 has a myriad of minute holes having a diameter of about 0.5 to 1 mm. have. Therefore, the process gas (and purging gas) can be uniformly supplied to the substrate through the shower head 30.
상기 샤워헤드(30)는 도 1에 도시된 바와 같이, 외부에 배치되어 있는 다수개의 캐니스터(40, 50, 60, 70)와 연결되어 있으며, 각 캐니스터로부터 공정가스를 공급받을 수 있는 구조를 가진다.  As shown in FIG. 1, the shower head 30 is connected to a plurality of canisters 40, 50, 60, and 70 disposed outside, and has a structure capable of receiving process gas from each canister. .
이러한 상태로 챔버(10) 내부에 기판(S)이 장착된 상태에서 상기 샤워헤드(30)를 통하여 공정가스 즉, 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 셀레늄 전구체를 공급한다. 구체적으로는 상기 전구체들을 동시에 또는 이들 중 2이상의 조합으로 공급하면서 화학기상 증착법으로 박막을 제조하거나 펄스 형태로 순차적으로 공급하면서 원자층 증착법으로 박막을 제조한다. 이들 방법에 의할 경우 신속하고도 효율적으로 기판상에 CIGS 박막을 제조할 수 있게 된다. In this state, the process gas, that is, the copper precursor, the indium precursor, the gallium precursor, and the selenium precursor are supplied through the shower head 30 while the substrate S is mounted in the chamber 10. Specifically, a thin film is manufactured by chemical vapor deposition while supplying the precursors simultaneously or in a combination of two or more thereof, or a thin film is manufactured by atomic layer deposition while supplying sequentially in a pulse form. These methods enable the production of CIGS thin films on substrates quickly and efficiently.
상기 "펄스 형태로 순차적으로 공급"한다는 것은, 구리 전구체를 운반가스에 의하여 일정한 짧은 시간 동안 진공 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 전구체 박막을 기판상에 성장시키고 나서 인듐 전구체를 구리 전구체와 마찬가지로 운반가스에 의하여 일정한 짧은 시간 동안 진공 챔버 내부에 공급하여 기판과 반응시킨 후, 퍼징가스를 챔버 내부로 공급하여 퍼징하는 과정을 한 번 이상 반복하여 구리 화합물 박막 상에 인듐 화합물을 반응시키고, 갈륨 전구체와 셀레늄 전구체에 대해서도 같은 방법으로 진행하는 것을 말한다.  The "sequential supply in the form of a pulse" means that the copper precursor is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber to purge at least once. After the copper precursor thin film is repeatedly grown on the substrate, the indium precursor, like the copper precursor, is supplied into the vacuum chamber for a predetermined short time by a carrier gas to react with the substrate, and then the purging gas is supplied into the chamber for purging. This is repeated one or more times to react the indium compound on the copper compound thin film, and to proceed in the same manner for the gallium precursor and selenium precursor.
즉, 하나의 공정가스를 연속적으로 공급하는 것이 아니라, 짧은 시간 동안 공급하고 차단하는 단속적인 공급을 말하는 것이며, 공정가스가 공급되지 않고 차단되는 동안에는 미반응 가스 및 반응 부산물을 제거하여 더 이상 반응이 진행되지 않도록 퍼징하는 공정이 반복되는 것이다.  In other words, it refers to an intermittent supply of supplying and shutting off for a short time, rather than supplying a single process gas continuously, while removing unreacted gas and reaction by-products while the process gas is not supplied and no longer reacting. The purging process is repeated so as not to proceed.
상기 구리, 인듐, 갈륨, 셀레늄 전구체는 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급하는 것이 바람직하다. The copper, indium, gallium, and selenium precursors are preferably supplied in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
상기 퍼징가스로는 헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 어느 하나 또는 이들의 조합을 사용함이 바람직하다. 그리고, 퍼징 방법으로는 퍼징가스를 상기 진공 챔버(10) 내부로 주입하고, 진공 챔버(10)에 마련되는 진공 펌프(미도시)를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거하는 방식이 가장 효율적으로 진공 챔버 내부로 퍼징할 수 있어서 바람직하다. 더욱 바람직하게는 불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm ~ 1000slm의 유량으로 약 0.1 ~ 200초간 주입하고 펌프로 배출하도록 한다.As the purging gas, any one selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ) may be used. As a purging method, a method of injecting purging gas into the vacuum chamber 10 and sucking and removing gas present in the vacuum chamber by using a vacuum pump (not shown) provided in the vacuum chamber 10 may be employed. It is desirable to be able to purge into the vacuum chamber most efficiently. More preferably, inert gas (N 2 ) gas or argon (Ar) gas is injected at a flow rate of 1 sccm to 1000 slm for about 0.1 to 200 seconds and discharged to a pump.
구리 전구체를 공급하는 구리 전구체 캐니스터(40)는, 적절한 구리 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 캐니스터(40)를 출발한 구리 전구체가 샤워헤드(30)에 도달하기 위하여 통과하는 공급라인(44)의 온도는 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다.  In the copper precursor canister 40 that supplies the copper precursor, it is preferable to maintain the temperature of the canister at about -40 to 200 ° C in order to supply an appropriate copper precursor. In addition, the temperature of the supply line 44 through which the copper precursor leaving the canister 40 passes to reach the showerhead 30 is preferably maintained at a temperature higher than room temperature to about 400 ° C.
또한, 구리 전구체는 단독으로 공급하기보다는 도 1에 도시된 바와 같이, 제1 운반가스 공급원(42)에서 나오는 운반가스를 통해 챔버 내부로 공급하는 것이 바람직한데, 이러한 운반가스로는 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등을 단독 사용하거나 2이상을 혼합하여 사용할 수 있다. In addition, the copper precursor is preferably supplied to the inside of the chamber through a carrier gas from the first carrier gas source 42, as shown in FIG. 1, rather than alone, such a carrier gas may include argon (Ar), Helium (He) or nitrogen (N 2 ) gas, etc. may be used alone or in combination of two or more.
