WO2011108701A1 - セラミック電子部品、及びセラミック電子部品の製造方法 - Google Patents

セラミック電子部品、及びセラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2011108701A1
WO2011108701A1 PCT/JP2011/055061 JP2011055061W WO2011108701A1 WO 2011108701 A1 WO2011108701 A1 WO 2011108701A1 JP 2011055061 W JP2011055061 W JP 2011055061W WO 2011108701 A1 WO2011108701 A1 WO 2011108701A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
ceramic electronic
content
mol
terms
Prior art date
Application number
PCT/JP2011/055061
Other languages
English (en)
French (fr)
Inventor
中村 彰宏
山本 篤史
裕子 野宮
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201180012470.4A priority Critical patent/CN102792395B/zh
Priority to KR1020147011774A priority patent/KR101673727B1/ko
Priority to EP11750810.1A priority patent/EP2544200B1/en
Priority to JP2012503285A priority patent/JP5556880B2/ja
Priority to KR1020127023151A priority patent/KR101475129B1/ko
Publication of WO2011108701A1 publication Critical patent/WO2011108701A1/ja
Priority to US13/602,812 priority patent/US9595377B2/en
Priority to US15/419,003 priority patent/US9741489B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/122Insulating between turns or between winding layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/68Forming laminates or joining articles wherein at least one substrate contains at least two different parts of macro-size, e.g. one ceramic substrate layer containing an embedded conductor or electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to a ceramic electronic component and a method for manufacturing the ceramic electronic component. More specifically, the present invention relates to a ceramic electronic component such as a coil component having a magnetic part made of a ferrite material and a conductive part mainly composed of Cu, and a method for manufacturing the same. About.
  • Patent Document 1 discloses that the raw material composition of the ferrite base is a copper conductor integrated firing in which a PbO component is added in a proportion of 0.3 part by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of Ni—Zn ferrite.
  • Type ferrite elements have been proposed.
  • the raw material composition of the ferrite base is such that the PbO component is 0.3 parts by weight or more and 5.0 parts by weight or less and the B 2 O 3 component is 0 parts by weight with respect to 100 parts by weight of the Ni—Zn ferrite.
  • a copper conductor-integrated sintered ferrite element to which 0.03 to 1.5 parts by weight and a SiO 2 component are added in a proportion of 0.03 to 1.5 parts by weight has been proposed.
  • Patent Document 2 discloses that Mn as an auxiliary component is 44 to 47 mol% Fe 2 O 3 , 5 to 13 mol% CuO, 15 to 23 mol% ZnO, and the balance is substantially NiO.
  • An oxide magnetic material having a composition containing 2 to 3 0.1 to 0.5 wt% and composed of a sintered body having an average crystal grain size of 0.7 to 1.2 ⁇ m has been proposed.
  • Patent Document 2 describes that a Cu-based material can be used as the internal electrode material.
  • Ni—Zn based ferrite is generally fired in an air atmosphere.
  • Ag is usually used as the internal electrode material, and the ferrite material and the internal are formed at a low temperature of 930 ° C. or lower. The electrode material is fired simultaneously.
  • Patent Document 1 Although Cu and ferrite material are simultaneously fired in a nitrogen atmosphere, there is no region where Cu and Fe 2 O 3 coexist, so that a reducing atmosphere in which Cu does not oxidize is disclosed. When the calcination is performed, Fe 2 O 3 is reduced to Fe 3 O 4 , so that the specific resistance ⁇ is lowered, which may cause deterioration of electrical characteristics.
  • Patent Document 1 since glass components PbO, B 2 O 3 , and SiO 2 are added, these glass components cause abnormal grain growth during the firing process, resulting in a decrease in magnetic permeability, etc. For this reason, it is difficult to obtain desired good magnetic properties, and since PbO is contained in ferrite, there is a problem in terms of environmental load.
  • Patent Document 2 describes that a Cu-based material can be used as an internal electrode material, only an example in which Ag is used as an internal electrode material and is fired in an air atmosphere is described.
  • Patent Document 2 does not describe any of the above-described problems that occur when a Cu-based material is used for a conductive part. Therefore, Patent Document 2 discloses that a Cu-based material is used for a conductive part. Even in such a case, it is difficult to obtain a ceramic electronic component having good insulating properties and good electrical characteristics such as impedance characteristics.
  • An object of the present invention is to provide a ceramic electronic component such as a coil component, and a method for manufacturing the ceramic electronic component.
  • the Fe content is preferably 25 to 47% in terms of molar ratio in terms of Fe 2 O 3 .
  • the Fe content is more preferably 30 to 46% in terms of molar ratio in terms of Fe 2 O 3 .
  • the content of Fe 2 O 3 is in the range of 20 to 48 mol% described above, the ratio of Mn to the total amount of Fe and Mn is converted to Mn 2 O 3 and Fe 2 O 3 , and in molar ratio. It has been found that by setting the content to 2% or more, good insulating properties can be secured and at the same time the magnetic permeability is improved.
  • the magnetic part has a ratio of Mn to the total of Fe and Mn in terms of Mn 2 O 3 and Fe 2 O 3 , and a molar ratio of 2% or more.
  • the magnetic part contains 10% or less of Cu in terms of molar ratio in terms of CuO.
  • the magnetic body portion contains 33% or less Zn in terms of molar ratio in terms of ZnO.
  • the ZnO content is desirably 6 mol% or more in consideration of the permeability ⁇ of ferrite.
  • the ceramic electronic component of the present invention is preferably formed by simultaneously firing the magnetic body portion and the conductive portion.
  • the ceramic electronic component of the present invention it is preferable that a plurality of the magnetic parts and a plurality of the conductive parts are alternately laminated.
  • the ceramic electronic component of the present invention is preferably a coil component.
  • the divalent element compound containing the Fe compound and at least the Ni compound is converted to Fe 2 O 3 so that the Fe compound is in a molar ratio of 20 to 48%.
  • the Fe compound and the divalent element compound are weighed, and the ratio of the Mn to the total amount of Fe and Mn is converted to Mn 2 O 3 and Fe 2 O 3 in a molar ratio of less than 50% (including 0%).
  • the magnetic body portion includes a magnetic body portion made of a ferrite material and a conductive portion mainly composed of Cu, and the magnetic body portion includes a divalent element including trivalent Fe and at least divalent Ni.
  • the Fe content is 20 to 48% (preferably 25 to 47%, more preferably 30 to 46%) in terms of molar ratio in terms of Fe 2 O 3 and
  • the magnetic body portion is such that the ratio of Mn to the total amount of Fe and Mn is less than 50% (including 0%) in terms of molar ratio when converted to Mn 2 O 3 and Fe 2 O 3 , respectively. Since Mn is contained, the specific resistance ⁇ can be improved and desired insulation can be ensured even if the Cu-based material and the ferrite material are simultaneously fired.
  • the specific resistance ⁇ can be a log ⁇ with a good insulating property of 5.0 or more. This makes it possible to obtain a desired ceramic electronic component having good electrical characteristics such as impedance characteristics.
  • the magnetic body portion contains Mn so that the ratio of Mn to the total amount of Fe and Mn is 2% or more in terms of molar ratio in terms of Mn 2 O 3 and Fe 2 O 3. As a result, better insulating properties can be secured, and the magnetic permeability can be improved as compared with the case where Mn is not added.
  • the magnetic body portion contains Cu in a molar ratio of 10% or less in terms of CuO, a ceramic electronic component having good impedance characteristics can be obtained.
  • the magnetic part contains Zn of 33% or less in terms of ZnO, a sufficient Curie point can be secured, and operation under conditions of high temperature during use is possible. A guaranteed ceramic electronic component can be obtained.
  • Cu is oxidized even if it is fired simultaneously with the magnetic part using a conductive part mainly composed of Cu. And can be sintered.
  • a multilayer ceramic electronic component such as a coil component having good insulation and good electrical characteristics such as impedance characteristics is obtained. be able to.
  • a divalent element compound containing an Fe compound and at least a Ni compound is converted to Fe 2 O 3 so that the Fe compound is in a molar ratio of 20 to 48%.
  • the Fe compound and the divalent element compound are weighed, and the ratio of the Mn to the total of Fe and Mn is converted to Mn 2 O 3 and Fe 2 O 3 , and the molar ratio is less than 50% (0% Mn compound is weighed so as to include, and after mixing these weighed products, a calcining step of calcining to produce a calcined powder, and a ceramic green sheet for producing a ceramic green sheet from the calcined powder
  • a conductive film forming process in which a conductive paste having a predetermined pattern is formed by applying a conductive paste containing Cu as a main component to the ceramic green sheet; The Nshito laminated in a predetermined order, and the laminate formation step of forming a laminate, and firing the laminate at the firing atmosphere
  • composition of the magnetic body portion is a diagram showing an example of the impedance characteristics when fired at equilibrium oxygen partial pressure of Cu-Cu 2 O in the case of outside the present invention.
  • Composition of the magnetic body portion is a diagram showing an example of the impedance characteristics when fired at equilibrium oxygen partial pressure of Cu-Cu 2 O in the case within the scope the present invention.
  • Composition of the magnetic body portion is a diagram showing an example of the impedance characteristics when fired at 1/100 of Cu-Cu 2 O equilibrium oxygen partial pressure in the case of outside the present invention.
  • Composition of the magnetic body portion is a diagram showing an example of the impedance characteristics when fired at 1/100 of Cu-Cu 2 O equilibrium oxygen partial pressure in the case within the scope the present invention.
  • FIG. 1 is a cross-sectional view showing an embodiment of a laminated coil component as a ceramic electronic component according to the present invention.
  • the ferrite element body 1 has a magnetic body portion 2 and a coil conductor (conductive portion) 3 mainly composed of Cu embedded in the magnetic body portion 2.
  • lead electrodes 4a and 4b are formed at both ends of the coil conductor 3
  • external electrodes 5a and 5b made of Ag or the like are formed at both ends of the ferrite element body 1, and the external electrodes 5a and 5b and the lead electrodes are formed. 4a and 4b are electrically connected.
  • the magnetic part 2 is formed of a ferrite material having a spinel crystal structure (general formula X 2 O 3 ⁇ MeO), and is composed of at least a trivalent elemental compound Fe 2 O 3 and a divalent elemental compound NiO. As necessary, it contains Mn 2 O 3 which is a trivalent element compound and ZnO and CuO which are divalent element compounds.
  • the reason why the molar content of Fe 2 O 3 in the magnetic part 2 is set to 20 to 48 mol% is as follows.
  • the stoichiometric composition is the ratio of X 2 O 3 (X: Fe, Mn) to MeO (Me: Ni, Zn, Cu). Is 50:50, and X 2 O 3 and MeO are usually blended so as to have a substantially stoichiometric composition.
  • Fe 2 O 3 containing trivalent Fe is sufficiently reduced with respect to the stoichiometric composition, and NiO containing a divalent element, for example, divalent Ni, is substituted for Fe 2 O 3.
  • NiO containing a divalent element for example, divalent Ni
  • Fe 2 O 3 is difficult to be reduced to Fe 3 O 4 because it is contained in a sufficiently larger amount than the stoichiometric composition. That is, Fe 3 O 4 can be represented by Fe 2 O 3 .FeO.
  • NiO which is a divalent Ni compound
  • NiO is present in an excessive amount more than the stoichiometric composition, it is the same divalent as Ni. Production of FeO is prevented. For this reason, Fe 2 O 3 can be maintained in the state of Fe 2 O 3 without being reduced to Fe 3 O 4 .
  • the content of Fe 2 O 3 is sufficiently reduced from the stoichiometric composition, and the divalent elemental compound is sufficiently increased with respect to the stoichiometric composition, thereby simultaneously firing Cu and the ferrite material.
  • Fe 2 O 3 is to maintain the state of the Fe 2 O 3 without being reduced to Fe 3 O 4. Therefore, since Fe 2 O 3 does not have to be reduced to Fe 3 O 4 , it is possible to avoid a decrease in specific resistance ⁇ , thereby ensuring a desired good insulating property, and as a result, good It becomes possible to obtain a laminated coil component having excellent electrical characteristics.
  • the molar content of Fe 2 O 3 needs to be 48 mol% or less.
  • Fe 2 O 3 exceeds 48 mol%, Fe 2 O 3 is reduced by less than 2 mol% from the stoichiometric composition, and the molar content of Fe 2 O 3 is too large.
  • Fe 2 O 3 is easily reduced to produce Fe 3 O 4 , causing a decrease in specific resistance ⁇ , making it difficult to obtain a desired laminated coil component.
  • the content molar amount of Fe 2 O 3 needs to be at least 20 mol%. This is because if the molar content of Fe 2 O 3 is less than 20 mol%, the specific resistance ⁇ may be lowered, and desired insulation may not be ensured.
