WO2011110628A1 - Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider - Google Patents

Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider Download PDF

Info

Publication number
WO2011110628A1
WO2011110628A1 PCT/EP2011/053612 EP2011053612W WO2011110628A1 WO 2011110628 A1 WO2011110628 A1 WO 2011110628A1 EP 2011053612 W EP2011053612 W EP 2011053612W WO 2011110628 A1 WO2011110628 A1 WO 2011110628A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotor
shaft
gas
drive
Prior art date
Application number
PCT/EP2011/053612
Other languages
English (en)
French (fr)
Inventor
Dirk Hornung
André TEMMINGHOFF
Original Assignee
Hengst Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengst Gmbh & Co. Kg filed Critical Hengst Gmbh & Co. Kg
Priority to EP11713200.1A priority Critical patent/EP2545260B1/de
Publication of WO2011110628A1 publication Critical patent/WO2011110628A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/12Centrifuges in which rotors other than bowls generate centrifugal effects in stationary containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0488Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with oil trap in the return conduit to the crankcase

Definitions

  • Oil mist separator and internal combustion engine with an oil mist separator are Oil mist separator and internal combustion engine with an oil mist separator
  • the present invention relates to a ⁇ lnebelabscheider for separating oil from the crankcase ventilation gas of an internal combustion engine, arranged on a rotatably mounted shaft, oil from the gas by centrifugal forces separating rotor, wherein in a rotor axially spaced portion of the shaft at this a rotary drive with at least a thruster is arranged, wherein the rotor is arranged in a gas cleaning space of the separator and the rotary drive in a drive space of the separator, wherein the shaft is mounted between rotor and rotary drive in two axially spaced bearings in a gas cleaning space and the drive space from each other separating carrier part wherein in the support part is provided with a pressurized lubricating oil feedable pressure oil passage, which opens into a leading to the at least one return nozzle of the rotary drive hollow channel in the shaft, wherein a crankcase ventilation gas Zuf a raw gas duct discharges into an inlet region of the gas cleaning chamber, a clean gas
  • An oil mist separator of the aforementioned type is known from WO 2009/010248 A1.
  • the rotor remote, located near the rotary drive bearing is a plain bearing, while the rotor near bearing is a rolling bearing.
  • the plain bearing is sufficiently lubricated by leaking from the recoil nozzle as spray oil lubricating oil.
  • the lube oil exiting the recoil nozzle does not reach the upper bearing, which is also undesirable for preventing oil from passing from the drive space into the gas cleaning space.
  • the upper bearing is designed as a rolling bearing.
  • the rolling bearing is a purchased part, which represents a considerable cost factor which is notable in the overall costs of the separator.
  • the rolling bearing must be installed separately and secured by means of a snap ring or a spring and in many cases also covered with at least one cover. Thus, even relatively high installation costs arise.
  • the object is to provide a ⁇ lnebelabschei- of the type mentioned above and an internal combustion engine with such a ⁇ lnebelabscheider which avoid the disadvantages mentioned and in which in particular the number of required components and the cost of assembly are reduced without causing a deterioration of the Abscheidefunktion occurs.
  • the rotornahe consuming rolling bearing is advantageously replaced by a simpler and cheaper sliding bearing.
  • a targeted and reliable supply of lubricating oil to the two slide bearings, including the rotor-near slide bearing is ensured by the two annular channels.
  • the lubricating oil emerging from the recoil nozzle or the recoil nozzles of the rotary drive is no longer needed for the lubrication of the plain bearings.
  • the slide bearings serve as gap seals which allow at most a small leakage oil flow to pass through, so that the effectiveness and the performance of the rotary drive with the at least one recoil nozzle are not impaired.
  • the pressure oil passage opens between the plain bearings in the hollow channel of the shaft.
  • a particularly low processing and cost requires the oil mist separator, if, which is preferably provided, the shaft on the one hand and the support part on the other hand directly form the two plain bearings and consist of a pair of bearing material forming materials.
  • To form the plain bearings only the shaft and the carrier part have to be machined into the surface regions forming the slide bearings. The manufacturing and mounting of other bearing parts is not required here.
  • a practical suitable material pairing is, for example, aluminum for the carrier part and steel for the shaft.
  • At least one of the two bearings can be performed with a plain bearing bushing.
  • the plain bearing bush is then preferably pressed into the carrier part and takes up the shaft with the necessary bearing clearance.
  • the invention proposes that from the side of the rotor-side slide bearing facing the rotor, an oil return channel leads away from the rotor into the drive space, through which lubricating oil flowing through the rotor-side slide bearing can be returned to the drive space.
  • the oil which flows through the rotor near sliding bearing, safely kept away from the gas cleaning space and reliably returned to the drive chamber, from where it can flow together with the exiting from the recoil nozzle or the recoil nozzle lubricating oil.
  • the oil return passage is annular gap-shaped and radially inward is limited by a leading to the rotor-side sleeve bearing ring channel radially outwardly bounding inner annular wall of the support member.
  • the oil return passage is bounded radially on the outside by a hollow cylinder forming part of the rotor and extending from the latter in the direction of the rotary drive, concentric with the inner annular wall.
  • the hollow cylinder has the further function of keeping a gas stream possibly flowing out of the drive space into the gas-cleaning space separated from the oil flow so that this oil can not get into the gas stream flowing to the gas-cleaning space.
  • the hollow cylinder is designed at its free end with a circumferential acute-angled and / or radially outwardly bent or angled Abschleuderkante.
  • the Abschleuderkante ensures that in the operation of the separator, the recirculated oil is thrown radially outward in the form of larger drops without it could be taken by a possibly flowing from the drive chamber into the gas cleaning space gas stream.
  • the invention proposes that the crankcase ventilation gas supplying raw gas channel passes through the support member and under the rotor open to this open and closed at its opposite side by a bottom Rohgasringkanal and that the hollow cylinder with the Abschleuderkante seen from the rotor beyond the ground extends.
  • a uniform loading of the rotor is achieved with the raw gas to be cleaned on the one hand.
  • the stated design of the hollow cylinder with the Abschuder edge ensures that the Abschleuderkante is located at a sufficient distance from a portion of the drive space in which gas flow rates could occur that would be able to take oil drops.
  • the Abschleuderkante from the bottom has a distance s of at least 3 mm, preferably at least 10 mm.
  • a distance s of at least 3 mm, preferably at least 10 mm.
  • braking effects on the rotor and the shaft must be avoided. This means, in particular, that a rubbing seal between the drive space and the gas cleaning space is undesirable.
  • the hollow cylinder and the Rohgasringkanal radially inner limiting central annular wall of the support member form a non-contact gap or labyrinth seal between the drive chamber and gas cleaning space.
  • a further embodiment of the oil mist separator provides that the recoil nozzle is arranged at the free end of an outwardly and obliquely pointing in the direction of the rotor nozzle arm and that the rotor side of the rotary drive on the support part a circumferential, pointing to the rotary drive axially projecting splash guard ring is formed or mounted.
  • the specified orientation of the nozzle arm in combination with the splash guard ensures that leaking from the recoil nozzle lubricating oil can not or at least only to a very limited extent in the gap or labyrinth seal, so that the risk of unwanted passage of oil from the drive compartment is further reduced in the gas cleaning room.
  • a conical splash guard is inserted with its larger end in the splash guard and with its smaller, at least one passage opening end in the direction of Rotary drive extends out.
  • the splash guard shields the area of the drive space within the splash guard ring further, but at the same time allows a passage of oil, which is returned from the rotor near sliding bearing in the drive chamber.
  • the oil mist separator according to the invention can be functionally coupled or be in different ways to an associated internal combustion engine.
  • the oil mist separator has a housing lower part, which is connected to a component of the internal combustion engine to produce flow connections. is flangeable and comprises the support member and the drive space, and that it has an upper housing part, which is formed by a lower part attached to the housing, removable cover and containing the gas cleaning space.
  • flanges are provided on the side of the Olnebelabscheiders and on the side of the component of the internal combustion engine, which are clamped against each other under sealing by axial seals. In the sense of the simplest possible assembly, as many flow connections or, in the best case, all flow connections are integrated into the flange connection.
  • a second, alternative embodiment proposes an oil mist separator and an internal combustion engine with such an oil mist separator, in which it is provided that the drive space is designed as an outwardly open recess in a component of the internal combustion engine that sealingly insertable into the recess, the support member to produce flow connections is and that on the support member or on the component a lying outside the recess, removable cover is attached or attachable, which contains the gas cleaning space.
  • the drive space is designed as an outwardly open recess in a component of the internal combustion engine that sealingly insertable into the recess, the support member to produce flow connections is and that on the support member or on the component a lying outside the recess, removable cover is attached or attachable, which contains the gas cleaning space.
  • the drive space is designed as an outwardly open recess in a component of the internal combustion engine that sealingly insertable into the recess, the support member to produce flow connections is and that on the support member or on the component a lying outside the recess, removable cover is attached
  • a third, alternative embodiment proposes a Olnebelabscheider and an internal combustion engine with such a Olnebelabscheider before, in which it is provided , that the support part is designed with at least the pressure oil passage as an integral part of a component of the internal combustion engine, that the drive space is located in an interior of the component and that on the outside of the component a removable lid containing the gas cleaning space is sealingly attached or attachable.
  • the carrier part is embodied integrally with the component of the internal combustion engine, that is, does not have to be manufactured as a separate component.
  • the oil mist separator also does not have its own drive space here, but an interior which is present in any case in the component is also used here as the drive space of the rotary drive.
  • the mentioned component of the internal combustion engine may in practice for example be the engine block of the internal combustion engine or its cylinder head cover or a functional module connected to the internal combustion engine, such as oil module with oil filter and / or oil cooler.
  • FIG. 1 shows a oil mist separator in a first embodiment, in longitudinal section
  • FIG. 2 shows an enlarged detail from FIG. 1, in longitudinal section
  • FIG. 4 shows an enlarged detail from FIG. 3, in longitudinal section
  • Figure 6 shows the Olnebelabscheider in a fourth embodiment, in longitudinal section
  • Figure 7 shows a Olnebelabscheider in a stepped cross-section.
  • Figure 1 of the drawing shows a first embodiment of an oil mist separator 1, which can be flanged by means of a flange 70 to an associated internal combustion engine or a component of the associated internal combustion engine.
  • the separator 1 has an upper part in the form of a lid 6, in which a gas cleaning space 1 1 is located, and a lower part in the form of a trough 13, in which a drive chamber 12 is located.
  • the gas cleaning chamber 1 1 and the drive chamber 12 are spatially separated from each other by a support member 5.
  • the cover 6 is releasably connected by means of a cover flange 60 with the support member 5 from above, while the tub 13 is sealed from below connected to the support member 5.
  • a rotor 2 is arranged, which is secured against rotation on a shaft 3 and for the separation of oil mist from the crankcase Seentlwestungsgas an associated internal combustion engine is used.
  • the rotor 2 is designed in a known manner, for example as a stack of plates.
  • the shaft 3 is rotatably mounted about its central axis 30 in the support member 5, namely in an upper bearing 33.1 and in an axially spaced therefrom lower bearing 33.2.
  • Both bearings 33.1 and 33.2 are designed as plain bearings, here each with a plain bearing bush 56.1 or 56.2.
  • the support part 5 has an inner annular wall 58 ', which is arranged concentrically to the shaft 3.
  • a first annular channel 55.1 is arranged between the inner annular wall 58 'and the shaft 3.
  • a second, lower annular channel 55.2 extends between the shaft 3 and the inner annular wall 58 '.
  • a pressure oil passage 73 to the shaft 3.
  • the shaft 3 has a transverse bore 35. From the transverse bore 35, a hollow channel 34 extends through the Interior of the shaft 3 down. Widely, the pressure oil passage 73 is connected at the level of the transverse bore 35 both with the upper annular channel 55.1 and with the lower annular channel 55.2.
  • a rotary drive 4 Connected to the lower end of the shaft 3 is a rotary drive 4, which is embodied here by a single nozzle arm 41 with a nozzle channel 42 connected to the hollow channel 30 and a recoil nozzle 43 arranged at the outer end of the nozzle arm 41. Seen in the circumferential direction of the shaft 30 is opposite the nozzle arm 41, a counterweight 44, which serves to avoid an imbalance.