그리고, 상기 구리 전구체는 수소(H2), 암모니아(NH3), 이산화질소(NO2), 산소(O2) 등의 기체와 혼합되어 공급될 수도 있으며, 구리 전구체 공급 후에, 전술한 기체들이 상기 운반가스와 함께 또는 단독으로 챔버 내부로 공급될 수도 있다. The copper precursor may be supplied by being mixed with a gas such as hydrogen (H 2 ), ammonia (NH 3 ), nitrogen dioxide (NO 2 ), oxygen (O 2 ), and after the copper precursor is supplied, the above-described gases may be It may be supplied into the chamber together with the carrier gas or alone.
상기 구리 전구체로는 다음 화학식 1-1 또는 1-2의 구조를 가지는 화합물을 사용함이 바람직하다. It is preferable to use a compound having a structure of Formula 1-1 or 1-2 as the copper precursor.
<화학식 1-1><Formula 1-1>
XCuLXCuL
<화학식 1-2><Formula 1-2>
CuX2 CuX 2
상기 화학식 1-1 및 1-2에서 X는 β-디키토네이트, β-키토이미네이트, 디알킬아미디네이트, 디알킬아미노알콕시드, 알콕시알콕시드, 및 (알킬)시클로펜타디엔닐 중에서 선택되는 어느 하나이고, L은 중성리간드로서 탄소수 5~12 사이의 알켄, 알킨, 시클로(디)알켄, 트리알킬포스핀, 트리알킬포스파이트, 알킬실릴알켄, 및 알킬실릴알킨 중에서 선택되는 어느 하나이다. In Formulas 1-1 and 1-2, X is selected from β-dichitonate, β-chitoiminate, dialkylamidinate, dialkylaminoalkoxide, alkoxyalkoxide, and (alkyl) cyclopentadienyl L may be any one selected from alkenes, alkynes, cyclo (di) alkenes, trialkylphosphines, trialkylphosphites, alkylsilylalkenes, and alkylsilylalkynes having 5 to 12 carbon atoms as a neutral ligand.
구체적으로,  Specifically,
Bis(acetylacetonato)copper, Bis (acetylacetonato) copper,
Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (hexafluoroacetylacetonato)copper(vinyltrimethylsilane),Bis (2,2,6,6-tetramethylheptandionato) copper, Bis (hexafluoroacetylacetonato) copper, (hexafluoroacetylacetonato) copper (vinyltrimethylsilane),
(acetylacetonato)copper(vinyltrimethylsilane),(acetylacetonato) copper (vinyltrimethylsilane),
(2,2,6,6-tetramethylheptandionato)copper(vinyltrimethylsilane),(2,2,6,6-tetramethylheptandionato) copper (vinyltrimethylsilane),
(acetylacetonato)copper(vinyltriethylsilane),(acetylacetonato) copper (vinyltriethylsilane),
(2,2,6,6-teramethylheptandionato)copper(vinyltriethylsilane),(2,2,6,6-teramethylheptandionato) copper (vinyltriethylsilane),
(hexafluoroacetylacetonato)copper(vinyltriethylsilane),(hexafluoroacetylacetonato) copper (vinyltriethylsilane),
(hexafluoroacetylacetonato)copper(1,5-cyclooctadiene),(hexafluoroacetylacetonato) copper (1,5-cyclooctadiene),
(hexafluoroacetylacetonato)copper(1,5-dimethylcyclooctadiene),(hexafluoroacetylacetonato) copper (1,5-dimethylcyclooctadiene),
(hexafluoroacetylacetonato)copper(3,3-dimethylbutene),(hexafluoroacetylacetonato) copper (3,3-dimethylbutene),
(hexafluoroacetylacetonato)copper(trimethylphosphite),(hexafluoroacetylacetonato) copper (trimethylphosphite),
(hexafluoroacetylacetonato)copper(trimethylphosphine),(hexafluoroacetylacetonato) copper (trimethylphosphine),
(hexafluoroacetylacetonato)copper(1,3-cyclohexadiene),(hexafluoroacetylacetonato) copper (1,3-cyclohexadiene),
Copper bis(dimethylaminomethylbutoxide),Copper bis (dimethylaminomethylbutoxide),
Copper bis(ethylmethylaminomethylbutoxide),Copper bis (ethylmethylaminomethylbutoxide),
Copper bis(diethylaminomethylbutoxide),Copper bis (diethylaminomethylbutoxide),
Copper bis(dimethylaminomethylpropoxide),Copper bis (dimethylaminomethylpropoxide),
Copper bis(ethylmethylaminomethylpropoxide), 및Copper bis (ethylmethylaminomethylpropoxide), and
Copper bis(diethylaminomethylpropoxide)Copper bis (diethylaminomethylpropoxide)
로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다. One or a mixture of two or more selected from the group consisting of may be used, but is not necessarily limited thereto.
인듐 전구체 또는 갈륨 전구체를 공급하는 캐니스터(50,60)도 전술한 구리 전구체와 마찬가지로 효율적인 전구체의 공급을 위하여 캐니스터의 온도를 -40 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(54,64)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 인듐 전구체 또는 갈륨 전구체도 구리 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반가스에 의하여 운반되는 것이 바람직하다. Like the copper precursors described above, the canisters 50 and 60 supplying the indium precursor or the gallium precursor may also maintain the temperature of the canister at about −40 to 200 ° C. in order to supply an efficient precursor. In addition, it is preferable to keep the temperature of the supply lines 54 and 64 also slightly higher than the temperature of the canister, and the temperature is about room temperature to 400 ° C. In addition, like the copper precursor, the indium precursor or the gallium precursor is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
상기 인듐 전구체로는 다음 화학식 2-1의 구조를 가지는 화합물을 사용함이 바람직하다.  As the indium precursor, it is preferable to use a compound having a structure of Formula 2-1.