  • the molar content of Fe 2 O 3 in the magnetic body portion 2 is 20 to 48 mol%, and from the viewpoint of ensuring better insulation, it is preferably 25 to 47 mol%. More preferably, it is 30 to 46 mol%.
  • the coercive force is reduced and the magnetic flux density is increased, so that the magnetic permeability ⁇ can be improved.
  • the Mn 2 O 3 in order that the ratio of Mn 2 O 3 to the total of Fe 2 O 3 and Mn 2 O 3 (hereinafter, referred to as "A value”.) As is 2% or more in a molar ratio It is preferable to contain.
  • the content of Mn 2 O 3 is larger than the content of Fe 2 O 3 , and there is a possibility that the insulation is deteriorated. Therefore, when Mn 2 O 3 is contained, it is necessary to control the Mn 2 O 3 content so that the A value is 2% or more and less than 50%.
  • the molar content of Fe 2 O 3 is in the range of 20 to 48 mol%, the amount of Mn 2 O 3 is increased in place of the divalent element compound in such a form that part of Fe is replaced with Mn. Therefore, it is possible to improve the specific resistance ⁇ , and it is also possible to obtain a desired good insulating property.
  • Mn 2 O 3 becomes a reducing atmosphere at a higher oxygen partial pressure than Fe 2 O 3 . Therefore, at an oxygen partial pressure equal to or lower than the equilibrium oxygen partial pressure of Cu—Cu 2 O, Mn 2 O 3 becomes a strongly reducing atmosphere compared to Fe 2 O 3 , and therefore Mn 2 O 3 is preferentially reduced and burned. The result can be completed. In other words, since the Mn 2 O 3 it is preferentially reduced as compared with Fe 2 O 3, Fe 2 O 3 it is possible to complete the baking process before being reduced to Fe 3 O 4.
  • Mn 2 O 3 By including Mn 2 O 3 in the magnetic body part 2 in this way, even if the Cu-based material and the ferrite material are simultaneously fired below the equilibrium oxygen partial pressure of Cu—Cu 2 O, the Mn 2 O 3 Since it is preferentially reduced, sintering can be completed before Fe 2 O 3 is reduced, and Cu metal and Fe 2 O 3 can coexist more effectively. And it can avoid that specific resistance (rho) falls by this, and can improve insulation. As a result, a chevron-shaped impedance characteristic having a peak in a specific frequency range can be obtained, and the electrical characteristics can be improved.
  • the A value is 50% or more
  • the content of Mn 2 O 3 is larger than the content of Fe 2 O 3 , which may cause a decrease in insulation, and the A value is 2%. If it is less than 1, the effect of adding Mn 2 O 3 cannot be sufficiently obtained. Therefore, even when a part of trivalent Fe is substituted with trivalent Mn, in order to obtain desired insulation, the Mn 2 O 3 content is set so that the A value is 2% or more and less than 50%. It is preferable to control.
  • the magnetic body portion 2 contains Fe 2 O 3 and NiO, Fe 2 O 3 is 20 to 48 mol%, and the A value is less than 50%. And / or by increasing the amount of Mn 2 O 3 , it is possible to avoid the decrease in the specific resistance ⁇ without impairing the magnetic permeability ⁇ and to ensure insulation, thereby improving the electrical characteristics. It becomes.
  • the specific resistance ⁇ can be improved to 5.0 or more by log ⁇ without impairing the magnetic characteristics, and a laminated coil component suitable for noise absorption having high impedance in a specific frequency range can be obtained. .
  • a laminated coil component having a high impedance in a specific frequency region and having a chevron-shaped impedance characteristic.
  • NiO, ZnO, and CuO in the magnetic part 2 are not particularly limited and can be set as appropriate according to the molar amount of Fe 2 O 3. When contained, it is preferably blended so that ZnO: 6 to 33 mol%, CuO: 0 to 10 mol%, and NiO: balance.
  • the content of ZnO is preferably 33 mol% or less.
  • ZnO has the effect of contributing to the improvement of the magnetic permeability ⁇ , but in order to exert such an effect, the molar amount of ZnO needs to be 6 mol%.
  • the content molar amount is preferably 6 to 33 mol%.
  • the CuO content molar amount exceeds 10 mol%, the specific resistance ⁇ may be lowered. Therefore, the CuO content is preferably 10 mol% or less.
  • these weighed materials are put in a pot mill together with pure water and cobblestones such as PSZ (partially stabilized zirconia) balls, thoroughly mixed and pulverized in a wet manner, evaporated and dried, and then temporarily heated at a temperature of 800 to 900 ° C. Bake.
  • PSZ partially stabilized zirconia
  • these calcined materials are again put into a pot mill together with an organic binder such as polyvinyl butyral, an organic solvent such as ethanol and toluene, and PSZ balls, and sufficiently mixed and pulverized to prepare a ceramic slurry.
  • an organic binder such as polyvinyl butyral
  • an organic solvent such as ethanol and toluene
  • PSZ balls PSZ balls
  • magnetic sheets 6a to 6h having a predetermined film thickness are produced.
  • via holes are formed at predetermined positions of the magnetic sheets 6b to 6g by using a laser processing machine so that the magnetic sheets 6b to 6g can be electrically connected to each other.
  • a conductive paste for coil conductors containing Cu as a main component is prepared. Then, screen printing is performed using the conductive paste, coil patterns 8a to 8f are formed on the magnetic sheets 6b to 6g, and via holes are filled with the conductive paste to produce via hole conductors 7a to 7e. .
  • the coil patterns 8a and 8f formed on the magnetic sheet 6b and the magnetic sheet 6g are formed with lead portions 8a 'and 8f' so as to be electrically connected to external electrodes.
  • the magnetic sheets 6b to 6g on which the coil patterns 8a to 8f are formed are laminated, and these are sandwiched between the magnetic sheets 6a and 6h on which the coil patterns are not formed, and are crimped.
  • Crimp blocks in which 8a to 8f are connected via via-hole conductors 7a to 7e are manufactured. Thereafter, the pressure-bonded block is cut into a predetermined size to produce a ceramic laminate.
  • an atmosphere such as the ceramic laminate Cu was sufficiently degreased at a predetermined temperature, so that the equilibrium oxygen partial pressure of a Cu-Cu 2 O N 2 -H 2 -H 2 O Is supplied to a firing furnace whose atmosphere is adjusted with the above gas mixture, and fired at 900 to 1050 ° C. for a predetermined time, whereby the ferrite body 1 in which the coil conductor 3 is embedded in the magnetic body portion 2 is obtained.
  • a conductive paste for external electrodes mainly composed of Ag or the like is applied to both ends of the ferrite element body 1 and dried, and then baked at 750 ° C. to form external electrodes 5a and 5b.
  • a coil component is produced.
  • the Fe compound and the divalent element compound containing at least the Ni compound are converted to Fe 2 O 3 , and the Fe compound and the Fe compound are adjusted so that the Fe compound has a molar ratio of 20 to 48%. While the divalent element compound is weighed, the ratio of Mn to the total amount of Fe and Mn is converted to Mn 2 O 3 and Fe 2 O 3 so that the molar ratio is less than 50% (including 0%). The Mn compound is weighed and mixed, and then calcined to prepare a calcined powder, a ceramic green sheet producing process for producing a ceramic green sheet from the calcined powder, and Cu.
  • the Fe 2 O 3 is reduced to Fe 3 O 4 even if the laminate is fired in a firing atmosphere of Cu-Cu 2 O below the equilibrium oxygen partial pressure.
  • sintering can be performed in a state where Cu and Fe 2 O 3 coexist. Therefore, it is possible to avoid a decrease in the specific resistance ⁇ and ensure insulation, thereby improving electrical characteristics.
  • the specific resistance ⁇ can be improved to 5.0 or more by log ⁇ , and a laminated coil component suitable for noise absorption having high impedance in a specific frequency range can be obtained.
  • a laminated coil component suitable for noise absorption having high impedance in a specific frequency range can be obtained.
  • the present invention is not limited to the above embodiment.
  • the laminated coil component of the present invention has been described, but it goes without saying that it can be applied to a laminated composite component such as a single plate coil component or a laminated LC component.
  • Fe 2 O 3 , NiO, ZnO, and CuO were prepared as ceramic raw materials. Then, these ceramic raw materials were weighed so that ZnO: 25 mol% and CuO: 1 mol%, and the molar amounts of Fe 2 O 3 and NiO were as shown in Table 1. Next, these weighed materials were put together with pure water and PSZ balls into a pot mill made of vinyl chloride, thoroughly mixed and pulverized in a wet manner, evaporated and dried, and then calcined at a temperature of 850 ° C.
  • the ceramic slurry was formed into a sheet shape so as to have a thickness of 25 ⁇ m, and this was punched into a size of 50 mm in length and 50 mm in width to produce a magnetic sheet.
  • a plurality of the magnetic sheets thus prepared were laminated so that the total thickness was 0.5 mm, heated to 60 ° C., and pressed and pressed at a pressure of 100 MPa for 60 seconds. And cut out into a disk shape having a diameter of 10 mm to obtain a ceramic molded body.
  • the obtained ceramic molded body was heated and fully degreased. Then, a mixed gas of N 2 —H 2 —H 2 O was supplied to the firing furnace to adjust the oxygen partial pressure to 1.8 ⁇ 10 ⁇ 1 Pa, and then the ceramic compact was put into the firing furnace, and 950 Firing was carried out at a temperature of 0 ° C. for 2 hours. That is, the oxygen partial pressure of 1.8 ⁇ 10 ⁇ 1 Pa is the equilibrium oxygen partial pressure of Cu—Cu 2 O at 950 ° C., and the ceramic compact is fired at the equilibrium oxygen partial pressure of Cu—Cu 2 O for 2 hours. As a result, disk-shaped samples of sample numbers 1 to 13 were obtained.
  • a plurality of magnetic sheets obtained in the same manner as described above were laminated so that the total thickness was 1.0 mm, heated to 60 ° C., and pressed and pressed at a pressure of 100 MPa for 60 seconds, Then, it cut out in the ring shape so that the outer diameter 20 might be set to mm and an internal diameter might be set to 12 mm, and the ceramic molded object was obtained.
  • the obtained ceramic molded body was degreased and fired under the same conditions as described above, and thereby ring-shaped samples of sample numbers 1 to 13 were obtained.
  • Table 1 shows the composition of the magnetic part of Sample Nos. 1 to 13, the A value (Mn 2 O 3 content relative to the total of Fe 2 O 3 and Mn 2 O 3 ), specific resistance log ⁇ , and magnetic permeability ⁇ . Yes.
  • Sample No. 1 had a specific resistance log ⁇ as low as 3.5. This is because the content of Fe 2 O 3 is as large as 49.0 mol%, and when calcined at 1.8 ⁇ 10 ⁇ 1 Pa which is the equilibrium oxygen partial pressure of Cu—Cu 2 O at 950 ° C., Fe 2 O 3 Is reduced to Fe 3 O 4 , and as a result, it is considered that the specific resistance log ⁇ is lowered.
  • Sample No. 13 had a low content of Fe 2 O 3 of 15.0 mol%, and in this case, the specific resistance log ⁇ was as low as 4.5.
  • Sample Nos. 2 to 12 do not contain Mn 2 O 3, but the content of Fe 2 O 3 is 20.0 to 48.0 mol%, which is within the range of the present invention. As a result, it was found that a satisfactory result was obtained with a magnetic permeability ⁇ of 35 to 290.
  • Table 2 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic body parts of sample numbers 21 to 33.
  • Sample No. 21 had a high Fe 2 O 3 content of 49.0 mol%, and for this reason, the specific resistance log ⁇ was as low as 3.6 for the same reason as Sample No. 1 in Example 1 above.
  • Sample No. 33 has a low content of Fe 2 O 3 of 15.0 mol%, and thus the specific resistance log ⁇ was found to be as low as 4.6.
  • Sample Nos. 22 to 32 have an A value of 2.0 to 4.8 and a content of Fe 2 O 3 of 20 to 48 mol% within the scope of the present invention. It was found that a sufficient insulation property could be ensured with a large value of .4 to 8.7.
  • Sample Nos. 23 to 31 having an Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 7.3 or more, and a more preferable result is obtained, and the Fe 2 O 3 content is 30. It was found that Sample Nos. 24 to 30 of ⁇ 46 mol% had a specific resistance log ⁇ of 7.9 or more and a more preferable result was obtained.
  • the magnetic permeability ⁇ was 38 to 330, and the magnetic permeability ⁇ was improved as compared with Example 1 where the Fe 2 O 3 content was the same. I understood that.
  • Disc-shaped and ring-shaped samples with sample numbers 41 to 53 were prepared in the same manner and procedure as in Example 1 except that 2.0 mol% of Mn 2 O 3 was contained and the content of NiO was adjusted accordingly. did.
  • Table 3 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic parts of sample numbers 41 to 53.
  • Sample No. 41 has a high Fe 2 O 3 content of 49.0 mol%, and therefore the specific resistance log ⁇ was as low as 3.7 for the same reason as Sample No. 1 in Example 1 above.
  • Sample No. 53 had a low Fe 2 O 3 content of 15.0 mol% and a low specific resistance log ⁇ of 4.7.
  • Sample Nos. 42 to 52 have an A value of 4.0 to 9.1 and an Fe 2 O 3 content of 20 to 48 mol% within the scope of the present invention. It was found that a sufficient insulation property could be ensured at a large value of .8 to 8.9.
  • Sample Nos. 43 to 51 having an Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 7.7 or more, and a more preferable result is obtained, and an Fe 2 O 3 content of 30 is obtained. It was found that Sample Nos. 44 to 50 of ⁇ 46 mol% had a specific resistance log ⁇ of 8.2 or more and a more preferable result was obtained.