  • the rotary drive 4 is here attached rotationally fixed to the lower end of the shaft 3 and by means of a cap nut 45, which simultaneously closes the hollow channel 30 at its lower end secured.
  • oil pressure passage 73 At the radially inner end of the pressure oil passage 73, the oil flow branches into three branch streams.
  • a first, most volumenstromthe largest branch stream flows through the transverse bore 35 into the hollow channel 30 and from there through the nozzle channel 42 in the nozzle arm 41 to the recoil nozzle 43.
  • the exiting from the recoil nozzle 43 oil jet ensures a Rotation of the rotary drive 4 and the thus rotationally connected shaft 3 with the thus rotationally connected rotor 2.
  • the exiting from the recoil nozzle 43 lubricating oil flows under pressure by gravity through an oil drain passage 75 which is provided in a flange 70, which with a matching counter flange of the associated internal combustion engine or a component of the internal combustion engine is connectable.
  • a second branch stream flows through the upper annular channel 55.1 to the upper sliding bearing 33.1 and supplies it with lubricating oil.
  • a third branch stream flows through the lower annular channel 55.2 to the lower sliding bearing 33.2 and supplies it with lubricating oil.
  • the plain bearings 33.1 and 33.2 also serve as gap seals, which do not allow a significant passage of lubricating oil through their bearing gap.
  • the crankcase ventilation gas to be deoiled passes into a raw gas annular channel 52, which runs radially inward in the carrier part 5 below the rotor 2. From there, the gas flows axially upwards into the rotor 2 and leaves it radially outward, with separation of the entrained oil particles, which precipitate on the inner circumference of the cover 6.
  • the de-oiled gas leaves the gas cleaning chamber 1 1 by a not visible in Figure 1 clean gas duct.
  • the precipitated oil flows downwardly on the inner circumference of the cover 6 under gravity, thus entering an oil collecting channel 54 formed in the carrier part 5.
  • the oil collecting channel 54 communicates with an oil return channel 74, which in turn is connected to the oil discharge channel 75 Bore 74 ".
  • the support member 5 surrounds with its inner annular wall 58 ', the shaft 3 above and below the transverse bore 35.
  • Each at the upper end and at the lower end of the inner annular wall 58' is one of the two sliding bearings 33.1 and 33.2, here with the plain bearing bushes 56.1 and 56.2 arranged.
  • the plain bearing bushes 56.1 and 56.2 are each pressed into the carrier part 5 from above or below.
  • the shaft 3 extends with a sufficiently large bearing gap through the plain bearing bushes 56.1 and 56.2. Above the upper bearing bush 56.1, the shaft 3 has an outwardly projecting step 31, which serves as a stop and determines a defined height position of the shaft 3.
  • the shaft 3 with the inner annular wall 58 ' forms the upper annular channel 55.1 and the lower annular channel 55.2, both, as well as the hollow channel 34 in the shaft 3, with the pressure oil passage extending in the support member 5 73 are in fluid communication.
  • FIG. 3 A second embodiment of an oil mist separator 1 is also shown in Figure 3 in a longitudinal section.
  • the oil mist separator 1 has a gas cleaning space 1 1 with a rotor 2 arranged therein and a drive space 12 with a rotary drive 4 arranged therein.
  • the gas cleaning space 11 and the drive space 12 are spatially separated from each other by the carrier part 5.
  • the gas cleaning space 1 1 is closed again by a cover 6, which is releasably connected to a cover flange 60 with the support member 5 from above.
  • the drive space 12 is closed to the environment by a lower part in the form of a trough 13.
  • Both the rotor 2 and the rotary drive 4 are here again rotationally mounted on a shaft 3 which is rotatably mounted about its longitudinal axis 30 in the support member 5.
  • two sliding bearings 33.1 and 33.2 are again provided here, which are here between the shaft 3 and the support member 5 directly, so without interposition of plain bearing bushes formed.
  • the support part 5 is here again formed with an inner annular wall 58 ', which at its upper end with the shaft 3, the upper sliding bearing 33.1 and forms at its lower end with the shaft 3, the lower sliding bearing 33.2.
  • the inner annular wall 58 'with the shaft 3 again forms an upper annular channel 55.1 and a lower annular channel 55.2.
  • the shaft 3 is here again provided in its lower portion with a hollow channel 34 and with a transverse bore 35.
  • the rotary drive 4 is placed in the manner already described. Reference is made in this regard to the preceding description of FIG.
  • the rotor 2 has in the embodiment shown in Figure 3, a hollow cylinder 28 which is integral or connected to the rest of the rotor 2 and concentric with the inner ring wall 58 'extends from the bottom of the rotor 2, wherein formed between the two an annular gap as the oil return passage 58 is.
  • the lower end of the hollow cylinder 28 is formed with a pointed Abschleuderkante 29.
  • a middle annular wall 52.2 Radially outwardly of the hollow cylinder 28 extends concentrically to this a middle annular wall 52.2, which is part of the support member 5. Radially outward from the middle annular wall 52.2 extends an outer annular wall 52.1, also as part of the carrier part 5, wherein a Rohgasringkanal 52 is formed between the two said annular walls 52.1 and 52.2.
  • the Rohgasringkanal 52 is open at the top to the bottom of the rotor 2 and down the Rohgasringkanal 52 is limited by a bottom 53.
  • pressurized lubricating oil is conducted through the pressure oil channel 73 within the carrier part 5 to the shaft 3. There, the oil flow branches back into the three already described with reference to Figure 1 oil flows to the recoil nozzle 43 of the rotary drive 4 and to the two plain bearings 33.1 and 33.2.
  • the aforementioned oil return passage 58 is provided.
  • This lubricating oil which has passed through the upper sliding bearing 33.1, radially outwardly from the inner annular wall 58 'down and thus returned to the drive chamber 12.
  • the Abschleuderkante 29 at the lower end of the hollow cylinder 28 ensures that relatively large drops from the hollow body 28 in the Drive space 12 are thrown, which are not subject to the risk of being taken from a gas flow from the drive chamber 12 in the gas cleaning space 1 1.
  • the Abschleuderkante 29 is significantly lower than the bottom 53 of the Rohgasringkanals 52, whereby the centrifuging of the oil drops takes place in a range of low gas flow velocity.
  • a gas flow from the drive chamber 12 into the gas cleaning chamber 1 1 can occur at corresponding pressure conditions in the oil mist separator 1, wherein the gas stream could flow through a gap space between the outer periphery of the hollow cylinder 28 and the inner circumference of the middle annular wall 52.2.
  • the outer circumference of the hollow cylinder 28 and the inner circumference of the middle ring wall 52.2 together a gap or labyrinth seal 57. Since this works without contact, it does not brake the shaft 3 and the rotor 2.
  • the separated in the gas cleaning chamber 1 1 from the crankcase ventilation gas oil flows over the inner surface of the cover 6 under gravity down into an oil collecting channel 54 and from this into an oil return channel 74, both of which are formed in the support member 5.
  • the drive space 12 is closed by the bottom of a trough 13, wherein the trough 13 is sealingly connected to the support member 5.
  • the trough 13 with the oil return channel 74 forms a siphon 74 '.
  • the siphon 74 ' the oil separated from the crankcase ventilation gas also passes through the drive chamber 12 into the oil drain channel 75.
  • a further feature of the oil mist separator 1 according to FIG. 3 is that the oil mist separator 1 can be flanged to a suitably designed counter flange 80 of the associated internal combustion engine or a component of the internal combustion engine by means of a flange 70 pointing to the left in FIG.
  • Figure 4 shows a section of Figure 3 with the mounting of the shaft 3 in an enlarged view, also in longitudinal section.
  • the shaft 3 which rotates about its central axis 30 in the two plain bearings 33.1 and 33.2 is stored.
  • the two sliding bearings 33.1 and 33.2 are formed directly between the shaft 3 on the one hand and the support member 5 with the inner annular wall 58 'on the other.
  • the first, upper annular channel 55.1 is visible; between the lower, the hollow channel 34 having portion of the shaft 3 and the lower part of the inner annular wall 58 'is the second, lower annular channel 55.2 recognizable.
  • the pressure oil channel 73 leads through the carrier part 5 to the shaft 3, which at the level of the pressure oil channel 73 has the transverse bore 35, which connects the pressure oil channel 73 with the hollow channel 34 in the shaft 3.
  • the Abschleuderkante 29 is significantly spaced, namely at a distance s, below the bottom 53, which limits the Rohgasringkanal 52 down.
  • the centrifuging of the oil drops from the hollow cylinder 28 takes place in a region of the drive chamber 12 in which only small gas velocities can occur in the direction of the gas cleaning chamber 11.
  • Higher gas velocities in the corresponding direction can occur at most in an annular gap space between the outer circumference of the hollow cylinder 28 and the inner circumference of the middle annular wall 52.2, but offset significantly upwards relative to the abrading edge 29.
  • the rotor 2 In its region facing the oil return channel 28, the rotor 2 is tightly closed, so that no gas flow from the drive chamber 12 through the oil return channel 58 into the gas cleaning chamber can result even under unfavorable circumstances. Such a gas flow is at most possible by a gap between the outer circumference of the hollow cylinder 28 and the inner circumference of the middle annular wall 52.2.
  • a gap or labyrinth seal 57 is provided between the upper area of the outer circumference of the hollow cylinder 28 and the upper area of the inner circumference of the middle ring wall 52.2.
  • FIG. 5 shows a further embodiment of the oil mist separator 1, for which it is characteristic that the drive space 12 is designed as a recess 81 in a component 8 of the associated internal combustion engine and that the carrier part 5, together with the rotary drive 4, seals in the recess 81 from above is plugged in.
  • the component 8 In the assembled state of the oil mist separator 1 shown in FIG. 5, simultaneous flow connections are made to the component 8, namely to supply crankcase vent gas to be purged with the raw gas passage 71 for supplying pressurized gas
  • the carrier part 5 has on its underside concentric with its inner annular wall 58 'and thus concentric with the shaft 3 a splash guard ring 59.1.
  • a downwardly tapered splash cap 59.2 is used from below in the splash guard 59.1, which is locked with its lower end radially outward into the inner annular wall 58 '.
  • the splash guard 59.2 is formed in its lower part with at least one passage opening to let the oil flowing down through the oil return passage 58 into the drive space 12. In reverse Direction shield the splash guard 59.1 and the splash guard 59.2 together the the inner ring wall 58 'immediately surrounding area against a squirting from the recoil nozzle 43 leaking lubricating oil.
  • the support member 5 is sealed by a total of three superposed, not specifically numbered radial seals against the component 8 of the engine.
  • the part of the support member 5 forming oil return channel 74 is immersed as a dip tube in a recess formed in the component 8, whereby there a siphon 74 'is formed.
  • oil passes through the oil collecting groove 54 in the oil return passage 74 and through the siphon 74 'via the drive chamber 12 in the oil drain passage 75 to pass through this together with the exiting from the recoil nozzle 43 oil, for example in the oil pan associated internal combustion engine to flow.
  • the oil mist separator 1 corresponds to the example according to FIG. 3, and reference is therefore made to the description of FIG. 3 with regard to the further reference numbers in FIG.
  • FIG. 6 likewise shows a longitudinal section of a further oil mist separator 1, for which a further integration into a component 8 of the internal combustion engine, for example a cylinder head cover, is typical.
  • the component 8 of the internal combustion engine contains both the raw gas channel 71 and the pressure oil channel 73 and the carrier part 5 as integral components. Above the two said channels 71 and 73, a recess 81 is formed in the component 8, in which the lid 6 is sealed and releasably inserted with its cover flange 60. At the top of the lid 6 of the clean gas duct 72 is arranged as a hose connection piece.
  • the two bearings 33.1 and 33.2 of the shaft 3 in the support part 5 are again both designed as plain bearings, which are supplied by the Druckolkanal 73 and the two annular channels 55.1 and 55.2 with lubricating oil.
  • the recoil nozzle 43 of the rotary drive 4 is supplied from the Druckolkanal 73 through the transverse bore 35, the hollow channel 34 and the nozzle channel 42 with lubricating oil.
  • the oil return channel 58 also serves radially inward from the hollow cylinder 28 connected to the rotor 2 or integrally extending downwards.
  • the hollow cylinder 28 has a lower, acute-angled Abschleuderkante 29th
  • FIG. 7 shows an oil mist separator 1, in this case its carrier part 5, in a stepped cross section, to the left of the dot-dash line L the sectional plane at the level of the raw gas channel 71 and to the right of the dot-dash line L the cutting plane at the level of the pressure oil channel 73, ie slightly downstream offset below, runs.
  • the shaft 3 with the here cut hollow channel 34 and the transverse bore 35 can be seen.
  • Radially outward therefrom lies the second, lower annular channel 55.2 in the background.
  • Radially outward lies the inner ring wall 58 'connects to it. Even further radially outward is the outer ring wall 52.1.
  • the Rohgasringkanal 52 Radially outermost lies over part of the circumference of the support member 5, the oil collecting channel 54th
  • the hollow channel 34 in the shaft 3 and the annular channel 55.2 are in fluid communication with the pressure oil channel 73 running radially inwardly from above in FIG.
  • the Rohgasringkanal 52 is in flow communication with the Druckolkanal 73 parallel, but to this sideways and elevationally slightly upwardly offset Rohgaskanal 71st
  • the other parts of the Olnebelabscheiders 1 are not visible in Figure 7 or not shown for clarity.
  • Oil drain channel Component of the internal combustion engine Counter flange