<화학식 2-1><Formula 2-1>
InR1R2R3 : Ln InR 1 R 2 R 3 : L n
상기 화학식 2-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다. L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 인듐 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다. 이때 n은 0 내지 2의 정수가 바람직하다. R in Chemical Formula 2-1One, R2, R3Are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein ROne, R2, R3 Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound. L is a Lewis base as a neutral ligand, and is an amine-based compound capable of providing a lone pair of electrons to an indium metal center. In this case, n is preferably an integer of 0 to 2.
상기 화학식 2-1의 L은 2차 또는 3차의 아민 화합물인 것이 바람직하다. 더욱 바람직하게는 삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물을 사용하며 그 일반식은 다음 화학식 2-2와 같다.  L in the formula (2-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 2-2.
<화학식 2-2><Formula 2-2>
Ra-N(CRxRy)z R a -N (CR x R y ) z
상기 화학식 2-2에서 Ra는 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이고, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. 한편 z는 2 내지 5의 정수가 바람직하다.In Formula 2-2, R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso), and R x and R y are mutually Either the same or different is selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, iso). On the other hand, z is preferably an integer of 2 to 5.
본 발명에서 제시하는 L의 바람직한 구조는 다음 화학식 2-3 내지 2-6과 같다.  Preferred structure of L in the present invention is represented by the following formula 2-3 2-3.
<화학식 2-3> 아지리딘(aziridine) 화합물 (z = 2)Aziridine Compound (z = 2)
Figure PCTKR2010001544-appb-I000001
Figure PCTKR2010001544-appb-I000001
<화학식 2-4> 아제티딘(azetidine) 화합물 (z = 3)Azetidine Compound (z = 3)
Figure PCTKR2010001544-appb-I000002
Figure PCTKR2010001544-appb-I000002
<화학식 2-5> 피롤리딘(pyrrolidine) 화합물 (z = 4)Pyrrolidine Compound (z = 4)
Figure PCTKR2010001544-appb-I000003
Figure PCTKR2010001544-appb-I000003
<화학식 2-6> 피페리딘(piperidine) 화합물 (z = 5)Piperidine Compound (z = 5)
Figure PCTKR2010001544-appb-I000004
Figure PCTKR2010001544-appb-I000004
구체적으로,  Specifically,
Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, 및 Dimethyltertiarybutylindium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다.  Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, or a mixture of two or more of these may be used either It doesn't happen.
상기 갈륨 전구체로는 다음 화학식 3-1의 구조를 가지는 화합물을 사용함이 바람직하다.  It is preferable to use a compound having a structure of Formula 3-1 as the gallium precursor.
<화학식 3-1><Formula 3-1>
GaR1R2R3 : Ln GaR 1 R 2 R 3 : L n
상기 화학식 3-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다. L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 갈륨 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다. 이때 n은 0 내지 2의 정수가 바람직하다. R in Chemical Formula 3-1One, R2, R3Are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein ROne, R2, R3 Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound. L is a neutral base, a Lewis base, and is an amine-based compound capable of providing a lone pair of electrons to a gallium metal center. In this case, n is preferably an integer of 0 to 2.
상기 화학식 3-1의 L은 2차 또는 3차의 아민 화합물인 것이 바람직하다. 더욱 바람직하게는 삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물을 사용하며 그 일반식은 다음 화학식 3-2와 같다.  L in the formula (3-1) is preferably a secondary or tertiary amine compound. More preferably, a tricyclic, square, pentagonal or hexagonal heterocyclic amine compound is used, and the general formula thereof is represented by the following Chemical Formula 3-2.
<화학식 3-2><Formula 3-2>
Ra-N(CRxRy)z R a -N (CR x R y ) z
상기 화학식 3-2에서 Ra는 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이고, Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. 한편 z는 2 내지 5의 정수가 바람직하다.In Formula 3-2, R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso), and R x and R y are each other Either the same or different is selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, iso). On the other hand, z is preferably an integer of 2 to 5.
본 발명에서 제시하는 L의 바람직한 구조는 다음 화학식 3-3 내지 3-6과 같다.  Preferred structure of L in the present invention is represented by the following formulas (3-3 to 3-6).
<화학식 3-3> 아지리딘(aziridine) 화합물 (z = 2)Aziridine Compound (z = 2)
Figure PCTKR2010001544-appb-I000005
Figure PCTKR2010001544-appb-I000005
<화학식 3-4> 아제티딘(azetidine) 화합물 (z = 3)Azetidine Compound (z = 3)
Figure PCTKR2010001544-appb-I000006
Figure PCTKR2010001544-appb-I000006
<화학식 3-5> 피롤리딘(pyrrolidine) 화합물 (z = 4)Pyrrolidine Compound (z = 4)
Figure PCTKR2010001544-appb-I000007
Figure PCTKR2010001544-appb-I000007
<화학식 3-6> 피페리딘(piperidine) 화합물 (z = 5)Piperidine Compound (z = 5)
Figure PCTKR2010001544-appb-I000008
Figure PCTKR2010001544-appb-I000008
구체적으로, Specifically,
Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, 및 Dimethyltertiarybutylgallium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다. Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, or a mixture of two or more of these compounds, which must be made of either two or more of these compounds, It doesn't happen.