  • the magnetic permeability ⁇ was also 42 to 500, and the magnetic permeability ⁇ was improved as compared with Example 2 where the Fe 2 O 3 content was the same. I understood that.
  • Disc-shaped and ring-shaped samples with sample numbers 61 to 73 were prepared by the same method and procedure as in Example 1 except that 5.0 mol% of Mn 2 O 3 was contained and the content of NiO was adjusted accordingly. did.
  • Table 4 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic parts of sample numbers 61 to 73.
  • Sample No. 61 has a high Fe 2 O 3 content of 49.0 mol%, and therefore the specific resistance log ⁇ was as low as 3.6 for the same reason as Sample No. 1 of Example 1.
  • Sample No. 73 had a low Fe 2 O 3 content of 15.0 mol% and a low specific resistance log ⁇ of 4.8.
  • Sample Nos. 62 to 72 have an A value of 9.4 to 20.0 and an Fe 2 O 3 content of 20 to 48 mol%, which is within the range of the present invention. It has been found that sufficient insulation can be ensured at a large value of .4 to 8.6.
  • Sample Nos. 63 to 71 having an Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 7.4 or more, and a more preferable result is obtained, and the Fe 2 O 3 content is 30. It was found that more preferable results were obtained with the sample numbers 64 to 70 of ⁇ 46 mol% because the specific resistance log ⁇ was 7.8 or more.
  • the magnetic permeability ⁇ was 50 to 640, and the magnetic permeability ⁇ was improved as compared with Example 3 in the case where the Fe 2 O 3 content was the same. I understood that.
  • Disc-shaped and ring-shaped samples with sample numbers 81 to 93 were prepared by the same method and procedure as in Example 1 except that 7.5 mol% of Mn 2 O 3 was contained and the content of NiO was adjusted accordingly. did.
  • Table 5 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic body parts of sample numbers 81 to 93.
  • Sample No. 81 had a high Fe 2 O 3 content of 49.0 mol%, and therefore the specific resistance log ⁇ was as low as 3.5 for the same reason as Sample No. 1 in Example 1.
  • Sample No. 93 had an Fe 2 O 3 content as low as 15.0 mol%, and the specific resistance log ⁇ decreased to 4.8.
  • Sample Nos. 82 to 92 have an A value of 13.5 to 27.3 and a Fe 2 O 3 content of 20 to 48 mol%, which is within the range of the present invention. It was found that a sufficient insulation property could be ensured at a large value of 0.0 to 8.2.
  • Sample Nos. 83 to 91 having an Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 7.0 or more, and a more preferable result is obtained, and the Fe 2 O 3 content is 30. It was found that the sample numbers 84 to 90 of ⁇ 46 mol% had a specific resistance log ⁇ of 7.3 or more and more preferable results were obtained.
  • the magnetic permeability ⁇ was 55 to 760, and the magnetic permeability ⁇ was improved as compared with Example 4 where the Fe 2 O 3 content was the same. I understood that.
  • Disc-shaped and ring-shaped samples with sample numbers 101 to 113 were prepared by the same method and procedure as in Example 1 except that 10.0 mol% of Mn 2 O 3 was contained and the content of NiO was adjusted accordingly. did.
  • Table 6 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic parts of sample numbers 101 to 113.
  • Sample No. 101 had a high content of Fe 2 O 3 as 49.0 mol%, and therefore the specific resistance log ⁇ was as low as 3.4 for the same reason as Sample No. 1 in Example 1.
  • Sample No. 113 had a small content of Fe 2 O 3 of 15.0 mol%, and the specific resistance log ⁇ decreased to 4.3.
  • sample numbers 102 to 112 have an A value of 17.2 to 33.3 and a content of Fe 2 O 3 of 20 to 48 mol%, which is within the range of the present invention. It was found that a sufficient insulation property could be ensured as large as .6 to 7.5.
  • Sample Nos. 103 to 111 having a Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 6.4 or more, and a more preferable result is obtained, and the Fe 2 O 3 content is 30. It was found that the sample numbers 104 to 110 of ⁇ 46 mol% had a specific resistance log ⁇ of 6.7 or more, and a more preferable result was obtained.
  • the magnetic permeability ⁇ was also 70 to 900, and the magnetic permeability ⁇ was improved as compared with Example 5 where the Fe 2 O 3 content was the same. I understood that.
  • Disc-shaped and ring-shaped samples with sample numbers 121 to 133 were prepared in the same manner and procedure as in Example 1 except that 13.0 mol% of Mn 2 O 3 was contained and the content of NiO was adjusted accordingly. did.
  • Table 7 shows the composition, A value, specific resistance log ⁇ , and magnetic permeability ⁇ of the magnetic part of sample numbers 121 to 133.
  • Sample No. 133 had a small content of Fe 2 O 3 of 15.0 mol%, and the specific resistance log ⁇ decreased to 3.6.
  • Sample Nos. 122 to 132 have an A value of 21.3 to 39.4 and an Fe 2 O 3 content of 20 to 48 mol%, which is within the range of the present invention. It was found that a sufficient insulation property could be ensured as large as 0.0 to 6.7.
  • Sample Nos. 123 to 131 having an Fe 2 O 3 content of 25 to 47 mol% have a specific resistance log ⁇ of 5.6 or more, and a more preferable result is obtained, and the Fe 2 O 3 content is 30. It was found that the sample numbers 124 to 130 of ⁇ 46 mol% had a specific resistance log ⁇ of 6.0 or more and a more preferable result was obtained.
  • the magnetic permeability ⁇ was 87 to 1050, and the magnetic permeability ⁇ was improved as compared with Example 6 where the Fe 2 O 3 content was the same. I understood that.
  • NiO 26.0mol%, ZnO: and 25.0 mol%, free of CuO, Fe 2 portion of O 3 these in a form substituted by Mn 2 O 3 Fe 2 O 3 and Mn 2 O 3 Table 8 It weighed so that it might become a composition as shown in.
  • disk-shaped samples with sample numbers 141 to 154 were prepared in the same manner as in Example 1, and the specific resistance log ⁇ was determined.
  • Table 8 shows the composition, A value, and specific resistance log ⁇ of the magnetic body portions of sample numbers 141 to 154.
  • Sample Nos. 141 and 142 have a high Fe 2 O 3 content of 49.0 mol% and 48.5 mol%. Therefore, for the same reason as Sample No. 1 in Example 1, the specific resistance log ⁇ is 4.0, 4 It became low with .9.
  • Sample numbers 153 and 154 have an A value of 50% or more, and the Mn 2 O 3 content in the magnetic material is larger than the Fe 2 O 3 content, so that the specific resistance log ⁇ is 4.8, 4. On the contrary, it decreased.
  • Sample Nos. 143 to 152 have an Fe 2 O 3 content of 29.0 to 48.0 mol% and an A value of 2.0 to 40.8%, both within the scope of the present invention. Therefore, the specific resistance log ⁇ was 5.3 to 7.9, and it was found that good insulation was obtained.
  • Disc-shaped samples Nos. 161 to 174 were prepared by the same method and procedure as in Example 1 except that the CuO content was 5.0 mol% in Example 8 and the NiO content was adjusted accordingly. The specific resistance ⁇ was determined.
  • Table 9 shows the composition, A value, and specific resistance log ⁇ of the magnetic body parts of sample numbers 161 to 174.
  • Sample Nos. 161 and 162 have a high Fe 2 O 3 content of 49.0 mol% and 48.5 mol%. It became low with .5.
  • Disc-shaped samples of sample numbers 181 to 194 were prepared by the same method and procedure as in Example 1, except that the CuO content was 10.0 mol% in Example 8 and the NiO content was adjusted accordingly. The specific resistance ⁇ was determined.
  • Table 10 shows the composition, A value, and specific resistance log ⁇ of the magnetic body parts of sample numbers 181 to 194.
  • Sample Nos. 181 and 182 have a high Fe 2 O 3 content of 49.0 mol% and 48.5 mol%. Therefore, for the same reason as Sample No. 1 in Example 1, the specific resistance log ⁇ is 3.2, 4 .2 was low.
  • Sample numbers 193 and 194 have an A value of 50% or more, and the Mn 2 O 3 content in the magnetic material is larger than the Fe 2 O 3 content, so that the specific resistance log ⁇ is 4.8, 4. On the contrary, it decreased.
  • Sample Nos. 183 to 192 have an Fe 2 O 3 content of 29.0 to 48.0 mol% and an A value of 2.0 to 40.8% within the scope of the present invention.
  • the resistance log ⁇ was 5.0 to 7.6, and it was found that good insulation was obtained.
  • Example 2 the temperature characteristic of the magnetic permeability ⁇ was measured for each ring-shaped sample, the maximum temperature of the magnetic permeability ⁇ was obtained, and this was set as the Curie point Tc.
  • Table 11 shows the composition, A value, permeability ⁇ , and Curie point of the magnetic part of sample numbers 201 to 210.
  • sample numbers 201 to 209 have a ZnO content of 33.0 mol% or less, it was found that a Curie point Tc of 130 ° C. or higher can be secured.
  • Sample Nos. 201 and 202 had a ZnO content of 3.0 mol% and the permeability decreased to 20, and 1.0 mol% and the permeability ⁇ decreased to 15.
  • the content of ZnO is preferably 33.0 mol% or less, and more preferably 6.0 to 33.0 mol%.
  • FIG. 3 is a diagram showing the relationship between the ZnO content, the Curie point Tc, and the magnetic permeability ⁇ .
  • the horizontal axis represents the ZnO content (mol%)
  • the left vertical axis represents the Curie point Tc (° C.)
  • the right horizontal axis represents the permeability.
  • Magnetic susceptibility ⁇ is shown.
  • the ⁇ mark is the Curie point
  • the ⁇ mark is the magnetic permeability.
  • the magnetic permeability ⁇ increases with increasing ZnO content, but the Curie point Tc decreases, and in order to ensure an operation guarantee temperature of 125 ° C., the ZnO content is 33 mol%. The above is necessary.
  • the ZnO content decreases, the magnetic permeability ⁇ decreases, and the ZnO content is less than 35 by less than 6 mol%. Therefore, it was found that the content of ZnO was 6 to 33 mol%, preferably 9 to 33 mol%.
  • Sample number 161 used in Example 9 (Fe 2 O 3 : 49.0 mol%, Mn 2 O 3 : 0 mol%, ZnO: 25.0 mol%, NiO: 21.0 mol%, CuO: 5.0 mol%) and A magnetic sheet of sample number 167 (Fe 2 O 3 : 44.0 mol%, Mn 2 O 3 : 5.0 mol%, ZnO: 25.0 mol%, NiO: 21.0 mol%, CuO: 5.0 mol%) Prepared.
  • Cu paste containing Cu powder, varnish, and an organic solvent is screen-printed on the surface of a magnetic material sheet, and said Cu paste Was filled in the via hole, thereby forming a coil pattern and a via hole conductor having a predetermined shape.
  • this ceramic laminate was sufficiently degreased by heating in an atmosphere in which Cu as an internal conductor was not oxidized. Thereafter, the ceramic laminate is put into a firing furnace in which the oxygen partial pressure is controlled by a mixed gas of N 2 —H 2 —H 2 O, and the temperature is raised to 950 ° C. at a rate of 3 ° C./min.
  • the ferrite body with the coil conductor embedded in the magnetic body portion was produced by maintaining the time and firing.
  • the oxygen partial pressure was set to 1.8 ⁇ 10 ⁇ 1 Pa which is the equilibrium oxygen partial pressure of Cu—Cu 2 O at 950 ° C.
  • a conductive paste for external electrodes containing Ag powder, glass frit, varnish, and organic solvent is prepared.
  • the conductive paste for external electrodes is applied to both ends of the ferrite element body, dried, and baked at 750 ° C.
  • external electrodes were formed, thereby preparing samples Nos. 161 ′ and 167 ′.
  • the outer diameters of the samples of sample numbers 161 ′ and 167 ′ were length: 1.6 mm, width: 0.8 mm, thickness: 0.8 mm, and the number of turns of the coil was 9.5 turns. .
  • Sample No. 161 ′ has a high Fe 2 O 3 content of 49.0 mol% and a low specific resistance log ⁇ . Therefore, as apparent from FIG. 4, the impedance is about 220 ⁇ at the maximum, and a desired high impedance is obtained. I could't.
  • Sample No. 167 ′ has an Fe 2 O 3 content of 44.0 mol% and an A value of 10.2%, which is within the scope of the present invention, so that the specific resistance log ⁇ is increased.
  • the impedance characteristic has a notable mountain shape. It was found that a maximum impedance of about 520 ⁇ was obtained and a high impedance was obtained in a specific frequency range.
  • Sample number 161 ′′ was obtained by the same method and procedure as in Example 12 except that the oxygen partial pressure was set to 1.8 ⁇ 10 ⁇ 3 Pa which is 1/100 of the Cu—Cu 2 O equilibrium oxygen partial pressure at 950 ° C. , 167 ′′ samples were prepared, and impedance characteristics were measured.
  • FIG. 6 shows the impedance characteristic of sample number 161 ′′
  • FIG. 7 shows the impedance characteristic of sample number 167 ′′.
  • the horizontal axis is frequency (Hz)
  • the vertical axis is impedance ( ⁇ ).
  • Sample No. 167 ′′ has an Fe 2 O 3 content of 44.0 mol%, an A value of 10.2%, and is within the scope of the present invention, so that the specific resistance log ⁇ is also increased.
  • the impedance characteristic has a notable mountain shape substantially the same as the sample number 167 'of Example 12. A maximum impedance of about 570 ⁇ is obtained at a maximum, and a high impedance is obtained in a specific frequency range. Was found to be obtained.
  • the ceramic electronic component having the magnetic composition of the present invention has a good specific resistance log ⁇ and can secure a high impedance without impairing the magnetic permeability. That is, it was confirmed that even when a material mainly composed of Cu was used as the internal electrode material, a laminated coil component having good insulation and good impedance characteristics was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 フェライト材料からなる磁性体部2と、Cuを主成分とする導電部3とを有し、磁性体部2は、3価のFeと少なくとも2価のNiを含む2価元素とを含有すると共に、前記Feの含有量が、Feに換算し、モル比で20~48%である。Fe及びMnの総計に対するMnの比率が、Mn及びFeにそれぞれ換算し、モル比で50%未満の範囲で磁性体部2はMnを含有している。磁性体部2と導電部3とはCu-CuOの平衡酸素分圧以下の雰囲気で同時焼成されてなる。これによりCuを主成分とする導電部3と磁性体部2とを同時焼成しても、絶縁性を確保でき、良好な電気特性を得ることができるようにする。