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft einen Ölnebelabscheider (1) zum Abscheiden von Öl aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, mit einem auf einer drehbar gelagerten Welle (3) angeordneten, Öl aus dem Gas durch Zentrifugalkräfte abscheidenden Rotor (2), wobei in einem vom Rotor (2) axial beabstandeten Bereich der Welle (3) an dieser ein Drehantrieb (4) mit wenigstens einer Rückstoßdüse (43) angeordnet ist, wobei der Rotor (4) in einem Gasreinigungsraum (11) des Abscheiders (1) und der Drehantrieb (4) in einem Antriebsraum (12) des Abscheiders (1) angeordnet ist, wobei die Welle (3) zwischen Rotor (2) und Drehantrieb (4) in zwei voneinander axial beabstandeten Lagern (33.1, 33.2) in einem den Gasreinigungsraum (11) und den Antriebsraum (12) voneinander trennenden Trägerteil (5) gelagert ist, wobei im Trägerteil (5) ein mit unter Druck stehendem Schmieröl beschickbarer Druckolkanal (73) vorgesehen ist, der in einen zu der mindestens einen Rückstoßdüse (43) des Drehantriebs (4) führenden Hohlkanal (34) in der Welle (3) mündet, wobei ein Kurbelgehäuseentlüftungsgas zuführender Rohgaskanal (71) in einen Einlassbereich des Gasreinigungsraums (11) mündet, wobei ein Reingaskanal (72) aus einem Auslassbereich des Gasreinigungsraums (11) abgeht, wobei ein Ölrücklaufkanal (74) aus einem Ölsammelbereich des Gasreinigungsraums (11) abgeht und wobei ein Ölablaufkanal (75) für aus der Rückstoßdüse (43) austretendes Schmieröl aus dem Antriebsraum (12) abgeht. Der Ölnebelabscheider (1) gemäß Erfindung ist dadurch gekennzeichnet, dass beide Lager (33.1 und 33.2) der Welle (3) Gleitlager sind und dass im Trägerteil (5) von dem Druckolkanal (73) je ein die Welle (3) umgebender Ringkanal (55.1, 55.2) zu jedem Gleitlager (33.1, 33.2) führt. ein die Welle (3) umgebender Ringkanal (55.1, 55.2)zu jedem Gleitlager (33.1, 33.2) führt.