셀레늄 전구체를 공급하는 캐니스터(70)도 효율적인 셀레늄 전구체의 공급을 위하여 캐니스터의 온도를 -60 ~ 200℃ 정도로 유지하는 것이 바람직하다. 또한 공급라인(74)의 온도도 캐니스터의 온도보다 약간 높게, 상온 ~ 400℃ 정도로 유지하는 것이 바람직하다. 또한 셀레늄 전구체도 다른 전구체와 마찬가지로, 아르곤(Ar), 헬륨(He) 또는 질소(N2) 가스 등의 운반가스에 의하여 운반되는 것이 바람직하다.The canister 70 for supplying the selenium precursor also preferably maintains the temperature of the canister at about −60 to 200 ° C. for efficient supply of the selenium precursor. In addition, it is preferable that the temperature of the supply line 74 is also slightly higher than the temperature of the canister and maintained at room temperature to about 400 ° C. In addition, the selenium precursor, like other precursors, is preferably carried by a carrier gas such as argon (Ar), helium (He), or nitrogen (N 2 ) gas.
상기 셀레늄 전구체로는 다음 화학식 4-1 또는 4-2의 구조를 가지는 화합물을 사용함이 바람직하다.  As the selenium precursor, it is preferable to use a compound having a structure of Formula 4-1 or 4-2.
<화학식 4-1><Formula 4-1>
R1----Se----R2 R 1 ---- Se ---- R 2
<화학식 4-2><Formula 4-2>
R1----Se----Se----R2 R 1 ---- Se ---- Se ---- R 2
상기 화학식 4-1 및 4-2에서 R1, R2는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다.In Formulas 4-1 and 4-2, R 1 and R 2 are the same as or different from each other, and each selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen. The alkyl group of each of R 1 , R 2 may be in the form of a chain, a branched chain, and a cyclic compound.
구체적으로, Specifically,
상기 셀레늄 전구체는,  The selenium precursor,
Dimethylselenide, Diethylselenide, Diisopropylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, 및 Tertiarybutylselenol으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있지만, 반드시 이에 국한되는 것은 아니다. Any one or more mixtures selected from the group consisting of Dimethylselenide, Diethylselenide, Diisopropylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, and Tertiarybutylselenol may be used, but is not necessarily limited thereto.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.  The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but are intended to be described. The scope of the present invention should be interpreted by the following claims, and all technical spirits within the equivalent scope thereof are It should be interpreted as being included in the scope of the present invention.

Claims (26)

  1. CIGS 박막 제조방법에 있어서, In the CIGS thin film manufacturing method,
    진공 챔버 내에 장착된 기판상에 구리(Cu) 전구체, 인듐(In) 전구체, 갈륨(Ga) 전구체, 및 셀레늄(Se) 전구체를 동시에 또는 이들 중 2가지 이상의 조합으로 공급하면서 화학기상 증착법을 이용하여 박막을 제조하는 것을 특징으로 하는 CIGS 박막 제조방법. Using chemical vapor deposition while supplying a copper (Cu) precursor, an indium (In) precursor, a gallium (Ga) precursor, and a selenium (Se) precursor simultaneously or in a combination of two or more thereof on a substrate mounted in a vacuum chamber CIGS thin film manufacturing method characterized by manufacturing a thin film.
  2. CIGS 박막 제조방법에 있어서,  In the CIGS thin film manufacturing method,
    1) 진공 챔버 내부에 기판을 위치시키고, 상기 기판을 특정한 반응 온도로 유지하는 단계; 1) placing a substrate inside the vacuum chamber and maintaining the substrate at a specific reaction temperature;
    2) 진공 챔버 내부로 구리 전구체를 공급하고 반응시키는 단계; 2) supplying and reacting a copper precursor into the vacuum chamber;
    3) 미반응 물질 및 부산물을 제거하는 제1 퍼징 단계; 3) a first purging step to remove unreacted material and by-products;
    4) 진공 챔버 내부로 인듐 전구체를 공급하고 반응시키는 단계; 4) supplying and reacting the indium precursor into the vacuum chamber;
    5) 미반응 물질 및 부산물을 제거하는 제2 퍼징 단계; 5) a second purging step to remove unreacted material and by-products;
    6) 진공 챔버 내부로 갈륨 전구체를 공급하고 반응시키는 단계; 6) supplying and reacting a gallium precursor into the vacuum chamber;
    7) 미반응 물질 및 부산물을 제거하는 제3 퍼징 단계; 7) third purging step to remove unreacted material and by-products;
    8) 진공 챔버 내부로 셀레늄 전구체를 공급하고 반응시키는 단계; 및 8) supplying and reacting a selenium precursor into the vacuum chamber; And
    9) 미반응 물질 및 부산물을 제거하는 제4 퍼징 단계;를 포함하고,  9) a fourth purging step of removing unreacted material and by-products;
    원자층 증착법을 이용하여 기판상에 박막을 제조하는 것을 특징으로 하는 CIGS 박막 제조방법.A method for producing a CIGS thin film, comprising manufacturing a thin film on a substrate using an atomic layer deposition method.
  3. 제2항에 있어서, The method of claim 2,
    상기 2), 4), 6), 8) 단계에서, In step 2), 4), 6), 8),
    상기 구리, 인듐, 갈륨, 및 셀레늄 전구체를 공급시에 각각 0.1 ~ 200초 동안 상기 진공 챔버 내부로 기화된 상태로 공급하는 것을 특징으로 하는 CIGS 박막 제조방법. And supplying the copper, indium, gallium, and selenium precursors in a vaporized state into the vacuum chamber for 0.1 to 200 seconds, respectively.