Description

セラミック電子部品、及びセラミック電子部品の製造方法
 本発明はセラミック電子部品、及びセラミック電子部品の製造方法に関し、より詳しくは、フェライト材料からなる磁性体部とCuを主成分とした導電部とを有するコイル部品等のセラミック電子部品とその製造方法に関する。
 従来より、Ni-Zn等のスピネル型結晶構造を有するフェライト系磁器を使用したセラミック電子部品が広く使用されており、フェライト材料の開発も盛んに行なわれている。
 例えば、特許文献1には、フェライト母体の原料組成が、Ni-Zn系フェライト100重量部に対し、PbO成分を0.3重量部以上5.0重量部以下の割合で添加した銅導体一体焼成型フェライト素子が提案されている。
 さらに、この特許文献1には、フェライト母体の原料組成が、Ni-Zn系フェライト100重量部に対し、PbO成分を0.3重量部以上5.0重量部以下、B成分を0.03重量部以上1.5重量部以下、SiO成分を0.03重量部以上1.5重量部以下の割合で添加した銅導体一体焼成型フェライト素子が提案されている。
 この特許文献1では、フェライト材料にPbO、又はPbO、B、SiOの低融点のガラス成分を添加することにより、窒素雰囲気下、950~1030℃の低温での焼成を可能としている。
 また、特許文献2には、Feが44~47mol%、CuOが5~13mol%、ZnOが15~23mol%、残部が実質的にNiOからなる主成分に対して、副成分としてMnを0.1~0.5wt%含有する組成を有し、平均結晶粒径が0.7~1.2μmである焼結体から構成される酸化物磁性材料が提案されている。
 この特許文献2では、0.1~0.5wt%のMnを含有させて比抵抗ρの向上を図ると共に、内部電極材料にAgを使用することにより、内部電極用ペーストと酸化物磁性層用ペーストとを同時焼成し、これにより焼結密度を低下させることなく、品質係数Qが良好で直流重畳特性に優れた積層型インダクタを得ている。
 また、この特許文献2には、内部電極材料としてCu系材料を使用することも可能であると記載されている。
特公平7-97525号公報(請求項1、請求項2、第(3)頁第5欄第7行目~同頁同欄第8行目) 特開2006-219306号公報(請求項1、段落番号〔0013〕、〔0019〕、〔0035〕)
 Ni-Zn系フェライトは、大気雰囲気で焼成されるのが一般的であり、例えば、積層コイル部品の場合は、通常、内部電極材料にAgを使用し、930℃以下の低温でフェライト材料と内部電極材料とを同時焼成している。
 一方、生産コスト等を考慮すると、低抵抗で導通性に優れかつAgよりも安価なCuを主成分としたCu系材料を内部電極材料に使用するのが望ましい。
 しかしながら、Cu-CuOの平衡酸素分圧とFe-Feの平衡酸素分圧との関係から、800℃以上の高温ではCuとFeとが共存する領域が存在しないことが知られている。
 すなわち、800℃以上の温度では、Feの状態を維持するような酸化性雰囲気に酸素分圧を設定して焼成を行った場合、Cuも酸化されてCuOを生成する。一方、Cu金属の状態を維持するような還元性雰囲気に酸素分圧を設定して焼成を行った場合は、Feが還元されてFeを生成する。
 したがって、特許文献1では、窒素雰囲気下、Cuとフェライト材料とを同時焼成しているものの、CuとFeとが共存する領域が存在しないことから、Cuが酸化しないような還元性雰囲気で焼成すると、FeがFeに還元されるため比抵抗ρが低下し、このため電気特性の劣化を招くおそれがある。
 しかも、特許文献1では、ガラス成分であるPbO、B、SiOを添加しているため、焼成処理中にこれらのガラス成分が異常粒成長を引き起こして透磁率の低下等を招き、このため所望の良好な磁気特性を得るのが困難であり、またフェライト中にPbOが含有されるため、環境負荷の面でも問題がある。
 また、特許文献2では、内部電極材料にCu系材料を使用することが可能と記載されているものの、Agを内部電極材料に使用し大気雰囲気で焼成した実施例しか記載されていない。
 すなわち、Cuを主成分としたCu系材料を導電部に使用し、磁性体部と同時焼成する場合は、Cuの酸化を防ぐ観点から、還元性雰囲気での焼成が求められるが、上述したように800℃以上の高温ではCuとFeとが共存する領域が存在しないことから、Cuの酸化を防ぐような還元性雰囲気で焼成すると、Feの還元を避けることができない。
 しかしながら、特許文献2には、Cu系材料を導電部に使用した場合に生じる上述した課題が何ら記載されておらず、したがって、特許文献2からは、Cu系材料を導電部に使用した場合であっても、良好な絶縁性を有し、インピーダンス特性等の電気特性が良好なセラミック電子部品を得るのは困難である。
 本発明はこのような事情に鑑みなされたものであって、Cuを主成分とする導電部と磁性体部とを同時焼成しても、絶縁性を確保でき、良好な電気特性を得ることができるコイル部品等のセラミック電子部品、及びセラミック電子部品の製造方法を提供することを目的とする。
 本発明者らは、一般式X・MeOで表わされるスピネル型結晶構造のフェライト材料について鋭意研究を行ったところ、Feの含有量を20~48mol%(好ましくは、25~47モル%、より好ましくは、30~46mol%)の範囲に調整して他の含有成分を増量させ、かつFe及びMnに対するMnの比率を、Fe及びMnに換算して50%未満とすることにより、所望の良好な絶縁性を得ることができ、これによりCu系材料とフェライト材料とを同時焼成しても、電気特性が良好なセラミック電子部品を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係るセラミック電子部品は、フェライト材料からなる磁性体部と、Cuを主成分とする導電部とを有し、前記磁性体部は、3価のFeと少なくとも2価のNiを含む2価元素とを含有すると共に、前記Feの含有量が、Feに換算し、モル比で20~48%であり、かつ、前記Fe及びMnの総計に対するMnの比率が、Mn及びFeにそれぞれ換算し、モル比で50%未満(0%を含む。)となるように、前記磁性体部は前記Mnを含有していることを特徴としている。
 また、本発明のセラミック電子部品は、前記Feの含有量が、Feに換算し、モル比で25~47%であるのが好ましい。
 さらに、本発明のセラミック電子部品は、前記Feの含有量が、Feに換算し、モル比で30~46%であるのがより好ましい。
 また、Feの含有量が上述した20~48mol%の範囲内であれば、Fe及びMnの総計に対するMnの比率を、Mn及びFeに換算し、モル比で2%以上とすることにより、良好な絶縁性を確保できると同時に、透磁率も向上することが分かった。
 すなわち、本発明のセラミック電子部品は、前記磁性体部は、前記Fe及び前記Mnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で2%以上となるように、前記Mnを含有しているのが好ましい。
 また、本発明のセラミック電子部品は、前記磁性体部が、CuOに換算し、モル比で10%以下のCuを含有しているのが好ましい。
 また、本発明者らの更なる鋭意研究の結果、より一層良好な特性を得る観点からは、磁性体部にZnOを含有させるのが好ましいが、ZnOの含有量が33%を超えるとキュリー点Tcが低下し、高温での動作保証が損なわれて信頼性の低下を招くおそれがあることが分かった。
 すなわち、本発明のセラミック電子部品は、前記磁性体部が、ZnOに換算し、モル比で33%以下のZnを含有しているのが好ましい。
 さらに、本発明者らの研究結果により、フェライトの透磁率μを考慮すると、ZnOの含有量は6mol%以上であるのが望ましいことが分かった。
 すなわち、本発明のセラミック電子部品は、前記磁性体部が、ZnOに換算し、モル比で6%以上のZnを含有しているのが好ましい。
 また、本発明のセラミック電子部品は、Cu-CuOの平衡酸素分圧以下の雰囲気で焼成されてなるのが好ましい。
 また、本発明のセラミック電子部品は、前記磁性体部と前記導電部とが同時焼成されてなるのが好ましい。
 また、本発明のセラミック電子部品は、複数の前記磁性体部と複数の前記導電部とが交互に積層されているのが好ましい。
 また、本発明のセラミック電子部品は、コイル部品であるのが好ましい。
 また、本発明に係るセラミック電子部品の製造方法は、Fe化合物及び少なくともNi化合物を含む2価元素化合物を、Feに換算し、Fe化合物がモル比で20~48%となるように前記Fe化合物及び前記2価元素化合物を秤量すると共に、Fe及びMnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で50%未満(0%を含む。)となるようにMn化合物を秤量し、これら秤量物を混合した後、仮焼して仮焼粉末を作製する仮焼工程と、前記仮焼粉末からセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、Cuを主成分とする導電性ペーストを前記セラミックグリーンシートに塗布して所定パターンの導電膜を形成する導電膜形成工程と、前記導電膜が形成されたセラミックグリーンシートを所定順序に積層し、積層体を形成する積層体形成工程と、Cu-CuOの平衡酸素分圧以下の焼成雰囲気で前記積層体を焼成し、前記セラミックグリーンシートと前記導電膜とを同時焼成する焼成工程とを含んでいることを特徴としている。
 上記セラミック電子部品によれば、フェライト材料からなる磁性体部と、Cuを主成分とする導電部とを有し、前記磁性体部は、3価のFeと少なくとも2価のNiを含む2価元素とを含有すると共に、前記Feの含有量が、Feに換算し、モル比で20~48%(好ましくは、25~47%、より好ましくは30~46%)であり、かつ、前記Fe及びMnの総計に対するMnの比率が、Mn及びFeにそれぞれ換算し、モル比で50%未満(0%を含む。)となるように、前記磁性体部は前記Mnを含有しているので、Cu系材料とフェライト材料とを同時焼成しても、比抵抗ρを向上させることができ、所望の絶縁性を確保することができる。
 具体的には、比抵抗ρはlogρで5.0以上の良好な絶縁性を得ることができる。そしてこれにより、インピーダンス特性等の電気特性の良好な所望のセラミック電子部品を得ることが可能となる。
 また、前記磁性体部が、前記Fe及び前記Mnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で2%以上となるように、前記Mnを含有することにより、より良好な絶縁性を確保できると共に、Mn無添加の場合に比べ透磁率を向上させることが可能となる。
 また、前記磁性体部が、CuOに換算し、モル比で10%以下のCuを含有することにより、インピーダンス特性の良好なセラミック電子部品を得ることができる。
 また、前記磁性体部が、ZnOに換算し、モル比で33%以下のZnを含有した場合は、十分なキュリー点を確保することができ、使用時の温度の高い条件下での動作が保証されたセラミック電子部品を得ることができる。
 さらに、磁性体部は、ZnOに換算し、モル比で6%以上のZnを含有することにより、良好な透磁率を確保することが可能となる。
 また、Cu-CuOの平衡酸素分圧以下の雰囲気で焼成されてなるので、Cuを主成分とする導電部を使用して磁性体部と同時焼成しても、Cuが酸化されることなく、焼結させることができる。
 また、複数の前記磁性体部と複数の前記導電部とが交互に積層されているので、絶縁性が良好でインピーダンス特性等の電気特性が良好なコイル部品等の積層型のセラミック電子部品を得ることができる。
 また、本発明のセラミック電子部品の製造方法によれば、Fe化合物及び少なくともNi化合物を含む2価元素化合物を、Feに換算し、Fe化合物がモル比で20~48%となるように前記Fe化合物及び前記2価元素化合物を秤量すると共に、Fe及びMnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で50%未満(0%を含む。)となるようにMn化合物を秤量し、これら秤量物を混合した後、仮焼して仮焼粉末を作製する仮焼工程と、前記仮焼粉末からセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、Cuを主成分とする導電性ペーストを前記セラミックグリーンシートに塗布して所定パターンの導電膜を形成する導電膜形成工程と、前記セラミックグリーンシートを所定順序に積層し、積層体を形成する積層体形成工程と、Cu-CuOの平衡酸素分圧以下の焼成雰囲気で前記積層体を焼成し、前記セラミックグリーンシートと前記導電膜とを同時焼成する焼成工程とを含んでいるので、Cu-CuOの平衡酸素分圧以下の焼成雰囲気でセラミックグリーンシートとCuを主成分とした導電膜とを同時焼成しても、Feが還元されることもなく絶縁性が良好でインピーダンス特性等の電気特性が良好なセラミック電子部品を得ることができる。
本発明に係るセラミック電子部品としての積層コイル部品の一実施の形態を示す断面図である。 上記積層コイル部品の製造方法を説明するための分解斜視図である。 ZnOの含有量とキュリー点Tc及び透磁率μとの関係を示す図である。 磁性体部の成分組成が本発明範囲外の場合にCu-CuOの平衡酸素分圧で焼成したときのインピーダンス特性の一例を示す図である。 磁性体部の成分組成が本発明範囲内の場合にCu-CuOの平衡酸素分圧で焼成したときのインピーダンス特性の一例を示す図である。 磁性体部の成分組成が本発明範囲外の場合にCu-CuOの平衡酸素分圧の1/100で焼成したときのインピーダンス特性の一例を示す図である。 磁性体部の成分組成が本発明範囲内の場合にCu-CuOの平衡酸素分圧の1/100で焼成したときのインピーダンス特性の一例を示す図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係るセラミック電子部品としての積層コイル部品の一実施の形態を示す断面図である。
 この積層コイル部品は、フェライト素体1が、磁性体部2と、該磁性体部2に埋設されたCuを主成分とするコイル導体(導電部)3とを有している。また、コイル導体3の両端には引出電極4a、4bが形成されると共に、フェライト素体1の両端にはAg等からなる外部電極5a、5bが形成され、該外部電極5a、5bと引出電極4a、4bとが電気的に接続されている。
 磁性体部2は、スピネル型結晶構造(一般式X・MeO)を有するフェライト材料で形成され、少なくとも3価の元素化合物であるFeと2価の元素化合物であるNiOとを含有し、必要に応じて3価の元素化合物であるMn、及び2価の元素化合物であるZnO、CuOを含有している。
 そして、磁性体部2中のFeの含有モル量が、20~48mol%となるように配合されている。
 このようにFeの含有モル量を20~48mol%とすることにより、良好な所望の絶縁性を確保することができ、これによりインピーダンス特性等の電気特性の良好なコイル部品を得ることが可能となる。
 ここで、磁性体部2中のFeの含有モル量を、20~48mol%としたのは以下の理由による。
 Cuを主成分としたCu系材料とフェライト材料とを同時焼成する場合、大気雰囲気で焼成するとCuは容易に酸化されてCuOを生成することから、Cuが酸化しないような還元性雰囲気で焼成する必要がある。一方、フェライト材料の主成分であるFeを還元性雰囲気で焼成するとFeを生成することから、Feに対しては酸化性雰囲気で焼成する必要がある。
 しかしながら、〔発明が解決しようとする課題〕の項でも述べたように、Cu-CuOの平衡酸素分圧とFe-Feの平衡酸素分圧との関係から、800℃以上の温度で焼成する場合、Cu金属とFeとが共存する領域が存在しないことが知られている。
 そこで、本実施の形態では、3価のFeを含有したFeの含有モル量を化学量論組成から減量させ、Feに代えて例えば2価元素、具体的には2価のNiを含有したNiOを化学量論組成から増量させることにより、Feの耐還元性を向上させ、Cu-CuOの平衡酸素分圧以下の焼成雰囲気で焼成しても、FeのFeへの還元をし難くしている。
 すなわち、スピネル型結晶構造(一般式X・MeO)の場合、化学量論組成では、X(X:Fe、Mn)とMeO(Me:Ni、Zn、Cu)との比率は50:50であり、XとMeOとは、通常、概ね化学量論組成となるように配合される。
 しかるに、3価のFeを含有したFeの含有モル量を化学量論組成に対し十分に減量させ、Feに代えて2価元素、例えば2価のNiを含有したNiOを化学量論組成に対し十分に増量させた場合、Cu-CuOの平衡酸素分圧以下の雰囲気で焼成すると、Feに対しては還元雰囲気であるにも拘わらず、NiOが化学量論組成よりも十分に過剰に含有されていることから、FeはFeに還元され難くなる。すなわち、Feは、Fe・FeOで表わすことができるが、2価のNi化合物であるNiOが化学量論組成よりも十分に過剰に存在するため、Niと同様の2価のFeOの生成が妨げられる。このため、FeはFeに還元されずにFeの状態を維持することが可能となる。