Description

Beschreibung:
Ölnebelabscheider und Brennkraftmaschine mit einem Ölnebelabscheider
Die vorliegende Erfindung betrifft einen Ölnebelabscheider zum Abscheiden von Öl aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, mit einem auf einer drehbar gelagerten Welle angeordneten, Öl aus dem Gas durch Zentrifugalkräfte abscheidenden Rotor, wobei in einem vom Rotor axial beabstandeten Bereich der Welle an dieser ein Drehantrieb mit wenigstens einer Rückstoßdüse angeordnet ist, wobei der Rotor in einem Gasreinigungsraum des Abscheiders und der Drehantrieb in einem Antriebsraum des Abscheiders angeordnet ist, wobei die Welle zwischen Rotor und Drehantrieb in zwei voneinander axial beabstandeten Lagern in einem den Gasreinigungsraum und den Antriebsraum voneinander trennenden Trägerteil gelagert ist, wobei im Trägerteil ein mit unter Druck stehendem Schmieröl beschickbarer Druckölkanal vorgesehen ist, der in einen zu der mindestens einen Rückstoßdüse des Drehantriebs führenden Hohlkanal in der Welle mündet, wobei ein Kurbelgehäuseentlüftungsgas zuführender Rohgaskanal in einen Einlassbereich des Gasreinigungsraums mündet, wobei ein Reingaskanal aus einem Auslassbereich des Gasreinigungsraums abgeht, wobei ein Ölrücklaufkanal aus einem Öl- sammelbereich des Gasreinigungsraums abgeht und wobei ein Ölablaufkanal für aus der Rückstoßdüse austretendes Schmieröl aus dem Antriebsraum abgeht. Außerdem betrifft die Erfindung eine Brennkraftmaschine mit einem solchen Ölnebelabscheider.
Ein Ölnebelabscheider der vorstehend genannten Art ist aus der WO 2009/010248 A1 bekannt. Bei diesem Ölnebelabscheider ist jeweils nur das rotorferne, nahe dem Drehantrieb gelegene Lager ein Gleitlager, während das rotornahe Lager ein Wälzlager ist. Das Gleitlager wird durch aus der Rückstoßdüse als Spritzöl austretendes Schmieröl ausreichend geschmiert. Bis zu dem oberen Lager gelangt das aus der Rückstoßdüse austretende Schmieröl jedoch nicht, was auch zur Vermeidung eines Übertritts von Öl aus dem Antriebsraum in den Gasreinigungsraum unerwünscht ist. Aus diesem Grund ist hier das obere Lager als Wälzlager ausgeführt. Nachteilig ist zum einen das Wälzlager ein Zukaufteil, welches einen erheblichen, in den Gesamtkosten des Abscheiders merklichen Kostenfaktor darstellt. Zum anderen muss das Wälzlager separat eingebaut und mittels eines Sprengrings oder einer Feder gesichert und in vielen Fällen auch noch mit mindestens einer Abdeckscheibe abgedeckt werden. Somit entstehen auch noch relativ hohe Montagekosten.
Für die vorliegende Erfindung stellt sich daher die Aufgabe, einen Ölnebelabschei- der der eingangs genannten Art sowie eine Brennkraftmaschine mit einem solchen Ölnebelabscheider zu schaffen, welche die angegebenen Nachteile vermeiden und bei denen insbesondere die Zahl der benötigten Bauteile und der Aufwand für die Montage vermindert werden, ohne dass dabei eine Verschlechterung der Abscheidefunktion eintritt.
Die Lösung dieser Aufgabe gelingt erfindungsgemäß mit einem Ölnebelabscheider der eingangs genannten Art, der dadurch gekennzeichnet ist, dass beide Lager der Welle Gleitlager sind und dass im Trägerteil von dem Druckölkanal je ein die Welle umgebender Ringkanal zu jedem Gleitlager führt.
Mit der Erfindung wird vorteilhaft das rotornahe aufwändige Wälzlager durch ein einfacheres und preiswerteres Gleitlager ersetzt. Gleichzeitig ist durch die beiden Ringskanäle eine gezielte und zuverlässige Schmierölversorgung der beiden Gleitlager, auch des rotornahen Gleitlagers, gewährleistet. Das aus der Rückstoßdüse oder den Rückstoßdüsen des Drehantriebes austretende Schmieröl wird für die Schmierung der Gleitlager nicht mehr benötigt. Dabei dienen die Gleitlager zugleich als Spaltdichtungen, die höchstens einen geringen Leckölstrom durchtreten lassen, sodass die Wirksamkeit und die Leistung des Drehantriebes mit der mindestens einen Rückstoßdüse nicht beeinträchtigt werden.
In weiterer Ausgestaltung des Ölnebelabscheiders ist bevorzugt vorgesehen, dass der Druckölkanal zwischen den Gleitlagern in den Hohlkanal der Welle mündet. Hiermit wird eine konstruktiv einfache und geometrisch günstige Gestaltung des Trägerteils mit den Ringskanälen und der Welle ermöglicht. Die Einmündung in den Hohlkanal der Welle kann hier einfach durch eine oder mehrere Querbohrungen gebildet werden. Eine aufwändige Drehdurchführung ist hier nicht nötig, weil die beiden Gleitlager gleichzeitig Spaltdichtungen bilden und somit auch als endseitige Abdichtungen der Ringkanäle fungieren.
Einen besonders geringen Bearbeitungs- und Kostenaufwand erfordert der Ölnebel- abscheider, wenn, was bevorzugt vorgesehen ist, die Welle einerseits und das Trägerteil andererseits die beiden Gleitlager unmittelbar ausbilden und aus eine Gleitlagermaterialpaarung bildenden Werkstoffen bestehen. Zur Bildung der Gleitlager müssen lediglich die Welle und das Trägerteil in den miteinander die Gleitlager bildenden Oberflächenbereichen bearbeitet werden. Das Fertigen und Montieren von sonstigen Lagerteilen ist hier nicht erforderlich. Eine praxisgerechte geeignete Materialpaarung ist beispielsweise Aluminium für das Trägerteil und Stahl für die Welle.
Wenn es aus technischen oder sonstigen Gründen erforderlich sein sollte, dann kann alternativ zumindest eines der beiden Gleitlager mit einer Gleitlagerbuchse ausgeführt sein. Die Gleitlagerbuchse ist dann vorzugsweise in das Trägerteil ein- gepresst und nimmt die Welle mit dem nötigen Lagerspiel auf.
Um eine reibungsarme Drehung der Welle in den beiden Gleitlager an zu gewährleisten, ist ein ausreichend großer Lagerspalt zwischen den gegeneinander rotierenden Teilen der Gleitlager erforderlich. Da das Öl zur Schmierung der Gleitlager diesen unter Druck zugeführt wird, tritt eine gewisse, wenn auch kleine Menge an Schmieröl durch die Gleitlager hindurch, was für deren Schmierung und für die Ausbildung eines stabilen Ölpolsters durchaus erwünscht ist. Im Bereich des rotornahen Gleitlagers kann dies aber dazu führen, dass Öl, welches dieses Gleitlager durchströmt hat, in unerwünschter Weise in den Gasreinigungsraum oberhalb des Trägerteils gelangt. Um dem vorzubeugen, schlägt die Erfindung vor, dass von der dem Rotor zugewandten Seite des rotorseitigen Gleitlagers ein vom Rotor weg in den Antriebsraum führender Ölrückführkanal ausgeht, durch den das rotorseitige Gleitlager durchströmendes Schmieröl in den Antriebsraum zurückführbar ist. Damit wird das Öl, welches durch das rotornahe Gleitlager strömt, sicher aus dem Gasreinigungsraum ferngehalten und zuverlässig in den Antriebsraum zurückgeführt, von wo aus es zusammen mit dem aus der Rückstoßdüse oder den Rückstoßdüsen austretenden Schmieröl abfließen kann.
Um den Ölrückführkanal funktional günstig und platzsparend unterbringen zu können, ist vorgesehen, dass der Ölrückführkanal ringspaltförmig ist und radial innen von einer den zum rotorseitigen Gleitlager führenden Ringkanal radial außen begrenzenden inneren Ringwand des Trägerteils begrenzt ist.
In weiterer Ausgestaltung ist bevorzugt vorgesehen, dass der Ölrückführkanal radial außen von einem einen Teil des Rotors bildenden, sich von diesem in Richtung zum Drehantrieb hin erstreckenden, zur inneren Ringwand konzentrischen Hohlzylinder begrenzt ist. Zusätzlich zu einer Führung des durch das rotornahe Gleitlager hindurchtretenden Schmieröl hat der Hohlzylinder die weitere Funktion, einen gegebenenfalls aus dem Antriebsraum in den Gasreinigungsraum strömenden Gasstrom von dem Ölstrom getrennt zu halten, damit dieses Öl nicht in den zum Gasreinigungsraum strömenden Gasstrom gelangen kann.
Eine weitere Maßnahme zur Begünstigung der vorstehend beschriebenen Funktion des Hohlzylinders besteht darin, dass vorzugsweise der Hohlzylinder an seinem freien Ende mit einer umlaufenden spitzwinkligen und/oder radial nach außen umgebogenen oder abgewinkelten Abschleuderkante ausgeführt ist. Die Abschleuderkante sorgt dafür, dass im Betrieb des Abscheiders das zurückgeführte Öl in Form von größeren Tropfen radial nach außen geschleudert wird, ohne dass es von einem gegebenenfalls aus dem Antriebsraum in den Gasreinigungsraum strömenden Gasstrom mitgenommen werden könnte.
Weiter wird erfindungsgemäß vorgeschlagen, dass der Kurbelgehäuseentlüftungsgas zuführende Rohgaskanal durch das Trägerteil verläuft und unter dem Rotor einen zu diesem hin offenen und an seiner entgegengesetzten Seite durch einen Boden verschlossenen Rohgasringkanal bildet und dass sich der Hohlzylinder mit der Abschleuderkante vom Rotor aus gesehen über den Boden hinaus erstreckt. Mit dieser Gestaltung wird zum einen eine gleichmäßige Beschickung des Rotors mit dem zu reinigenden Rohgas erreicht. Zum anderen sorgt die angegebene Gestaltung des Hohlzylinders mit der Abschleuderkante dafür, dass die Abschleuderkante in einem ausreichenden Abstand von einem Bereich des Antriebsraums liegt, in welchem Gasströmungsgeschwindigkeiten auftreten könnten, die zur Mitnahme von Öltropfen in der Lage wären.
In der Praxis ist es zum Erreichen des vorstehend beschriebenen Effekts ausreichend, wenn die Abschleuderkante von dem Boden einen Abstand s von mindestens 3 mm, vorzugsweise mindestens 10 mm, aufweist. Um bei einer am Drehantrieb vorgegebenen Antriebsleistung eine maximale Drehzahl des Rotors und somit eine gute Abscheidewirkung zu erzielen, müssen bremsende Effekte auf den Rotor und die Welle vermieden werden. Dies bedeutet insbesondere, dass eine reibende Dichtung zwischen Antriebsraum und Gasreinigungsraum unerwünscht ist. Um dennoch eine genügende gegenseitige Abdichtung zwischen Antriebsraum und Gasreinigungsraum zu gewährleisten, wird vorgeschlagen, dass der Hohlzylinder und eine den Rohgasringkanal radial innen begrenzende mittlere Ringwand des Trägerteils eine berührungslose Spalt- oder Labyrinthdichtung zwischen Antriebsraum und Gasreinigungsraum bilden.