  4. 제2항에 있어서,  The method of claim 2,
    상기 3), 5), 7), 9) 단계에서,  In the above 3), 5), 7), 9),
    불활성 가스인 질소(N2) 가스 또는 아르곤(Ar) 가스를 1sccm ~ 1000slm의 유량으로 0.1 ~ 200초간 주입하고 펌프로 배출하는 것을 특징으로 하는 CIGS 박막 제조방법. A method of manufacturing a CIGS thin film, comprising injecting nitrogen (N 2 ) gas or argon (Ar) gas, which is an inert gas, at a flow rate of 1 sccm to 1000 slm for 0.1 to 200 seconds and discharging it to a pump.
  5. 제2항에 있어서,  The method of claim 2,
    상기 제1, 2, 3 퍼징 단계에서는,  In the first, second, third purging step,
    헬륨(He), 수소(H2), 질소(N2), 아르곤(Ar), 및 암모니아(NH3)로 이루어지는 군에서 선택되는 1종 이상의 퍼징가스를 상기 진공 챔버 내부로 주입하고, 진공 챔버에 마련되는 진공 펌프를 이용하여 진공 챔버 내에 존재하는 가스를 흡입하여 제거하는 것을 특징으로 하는 CIGS 박막 제조방법.One or more purging gases selected from the group consisting of helium (He), hydrogen (H 2 ), nitrogen (N 2 ), argon (Ar), and ammonia (NH 3 ) are injected into the vacuum chamber, and the vacuum chamber CIGS thin film manufacturing method, characterized in that for removing the gas present in the vacuum chamber by using a vacuum pump provided in.
  6. 제1항 또는 제2항에 있어서,  The method according to claim 1 or 2,
    상기 구리 전구체, 인듐 전구체, 갈륨 전구체, 및 셀레늄 전구체의 공급시에 아르곤(Ar) 가스, 헬륨(He) 가스 또는 질소(N2) 가스 중 1종 이상을 운반가스로 사용하는 것을 특징으로 하는 CIGS 박막 제조방법.CIGS characterized in that at least one of argon (Ar) gas, helium (He) gas or nitrogen (N 2 ) gas is used as a carrier gas when the copper precursor, the indium precursor, the gallium precursor, and the selenium precursor are supplied. Thin film manufacturing method.
  7. 제1항 또는 제2항에 있어서,  The method according to claim 1 or 2,
    상기 진공 챔버의 압력을 0.01mtorr ~ 대기압으로 유지하면서 공정을 진행하는 것을 특징으로 하는 CIGS 박막 제조방법. CIGS thin film manufacturing method characterized in that the process proceeds while maintaining the pressure of the vacuum chamber of 0.01mtorr ~ atmospheric pressure.
  8. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 구리 전구체는,  The copper precursor,
    다음 화학식 1-1 또는 1-2의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법. Next CIGS thin film manufacturing method characterized by having a structure of Formula 1-1 or 1-2.
    <화학식 1-1><Formula 1-1>
    XCuLXCuL
    <화학식 1-2><Formula 1-2>
    CuX2 CuX 2
    (상기 화학식 1-1 및 1-2에서 X는 β-디키토네이트, β-키토이미네이트, 디알킬아미디네이트, 디알킬아미노알콕시드, 알콕시알콕시드, 및 (알킬)시클로펜타디엔닐 중에서 선택되는 어느 하나이다.  (Wherein X in Formulas 1-1 and 1-2 are β-dichitonate, β-chitoiminate, dialkylamidinate, dialkylaminoalkoxide, alkoxyalkoxide, and (alkyl) cyclopentadienyl It is either chosen.
    L은 중성리간드로서 탄소수 5~12 사이의 알켄, 알킨, 시클로(디)알켄, 트리알킬포스핀, 트리알킬포스파이트, 알킬실릴알켄, 및 알킬실릴알킨 중에서 선택되는 어느 하나이다.) L is a neutral ligand, any one selected from alkenes, alkynes, cyclo (di) alkenes, trialkylphosphines, trialkylphosphites, alkylsilylalkenes, and alkylsilylalkynes having 5 to 12 carbon atoms.)
  9. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 구리 전구체는, The copper precursor,
    Bis(acetylacetonato)copper, Bis (acetylacetonato) copper,
    Bis(2,2,6,6-tetramethylheptandionato)copper, Bis(hexafluoroacetylacetonato)copper, (hexafluoroacetylacetonato)copper(vinyltrimethylsilane),Bis (2,2,6,6-tetramethylheptandionato) copper, Bis (hexafluoroacetylacetonato) copper, (hexafluoroacetylacetonato) copper (vinyltrimethylsilane),
    (acetylacetonato)copper(vinyltrimethylsilane),(acetylacetonato) copper (vinyltrimethylsilane),
    (2,2,6,6-tetramethylheptandionato)copper(vinyltrimethylsilane),(2,2,6,6-tetramethylheptandionato) copper (vinyltrimethylsilane),
    (acetylacetonato)copper(vinyltriethylsilane),(acetylacetonato) copper (vinyltriethylsilane),
    (2,2,6,6-teramethylheptandionato)copper(vinyltriethylsilane),(2,2,6,6-teramethylheptandionato) copper (vinyltriethylsilane),
    (hexafluoroacetylacetonato)copper(vinyltriethylsilane),(hexafluoroacetylacetonato) copper (vinyltriethylsilane),
    (hexafluoroacetylacetonato)copper(1,5-cyclooctadiene),(hexafluoroacetylacetonato) copper (1,5-cyclooctadiene),
    (hexafluoroacetylacetonato)copper(1,5-dimethylcyclooctadiene),(hexafluoroacetylacetonato) copper (1,5-dimethylcyclooctadiene),
    (hexafluoroacetylacetonato)copper(3,3-dimethylbutene),(hexafluoroacetylacetonato) copper (3,3-dimethylbutene),
    (hexafluoroacetylacetonato)copper(trimethylphosphite),(hexafluoroacetylacetonato) copper (trimethylphosphite),
    (hexafluoroacetylacetonato)copper(trimethylphosphine),(hexafluoroacetylacetonato) copper (trimethylphosphine),
    (hexafluoroacetylacetonato)copper(1,3-cyclohexadiene),(hexafluoroacetylacetonato) copper (1,3-cyclohexadiene),
    Copper bis(dimethylaminomethylbutoxide),Copper bis (dimethylaminomethylbutoxide),
    Copper bis(ethylmethylaminomethylbutoxide),Copper bis (ethylmethylaminomethylbutoxide),
    Copper bis(diethylaminomethylbutoxide),Copper bis (diethylaminomethylbutoxide),
    Copper bis(dimethylaminomethylpropoxide),Copper bis (dimethylaminomethylpropoxide),
    Copper bis(ethylmethylaminomethylpropoxide), 및Copper bis (ethylmethylaminomethylpropoxide), and
    Copper bis(diethylaminomethylpropoxide)Copper bis (diethylaminomethylpropoxide)
    로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method, characterized in that any one or a mixture of two or more selected from the group consisting of.