 このようにFeの含有モル量を化学量論組成から十分に減量し、2価の元素化合物を化学量論組成に対して十分に増量させることにより、Cuとフェライト材料との同時焼成してもFeOが生成され難くなることから、FeはFeに還元されずにFeの状態を維持するようになる。したがって、FeはFeに還元されずに済むことから、比抵抗ρが低下するのを回避することができ、これにより所望の良好な絶縁性を確保でき、その結果、良好な電気特性を有する積層コイル部品を得ることが可能となる。
 そして、そのためにはFeの含有モル量を48mol%以下にする必要がある。Feの含有モル量が48mol%を超える場合は、Feは化学量論組成から2mol%未満しか減量されておらず、Feの含有モル量が多すぎることから、Feが容易に還元されてFeを生成し、比抵抗ρの低下を招いて所望の積層コイル部品を得るのが困難となる。
 ただし、Feの含有モル量は、少なくとも20mol%は必要である。これはFeの含有モル量が20mol%未満になると、却って比抵抗ρの低下を招き、所望の絶縁性を確保できなくなるおそれがあるからである。
 したがって、磁性体部2中のFeの含有モル量は、20~48mol%となるように調整する必要があり、より良好な絶縁性を確保する観点からは、好ましくは25~47mol%であり、より好ましくは30~46mol%である。
 また、上記磁性体部2にMnを含有させることにより、保磁力が低減し磁束密度が大きくなることから、透磁率μを向上させることが可能となる。
 そして、そのためにはMnを、Fe及びMnの総計に対するMnの比率(以下、「A値」という。)がモル比で2%以上となるように含有させるのが好ましい。
 ただし、A値が50%以上になると、Mnの含有量がFeの含有量よりも多くなり、却って絶縁性の低下を招くおそれがある。したがって、Mnを含有させる場合は、A値で2%以上50%未満にMn含有量を制御する必要がある。
 また、Feの含有モル量が20~48mol%の範囲内であれば、Feの一部をMnで置換する形態で、2価の元素化合物に代えてMnを増量させることによっても、比抵抗ρを向上させることができ、これによっても所望の良好な絶縁性を得ることが可能となる。
 すなわち、800℃以上の温度領域では、MnはFeに比べ、より高い酸素分圧で還元性雰囲気となる。したがって、Cu-CuOの平衡酸素分圧以下の酸素分圧では、MnはFeに比べ強還元性雰囲気となり、このためMnが優先的に還元されて焼結を完了させることが可能となる。つまり、MnがFeに比べて優先的に還元されることから、FeがFeに還元される前に焼成処理を完了させることが可能となる。
 このように磁性体部2中にMnを含有させることにより、Cu-CuOの平衡酸素分圧以下でCu系材料とフェライト材料とを同時焼成しても、Mnが優先的に還元されることから、Feが還元される前に焼結を完了させることが可能となり、Cu金属とFeとをより効果的に共存させることができる。そしてこれにより比抵抗ρが低下するのを回避でき、絶縁性を向上させることができる。その結果、特定周波数域でピークを有する山形形状のインピーダンス特性を得ることができ、電気特性を向上させることが可能となる。
 尚、この場合もA値が50%以上になると、Mnの含有量がFeの含有量よりも多くなり、絶縁性の低下を招くおそれがあり、またA値が2%未満の場合は、Mnの添加効果を十分に得ることができない。したがって、3価のFeの一部を3価のMnで置換する場合も、所望の絶縁性を得るためには、A値が2%以上50%未満となるようにMn含有量を制御するのが好ましい。
 このように本実施の形態では、磁性体部2は、FeとNiOとを含有し、Feが20~48mol%であり、A値が50%未満となるように、NiO及び/又はMnを増量することにより、透磁率μを損なうことなく比抵抗ρが低下するのを回避できて絶縁性を確保することができ、これにより電気特性を向上させることが可能となる。
 具体的には、磁気特性を損なうこともなく比抵抗ρをlogρで5.0以上に改善することができ、特定周波数域で高いインピーダンスを有するノイズ吸収に適した積層コイル部品を得ることができる。そしてその結果、特定周波数域でインピーダンスが高く、山形形状のインピーダンス特性を有する積層コイル部品を得ることが可能となる。
 尚、磁性体部2中のNiO、ZnO、及びCuOの含有量は、特に限定されるものではなく、Feの含有モル量に応じて適宜設定することができるが、ZnOやCuOを含有させる場合は、ZnO:6~33mol%、CuO:0~10mol%、NiO:残部となるように配合するのが好ましい。
 すなわち、ZnOの含有モル量が33mol%を超えると、キュリー点Tcが低下し、高温での動作保証がなされない可能性があることから、ZnOの含有量は33mol%以下が好ましい。
 一方、ZnOは透磁率μの向上に寄与する効果があるが、斯かる効果を発揮するためにはZnOの含有モル量は6mol%は必要である。
 したがって、磁性体部2がZnOを含有する場合は、その含有モル量は6~33mol%が好ましい。
 また、CuOの含有モル量が10mol%を超えると、比抵抗ρが低下するおそれがあることから、CuOの含有量は10mol%以下が好ましい。
 次に、上記積層コイル部品の製造方法を、図2を参照しながら詳述する。
 まず、セラミック素原料として、Fe、NiO、及び必要に応じて3価化合物であるMn、2価元素化合物であるZnO、及びCuOを用意し、Feの含有モル量が20~48mol%、A値が50%未満(0%を含む。)となるように、各セラミック素原料を秤量する。
 次いで、これらの秤量物を純水及びPSZ(部分安定化ジルコニア)ボール等の玉石と共にポットミルに入れ、湿式で十分に混合粉砕し、蒸発乾燥させた後、800~900℃の温度で所定時間仮焼する。
 次いで、これらの仮焼物に、ポリビニルブチラール系等の有機バインダ、エタノール、トルエン等の有機溶剤、及びPSZボールと共に、再びポットミルに投入し、十分に混合粉砕し、セラミックスラリーを作製する。
 次に、ドクターブレード法等を使用して前記セラミックスラリーをシート状に成形加工し、所定膜厚の磁性体セラミックグリーンシート(以下、単に「磁性体シート」という。)6a~6hを作製する。
 次いで、これらの磁性体シート6b~6gが互いに電気的に接続可能となるようにレーザ加工機を使用して磁性体シート6b~6gの所定箇所にビアホールを形成する。
 次に、Cuを主成分としたコイル導体用導電性ペーストを用意する。そして、該導電性ペーストを使用してスクリーン印刷し、磁性体シート6b~6g上にコイルパターン8a~8fを形成し、かつ、ビアホールを前記導電性ペーストで充填しビアホール導体7a~7eを作製する。尚、磁性体シート6b及び磁性体シート6gに形成された各コイルパターン8a、8fには、外部電極と電気的接続が可能となるように引出部8a′、8f′が形成されている。
 次いで、コイルパターン8a~8fの形成された磁性体シート6b~6gを積層し、これらをコイルパターンの形成されていない磁性体シート6a及び磁性体シート6hで挟持して圧着し、これによりコイルパターン8a~8fがビアホール導体7a~7eを介して接続された圧着ブロックを作製する。その後、この圧着ブロックを所定寸法に切断してセラミック積層体を作製する。
 次に、このセラミック積層体をCuが酸化しないような雰囲気下、所定温度で十分に脱脂した後、Cu-CuOの平衡酸素分圧以下となるようにN-H-HOの混合ガスで雰囲気調整された焼成炉に供給し、900~1050℃で所定時間焼成し、これにより磁性体部2にコイル導体3が埋設されたフェライト素体1を得る。
 次に、フェライト素体1の両端部に、Ag等を主成分とした外部電極用導電ペーストを塗布し、乾燥させた後、750℃で焼き付けて外部電極5a、5bを形成し、これにより積層コイル部品が作製される。
 このように本実施の形態では、Fe化合物及び少なくともNi化合物を含む2価元素化合物を、Feに換算し、Fe化合物がモル比で20~48%となるように前記Fe化合物及び前記2価元素化合物を秤量すると共に、Fe及びMnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で50%未満(0%を含む。)となるようにMn化合物を秤量し、これら秤量物を混合した後、仮焼して仮焼粉末を作製する仮焼工程と、前記仮焼粉末からセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、Cuを主成分とする導電性ペーストを前記セラミックグリーンシートに塗布して所定パターンの導電膜を形成する導電膜形成工程と、前記導電膜が形成されたセラミックグリーンシートを所定順序に積層し、積層体を形成する積層体形成工程と、Cu-CuOの平衡酸素分圧以下の焼成雰囲気で前記積層体を焼成し、前記セラミックグリーンシートと前記導電膜とを同時焼成する焼成工程とを含んでいるので、Cu-CuOの平衡酸素分圧以下の焼成雰囲気で前記積層体を焼成しても、FeがFeに還元されることもなく、CuとFeとが共存した状態で焼結させることが可能となる。したがって、比抵抗ρが低下するのを回避でき絶縁性を確保することができ、これにより電気特性を向上させることができる。
 具体的には、比抵抗ρをlogρで5.0以上に改善することができ、特定周波数域で高いインピーダンスを有するノイズ吸収に適した積層コイル部品を得ることができる。そしてその結果、特定周波数域でインピーダンスが高く、山形形状のインピーダンス特性を有する積層コイル部品を得ることが可能となる。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、本発明の積層コイル部品について説明したが、単板コイル部品や積層LC部品のような積層複合部品に適用できるのはいうまでもない。
 次に、本発明の実施例を具体的に説明する。
 セラミック素原料として、Fe、NiO、ZnO、及びCuOを用意した。そして、ZnO:25mol%、CuO:1mol%とし、Fe及びNiOの含有モル量が表1に示すような組成となるように、これらセラミック素原料を秤量した。次いで、これら秤量物を純水及びPSZボールと共に塩化ビニル製のポットミルに入れ、湿式で十分に混合粉砕し、蒸発乾燥させた後、850℃の温度で仮焼した。
 次いで、これら仮焼物を、ポリビニルブチラール系バインダ(有機バインダ)、エタノール(有機溶媒)、及びPSZボールと共に、再び塩化ビニル製のポットミルに投入し、十分に混合粉砕し、セラミックスラリーを得た。
 次に、ドクターブレード法を使用し、厚さが25μmとなるようにセラミックスラリーをシート状に成形し、これを縦50mm、横50mmの大きさに打ち抜き、磁性体シートを作製した。
 次いで、このようにして作製された磁性体シートを、厚さが総計で0.5mmとなるように複数枚積層し、60℃に加熱し、100MPaの圧力で60秒間加圧して圧着し、その後、直径10mmの大きさの円板状に切り出し、セラミック成形体を得た。
 次いで、得られたセラミック成形体を加熱して十分に脱脂した。そして、N-H-HOの混合ガスを焼成炉に供給して酸素分圧を1.8×10-1Paに調整した後、前記セラミック成形体を焼成炉に投入し、950℃の温度で2時間焼成した。すなわち、酸素分圧1.8×10-1Paは950℃におけるCu-CuOの平衡酸素分圧であり、セラミック成形体をCu-CuOの平衡酸素分圧で2時間焼成し、これにより試料番号1~13の円板状試料を得た。
 次に、試料番号1~13の各試料の両面にAg電極を形成し、50Vの直流電圧を印加して絶縁抵抗を測定し、試料形状から比抵抗ρを求めた。
 また、上述と同様にして得られた磁性体シートを、厚さが総計で1.0mmとなるように複数枚積層し、60℃に加熱し、100MPaの圧力で60秒間加圧して圧着し、その後、外径20がmm、内径が12mmとなるようにリング状に切り出し、セラミック成形体を得た。
 次いで、得られたセラミック成形体を上述と同様の条件で脱脂、焼成を行い、これにより試料番号1~13のリング状試料を得た。
 そして、試料番号1~13の各リング状試料について、軟銅線を20ターン巻回し、インピーダンスアナライザ(アジレント・テクノロジー社製、E4991A)を使用し、周波数1MHzでのインダクタンスを測定し、その測定値から透磁率μを求めた。
 表1は試料番号1~13の磁性体部の組成、A値(Fe及びMnの総計に対するMnの含有量)、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000001
 試料番号1は、比抵抗logρが3.5と低くなった。これはFeの含有量が49.0mol%と多いため、950℃におけるCu-CuOの平衡酸素分圧である1.8×10-1Paで焼成した場合、FeがFeに還元されてしまい、その結果、比抵抗logρが低下したものと思われる。
 また、試料番号13は、Feの含有量が15.0mol%と少なく、この場合も比抵抗logρが4.5と低くなった。
 これに対し試料番号2~12は、Mnは含有されていないものの、Feの含有量が20.0~48.0mol%と本発明の範囲内であるので、比抵抗logρは5.5~8.2と大きく十分な絶縁性を確保でき、しかも透磁率μも35~290と良好な結果が得られることが分かった。
 特に、Feの含有量が25.0~47.0mol%の試料番号3~11は、比抵抗logρが6.5以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号4~10は、比抵抗logρが7.1以上となって更に好ましい結果が得られることが分かった。
 Mnを1.0mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号21~33の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表2は試料番号21~33の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000002
 試料番号21は、Feの含有量が49.0mol%と多く、このため上記実施例1の試料番号1と同様の理由から、比抵抗logρが3.6と低くなった。
 また、試料番号33は、Feの含有量が15.0mol%と少なく、このため比抵抗logρが4.6と低くなることが分かった。
 これに対し試料番号22~32は、A値は2.0~4.8であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは6.4~8.7と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号23~31は、比抵抗logρが7.3以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号24~30は、比抵抗logρが7.9以上となって更に好ましい結果が得られることが分かった。
 また、Mnを1.0mol%含有させたことから、透磁率μも38~330となり、Fe含有量が同一の場合の実施例1と比較すると、透磁率μは向上することが分かった。
 Mnを2.0mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号41~53の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表3は試料番号41~53の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000003
 試料番号41は、Feの含有量が49.0mol%と多いため、上記実施例1の試料番号1と同様の理由から、比抵抗logρが3.7と低くなった。
 また、試料番号53は、Feの含有量が15.0mol%と少なく、比抵抗logρが4.7と低くなった。
 これに対し試料番号42~52は、A値は4.0~9.1であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは6.8~8.9と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号43~51は、比抵抗logρが7.7以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号44~50は、比抵抗logρが8.2以上となって更に好ましい結果が得られることが分かった。
 また、Mnを2.0mol%含有させたことから、透磁率μも42~500となり、Fe含有量が同一の場合の実施例2と比較すると、透磁率μは向上することが分かった。