Eine weitere Ausgestaltung des Ölnebelabscheiders sieht vor, dass die Rückstoßdüse am freien Ende eines nach außen und schräg in Richtung zum Rotor weisenden Düsenarms angeordnet ist und dass rotorseitig vom Drehantrieb am Trägerteil ein umlaufender, zum Drehantrieb weisender axial vorragender Spritzschutzring angeformt oder angebracht ist. Die angegebene Ausrichtung des Düsenarms sorgt in Kombination mit dem Spritzschutzring dafür, dass aus der Rückstoßdüse austretendes Schmieröl nicht oder zumindest nur in sehr geringem Umfang in den Bereich der Spalt- oder Labyrinthdichtung gelangen kann, so dass das Risiko eines unerwünschten Übertritts von Öl aus dem Antriebsraum in den Gasreinigungsraum weiter vermindert wird.
Eine noch weitergehende Verminderung eines Übertritts von Öl aus dem Antriebsraum in den Gasreinigungsraum kann dadurch erreicht werden, dass gemäß einer weiteren Ausgestaltung eine konische Spritzschutzkappe mit ihrem größeren Ende in den Spritzschutzring eingesetzt ist und sich mit ihrem kleineren, mindestens eine Durchlassöffnung aufweisenden Ende in Richtung zum Drehantrieb hin erstreckt. Die Spritzschutzkappe schirmt den Bereich des Antriebsraums innerhalb des Spritzschutzrings weiter ab, erlaubt aber gleichzeitig einen Durchlass des Öls, das vom rotornahen Gleitlager in den Antriebsraum zurückgeführt wird.
Der erfindungsgemäße Ölnebelabscheider kann in unterschiedlicher Art und Weise an eine zugehörige Brennkraftmaschine funktional angekoppelt werden beziehungsweise sein. In einer ersten diesbezüglichen Ausgestaltung ist vorgesehen, dass der Ölnebelabscheider ein Gehäuseunterteil aufweist, das an eine Komponente der Brennkraftmaschine unter Herstellung von Strömungsverbindungen an- flanschbar ist und den Trägerteil sowie den Antriebsraum umfasst, und dass er ein Gehäuseoberteil aufweist, das durch einen am Gehäuseunterteil angebrachten, abnehmbaren Deckel gebildet ist und den Gasreinigungsraum enthält. Für das Anflanschen sind zweckmäßig auf der Seite des Olnebelabscheiders und auf der Seite der Komponente der Brennkraftmaschine miteinander korrespondierende Flansche vorgesehen, die gegeneinander unter Abdichtung durch Axialdichtungen verspannbar sind. Im Sinne einer möglichst einfachen Montage sind dabei möglichst viele Strömungsverbindung oder im Optimalfall alle Strömungsverbindung in die Flanschverbindung integriert.
Eine zweite, alternative Ausgestaltung schlägt einen Olnebelabscheider und eine Brennkraftmaschine mit einem solchen Olnebelabscheider vor, bei denen vorgesehen ist, dass der Antriebsraum als nach außen offene Ausnehmung in einer Komponente der Brennkraftmaschine ausgebildet ist, dass in die Ausnehmung das Trägerteil unter Herstellung von Strömungsverbindungen dichtend einsteckbar ist und dass am Trägerteil oder an der Komponente ein außerhalb der Ausnehmung liegender, abnehmbarer Deckel angebracht oder anbringbar ist, der den Gasreinigungsraum enthält. In dieser Ausgestaltung wird insbesondere eine kompakte Bauweise erreicht, weil der Olnebelabscheider zu einem Teil, in der Praxis etwa zur Hälfte seiner Höhe, innerhalb der Komponente der Brennkraftmaschine liegt, so dass nur noch der andere Teil aus der Komponente der Brennkraftmaschine vorragt.
Eine dritte, alternative Ausgestaltung schlägt einen Olnebelabscheider und eine Brennkraftmaschine mit einem solchen Olnebelabscheider vor, bei denen vorgesehen ist,, dass das Trägerteil mit zumindest dem Druckölkanal als integraler Teil einer Komponente der Brennkraftmaschine ausgeführt ist, dass der Antriebsraum in einem Innenraum der Komponente liegt und dass außenseitig an der Komponente ein den Gasreinigungsraum enthaltender abnehmbarer Deckel dichtend angebracht oder anbringbar ist. Für diese Ausführung ist charakteristisch, dass der Trägerteil integral mit der Komponente der Brennkraftmaschine ausgeführt ist, also nicht als eigenes Bauteil gefertigt werden muss. Auch einen eigenen Antriebsraum hat der Olnebelabscheider hier nicht, sondern ein in der Komponente ohnehin vorhandener Innenraum wird hier auch als Antriebsraum des Drehantriebes genutzt. Somit wird ein besonders hoher Integrationsgrad mit vermindertem Herstellungs- und Montageaufwand erreicht. Die erwähnte Komponente der Brennkraftmaschine kann in der Praxis beispielsweise der Motorblock der Brennkraftmaschine oder dessen Zylinderkopfhaube oder ein mit der Brennkraftmaschine verbundenes Funktionsmodul, wie Ölmodul mit Ölfilter und/oder Ölkühler, sein.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:
Figur 1 einen Olnebelabscheider in einer ersten Ausführung, im Längsschnitt,
Figur 2 einen vergrößerten Ausschnitt aus Figur 1 , im Längsschnitt,
Figur 3 den Olnebelabscheider in einer zweiten Ausführung, im Längsschnitt,
Figur 4 einen vergrößerten Ausschnitt aus Figur 3, im Längsschnitt,
Figur 5 den Olnebelabscheider in einer dritten Ausführung, im Längsschnitt,
Figur 6 den Olnebelabscheider in einer vierten Ausführung, im Längsschnitt, und
Figur 7 einen Olnebelabscheider in einem gestuften Querschnitt.
Figur 1 der Zeichnung zeigt als erstes Ausführungsbeispiel einen Olnebelabscheider 1 , der mittels eines Flansches 70 an eine zugehörige Brennkraftmaschine oder eine Komponente der zugehörigen Brennkraftmaschine angeflanscht werden kann. Der Abscheider 1 besitzt ein Oberteil in Form eines Deckels 6, in welchem sich ein Gasreinigungsraum 1 1 befindet, sowie ein Unterteil in Form einer Wanne 13, in welcher sich ein Antriebsraum 12 befindet. Der Gasreinigungsraum 1 1 und der Antriebsraum 12 sind durch ein Trägerteil 5 räumlich voneinander getrennt. Der Deckel 6 ist mittels eines Deckelflansches 60 mit dem Trägerteil 5 von oben her lösbar verbunden, während die Wanne 13 von unten her abgedichtet mit dem Trägerteil 5 verbunden ist. Im Gasreinigungsraum 1 1 ist ein Rotor 2 angeordnet, der auf einer Welle 3 verdrehfest befestigt ist und der zur Abscheidung von Ölnebel aus dem Kurbelgehäu- seentlüftungsgas einer zugehörigen Brennkraftmaschine dient. Dazu ist der Rotor 2 in bekannter Art und Weise ausgeführt, beispielsweise als Tellerstapel.
Die Welle 3 ist um ihre Mittelachse 30 drehbar im Trägerteil 5 gelagert, nämlich in einem oberen Lager 33.1 und in einem axial davon beabstandeten unteren Lager 33.2. Beide Lager 33.1 und 33.2 sind als Gleitlager, hier jeweils mit einer Gleitlagerbuchse 56.1 beziehungsweise 56.2, ausgeführt. Zur Aufnahme beziehungsweise Ausbildung der beiden Gleitlager 33.1 und 33.2 besitzt das Trägerteil 5 eine innere Ringwand 58', die konzentrisch zur Welle 3 angeordnet ist. Unterhalb des oberen Gleitlagers 33.1 ist zwischen der inneren Ringwand 58' und der Welle 3 ein erster Ringkanal 55.1 angeordnet. Oberhalb des unteren Gleitlagers 33.2 verläuft zwischen der Welle 3 und der inneren Ringwand 58' ein zweiter, unterer Ringkanal 55.2. Von der Seite her, in Figur 1 von links her, führt durch das Trägerteil 5 ein Druckölkanal 73 bis zur Welle 3. In Höhe des Druckölkanal als 73 hat die Welle 3 eine Querbohrung 35. Von der Querbohrung 35 erstreckt sich ein Hohlkanal 34 durch das Innere der Welle 3 nach unten. Weithin ist der Druckölkanal 73 in Höhe der Querbohrung 35 sowohl mit dem oberen Ringkanal 55.1 als auch mit dem unteren Ringkanal 55.2 verbunden.
Mit dem unteren Ende der Welle 3 ist ein Drehantrieb 4 verbunden, der hier durch einen einzelnen Düsenarm 41 mit einem darin verlaufenden, mit dem Hohlkanal 30 verbundenen Düsenkanal 42 und einer am äußeren Ende des Düsenarms 41 angeordneten Rückstoßdüse 43 ausgeführt ist. In Umfangsrichtung der Welle 30 gesehen liegt gegenüber von dem Düsenarm 41 ein Gegengewicht 44, das zur Vermeidung einer Unwucht dient. Der Drehantrieb 4 ist hier auf das untere Ende der Welle 3 verdrehfest aufgesteckt und mittels einer Hutmutter 45, die zugleich den Hohlkanal 30 an seinem unteren Ende verschließt, gesichert.
Im Betrieb der zugehörigen Brennkraftmaschine und des Olnebelabscheiders 1 wird durch den Druckölkanal 73 unter Druck stehendes Schmieröl von einer Ölpumpe der Brennkraftmaschine kommend in das Trägerteil 5 geführt. Am radial inneren Ende des Druckölkanal 73 verzweigt sich der Ölstrom in drei Zweigströme.
Ein erster, volumenstrommäßig größter Zweigstrom strömt durch die Querbohrung 35 in den Hohlkanal 30 und von dort durch den Düsenkanal 42 im Düsenarm 41 zur Rückstoßdüse 43. Der aus der Rückstoßdüse 43 austretende Ölstrahl sorgt für eine Drehung des Drehantriebes 4 sowie der damit verdrehfest verbundenen Welle 3 mit dem damit ebenfalls verdrehfest verbundenen Rotor 2. Das aus der Rückstoßdüse 43 austretende Schmieröl fließt drucklos unter Schwerkraftwirkung durch einen Öl- ablaufkanal 75 ab, der in einem Flansch 70 vorgesehen ist, welcher mit einem passenden Gegenflansch der zugehörigen Brennkraftmaschine oder einer Komponente der Brennkraftmaschine verbindbar ist.
Ein zweiter Zweigstrom strömt durch den oberen Ringkanal 55.1 zum oberen Gleitlager 33.1 und versorgt dieses mit Schmieröl. Ein dritter Zweigstrom strömt durch den unteren Ringkanal 55.2 zum unteren Gleitlager 33.2 und versorgt dieses mit Schmieröl. Dabei dienen die Gleitlager 33.1 und 33.2 zugleich als Spaltdichtungen, die einen nennenswerten Durchtritt von Schmieröl durch ihren Lagerspalt nicht zulassen.