  10. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 인듐 전구체는, The indium precursor,
    다음 화학식 2-1의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.  The CIGS thin film manufacturing method characterized by having a structure of the following formula (2-1).
    <화학식 2-1><Formula 2-1>
    InR1R2R3 : Ln InR 1 R 2 R 3 : L n
    (상기 화학식 2-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다.  (R in Formula 2-1One, R2, R3Are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein ROne, R2, R3 Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
    L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 인듐 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다.  L is a Lewis base as a neutral ligand, and is an amine-based compound capable of providing a lone pair of electrons to an indium metal center.
    n은 0 내지 2의 정수이다.)n is an integer of 0 to 2).
  11. 제10항에 있어서, The method of claim 10,
    상기 화학식 2-1의 L은,  L in Chemical Formula 2-1,
    2차 또는 3차의 아민 화합물인 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the secondary or tertiary amine compound.
  12. 제10항에 있어서, The method of claim 10,
    상기 화학식 2-1의 L은, L in Chemical Formula 2-1,
    삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물 인 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the tricyclic, square, pentagonal or hexagonal heterocyclic amine (heterocyclic amine) compound.
  13. 제10항에 있어서, The method of claim 10,
    상기 화학식 2-1의 L은, L in Chemical Formula 2-1,
    다음 화학식 2-2의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법. The CIGS thin film manufacturing method characterized by having a structure of the following formula (2-2).
    <화학식 2-2><Formula 2-2>
    Ra-N(CRxRy)z R a -N (CR x R y ) z
    (상기 화학식 2-2에서 Ra는 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다.(In Formula 2-2, R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso).
    Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. R x and R y are the same as or different from each other, and are each selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso).
    z는 2 내지 5의 정수이다.)z is an integer from 2 to 5.)
  14. 제13항에 있어서, The method of claim 13,
    상기 화학식 2-1의 L은, L in Chemical Formula 2-1,
    다음 화학식 2-3 내지 2-6 중 어느 하나의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법. The CIGS thin film manufacturing method characterized by having any one of the following formulas 2-3 to 2-6.
    <화학식 2-3><Formula 2-3>
    Figure PCTKR2010001544-appb-I000009
    Figure PCTKR2010001544-appb-I000009
    <화학식 2-4><Formula 2-4>
    Figure PCTKR2010001544-appb-I000010
    Figure PCTKR2010001544-appb-I000010
    <화학식 2-5><Formula 2-5>
    Figure PCTKR2010001544-appb-I000011
    Figure PCTKR2010001544-appb-I000011
    <화학식 2-6><Formula 2-6>
    Figure PCTKR2010001544-appb-I000012
    Figure PCTKR2010001544-appb-I000012
  15. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 인듐 전구체는,  The indium precursor,
    Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, Diethylisopropylindium, 및 Dimethyltertiarybutylindium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Trimethylindium, Triethylindium, Triisopropylindium, Tributylindium, Tritertiarybutylindium, Triethoxyindium, Triethoxyindium, Triisopropoxyindium, Dimethylisopropoxyindium, Diethylisopropoxyindium, Dimethylethylindium, Diethylmethylindium, Dimethylisopropylindium, and Dimethyltertiary are made of either a thin film made of a mixture of two or more methyl-dimethyl groups. Way.
  16. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 갈륨 전구체는, The gallium precursor,
    다음 화학식 3-1의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.  The CIGS thin film manufacturing method characterized by having a structure of the following formula (3-1).
    <화학식 3-1><Formula 3-1>
    GaR1R2R3 : Ln GaR 1 R 2 R 3 : L n
    (상기 화학식 3-1에서 R1, R2, R3는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2, R3 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다.  (R in Formula 3-1One, R2, R3Are the same as or different from each other, and each one selected from an alkyl group having 1 to 4 carbon atoms, an alkylamino group, an alkoxyalkyl group, an aminoalkoxy group, an alkoxyamino group, an alkoxy group, and a halogen, wherein ROne, R2, R3 Each alkyl group can be in the form of a chain, a branched chain, and a cyclic compound.
    L은 중성리간드로서 루이스 염기이며, 비공유 전자쌍을 갈륨 금속 중심에 제공할 수 있는 아민(amine)계열의 화합물이다. L is a neutral base, a Lewis base, and is an amine-based compound capable of providing a lone pair of electrons to a gallium metal center.
    n은 0 내지 2의 정수이다.)n is an integer of 0 to 2).