 Mnを5.0mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号61~73の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表4は試料番号61~73の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000004
 試料番号61は、Feの含有量が49.0mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.6と低くなった。
 また、試料番号73は、Feの含有量が15.0mol%と少なく、比抵抗logρが4.8と低くなった。
 これに対し試料番号62~72は、A値は9.4~20.0であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは6.4~8.6と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号63~71は、比抵抗logρが7.4以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号64~70は、比抵抗logρが7.8以上となって更に好ましい結果が得られることが分かった。
 また、Mnを5.0mol%含有させたことから、透磁率μも50~640となり、Fe含有量が同一の場合の実施例3と比較すると、透磁率μは向上することが分かった。
 Mnを7.5mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号81~93の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表5は試料番号81~93の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000005
 試料番号81は、Feの含有量が49.0mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.5と低くなった。
 また、試料番号93は、Feの含有量が15.0mol%と少なく、比抵抗logρは4.8に低下した。
 これに対し試料番号82~92は、A値は13.5~27.3であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは6.0~8.2と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号83~91は、比抵抗logρが7.0以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号84~90は、比抵抗logρが7.3以上となって更に好ましい結果が得られることが分かった。
 また、Mnを7.5mol%含有させたことから、透磁率μも55~760となり、Fe含有量が同一の場合の実施例4と比較すると、透磁率μは向上することが分かった。
 Mnを10.0mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号101~113の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表6は試料番号101~113の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000006
 試料番号101は、Feの含有量が49.0mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.4と低くなった。
 また、試料番号113は、Feの含有量が15.0mol%と少なく、比抵抗logρは4.3に低下した。
 これに対し試料番号102~112は、A値は17.2~33.3であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは5.6~7.5と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号103~111は、比抵抗logρが6.4以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号104~110は、比抵抗logρが6.7以上となって更に好ましい結果が得られることが分かった。
 また、Mnを10.0mol%含有させたことから、透磁率μも70~900となり、Fe含有量が同一の場合の実施例5と比較すると、透磁率μは向上することが分かった。
 Mnを13.0mol%含有させ、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号121~133の円板状及びリング状試料を作製した。
 そして、実施例1と同様の方法・手順で円板状試料を使用して比抵抗logρを求め、リング状試料を使用して透磁率μを求めた。
 表7は試料番号121~133の磁性体部の組成、A値、比抵抗logρ、及び透磁率μを示している。
Figure JPOXMLDOC01-appb-T000007
 試料番号121は、Feの含有量が49.0mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.3と低くなった。
 また、試料番号133は、Feの含有量が15.0mol%と少なく、比抵抗logρは3.6に低下した。
 これに対し試料番号122~132は、A値は21.3~39.4であり、Feの含有量が20~48mol%と本発明の範囲内であるので、比抵抗logρは5.0~6.7と大きく十分な絶縁性を確保できることが分かった。
 特に、Feの含有量が25~47mol%の試料番号123~131は、比抵抗logρが5.6以上となってより好ましい結果が得られ、またFeの含有量が30~46mol%の試料番号124~130は、比抵抗logρが6.0以上となって更に好ましい結果が得られることが分かった。
 また、Mnを13.0mol%含有させたことから、透磁率μも87~1050となり、Fe含有量が同一の場合の実施例6と比較すると、透磁率μは向上することが分かった。
 このように実施例1~7から明らかなようにFeの含有量が20~48mol%とすることにより、比抵抗logρは5.0以上となって十分な絶縁性を確保でき、Mnの含有量を増量させることにより、透磁率μが向上することが分かった。
 NiO:26.0mol%、ZnO:25.0mol%とし、CuOを含まず、Feの一部をMnで置換する形態でこれらFe及びMnを表8に示すような組成となるように秤量した。
 そして、実施例1と同様の方法で試料番号141~154の円板状試料を作製し、比抵抗logρを求めた。
 表8は試料番号141~154の磁性体部の組成、A値、及び比抵抗logρを示している。
Figure JPOXMLDOC01-appb-T000008
 試料番号141、142は、Feの含有量が49.0mol%、48.5mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが4.0、4.9と低くなった。
 また、試料番号153、154は、A値が50%以上であり、磁性体中のMn含有量がFe含有量よりも多いため、比抵抗logρは4.8、4.5と却って低下した。
 これに対し試料番号143~152は、Feの含有量が29.0~48.0mol%であり、A値も2.0~40.8%であり、いずれも本発明範囲内であるので、比抵抗logρは5.3~7.9となり、良好な絶縁性が得られることが分かった。
 実施例8でCuOの含有量を5.0mol%とし、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号161~174の円板状試料を作製し、比抵抗ρを求めた。
 表9は試料番号161~174の磁性体部の組成、A値、及び比抵抗logρを示している。
Figure JPOXMLDOC01-appb-T000009
 試料番号161、162は、Feの含有量が49.0mol%、48.5mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.5、4.5と低くなった。
 また、試料番号173、174は、A値が50%以上であり、磁性体中のMn含有量がFe含有量よりも多いため、比抵抗logρが4.7、4.4と却って低下した。
 これに対し試料番号163~172は、Feの含有量が29.0~48.0mol%であり、A値が2.0~40.8%と本発明範囲内であるので、比抵抗logρは5.2~7.9となり、良好な絶縁性が得られることが分かった。
 実施例8でCuOの含有量を10.0mol%とし、それに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号181~194の円板状試料を作製し、比抵抗ρを求めた。
 表10は試料番号181~194の磁性体部の組成、A値、及び比抵抗logρを示している。
Figure JPOXMLDOC01-appb-T000010
 試料番号181、182は、Feの含有量が49.0mol%、48.5mol%と多いため、実施例1の試料番号1と同様の理由から、比抵抗logρが3.2、4.2と低くなった。
 また、試料番号193、194は、A値が50%以上であり、磁性体中のMn含有量がFe含有量よりも多いため、比抵抗logρが4.8、4.5と却って低下した。
 これに対し試料番号183~192は、Feの含有量が29.0~48.0mol%であり、A値が2.0~40.8%と本発明範囲内であるので、比抵抗logρは5.0~7.6となり、良好な絶縁性が得られることが分かった。
 Fe:47mol%、Mn:1.0mol%、CuO:1.0mol%とし、表11に示すように、ZnOの含有量を1.0~35.0mol%の範囲で異ならせ、これに応じてNiOの含有量を調整した以外は、実施例1と同様の方法・手順で試料番号201~210のリング状試料を作製した。
 そして、実施例1と同様の方法・手順でリング状試料を使用して透磁率μを求めた。
 また、実施例1と同様のインピーダンスアナライザを使用し、各リング状試料について、透磁率μの温度特性を測定し、透磁率μの極大温度を求め、これをキュリー点Tcとした。
 表11は試料番号201~210の磁性体部の組成、A値、透磁率μ、及びキュリー点を示している。
Figure JPOXMLDOC01-appb-T000011
 試料番号210は、ZnOの含有量が35.0mol%と多いため、キュリー点Tcが110℃に低下し、このため動作保証温度が125℃以下となり、高温雰囲気での使用に支障が生じ得ることが分かった。
 これに対し試料番号201~209は、ZnOの含有量が33.0mol%以下であるため、130℃以上のキュリー点Tcを確保できることが分かった。
 ただし、試料番号201、202は、ZnOの含有量が3.0mol%で透磁率は20に低下し、1.0mol%で透磁率μが15まで低下した。
 したがって、磁性体部中にZnOを含有する場合は、ZnOの含有量は33.0mol%以下が好ましく、より好ましくは6.0~33.0mol%であることが確認された。
 図3はZnO含有量とキュリー点Tc及び透磁率μとの関係を示す図であり、横軸がZnO含有量(mol%)、左縦軸はキュリー点Tc(℃)、右横軸は透磁率μを示している。図中、●印がキュリー点、◆印が透磁率である。
 この図3から明らかなように、ZnO含有量の増加に伴い、透磁率μは上昇するが、キュリー点Tcが低下し、動作保証温度125℃を確保するためには、ZnO含有量は33mol%以上は必要である。
 一方、ZnO含有量の減少に伴い、透磁率μは低下し、ZnO含有量は6mol%未満で35未満となる。したがって、ZnOの含有量は6~33mol%、好ましくは9~33mol%であることが分かった。
 実施例9で使用した試料番号161(Fe:49.0mol%、Mn:0mol%、ZnO:25.0mol%、NiO:21.0mol%、CuO:5.0mol%)及び試料番号167(Fe:44.0mol%、Mn:5.0mol%、ZnO:25.0mol%、NiO:21.0mol%、CuO:5.0mol%)の磁性体シートを用意した。
 そして、レーザ加工機を使用し、磁性体シートの所定位置にビアホールを形成した後、Cu粉末、ワニス、及び有機溶剤を含有したCuペーストを磁性体シートの表面にスクリーン印刷し、かつ前記Cuペーストをビアホールに充填し、これにより所定形状のコイルパターン及びビアホール導体を形成した。
 次いで、コイルパターンの形成された磁性体シートを積層した後、これらをコイルパターンの形成されていない磁性体シートで挟持し、60℃の温度で100MPaの圧力で圧着し、圧着ブロックを作製した。そして、この圧着ブロックを所定のサイズに切断し、セラミック積層体を作製した。
 次に、このセラミック積層体を、内部導体であるCuが酸化しない雰囲気で加熱して十分に脱脂した。そしてその後、N-H-HOの混合ガスにより酸素分圧が制御された焼成炉にセラミック積層体を投入し、3℃/分の昇温速度で950℃に昇温し、2時間保持して焼成し、これにより磁性体部にコイル導体が埋設されたフェライト素体を作製した。ここで、酸素分圧は、950℃におけるCu-CuOの平衡酸素分圧である1.8×10-1Paに設定した。
 次に、Ag粉、ガラスフリット、ワニス、及び有機溶剤を含有した外部電極用導電ペーストを用意し、この外部電極用導電ペーストをフェライト素体の両端に塗布して乾燥した後、750℃で焼き付けて外部電極を形成し、これにより試料番号161′、167′の試料を作製した。尚、試料番号161′、167′の各試料の外径寸法は長さ:1.6mm、幅:0.8mm、厚み:0.8mmであり、コイルのターン数は9.5ターンであった。
 次に、試料番号161′、167′の各試料について、実施例1と同様のインピーダンスアナライザを使用し、インピーダンス特性を測定した。
 図4は試料番号161′のインピーダンス特性を示し、図5は試料番号167′のインピーダンス特性を示している。横軸は周波数(Hz)、縦軸はインピーダンス(Ω)である。
 試料番号161′は、Fe含有量が49.0mol%と多く、比抵抗logρが低いため、図4から明らかなように、インピーダンスは最大でも220Ω程度であり、所望の高インピーダンスを得ることはできなかった。
 これに対し試料番号167′は、Fe含有量が44.0mol%、A値は10.2%であり、本発明範囲内であるので、比抵抗logρが大きくなり、その結果、図5に示すように、インピーダンス特性も顕著な山形形状を有している。そして、最大で約520Ωの高インピーダンスが得られ、特定周波数域で高いインピーダンスが得られることが分かった。
 酸素分圧を950℃におけるCu-CuO平衡酸素分圧の1/100である1.8×10-3Paに設定した以外は、実施例12と同様の方法・手順で試料番号161″、167″の試料を作製し、インピーダンス特性を測定した。
 図6は試料番号161″のインピーダンス特性を示し、図7は試料番号167″のインピーダンス特性を示している。横軸は周波数(Hz)、縦軸はインピーダンス(Ω)である。
 試料番号161″は、Fe含有量が49.0mol%と多く、しかもCu-CuOの平衡酸素分圧の1/100の低い酸素分圧で焼成しているため、比抵抗logρも更に低くなり、その結果図6に示すように、インピーダンスは100Ω以下となり、広範な周波数域で平坦となり、良好なインピーダンス特性を得ることはできなかった。
 これに対し試料番号167″は、Fe含有量が44.0mol%、A値は10.2%であり、本発明範囲内であるので、比抵抗logρも大きくなり、その結果、図7に示すように、実施例12の試料番号167′と略同様、インピーダンス特性も顕著な山形形状を有している。そして、最大で約570Ωの高インピーダンスが得られ、特定周波数域で高いインピーダンスが得られることが分かった。
 また、実施例12の試料番号167′と実施例13の試料番号167″との比較から明らかなように、Fe含有量が本発明範囲内の場合は、酸素分圧に依存することなく高いインピーダンスを得ることができることが分かった。
 このように本発明の磁性体組成を有するセラミック電子部品は、比抵抗logρが良好であり、これにより透磁率を損なうこともなく、高いインピーダンスを確保することができることが分かった。すなわち、内部電極材料にCuを主成分とした材料を使用した場合であっても、絶縁性が良好でインピーダンス特性が良好な積層コイル部品の得られることが確認された。
 Cuを主成分とする材料を導電部に使用し、導電部と磁性体部とを同時焼成しても、絶縁性が良好で、良好な電気特性を有するコイル部品等のセラミック電子部品を実現できる。
2 磁性体部
3 コイル導体(導電部)