Über einen in Figur 1 nicht sichtbaren Rohgaskanal gelangt zu entölendes Kurbelgehäuseentlüftungsgas in einen Rohgasringkanal 52, der im Trägerteil 5 radial innen unterhalb des Rotors 2 verläuft. Von dort strömt das Gas axial nach oben in den Rotor 2 und verlässt diesen radial außen unter Abscheidung der mitgeführten Ölpar- tikel, die sich am Innenumfang des Deckels 6 niederschlagen. Das entölte Gas verlässt den Gasreinigungsraum 1 1 durch einen in Figur 1 nicht sichtbaren Reingaskanal. Das niedergeschlagene Öl fließt am Innenumfang des Deckels 6 unter Schwerkraftwirkung nach unten und gelangt so in eine im Trägerteil 5 ausgebildete Ölsam- melrinne 54. Die Ölsammelrinne 54 steht in Verbindung mit einem Ölrücklaufkanal 74, der seinerseits mit dem Ölablaufkanal 75 verbunden ist, hier über eine Bohrung 74".
Figur 2 zeigt in vergrößerter Darstellung einen Ausschnitt aus Figur 1 , wobei der Ausschnitt die Lagerung der Welle 3 im Trägerteil 5 zeigt. Im Zentrum der Figur 2 verläuft die um ihre Längsachse 30 drehbare Welle 3, die in ihrem unteren Teil den Hohlkanal 34 aufweist. In ihrem oberen Teil oberhalb der Querbohrung 35 ist hier die Welle 3 massiv.
Das Trägerteil 5 umgibt mit seiner inneren Ringwand 58' die Welle 3 oberhalb und unterhalb der Querbohrung 35. Jeweils am oberen Ende und am unteren Ende der inneren Ringwand 58' ist je eines der beiden Gleitlager 33.1 und 33.2, hier mit den Gleitlagerbuchsen 56.1 und 56.2, angeordnet. Die Gleitlagerbuchsen 56.1 und 56.2 sind hier jeweils in das Trägerteil 5 von oben beziehungsweise unten her einge- presst. Die Welle 3 verläuft mit einem ausreichend großen Lagerspalt durch die Gleitlagerbuchsen 56.1 und 56.2. Oberhalb der oberen Lagerbuchse 56.1 besitzt die Welle 3 eine nach außen vorspringende Stufe 31 , die als Anschlag dient und eine definierte Höhenlage der Welle 3 bestimmt.
In dem Bereich zwischen den beiden Lagern 33.1 und 33.2 bildet die Welle 3 mit der inneren Ringwand 58' den oberen Ringkanal 55.1 und den unteren Ringkanal 55.2, die beide, ebenso wie der Hohlkanal 34 in der Welle 3, mit dem im Trägerteil 5 verlaufenden Druckölkanal 73 in Strömungsverbindung stehen. Radial außen von der inneren Ringwand 58' verläuft der Rohgasringkanal 52, der nach unten hin von dem rechts in Figur 2 sichtbaren Boden 53 begrenzt und von dem Antriebsraum 12 getrennt ist.
Ganz oben in Figur 2 ist ein kleiner Teil des mit der Welle 3 verdrehfest verbundenen Rotors 2 erkennbar. Ganz unten in Figur 2 ist der Drehantrieb 4 zu einem kleinen Teil erkennbar, hier mit einem Ausschnitt des Düsenarms 41 mit dem Düsenkanal 42 sowie diametral gegenüberliegend dem Gegengewicht 44.
Ein zweites Ausführungsbeispiel eines Ölnebelabscheiders 1 ist in Figur 3 ebenfalls in einem Längsschnitt dargestellt. Auch hier besitzt der Ölnebelabscheider 1 einen Gasreinigungsraum 1 1 mit einem darin angeordneten Rotor 2 und einen Antriebsraum 12 mit einem darin angeordneten Drehantrieb 4. Auch hier sind der Gasreinigungsraum 1 1 und der Antriebsraum 12 durch das Trägerteil 5 voneinander räumlich getrennt. Nach außen ist der Gasreinigungsraum 1 1 wieder durch einen Deckel 6 abgeschlossen, der mit einem Deckelflansch 60 mit dem Trägerteil 5 von oben her lösbar verbunden ist. Der Antriebsraum 12 wird zur Umgebung hin durch ein Unterteil in Form einer Wanne 13 abgeschlossen.
Sowohl der Rotor 2 als auch der Drehantrieb 4 sind hier wieder verdrehfest auf einer Welle 3 angebracht, die um ihre Längsachse 30 drehbar im Trägerteil 5 gelagert ist. Für diese drehbare Lagerung sind hier wieder zwei Gleitlager 33.1 und 33.2 vorgesehen, die hier zwischen der Welle 3 und dem Trägerteil 5 unmittelbar, also ohne Zwischenlage von Gleitlagerbuchsen, ausgebildet sind. Zur Bildung der Gleitlager 33.1 und 33.2 ist auch hier das Trägerteil 5 wieder mit einer inneren Ringwand 58' ausgebildet, die an ihrem oberen Ende mit der Welle 3 das obere Gleitlager 33.1 und an ihrem unteren Ende mit der Welle 3 das untere Gleitlager 33.2 bildet. Im Bereich zwischen den beiden Gleitlagern 33.1 und 33.2 bildet die innere Ringwand 58' mit der Welle 3 wieder einen oberen Ringkanal 55.1 und einen unteren Ringkanal 55.2. Die Welle 3 ist hier in ihrem unteren Abschnitt wieder mit einem Hohlkanal 34 und mit einer Querbohrung 35 versehen. Auf das untere Ende der Welle 3 ist in schon beschriebene Art und Weise der Drehantrieb 4 aufgesetzt. Auf die vorhergehende Beschreibung der Figur 1 wird diesbezüglich verwiesen.
Der Rotor 2 besitzt bei dem in Figur 3 dargestellten Ausführungsbeispiel einen Hohlzylinder 28, der mit dem übrigen Rotor 2 einstückig oder verbunden ist und der von der Unterseite des Rotors 2 konzentrisch zur inneren Ringwand 58' verläuft, wobei zwischen beiden ein Ringspalt als Ölrückführkanal 58 ausgebildet ist. Das untere Ende des Hohlzylinders 28 ist mit einer zugespitzten Abschleuderkante 29 ausgebildet.
Radial außen von dem Hohlzylinder 28 verläuft konzentrisch zu diesem eine mittlere Ringwand 52.2, welche Teil des Trägerteils 5 ist. Radial außen von der mittleren Ringwand 52.2 verläuft eine äußere Ringwand 52.1 , ebenfalls als Teil des Trägerteils 5, wobei zwischen den beiden genannten Ringwänden 52.1 und 52.2 ein Rohgasringkanal 52 gebildet wird. Der Rohgasringkanal 52 ist nach oben hin zur Unterseite des Rotors 2 offen und nach unten ist der Rohgasringkanal 52 durch einen Boden 53 begrenzt.
In Betrieb des Ölnebelabscheiders 1 gemäß Figur 3 und der zugehörigen Brennkraftmaschine wird unter Druck stehendes Schmieröl durch den Druckölkanal 73 innerhalb des Trägerteils 5 zur Welle 3 geführt. Dort verzweigt sich der Ölstrom wieder in die drei schon anhand von Figur 1 beschriebenen Ölströme zur Rückstoßdüse 43 des Drehantriebes 4 und zu den beiden Gleitlagern 33.1 und 33.2.
Um besonders sicher zu gewährleisten, dass kein Schmieröl durch das obere Gleitlager 33.1 in den Gasreinigungsraum 1 1 und bis in den Reingaskanal 72 für das Reingas gelangen kann, ist der erwähnte Ölrückführkanal 58 vorgesehen. Durch diesen wird Schmieröl, welches durch das obere Gleitlager 33.1 hindurchgetreten ist, radial außen von der inneren Ringwand 58' nach unten und somit in den Antriebsraum 12 zurückgeführt. Die Abschleuderkante 29 am unteren Ende des Hohlzylinder 28 sorgt dafür, dass relativ große Tropfen von dem Hohlkörper 28 in den Antriebsraum 12 geschleudert werden, die nicht der Gefahr unterliegen, von einem Gasstrom aus dem Antriebsraum 12 in den Gasreinigungsraum 1 1 mitgenommen zu werden. Zu diesem Zweck liegt die Abschleuderkante 29 deutlich tiefer als der Boden 53 des Rohgasringkanals 52, wodurch das Abschleudern der Öltropfen in einem Bereich geringer Gasströmungsgeschwindigkeit erfolgt. Ein Gasstrom aus dem Antriebsraum 12 in den Gasreinigungsraum 1 1 kann bei entsprechenden Druckverhältnissen im Olnebelabscheider 1 auftreten, wobei der Gasstrom hier durch einen Spaltraum zwischen dem Außenumfang des Hohlzylinder 28 und dem Innenumfang der mittleren Ringwand 52.2 strömen könnte. Um einen solchen Gasstrom zu vermeiden oder möglichst gering zu halten, bilden hier der Außenumfang des Hohlzylinders 28 und der Innenumfang der mittleren Ringwand 52.2 miteinander eine Spalt- oder Labyrinthdichtung 57. Da diese berührungslos funktioniert, bremst sie die Welle 3 und den Rotor 2 nicht.
Das im Gasreinigungsraum 1 1 aus dem Kurbelgehäuseentlüftungsgas abgeschiedene Öl fließt über die innere Oberfläche des Deckels 6 unter Schwerkraftwirkung nach unten in eine Ölsammelrinne 54 und aus dieser in einen Ölrücklaufkanal 74, die beide im Trägerteil 5 ausgebildet sind. Nach unten hin ist der Antriebsraum 12 durch den Boden einer Wanne 13 abgeschlossen, wobei die Wanne 13 dichtend mit dem Trägerteil 5 verbunden ist. Im Bereich des Ölrücklaufkanals 74 bildet die Wanne 13 mit dem Ölrücklaufkanal 74 einen Siphon 74'. Durch den Siphon 74' gelangt das aus dem Kurbelgehäuseentlüftungsgas abgeschiedene Öl durch den Antriebsraum 12 ebenfalls in den Ölablaufkanal 75.
Ein weiteres Merkmal des Ölnebelabscheiders 1 nach Figur 3 besteht darin, dass der Olnebelabscheider 1 mittels eines in Figur 3 nach links weisenden Flansches 70 an einen passend gestalteten Gegenflansch 80 der zugehörigen Brennkraftmaschine oder einer Komponente der Brennkraftmaschine anflanschbar ist, wobei gleichzeitig Strömungsverbindung hergestellt werden. Im dargestellten Beispiel erfolgen über die Flanschverbindung das Zuführen von Rohgas in den Rohgaskanal 71 , das Zuführen von Drucköl in den Druckölkanal 73 und das drucklose Abführen von Schmieröl aus dem Antriebsraum 12 durch den Ölablaufkanal 75.
Figur 4 zeigt einen Ausschnitt aus Figur 3 mit der Lagerung der Welle 3 in vergrößerter Darstellung, ebenfalls im Längsschnitt. In der Mitte der Figur 4 verläuft die Welle 3, die um ihre Mittelachse 30 drehbar in den beiden Gleitlagern 33.1 und 33.2 gelagert ist. Die beiden Gleitlager 33.1 und 33.2 sind unmittelbar zwischen der Welle 3 einerseits und dem Trägerteil 5 mit der inneren Ringwand 58' andererseits ausgebildet. Zwischen dem oberen Bereich der inneren Ringwand 58' und dem dortigen Teil der Welle 3 ist der erste, obere Ringkanal 55.1 sichtbar; zwischen dem unteren, den Hohlkanal 34 aufweisenden Abschnitt der Welle 3 und dem unteren Teil der inneren Ringwand 58' ist der zweite, untere Ringkanal 55.2 erkennbar. Von links her führt der Druckölkanal 73 durch das Trägerteil 5 zur Welle 3, die in Höhe des Dru- ckölkanals 73 die Querbohrung 35 aufweist, welche den Druckölkanal 73 mit dem Hohlkanal 34 in der Welle 3 verbindet.