  17. 제16항에 있어서, The method of claim 16,
    상기 화학식 3-1의 L은,  L in Chemical Formula 3-1,
    2차 또는 3차의 아민 화합물인 것을 특징으로 하는 CIGS 박막 제조방법.CIGS thin film manufacturing method characterized in that the secondary or tertiary amine compound.
  18. 제16항에 있어서, The method of claim 16,
    상기 화학식 3-1의 L은, L in Chemical Formula 3-1,
    삼각, 사각, 오각 또는 육각의 헤테로고리아민(heterocyclic amine) 화합물 인 것을 특징으로 하는 CIGS 박막 제조방법. CIGS thin film manufacturing method characterized in that the tricyclic, square, pentagonal or hexagonal heterocyclic amine (heterocyclic amine) compound.
  19. 제16항에 있어서, The method of claim 16,
    상기 화학식 3-1의 L은, L in Chemical Formula 3-1,
    다음 화학식 3-2의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법. The CIGS thin film manufacturing method characterized by having a structure of the following formula (3-2).
    < 화학식 3-2 ><Formula 3-2>
    Ra-N(CRxRy)z R a -N (CR x R y ) z
    (상기 화학식 3-2에서 Ra는 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다.(In Formula 3-2, R a is any one selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso).
    Rx, Ry는 서로 같거나 다른 것으로서 각각 수소, 메틸기, 에틸기, 프로필기(2차 포함), 및 부틸기(2차, 3차, 이소 포함) 중에서 선택되는 어느 하나이다. R x and R y are the same as or different from each other, and are each selected from hydrogen, methyl group, ethyl group, propyl group (including secondary), and butyl group (secondary, tertiary, and iso).
    z는 2 내지 5의 정수이다.)z is an integer from 2 to 5.)
  20. 제19항에 있어서, The method of claim 19,
    상기 화학식 3-1의 L은, L in Chemical Formula 3-1,
    다음 화학식 3-3 내지 3-6 중 어느 하나의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법. The CIGS thin film manufacturing method characterized by having any one of the following formulas 3-3 to 3-6.
    <화학식 3-3><Formula 3-3>
    Figure PCTKR2010001544-appb-I000013
    Figure PCTKR2010001544-appb-I000013
    <화학식 3-4><Formula 3-4>
    <화학식 3-5><Formula 3-5>
    Figure PCTKR2010001544-appb-I000015
    Figure PCTKR2010001544-appb-I000015
    <화학식 3-6><Formula 3-6>
    Figure PCTKR2010001544-appb-I000016
    Figure PCTKR2010001544-appb-I000016
  21. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 갈륨 전구체는,  The gallium precursor,
    Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, Diethylisopropylgallium, 및 Dimethyltertiarybutylgallium으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법.Trimethylgallium, Triethylgallium, Triisopropylgallium, Tributylgallium, Tritertiarybutylgallium, Triethoxygallium, Triethoxygallium, Triisopropoxygallium, Dimethylisopropoxygallium, Diethylisopropoxygallium, Dimethylethylgallium, Diethylmethylgallium, Dimethylisopropylgallium, which is made of a thin film made of a mixture of two or more methyl-methyl groups which are made of a mixture of two or more methyl-methyl groups Way.
  22. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 셀레늄 전구체는, The selenium precursor,
    다음 화학식 4-1 또는 4-2의 구조를 가지는 것을 특징으로 하는 CIGS 박막 제조방법.  The CIGS thin film manufacturing method characterized in that it has the structure of formula 4-1 or 4-2.
    <화학식 4-1><Formula 4-1>
    R1----Se----R2 R 1 ---- Se ---- R 2
    <화학식 4-2><Formula 4-2>
    R1----Se----Se----R2 R 1 ---- Se ---- Se ---- R 2
    (상기 화학식 4-1 및 4-2에서 R1, R2는 서로 같거나 다른 것으로서 각각 탄소수 1~4 사이의 알킬기, 알킬아미노기, 알콕시알킬기, 아미노알콕시기, 알콕시아미노기, 알콕시기, 및 할로겐 중에서 선택되는 어느 하나이고, 이때 상기 R1, R2 각각의 알킬기는 사슬형태(chain), 가지달린 사슬형태(branched chain), 및 고리화합물(cyclic compound) 형태가 모두 가능하다.)(In Formulas 4-1 and 4-2, R 1 and R 2 are the same as or different from each other, and each alkyl group having 1 to 4 carbon atoms, alkylamino group, alkoxyalkyl group, aminoalkoxy group, alkoxyamino group, alkoxy group, and halogen. Wherein any alkyl group of each of R 1 and R 2 may be in the form of a chain, a branched chain, and a cyclic compound.)
  23. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 셀레늄 전구체는,  The selenium precursor,
    Dimethylselenide, Diethylselenide, Diisopropylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, 및 Tertiarybutylselenol으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 CIGS 박막 제조방법. Dimethylselenide, Diethylselenide, Diisopropylselenide, Ditertiarybutylselenide, Dimethyldiselenide, Diethylselenide, Diisopropyldiselenide, Ditertiarybutyldiselenide, Tertiarybutylisopropylselenide, and Tertiarybutylselenol.
  24. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 구리 전구체, 인듐 전구체 또는 갈륨 전구체는,  The copper precursor, indium precursor or gallium precursor,
    캐니스터 온도를 -40 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 CIGS 박막 제조방법. CIGS thin film manufacturing method characterized in that the supply while maintaining the canister temperature -40 ~ 200 ℃, supply line temperature at room temperature ~ 400 ℃.
  25. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 셀레늄 전구체는, The selenium precursor,
    캐니스터 온도를 -60 ~ 200℃, 공급라인 온도를 상온 ~ 400℃로 유지하면서 공급하는 것을 특징으로 하는 CIGS 박막 제조방법. CIGS thin film manufacturing method characterized in that the supply while maintaining the canister temperature -60 ~ 200 ℃, supply line temperature at room temperature ~ 400 ℃.
  26. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 기판의 온도를 상온 ~ 600℃로 유지하는 것을 특징으로 하는 CIGS 박막 제조방법. CIGS thin film manufacturing method characterized in that the temperature of the substrate is maintained at room temperature ~ 600 ℃.
PCT/KR2010/001544 2010-03-12 2010-03-12 Method for manufacturing a cigs thin film WO2011111889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/001544 WO2011111889A1 (en) 2010-03-12 2010-03-12 Method for manufacturing a cigs thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/001544 WO2011111889A1 (en) 2010-03-12 2010-03-12 Method for manufacturing a cigs thin film

Publications (1)

Publication Number Publication Date
WO2011111889A1 true WO2011111889A1 (en) 2011-09-15

Family

ID=44563675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001544 WO2011111889A1 (en) 2010-03-12 2010-03-12 Method for manufacturing a cigs thin film

Country Status (1)

Country Link
WO (1) WO2011111889A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540732A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of gallium containing thin films using new gallium precursors.
CN108541349A (en) * 2016-01-13 2018-09-14 马卡罗有限公司 Solar cell including CIGS light absorbing layers and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495924B1 (en) * 2003-07-26 2005-06-16 (주)인솔라텍 Method of manufacturing absorber layers for solar cell
KR20090031496A (en) * 2008-10-02 2009-03-26 프라새드 갓질 Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films
KR100893744B1 (en) * 2007-05-28 2009-04-17 중앙대학교 산학협력단 Precursor for Metal Organic Chemical Vapour Deposition to prepare the Chalcogen Compound Thin Films and Synthesis Process of it
KR20090117656A (en) * 2008-05-08 2009-11-12 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Binary and ternary metal chalcogenide materials and method of making and using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495924B1 (en) * 2003-07-26 2005-06-16 (주)인솔라텍 Method of manufacturing absorber layers for solar cell
KR100893744B1 (en) * 2007-05-28 2009-04-17 중앙대학교 산학협력단 Precursor for Metal Organic Chemical Vapour Deposition to prepare the Chalcogen Compound Thin Films and Synthesis Process of it
KR20090117656A (en) * 2008-05-08 2009-11-12 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Binary and ternary metal chalcogenide materials and method of making and using same
KR20090031496A (en) * 2008-10-02 2009-03-26 프라새드 갓질 Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540732A1 (en) * 2011-06-30 2013-01-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Deposition of gallium containing thin films using new gallium precursors.
CN108541349A (en) * 2016-01-13 2018-09-14 马卡罗有限公司 Solar cell including CIGS light absorbing layers and its manufacturing method
US20190157487A1 (en) * 2016-01-13 2019-05-23 Mecaro Co.,Ltd. Solar cell comprising cigs light absorbing layer and method for manufacturing same
EP3404725A4 (en) * 2016-01-13 2019-10-02 Mecaro Co.,Ltd. Solar cell comprising cigs light absorbing layer and method for manufacturing same
US10727366B2 (en) * 2016-01-13 2020-07-28 Mecaroenergy Co., Ltd. Solar cell comprising CIGS light absorbing layer and method for manufacturing same
CN108541349B (en) * 2016-01-13 2021-06-22 马卡罗能源有限公司 Solar cell including CIGS light-absorbing layer and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2011037377A2 (en) Batch-type epitaxial layer forming device and a method for forming the same
WO2013180451A1 (en) Substrate processing device and substrate processing method
WO2019103500A1 (en) Composition for deposition of silicon-containing thin film, and method for manufacturing silicon-containing thin film by using same
WO2021096326A1 (en) Method for forming thin film using surface protection material
WO2013073888A1 (en) Apparatus comprising heat-blocking plate for treating substrate
WO2020246764A1 (en) Method for preparing perovskite solar cell absorbing layer by means of chemical vapor deposition
WO2013073887A1 (en) Method and apparatus comprising a plurality of exhaust ports for treating substrate
CN102197158A (en) Plasma CVD apparatus, method for producing semiconductor film, method for manufacturing thin film solar cell, and method for cleaning plasma CVD apparatus
WO2011111889A1 (en) Method for manufacturing a cigs thin film
KR101071544B1 (en) Method for fabricating cigs thin layer by ald
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2016047972A2 (en) Apparatus for manufacturing film and method for manufacturing film using same
KR101623923B1 (en) Method for fabricating buffer layer of thin film type solar cell
WO2017200255A1 (en) Method for depositing protection film of light-emitting element
KR101071545B1 (en) Method for fabricating cigs thin layer
WO2022034987A1 (en) Method for manufacturing perovskite thin film solar cell
WO2017122842A1 (en) Solar cell comprising cigs light absorbing layer and method for manufacturing same
WO2009128646A2 (en) Semiconductor substrate and method for manufacturing the same
WO2024019381A1 (en) Semiconductor device manufacturing method
KR20110116354A (en) Cigt thin layer and method for fabricating thereof
KR20110046433A (en) Method of preparing CIGT-based chalcopyrite compound semiconductor thin-film
WO2022240028A1 (en) Method for manufacturing cigs light absorption layer for solar cell through chemical vapor deposition
WO2023033428A1 (en) Semiconductor substrate and semiconductor thin film deposition apparatus
WO2014178686A1 (en) Method for manufacturing nickel sulfide thin film
WO2021177800A2 (en) Method for manufacturing hole transport layer of perovskite solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847523

Country of ref document: EP

Kind code of ref document: A1