Claims (12)

  1.  フェライト材料からなる磁性体部と、Cuを主成分とする導電部とを有し、
     前記磁性体部は、3価のFeと少なくとも2価のNiを含む2価元素とを含有すると共に、前記Feの含有量が、Feに換算し、モル比で20~48%であり、
     かつ、Fe及びMnの総計に対するMnの比率が、Mn及びFeにそれぞれ換算し、モル比で50%未満(0%を含む。)となるように、前記磁性体部は前記Mnを含有していることを特徴とするセラミック電子部品。
  2.  前記Feの含有量が、Feに換算し、モル比で25~47%であることを特徴とする請求項1記載のセラミック電子部品。
  3.  前記Feの含有量が、Feに換算し、モル比で30~46%であることを特徴とする請求項1又は請求項2記載のセラミック電子部品。
  4.  前記磁性体部は、前記Fe及び前記Mnの総計に対する前記Mnの比率が、Mn及びFeにそれぞれ換算し、モル比で2%以上であることを特徴とする請求項1乃至請求項3のいずれかに記載のセラミック電子部品。
  5.  前記磁性体部は、CuOに換算し、モル比で10%以下のCuを含有していることを特徴とする請求項1乃至請求項4のいずれかに記載のセラミック電子部品。
  6.  前記磁性体部は、ZnOに換算し、モル比で33%以下のZnを含有していることを特徴とする請求項1乃至請求項5のいずれかに記載のセラミック電子部品。
  7.  前記磁性体部は、ZnOに換算し、モル比で6%以上のZnを含有していることを特徴とする請求項1乃至請求項6のいずれかに記載のセラミック電子部品。
  8.  Cu-CuOの平衡酸素分圧以下の雰囲気で焼成されてなることを特徴とする請求項1乃至請求項7のいずれかに記載のセラミック電子部品。
  9.  前記磁性体部と前記導電部とが同時焼成されてなることを特徴とする請求項1乃至請求項8のいずれかに記載のセラミック電子部品。
  10.  複数の前記磁性体部と複数の前記導電部とが交互に積層されていることを特徴とする請求項1乃至請求項9のいずれかに記載のセラミック電子部品。
  11.  コイル部品であることを特徴とする請求項1乃至請求項11のいずれかに記載のセラミック電子部品。
  12.  Fe化合物及び少なくともNi化合物を含む2価元素化合物を、Feに換算し、Fe化合物がモル比で20~48%となるように前記Fe化合物及び前記2価元素化合物を秤量すると共に、Fe及びMnの総計に対する前記Mnの比率が、Mn及びFeに換算し、モル比で50%未満(0%を含む。)となるようにMn化合物を秤量し、これら秤量物を混合した後、仮焼して仮焼粉末を作製する仮焼工程と、
     前記仮焼粉末からセラミックグリーンシートを作製するセラミックグリーンシート作製工程と、
     Cuを主成分とする導電性ペーストを前記セラミックグリーンシートに塗布して所定パターンの導電膜を形成する導電膜形成工程と、
     前記導電膜が形成されたセラミックグリーンシートを所定順序に積層し、積層体を形成する積層体形成工程と、
     Cu-CuOの平衡酸素分圧以下の焼成雰囲気で前記積層体を焼成し、前記セラミックグリーンシートと前記導電膜とを同時焼成する焼成工程とを含んでいることを特徴とするセラミック電子部品の製造方法。
PCT/JP2011/055061 2010-03-05 2011-03-04 セラミック電子部品、及びセラミック電子部品の製造方法 WO2011108701A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180012470.4A CN102792395B (zh) 2010-03-05 2011-03-04 陶瓷电子元件及陶瓷电子元件的制造方法
KR1020147011774A KR101673727B1 (ko) 2010-03-05 2011-03-04 세라믹 전자 부품 및 세라믹 전자 부품의 제조 방법
EP11750810.1A EP2544200B1 (en) 2010-03-05 2011-03-04 Ceramic electronic component and method for producing ceramic electronic component
JP2012503285A JP5556880B2 (ja) 2010-03-05 2011-03-04 セラミック電子部品、及びセラミック電子部品の製造方法
KR1020127023151A KR101475129B1 (ko) 2010-03-05 2011-03-04 세라믹 전자 부품 및 세라믹 전자 부품의 제조 방법
US13/602,812 US9595377B2 (en) 2010-03-05 2012-09-04 Ceramic electronic component and method for producing ceramic electronic component
US15/419,003 US9741489B2 (en) 2010-03-05 2017-01-30 Ceramic electronic component and method for producing ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-049457 2010-03-05
JP2010049457 2010-03-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/602,812 Continuation US9595377B2 (en) 2010-03-05 2012-09-04 Ceramic electronic component and method for producing ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2011108701A1 true WO2011108701A1 (ja) 2011-09-09