Wie oben schon erläutert, strömt ein Teilstrom des durch den Druckölkanal 73 zugeführten Schmieröls im Betrieb des Ölnebelabscheiders zu der in Figur 4 nicht sichtbaren Rückstoßdüse des Drehantriebes 4. Zwei weitere, kleinere Teilströme gelangen zu den beiden Gleitlagern 33.1 und 33.2. Im Bereich des oberen Gleitlagers 33.1 , das sich unmittelbar unterhalb des Rotors 2 befindet, besteht die Gefahr, dass dort Öl, welches durch den Lagerspalt des Gleitlagers 33.1 hindurchtritt, von dort weiter in den Gasreinigungsraum 1 1 und dort in unerwünschter Weise in den Reingasstrom gelangen kann. Um diesen unerwünschten Effekt zu vermeiden, erstreckt sich von dem Rotor 2 der Hohlzylinder 28 konzentrisch zu dem oberen Teil der inneren Ringwand 58' des Trägerteils 5 nach unten und bildet mit der inneren Ringwand 58' den Ölrückführkanal 58. Schmieröl, welches durch den Lagerspalt des oberen Gleitlagers 33.1 gelangt, tritt in den oberen Bereich des Ölrückführkanal 58 ein und fließt durch diesen unter Schwerkraftwirkung nach unten. Öl, welches dabei auf die Innenumfangsfläche des Hohlzylinders 28 gelangt, fließt an diesem ebenfalls unter Schwerkraftwirkung nach unten und wird schließlich von der Abschleuderkante 29 in den Antriebsraum 12 abgeschleudert. Wie Figur 4 anschaulich zeigt, liegt die Abschleuderkante 29 deutlich beabstandet, nämlich in einem Abstand s, unterhalb des Bodens 53, der den Rohgasringkanal 52 nach unten begrenzt. Damit erfolgt das Abschleudern der Öltropfen von dem Hohlzylinder 28 in einem Bereich des Antriebsraums 12, in welchem nur geringe Gasgeschwindigkeiten in Richtung zum Gasreinigungsraum 1 1 auftreten können. Höhere Gasgeschwindigkeiten in entsprechender Richtung können höchstens in einem Ringspaltraum zwischen dem Außenumfang des Hohlzylinders 28 und dem Innenumfang der mittleren Ringwand 52.2 auftreten, die aber gegenüber der Abschleuderkante 29 deutlich nach oben versetzt liegt. In seinem dem Ölrückführkanal 28 zugewandten Bereich ist der Rotor 2 dicht verschlossen, so dass sich auch unter ungünstigen Umständen keine Gasströmung aus dem Antriebsraum 12 durch den Ölrückführkanal 58 in den Gasreinigungsraum ergeben kann. Eine solche Gasströmung ist höchstens möglich durch einen Zwischenraum zwischen dem Außenumfang des Hohlzylinders 28 und dem Innenumfang der mittleren Ringwand 52.2. Um hier einen Gasdurchtritt aus dem Antriebsraum 12 in den Rotor 2 und auf diesem Wege in den Gasreinigungsraum zu verhindern, ist zwischen dem oberen Bereich des Außenumfangs des Hohlzylinders 28 und dem oberen Bereich des Innenumfangs der mittleren Ringwand 52.2 eine Spaltoder Labyrinthdichtung 57 vorgesehen. Radial außen von der mittleren Ringwand 52.2 verläuft die äußere Ringwand 52.1 , die beide Teile des Trägerteils 5 sind und zwischen denen der Rohgasringkanal 52 liegt.
Ganz unten in Figur 4 ist ein kleiner Teil des Drehantriebes 4 sichtbar, wie auch in Figur 2.
Figur 5 zeigt eine weitere Ausführung des Ölnebelabscheiders 1 ,für welche charakteristisch ist, dass hier der Antriebsraum 12 als Ausnehmung 81 in einer Komponente 8 der zugehörigen Brennkraftmaschine ausgebildet ist und dass das Trägerteil 5 zusammen mit dem Drehantrieb 4 in die Ausnehmung 81 von oben her dichtend eingesteckt ist. In dem in Figur 5 gezeigten montierten Zustand des Ölnebelabscheiders 1 werden gleichzeitig Strömungsverbindungen zu der Komponente 8 hergestellt, nämlich zum einen zur Zuführung von zu entölendem Kurbelgehäuseentlüftungsgas in den Rohgaskanal 71 , zum Zuführen von unter Druck stehendem
Schmieröl in den Druckölkanal 73 und zum drucklosen Abführen von aus der Rückstoßdüse 43 des Drehantriebes 4 austretendem Schmieröl in den Ölablaufkanal 75.
Weiterhin unterschiedlich zu dem zuvor in Figur 3 beschriebenen Olnebelabscheider 1 ist, dass bei dem Olnebelabscheider 1 gemäß Figur 5 das Trägerteil 5 an seiner Unterseite konzentrisch zu seiner inneren Ringwand 58' und damit konzentrisch zur Welle 3 einen Spritzschutzring 59.1 aufweist. Außerdem ist von unten her in den Spritzschutzring 59.1 eine nach unten konisch zulaufende Spritzschutzkappe 59.2 eingesetzt, die mit ihrem unteren Ende radial außen in die innere Ringwand 58' eingerastet ist. Die Spritzschutzkappe 59.2 ist in ihrem unteren Teil mit mindestens einer Durchlassöffnung ausgebildet, um das durch den Ölrückführkanal 58 nach unten fließende Öl in den Antriebsraum 12 gelangen zu lassen. In umgekehrter Richtung schirmen der Spritzschutzring 59.1 und die Spritzschutzkappe 59.2 gemeinsam den die innere Ringwand 58' unmittelbar umgebenden Bereich gegen ein Hineinspritzen von aus der Rückstoßdüse 43 austretendem Schmieröl ab.
Der Gasreinigungsraum 1 1 mit dem Rotor 2 liegt bei diesem Olnebelabscheider 1 oberhalb der Komponente 8 der Brennkraftmaschine innerhalb eines lösbar an dem Trägerteil 5 angebrachten Deckels 6.
Der Trägerteil 5 ist hier durch insgesamt drei übereinander angeordnete, nicht eigens bezifferte Radialdichtringe gegen die Komponente 8 der Brennkraftmaschine abgedichtet. Der einen Teil des Trägerteils 5 bildende Ölrücklaufkanal 74 ist als Tauchrohr in eine in der Komponente 8 ausgebildete Eintiefung eingetaucht, wodurch dort ein Siphon 74' gebildet wird. Im Gasreinigungsraum 1 1 aus dem Kurbelgehäuseentlüftungsgas abgeschiedenes Öl gelangt über die Ölsammelrinne 54 in den Ölrücklaufkanal 74 und durch den Siphon 74' über den Antriebsraum 12 in den Ölablaufkanal 75, um durch diesen zusammen mit dem aus der Rückstoßdüse 43 austretenden Öl beispielsweise in die Ölwanne der zugehörigen Brennkraftmaschine zu fließen.
In seinen weiteren Teilen entspricht der Olnebelabscheider 1 dem Beispiel gemäß Figur 3 und es wird daher hinsichtlich der weiteren Bezugsziffern in Figur 5 auf die Beschreibung der Figur 3 verwiesen.
In Figur 6 ist ein weiterer Olnebelabscheider 1 ebenfalls in Längsschnitt gezeigt, für den eine noch weitere Integration in eine Komponente 8 der Brennkraftmaschine, beispielsweise eine Zylinderkopfhaube, typisch ist.
Die Komponente 8 der Brennkraftmaschine enthält sowohl den Rohgaskanal 71 als auch den Druckölkanal 73 sowie das Trägerteil 5 als integrale Bestandteile. Oberhalb der beiden genannten Kanäle 71 und 73 ist in der Komponente 8 eine Ausnehmung 81 ausgebildet, in welche der Deckel 6 mit seinem Deckelflansch 60 dichten und lösbar eingesetzt ist. An der Oberseite des Deckels 6 ist der Reingaskanal 72 als Schlauchanschlussstutzen angeordnet.
Im unteren Teil der Figur 6 befindet sich ein Innenraum 82 der Komponente 8 der Brennkraftmaschine, wobei dieser Innenraum 82 gleichzeitig den Antriebsraum 12 des Ölnebelabscheiders 1 bildet. In diesem Innenraum 82 beziehungsweise Antriebsraum 12 liegt der Drehantrieb 4 des Ölnebelabscheiders 1 , der identisch mit den vorhergehenden Beispielen ausgeführt ist.
Die beiden Lager 33.1 und 33.2 der Welle 3 in dem Trägerteil 5 sind wieder beide als Gleitlager ausgebildet, die durch den Druckolkanal 73 und über die beiden Ringkanäle 55.1 und 55.2 mit Schmieröl versorgt werden. Ebenso wird die Rückstoßdüse 43 des Drehantriebes 4 aus dem Druckolkanal 73 durch die Querbohrung 35, den Hohlkanal 34 und den Düsenkanal 42 mit Schmieröl versorgt.
Zur Rückführung von durch das obere Lager 33.1 hindurchfließendem Schmieröl dient auch hier der Ölrückführkanal 58 radial innen von dem mit dem Rotor 2 verbundenen oder einstückigen, sich nach unten erstreckenden Hohlzylinder 28. Auch hier hat der Hohlzylinder 28 eine untere, spitzwinklige Abschleuderkante 29.
Hinsichtlich der weiteren Bezugsziffern in Figur 6 wird auf die vorhergehende Beschreibung verwiesen.
Figur 7 schließlich zeigt einen Ölnebelabscheider 1 , hier sein Trägerteil 5, in einem gestuften Querschnitt, wobei links von der strichpunktierten Linie L die Schnittebene in Höhe des Rohgaskanals 71 und rechts von der strichpunktierten Linie L die Schnittebene in Höhe des Druckölkanals 73, also etwas nach unten versetzt, verläuft. Im Zentrum ist die Welle 3 mit dem hier geschnittenen Hohlkanal 34 und der Querbohrung 35 erkennbar. Radial außen davon liegt im Hintergrund der zweite, untere Ringkanal 55.2. Radial nach außen schließt sich daran die innere Ringwand 58' an. Noch weiter radial außen liegt die äußere Ringwand 52.1. Zwischen der Ringwand 58' und der Ringwand 52.1 liegt der Rohgasringkanal 52. Radial ganz außen liegt über einen Teil des Umfangs des Trägerteils 5 die Ölsammelrinne 54.
Der Hohlkanal 34 in der Welle 3 und der Ringkanal 55.2 stehen mit dem in Figur 7 von oben her radial nach innen verlaufenden Druckolkanal 73 in Strömungsverbindung. Der Rohgasringkanal 52 steht in Strömungsverbindung mit dem zum Druckolkanal 73 parallelen, jedoch zu diesem seitwärts sowie höhenmäßig etwas nach oben versetzten Rohgaskanal 71 . Die weiteren Teile des Olnebelabscheiders 1 sind in Figur 7 nicht sichtbar oder aus Übersichtlichkeitsgründen nicht dargestellt.
Bezugszeichenliste:
Zeichen Bezeichnung
1 Olnebelabscheider
1 1 Gasreinigungsraum
12 Antriebsraum
13 Wanne
2 Rotor
28 Hohlzylinder
29 Abschleuderkante
3 Welle
30 Drehachse
31 Stufe
33.1 erstes Lager
33.2 zweites Lager
34 Hohlkanal
35 Querbohrung
4 Drehantrieb
41 Düsenarm
42 Düsenkanal
43 Rückstoßdüse
44 Gegengewicht
45 Mutter
5 Trägerteil
52 Rohgasringkanal
52.1 äußere Ringwand .2 mittlere Ringwand
Boden von 52
Ölsammelrinne
.1 , 55.2 Ringkanäle in 5
.1 , 56.2 Gleitlagerbuchsen
Spalt- oder Labyrinthdichtung Ölrückführkanal
' innere Ringwand
.1 Spritzschutzring
.2 Spritzschutzkappe Deckel
Deckelflansch Flansch
Rohgaskanal
Reingaskanal
Ölrücklaufkanal
' Siphon
" Bohrung
Ölablaufkanal Komponente der Brennkraftmaschine Gegenflansch
Ausnehmung in 8 Innenraum von 8

Claims

Patentansprüche:
1 . Ölnebelabscheider (1 ) zum Abscheiden von Öl aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine, mit einem auf einer drehbar gelagerten Welle (3) angeordneten, Öl aus dem Gas durch Zentrifugalkräfte abscheidenden Rotor (2), wobei in einem vom Rotor (2) axial beabstandeten Bereich der Welle (3) an dieser ein Drehantrieb (4) mit wenigstens einer Rückstoßdüse (43) angeordnet ist, wobei der Rotor (4) in einem Gasreinigungsraum (1 1 ) des Abscheiders (1 ) und der Drehantrieb (4) in einem Antriebsraum (12) des Abscheiders (1 ) angeordnet ist, wobei die Welle (3) zwischen Rotor (2) und Drehantrieb (4) in zwei voneinander axial beabstandeten Lagern (33.1 , 33.2) in einem den Gasreinigungsraum (1 1 ) und den Antriebsraum (12) voneinander trennenden Trägerteil (5) gelagert ist, wobei im Trägerteil (5) ein mit unter Druck stehendem Schmieröl beschickbarer Druckölkanal (73) vorgesehen ist, der in einen zu der mindestens einen Rückstoßdüse (43) des Drehantriebs (4) führenden Hohlkanal (34) in der Welle (3) mündet, wobei ein Kurbelgehäuseentlüftungsgas zuführender Rohgaskanal (71 ) in einen Einlassbereich des Gasreinigungsraums (1 1 ) mündet, wobei ein Reingaskanal (72) aus einem Auslassbereich des Gasreinigungsraums (1 1 ) abgeht, wobei ein Ölrücklaufkanal (74) aus einem Öl- sammelbereich des Gasreinigungsraums (1 1 ) abgeht und wobei ein Ölab- laufkanal (75) für aus der Rückstoßdüse (43) austretendes Schmieröl aus dem Antriebsraum (12) abgeht,
d a d u r c h g e k e n n z e i c h n e t ,
dass beide Lager (33.1 und 33.2) der Welle (3) Gleitlager sind und dass im Trägerteil (5) von dem Druckölkanal (73) je ein die Welle (3) umgebender Ringkanal (55.1 , 55.2) zu jedem Gleitlager (33.1 , 33.2) führt.
2. Ölnebelabscheider nach Anspruch 1 , dadurch gekennzeichnet, dass der Druckölkanal (73) zwischen den Gleitlagern (33.1 , 33.2) in den Hohlkanal (34) der Welle (3) mündet.
3. Ölnebelabscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Welle (3) einerseits und das Trägerteil (5) andererseits die beiden Gleitlager (33.1 , 33.2) unmittelbar ausbilden und aus eine Gleitlagermaterialpaarung bildenden Werkstoffen bestehen.
4. Ölnebelabscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest eines der beiden Gleitlager (33.1 , 33.2) mit einer Gleitlagerbuchse (56.1 , 56.2) ausgeführt ist.
5. Ölnebelabscheider nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass von der dem Rotor (2) zugewandten Seite des rotorseitigen Gleitlagers (33.1 ) ein vom Rotor (2) weg in den Antriebsraum (12) führender Ölrückführkanal (58) ausgeht, durch den das rotorseitige Gleitlager (33.1 ) durchströmendes Schmieröl in den Antriebsraum (12) zurückführbar ist.
6. Ölnebelabscheider nach Anspruch 5, dadurch gekennzeichnet, dass der Ölrückführkanal (58) ringspaltförmig ist und radial innen von einer den zum rotorseitigen Gleitlager (33.1 ) führenden Ringkanal (55.1 ) radial außen begrenzenden inneren Ringwand (58') des Trägerteils (5) begrenzt ist.
7. Ölnebelabscheider nach Anspruch 6, dadurch gekennzeichnet, dass der Ölrückführkanal (58) radial außen von einem einen Teil des Rotors (2) bildenden, sich von diesem in Richtung zum Drehantrieb (4) hin erstreckenden, zur inneren Ringwand (58') konzentrischen Hohlzylinder (28) begrenzt ist.
8. Ölnebelabscheider nach Anspruch 7, dadurch gekennzeichnet, dass der Hohlzylinder (28) an seinem freien Ende mit einer umlaufenden spitzwinkligen und/oder radial nach außen umgebogenen oder abgewinkelten Abschleuderkante (29) ausgeführt ist.
9. Ölnebelabscheider nach Anspruch 8, dadurch gekennzeichnet, dass der Kurbelgehäuseentlüftungsgas zuführende Rohgaskanal (71 ) durch das Trägerteil (5) verläuft und unter dem Rotor (2) einen zu diesem hin offenen und an seiner entgegengesetzten Seite durch einen Boden (53) verschlossenen Rohgasringkanal (51 ) bildet und dass sich der Hohlzylinder (28) mit der Ab- schleuderkante (29) vom Rotor (2) aus gesehen über den Boden (53) hinaus erstreckt.
10. Olnebelabscheider nach Anspruch 9, dadurch gekennzeichnet, dass die Abschleuderkante (29) von dem Boden (53) einen Abstand (s) von mindestens 3 mm, vorzugsweise mindestens 10 mm, aufweist.
1 1 . Olnebelabscheider nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Hohlzylinder (28) und eine den Rohgasringkanal (51 ) radial innen begrenzende mittlere Ringwand (52.2) des Trägerteils (5) eine berührungslose Spalt- oder Labyrinthdichtung (57) zwischen Antriebsraum (12) und Gasreinigungsraum (1 1 ) bilden.
12. Olnebelabscheider nach Anspruch 1 1 , dadurch gekennzeichnet, dass die Rückstoßdüse (43) am freien Ende eines nach außen und schräg in Richtung zum Rotor (2) weisenden Düsenarms (41 ) angeordnet ist und dass ro- torseitig vom Drehantrieb (4) am Trägerteil (5) ein umlaufender, zum Drehantrieb (4) weisender axial vorragender Spritzschutzring (59.1 ) angeformt oder angebracht ist.
13. Olnebelabscheider nach Anspruch 12, dadurch gekennzeichnet, dass eine konische Spritzschutzkappe (59.2) mit ihrem größeren Ende in den Spritzschutzring (59.1 ) eingesetzt ist und sich mit ihrem kleineren, mindestens eine Durchlassöffnung aufweisenden Ende in Richtung zum Drehantrieb (4) hin erstreckt.
14. Olnebelabscheider nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass er ein Gehäuseunterteil aufweist, das an eine Komponente (8) der Brennkraftmaschine unter Herstellung von Strömungsverbindungen anflanschbar ist und den Trägerteil (5) sowie den Antriebsraum (12) umfasst, und dass er ein Gehäuseoberteil aufweist, das durch einen am Gehäuseunterteil angebrachten, abnehmbaren Deckel (6) gebildet ist und den Gasreinigungsraum (1 1 ) enthält.
15. Olnebelabscheider nach einem der Ansprüche 1 bis 13 und Brennkraftmaschine mit einem solchen Olnebelabscheider (1 ), dadurch gekennzeichnet, dass der Antriebsraum (12) als nach außen offene Ausnehmung (81 ) in einer Komponente (8) der Brennkraftmaschine ausgebildet ist, dass in die Ausnehmung (81 ) das Trägerteil (5) unter Herstellung von Strömungsverbindungen dichtend einsteckbar ist und dass am Trägerteil (5) oder an der Komponente (8) ein außerhalb der Ausnehmung (81 ) liegender, abnehmbarer Deckel (6) angebracht oder anbringbar ist, der den Gasreinigungsraum (1 1 ) enthält.
16. Ölnebelabscheider nach einem der Ansprüche 1 bis 13 und Brennkraftmaschine mit einem solchen Ölnebelabscheider (1 ), dadurch gekennzeichnet, dass das Trägerteil (5) mit zumindest dem Druckölkanal (73) als integraler Teil einer Komponente (8) der Brennkraftmaschine ausgeführt ist, dass der Antriebsraum (12) in einem Innenraum (82) der Komponente (8) liegt und dass außenseitig an der Komponente (8) ein den Gasreinigungsraum (1 1 ) enthaltender abnehmbarer Deckel (6) dichtend angebracht oder anbringbar ist.
PCT/EP2011/053612 2010-03-11 2011-03-10 Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider WO2011110628A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11713200.1A EP2545260B1 (de) 2010-03-11 2011-03-10 Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010002784.7 2010-03-11
DE102010002784A DE102010002784A1 (de) 2010-03-11 2010-03-11 Ölnebelabscheider und Brennkraftmaschine mit einem Ölnebelabscheider

Publications (1)

Publication Number Publication Date
WO2011110628A1 true WO2011110628A1 (de) 2011-09-15

Family

ID=44201968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053612 WO2011110628A1 (de) 2010-03-11 2011-03-10 Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider

Country Status (3)

Country Link
EP (1) EP2545260B1 (de)
DE (1) DE102010002784A1 (de)
WO (1) WO2011110628A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913201B (zh) * 2014-04-12 2016-10-05 山西霖泉仪表有限公司 悬浮单转子气体流量计
JP6322715B2 (ja) 2014-09-05 2018-05-09 東京濾器株式会社 ミスト状オイルの分離方法、及び、オイルセパレータ
DE102015119616A1 (de) * 2015-11-13 2017-05-18 Hengst Se & Co. Kg Rotor eines Zentrifugalabscheiders
DE202016104754U1 (de) * 2016-08-30 2017-12-04 3Nine Ab Ölabscheider, Entlüftungssystem für einen Verbrennungsmotor sowie Verbrennungsmotor mit einem derartigen Ölabscheider

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311906A1 (de) * 1993-04-10 1994-10-13 Audi Ag Vorrichtung zum Entlüften des Kurbelgehäuses einer Brennkraftmaschine
EP1217183A1 (de) * 2000-12-21 2002-06-26 Filterwerk Mann + Hummel Gmbh Freistrahlzentrifuge mit integriertem Ölabscheider
DE202005007162U1 (de) * 2005-05-02 2006-09-21 Hengst Gmbh & Co.Kg Rotor für eine Zentrifuge
DE202007009913U1 (de) * 2007-07-13 2008-11-20 Hengst Gmbh & Co.Kg Abscheider zum Abscheiden von Ölnebel aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine und Brennkraftmaschine mit einem Abscheider

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1749499A1 (ru) * 1989-06-26 1992-07-23 Воронежское производственное объединение "Электросигнал" Система вентил ции картера двигател внутреннего сгорани
DE202005020012U1 (de) * 2005-12-22 2007-05-10 Hengst Gmbh & Co.Kg Zentrifuge zum Reinigen einer Flüssigkeit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311906A1 (de) * 1993-04-10 1994-10-13 Audi Ag Vorrichtung zum Entlüften des Kurbelgehäuses einer Brennkraftmaschine
EP1217183A1 (de) * 2000-12-21 2002-06-26 Filterwerk Mann + Hummel Gmbh Freistrahlzentrifuge mit integriertem Ölabscheider
DE202005007162U1 (de) * 2005-05-02 2006-09-21 Hengst Gmbh & Co.Kg Rotor für eine Zentrifuge
DE202007009913U1 (de) * 2007-07-13 2008-11-20 Hengst Gmbh & Co.Kg Abscheider zum Abscheiden von Ölnebel aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine und Brennkraftmaschine mit einem Abscheider
WO2009010248A2 (de) 2007-07-13 2009-01-22 Hengst Gmbh & Co. Kg Abscheider zum abscheiden von ölnebel aus dem kurbelgehäuseentlüftungsgas einer brennkraftmaschine sowie funktionsmodul und brennkraftmaschine mit einem abscheider

Also Published As

Publication number Publication date
EP2545260A1 (de) 2013-01-16
DE102010002784A1 (de) 2011-09-15
EP2545260B1 (de) 2015-12-30

Similar Documents

Publication Publication Date Title
EP2167235B1 (de) Brennkraftmaschine mit einem abscheider zum abscheiden von ölnebel aus dem kurbelgehäuseentlüftungsgas
EP1880090B1 (de) Vorrichtung zum reinigen von gas beim entlüften eines kurbelgehäuses
DE112004000637B4 (de) Vorrichtung zum Reinigen eines Gases
DE69931563T2 (de) Zentrifuge mit konischen Trennwänden
EP1729886B1 (de) Freistrahlzentrifuge für die reinigung des schmieröls einer brennkraftmaschine
DE102005022254A1 (de) In eine axial hohle Nockenwelle eines Verbrennungsmotors integrierte Zentrifugal-Ölnebelabscheidereinrichtung
EP2873837A1 (de) Strahltriebwerk mit einer Einrichtung zum Einsprühen von Öl
EP2545260B1 (de) Ölnebelabscheider und brennkraftmaschine mit einem ölnebelabscheider
DE102008033638B4 (de) Abscheider zum Abscheiden von Ölnebel aus dem Kurbelgehäuseentlüftungsgas einer Brennkraftmaschine und Brennkraftmaschine mit einem Abscheider
EP1327802B1 (de) Hydraulische Dichtungsanordnung
WO1999054051A1 (de) Freistrahlzentrifuge
DE102005059841A1 (de) Nockenwellenversteller
EP2923088B1 (de) Hydraulische stellvorrichtung
WO2014023592A2 (de) FREISTRAHLZENTRIFUGE MIT EINEM ROTOR MIT WENIGSTENS EINER RÜCKSTOßDÜSE
DE102010002787B4 (de) Ölnebelabscheider mit einem Ölrückführkanal mit Siphon und Brennkraftmaschine mit Ölnebelabscheider
EP2923045B1 (de) Ölwannen-filterkombination, ölwanne und ablassvorrichtung einer ölwannen-filterkombination
DE102010002790B4 (de) An eine Brennkraftmaschine anflanschbarer Ölnebelabscheider
EP1602410B1 (de) Freistrahlzentrifuge für die Reinigung des Schmieröls einer Brennkraftmaschine
DE4444344C1 (de) Freistrahlzentrifuge
DE102008012402B4 (de) Zentrifugalabscheider als Ölnebelabscheider
DE102019112050A1 (de) Förderpumpe mit einem Leckagekanal
DE102022119348B3 (de) Betätigungsanordnung ausgebildet zur Kühlung und Schmierung einer Lagerung; sowie Kupplung
CH712415B1 (de) Zentrifuge sowie Einsatz und Bodenelement für eine Zentrifuge.
DE102008012400B4 (de) Ölnebelabscheider
DE102012004672B4 (de) Ölreinigungsvorrichtung eines Motorölkreislaufs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11713200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011713200

Country of ref document: EP