Family

ID=44542345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055061 WO2011108701A1 (ja) 2010-03-05 2011-03-04 セラミック電子部品、及びセラミック電子部品の製造方法

Country Status (6)

Country Link
US (2) US9595377B2 (ja)
EP (1) EP2544200B1 (ja)
JP (2) JP5556880B2 (ja)
KR (2) KR101673727B1 (ja)
CN (1) CN102792395B (ja)
WO (1) WO2011108701A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065845A (ja) * 2011-09-02 2013-04-11 Murata Mfg Co Ltd コモンモードチョークコイルおよびその製造方法
WO2014050867A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 積層コイル部品およびその製造方法
WO2014092114A1 (ja) * 2012-12-14 2014-06-19 株式会社村田製作所 積層コイル部品
US20140176282A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Electromagnetic induction module for wireless charging element and method of manufacturing the same
JP2014120566A (ja) * 2012-12-14 2014-06-30 Kyocera Corp コイル内蔵配線基板
JP2014165307A (ja) * 2013-02-25 2014-09-08 Murata Mfg Co Ltd フェライト磁器組成物、及びセラミック電子部品
US20150022305A1 (en) * 2013-07-19 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same
JP2015023275A (ja) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. フェライト及びこれを適用したインダクタ
JP2015095512A (ja) * 2013-11-11 2015-05-18 株式会社村田製作所 積層コイル部品およびその製造方法
JP2015214434A (ja) * 2014-05-08 2015-12-03 株式会社村田製作所 フェライト磁器、コイル装置およびフェライト磁器の作製方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431954B1 (ko) * 2013-01-04 2014-08-19 삼성전기주식회사 코일 부품 및 이의 제조방법
JP6222215B2 (ja) * 2013-02-13 2017-11-01 株式会社村田製作所 電子部品
CN103553585B (zh) * 2013-10-22 2016-04-27 瑞声声学科技(深圳)有限公司 铁氧体陶瓷的制备方法
DE102014218638A1 (de) * 2014-09-17 2016-03-31 Siemens Aktiengesellschaft Herstellen eines Bauteils mit einem Keramikpulverkörper
JPWO2016072428A1 (ja) * 2014-11-06 2017-08-10 株式会社村田製作所 積層コイル部品
JP6729422B2 (ja) * 2017-01-27 2020-07-22 株式会社村田製作所 積層型電子部品
JP6891623B2 (ja) * 2017-05-02 2021-06-18 Tdk株式会社 インダクタ素子
KR102484848B1 (ko) * 2017-09-20 2023-01-05 삼성전기주식회사 박막형 칩 전자부품
KR102093148B1 (ko) 2018-11-07 2020-03-25 삼성전기주식회사 코일 부품 및 코일 부품의 제조 방법
JP7484643B2 (ja) * 2020-10-07 2024-05-16 株式会社村田製作所 コイル部品

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461203A (ja) * 1990-06-28 1992-02-27 Murata Mfg Co Ltd 銅導体一体焼成型フェライト素子
JPH05326242A (ja) * 1992-05-15 1993-12-10 Tdk Corp フェライト焼結体、チップインダクタ部品、複合積層部品および磁心
JPH0869939A (ja) * 1994-06-23 1996-03-12 Murata Mfg Co Ltd 積層セラミックコンデンサおよびその製造方法
JPH097880A (ja) * 1995-06-26 1997-01-10 Murata Mfg Co Ltd 積層セラミックコンデンサ及びその製造方法
JP2004323283A (ja) * 2003-04-23 2004-11-18 Tdk Corp フェライト焼結体、フェライト焼結体の製造方法
JP2006219306A (ja) 2005-02-08 2006-08-24 Tdk Corp 酸化物磁性材料及び積層型インダクタ
WO2007066453A1 (ja) * 2005-12-08 2007-06-14 Murata Manufacturing Co., Ltd. 積層型圧電素子およびその製造方法
JP2010018482A (ja) * 2008-07-10 2010-01-28 Tdk Corp フェライト及びその製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105646B2 (ja) * 1986-10-20 1994-12-21 太陽誘電株式会社 積層型インダクタの製造方法
US5349743A (en) * 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
JP3367683B2 (ja) * 1991-12-20 2003-01-14 ティーディーケイ株式会社 Ni−Cu−Zn系フェライト焼結体の製造方法、ならびに積層インダクタ、複合積層部品および磁心の製造方法
JPH0797525A (ja) 1993-09-28 1995-04-11 Dai Ichi Kogyo Seiyaku Co Ltd 熱可塑性樹脂組成物
US5600533A (en) * 1994-06-23 1997-02-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor having an anti-reducing agent
US5716713A (en) * 1994-12-16 1998-02-10 Ceramic Packaging, Inc. Stacked planar transformer
JP4216917B2 (ja) * 1997-11-21 2009-01-28 Tdk株式会社 チップビーズ素子およびその製造方法
CN1216829C (zh) * 1997-12-04 2005-08-31 达方电子股份有限公司 陶瓷成品的制造方法
JP3465649B2 (ja) * 1999-11-11 2003-11-10 株式会社村田製作所 セラミックインダクタ部品及び複合部品
US6908960B2 (en) * 1999-12-28 2005-06-21 Tdk Corporation Composite dielectric material, composite dielectric substrate, prepreg, coated metal foil, molded sheet, composite magnetic substrate, substrate, double side metal foil-clad substrate, flame retardant substrate, polyvinylbenzyl ether resin composition, thermosettin
JP2002175916A (ja) * 2000-12-07 2002-06-21 Murata Mfg Co Ltd インダクタ
JP3921348B2 (ja) * 2001-01-12 2007-05-30 Tdk株式会社 積層型フェライト部品
JP2003068518A (ja) * 2001-08-24 2003-03-07 Tdk Corp 磁性フェライト用粉末、磁性フェライト材料の製造方法および積層型フェライト部品の製造方法
JP4203949B2 (ja) * 2003-04-03 2009-01-07 Tdk株式会社 コモンモードフィルタ
JP4370817B2 (ja) 2003-06-09 2009-11-25 Tdk株式会社 フェライト基板の製造方法
JP2005112903A (ja) * 2003-10-03 2005-04-28 Murata Mfg Co Ltd 複合材料、複合材料成形体、及びこれを用いた電子部品
JP5196704B2 (ja) * 2004-03-12 2013-05-15 京セラ株式会社 フェライト焼結体の製造方法
JP2007091538A (ja) * 2005-09-29 2007-04-12 Tdk Corp 非磁性Znフェライトおよびこれを用いた複合積層型電子部品
JP4640092B2 (ja) * 2005-10-04 2011-03-02 Tdk株式会社 積層型圧電素子及びその製造方法
CN101183581A (zh) * 2006-12-29 2008-05-21 横店集团东磁股份有限公司 高直流叠加MnZn高磁导率铁氧体及其制备方法
JP5841312B2 (ja) * 2007-04-17 2016-01-13 日立金属株式会社 低損失フェライト及びこれを用いた電子部品
US8436708B2 (en) * 2007-12-25 2013-05-07 Hitachi Metals, Ltd. Multilayer inductor and power converter comprising it
JP4831101B2 (ja) * 2008-03-26 2011-12-07 Tdk株式会社 積層トランス部品及びその製造方法
JP4866893B2 (ja) * 2008-10-30 2012-02-01 日立オートモティブシステムズ株式会社 電磁駆動型弁機構及びこれを用いた高圧燃料供給ポンプ
JP5126616B2 (ja) * 2009-05-26 2013-01-23 株式会社村田製作所 磁性体セラミック、セラミック電子部品、及びセラミック電子部品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461203A (ja) * 1990-06-28 1992-02-27 Murata Mfg Co Ltd 銅導体一体焼成型フェライト素子
JPH0797525B2 (ja) 1990-06-28 1995-10-18 株式会社村田製作所 銅導体一体焼成型フェライト素子
JPH05326242A (ja) * 1992-05-15 1993-12-10 Tdk Corp フェライト焼結体、チップインダクタ部品、複合積層部品および磁心
JPH0869939A (ja) * 1994-06-23 1996-03-12 Murata Mfg Co Ltd 積層セラミックコンデンサおよびその製造方法
JPH097880A (ja) * 1995-06-26 1997-01-10 Murata Mfg Co Ltd 積層セラミックコンデンサ及びその製造方法
JP2004323283A (ja) * 2003-04-23 2004-11-18 Tdk Corp フェライト焼結体、フェライト焼結体の製造方法
JP2006219306A (ja) 2005-02-08 2006-08-24 Tdk Corp 酸化物磁性材料及び積層型インダクタ
WO2007066453A1 (ja) * 2005-12-08 2007-06-14 Murata Manufacturing Co., Ltd. 積層型圧電素子およびその製造方法
JP2010018482A (ja) * 2008-07-10 2010-01-28 Tdk Corp フェライト及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065845A (ja) * 2011-09-02 2013-04-11 Murata Mfg Co Ltd コモンモードチョークコイルおよびその製造方法
WO2014050867A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 積層コイル部品およびその製造方法
KR20150082452A (ko) 2012-12-14 2015-07-15 가부시키가이샤 무라타 세이사쿠쇼 적층 코일 부품
WO2014092114A1 (ja) * 2012-12-14 2014-06-19 株式会社村田製作所 積層コイル部品
JP2014120566A (ja) * 2012-12-14 2014-06-30 Kyocera Corp コイル内蔵配線基板
US9748034B2 (en) 2012-12-14 2017-08-29 Murata Manufacturing Co., Ltd. Laminated coil component
JPWO2014092114A1 (ja) * 2012-12-14 2017-01-12 株式会社村田製作所 積層コイル部品
US20150270056A1 (en) * 2012-12-14 2015-09-24 Murata Manufacturing Co., Ltd. Laminated coil component
US20140176282A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Electromagnetic induction module for wireless charging element and method of manufacturing the same
JP2014165307A (ja) * 2013-02-25 2014-09-08 Murata Mfg Co Ltd フェライト磁器組成物、及びセラミック電子部品
JP2015023275A (ja) * 2013-07-19 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. フェライト及びこれを適用したインダクタ
US20150022305A1 (en) * 2013-07-19 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same
US10236104B2 (en) * 2013-07-19 2019-03-19 Samsung Electro-Mechanics Co., Ltd. Ferrite and inductor including the same
JP2015095512A (ja) * 2013-11-11 2015-05-18 株式会社村田製作所 積層コイル部品およびその製造方法
JP2015214434A (ja) * 2014-05-08 2015-12-03 株式会社村田製作所 フェライト磁器、コイル装置およびフェライト磁器の作製方法

Also Published As

Publication number Publication date
JPWO2011108701A1 (ja) 2013-06-27
JP2014179621A (ja) 2014-09-25
US9595377B2 (en) 2017-03-14
JP5979609B2 (ja) 2016-08-24
US20120326828A1 (en) 2012-12-27
JP5556880B2 (ja) 2014-07-23
EP2544200B1 (en) 2020-08-26
KR101673727B1 (ko) 2016-11-07
KR20140078715A (ko) 2014-06-25
CN102792395A (zh) 2012-11-21
KR101475129B1 (ko) 2014-12-22
US20170140871A1 (en) 2017-05-18
US9741489B2 (en) 2017-08-22
KR20120123540A (ko) 2012-11-08
EP2544200A1 (en) 2013-01-09
CN102792395B (zh) 2016-07-06
EP2544200A4 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP5556880B2 (ja) セラミック電子部品、及びセラミック電子部品の製造方法
TWI503851B (zh) Laminated coil parts
JP5761609B2 (ja) セラミック電子部品、及びセラミック電子部品の製造方法
JP5729658B2 (ja) セラミック電子部品、及びセラミック電子部品の製造方法
JPWO2011093489A1 (ja) 電子部品の製造方法
JP5761610B2 (ja) セラミック電子部品、及びセラミック電子部品の製造方法
WO2014092114A1 (ja) 積層コイル部品
JP5717044B2 (ja) セラミック電子部品
KR101431954B1 (ko) 코일 부품 및 이의 제조방법
JP5733572B2 (ja) セラミック電子部品、及びセラミック電子部品の製造方法
WO2016072427A1 (ja) 積層コイル部品
WO2016072428A1 (ja) 積層コイル部品
WO2013021885A1 (ja) セラミック電子部品の製造方法
WO2014050867A1 (ja) 積層コイル部品およびその製造方法
JP6414376B2 (ja) セラミック電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012470.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503285

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011750810

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127023151

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE