WO2011108090A1 - 液圧ブレーキシステム - Google Patents

液圧ブレーキシステム Download PDF

Info

Publication number
WO2011108090A1
WO2011108090A1 PCT/JP2010/053447 JP2010053447W WO2011108090A1 WO 2011108090 A1 WO2011108090 A1 WO 2011108090A1 JP 2010053447 W JP2010053447 W JP 2010053447W WO 2011108090 A1 WO2011108090 A1 WO 2011108090A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
hydraulic
brake
brake system
manual
Prior art date
Application number
PCT/JP2010/053447
Other languages
English (en)
French (fr)
Inventor
徹也 宮崎
貴之 山本
義人 田中
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080065198.1A priority Critical patent/CN102791551B/zh
Priority to US13/508,818 priority patent/US9533663B2/en
Priority to JP2012502929A priority patent/JP5170341B2/ja
Priority to PCT/JP2010/053447 priority patent/WO2011108090A1/ja
Priority to DE112010005332T priority patent/DE112010005332T5/de
Publication of WO2011108090A1 publication Critical patent/WO2011108090A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/885Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/88Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
    • B60T8/92Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action
    • B60T8/94Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means automatically taking corrective action on a fluid pressure regulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/402Back-up

Definitions

  • the present invention relates to a hydraulic brake system including a hydraulic brake that suppresses rotation of a wheel.
  • Patent Document 1 In the hydraulic brake system described in Patent Document 1, (a) a master cylinder, (b) a power hydraulic pressure generator including a pump device and an accumulator, (c) a plurality of brake cylinders, (d) these are connected And an output hydraulic pressure control valve is provided between the power hydraulic pressure generator and the common passage.
  • the output hydraulic pressure of the power hydraulic generator is controlled by the output hydraulic pressure control valve, supplied to the common passage, and supplied to the plurality of brake cylinders.
  • Patent Document 2 describes a hydraulic brake system including a power hydraulic pressure generator.
  • the power hydraulic pressure generator is connected to a fluid passage that connects the master cylinder and the brake cylinder via a valve mechanism 13 and shuttle valves 17 and 18.
  • the higher one of the hydraulic pressure of the valve mechanism 13 and the hydraulic pressure of the master cylinder is selected by the shuttle valves 17 and 18 and supplied to the brake cylinder.
  • an individual control valve is provided in the middle of a fluid passage connecting the power hydraulic pressure generator and the brake cylinder, and a master cylinder is provided downstream of the individual control valve in the fluid passage. Is connected.
  • the hydraulic pressure of the brake cylinder is controlled using the hydraulic pressure of the power hydraulic pressure generator under the control of the individual control valve while the brake cylinder is disconnected from the master cylinder. Be controlled.
  • the hydraulic pressure of the master cylinder is supplied.
  • the output hydraulic pressure of the pump device is controlled and supplied to the hydraulic chamber behind the pressurizing piston of the master cylinder after the assist limit of the vacuum booster.
  • the hydraulic pressure of the brake cylinder can be increased in a state where the ratio of the hydraulic pressure of the brake cylinder to the brake operation force is the same before and after the assist limit.
  • a relief valve is provided between the main passage connecting the master cylinder and the brake cylinder and the pump device, and when the pump discharge pressure becomes excessive, the discharge pressure is supplied from the pump to the main passage. Is done.
  • JP2006-123889 Special table 2009-502645 JP-A-10-287227 JP 2001-287737
  • An object of the present invention is to improve the hydraulic brake system.
  • the hydraulic brake system includes: (A) a first hydraulic pressure generator including a manual hydraulic pressure source that generates hydraulic pressure by operating a brake operation member of a driver; and (B) electric energy. And a second hydraulic pressure generator that includes a power hydraulic pressure source that generates hydraulic pressure, and is provided corresponding to each of a plurality of wheels of the vehicle.
  • a plurality of hydraulic brakes actuated by hydraulic pressure to suppress rotation of the wheels; (D) (i) the manual hydraulic pressure source and at least one brake cylinder of the plurality of hydraulic brakes; A communication device capable of communicating with both, (ii) the first hydraulic pressure generating device, (iii) a manual related brake system including the at least one brake cylinder, (E) the manual related brake system and the With the second hydraulic pressure generator And (i) an output hydraulic pressure control device capable of controlling the output hydraulic pressure of the second hydraulic pressure generating device, and (ii) from the second hydraulic pressure generating device to the manual-related brake system. And a flow suppressing device that suppresses the flow of the hydraulic fluid.
  • the output hydraulic pressure control device and the flow suppression device are provided in parallel between the manual-related brake system and the second hydraulic pressure generating device.
  • the output hydraulic pressure of the second hydraulic pressure generator is controlled by the output hydraulic pressure control device and supplied to the manual related brake system, and supplied to the brake cylinder.
  • the pressure brake is activated. It is controlled by the control of the output hydraulic pressure control device so that the hydraulic pressure of the brake cylinder approaches the required hydraulic pressure.
  • the hydraulic pressure of the second hydraulic pressure generator is supplied to the manual related brake system via the flow control device.
  • the hydraulic pressure when the operating force applied to the brake operating member is the same can be increased, and the hydraulic pressure of the brake cylinder can be increased.
  • the hydraulic pressure of the second hydraulic pressure generator is supplied to the manual related brake system via the flow control device, (i) excessive hydraulic fluid is supplied to the manual related brake system.
  • Avoid at least one of supplying a large flow rate of hydraulic fluid and (i) Supply an excessive hydraulic pressure to the manual hydraulic pressure source and (ii) Operate at a high flow rate At least one of supplying the liquid can be avoided.
  • the output hydraulic pressure control device is provided between the second hydraulic pressure generator and the manual related brake system, and the flow suppression device is connected to the ⁇ communication device of the second hydraulic pressure generator and the manual related brake system.
  • a portion including at least one brake cylinder and a manual hydraulic pressure source that is, a portion of the manual related brake system excluding the portion other than the manual hydraulic pressure source of the first hydraulic pressure generator ⁇ Can be made.
  • Patent Documents 1 to 4 each describe a hydraulic brake system in which an output hydraulic pressure control device and a flow suppression device are provided in parallel between a manual-related brake system and a second hydraulic pressure generator. Not.
  • claimable invention is at least the “present invention” to the invention described in the claims.
  • Some aspects of the present invention, including subordinate concept inventions of the present invention, superordinate concepts of the present invention, or inventions of different concepts) will be illustrated and described.
  • each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the set of components constituting the claimable invention to those described in the following sections.
  • the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiments, etc., and as long as the interpretation is followed, another aspect is added to the form of each section. Moreover, the aspect which deleted the component from the aspect of each term can also be one aspect of the claimable invention.
  • a first hydraulic pressure generator including a manual hydraulic pressure source that generates hydraulic pressure by operating a brake operation member of a driver;
  • a second hydraulic pressure generator that includes a power hydraulic pressure source that is actuated by supply of electrical energy and generates hydraulic pressure;
  • a plurality of hydraulic brakes provided corresponding to each of the plurality of wheels of the vehicle, each operated by the hydraulic pressure of each of the plurality of brake cylinders, and suppressing rotation of the wheels;
  • a communication device capable of communicating with the manual hydraulic pressure source and at least one brake cylinder of the plurality of hydraulic brakes;
  • the first hydraulic pressure generating device A manual associated brake system including at least one brake cylinder;
  • an output hydraulic pressure control device that is provided in parallel with each other between the manual-related brake system and the second hydraulic pressure generator, and that can control the output hydraulic pressure of the second hydraulic pressure generator;
  • a hydraulic brake system including a flow suppressing device that suppresses a flow of hydraulic fluid from the second hydraulic pressure generating device to the manual-related brake system.
  • the first hydraulic pressure generator includes (x) a manual hydraulic pressure source, and can be a master cylinder, for example. (y) Further, it may include a manual hydraulic pressure source and a control mechanism capable of controlling the hydraulic pressure of the manual hydraulic pressure source, and the control mechanism is operated by the hydraulic pressure of the second hydraulic pressure generator. Can be made. For example, (y-1) a master cylinder with a hydraulic pressure booster, (y-2) a state in which a hydraulic pressure is generated according to an operating force applied to a brake operating member, and an operating force applied to the brake operating member It is possible to take a state in which a hydraulic pressure having an irrelevant size is generated.
  • the first hydraulic pressure generator includes a pressurizing piston, (a) the pressurizing piston is advanced by operation of a brake operating member, and (b) a brake. Regardless of the operation of the operation member, it is possible to assume a state in which it is advanced by the hydraulic pressure of the second hydraulic pressure generator.
  • the front pressurizing chamber in front of the pressurizing piston it can be considered that it corresponds to a manual hydraulic pressure source because the pressurizing piston generates hydraulic pressure by operating force in a state where the pressurizing piston is advanced by operation of the brake operating member. it can.
  • the second hydraulic pressure generator can be connected in a state where its hydraulic pressure acts behind the pressurizing piston.
  • the first hydraulic pressure generating device does not include a reservoir because it can generate a hydraulic pressure.
  • the second hydraulic pressure generating device includes a power hydraulic pressure source including a drive source that is operated by supplying electric energy and a hydraulic fluid supply unit that is operable by the drive source.
  • the second hydraulic pressure generating device may include a power hydraulic pressure source and an accumulator that stores the hydraulic fluid supplied from the hydraulic fluid supply unit in a pressurized state.
  • the output hydraulic pressure control device can include, for example, one or more electromagnetic on-off valves that can control the output hydraulic pressure of the second hydraulic pressure generating device.
  • the electromagnetic on-off valve is a valve that can be controlled at least in an open state and a closed state by controlling a supply current to the coil of the solenoid (hereinafter simply referred to as a supply current to the solenoid). Even with a linear control valve that can continuously control the differential pressure (or / and) opening degree of the front and rear by continuous control, the open and closed states are controlled by ON / OFF control of the current supplied to the solenoid. It may be a simple electromagnetic on-off valve that can be switched between.
  • an electromagnetic on-off valve it may be a linear control valve or a simple on-off valve.
  • the flow restricting device restricts the free and bidirectional flow between the second hydraulic pressure generating device and the manual-related brake system, and always prevents the flow of hydraulic fluid between them. It is not a thing. For example, as compared with the case where the flow suppressing device is not provided, the flow rate is suppressed or the pressure is reduced and supplied. Specifically, (a) a pressure reducing device having a function of reducing the hydraulic pressure of the second hydraulic pressure generating device and supplying it to the manual related brake system; and (b) a second hydraulic pressure generating device in the manual related brake system.
  • the flow of hydraulic fluid to the manual related brake system is allowed when the hydraulic pressure is required, and the flow is allowed or blocked to prevent the flow of hydraulic fluid to the manual related brake system or bidirectional flow when unnecessary.
  • the manual-related brake system includes a first hydraulic pressure generator, a communication device, and at least one brake cylinder, and the communication device can communicate with both the manual hydraulic pressure source and at least one brake cylinder.
  • the communication device may include a main passage (master passage) that connects the manual hydraulic pressure source and at least one brake cylinder, or may include a main passage and a fluid passage, a device, and the like connected to the main passage. .
  • the number of brake cylinders communicated with the manual hydraulic pressure source by the communication device may be one or two or more.
  • the second hydraulic pressure generator When the hydraulic brake system is in a state where the hydraulic brake system cannot control the output hydraulic pressure of the second hydraulic pressure generator by the output hydraulic pressure control device, the second hydraulic pressure generator
  • the hydraulic pressure of the second hydraulic generator when the output hydraulic pressure of the second hydraulic pressure generator cannot be controlled by the output hydraulic pressure controller, the hydraulic pressure of the second hydraulic generator is supplied to the manual related brake system. can do.
  • the hydraulic fluid since the hydraulic fluid is supplied through the flow control device, it is possible to avoid supplying the hydraulic fluid with excessive hydraulic pressure or supplying the hydraulic fluid at a large flow rate to the manual-related brake system. .
  • the power hydraulic pressure source is The hydraulic brake system according to any one of items (1) to (3), including a power-type hydraulic pressure source control device to be controlled.
  • the state where the output hydraulic pressure of the second hydraulic pressure generator cannot be controlled by the output hydraulic pressure control device refers to a state where the control system of the hydraulic brake system is abnormal.
  • operate a motive power type hydraulic pressure source corresponds.
  • the power type hydraulic pressure source can be operated.
  • the power hydraulic pressure source when the power hydraulic pressure source is controlled by a sub computer different from the main computer that controls the output hydraulic pressure control device, the power hydraulic pressure source is controlled by the sub computer even if the main computer is abnormal. can do. Furthermore, if the power hydraulic pressure source and the sub computer that controls the power hydraulic pressure source are operable by power supplied from a sub power source different from the main power source, the main power If the sub power source and the sub computer are normal even if the electric system includes a malfunction, the power hydraulic pressure source can be controlled. In addition, about a power type hydraulic pressure source, it can be set as a dual type
  • the power hydraulic pressure source can be supplied with power from a main power source and a sub power source, or can be controlled by both the main computer and the sub computer. Further, in a state where the output hydraulic pressure can be controlled by the output hydraulic pressure control device (normal state), the flow of hydraulic fluid from the second hydraulic pressure generating device to the manual related brake system through the flow suppressing device is prevented. Is desirable. Further, when the power hydraulic pressure source is operated due to an abnormality in the control system of the hydraulic brake system, the hydraulic fluid is supplied from the second hydraulic pressure generator to the manual related brake system via the output hydraulic pressure control device. Is desirable but not essential.
  • the hydraulic brake system includes: a main power source that supplies power to the output hydraulic pressure control device; and a sub power source that supplies power to the power hydraulic pressure source.
  • the hydraulic brake system according to any one of the above.
  • the hydraulic brake system includes a main computer (CPU) that controls the output hydraulic pressure control device and a subcomputer (CPU) that controls the power hydraulic pressure source.
  • the hydraulic brake system according to any one of items 1). Power can be supplied from the main power source to the main computer, and power can be supplied from the sub power source to the sub computer.
  • the communication device includes a manual passage that connects the manual hydraulic pressure source and the at least one brake cylinder,
  • the hydraulic brake system according to any one of (1) to (6), wherein the flow suppressing device is provided between the second hydraulic pressure generating device and the manual passage.
  • the hydraulic pressure is supplied from the second hydraulic pressure generating device to the manual passage through the flow suppressing device.
  • the hydraulic pressure supplied through the flow suppressing device is supplied to a manual hydraulic pressure source and to a brake cylinder connected to the manual passage.
  • the hydraulic brake system includes a manual shut-off valve that is an electromagnetic on-off valve that is provided in the manual passage and can be switched at least between an open state and a closed state by controlling supply of current to the solenoid.
  • the hydraulic brake system according to (7) wherein the flow suppressing device is provided between the second hydraulic pressure generating device and a portion of the manual passage closer to the brake cylinder than the manual shut-off valve.
  • the hydraulic pressure of the second hydraulic pressure generator is not required in the manual-related brake system (when hydraulic fluid is not supplied to the manual passage)
  • the hydraulic fluid is manually braked due to an abnormality in the flow control device. May be supplied to the grid.
  • the hydraulic pressure of the second hydraulic pressure generator supplied to the manual passage is supplied to the manual hydraulic pressure source, a force is applied to the brake operation member, and the driver may feel uncomfortable.
  • the hydraulic pressure of the manual hydraulic pressure source increases with respect to the stroke of the brake operation member, there is a possibility that the manual hydraulic pressure source is erroneously detected as being abnormal although the manual hydraulic pressure source is normal.
  • the hydraulic pressure of the second hydraulic pressure generator is supplied to the downstream side of the manual shut-off valve (opposite the manual hydraulic pressure source) and the manual shut-off valve is in the closed state, Since the supply of the hydraulic pressure of the second hydraulic pressure generator supplied to the passage to the manual hydraulic pressure source is prevented, the influence on the brake operation member can be prevented and the uncomfortable feeling can be reduced. Moreover, since supply of the working fluid to the manual hydraulic pressure source is prevented, it is possible to prevent erroneous detection that the manual hydraulic pressure source is abnormal.
  • the communication device includes: (i) a common passage in which the at least one brake cylinder is connected to each other via an individual passage; (ii) one of the at least one individual passage; and (iii) ) Including one individual passage and an individual connection passage connecting the manual hydraulic pressure source,
  • the hydraulic brake system according to any one of (1) to (8), wherein the flow suppressing device is provided between the second hydraulic pressure generating device and the individual connection passage.
  • the manual passage is constituted by the individual connection passage and the portion of the individual passage on the brake cylinder side from the connection portion of the individual connection passage, and the flow suppressing device includes the second hydraulic pressure generator, the manual passage, It is provided between the individual connection passages which are a part.
  • the communication device includes: (i) a common passage in which the at least one brake cylinder is connected to each other via an individual passage; (ii) one of the at least one individual passage; and (iii) ) Including one individual passage and an individual connection passage connecting the manual hydraulic pressure source, The hydraulic brake system according to any one of (1) to (9), wherein the flow suppressing device is provided between the second hydraulic pressure generating device and the common passage.
  • the hydraulic pressure of the second hydraulic pressure generator is supplied to the common passage through the flow suppressing device.
  • the hydraulic pressure supplied to the common passage is supplied to the manual hydraulic pressure source through the individual passage and the individual connection passage, and is also supplied to the brake cylinder through the individual passage.
  • the one individual passage is provided with an individual control valve capable of controlling the hydraulic pressure of the brake cylinder connected to the individual passage, and the individual connection passage is the individual control of the one individual passage.
  • the individual connection passage is connected to a portion closer to the brake cylinder than the individual control valve of the individual passage.
  • the flow suppressing device and the individual control valve are interposed between the second hydraulic pressure generating device and the individual connection passage.
  • the brake system including the individual connection passage and the manual hydraulic pressure source can be achieved by closing the individual control valve.
  • the (first brake system) and the brake system (second brake system) including the second hydraulic pressure generator can be made independent of each other. As a result, even if liquid leakage occurs in any one of the first brake system and the second brake system, the influence can be prevented from affecting the other.
  • the individual control valve may be a control valve used for slip control such as antilock control.
  • the communication device includes: (i) a common passage in which the at least one brake cylinder is connected to each other via an individual passage; (ii) one of the at least one individual passage; and (iii) A common connection passage connecting the common passage and the manual hydraulic pressure source;
  • the hydraulic brake system according to any one of (1) to (12), wherein the flow suppressing device is provided between the second hydraulic pressure generating device and the common passage.
  • the output hydraulic pressure control device according to any one of (1) to (15), wherein the output hydraulic pressure control device is provided between the second hydraulic pressure generator and the first hydraulic pressure generator. Hydraulic brake system.
  • the output hydraulic pressure control device includes an electromagnetic on-off valve that can be switched at least between an open state and a closed state by controlling the supply of current to the solenoid. Hydraulic brake system as described in (18)
  • the output hydraulic pressure control device according to any one of (1) to (17), wherein the output hydraulic pressure control device includes a linear control valve capable of controlling a differential pressure before and after the current supplied to the solenoid. Hydraulic brake system.
  • the output hydraulic pressure control device can control the differential pressure before and after by controlling the magnitude of the supply current to the solenoid, even if it includes a simple solenoid on-off valve that can be opened and closed by turning the supply current to the solenoid on and off A linear control valve may be included.
  • the output hydraulic pressure control device can control the control target hydraulic pressure more finely when the linear control valve is included than when the simple hydraulic control valve is included. In addition, operating noise can be reduced.
  • the output hydraulic pressure control device includes a pressure increase control valve (provided between the second hydraulic pressure generation device and the manual-related brake system) for reducing and outputting the output hydraulic pressure of the second hydraulic pressure generation device, and increasing the pressure Even including both a pressure reducing control valve (provided between the control side of the pressure increasing control valve and the low pressure source) for further reducing the control pressure of the control valve (hydraulic pressure of the manual related brake system)
  • the pressure increase control valve may be included but the pressure decrease control valve may not be included.
  • the pressure increase control valve is a linear control valve, the differential pressure between the hydraulic pressure of the second hydraulic pressure generator and the hydraulic pressure of the manual-related brake system is controlled.
  • the hydraulic pressure of the second hydraulic pressure generator Can be regarded as substantially constant, the hydraulic pressure of the manual-related brake system is controlled to a magnitude corresponding to the magnitude of the current supplied to the solenoid.
  • the hydraulic brake system according to any one of items (1) to (18), including a relief valve that allows the flow of hydraulic fluid.
  • the flow suppressing device can be switched at least between an open state and a closed state by current supply control to the solenoid, and is normally closed when no current is supplied to the solenoid.
  • the hydraulic brake system according to any one of (1) to (19), including an on-off valve.
  • the electromagnetic on-off valve is a seating valve, it usually includes a valve element, a valve seat, and a spring that urges the valve element to the valve seat.
  • the electromagnetic on-off valve When the electromagnetic on-off valve is disposed in a state where the valve element receives the hydraulic pressure of the second hydraulic pressure generator, the differential pressure before and after becomes larger than the biasing force of the spring in the closed state of the electromagnetic on-off valve The valve disc is moved away from the valve seat and switched to the open state.
  • the electromagnetic on-off valve is used as a relief valve.
  • the set pressure of the relief valve (which can be referred to as the valve opening pressure or the relief pressure) remains in the closed state even when the hydraulic pressure of the second hydraulic pressure generator is applied.
  • the control system is held abnormally, it is desirable that the power hydraulic pressure source be controlled so as to be opened.
  • the electromagnetic on-off valve can also be used as an output hydraulic pressure control device when the hydraulic brake system is normal. Further, even when the hydraulic pressure of the second hydraulic pressure generator cannot be controlled by the output hydraulic pressure control device, when the electromagnetic on-off valve is controllable, the second on-off valve can be controlled by controlling the electromagnetic on-off valve.
  • the flow of hydraulic fluid from the pressure generator to the manual brake system can be controlled.
  • the flow suppression device includes a backflow prevention unit having a function of blocking the flow of hydraulic fluid from the manual-related brake system to the second hydraulic pressure generation device.
  • the hydraulic brake system according to any one of the above. It is desirable to prevent the flow of hydraulic fluid from the manual related brake system to the second hydraulic pressure generator.
  • the above-described electromagnetic on-off valve and relief valve can be considered to have a backflow prevention unit.
  • the power hydraulic pressure source includes: (i) a drive source; and (ii) a hydraulic fluid supply unit that is actuated by the drive source and supplies hydraulic fluid
  • the second hydraulic pressure generator includes: The hydraulic brake system according to any one of (1) to (21), including an accumulator that holds the hydraulic fluid supplied from the hydraulic fluid supply unit in a pressurized state.
  • a check valve that prevents the flow of hydraulic fluid from the accumulator toward the flow suppression device is not provided between the flow suppression device and the accumulator.
  • the normal time control unit may include a start / stop unit that starts the drive source when the accumulator pressure becomes lower than the lower limit value of the setting range and stops when the accumulator pressure exceeds the upper limit value. Thereby, the accumulator pressure is maintained within the set range.
  • the abnormal time control unit can control the flow rate of the hydraulic fluid supplied from the hydraulic fluid supply unit to be almost the set value, and the flow rate of the hydraulic fluid supplied to the manual hydraulic pressure source to be almost the set value. . Even if the operating force applied to the driver's brake operating member is the same, the set value is not limited as long as the hydraulic pressure of the manual hydraulic pressure source can be increased.
  • the size of the manual hydraulic pressure source can be adjusted by the driver, or the size determined by the driver's operating force (for example, a size capable of generating a hydraulic pressure greater than the set value by the operating force). You can do it.
  • the set value may be a fixed value or a variable value, and can be determined each time based on the state of the manual hydraulic pressure source (including the operation state of the brake operation member by the driver).
  • the abnormal time control unit may include a pattern correspondence control unit that controls the flow rate of the hydraulic fluid supplied from the hydraulic fluid supply unit to change according to the pattern.
  • the set value may mean a final value or may mean each value that is changed according to a pattern.
  • the abnormal time control unit may include an electric motor control unit that controls the rotational speed of the electric motor to be a set value when the drive source is an electric motor.
  • the electric motor control unit can include a pattern correspondence control unit that controls the supply current so that the rotation speed of the electric motor changes according to a predetermined pattern.
  • the abnormal-time control unit can be included in the power hydraulic pressure source control device.
  • the manual hydraulic pressure source includes two pressurizing pistons, and each of the pressurizing chambers of the tandem master cylinder generates hydraulic pressure in the two pressurizing chambers by operating the brake operating member.
  • Each of the pressurization chambers is connected to each of the front wheel individual passages via a front wheel individual connection passage
  • the communication device includes: (i) the front wheel common passage; (ii) one of the two front wheel individual passages; and (iii) one front wheel individual passage connected to one of the front wheel individual passages.
  • the hydraulic brake system according to any one of (1) to (23), including a connection passage.
  • the left and right front wheel brake cylinders are each connected to the pressurizing chamber of the master cylinder without going through the front wheel common passage.
  • the manual-related brake system includes a communication device, a pressurizing chamber to which one front wheel individual connection passage is connected, and one brake cylinder connected to the pressurizing chamber.
  • the hydraulic brake system is provided in (i) the one front wheel individual passage, which can be switched between an open state and a closed state by current supply control to the solenoid, and current is supplied to the solenoid.
  • a front-wheel individual control valve that is a normally-open electromagnetic on-off valve that is open when it is not, and (ii) provided on the other of the two front-wheel individual passages, and opened and closed by current supply control to the solenoid.
  • a front-wheel individual control valve that is a normally-closed electromagnetic on-off valve that is closed when no current is supplied to the solenoid.
  • the one front wheel individual connection passage is connected to a portion of the one front wheel individual passage downstream from the normally open front wheel individual control valve, and the other front wheel individual connection passage is connected to the other front wheel
  • the hydraulic brake system according to item (24), which is connected to a downstream portion of the normally closed front wheel individual control valve of the individual closed passage.
  • One front wheel individual control valve provided in one front wheel individual passage is a normally open electromagnetic on / off valve, and the other front wheel individual control valve provided in the other front wheel individual passage is normally closed. It is a valve.
  • the hydraulic pressure of the second hydraulic pressure generator supplied to the front wheel common passage is for the normally open front wheel.
  • the hydraulic brake system includes a manual shut-off valve that is a normally open electromagnetic on-off valve that is provided in each of the two front wheel individual connection passages and is open when no current is supplied to the solenoid.
  • the hydraulic brake system according to item 24) or (25). Since the manual shut-off valve is a normally open electromagnetic on-off valve, it is open when no current is supplied to the solenoid. Therefore, the hydraulic pressure of the second hydraulic pressure generator supplied to the one individual front wheel connection passage can be supplied to both the brake cylinder and the manual hydraulic pressure source. (27) The hydraulic pressure according to any one of (24) to (26), wherein a movement restricting portion for restricting movement of the two pressure pistons is provided on the other of the two pressure chambers. Brake system. Since the movement restricting portion is provided in the other pressurizing chamber, it is desirable that the hydraulic pressure of the second hydraulic pressure generating device is supplied to the one pressurizing chamber via the flow suppressing device.
  • the first hydraulic pressure generator includes a hydraulic booster that boosts an operating force applied to the brake operating member, and the output hydraulic pressure control device includes the second hydraulic pressure generator and the hydraulic pressure booster.
  • the hydraulic brake system according to any one of items (1) to (27) provided between the pressure booster and the pressure booster.
  • the first hydraulic pressure generator includes: (a) a pressurizing piston that is advanced as the brake operating member advances; (b) a front pressurizing chamber provided in front of the pressurizing piston; Including a rear hydraulic chamber (which can be referred to as a booster chamber) provided behind the pressure piston, a brake cylinder is connected to the front pressurization chamber, and a second hydraulic pressure generator is connected to the rear hydraulic chamber. It is connected via a pressure control device.
  • the hydraulic pressure in the front pressurizing chamber is set to a hydraulic pressure corresponding to the magnitude obtained by boosting the brake operating force.
  • the flow suppressing device includes a pressurizing chamber, a communication device capable of communicating with the pressurizing chamber and the brake cylinder, and a pressurizing chamber related brake system including a brake cylinder (part of the manual related brake system: first hydraulic pressure generation) It can be provided between the device and the front portion of the device.
  • first hydraulic pressure generating device the pressurizing piston is advanced as the brake operating member advances, so that the hydraulic pressure is supplied to the rear hydraulic pressure chamber so that the front pressurizing chamber is operated with the brake operating member operated.
  • the hydraulic pressure corresponding to the force (the hydraulic pressure in the front pressurizing chamber when no hydraulic pressure is supplied to the rear hydraulic chamber. When the brake operation member is not operated, the hydraulic pressure in the front pressurizing chamber is A higher hydraulic pressure will be generated (sometimes atmospheric pressure).
  • the first hydraulic pressure generating device has (a) a manual-based hydraulic pressure generation state in which hydraulic pressure is generated by operating a brake operating member, and (b) a hydraulic pressure controlled by the output hydraulic pressure control device. A second hydraulic pressure-dependent hydraulic pressure generation state in which hydraulic pressure is generated by being supplied, and (c) a stroke simulator state in which a reaction force is applied in response to the operation of the brake operation member (1)
  • the hydraulic brake system according to any one of items) to (28).
  • the first hydraulic pressure generating device includes: (a) a housing; (b) a pressure piston that is liquid-tightly and slidably fitted to the housing; and (c) a front of the pressure piston.
  • a reaction force application mechanism that applies a reaction force to the brake operation member, and (f) the brake operation member and the pressurization piston are linked to each other in the pressurization chamber.
  • a manual hydraulic pressure generating mechanism for generating a hydraulic pressure corresponding to the operation of the brake operating member, and the second hydraulic pressure generating device is connected to the rear hydraulic pressure chamber via the output hydraulic pressure control device ( The hydraulic brake system according to item 29). (31) When the hydraulic brake system is in a state in which a reaction force is applied to the brake operation member by the reaction force applying mechanism, the output hydraulic pressure control device is set based on a required hydraulic pressure of the hydraulic brake.
  • a rear hydraulic pressure control unit that controls the flow control device, wherein the flow suppression device includes the front pressurization chamber, the at least one brake cylinder, the front pressurization chamber, and at least one brake in the manual-related brake system.
  • the hydraulic brake system according to item (30) which is provided between a pressurizing chamber related brake system including a communication device capable of communicating with a cylinder and the second hydraulic pressure generating device.
  • the hydraulic pressure in the front pressurizing chamber is the rear hydraulic pressure in a state where the brake operation member is disconnected from the pressurizing piston. It is controlled by controlling the fluid pressure in the chamber.
  • the hydraulic pressure in the front pressurizing chamber can be controlled to be lower than the hydraulic pressure corresponding to the brake operating force when the pressurizing piston and the brake operating member are linked.
  • the hydraulic pressure is generated in the front pressurizing chamber by preventing the hydraulic pressure from being supplied to the rear hydraulic chamber. It can be prevented from being made.
  • the reaction force application mechanism is provided, even in these cases, the operation of the brake operation member is allowed and the operation feeling is prevented from being lowered.
  • the hydraulic brake system described in this section is suitable for regenerative cooperative control.
  • a manual hydraulic pressure source that generates hydraulic pressure by operating the brake operation member of the driver; (a) a power hydraulic pressure source that is operated by supplying electric energy and generates a hydraulic pressure; and (b) an accumulator that stores hydraulic fluid supplied from the power hydraulic pressure source in a pressurized state.
  • the hydraulic pressure generator is provided between the manual hydraulic pressure source and the power hydraulic pressure generator with a pressure accumulating function
  • the hydraulic pressure of the power hydraulic pressure generator with the pressure accumulating function is a set pressure from the hydraulic pressure of the manual hydraulic pressure source
  • a hydraulic brake system comprising a relief valve that allows the flow of hydraulic fluid from the power hydraulic generator with a pressure accumulation function to the manual hydraulic pressure source when the pressure is larger than the above.
  • an accumulator that stores hydraulic fluid in a pressurized state is not provided. Therefore, there is no description in Patent Document 4 that suggests the technical features described in this section.
  • the technical features described in any one of items (1) to (31) can be employed in the hydraulic brake system described in this item.
  • a manual hydraulic pressure source that generates hydraulic pressure by operating the brake operation member of the driver
  • a motive hydraulic pressure generator having a motive hydraulic pressure source that is actuated by supply of electrical energy and generates hydraulic pressure
  • a plurality of hydraulic brakes provided corresponding to each of the plurality of wheels of the vehicle, each operated by a hydraulic pressure of a brake cylinder, and suppressing rotation of the wheels
  • a brake hydraulic pressure control device that controls the hydraulic pressure of the brake cylinder by using the hydraulic pressure of the power hydraulic pressure generator by cutting off the brake cylinder from the manual hydraulic pressure source
  • a manual-related brake system including the manual hydraulic pressure source, at least one of the plurality of brake cylinders, and a communication device capable of communicating with the manual hydraulic pressure source and the at least one brake cylinder;
  • a relief valve that allows the flow of hydraulic fluid to the manual-related brake system;
  • the brake hydraulic pressure control device When the brake hydraulic pressure control device is abnormal, the hydraulic pressure of the power hydraulic pressure generator is supplied to the manual-related brake system, and when the operating force of the brake operating member is the same, the hydraulic pressure of the brake cylinder is reduced.
  • a hydraulic brake system including an abnormal pressure increasing mechanism for increasing. The technical features described in any one of the items (1) to (32) can be employed in the hydraulic brake system described in this item.
  • a manual hydraulic pressure source that generates hydraulic pressure by operating the brake operation member of the driver
  • a motive hydraulic pressure generator having a motive hydraulic pressure source that is actuated by supply of electrical energy and generates hydraulic pressure
  • a hydraulic brake system provided corresponding to each of a plurality of wheels of the vehicle, each of which is operated by a hydraulic pressure of a brake cylinder and includes a plurality of hydraulic brakes that suppress rotation of the wheels;
  • the normal hydraulic pressure supply unit controls the output hydraulic pressure of the power hydraulic generator, bypasses the relief valve, and supplies the hydraulic cylinders to the plurality of brake cylinders
  • the control system of the hydraulic brake system is abnormal, the power hydraulic pressure source is operated, and the output hydraulic pressure of the power hydraulic pressure of the power hydraulic
  • a hydraulic brake system including an abnormal time hydraulic pressure supply unit.
  • the normal-time control unit can control the power hydraulic pressure source or can control an output hydraulic pressure control valve provided on the output side of the power hydraulic pressure source.
  • the normal time control unit controls the former power hydraulic pressure source
  • the power hydraulic pressure source is controlled so that the actual hydraulic pressure of the brake cylinder approaches the required hydraulic pressure.
  • the abnormal time control unit can control the power hydraulic pressure source in accordance with, for example, an abnormal time control pattern. Instead of controlling so as to satisfy the required hydraulic pressure, it is possible to control so that the flow rate of the hydraulic fluid supplied to the manual hydraulic pressure source is maintained at a substantially set amount.
  • the power hydraulic pressure generator may include an accumulator. be able to.
  • FIG. 1 is a diagram illustrating an entire vehicle on which a hydraulic brake system according to a first embodiment of the present invention is mounted.
  • FIG. 2 is a hydraulic circuit diagram of the hydraulic brake system. It is sectional drawing of the master cylinder contained in the said hydraulic brake system. (a) It is sectional drawing of the pressure increase linear control valve and pressure reduction linear control valve which are contained in the said hydraulic brake system. (b) It is a figure which shows the valve opening characteristic of the said pressure increase linear control valve and a pressure reduction linear control valve. It is a flowchart showing the initial check program memorize
  • This vehicle is a hybrid vehicle including an electric motor and an engine as drive devices.
  • the left and right front wheels 2 and 4 as drive wheels are driven by a drive device 10 including an electric drive device 6 and an internal combustion drive device 8.
  • the driving force of the driving device 10 is transmitted to the left and right front wheels 2 and 4 via the drive shafts 12 and 14.
  • the internal combustion drive 8 includes an engine 16, an engine ECU 18 that controls the operating state of the engine 16, and the like.
  • the electrical drive 6 is a drive electric motor (hereinafter referred to as a drive motor) 20, a power storage.
  • a device 22, a motor generator 24, a power converter 26, a drive motor ECU 28, a power split mechanism 30 and the like are included.
  • the power split mechanism 30 is connected to the drive motor 20, the motor generator 24, and the engine 16. With these controls, only the drive torque of the drive motor 20 is transmitted to the output member 32, the drive torque of the engine 16. And a state where both the driving torque of the driving motor 20 is transmitted, a state where the output of the engine 16 is output to the motor generator 24 and the output member 32, and the like.
  • the driving force transmitted to the output member 32 is transmitted to the drive shafts 12 and 14 via a speed reducer and a differential device.
  • the power converter 26 includes an inverter and is controlled by a drive motor ECU 28.
  • the drive motor 20 is supplied with electric energy from the power storage device 22 and rotated, and the power storage device 22 is charged with electric energy by functioning as a power generator by regenerative braking.
  • the power storage device 22 is charged with electric energy by functioning as a power generator by regenerative braking.
  • Switch to charge state In the charged state, regenerative braking torque is applied to the left and right front wheels 2 and 4.
  • the electric drive device 6 can be considered as a regenerative brake device.
  • the hydraulic brake system includes a brake cylinder 42 of the hydraulic brake 40 provided on the left and right front wheels 2 and 4, a brake cylinder 52 of the hydraulic brake 50 provided on the left and right rear wheels 46 and 48 (see FIG. 2 and the like),
  • the hydraulic pressure control unit 54 that can control the hydraulic pressure of the brake cylinders 42 and 52 is included.
  • the hydraulic pressure control unit 54 includes a plurality of electromagnetic on-off valves and a pump motor 55 as a drive source of a power-type hydraulic pressure source driven by the supply of electric energy.
  • Each solenoid is controlled based on a command from a brake ECU 56 mainly including a computer, and the pump motor 55 is controlled based on a command from the pump motor ECU 57.
  • the vehicle is provided with a hybrid ECU 58, and the hybrid ECU 58, the brake ECU 56, the engine ECU 18, and the drive motor ECU 28 are connected via a CAN (Car area Network) 59. They can communicate with each other, and necessary information is communicated appropriately.
  • CAN Car area Network
  • the hydraulic brake system can be mounted not only on hybrid vehicles but also on plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • the internal combustion drive device 8 is not necessary.
  • a drive motor is driven by a fuel cell stack or the like.
  • the present hydraulic brake system can also be mounted on an internal combustion drive vehicle.
  • regenerative braking torque is not applied to the drive wheels 2, 4, so regenerative cooperative control is not performed.
  • the hydraulic pressure of the brake cylinders 42 and 52 is controlled to a hydraulic pressure corresponding to the total required braking torque.
  • each element included in the hydraulic brake system is supplied with electric energy from a common power source (not shown) (for example, power storage device 22).
  • the hydraulic brake system includes the hydraulic brake circuit shown in FIG.
  • Reference numeral 60 denotes a brake pedal as a brake operation member
  • reference numeral 62 denotes a master cylinder as a first hydraulic pressure generator that generates hydraulic pressure by operating the brake pedal 60
  • Reference numeral 64 denotes a second hydraulic pressure generator, which includes a pump device 65 as a power hydraulic pressure source and an accumulator 66.
  • the hydraulic brakes 40 and 50 are actuated by the hydraulic pressure of the brake cylinders 42 and 52 to suppress the rotation of the wheels.
  • the hydraulic brakes 40 and 50 are disc brakes.
  • the hydraulic brakes 40 and 50 can be drum brakes.
  • the hydraulic brake 40 for the front wheels 2 and 4 can be a disc brake
  • the hydraulic brake 50 for the rear wheels 46 and 48 can be a drum brake.
  • the master cylinder 62 includes (a) a housing 67, and (b) two first and second pressure pistons 68a and 68b slidably fitted in the housing 67.
  • the front of the first and second pressurizing pistons 68a and 68b is the first and second pressurizing chambers 69a and 69b, respectively.
  • the first and second pressurizing chambers 69a and 69b are used as the first and second manual hydraulic pressure sources, respectively.
  • Brake cylinders 42FR and 42FL are connected to the first and second pressurizing chambers 69a and 69b via first and second master passages 70a and 70b, respectively.
  • the first and second pressurizing chambers 69a and 69b are communicated with the reservoir 72 when the first and second pressurizing pistons 68a and 68b reach the retracted ends.
  • the interior of the reservoir 72 is partitioned into a plurality of storage chambers that store hydraulic fluid, and are connected to the pressurization chambers 69a and 69b and the pump device 65, respectively.
  • Return springs 73a and 73b are disposed between the two first and second pressure pistons 68a and 68b and between the bottom of the housing 67 and the second pressure piston 68b, respectively.
  • the pressure pistons 68a and 68b are urged in the backward direction.
  • the brake pedal 60 is linked to the first pressurizing piston 68a, and when the pedal force as an operation force is applied to the brake pedal 60, the first pressure piston 68a is moved forward. Further, a pin 74 is fixedly provided on the forward side portion of the first pressure piston 68a, and a retainer 75 is provided on the backward side portion of the second pressure piston 68b.
  • the pin 74 is engaged with the retainer 75 so as to be relatively movable, thereby permitting relative movement of the first and second pressure pistons 68a, 68b. Then, when the head portion (engagement portion) 76 of the pin 74 abuts on the engaged portion of the retainer 75, the first pressure piston 68a moves backward relative to the second pressure piston 68b, in other words, The relative advance of the second pressure piston 68b with respect to the first pressure piston 68a is restricted.
  • an extension restricting portion 77 is constituted by the retainer 75, the pin 74, and the like. Reservoir ports 78 and 79 are provided in the cylindrical portion of the housing 67 and communicate with the reservoir 72.
  • communication holes 78p and 79p provided in the pressurizing pistons 68a and 68b are respectively provided at positions corresponding to the reservoir ports 78 and 79 at the retracted end positions of the first and second pressurizing pistons 68a and 68b.
  • a pair of cup seals 80a, b, 81a, b are provided before and after the reservoir ports 78, 79 of the housing 67, respectively.
  • the communication holes 78p and 79p and the reservoir ports 78 and 79 face each other at the retracted end positions of the first and second pressure pistons 68a and 68b, and the first and second pressure chambers 69a and 69b communicate with the reservoir 72.
  • a reservoir shut-off valve 82 is constituted by the reservoir port 78, the communication hole 78p, and the cup seals 80a, b, and a reservoir shut-off valve 83 is constituted by the reservoir port 79, the communication hole 79p, and the cup seals 81a, b. .
  • the return spring 73a and 73b has a smaller urging force (a smaller set load and a smaller spring constant).
  • the pump device 65 includes a pump motor 55 as a drive source and a pump 90 as a hydraulic fluid supply unit.
  • the hydraulic fluid is pumped from the reservoir 72 and discharged by the pump 90, and the accumulator 66.
  • the pump motor 55 is controlled based on a command from the pump motor ECU 57 so that the pressure of the hydraulic fluid stored in the accumulator 66 is within a predetermined setting range.
  • Information indicating that the accumulator pressure (hydraulic fluid pressure stored in the accumulator 66) has become lower than the lower limit value of the setting range, or has reached the upper limit value of the setting range (or information indicating the magnitude of the accumulator pressure). Is supplied from the brake ECU 56 to the pump motor ECU 57.
  • the pump motor 55 When the accumulator pressure becomes lower than the lower limit value, the pump motor 55 is started, and when the accumulator pressure exceeds the upper limit value, the pump motor 55 is stopped. Thus, when the hydraulic brake system is normal, the pump motor 55 is controlled so that the accumulator pressure is within the set range.
  • the brake cylinders 42FL and FR of the left and right front wheels 2 and 4 and the brake cylinders 52RL and RR of the left and right rear wheels 46 and 48 are connected to the common passage 102 through individual passages 100FL, FR, RL, and RR, respectively.
  • the holding valve 103FL provided corresponding to the left front wheel 2 is a normally open electromagnetic on-off valve that is open when no current is supplied to the solenoid coil (hereinafter simply referred to as current supply to the solenoid).
  • the remaining solenoid valves 103FR, RL, RR provided corresponding to the right front wheel 4, the left rear wheel 46, and the right rear wheel 48 are in a closed state when no current is supplied to the solenoid. Open / close valve.
  • the pressure reducing valves 106FL and FR provided corresponding to the left and right front wheels 2 and 4 are normally closed electromagnetic on-off valves, and the pressure reducing valves 106RL and RR provided corresponding to the left and right rear wheels 46 and 48 are normally open. This is an electromagnetic on-off valve.
  • the second hydraulic pressure generator 64 is connected to the common passage 102 via the control pressure passage 110.
  • a pressure increasing linear control valve (SLA) 112 is provided in the control pressure passage 110, and a pressure reducing linear control valve (SLR) 116 is provided between the control pressure passage 110 and the reservoir 72.
  • the output hydraulic pressure of the second hydraulic pressure generator 64 is controlled by the control of the pressure-increasing linear control valve 112 and the pressure-decreasing linear control valve 116 and supplied to the common passage 102.
  • the pressure increase linear control valve 112 and the pressure decrease linear control valve 116 constitute an output hydraulic pressure control device 118.
  • each of the pressure increasing linear control valve 112 and the pressure reducing linear control valve 116 includes a seating valve including a valve element 120 and a valve seat 122, a spring 124, and a solenoid 126.
  • the biasing force Fs of the spring 124 acts in a direction in which the valve element 120 approaches the valve seat 122, and a current is supplied to the solenoid 126 so that the driving force Fd causes the valve element 120 to separate from the valve seat 122.
  • the differential pressure acting force Fp corresponding to the differential pressure between the second hydraulic pressure generator 64 and the common passage 102 acts in a direction to separate the valve element 120 from the valve seat 122, and the pressure is reduced
  • a differential pressure acting force Fp corresponding to the differential pressure between the common passage 102 (control pressure passage 110) and the reservoir 72 acts (Fd + Fp: Fs).
  • FIG. 4B shows a characteristic of the pressure-increasing linear control valve 112 that is a relationship between the supply current I to the solenoid 126 and the valve opening pressure.
  • FIG. 4B shows that when the pressure-increasing linear control valve 112 is switched from the closed state to the open state, it is necessary to increase the differential pressure before and after when the supply current I is small than when it is large. For example, when the current is not supplied to the solenoid 126 and the differential pressure before and after is smaller than the valve opening pressure Po, the closed state is not switched to the open state.
  • the characteristics of the pressure-reducing linear control valve 116 are the same.
  • first and second master passages 70a and 70b are respectively downstream of the holding valves 103FR and FL of the individual passages 100FR and FL of the right front wheel 4 and the left front wheel 2 (the holding valves 103FR and FL and the brake cylinders 42FR and RL). The part between and).
  • the first and second master passages 70a and 70b are directly connected to the brake cylinders 42FR and 42FL without being connected to the common passage 102.
  • First and second master shut-off valves (SMCFR, FL) 134FR, FL are provided in the middle of the first and second master passages 70a, 70b, respectively.
  • the first and second master shut-off valves 134FR and FL are normally open electromagnetic on-off valves and correspond to manual shut-off valves.
  • a stroke simulator 140 is connected to the second master passage 70b via a simulator control valve 142.
  • the simulator control valve 142 is a normally closed electromagnetic on-off valve.
  • the return spring 73b has a smaller set load than the return spring 73a. Therefore, when an operating force is applied to the brake pedal 60, the return spring 73b is contracted first. Therefore, the stroke simulator 140 is provided in the second master passage 70b connected to the second pressurizing chamber 69b.
  • a portion of the control pressure passage 110 between the connecting portion of the accumulator 66 and the pressure-increasing linear control valve 112; a portion of the second master passage 70b to which the stroke simulator 140 is connected; and the second master cutoff valve 134FL. are connected by a connecting passage 144.
  • the hydraulic pressure of the second hydraulic pressure generating device 64 is higher than the hydraulic pressure of the second master passage 70b in the connecting passage 144 by a set pressure Pr or more, the operation from the second hydraulic pressure generating device 64 to the second master passage 70b is performed.
  • a relief valve 146 that allows liquid flow is provided.
  • the set pressure Pr is determined by the set load of the spring of the relief valve 146, and can be referred to as a valve opening pressure or a relief pressure of the relief valve 146.
  • the set pressure Pr is smaller than the valve opening pressure Po of the pressure-increasing linear control valve 112, but larger than the upper limit value Paccu of the hydraulic fluid stored in the accumulator 66.
  • Pr ⁇ Po Pr> Paccu Therefore, while the hydraulic brake system is normal and the pump motor 55 is controlled so that the accumulator pressure is maintained within the set range, the hydraulic pressure of the brake cylinders 42 and 52 is changed to the second hydraulic pressure generator. While being controlled using the hydraulic pressure 64, the hydraulic fluid is prevented from flowing from the accumulator 66 through the relief valve 146 to the second master passage 70 b.
  • the hydraulic pressure control unit 54 is configured by the pump motor 55, the output hydraulic pressure control device 118, the master shut-off valve 134, the holding valve 103, the pressure reducing valve 106, and the like.
  • the second pressurization chamber 69b, the second master passage 70b, the individual passage 100FL, the common passage 102, and the like constitute a manual related brake system 148, and the second master passage 70b of the manual related brake system 148, the individual passage 100FL.
  • the communication device is constituted by the common passage 102 and the like.
  • the second hydraulic pressure generator 64 is connected to the common passage 102 of the manual-related brake system 148 via the pressure-increasing linear control valve 112 and connected to the second master passage 70b via the relief valve 146. Therefore, between the second hydraulic pressure generator 64 and the manual-related brake system 148, a pressure-increasing linear control valve 112 and a relief valve 146 are provided in parallel with each other.
  • the brake ECU 56 mainly includes a computer including an execution unit (CPU) 150, an input unit 151, an output unit 152, a storage unit 153, and the like, and the input unit 151 includes a brake switch 158.
  • the brake switch 158 is a switch that turns from OFF to ON when the brake pedal 60 is operated. In this embodiment, the forward movement amount from the reverse end position of the brake pedal 60 is equal to or larger than a predetermined set amount. Will be ON.
  • the stroke sensor 160 detects an operation stroke (STK) of the brake pedal 60.
  • STK operation stroke
  • two sensors are provided, and similarly, the operation stroke of the brake pedal 60 (the distance from the reverse end position) is provided. ) Is detected.
  • the stroke sensor 160 has two systems, and even if one of the two sensors breaks down, the other can detect the stroke.
  • the master cylinder pressure sensor 162 detects the hydraulic pressure in the second pressurizing chamber 68b of the master cylinder 62, and is provided in the second master passage 70b.
  • the return spring 73b since the return spring 73b has a smaller set load than the return spring 73a, the return spring 73b is contracted earlier than the return spring 73a, and the second pressurizing chamber 68b is increased in fluid pressure earlier. Be made. Therefore, if the master cylinder pressure sensor 162 is provided in the second master passage 70b, a delay in detecting the hydraulic pressure of the master cylinder 62 can be suppressed.
  • the accumulator pressure sensor 164 detects the pressure (PACC) of the hydraulic fluid stored in the accumulator 66.
  • the brake cylinder pressure sensor 166 detects the hydraulic pressure (PWC) of the brake cylinders 42 and 52 and is provided in the common passage 102. Since the brake cylinders 42 and 52 and the common passage 102 are communicated with each other in the open state of the holding valve 103, the hydraulic pressure in the common passage 102 can be set to the hydraulic pressure of the brake cylinders 42 and 52. Further, since the hydraulic pressure of the second hydraulic pressure generator 64 controlled by the output hydraulic pressure control device 118 is supplied to the common passage 102, it can also be called a control pressure sensor.
  • the level warning 168 is a switch that is turned on when the hydraulic fluid stored in the reservoir 72 becomes less than a predetermined set amount. In the present embodiment, when the amount of the hydraulic fluid stored in any one of the plurality of storage chambers becomes equal to or less than the set amount, it is turned ON.
  • Wheel speed sensors 170 are provided corresponding to the left and right front wheels 2 and 4 and the left and right rear wheels 46 and 48, respectively, and detect the rotational speed of the wheels. Further, the traveling speed of the vehicle is acquired based on the rotational speed of the four wheels.
  • the door opening / closing switch 172 detects opening / closing of a door provided in the vehicle.
  • the ignition switch (IGSW) 174 is a main switch of the vehicle.
  • the output unit 152 is included in a brake circuit such as a pressure-increasing linear control valve 112, a pressure-decreasing linear control valve 116, a holding valve 103, a pressure-reducing valve 106, a master shut-off valve 134, and a simulator control valve 142 of the hydraulic pressure control unit 54.
  • Solenoids of all electromagnetic on-off valves hereinafter, simply referred to as all electromagnetic on-off valves
  • pump motor ECU 57, and the like are connected.
  • various programs, tables, and the like are stored in the storage unit.
  • the pump motor ECU 57 also includes a computer including an execution unit, a storage unit, an input unit, an output unit, and the like.
  • the input unit includes a brake switch 158, an input unit 151 of the brake ECU 56, an output unit 152, and a CPU 150.
  • a drive circuit (not shown) of the pump motor 55 is connected to the output unit 152.
  • the states of the input unit 151, the output unit 152, and the CPU 150 of the brake ECU 56 for example, electric signals such as current value and voltage value
  • the pump motor ECU 57 controls the pump motor 55 even if the brake ECU 56 or the like is abnormal.
  • the brake switch 158 when (1) the brake switch 158 is ON and information indicating that the control system of the hydraulic brake system is abnormal is supplied from the brake ECU 56, (2) the brake switch 158 is ON When the brake ECU 56 is not operating normally (for example, when the brake ECU 56 itself is abnormal, the signal line between the brake ECU 56 and each sensor is disconnected, the signal line between the brake ECU 56 and the solenoid is disconnected. When the abnormal condition control start condition is satisfied, the control of the pump motor 55 is started in a mode different from the normal condition.
  • an initial check is performed when a predetermined inspection start condition is satisfied.
  • the inspection start condition is that the door opening / closing switch 172 is turned on, the brake operation is first performed after the ignition switch 174 is turned on, and the like.
  • the initial check program represented by the flowchart of FIG. 5 is executed at predetermined time intervals.
  • step 1 (hereinafter abbreviated as S1. The same applies to other steps), it is determined whether or not a predetermined inspection start condition is satisfied. If the inspection start condition is satisfied, the control system is checked in S2, and the possibility of liquid leakage is checked in S3.
  • the control system includes components used for controlling the brake cylinder hydraulic pressure, for example, each sensor, an electromagnetic on-off valve, and the like.
  • detecting the abnormality of the control system for example, whether or not a disconnection has occurred in each of the electromagnetic on-off valves, whether each sensor (brake switch 158, stroke sensor 160, master cylinder pressure sensor 162, accumulator pressure sensor 164, brake) In the cylinder pressure sensor 1166, the wheel speed sensor 170, etc.), it is determined whether or not a disconnection has occurred.
  • the possibility of liquid leakage is checked when the ignition switch 174 is turned on or a brake operation is performed. For example, when (a) the level warning switch 168 is ON, (b) when a brake operation is performed, a predetermined relationship is established between the stroke of the brake pedal 60 and the hydraulic pressure of the master cylinder 62. In this case, it is assumed that there is no liquid leakage, but there is a possibility of liquid leakage when the hydraulic pressure in the master cylinder 62 is small with respect to the stroke. Further, (c) when the detection value of the accumulator pressure sensor 164 does not reach the liquid leakage determination threshold value even when the pump 90 is continuously operated for a predetermined set time or longer, (d) regenerative cooperative control is performed.
  • the detected value of the brake cylinder pressure sensor 166 is smaller than the detected value of the master cylinder pressure sensor 162, (e) if it is detected that there is a possibility of liquid leakage during the previous brake operation ( In the case where the hydraulic pressure of the master cylinder 62 is supplied to the brake cylinders 42 of the left and right front wheels 2, 4 and the pump pressure is supplied to the brake cylinders 52 of the left and right rear wheels 46, 48), there is a possibility of liquid leakage. It is said.
  • the presence or absence of the possibility of liquid leakage is detected based on the conditions (a) to (e).
  • the brake fluid pressure control program represented by the flowchart of FIG. 6 is executed at predetermined time intervals.
  • S11 it is determined that there is a braking request, for example, when the brake switch 158 is ON, or when there is a request for operating the automatic brake, the determination is YES.
  • the automatic brake may be operated in the traction control and the vehicle stability control. When these control start conditions are satisfied, it is determined that there is a braking request.
  • S12 and S13 a determination result of whether there is a possibility of liquid leakage or whether the control system is abnormal is read.
  • the determination in S12 is YES, and in S16, the hydraulic pressure of the master cylinder 62 is supplied to the brake cylinders 42 of the left and right front wheels 2, 4, and the left and right rear wheels 46, The hydraulic pressure controlled by the output hydraulic pressure control device 118 is supplied to the 48 brake cylinders 52. Since the control system is abnormal and it is rare that there is a possibility of liquid leakage, the control system is normal even if there is a possibility of liquid leakage. The driving of 55 is considered possible. In this way, in this embodiment, when the control system is abnormal or when there is a possibility of liquid leakage, regenerative cooperative control is not performed.
  • the hydraulic pressure of the second hydraulic pressure generator 64 is controlled and supplied to the brake cylinders 42 and 52 of the front, rear, left and right wheels 2, 4, 46 and 48 (pump pressurization).
  • regenerative cooperative control is performed.
  • the total braking torque which is the sum of the regenerative braking torque applied to the driving wheels 2 and 4 and the friction braking torque applied to both the driving wheels 2 and 4 and the driven wheels 46 and 48, is the total required braking torque.
  • the control is performed as follows. In the brake ECU 56, the total required braking torque is determined.
  • the total required braking torque is acquired based on detection values of the stroke sensor 160 and the master cylinder pressure sensor 162 (braking torque requested by the driver), or acquired based on the running state of the vehicle (traction control). Braking torque necessary for vehicle stability control). Then, the information supplied from the hybrid ECU 58 (the power generation side upper limit value that is the upper limit value of the regenerative braking torque determined based on the rotation speed of the drive motor 20, the upper limit value determined based on the charging capacity of the power storage device 22, etc. The minimum value of the power storage side upper limit value) and the total required braking torque (requested value) described above is determined as the required regenerative braking torque, and information representing this required regenerative braking torque is supplied to the hybrid ECU 58.
  • the hybrid ECU 58 information indicating the required regenerative braking torque is output and supplied to the drive motor ECU 28.
  • the drive motor ECU 28 outputs a control command to the power converter 26 so that the braking torque applied to the left and right front wheels 2 and 4 by the drive motor 20 becomes the required regenerative braking torque.
  • the drive motor 20 is controlled by the power converter 26.
  • Information representing the operating state such as the actual rotational speed of the drive motor 20 is output and supplied to the hybrid ECU 58.
  • the hybrid ECU 58 the actual regenerative braking torque actually obtained based on the actual operating state of the drive motor 20 is obtained, and information representing the actual regenerative braking torque value is supplied to the brake ECU 56.
  • the required hydraulic braking torque is determined based on a value obtained by subtracting the actual regenerative braking torque from the total required braking torque, so that the brake cylinder hydraulic pressure approaches the target hydraulic pressure corresponding to the required hydraulic braking torque.
  • the pressure-increasing linear control valve 112, the pressure-decreasing linear control valve 116, etc. are controlled.
  • the holding valves 103FL, FR, RL, RR of the front, rear, left and right wheels 2, 4, 46, 48 are all opened, and the pressure reducing valves 106FL, FR , RL, RR are all closed. Further, the master cutoff valves 134FL and FR are closed, and the simulator control valve 142 is opened. With the brake cylinders 42 FL and FR of the left and right front wheels 2 and 4 disconnected from the master cylinder 62, the brake cylinders 42 and 52 of the front and rear wheels 2, 4, 46 and 48 are communicated with the common passage 102.
  • the pressure-increasing linear control valve 112 and the pressure-decreasing linear control valve 116 are controlled, and the control pressure is supplied to the common passage 102 and supplied to the four-wheel brake cylinders 42 and 52.
  • the holding valve 103 and the pressure reducing valve 106 are opened and closed independently, and each brake cylinder The hydraulic pressures 42 and 52 are controlled.
  • the slip state of the front, rear, left and right wheels 2, 4, 46, 48 is set to an appropriate state.
  • the holding valve 103 and the pressure reducing valve 106 provided corresponding to the wheel having excessive slip are controlled.
  • the wheel holding valve 103 and the pressure reducing valve 106 having no excessive slip are controlled. It may be controlled. In any case, the holding valve 103 and the pressure reducing valve 106 are controlled valves for slip control such as anti-lock control. Further, in a vehicle where regenerative cooperative control is not performed, such as when the hydraulic brake system is mounted on a vehicle that does not include the electric drive device 6, the total required braking torque and the hydraulic braking torque are equalized. The output hydraulic pressure control device 118 is controlled.
  • the pressure reducing valves 106FL, FR of the left and right front wheels 2, 4 are closed, and the pressure reducing valves 106RL, RR of the left and right rear wheels 46, 48 are open. Further, the first and second master cutoff valves 134FR, FL are in an open state.
  • the pump motor ECU 57 operates the pump motor 55 according to a predetermined pattern, and the hydraulic fluid is discharged from the pump 90. Is done.
  • the differential pressure between the hydraulic pressure discharged from the pump 90 and the hydraulic pressure in the second master passage 70b becomes larger than the set pressure Pr of the relief valve 146, the relief valve 146 in the closed state is switched to the open state.
  • the hydraulic fluid discharged from the pump 90 is supplied to the second master passage 70b.
  • the hydraulic pressure supplied to the second master passage 70b is supplied to the brake cylinder 42FL of the left front wheel 2 through the second master shut-off valve 134FL in the open state, and also supplied to the second pressurizing chamber 69b of the master cylinder 62. Is done.
  • the hydraulic pressure of the hydraulic fluid supplied to the second pressurizing chamber 69b is lower than the hydraulic pressure of the hydraulic fluid discharged from the pump 90 by the set pressure Pr of the relief valve 146.
  • the hydraulic pressure is generated in the first and second pressurization chambers 69a and 69b of the master cylinder 62 by the operation of the brake pedal 60, the holding valve 103FL and the second master cutoff valve 134FL are in the open state.
  • the hydraulic pressure in the second pressurizing chamber 69b is the same as the hydraulic pressure in the common passage 102. Therefore, the pressure increase linear control valve 112 is not opened by setting the discharge pressure of the pump 90 to be higher than the hydraulic pressure of the common passage 102 and the second pressurizing chamber 69b by the set pressure Pr.
  • the relief valve 146 is opened.
  • the brake cylinder 42FR Since the holding valve 103FR is in the closed state, the brake cylinder 42FR is shut off from the common passage 102, and the hydraulic pressure of the brake cylinder 42FR of the right front wheel 4 increases.
  • the extension restricting portion 77 is provided between the first and second pressurizing pistons 68a, 68b in the master cylinder 62, even if hydraulic fluid is supplied to the first pressurizing chamber 69a, the second Advancement of the pressurizing piston 69 b is restricted by the extension restricting portion 77.
  • the retraction of the second pressurizing piston 68 b is not restricted by the extension restricting portion 77. Therefore, the hydraulic pressure is supplied to the second pressurizing chamber 69b in front of the second pressurizing piston 68b.
  • A is the pressure receiving area of the first and second pressure pistons 68a and 68b (in this embodiment, the pressure receiving areas of the first and second pressure pistons 68a and 68b are the same size).
  • F is a force applied to the first pressurizing piston 68a due to an operating force applied to the brake pedal 60 (hereinafter simply referred to as an operating force).
  • Fsa and Fsb are urging forces of the springs 73a and 73b, and F ⁇ a and F ⁇ b are frictional forces generated between the pressure pistons 68a and 68b and the housing 67. Normally, as shown in FIG.
  • the hydraulic pressures in the first and second pressurizing chambers 69a and 69b are compared with the case where the hydraulic pressure is not supplied to the second pressurizing chamber 69b by a force corresponding to the frictional force. It grows.
  • the rotational speed of the pump motor 55 is controlled by the pattern shown in FIG.
  • the first set rotation speed R1 is set for the first set time ⁇ t1 from the time when the abnormal-time control start condition is satisfied.
  • the second set rotation speed R2 (R2 ⁇ R1) is set. Is done.
  • the brake switch 158 is turned off, when the second set time ⁇ t2 elapses, it is determined that the abnormal control end condition is satisfied, and the pump motor 55 is stopped.
  • the first set rotational speed R1 is set to such a magnitude that the discharge pressure of the pump 90 can promptly switch the relief valve 146 from the closed state to the open state and reach a height that can be supplied to the second pressurizing chamber 69b. Is done.
  • the first set time ⁇ t1 is a time required to discharge the hydraulic fluid from the pump 90 at a large flow rate.
  • the discharge pressure of the pump 90 becomes large enough to open the relief valve 146, it is not necessary to increase the flow rate of the hydraulic fluid discharged from the pump 90. It is lowered to the number R2.
  • the flow rate of the hydraulic fluid discharged from the pump 90 is substantially maintained at the set value, and the flow rate of the hydraulic fluid supplied to the master cylinder is substantially maintained at the set value.
  • the pump motor 55 is continuously operated even when the brake switch 158 is turned off because the brake pedal 60 is not completely returned even when the brake switch 158 is turned off. This is to prevent it from becoming smaller. That is, when the operating force F is loosened during the operation of the pump 90, the reservoir shutoff valves 82 and 83 are switched to the open state by the retreat of the first and second pressurizing pistons 68a and 68b, and the first and second The pressurizing chambers 69a and 69b are communicated with the reservoir 72, and the hydraulic pressure is reduced.
  • the second set rotational speed R2 can control the communication / blocking of the first pressurizing chamber 69a and the reservoir 72 by the operating force F, and the first and second pressurizing chambers 68a,
  • the hydraulic pressure of b is set to a controllable magnitude.
  • Pmcb ′′ ⁇ A ⁇ F ⁇ b Pmca ′′ ⁇ A ⁇ (Fsb ⁇ Fsa) (6)
  • Q Cd ⁇ Ag ⁇ (2 ⁇ Pmca ′′ / ⁇ ) 1/2 (7) It becomes the size represented by.
  • Ag is the opening area of the reservoir shutoff valve 82
  • Cd is a flow coefficient of the hydraulic fluid flowing through the communication path
  • Q is a flow rate flowing through the communication path.
  • the abnormal-time pump motor control program represented by the flowchart of FIG. 10 is executed at predetermined time intervals.
  • S21 it is determined whether or not the control system abnormality information is supplied, whether or not the brake ECU 56 is abnormal, etc. (these are simply referred to as abnormal). If it is abnormal, it is determined in S22 whether or not the brake switch 158 is ON. If it is ON, the pump motor 55 is operated at the first set rotational speed R1 in S23 and S24. It is determined whether or not it is operating at the second set rotational speed R2. If the pump motor 55 is in the stopped state, the pump motor 55 is started to rotate at the first set rotational speed R1 in S25.
  • S26 it is determined whether or not the first set time ⁇ t1 has elapsed.
  • the determination is NO, and the process returns to S21.
  • the pump motor 55 rotates at the first set speed R1
  • if the brake switch 158 is ON the determination in S23 is YES
  • the first set time ⁇ t1 has elapsed in S26. It is determined whether or not.
  • S21, 22, 23, and 26 are repeatedly executed, and when the first set time ⁇ t1 has elapsed, the determination in S26 is YES, and the rotational speed is set to R2 in S27.
  • the hydraulic pressures of the brake cylinders 42FL, FR correspond to the operating pressure F (second pressurizing chamber 69b).
  • the hydraulic pressure of the first and second pressurizing chambers 69a and 69b when the hydraulic pressure is not backflowed can be increased. Even when the regenerative braking torque is not applied, it is possible to suppress a decrease in the hydraulic braking torque.
  • the number of times that a large differential pressure acts on the pressure-increasing linear control valve 112 can be reduced as compared with the case where hydraulic fluid is supplied to the common passage 102 via the pressure-increasing linear control valve 112 in an abnormal state.
  • the life of the pressure-increasing linear control valve 112 can be extended. Furthermore, since the accumulator 66 is provided, pulsation caused by the operation of the pump device 65 is suppressed. As a result, the pulsation of the hydraulic pressure supplied to the second pressurizing chamber 69b can be suppressed.
  • the relief valve 146 and the pressure-increasing linear control valve 112 are provided in parallel to the manual-related brake system 148, so that the hydraulic pressure controlled by the pressure-increasing linear control valve 112 is the relief valve 146.
  • the manual-related brake system 148 is not supplied through this process.
  • the mode of control of the pump motor 55 when an abnormality in the control system is detected is not limited to the mode of the present embodiment.
  • the pump motor 55 can be continuously operated even when the brake switch 158 is OFF. In that case, a decrease in the hydraulic pressure of the brake cylinders 42 and 52 can be satisfactorily suppressed.
  • the brake pedal 60 is not operated, the hydraulic fluid supplied to the second pressurizing chamber 69b is allowed to flow out to the reservoir 72, so that there is no problem.
  • the first set rotational speed R1 and the first set time ⁇ t1 are the hydraulic pressure of the second hydraulic pressure generator 64 (detection by the accumulator pressure sensor 164) when the abnormality is detected. Value).
  • the second set rotational speed R2 that is, the magnitude of the set value of the flow rate of the hydraulic fluid discharged from the pump 90 does not matter. For example, it can be determined based on the operating force applied to the driver's brake pedal 60. For example, when the brake operation force is large, a large brake force is required, so that the set value can be increased.
  • both the brake ECU 56 and the pump motor ECU 57 become abnormal, or if the power supply cannot supply electric energy, all the electromagnetic on-off valves are set to their original positions as shown in FIG. Is stopped.
  • the brake pedal 60 As the brake pedal 60 is operated, hydraulic pressure is generated in the first and second pressurization chambers 69a and b of the master cylinder 62, and the brake cylinders 42FL and FR are applied to the brake cylinders 42FL and FR via the first and second master passages 70a and 70b. Supplied.
  • the holding valves 103FL, FR of the left and right front wheels 2, 4 are closed, and the holding valves 103RL, RR of the left and right rear wheels 46, 48 are closed. Is open.
  • the first and second master cutoff valves 134FL and FR are opened, and the simulator control valve 142 is closed. Further, all the pressure reducing valves 106 are closed.
  • the brake cylinders 42FL, FR of the left and right front wheels 2, 4 are supplied with the hydraulic pressure of the first and second pressurizing chambers 69b, a of the master cylinder 62, and the brake cylinders 52RL, RR of the left and right rear wheels 46, 48 are supplied.
  • the left front wheel brake system 180FL includes a pressurizing chamber 69b, a brake cylinder 42FL, a second master passage 70b, an individual passage 100FL, and the like, and is configured by a part of the manual related brake system 148 described above.
  • the right front wheel brake system 180FR includes a pressurizing chamber 69a, a brake cylinder 42FR, a first master passage 70a, an individual passage 100FR, and the rear wheel brake system 180R includes brake cylinders 52RL, RR, The passages 100RL and RR, the common passage 102, the control pressure passage 110, the second hydraulic pressure generator 64, and the like are configured.
  • the supply state of the hydraulic pressure to the brake cylinders 42 and 52 is controlled according to the result of the initial check.
  • the pump motor 55 is operated, so that a higher hydraulic pressure can be supplied to the brake cylinders 42FL and FR than when the pump motor 55 is held in a stopped state.
  • a shortage of braking force of the entire vehicle can be suppressed.
  • the brake systems 180FL, FR, R are cut off from each other. Therefore, even if liquid leakage occurs in one of the three brake systems 180FL, FR, R, it is possible to satisfactorily prevent the influence from affecting other brake systems.
  • the hydraulic brake can be operated more reliably.
  • the holding valves 103FR, 103RL, and 103RR are normally closed electromagnetic on-off valves, the brake cylinders 42FL, FR, 52RL, and RR can be shut off from each other when no current is supplied to the solenoid. It is possible to prevent other brake cylinders from being affected even if liquid leakage occurs in any one of them.
  • the brake hydraulic pressure control device is configured by a portion that stores the brake hydraulic pressure control program represented by the flowchart of FIG. Further, a part for storing the pump motor control program at the time of abnormality represented by the flowchart of FIG. Furthermore, the relief valve 146 corresponds to the flow suppressing device. Further, a manual passage is constituted by a portion on the brake cylinder side from a connection portion of the second master passage 70b and the second master passage 70b of the individual passage 100FL. Further, the second master passage 70b corresponds to one front wheel individual connection passage, the holding valve 103FL corresponds to one front wheel individual control valve, and the individual passage 100FL corresponds to one front wheel individual passage.
  • the first master passage 70a corresponds to the other front wheel individual connection passage
  • the holding valve 103FR corresponds to the other front wheel individual control valve
  • the individual passage 100FR corresponds to the other front wheel individual passage.
  • the common passage 102 is also a common passage for the front wheels.
  • the second hydraulic pressure generator 64 is also a motive hydraulic pressure generator and a motive hydraulic pressure generator with a pressure accumulation function.
  • the master cylinder 62 may not be provided with the extension restricting portion 77. In that case, the hydraulic pressure can be supplied to the first pressurizing chamber. Further, the simulator control valve 142 is not indispensable. In particular, in a small vehicle, when the capacity of the brake cylinders 42 and 52 is small, the hydraulic fluid may be consumed in the stroke simulator 140.
  • the power supply system is a double system.
  • the brake ECU 56, the sensors 160 to 174, the solenoids of all the electromagnetic on-off valves, etc. are connected to the main power source 188 (which may be the same as or different from the power storage device 22).
  • Both the main power supply 188 and the sub power supply 189 are connected to the pump motor ECU 57, the pump motor 55, the brake switch 158, and the like.
  • the sub power supply 189 is in a state in which electric energy can be supplied normally In this case, the pump motor 55 can be operated, and the hydraulic pressure in the brake cylinders 42a and 42b can be increased.
  • FIG. 14 shows a brake circuit of the hydraulic brake system according to the third embodiment.
  • the connecting passage 190 is a portion between the accumulator 66 of the control pressure passage 110 and the pressure-increasing linear control valve 112, and a portion of the second master passage 70b on the brake cylinder side of the second master cutoff valve 134FL.
  • a relief valve 192 serving as a flow suppressing device is provided in the middle of the connecting passage 190.
  • the second master shut-off valve 134FL is in a closed state in principle.
  • the driver's uncomfortable feeling can be reduced. It may be supplied to the brake cylinder 42.
  • the hydraulic pressure in the pressurizing chambers 69a and 69b is prevented from increasing with respect to the stroke, it is possible to prevent erroneous determination that the pressure is abnormal.
  • the brake circuit of the hydraulic brake system of Example 4 is shown in FIG.
  • the second hydraulic pressure generating device 64 and the common passage 102 are connected by the connecting passage 200 bypassing the pressure-increasing linear control valve 112, and a relief valve as a flow suppressing device is provided in the middle of the connecting passage 200.
  • (Same as in the first embodiment) 202 is provided.
  • a pressure-increasing linear control valve 112 and a relief valve 202 are provided in parallel with each other between the second hydraulic pressure generating device 64 and the common passage 102.
  • the brake system 210FL including the brake cylinder 42FL of the left front wheel 2 and the brake cylinder 42FR of the right front wheel 4 are included.
  • the brake system 210FR and the brake system 210R including the brake cylinders 52RL and RR of the left and right rear wheels 46 and 48 can be disconnected from each other. Even if liquid leakage occurs in one of the brake systems, the other brake systems can be prevented from being affected.
  • the brake circuit of the hydraulic brake system of Example 5 is shown in FIG.
  • the second hydraulic pressure generator 64 and the common passage 102 are connected by a connecting passage 220, and an electromagnetic on-off valve 222 as a flow suppressing device is provided in the middle of the connecting passage 220.
  • an electromagnetic on-off valve 222 is provided between the second hydraulic pressure generator 64 and the common passage 102, a pressure-increasing linear control valve 112 and an electromagnetic on-off valve 222 are provided in parallel with each other.
  • the electromagnetic on-off valve 222 includes a seating valve including a valve element, a valve seat, and a spring, and a solenoid, and has the same structure as that shown in FIG.
  • the electromagnetic on-off valve 222 is disposed in such a posture that the hydraulic pressure of the second hydraulic pressure generator 64 acts on the valve element. While no current is supplied to the solenoid, the valve element is pressed against the valve seat by the biasing force of the spring and is in the closed state. Therefore, it functions as a relief valve when no current is supplied to the solenoid.
  • the set pressure (valve opening pressure) is determined by the set load of the spring, but the set load of the spring of the electromagnetic on-off valve 222 is smaller than the set load of the spring 124 of the pressure-increasing linear control valve 112 shown in FIG.
  • the electromagnetic on-off valve 222 may be a linear control valve or a simple on-off valve.
  • the fluid pressure in the common passage 102 can be continuously controlled by continuously controlling the supply current to the solenoid.
  • the electromagnetic on-off valve 222 can be used instead of the pressure-increasing linear control valve 112.
  • the pressure-increasing linear control valve 112 and the electromagnetic on-off valve 222 can be selectively used, or can be used in accordance with a predetermined rule. In any case, the number of uses of the pressure-increasing linear control valve 112 can be reduced, and the life can be extended.
  • the amount of hydraulic fluid supplied to the common passage 102 can be increased correspondingly, and the flow rate of hydraulic fluid that can be supplied to the brake cylinders 42 and 52 can be increased.
  • the fluid pressure in the common passage 102 can be finely controlled by duty control of the current supplied to the solenoid.
  • FIG. 19 shows a brake circuit of the hydraulic brake system according to the sixth embodiment.
  • the first hydraulic pressure generator 300 includes a housing 310, a first pressurizing piston 312 and a second pressurizing piston 314 that are fitted in the housing 310 so as to be fluid-tight and slidable in the axial direction.
  • An intermediate piston 316 and an input piston 318 are included.
  • a brake pedal 60 is associated with the input piston 318. When the brake pedal 60 is operated (operation for operating the hydraulic brakes 40, 50), the input piston 318 can be advanced.
  • the intermediate piston 316 generally has a bottomed cylindrical shape, and an input piston 318 is fitted on the inner peripheral side so as to be relatively movable in the axial direction.
  • An intermediate hydraulic chamber 320 is formed by the intermediate piston 316 and the input piston 318, and a spring 322 is disposed between the intermediate piston 316 and the input piston 318.
  • a stopper for defining relative movement between the intermediate piston 316 and the input piston 318 is provided, and a forward end and a backward end of the input piston 318 with respect to the intermediate piston 316 are defined.
  • the intermediate piston 316 is slidably fitted into a stepped cylinder bore formed in the housing 310.
  • An annular large-diameter portion (flange) 326 that protrudes to the outer peripheral side is provided on the outer peripheral portion of the intermediate piston 316, and is positioned at the large-diameter portion of the cylinder bore.
  • a rear hydraulic chamber 330 is formed behind the intermediate piston 316 and an annular chamber 332 is formed in the middle.
  • An intermediate hydraulic chamber 336 is formed between the first pressurizing piston 312 in front of the intermediate piston 316.
  • the pressure receiving area SR of the intermediate piston 316 with respect to the rear hydraulic pressure chamber 330 and the pressure receiving area SM with respect to the intermediate hydraulic pressure chamber 336 are the same, and the rear hydraulic pressure chamber 330 and the intermediate hydraulic pressure chamber 336 have the same size of liquid.
  • the force that the intermediate piston 316 receives due to these hydraulic pressures has the same magnitude. Further, since the communication path 340 formed in the intermediate piston 316 and the reservoir port 342 formed in the housing 310 face each other at the retracted end position of the intermediate piston 316, the internal hydraulic pressure chamber 320 is communicated with the reservoir 72. . In this state, the axial movement of the input piston 318 relative to the intermediate piston 316 is allowed, and a reaction force corresponding to the elastic force of the spring 322 is applied to the input piston 318. When the reservoir port 342 is blocked by the advance of the intermediate piston 316, the internal hydraulic pressure chamber 320 is blocked from the reservoir 72, and the relative movement of the input piston 318 relative to the intermediate piston 316 is prevented.
  • the annular chamber 332 is connected to the reservoir 72 via a reservoir port 344, and a reservoir cutoff valve 346 that is a normally open electromagnetic opening / closing valve is provided between the annular chamber 332 and the reservoir 72. Since the annular chamber 332 is communicated with the reservoir 72 in the open state of the reservoir shut-off valve 346, the intermediate piston 316 is allowed to move relative to the housing 310. However, in the closed state of the reservoir shut-off valve 346, the annular chamber 332 is The reservoir 72 is cut off, and the relative movement of the intermediate piston 316 is prevented.
  • the front sides of the first and second pressurizing pistons 312 and 314 are first and second pressurizing chambers 360 and 362 as first and second manual hydraulic pressure sources, respectively.
  • Reservoir ports 364 and 366 are formed in the housing 310, and communication holes 367 and 368 are formed in the first and second pressure pistons 312 and 314, respectively.
  • the first and second pressure pistons 312 and 314 are formed.
  • the first and second pressurizing chambers 360 and 362 are in communication with the reservoir 72 at the retracted end position. As the first and second pressurizing pistons 312 and 314 move forward, the reservoir ports 364 and 366 are closed, and the first and second pressurizing chambers 360 and 362 are shut off from the reservoir 72 to generate hydraulic pressure. Be made. Further, an extension regulating mechanism 368 is provided between the first and second pressure pistons 312 and 314, and the separation limit of the first and second pressure pistons 312 and 314 is defined.
  • a second hydraulic pressure generating device 370 is connected to the rear hydraulic pressure chamber 330 and the intermediate hydraulic pressure chamber 336 via an output hydraulic pressure control device 372.
  • the second hydraulic pressure generator 370 includes a pump motor 374 as a drive source and a pump device 378 as a power hydraulic pressure source including a pump 376 as a hydraulic fluid supply unit, and hydraulic fluid discharged from the pump 376.
  • an accumulator 380 that stores pressure in a pressurized state.
  • the output hydraulic pressure control device 372 includes a pressure increasing linear control valve 382 and a pressure reducing linear control valve 384.
  • the pressure-increasing linear control valve 382 has the same structure as the pressure-increasing linear control valve 112 in the first embodiment, and is a normally closed electromagnetic on-off valve that is in a closed state when no current is supplied to the solenoid.
  • the pressure-reducing linear control valve 384 is a normally-open linear control valve that is open when no current is supplied to the solenoid, and by continuously controlling the current supplied to the solenoid, The differential pressure can be continuously controlled. Since this is a normally open linear control valve, if the current supplied to the solenoid is reduced, the differential pressure across the front and rear is reduced and the control pressure is reduced.
  • the pressure-increasing linear control valve 382 When no current is supplied to the solenoids of the pressure-increasing linear control valve 382 and the pressure-decreasing linear control valve 384, the pressure-increasing linear control valve 382 is in the closed state and the pressure-decreasing linear control valve 384 is in the open state.
  • the chamber 326 and the rear hydraulic chamber 330 are communicated with the reservoir 72. Further, since the output hydraulic pressure control device 372 is connected to both the rear hydraulic pressure chamber 330 and the intermediate hydraulic pressure chamber 336, the hydraulic pressures of the rear hydraulic pressure chamber 330 and the intermediate hydraulic pressure chamber 336 are the same. Will be controlled.
  • First and second master passages 390 and 392 are connected to the first and second pressurizing chambers 360 and 362, respectively, and left and right front wheel brake cylinders 42FL and FR, and left and right rear wheel brake cylinders 52RL and RR are connected. Is done. In this embodiment, there are two front and rear systems.
  • the hydraulic brake system is provided with slip control devices 394 and 396, and the hydraulic pressures of the brake cylinders 42FL, FR, 52RL, and RR can be individually controlled.
  • the slip control device includes a pressure increasing state in which the brake cylinders 42 and 52 are communicated with the first and second pressure chambers 360 and 362, a pressure reducing state in which the brake cylinders 42 and 52 are in communication with the reservoir 72, and the brake cylinders 42 and 52. Includes a plurality of valves that can be switched to a holding state in which the pressure chambers 360 and 362 are blocked from the reservoir 72. Further, the portion of the second master passage 392 between the brake cylinders 52RL, RR (slip control device 396) and the second pressurizing chamber 362 is connected to the second hydraulic pressure generator 370 by the connection passage 400, and the connection is established. A relief valve 402 is provided in the passage 400.
  • the relief valve 402 is switched from the closed state to the open state when the hydraulic pressure of the second hydraulic pressure generator 370 is greater than the hydraulic pressure of the second master passage 392 by a set pressure Pr, and the second hydraulic pressure generator The flow of hydraulic fluid from 370 to the second master passage 392 is allowed.
  • the hydraulic pressure in the rear hydraulic pressure chamber 330 and the intermediate hydraulic pressure chamber 326 is controlled by the output hydraulic pressure control device 372. Since the force applied to the intermediate piston 326 by the hydraulic pressure of the rear hydraulic chamber 330 and the intermediate hydraulic chamber 336 is balanced, the intermediate piston 326 is not moved by this, and the operation feeling of the driver Can be suppressed.
  • the hydraulic pressure is supplied to the intermediate hydraulic pressure chamber 326, the first pressurizing piston 312 is advanced and the second pressurizing piston 314 is advanced.
  • the hydraulic pressure in the first pressurizing chamber 360 and the second pressurizing chamber 362 becomes a magnitude corresponding to the hydraulic pressure in the intermediate hydraulic chamber 326.
  • the hydraulic pressure in the brake cylinders 42 and 52 is controlled by controlling the hydraulic pressure in the intermediate hydraulic chamber 326.
  • the hydraulic pressure of the brake cylinders 42 and 52 can be controlled to a magnitude that is not related to the operating force of the brake pedal 60, and the hydraulic pressure (input piston 318, intermediate piston 316, first piston 1 ,
  • the hydraulic pressure generated in the first and second pressurizing chambers 360 and 362 is controlled to a smaller value.
  • the first hydraulic pressure generator 300 functions as a stroke simulator and also functions as a second hydraulic pressure-dependent hydraulic pressure generator.
  • the first hydraulic pressure generator 300 functions as a normal tandem master cylinder.
  • the pump motor 374 is controlled in the same manner as in the first embodiment.
  • the hydraulic fluid discharged from the pump 376 is supplied to the second master passage 392 through the relief valve 402, supplied to the brake cylinder 52, and supplied to the second pressurizing chamber 362.
  • the hydraulic pressure in the second pressurizing chamber 362 is increased, whereby the second pressurizing piston 314 is retracted and the hydraulic pressure in the first pressurizing chamber 360 is increased. Therefore, the hydraulic pressure in the brake cylinder 42 is increased.
  • the hydraulic fluid discharged from the pump 376 is supplied to the second pressurizing chamber 362 through the relief valve 402, so that the hydraulic pressure in the brake cylinders 42 and 52 can be increased. .
  • a manual-related brake system is constituted by the second master passage 392, the first hydraulic pressure generator 300, the left and right rear wheel brake cylinders 52RL, RR, and the like.
  • the pressure-increasing linear control valve 382 (output hydraulic pressure control device 372) is connected to an intermediate hydraulic pressure chamber 336 behind the pressurizing piston 312 of the first hydraulic pressure generating device 300.
  • the pressure-increasing linear control valve 382 and the relief valve 402 are arranged in parallel between the manual-related brake system and the second hydraulic pressure generator 370.
  • both a relief valve and an electromagnetic on-off valve can be provided between the second hydraulic pressure generator and the manual-related brake system.
  • the second hydraulic pressure generator includes an accumulator.
  • the output hydraulic pressure control device 118 is not essential.
  • the pressure reducing linear control valve 116 is not indispensable. The pressure reduction control of the fluid pressure in the common passage 102 can be performed by at least one of the pressure reducing valves 106.
  • the output hydraulic pressure of the pump 90 can be controlled by controlling the pump motor 55 by the brake ECU 56.
  • the pump motor 55 is controlled by the pump motor ECU 57 in a mode different from the brake ECU 56, and supplied to the manual related brake system via the flow control device. Can be done.
  • the present invention can be carried out in various modifications and improvements based on the knowledge of those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

液圧ブレーキシステムの改良を図る。制御系の異常時に、ブレーキペダル60の踏込み操作が行われた場合には、ポンプモータ55が作動させられる。ポンプモータ55の吐出圧が、リリーフ弁146を経て第2マスタ通路70bに供給され、左前輪2のブレーキシリンダ42FLに供給されるとともにマスタシリンダ62の第2加圧室69bに供給される。それにより、第1加圧室69aの液圧が増圧させられ、右前輪4のブレーキシリンダ42FRに供給される。左右前輪2,4のブレーキシリンダ42FL,FRの液圧を増圧させることができ、制御系が異常であっても、車両全体の制動力不足を抑制することができる。

Description

液圧ブレーキシステム
 本発明は、車輪の回転を抑制する液圧ブレーキを備えた液圧ブレーキシステムに関するものである。
 特許文献1に記載の液圧ブレーキシステムにおいては、(a)マスタシリンダ、(b)ポンプ装置とアキュムレータとを含む動力式液圧発生装置、(c)複数のブレーキシリンダ、(d)これらが接続された共通通路とが設けられるとともに、動力式液圧発生装置と共通通路との間に出力液圧制御弁が設けられる。液圧ブレーキシステムが正常である場合には、出力液圧制御弁の制御により、動力式液圧発生装置の出力液圧が制御されて、共通通路に供給されて、複数のブレーキシリンダに供給される。液圧ブレーキシステムの電気系統が異常の場合には、動力式液圧発生装置が共通通路から遮断されて、マスタシリンダの液圧が共通通路を経て複数のブレーキシリンダに供給される。
 特許文献2には、動力式液圧発生装置を備えた液圧ブレーキシステムが記載されている。動力式液圧発生装置は、バルブ機構13,シャトル弁17,18を介してマスタシリンダとブレーキシリンダとを接続する液通路に接続される。シャトル弁17,18によりバルブ機構13の液圧とマスタシリンダの液圧との高い方が選択されて、ブレーキシリンダに供給される。
 特許文献3に記載の液圧ブレーキシステムにおいては、動力式液圧発生装置とブレーキシリンダとを接続する液通路の途中に個別制御弁が設けられ、液通路の個別制御弁より下流側にマスタシリンダが接続される。当該液圧ブレーキシステムが正常である場合には、ブレーキシリンダがマスタシリンダから遮断された状態で、個別制御弁の制御により動力式液圧発生装置の液圧を利用してブレーキシリンダの液圧が制御される。当該液圧ブレーキシステムの電気系統が異常である場合には、マスタシリンダの液圧が供給される。
 特許文献4に記載の液圧ブレーキシステムにおいては、バキュームブースタの助勢限界後に、ポンプ装置の出力液圧が制御され、マスタシリンダの加圧ピストンの後方液圧室に供給される。それによって、バキュームブースタの助勢限界後に、助勢限界前後で、ブレーキシリンダの液圧のブレーキ操作力に対する比率が同じになる状態で、ブレーキシリンダの液圧を増圧させることができる。この液圧ブレーキシステムにおいて、マスタシリンダとブレーキシリンダとを接続する主通路と、ポンプ装置との間にリリーフ弁が設けられ、ポンプの吐出圧が過大になると、ポンプから主通路に吐出圧が供給される。
特開2006-123889 特表2009-502645 特開平10-287227 特開2001-287637
 本発明の課題は、液圧ブレーキシステムの改良を図ることである。
課題を解決するための手段および効果
 請求項1に記載の液圧ブレーキシステムは、(A)運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源を備えた第1液圧発生装置と、(B)電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた第2液圧発生装置と、(C)車両の複数の車輪の各々に対応して設けられ、それぞれ、ブレーキシリンダの液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、(D)(i)前記マニュアル式液圧源と前記複数の液圧ブレーキのうちの少なくとも1つの前記ブレーキシリンダとの両方に連通可能な連通装置と、(ii)前記第1液圧発生装置と、(iii)前記少なくとも1つのブレーキシリンダとを含むマニュアル関連ブレーキ系統と、(E)前記マニュアル関連ブレーキ系統と前記第2液圧発生装置との間に、互いに並列に設けられ、(i)前記第2液圧発生装置の出力液圧を制御可能な出力液圧制御装置と、(ii)前記第2液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを抑制する流れ抑制装置とを含むものとされる。
 本発明に係る液圧ブレーキシステムにおいては、マニュアル関連ブレーキ系統と第2液圧発生装置との間に、出力液圧制御装置と流れ抑制装置とが互いに並列に設けられる。
 例えば、当該液圧ブレーキシステムが正常である場合に、第2液圧発生装置の出力液圧が出力液圧制御装置によって制御されてマニュアル関連ブレーキ系統に供給され、ブレーキシリンダに供給されて、液圧ブレーキが作動させられる。ブレーキシリンダの液圧が要求液圧に近づくように出力液圧制御装置の制御によって制御される。
 当該液圧ブレーキシステムの制御系が異常である場合に、第2液圧発生装置の液圧が流れ抑制装置を経てマニュアル関連ブレーキ系統に供給される。マニュアル式液圧源に供給されると、ブレーキ操作部材に加えられる操作力が同じ場合の液圧を大きくすることができ、ブレーキシリンダの液圧を大きくすることができる。また、その場合に、第2液圧発生装置の液圧が流れ抑制装置を経てマニュアル関連ブレーキ系統に供給されるため、マニュアル関連ブレーキ系統に、(i)過大な液圧の作動液が供給されること(ii)大流量の作動液が供給されることとの少なくとも一方を回避し、マニュアル式液圧源に、(i)過大な液圧が供給されることと(ii)大流量で作動液が供給されることとの少なくとも一方を回避することができる。
 また、出力液圧制御装置が、第2液圧発生装置とマニュアル関連ブレーキ系統との間に設けられ、流れ抑制装置が、第2液圧発生装置とマニュアル関連ブレーキ系統のうちの{連通装置と、少なくとも1つのブレーキシリンダと、マニュアル式液圧源とを含む部分、すなわち、マニュアル関連ブレーキ系統から第1液圧発生装置のマニュアル式液圧源以外の部分を除いた部分}との間に設けられるようにすることができる。
 特許文献1~4のいずれにも、マニュアル関連ブレーキ系統と第2液圧発生装置との間に、出力液圧制御装置と流れ抑制装置とが互いに並列に設けられた液圧ブレーキシステムは記載されていない。
特許請求可能な発明
 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。請求可能発明は、少なくとも、請求の範囲に記載された発明である「本発明」ないし「本願発明」を含むが、本願発明の下位概念発明や、本願発明の上位概念あるいは別概念の発明を含むこともある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組を、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
(1)運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源を備えた第1液圧発生装置と、
 電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた第2液圧発生装置と、
 車両の複数の車輪の各々に対応して設けられ、それぞれ、複数のブレーキシリンダ各々の液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、
 (i)前記マニュアル式液圧源と前記複数の液圧ブレーキのうちの少なくとも1つの前記ブレーキシリンダとに連通可能な連通装置と、(ii)前記第1液圧発生装置と、(iii)前記少なくとも1つのブレーキシリンダとを含むマニュアル関連ブレーキ系統と、
 前記マニュアル関連ブレーキ系統と前記第2液圧発生装置との間に、互いに並列に設けられ、(i)前記第2液圧発生装置の出力液圧を制御可能な出力液圧制御装置と、(ii)前記第2液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを抑制する流れ抑制装置と
を含むことを特徴とする液圧ブレーキシステム。
 第1液圧発生装置は、(x)マニュアル式液圧源を含むものであり、例えば、マスタシリンダとすることができる。(y)また、マニュアル式液圧源と、マニュアル式液圧源の液圧を制御可能な制御機構とを含むものとすることができ、その制御機構が第2液圧発生装置の液圧により作動させられるようにすることができる。例えば、(y-1)液圧ブースタ付きマスタシリンダとしたり、(y-2)ブレーキ操作部材に加えられる操作力に応じた液圧を発生させる状態と、ブレーキ操作部材に加えられる操作力とは関係がない大きさの液圧を発生させる状態とをとり得るものとしたりすること等ができる。後者(y-2)の例として、例えば、第1液圧発生装置は、加圧ピストンを含み、(a)その加圧ピストンがブレーキ操作部材の操作により前進させられる状態と、(b)ブレーキ操作部材の操作によらず、第2液圧発生装置の液圧により前進させられる状態とをとり得るものとすることができる。加圧ピストンの前方の前方加圧室には、加圧ピストンがブレーキ操作部材の操作によって前進させられる状態において、操作力によって液圧を発生させるため、マニュアル式液圧源に対応すると考えることができる。第2液圧発生装置は、それの液圧が、加圧ピストンの後方に作用する状態で接続されるようにすることができる。
 なお、第1液圧発生装置は、液圧を発生させ得るものであるため、リザーバは含まないものとする。
 第2液圧発生装置は、電気エネルギの供給により作動させられる駆動源と、その駆動源により作動可能な作動液供給部とを備えた動力式液圧源を含む。第2液圧発生装置は、動力式液圧源と、作動液供給部から供給された作動液を加圧した状態で蓄えるアキュムレータとを含むものとすることができる。
 出力液圧制御装置は、例えば、第2液圧発生装置の出力液圧を制御可能な1つ以上の電磁開閉弁を含むものとすることができる。電磁開閉弁は、ソレノイドのコイルへの供給電流(以下、単に、ソレノイドへの供給電流と略称する)の制御により、少なくとも開状態と閉状態とに制御可能なバルブであり、ソレノイドへの供給電流の連続的な制御により、前後の差圧(または/および)開度を連続的に制御可能なリニア制御弁であっても、ソレノイドへの供給電流のON・OFF制御により、開状態と閉状態とに切り換え可能な単なる電磁開閉弁であってもよい。以下、本明細書において、特に限定しない限り、電磁開閉弁と記載した場合、リニア制御弁であっても、単なる開閉弁であってもよいものとする。
 流れ抑制装置は、第2液圧発生装置とマニュアル関連ブレーキ系統との間の、自由な、双方向の流れに制限を加えるものであり、これらの間の作動液の流れを、常に、阻止するものではない。例えば、当該流れ抑制装置が設けられない場合に比較して、流量を抑制したり、減圧して供給したりするものである。具体的には、(a)第2液圧発生装置の液圧を減圧してマニュアル関連ブレーキ系統に供給する機能を備えた減圧装置と、(b)マニュアル関連ブレーキ系統に第2液圧発生装置の液圧が必要な場合にマニュアル関連ブレーキ系統への作動液の流れを許容し、不要な場合にマニュアル関連ブレーキ系統への作動液の流れ、あるいは、双方向の流れを阻止する流れ許容・阻止装置と、(c)流路抵抗を大きくする絞り等の流路抵抗装置等とのうちの1つ以上を含むものとすることができる。
 マニュアル関連ブレーキ系統は、第1液圧発生装置と、連通装置と、少なくとも1つのブレーキシリンダとを含むものであり、連通装置は、マニュアル液圧源と少なくとも1つのブレーキシリンダとの両方に連通可能なものであり、例えば、液通路等を含む。連通装置は、マニュアル液圧源と少なくとも1つのブレーキシリンダとを接続する主通路(マスタ通路)を含むものとしたり、主通路とそれに接続された液通路、装置等とを含むものとしたりすることができる。なお、連通装置によってマニュアル液圧源に連通させられるブレーキシリンダは、1つであっても2つ以上であってもよい。
(2)当該液圧ブレーキシステムが、当該液圧ブレーキシステムの制御系が正常である場合と、前記出力液圧制御装置を制御することによって、前記ブレーキシリンダの液圧を制御する正常時出力液圧制御装置を含む(1)項に記載の液圧ブレーキシステム。
 ブレーキシリンダの液圧は、要求液圧に近づくように制御されるのであり、要求液圧は、運転者のブレーキ操作部材の操作状態に基づいて決定されたり、車両の走行状態や先行車両との相対位置関係等に基づいて決定されたりする。
(3)当該液圧ブレーキシステムが、当該液圧ブレーキシステムが前記出力液圧制御装置によって前記第2液圧発生装置の出力液圧を制御できない状態である場合に、前記第2液圧発生装置から前記マニュアル関連ブレーキ系統へ前記流れ抑制装置を経て作動液が流れることを許容する異常時作動液供給機構を含む(1)項または(2)項に記載の液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムにおいては、出力液圧制御装置によって第2液圧発生装置の出力液圧を制御できない異常時に、マニュアル関連ブレーキ系統に第2液圧発生装置の液圧を供給することができる。また、流れ抑制装置を経て作動液が供給されるため、マニュアル関連ブレーキ系統に、過大な液圧の作動液が供給されたり、大流量で作動液が供給されたりすることを回避することができる。
(4)当該液圧ブレーキシステムが、当該液圧ブレーキシステムが前記出力液圧制御装置によって前記第2液圧発生装置の出力液圧を制御できない状態である場合に、前記動力式液圧源を制御する動力式液圧源制御装置を含む(1)項ないし(3)項のいずれか1つに記載の液圧ブレーキシステム。
 出力液圧制御装置によって第2液圧発生装置の出力液圧を制御できない状態(異常な状態)とは、当該液圧ブレーキシステムの制御系が異常である状態をいう。例えば、出力液圧制御装置自体の異常、出力液圧制御装置の制御に利用されるセンサ等の異常、出力液圧制御装置の制御に関連して制御される他の制御部(例えば、他の制御弁)等の異常、出力液圧制御装置を制御するメインコンピュータの異常、出力液圧制御装置やメインコンピュータに電力を供給するメイン電源の異常、メイン電源系統における電気系の異常等であって、かつ、動力式液圧源が作動可能な状態が該当する。
 例えば、出力液圧制御装置自体の異常、センサ等の異常、他の制御部の異常の場合には、動力式液圧源を作動させることができる。
 また、動力式液圧源が出力液圧制御装置を制御するメインコンピュータとは別のサブコンピュータによって制御される場合には、メインコンピュータが異常であってもサブコンピュータによって動力式液圧源を制御することができる。
 さらに、動力式液圧源、動力式液圧源を制御するサブコンピュータが、メイン電源とは異なるサブ電源から供給される電力によって作動可能とされている場合には、メイン電源の異常、メイン電源を含む電気系統の異常であっても、サブ電源、サブコンピュータが正常である場合には、動力式液圧源を制御することが可能となる。
 なお、動力式液圧源については、電源系統、制御系統について二重系とすることができる。例えば、動力式液圧源は、メイン電源とサブ電源とから電力が供給可能とたり、メインコンピュータとサブコンピュータとの両方によって制御可能としたりすることができる。
 また、出力液圧制御装置によって出力液圧を制御できる状態(正常な状態)においては、第2液圧発生装置から流れ抑制装置を経るマニュアル関連ブレーキ系統への作動液の流れが阻止されることが望ましい。さらに、当該液圧ブレーキシステムの制御系が異常であることによって動力式液圧源が作動させられる場合には、第2液圧発生装置から出力液圧制御装置を経てマニュアル関連ブレーキ系統に作動液が供給されないようにすることが望ましいが不可欠ではない。
(5)当該液圧ブレーキシステムが、前記出力液圧制御装置に電力を供給するメイン電源と、前記動力式液圧源に電力を供給するサブ電源とを含む(1)項ないし(4)項のいずれか1つに記載の液圧ブレーキシステム。
(6)当該液圧ブレーキシステムが、前記出力液圧制御装置を制御するメインコンピュータ(CPU)と、前記動力式液圧源を制御するサブコンピュータ(CPU)とを含む(1)項ないし(5)項のいずれか1つに記載の液圧ブレーキシステム。
 メインコンピュータにはメイン電源から電力が供給され、サブコンピュータにはサブ電源から電力が供給されるようにすることができる。
(7)前記連通装置が、前記マニュアル式液圧源と前記少なくとも1つのブレーキシリンダとを接続するマニュアル通路を含み、
 前記流れ抑制装置が、前記第2液圧発生装置と前記マニュアル通路との間に設けられた(1)項ないし(6)項に記載の液圧ブレーキシステム。
 第2液圧発生装置からマニュアル通路へは、流れ抑制装置を経て液圧が供給される。流れ抑制装置を経て供給された液圧は、マニュアル式液圧源に供給されるとともに、マニュアル通路に接続されたブレーキシリンダに供給される。
(8)当該液圧ブレーキシステムが、前記マニュアル通路に設けられ、ソレノイドへの電流の供給制御により、少なくとも開状態と閉状態とに切換え可能な電磁開閉弁であるマニュアル遮断弁を含み、
 前記流れ抑制装置が、前記第2液圧発生装置と前記マニュアル通路の前記マニュアル遮断弁よりブレーキシリンダ側の部分との間に設けられた(7)項に記載の液圧ブレーキシステム。
 マニュアル関連ブレーキ系統において第2液圧発生装置の液圧の供給が要求されない場合(作動液がマニュアル通路に供給されない場合)であっても、流れ抑制装置の異常等により、作動液がマニュアル関連ブレーキ系統に供給されることがある。
 この場合に、マニュアル通路に供給された第2液圧発生装置の液圧がマニュアル式液圧源に供給されると、ブレーキ操作部材に力が加えられ、運転者が違和感を感じることがある。また、マニュアル式液圧源の液圧がブレーキ操作部材のストロークに対して大きくなるため、マニュアル式液圧源が正常であるにも係わらず、異常であると誤検出されるおそれがある。
 それに対して、第2液圧発生装置の液圧がマニュアル遮断弁の下流側(マニュアル液圧源とは反対側)に供給される場合において、マニュアル遮断弁が閉状態にある場合には、マニュアル通路に供給された第2液圧発生装置の液圧のマニュアル式液圧源への供給が防止されるため、ブレーキ操作部材への影響を防止することができ、違和感を軽減することができる。また、マニュアル式液圧源への作動液の供給が防止されるため、マニュアル式液圧源が異常であるとの誤検出を防止することができる。
 なお、マニュアル遮断弁が開状態にあっても、絞り効果により、マニュアル遮断弁の上流側(マニュアル式液圧源側)に接続される場合より、運転者の違和感を軽減し、誤って異常であると検出され難くすることができる。
(9)前記連通装置が、(i)前記少なくとも1つのブレーキシリンダが、それぞれ、個別通路を介して接続された共通通路と、(ii)前記少なくとも1つの個別通路のうちの1つと、(iii)その1つの個別通路と前記マニュアル式液圧源とを接続する個別接続通路とを含み、
 前記流れ抑制装置が、前記第2液圧発生装置と前記個別接続通路との間に設けられた(1)項ないし(8)項のいずれか1つに記載の液圧ブレーキシステム。
 個別接続通路と、個別通路の個別接続通路の接続部よりブレーキシリンダ側の部分とによってマニュアル通路が構成されると考えることができ、流れ抑制装置が、第2液圧発生装置と、マニュアル通路の一部である個別接続通路との間に設けられる。
(10)前記連通装置が、(i)前記少なくとも1つのブレーキシリンダが、それぞれ、個別通路を介して接続された共通通路と、(ii)前記少なくとも1つの個別通路のうちの1つと、(iii)その1つの個別通路と前記マニュアル式液圧源とを接続する個別接続通路とを含み、
 前記流れ抑制装置が、前記第2液圧発生装置と前記共通通路との間に設けられた(1)項ないし(9)項のいずれか1つに記載の液圧ブレーキシステム。
 第2液圧発生装置の液圧は、流れ抑制装置を経て共通通路に供給される。共通通路に供給された液圧は、個別通路、個別接続通路を経てマニュアル式液圧源に供給されるとともに、個別通路を経てブレーキシリンダに供給される。
(11)前記1つの個別通路に、その個別通路に接続された前記ブレーキシリンダの液圧を制御可能な個別制御弁が設けられ、前記個別接続通路が、前記1つの個別通路の、前記個別制御弁より前記ブレーキシリンダ側の部分に接続された(10)項に記載の液圧ブレーキシステム。
 個別接続通路が、個別通路の個別制御弁よりブレーキシリンダ側の部分に接続される。そのため、第2液圧発生装置と個別接続通路との間には、少なくとも、流れ抑制装置と個別制御弁とが介在する。
  このように、第2液圧発生装置と、個別接続通路との間に個別制御弁が介在するため、個別制御弁を閉状態とすれば、個別接続通路およびマニュアル式液圧源を含むブレーキ系統(第1ブレーキ系統)と、第2液圧発生装置を含むブレーキ系統(第2ブレーキ系統)とを、互いに独立にすることができる。その結果、たとえ、第1ブレーキ系統と第2ブレーキ系統とのいずれか一方に液漏れが生じても、その影響が他方に及ばないようにすることができる。
 なお、個別制御弁は、例えば、アンチロック制御等のスリップ制御に用いられる制御弁とすることができる。
(12)前記個別制御弁が、ソレノイドに電流が供給されない場合に開状態にある常開の電磁開閉弁である(11)項に記載の液圧ブレーキシステム。
 個別制御弁が常開の電磁開閉弁である場合には、ソレノイドに電流が供給されない場合に、第2液圧発生装置の液圧が、流れ抑制装置、開状態にある個別制御弁を経て個別接続通路に供給される。
(13)前記連通装置が、(i)前記少なくとも1つのブレーキシリンダが、それぞれ、個別通路を介して接続された共通通路と、(ii)前記少なくとも1つの個別通路のうちの1つと、(iii)前記共通通路と前記マニュアル式液圧源とを接続する共通接続通路とを含み、
 前記流れ抑制装置が、前記第2液圧発生装置と前記共通通路との間に設けられた(1)項ないし(12)項のいずれか1つに記載の液圧ブレーキシステム。
(14)前記出力液圧制御装置が、前記第2液圧発生装置と前記共通通路との間に設けられた(9)項ないし(13)項のいずれか1つに記載の液圧ブレーキシステム。
(15)前記出力液圧制御装置が、前記第2液圧発生装置と前記マニュアル通路との間に設けられた(7)項ないし(14)項のいずれか1つに記載の液圧ブレーキシステム。
 第2液圧発生装置の液圧が出力液圧制御装置によって制御されて、共通通路に供給されるようにしても、マニュアル通路に供給されるようにしてもよい。
 第2液圧発生装置の液圧が出力液圧制御装置によって制御される場合には、ブレーキシリンダはマニュアル式液圧源から遮断されていることが多い。出力液圧制御装置は、マニュアル通路のマニュアル遮断弁よりブレーキシリンダ側の部分との間に設けられることが多い。
(16)前記出力液圧制御装置が、前記第2液圧発生装置と前記第1液圧発生装置との間に設けられた(1)項ないし(15)項のいずれか1つに記載の液圧ブレーキシステム。
(17)前記出力液圧制御装置が、ソレノイドへの電流の供給制御により、少なくとも開状態と閉状態とに切り換え可能な電磁開閉弁を含む(1)項ないし(16)項のいずれか1つに記載の液圧ブレーキシステム。
(18)前記出力液圧制御装置が、ソレノイドへの供給電流の制御により、前後の差圧を制御可能なリニア制御弁を含む(1)項ないし(17)項のいずれか1つに記載の液圧ブレーキシステム。
  出力液圧制御装置は、ソレノイドへの供給電流のON・OFFにより開閉可能な単なる電磁開閉弁を含むものとしても、ソレノイドへの供給電流の大きさを制御することにより前後の差圧を制御可能なリニア制御弁を含むものとしてもよい。
 出力液圧制御装置は、リニア制御弁を含む場合の方が単なる開閉弁を含む場合より、制御対象液圧をきめ細かに制御することができる。また、作動音を軽減することができる。
 出力液圧制御装置は、第2液圧発生装置の出力液圧を減圧して出力する増圧制御弁(第2液圧発生装置とマニュアル関連ブレーキ系統との間に設けられる)と、増圧制御弁の制御圧(マニュアル関連ブレーキ系統の液圧)をさらに減圧する減圧制御弁(増圧制御弁の制御側と低圧源との間に設けられる)との両方を含むものであっても、増圧制御弁を含み減圧制御弁を含まないものであってもよい。
 増圧制御弁がリニア制御弁である場合において、第2液圧発生装置の液圧とマニュアル関連ブレーキ系統の液圧との差圧が制御されるのであり、第2液圧発生装置の液圧をほぼ一定とみなすことができる場合には、マニュアル関連ブレーキ系統の液圧がソレノイドへの供給電流の大きさに応じた大きさに制御される。
(19)前記流れ抑制装置が、前記第2液圧発生装置の液圧が前記マニュアル関連ブレーキ系統の液圧より設定圧以上大きくなると、前記第2液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを許容するリリーフ弁を含む(1)項ないし(18)項のいずれか1つに記載の液圧ブレーキシステム。
(20)前記流れ抑制装置が、ソレノイドへの電流の供給制御により、少なくとも、開状態と閉状態とに切り換え可能であって、前記ソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁を含む(1)項ないし(19)項のいずれか1つに記載の液圧ブレーキシステム。
 電磁開閉弁がシーティング弁である場合には、弁子、弁座、弁子を弁座に付勢するスプリングとを含むのが普通である。そして、電磁開閉弁が、弁子に第2液圧発生装置の液圧を受ける状態で配設される場合において、電磁開閉弁の閉状態において、前後の差圧がスプリングの付勢力より大きくなると弁子が弁座から離間させられ、開状態に切り換えられる。このように、本項に記載の液圧ブレーキシステムにおいて、電磁開閉弁はリリーフ弁として用いられることになる。
 リリーフ弁の設定圧(開弁圧、リリーフ圧と称することができる)は、当該液圧ブレーキシステムが正常である場合には、第2液圧発生装置の液圧が加えられても閉状態に保持され、制御系が異常である場合に、動力式液圧源が制御されることにより、開かれる大きさとすることが望ましい。
 なお、電磁開閉弁は、当該液圧ブレーキシステムが正常である場合に、出力液圧制御装置として利用することもできる。
 また、出力液圧制御装置によって第2液圧発生装置の液圧を制御できない状態であっても、電磁開閉弁が制御可能とされている場合には、電磁開閉弁の制御により、第2液圧発生装置からマニュアル関連ブレーキ系統への作動液の流れを制御することができる。
(21)前記流れ抑制装置が、前記マニュアル関連ブレーキ系統から前記第2液圧発生装置への作動液の流れを阻止する機能を有する逆流阻止部を含む(1)項ないし(20)項のいずれか1つに記載の液圧ブレーキシステム。
  マニュアル関連ブレーキ系統から第2液圧発生装置への作動液の流れを阻止することが望ましい。上述の電磁開閉弁、リリーフ弁は、逆流阻止部を有すると考えることができる。
(22)前記動力式液圧源が、(i)駆動源と、(ii)その駆動源により作動させられ、作動液を供給する作動液供給部とを含み、第2液圧発生装置が、前記作動液供給部から供給された作動液を加圧した状態で保持するアキュムレータを含む(1)項ないし(21)項のいずれか1つに記載の液圧ブレーキシステム。
 作動液供給部から供給された作動液がマニュアル関連ブレーキ系統に供給される場合において、アキュムレータにおいて作動液の脈動が抑制される。
 なお、本項に記載の液圧ブレーキシステムにおいては、流れ抑制装置とアキュムレータとの間に、アキュムレータから流れ抑制装置に向かう作動液の流れを阻止する逆止弁は設けられていない。
(23)当該液圧ブレーキシステムが、(x)当該液圧ブレーキシステムの制御系が正常である場合には、前記駆動源への供給電気エネルギを、前記アキュムレータに蓄えられる作動液の液圧が予め定められた設定範囲内にあるように制御する正常時制御部と、(y)当該液圧ブレーキシステムの制御系が異常である場合には、前記駆動源への供給電気エネルギを、前記作動液供給部から供給される作動液の流量が設定値となるように制御する異常時制御部とを含む(22)項に記載の液圧ブレーキシステム。
 正常時制御部は、アキュムレータ圧が設定範囲の下限値より低くなると駆動源を始動させ、上限値を超えると停止させる開始・停止部を含むものとすることができる。それにより、アキュムレータ圧が設定範囲内に保たれる。
 異常時制御部は、作動液供給部から供給される作動液の流量がほぼ設定値となり、マニュアル式液圧源に供給される作動液の流量がほぼ設定値となるように制御することができる。設定値は、運転者のブレーキ操作部材に加えられる操作力が同じであっても、マニュアル式液圧源の液圧を増圧可能であれば、大きさは問わない。例えば、運転者によってマニュアル式液圧源の液圧を調整可能な大きさとしたり、運転者の操作力で決まる大きさ(例えば、操作力より設定値以上大きい液圧を発生可能な大きさ)としたりすること等ができる。また、設定値は固定値であっても可変値であってもよく、マニュアル式液圧源の状態(運転者によるブレーキ操作部材の操作状態を含む)等に基づいてその都度決めることもできる。
 なお、異常時制御部は、作動液供給部から供給される作動液の流量がパターンに従って変化するように制御するパターン対応制御部を含むものとすることができる。その場合に、設定値は、最終的な値を意味するものとしたり、パターンに従って変化させられる各々の値を意味するものとしたりすることができる。
 また、異常時制御部は、駆動源が電動モータである場合に、電動モータの回転数が設定値となるように制御する電動モータ制御部を含むものとすることができる。電動モータ制御部は、電動モータの回転数が、予め定められたパターンに従って変化するように、供給電流を制御するパターン対応制御部を含むものとすることができる。異常時制御部は、動力式液圧源制御装置に含まれるものとすることができる。
(24)当該液圧ブレーキシステムが、前記複数の車輪のうちの左右前輪に対応して設けられた前記液圧ブレーキの前記ブレーキシリンダが、それぞれ、前輪用個別通路を介して接続された前輪用共通通路を含み、
 前記マニュアル式液圧源が、2つの加圧ピストンを備え、前記ブレーキ操作部材の操作により2つの加圧室にそれぞれ液圧を発生させるタンデム式のマスタシリンダの加圧室の各々とされ、それら加圧室の各々が前記前輪用個別通路の各々に、それぞれ、前輪用個別接続通路を介して接続され、
 前記連通装置が、(i)前記前輪用共通通路と、(ii)前記2つの前輪用個別通路のいずれか一方と、(iii)その一方の前輪用個別通路に接続された一方の前輪用個別接続通路とを含む(1)項ないし(23)項のいずれか1つに記載の液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムにおいて、左右前輪のブレーキシリンダが、それぞれ、前輪用共通通路を介することなく、マスタシリンダの加圧室に接続される。
 マニュアル関連ブレーキ系統は、連通装置と、一方の前輪用個別接続通路が接続された加圧室と、その加圧室に接続された一方のブレーキシリンダとを含む。
(25)当該液圧ブレーキシステムが、(i)前記一方の前輪用個別通路に設けられ、ソレノイドへの電流の供給制御により開状態と閉状態とに切り換え可能であって、ソレノイドに電流が供給されない場合に開状態にある常開の電磁開閉弁である前輪用個別制御弁と、(ii)前記2つの前輪用個別通路の他方に設けられ、ソレノイドへの電流の供給制御により開状態と閉状態とに切り換え可能であって、ソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁である前輪用個別制御弁とを含み、
 前記一方の前輪用個別接続通路が、前記一方の前輪用個別通路の前記常開の前輪用個別制御弁より下流側の部分に接続され、前記他方の前輪用個別接続通路が、前記他方の前輪用個別通路の前記常閉の前輪用個別制御弁より下流側の部分に接続された(24)項に記載の液圧ブレーキシステム。
 一方の前輪用個別通路に設けられた一方の前輪用個別制御弁が常開の電磁開閉弁であり、他方の前輪用個別通路に設けられた他方の前輪用個別制御弁が常閉の電磁開閉弁である。
 第2液圧発生装置が出力液圧制御装置を介して前輪用共通通路に接続される場合において、前輪用共通通路に供給された第2液圧発生装置の液圧は、常開の前輪用個別制御弁を経て、一方の個別接続通路に供給され、マニュアル式液圧源に供給されるとともにブレーキシリンダに供給される。
(26)当該液圧ブレーキシステムが、前記2つの前輪用個別接続通路の各々に設けられ、ソレノイドに電流が供給されない場合に開状態にある常開の電磁開閉弁であるマニュアル遮断弁を含む(24)項または(25)項に記載の液圧ブレーキシステム。
 マニュアル遮断弁は、常開の電磁開閉弁であるため、ソレノイドに電流が供給されない場合に開状態にある。そのため、一方の前輪用個別接続通路に供給された第2液圧発生装置の液圧は、ブレーキシリンダにもマニュアル式液圧源にも供給され得る。
(27)前記2つの加圧室の他方に、前記2つの加圧ピストンの移動を規制する移動規制部が設けられた(24)項ないし(26)項のいずれか1つに記載の液圧ブレーキシステム。
 他方の加圧室に移動規制部が設けられるため、第2液圧発生装置の液圧は流れ抑制装置を経て一方の加圧室に供給されるようにすることが望ましい。
(28)前記第1液圧発生装置が、前記ブレーキ操作部材に加えられた操作力を倍力する液圧ブースタを備え、前記出力液圧制御装置が、前記第2液圧発生装置と前記液圧ブースタとの間に設けられた(1)項ないし(27)項のいずれか1つ記載の液圧ブレーキシステム。
 第1液圧発生装置が、(a)ブレーキ操作部材の前進に伴って前進させられる加圧ピストンと、(b)その加圧ピストンの前方に設けられた前方加圧室と、(c)加圧ピストンの後方に設けられた後方液圧室(ブースタ室と称することができる)とを含み、前方加圧室にブレーキシリンダが接続され、後方液圧室に第2液圧発生装置が出力液圧制御装置を介して接続される。後方液圧室の液圧は、ブレーキ操作部材の操作力に応じた大きさに制御されるため、前方加圧室の液圧はブレーキ操作力を倍力した大きさに対応する液圧とされる。また、流れ抑制装置は、加圧室、加圧室とブレーキシリンダとに連通可能な連通装置、ブレーキシリンダとを含む加圧室関連ブレーキ系統(マニュアル関連ブレーキ系統の一部:第1液圧発生装置のうちの加圧ピストンより前方側の部分)との間に設けることができる。
 第1液圧発生装置において、加圧ピストンはブレーキ操作部材の前進に伴って前進させられるため、後方液圧室に液圧を供給することにより、前方加圧室には、ブレーキ操作部材の操作力に対応する液圧(後方液圧室に液圧が供給されない場合の前方加圧室の液圧をいう。ブレーキ操作部材が作用操作されていない場合には、前方加圧室の液圧は大気圧の場合もある)より高い液圧が発生させられることになる。
(29)前記第1液圧発生装置が、(a)ブレーキ操作部材の操作によって液圧を発生させるマニュアル依拠液圧発生状態と、(b)前記出力液圧制御装置によって制御された液圧が供給されることにより液圧を発生させる第2液圧依拠液圧発生状態と、(c)前記ブレーキ操作部材の操作に応じて反力を付与するストロークシミュレータ状態とをとり得るものである(1)項ないし(28)項のいずれか1つに記載の液圧ブレーキシステム。
 ストロークシミュレータ状態において、第2液圧依拠液圧発生状態である場合とそうでない場合とがある。すなわち、ストロークシミュレータとして機能しつつ、第2液圧発生装置の液圧により前方加圧室に液圧が発生させられる場合と、前方加圧室に液圧が発生させられない場合とがある。
(30)前記第1液圧発生装置が、(a)ハウジングと、(b)そのハウジングに対して液密かつ摺動可能に嵌合された加圧ピストンと、(c)加圧ピストンの前方に設けられ、加圧ピストンの前進に伴って液圧が発生させられる前方加圧室と、(d)前記加圧ピストンの後方に設けられた後方液圧室と、(e)前記ブレーキ操作部材を前記加圧ピストンから遮断して、前記ブレーキ操作部材に反力を付与する反力付与機構と、(f)前記ブレーキ操作部材と前記加圧ピストンとを連携させて、前記加圧室に前記ブレーキ操作部材の操作に応じた液圧を発生させるマニュアル液圧発生機構とを含み、前記第2液圧発生装置が、前記後方液圧室に前記出力液圧制御装置を介して接続された(29)項に記載の液圧ブレーキシステム。
(31)当該液圧ブレーキシステムが、前記反力付与機構により、前記ブレーキ操作部材に反力が付与されている状態において、前記出力液圧制御装置を、前記液圧ブレーキの要求液圧に基づいて制御する後方液圧制御部を含み、前記流れ抑制装置が、前記マニュアル関連ブレーキ系統のうち、前記前方加圧室と、前記少なくとも1つのブレーキシリンダと、これら前方加圧室と少なくとも1つのブレーキシリンダとに連通可能な連通装置とを含む加圧室関連ブレーキ系統と、前記第2液圧発生装置との間に設けられた(30)項に記載の液圧ブレーキシステム。
 本項に記載の第1液圧発生装置は、液圧ブレーキシステムが正常である場合には、ブレーキ操作部材が加圧ピストンから遮断された状態で、前方加圧室の液圧が後方液圧室の液圧の制御により制御される。そのため、前方加圧室の液圧を、加圧ピストンとブレーキ操作部材とが連携させられた場合のブレーキ操作力に対応する液圧より低い液圧に制御することもできる。
 また、ブレーキ操作部材が操作されていても、液圧ブレーキを作用させる要求がない場合には、後方液圧室に液圧が供給されないようにすることよって、前方加圧室に液圧が発生させられないようにすることができる。
 さらに、反力付与機構が設けられるため、これらの場合であっても、ブレーキ操作部材の操作が許容され、操作フィーリングが低下することが回避される。
 このように、本項に記載の液圧ブレーキシステムは、回生協調制御に適したものである。
 出力液圧制御装置によって第2液圧発生装置の液圧を制御できない異常が生じた場合には、ブレーキ操作部材と加圧ピストンとが連携させられ、加圧ピストンは、ブレーキ操作部材の前進に伴って前進させられる。前方加圧室には、ブレーキ操作部材の操作力に応じた大きさの液圧が発生させられる。この場合には、第2液圧発生装置の液圧が流れ抑制装置を経て加圧室関連ブレーキ系統に供給されるため、ブレーキシリンダの液圧の低下を抑制することができる。
(32)運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源と、
 (a)電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源と、(b)その動力式液圧源から供給された作動液を加圧した状態で蓄えるアキュムレータとを含む蓄圧機能付き動力式液圧発生装置と、
 車両の複数の車輪の各々に対応して設けられ、それぞれ、前記マニュアル式液圧源の液圧がブレーキシリンダに供給されることにより作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、
 前記マニュアル式液圧源と前記蓄圧機能付き動力式液圧発生装置との間に設けられ、前記蓄圧機能付き動力式液圧発生装置の液圧が前記マニュアル式液圧源の液圧より設定圧以上大きい場合に、前記蓄圧機能付き動力式液圧発生装置から前記マニュアル式液圧源への作動液の流れを許容するリリーフ弁と
を含むことを特徴とする液圧ブレーキシステム。
 特許文献4に記載の液圧ブレーキシステムにおいては、作動液を加圧した状態で蓄えるアキュムレータは設けられていない。そのため、特許文献4に、本項に記載の技術的特徴を示唆する記載はない。
 本項に記載の液圧ブレーキシステムには、(1)項ないし(31)項のいずれかに記載の技術的特徴を採用することができる。
(33)運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源と、
 電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた動力式液圧発生装置と、
 車両の複数の車輪の各々に対応して設けられ、それぞれ、ブレーキシリンダの液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、
 前記ブレーキシリンダを前記マニュアル式液圧源から遮断して前記動力式液圧発生装置の液圧を利用して前記ブレーキシリンダの液圧を制御するブレーキ液圧制御装置と、
 前記マニュアル式液圧源と、前記複数のブレーキシリンダのうちの少なくとも1つと、これらマニュアル式液圧源と前記少なくとも1つのブレーキシリンダとに連通可能な連通装置とを含むマニュアル関連ブレーキ系統と、前記動力式液圧発生装置との間に設けられ、前記動力式液圧発生装置の液圧が前記マニュアル関連ブレーキ系統の液圧より設定圧以上大きくなった場合に、前記動力式液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを許容するリリーフ弁と、
 前記ブレーキ液圧制御装置の異常時に、前記動力式液圧発生装置の液圧を前記マニュアル関連ブレーキ系統に供給して、前記ブレーキ操作部材の操作力が同じ場合に、前記ブレーキシリンダの液圧を増加させる異常時増圧機構と
を含むことを特徴とする液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムには、(1)項ないし(32)項のいずれかに記載の技術的特徴を採用することができる。
(34)運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源と、
 電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた動力式液圧発生装置と、
 車両の複数の車輪の各々に対応して設けられ、それぞれ、ブレーキシリンダの液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと
を含む液圧ブレーキシステムであって、
 前記動力式液圧発生装置と前記マニュアル式液圧源との間に設けられ、前記動力式液圧発生装置の液圧が前記マニュアル式液圧源の液圧より設定圧以上大きい場合に、前記動力式液圧発生装置から前記マニュアル式液圧源への作動液の流れを許容するリリーフ弁と、
 当該液圧ブレーキシステムが正常である場合に、前記動力式液圧発生装置の出力液圧を制御して、前記リリーフ弁をバイパスして、前記複数のブレーキシリンダに供給する正常時液圧供給部と、
 当該液圧ブレーキシステムの制御系の異常時に、前記動力式液圧源を作動させて、前記動力式液圧発生装置の出力液圧を、前記リリーフ弁を経て、前記マニュアル式液圧源に供給する異常時液圧供給部と
を含むことを特徴とする液圧ブレーキシステム。
 正常時制御部は、動力式液圧源を制御するものとしたり、動力式液圧源の出力側に設けられた出力液圧制御弁を制御するものとしたりすることができる。正常時制御部が、前者の動力式液圧源を制御するものである場合には、実際のブレーキシリンダの液圧が要求液圧に近づくように、動力式液圧源を制御する。
 それに対して、異常時制御部は、動力式液圧源を、例えば、異常時制御パターンに従って制御するものとすることができる。要求液圧が満たされるように制御するのではなく、マニュアル式液圧源に供給される作動液の流量がほぼ設定量に保たれるように制御すること等ができる。
 動力式液圧発生装置は、アキュムレータを含むものとすることができる等、本項に記載の液圧ブレーキシステムには、(1)項ないし(33)項のいずれかに記載の技術的特徴を採用することができる。
本発明の実施例1に係る液圧ブレーキシステムが搭載された車両全体を示す図である。 上記液圧ブレーキシステムの液圧回路図である。 上記液圧ブレーキシステムに含まれるマスタシリンダの断面図である。 (a)上記液圧ブレーキシステムに含まれる増圧リニア制御弁、減圧リニア制御弁の断面図である。(b)上記増圧リニア制御弁、減圧リニア制御弁の開弁特性を示す図である。 上記液圧ブレーキシステムに含まれるブレーキECUの記憶部に記憶されたイニシャルチェックプログラムを表すフローチャートである。 上記ブレーキECUの記憶部に記憶されたブレーキ液圧制御プログラムを表すフローチャートである。 上記液圧ブレーキシステムにおいて、ブレーキ液圧制御プログラムが実行された場合の状態を示す図である(正常な場合)。 上記液圧ブレーキシステムにおいて、ブレーキ液圧制御プログラムが実行された場合の別の状態を示す図である(制御系が異常である場合)。 (a)制御系が異常な場合にポンプモータの制御が行われた場合の、マスタシリンダの液圧と操作力との関係を示す図である。(b)ポンプモータの制御が行われない場合の、マスタシリンダの液圧と操作力との関係を示す図である。(c)制御系が異常である場合のポンプモータの制御パターンを模式的に示す図である。 前記液圧ブレーキシステムに含まれるポンプモータECUの記憶部に記憶された異常時ポンプモータ制御プログラムを表すフローチャートである。 上記液圧ブレーキシステムにおいて、ブレーキ液圧制御プログラムが実行された場合のさらに別の状態を示す図である(システム全体の電気系が異常である場合)。 上記液圧ブレーキシステムにおいて、ブレーキ液圧制御プログラムが実行された場合の別の状態を示す図である(液漏れの可能性がある場合)。 本発明の実施例2に係る液圧ブレーキシステムのブレーキECU、ポンプモータECU周辺を概念的に示す図である。 本発明の実施例3に係る液圧ブレーキシステムに含まれる液圧回路図を示す図である。 本発明の実施例4に係る液圧ブレーキシステムに含まれる液圧回路図を示す図である。 上記液圧ブレーキシステムにおける作動状態を示す図(制御系が異常である場合)である。 上記液圧ブレーキシステムにおける別の作動状態を示す図(液漏れの可能性がある場合)である。 本発明の実施例5に係る液圧ブレーキシステムに含まれる液圧回路図を示す図である。 本発明の実施例6に係る液圧ブレーキシステムに含まれる液圧回路図を示す図である。
 以下、本発明の一実施形態である液圧ブレーキシステムについて図面に基づいて詳細に説明する。
<車両>
 最初に、実施例1に係る液圧ブレーキシステムが搭載された車両について説明する。
 本車両は、駆動装置として電動モータとエンジンとを含むハイブリッド車両である。ハイブリッド車両において、駆動輪としての左右前輪2,4は、電気的駆動装置6と内燃的駆動装置8とを含む駆動装置10によって駆動される。駆動装置10の駆動力はドライブシャフト12,14を介して左右前輪2,4に伝達される。内燃的駆動装置8は、エンジン16,エンジン16の作動状態を制御するエンジンECU18等を含むものであり、電気的駆動装置6は駆動用の電動モータ(以下、駆動用モータと称する)20,蓄電装置22,モータジェネレータ24,電力変換装置26,駆動用モータECU28,動力分割機構30等を含む。動力分割機構30には、駆動用モータ20、モータジェネレータ24、エンジン16が連結され、これらの制御により、出力部材32に駆動用モータ20の駆動トルクのみが伝達される状態、エンジン16の駆動トルクと駆動用モータ20の駆動トルクとの両方が伝達される状態、エンジン16の出力がモータジェネレータ24と出力部材32とに出力される状態等に切り換えられる。出力部材32に伝達された駆動力は、減速機、差動装置を介してドライブシャフト12,14に伝達される。
 電力変換装置26は、インバータ等を含むものであり、駆動用モータECU28によって制御される。インバータの電流制御により、少なくとも、駆動用モータ20に蓄電装置22から電気エネルギが供給されて回転させられる回転駆動状態と、回生制動により発電器として機能することにより蓄電装置22に電気エネルギを充電する充電状態とに切り換えられる。充電状態においては、左右前輪2,4に回生制動トルクが加えられる。その意味において、電気的駆動装置6は回生ブレーキ装置であると考えることができる。
 液圧ブレーキシステムは、左右前輪2,4に設けられた液圧ブレーキ40のブレーキシリンダ42,左右後輪46,48(図2等に参照)に設けられた液圧ブレーキ50のブレーキシリンダ52と、これらブレーキシリンダ42,52の液圧を制御可能な液圧制御部54等を含む。液圧制御部54は、後述するように、複数の電磁開閉弁と、電気エネルギの供給により駆動させられる動力式液圧源の駆動源としてのポンプモータ55とを含み、複数の電磁開閉弁の各々のソレノイドはコンピュータを主体とするブレーキECU56の指令に基づいて制御され、ポンプモータ55はポンプモータECU57の指令に基づいて制御される。
 また、車両には、ハイブリッドECU58が設けられ、これらハイブリッドECU58,ブレーキECU56,エンジンECU18,駆動用モータECU28は、CAN(Car area Network)59を介して接続されている。これらの間で互いに通信可能とされており、適宜必要な情報が通信される。
 なお、本液圧ブレーキシステムは、ハイブリッド車両に限らず、プラグインハイブリッド車両、電気自動車、燃料電池車両に搭載することもできる。電気自動車においては、内燃的駆動装置8が不要となる。燃料電磁車両においては、駆動用モータが燃料電池スタック等によって駆動される。
 また、本液圧ブレーキシステムは、内燃駆動車両に搭載することもできる。電気的駆動装置6が設けられていない車両においては、駆動輪2,4に回生制動トルクが加えられることがないため、回生協調制御が行われることはない。ブレーキシリンダ42,52の液圧は、総要求制動トルクに対応する液圧に制御される。
 さらに、本液圧ブレーキシステムに含まれる各要素は、図示しない共通電源(例えば、蓄電装置22)から電気エネルギが供給される。
<液圧ブレーキシステム>
 次に、液圧ブレーキシステムについて説明するが、ブレーキシリンダ、液圧ブレーキ、後述する種々の電磁開閉弁等を、前後左右の車輪の位置に対応して区別する必要がある場合には、車輪位置を表す符号(FL,FR,RL,RR)を付して記載し、代表して、あるいは、区別する必要がない場合には、符号を付さないで記載する。
 本液圧ブレーキシステムは、図2に示す液圧ブレーキ回路を含む。
 60はブレーキ操作部材としてのブレーキペダルであり、62はブレーキペダル60の操作により液圧を発生させる第1液圧発生装置としてのマスタシリンダである。64は第2液圧発生装置であり、動力式液圧源としてのポンプ装置65と、アキュムレータ66とを含む。液圧ブレーキ40,50は、ブレーキシリンダ42,52の液圧により作動させられ、車輪の回転を抑制するものであり、本実施例においては、ディスクブレーキである。
 なお、液圧ブレーキ40,50は、ドラムブレーキとすることができる。また、前輪2,4の液圧ブレーキ40をディスクブレーキとし、後輪46,48の液圧ブレーキ50をドラムブレーキとすることもできる。
 マスタシリンダ62は、図3に示すように、(a)ハウジング67と、(b)そのハウジング67に摺動可能に嵌合された2つの第1,第2加圧ピストン68a,68bとを備えたタンデム式のものであり、第1,第2加圧ピストン68a,68bのそれぞれの前方が第1,第2加圧室69a,69bとされる。本実施例においては、第1,第2加圧室69a,69bがそれぞれ第1,第2マニュアル式液圧源とされる。また、第1,第2加圧室69a,69bには、それぞれ、第1,第2マスタ通路70a,70bを介してブレーキシリンダ42FR、42FLが接続される。
 また、第1,第2加圧室69a,69bは、第1,第2加圧ピストン68a,68bが後退端に達した場合に、それぞれ、リザーバ72に連通させられる。リザーバ72の内部は、作動液を収容する複数の収容室に仕切られており、各々、加圧室69a,69b,ポンプ装置65に接続される。
 2つの第1,第2加圧ピストン68a,bの間、ハウジング67の底部と第2加圧ピストン68bとの間には、それぞれ、リターンスプリング73a,bが配設され、第1,第2加圧ピストン68a,bを、それぞれ、後退方向に付勢する。第1加圧ピストン68aにはブレーキペダル60が連携させられ、ブレーキペダル60に操作力としての踏力が加えられると、前進させられる。
 また、第1加圧ピストン68aの前進側部には、ピン74が固定的に設けられるとともに、第2加圧ピストン68bの後退側部にはリテーナ75が設けられる。ピン74は、リテーナ75に相対移動可能に係合させられ、それにより、第1,第2加圧ピストン68a,bの相対移動が許容される。
 そして、リテーナ75の被係合部にピン74の頭部(係合部)76が当接することにより、第1加圧ピストン68aの第2加圧ピストン68bに対する相対的な後退、換言すれば、第2加圧ピストン68bの第1加圧ピストン68aに対する相対的な前進が規制される。本実施例において、リテーナ75,ピン74等により伸長規制部77が構成される。
 ハウジング67の筒部にはリザーバポート78、79が設けられ、リザーバ72に連通させられる。また、第1,第2加圧ピストン68a,bの、後退端位置において、リザーバポート78,79に対応する位置に、それぞれ、加圧ピストン68a,bにそれぞれ設けられた連通孔78p、79pが設けられる。さらに、ハウジング67のリザーバポート78,79の前後には、それぞれ、一対のカップシール80a,b、81a,bが設けられる。第1,第2加圧ピストン68a,bの後退端位置において、連通孔78p、79pとリザーバポート78,79とが対向し、第1,第2加圧室69a,bがリザーバ72と連通させられるが、第1,第2加圧ピストン68a,bの前進に伴って第1,第2加圧室69a,bがリザーバ72から遮断され、第1,第2加圧室69a,bにブレーキペダル60に加えられた踏力に応じた液圧が発生させられる。本実施例においては、リザーバポート78,連通孔78p,カップシール80a,bによりリザーバ遮断弁82が構成され、リザーバポート79,連通孔79p,カップシール81a,bによりリザーバ遮断弁83が構成される。
 なお、リターンスプリング73a,bにおいて、リターンスプリング73bの方が付勢力が小さい(セット荷重が小さく、ばね定数が小さい)ものとされる。
 第2液圧発生装置64において、ポンプ装置65は、駆動源としてのポンプモータ55と作動液供給部としてのポンプ90を含み、ポンプ90によりリザーバ72から作動液が汲み上げられて吐出されて、アキュムレータ66に蓄えられる。ポンプモータ55は、アキュムレータ66に蓄えられた作動液の圧力が予め定められた設定範囲内にあるようにポンプモータECU57の指令に基づいて制御される。
 アキュムレータ圧(アキュムレータ66に蓄えられた作動液の液圧)が設定範囲の下限値より低くなったこと、設定範囲の上限値に達したことを表す情報(あるいはアキュムレータ圧の大きさを表す情報)が、ブレーキECU56からポンプモータECU57に供給される。
 アキュムレータ圧が下限値より低くなると、ポンプモータ55が始動させられ、アキュムレータ圧が上限値を超えると、ポンプモータ55が停止させられる。このように、当該液圧ブレーキシステムが正常である場合には、ポンプモータ55は、アキュムレータ圧が設定範囲内にあるように制御されるのである。
 一方、左右前輪2,4のブレーキシリンダ42FL,FR、左右後輪46,48のブレーキシリンダ52RL,RRは、それぞれ、個別通路100FL,FR,RL,RRを介して共通通路102に接続される。
 個別通路100FL,FR,RL,RRには、それぞれ、保持弁(SHij:i=F,R、j=L,R)103FL,FR,RL,RRが設けられ、ブレーキシリンダ42FL,42FR,52RL,52RRとリザーバ72との間には、それぞれ、減圧弁(SRij:i=F,R、j=L,R)106FL,FR,RL,RRが設けられる。
 また、左前輪2に対応して設けられた保持弁103FLが、ソレノイドのコイルに電流が供給(以下、単にソレノイドに電流が供給と略称する)されない場合に開状態にある常開の電磁開閉弁であり、残りの、右前輪4,左後輪46、右後輪48に対応して設けられた保持弁103FR,RL,RRがソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁である。
 さらに、左右前輪2,4に対応して設けられた減圧弁106FL,FRは常閉の電磁開閉弁であり、左右後輪46,48に対応して設けられた減圧弁106RL,RRは常開の電磁開閉弁である。
 共通通路102には、ブレーキシリンダ42,52に加えて、第2液圧発生装置64が制御圧通路110を介して接続される。
 制御圧通路110に増圧リニア制御弁(SLA)112が設けられ、制御圧通路110とリザーバ72との間に減圧リニア制御弁(SLR)116が設けられる。これら増圧リニア制御弁112,減圧リニア制御弁116の制御により、第2液圧発生装置64の出力液圧が制御されて、共通通路102に供給される。増圧リニア制御弁112,減圧リニア制御弁116により出力液圧制御装置118が構成される。また、増圧リニア制御弁112、減圧リニア制御弁116は、出力液圧制御弁と称することができる。増圧リニア制御弁112,減圧リニア制御弁116は、いずれもソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁であり、ソレノイドへの供給電流の大きさの連続的な制御により、出力液圧の大きさが連続的に制御される。
 図4(a)に示すように、増圧リニア制御弁112,減圧リニア制御弁116は、いずれも、弁子120と弁座122とを含むシーティング弁と、スプリング124と、ソレノイド126とを含み、スプリング124の付勢力Fsは、弁子120を弁座122に接近させる向きに作用し、ソレノイド126に電流が供給されることにより駆動力Fdが弁子120を弁座122から離間させる向きに作用する。また、増圧リニア制御弁112において、第2液圧発生装置64と共通通路102との差圧に応じた差圧作用力Fpが弁子120を弁座122から離間させる向きに作用し、減圧リニア制御弁116において、共通通路102(制御圧通路110)とリザーバ72との差圧に応じた差圧作用力Fpが作用する(Fd+Fp:Fs)。いずれにしても、ソレノイド126への供給電流の制御により、差圧作用力Fpが制御され、共通通路102の液圧が制御される。
 また、図4(b)には、ソレノイド126への供給電流Iと開弁圧との関係である増圧リニア制御弁112の特性を示す。図4(b)から、増圧リニア制御弁112を閉状態から開状態に切り換える場合に、供給電流Iが小さい場合は大きい場合より前後の差圧を大きくする必要があることがわかる。例えば、ソレノイド126に電流が供給されていない状態において、前後の差圧が開弁圧Poより小さい場合には、閉状態から開状態に切り換えられることはない。なお、減圧リニア制御弁116の特性も同様である。
 一方、第1,第2マスタ通路70a,70bが、それぞれ、右前輪4,左前輪2の個別通路100FR,FLの保持弁103FR,FLの下流側(保持弁103FR,FLとブレーキシリンダ42FR,RLとの間の部分)に接続される。第1,第2マスタ通路70a,70bは共通通路102に接続されることなく、直接ブレーキシリンダ42FR,42FLに接続されるのである。
 第1,第2マスタ通路70a、70bの途中にそれぞれ第1,第2マスタ遮断弁(SMCFR,FL)134FR,FLが設けられる。第1,第2マスタ遮断弁134FR,FLは、それぞれ、常開の電磁開閉弁であり、マニュアル遮断弁に対応する。
 さらに、第2マスタ通路70bには、ストロークシミュレータ140がシミュレータ制御弁142を介して接続される。シミュレータ制御弁142は常閉の電磁開閉弁である。前述のように、リターンスプリング73bの方がリターンスプリング73aよりセット荷重が小さくされているため、ブレーキペダル60に操作力が加えられると、先に、リターンスプリング73bが収縮させられる。そのため、第2加圧室69bに接続された第2マスタ通路70bにストロークシミュレータ140が設けられるのである。
 制御圧通路110のアキュムレータ66の接続部と前記増圧リニア制御弁112との間の部分と、前記第2マスタ通路70bの前記ストロークシミュレータ140が接続された部分と前記第2マスタ遮断弁134FLとの間の部分とが連結通路144によって接続される。
 また、連結通路144に第2液圧発生装置64の液圧が前記第2マスタ通路70bの液圧より設定圧Pr以上大きくなると、第2液圧発生装置64から第2マスタ通路70bへの作動液の流れを許容するリリーフ弁146が設けられる。設定圧Prは、リリーフ弁146のスプリングのセット荷重で決まるのであり、リリーフ弁146の開弁圧、リリーフ圧と称することができる。設定圧Prは、増圧リニア制御弁112の開弁圧Poより小さいが、アキュムレータ66に蓄えられる作動液の上限値Paccuより大きい。
Pr<Po
Pr>Paccu
 そのため、当該液圧ブレーキシステムが正常であり、アキュムレータ圧が設定範囲内に保たれるようにポンプモータ55が制御されている間、ブレーキシリンダ42,52の液圧が、第2液圧発生装置64の液圧を利用して制御されている間に、アキュムレータ66からリリーフ弁146を経て作動液が第2マスタ通路70bに流れないようにされている。
 以上のように、本実施例においては、ポンプモータ55,出力液圧制御装置118、マスタ遮断弁134,保持弁103,減圧弁106等により液圧制御部54が構成される。
 また、第2加圧室69b、第2マスタ通路70b、個別通路100FL、共通通路102等によってマニュアル関連ブレーキ系統148が構成され、マニュアル関連ブレーキ系統148のうちの第2マスタ通路70b、個別通路100FL、共通通路102等によって連通装置が構成される。
 第2液圧発生装置64は、マニュアル関連ブレーキ系統148のうちの共通通路102に増圧リニア制御弁112を介して接続されるとともに、第2マスタ通路70bにリリーフ弁146を介して接続されるのであり、第2液圧発生装置64とマニュアル関連ブレーキ系統148との間には、互いに並列に、増圧リニア制御弁112とリリーフ弁146とが設けられる。
  ブレーキECU56は、図1に示すように、実行部(CPU)150,入力部151,出力部152,記憶部153等を含むコンピュータを主体とするものであり、入力部151には、ブレーキスイッチ158,ストロークセンサ160,マニュアル液圧センサとしてのマスタシリンダ圧センサ162,アキュムレータ圧センサ164,ブレーキシリンダ圧センサ166,レベルウォーニング168,車輪速度センサ170,ドア開閉スイッチ172,イグニッションスイッチ174等が接続される。
 ブレーキスイッチ158は、ブレーキペダル60が操作されるとOFFからONになるスイッチであり、本実施例においては、ブレーキペダル60の後退端位置からの前進量が予め定められた設定量以上である場合にON状態となる。
 ストロークセンサ160は、ブレーキペダル60の操作ストローク(STK)を検出するものであり、本実施例においては、2つのセンサが設けられ、同様に、ブレーキペダル60の操作ストローク(後退端位置からの隔たり)が検出される。このように、ストロークセンサ160について2系統とされており、2つのセンサのうちの一方が故障しても他方によりストロークを検出することが可能となる。
 マスタシリンダ圧センサ162は、マスタシリンダ62の第2加圧室68bの液圧を検出するものであり、第2マスタ通路70bに設けられる。前述のように、リターンスプリング73bの方がリターンスプリング73aよりセット荷重が小さいため、リターンスプリング73bの方がリターンスプリング73aより早く収縮させられ、第2加圧室68bの方が早く液圧が増加させられる。そのため、第2マスタ通路70bにマスタシリンダ圧センサ162を設ければ、マスタシリンダ62の液圧の検出遅れを抑制することができる。
 アキュムレータ圧センサ164は、アキュムレータ66に蓄えられている作動液の圧力(PACC)を検出するものである。
 ブレーキシリンダ圧センサ166は、ブレーキシリンダ42,52の液圧(PWC)を検出するものであり、共通通路102に設けられる。保持弁103の開状態において、ブレーキシリンダ42,52と共通通路102とが連通させられるため、共通通路102の液圧をブレーキシリンダ42,52の液圧とすることができる。また、共通通路102には出力液圧制御装置118によって制御された第2液圧発生装置64の液圧が供給されるため制御圧センサと称することもできる。
 レベルウォーニング168は、リザーバ72に収容された作動液が予め定められた設定量以下になるとONとなるスイッチである。本実施例においては、複数の収容室のうちいずれか1つに収容された作動液量が設定量以下になると、ONとなる。
 車輪速度センサ170は、左右前輪2,4、左右後輪46,48に対応してそれぞれ設けられ、車輪の回転速度を検出する。また、4輪の回転速度に基づいて車両の走行速度が取得される。
 ドア開閉スイッチ172は、車両に設けられたドアの開閉を検出するものである。運転席側のドアの開閉を検出するものであっても、その他のドアの開閉を検出するものであってもよい。例えば、ドアカーテシランプスイッチをドア開閉スイッチとすることができる。
 イグニッションスイッチ(IGSW)174は、車両のメインスイッチである。
 また、出力部152には、液圧制御部54の増圧リニア制御弁112、減圧リニア制御弁116,保持弁103,減圧弁106,マスタ遮断弁134,シミュレータ制御弁142等ブレーキ回路に含まれるすべての電磁開閉弁(以下、単にすべての電磁開閉弁と略称することがある)のソレノイド、ポンプモータECU57等が接続される。
 さらに、記憶部には、種々のプログラム、テーブル等が記憶されている。
 ポンプモータECU57も、実行部、記憶部、入力部、出力部等を含むコンピュータを主体とするものであり、入力部には、ブレーキスイッチ158,ブレーキECU56の入力部151,出力部152,CPU150が接続され、出力部152には、ポンプモータ55の図示しない駆動回路が接続される。
 ポンプモータECU57においては、ブレーキECU56の入力部151,出力部152,CPU150の状態(例えば、電流値、電圧値等の電気信号)が検出されて、これらが正常に作動しているか否かが判定される。
 後述するように、ポンプモータECU57は、ブレーキECU56等が異常であってもポンプモータ55を制御する。例えば、(1)ブレーキスイッチ158がONであり、かつ、ブレーキECU56から当該液圧ブレーキシステムの制御系が異常であることを表す情報が供給された場合、(2)ブレーキスイッチ158がONであり、かつ、ブレーキECU56が正常に作動していない場合(例えば、ブレーキECU56自体の異常、ブレーキECU56と各センサとの間の信号線が断線した場合、ブレーキECU56とソレノイドとの間の信号線が断線した場合等が該当する)に、異常時制御開始条件が満たされたとして、ポンプモータ55の制御を正常時とは異なる態様で開始する。
<イニシャルチェック>
 本実施例において、予め定められた検査開始条件が満たされた場合にイニシャルチェックが行われる。例えば、ドア開閉スイッチ172がONにされたこと、イグニッションスイッチ174がONにされてから、最初にブレーキ操作が行われたこと等が検査開始条件とされる。
 図5のフローチャートで表されるイニシャルチェックプログラムは予め定められた設定時間毎に実行される。
 ステップ1(以下、S1と略称する。他のステップについても同様とする。)において、予め定められた検査開始条件が満たされたか否かが判定される。検査開始条件が満たされた場合には、S2において、制御系のチェックが行われ、S3において、液漏れの可能性のチェックが行われる。制御系には、ブレーキシリンダ液圧の制御に利用される構成要素、例えば、各センサ、電磁開閉弁等が含まれる。
 制御系の異常検出においては、例えば、すべての電磁開閉弁の各々において断線が生じていないか否か、各センサ(ブレーキスイッチ158,ストロークセンサ160、マスタシリンダ圧センサ162、アキュムレータ圧センサ164,ブレーキシリンダ圧センサ1166,車輪速度センサ170等)において断線が生じていないか否かが判定される。
 液漏れの可能性有無のチェックは、イグニッションスイッチ174がONになった場合、ブレーキ操作が行われた場合等に行われる。例えば、(a)レベルウォーニングスイッチ168がONである場合、(b)ブレーキ操作が行われた場合において、ブレーキペダル60のストロークとマスタシリンダ62の液圧との間に予め定められた関係が成立する場合には液漏れがないとされるが、マスタシリンダ62の液圧がストロークに対して小さい場合には液漏れの可能性が有るとされる。また、(c)ポンプ90が予め定められた設定時間以上継続して作動してもアキュムレータ圧センサ164の検出値が液漏れ判定しきい値に達しない場合、(d)回生協調制御が行われていない場合において、マスタシリンダ圧センサ162の検出値に対してブレーキシリンダ圧センサ166の検出値が小さい場合、(e)前回のブレーキ作動時に、液漏れの可能性が有ると検出された場合(左右前輪2,4のブレーキシリンダ42にマスタシリンダ62の液圧が供給され、左右後輪46,48のブレーキシリンダ52にポンプ圧が供給された場合)等には、液漏れの可能性が有るとされる。
 このように、本実施例においては、(a)~(e)の条件に基づいて液漏れの可能性の有無が検出される。そのため、液漏れの可能性が有ると検出された場合であっても、液漏れが実際に生じていない場合がある{液漏れ以外の原因によって、上述の(b)~(e)の条件が満たされる場合があり得る}。また、実際に液漏れがあっても、液漏れ量が僅かである場合もある。しかし、これらの場合であっても、液漏れの可能性が無いと断定することはできないため、液漏れの可能性が有るとされるのである。
<ブレーキ液圧制御>
 そして、イニシャルチェックの結果に基づいて、ブレーキシリンダ42,52の液圧が制御される。図6のフローチャートで表されるブレーキ液圧制御プログラムは予め定められた設定時間毎に実行される。
 S11において、制動要求があるか否か、例えば、ブレーキスイッチ158がONである場合、あるいは、自動ブレーキを作動させる要求がある場合等には制動要求があるとされて、判定がYESとなる。自動ブレーキは、トラクション制御、ビークルスタビリティ制御において作動させられる場合があり、これらの制御開始条件が満たされた場合に、制動要求があるとされる。
 制動要求がある場合には、S12、13において、液漏れの可能性があるか否か、制御系が異常であるか否かの判定結果が読み込まれる。
 いずれの判定もNOであり、当該液圧ブレーキシステムが正常である場合(本実施例においては、制御系が正常で、かつ、液漏れの可能性が無いとされた場合)には、S14において、回生協調制御が行われる。
 制御系が異常である場合には、S13の判定がYESとなり、S15において、すべての電磁開閉弁のソレノイドに電流が供給されなくなることにより図2の原位置に戻される。また、制御系異常情報がポンプモータECU57に出力される。
 液漏れの可能性が有ると検出された場合には、S12の判定がYESとなり、S16において、左右前輪2,4のブレーキシリンダ42にマスタシリンダ62の液圧が供給され、左右後輪46,48のブレーキシリンダ52に出力液圧制御装置118によって制御された液圧が供給される状態とされる。
 制御系が異常であり、かつ、液漏れの可能性が有るのは稀であるため、液漏れの可能性が有るとされても制御系は正常であり、各電磁開閉弁の制御、ポンプモータ55の駆動は可能であると考えられる。
 このように、本実施例において、制御系が異常である場合、液漏れの可能性が有る場合には、回生協調制御が行われないようにされている。
 また、制御系が異常であるとされた場合、液漏れの可能性が有るとされた場合には自動ブレーキは作動させられないようにされている。
 さらに、当該液圧ブレーキシステム全体の失陥時、例えば、電源電圧がダウンして電気エネルギを全く供給できなくなった場合等には、ポンプモータ55は停止させられ、各電磁開閉弁が原位置に戻される。
1)システムが正常な場合
 前後左右の4輪2,4,46,48のブレーキシリンダ42,52には、第2液圧発生装置64の液圧が制御されて供給される(ポンプ加圧)のであり、原則として回生協調制御が行われる。
 回生協調制御は、駆動輪2,4に加わる回生制動トルクと、駆動輪2,4と従動輪46,48との両方に加わる摩擦制動トルクとの和である総制動トルクが総要求制動トルクとなるように行われる制御である。
 ブレーキECU56において、総要求制動トルクが決定される。総要求制動トルクは、ストロークセンサ160,マスタシリンダ圧センサ162の検出値等に基づいて取得される場合(運転者が要求する制動トルク)、車両の走行状態に基づいて取得される場合(トラクション制御、ビークルスタビリティ制御において必要な制動トルク)等がある。そして、ハイブリッドECU58から供給された情報(駆動用モータ20の回転数等に基づいて決まる回生制動トルクの上限値である発電側上限値、蓄電装置22の充電容量等に基づいて決まる上限値である蓄電側上限値)と、上述の総要求制動トルク(要求値)とのうちの最小値が要求回生制動トルクとして決定され、この要求回生制動トルクを表す情報がハイブリッドECU58に供給される。
 ハイブリッドECU58において、要求回生制動トルクを表す情報を出力し、駆動用モータECU28に供給される。
 駆動用モータECU28において、駆動用モータ20によって左右前輪2,4に加えられる制動トルクが要求回生制動トルクとなるように、電力変換装置26に制御指令を出力する。駆動用モータ20は、電力変換装置26によって制御される。
 駆動用モータ20の実際の回転数等の作動状態を表す情報が出力され、ハイブリッドECU58に供給される。ハイブリッドECU58において、駆動用モータ20の実際の作動状態に基づいて実際に得られた実回生制動トルクが求められ、その実回生制動トルク値を表す情報がブレーキECU56に供給される。
 ブレーキECU56において、総要求制動トルクから実回生制動トルクを引いた値等に基づいて要求液圧制動トルクを決定し、ブレーキシリンダ液圧が要求液圧制動トルクに対応する目標液圧に近づくように、増圧リニア制御弁112,減圧リニア制御弁116等が制御される。
 回生協調制御においては、図7に示すように、原則として、前後左右の各輪2,4,46,48の保持弁103FL,FR,RL,RRがすべて開状態とされ、減圧弁106FL,FR,RL,RRがすべて閉状態とされる。また、マスタ遮断弁134FL,FRが閉状態とされ、シミュレータ制御弁142が開状態とされる。左右前輪2,4のブレーキシリンダ42FL、FRがマスタシリンダ62から遮断された状態で、前後左右の各輪2,4,46,48のブレーキシリンダ42,52は共通通路102に連通させられる。増圧リニア制御弁112,減圧リニア制御弁116が制御され、その制御圧が共通通路102に供給され、4輪のブレーキシリンダ42,52に供給される。
 なお、この状態で、車輪2,4,46,48の制動スリップが過大となり、アンチロック制御開始条件が満たされると、保持弁103、減圧弁106が別個独立にそれぞれ開閉させられ、各ブレーキシリンダ42,52の液圧が制御される。前後左右の各輪2,4,46,48のスリップ状態が適正な状態とされる。原則として、スリップが過大である車輪に対応して設けられた保持弁103,減圧弁106が制御されるが、アンチロック制御においては、スリップが過大ではない車輪の保持弁103,減圧弁106が制御される場合もある。いずれにしても、保持弁103,減圧弁106は、アンチロック制御等のスリップ制御の制御対象バルブとされるのである。
 また、液圧ブレーキシステムが電気的駆動装置6を備えていない車両に搭載された場合等回生協調制御が行われない車両においては、総要求制動トルクと液圧制動トルクとが等しくなるように、出力液圧制御装置118が制御される。
2)制御系が異常である場合(ブレーキECU56が異常である場合を含む)
 図8に示すように、すべての電磁開閉弁は原位置に戻される。そして、ポンプモータ55が図10のフローチャートで表される異常時ポンプモータ制御プログラムに従って制御される。
 増圧リニア制御弁112,減圧リニア制御弁116は、ソレノイド126に電流が供給されないことにより閉状態とされて、第2液圧発生装置64が共通通路102から遮断される。
 保持弁103FLは開状態にあり、保持弁103FR,RL,RRは閉状態にある。また、左右前輪2,4の減圧弁106FL,FRは閉状態にあり、左右後輪46,48の減圧弁106RL,RRは開状態にある。さらに、第1,第2マスタ遮断弁134FR,FLは開状態にある。
 制御系が異常であっても、ポンプモータ55が正常に作動可能な状態である場合には、ポンプモータECU57によってポンプモータ55が予め定められたパターンに従って作動させられ、ポンプ90から作動液が吐出される。
 ポンプ90から吐出された作動液の液圧と第2マスタ通路70bの液圧との差圧が、リリーフ弁146の設定圧Prより大きくなると、閉状態にあるリリーフ弁146が開状態に切り換えられて、ポンプ90から吐出された作動液が第2マスタ通路70bに供給される。第2マスタ通路70bに供給された液圧は、開状態にある第2マスタ遮断弁134FLを経て左前輪2のブレーキシリンダ42FLに供給されるとともに、マスタシリンダ62の第2加圧室69bに供給される。
 第2加圧室69bに供給される作動液の液圧は、ポンプ90から吐出された作動液の液圧よりリリーフ弁146の設定圧Pr分だけ低い。
 なお、ブレーキペダル60の操作によって、マスタシリンダ62の第1,第2加圧室69a,bに液圧が発生させられるが、保持弁103FL、第2マスタ遮断弁134FLが開状態にあることから、第2加圧室69bの液圧と、共通通路102の液圧とは同じである。このことから、ポンプ90の吐出圧が、共通通路102,第2加圧室69bの液圧より設定圧Pr以上高くされることにより、増圧リニア制御弁112が開状態にされるのではなく、リリーフ弁146が開状態にされることになる。
 第2加圧室69bの液圧が増加させられると、第2加圧ピストン68bを後退させる向きに力が作用し、第1加圧室69aの液圧が増加させられる。第1加圧室69aの液圧は第1マスタ通路70aを経て右前輪4のブレーキシリンダ42FRに供給される。保持弁103FRは閉状態にあるため、ブレーキシリンダ42FRは、共通通路102から遮断されており、右前輪4のブレーキシリンダ42FRの液圧は高くなる。
 本実施例においては、マスタシリンダ62において第1,第2加圧ピストン68a,bの間に伸長規制部77が設けられるため、第1加圧室69aに作動液が供給されても、第2加圧ピストン69bの前進が、伸長規制部77で制限される。それに対して、第2加圧ピストン68bの後退は伸長規制部77によって制限を受けない。そこで、第2加圧ピストン68bの前方の第2加圧室69bに液圧が供給されるようにしたのである。
 第2加圧室69bに液圧を供給することにより、ブレーキペダル60に加えられた操作力が同じ場合に、第1,第2加圧室69a,bの液圧が高くなる理由を説明する。
 マスタシリンダ62において、ブレーキペダル60が踏み込まれると、第1、第2加圧室69a,69bに発生させられる液圧Pmca、Pmcbは、それぞれ、式
Pmca・A=F-Fsa-Fμa・・・(1)
Pmcb・A=Pmca・A-(Fsb-Fsa)-Fμb・・・(2)
で表される大きさとなる。
 ここで、Aは、第1,第2加圧ピストン68a,68bの受圧面積(本実施例においては、第1、第2加圧ピストン68a,68bの受圧面積は同じ大きさとされている)であり、Fはブレーキペダル60に加えられた操作力に起因して第1加圧ピストン68aに加えられる力(以下、単に操作力と略称する)である。また、Fsa、Fsbは、スプリング73a,73bの付勢力であり、Fμa、Fμbは加圧ピストン68a,68bとハウジング67との間に生じる摩擦力である。
 通常、図9(b)が示すように、ハウジング67と加圧ピストン68a,bとの間に発生させられる摩擦力に起因して、操作力Fと第1,第2加圧室69a,69bの液圧Pmca,Pmcbとの間には、ヒステリシスを有する関係が成立する。
 操作力Fの増加に伴って、第1,第2加圧ピストン68a,bが摩擦力に抗して前進させられるが、操作力が緩められると、第1、第2加圧室69a,bの液圧により第1,第2ピストン68a,bには後退方向の力が作用し、戻される。操作力Fが増加する場合と減少する場合とで、摩擦力の向きは逆になる。そのため、操作力が保持から減少させられても、第1、第2加圧室69a,bの液圧は保持されるのであり、摩擦力に応じた分だけヒステリシスが生じる。
 同様に、ポンプモータ55の制御により、第2加圧室69bに液圧が供給される場合には、第1,第2加圧ピストン68a,bを後退させようとする力が作用する。そのため、第1,第2加圧室69a,bの液圧Pmca′、Pmcb′は、それぞれ、式
Pmca′・A=F-Fsa+Fμa・・・(3)
Pmcb′・A-Fμb=Pmca′・A-(Fsb-Fsa)・・・(4)
で表される大きさとなる。
 (3)、(4)式と、(1)、(2)式とを比較すると明らかなように、操作力Fが同じ場合に、(3)、(4)式に示す場合の方が、第1,第2加圧室69a,bの液圧が高くなる。
Pmca′>Pmca
Pmcb′>Pmcb
 例えば、図9(a)に示すように、操作力FがF0の場合に、ポンプモータ55が作動させられて、第2加圧室69bに液圧が供給されたと仮定する。操作力F0が保持されていたとしても、第1,第2加圧室69a,bの液圧は、摩擦力に応じた力だけ第2加圧室69bに液圧が供給されない場合に比較して大きくなるのである。
 本実施例においては、ポンプモータ55の回転数が図9(c)に示すパターンで制御される。異常時制御開始条件が満たされた時から第1設定時間Δt1の間、第1設定回転数R1とされ、第1設定時間Δt1が経過した後に、第2設定回転数R2(R2<R1)とされる。また、ブレーキスイッチ158がOFFにされた後、第2設定時間Δt2が経過すると異常時制御終了条件が満たされたとされて、ポンプモータ55が停止させられる。
 第1設定回転数R1は、速やかにポンプ90の吐出圧がリリーフ弁146を閉状態から開状態に切換え得、かつ、第2加圧室69bに供給可能な高さに達し得る大きさに設定される。
 第1設定時間Δt1は、ポンプ90から大流量での作動液の吐出が要求される時間である。
 また、ポンプ90の吐出圧がリリーフ弁146を開弁させ得る大きさになった後には、ポンプ90から吐出される作動液の流量を大きくする必要性は低いため、回転数が第2設定回転数R2まで低下させられる。ポンプ90から吐出される作動液の流量がほぼ設定値に保たれるのであり、マスタシリンダに供給される作動液の流量がほぼ設定値に保たれる。
 そして、ブレーキスイッチ158がOFFにされてもポンプモータ55が継続して作動させられるのは、ブレーキスイッチ158がOFFになってもブレーキペダル60は完全に戻されていないため、その間においてブレーキ力が小さくなることを防止するためである。
 すなわち、ポンプ90の作動中において、操作力Fが緩められると、第1,第2加圧ピストン68a,bの後退により、リザーバ遮断弁82,83が開状態に切り換えられ、第1,第2加圧室69a,bがリザーバ72に連通させられて、液圧が低下する。それに対して、操作力Fが再び大きくされると、第1,第2加圧ピストン68a,bが前進させられ、リザーバ遮断弁82,83が閉状態に切り換えられて、第2加圧室69a,bの液圧が高くなる。このように、本実施例においては、第2設定回転数R2が、操作力Fによって第1加圧室69aとリザーバ72との連通・遮断を制御でき、第1,第2加圧室68a,bの液圧が制御可能な大きさとされるのである。
 この場合の第1,第2加圧室69a,bの液圧は、式
Pmca″・A=F-Fsa+Fμa・・・(5)
Pmcb″・A-Fμb=Pmca″・A-(Fsb-Fsa)・・・(6)
Q=Cd・Ag・(2・Pmca″/ρ)1/2  ・・・(7)
で表される大きさとなる。なお、Agはリザーバ遮断弁82の開口面積、Cdは連通路を流れる作動液の流量係数、Qは連通路を流れる流量である。
 (5)~(7)式から、流量Qが設定値である状態において、リザーバ遮断弁82の開口面積Agを調節することにより、第1,第2加圧室69a,bの液圧Pmca″,Pmcb″を調節し得ることがわかる。
 図10のフローチャートで表される異常時ポンプモータ制御プログラムは、予め定められた設定時間毎に実行される。
 S21において、制御系異常情報が供給されたか否か、ブレーキECU56が異常であるか否か等(これらを、単に異常と称する)が判定される。異常である場合には、S22において、ブレーキスイッチ158がONであるか否かが判定され、ONである場合には、S23,24において、ポンプモータ55が第1設定回転数R1で作動しているか否か、第2設定回転数R2で作動しているか否かが判定される。ポンプモータ55が停止状態にある場合には、S25において、ポンプモータ55が第1設定回転数R1で回転始動させられる。その後、S26において、第1設定時間Δt1が経過したか否かが判定される。最初にS26が実行された場合には、判定がNOであるため、S21の実行に戻される。
 この場合には、ポンプモータ55が第1設定回転数R1で回転しているため、ブレーキスイッチ158がONである場合には、S23の判定がYESとなり、S26において、第1設定時間Δt1が経過したか否かが判定される。以下、S21,22,23,26が繰り返し実行され、第1設定時間Δt1が経過すると、S26の判定がYESとなって、S27において、回転数がR2とされる。
 次に、ポンプモータ55が回転数R2で回転している場合において、ブレーキスイッチ158がONである場合には、S24の判定がYESとなり、ポンプモータ55の回転数R2での回転状態が維持される。
 S21~24が繰り返し実行されるうちに、ブレーキスイッチ158がOFFになると、S22の判定がNOとなり、S28において、回転数R2で回転しているか否かが判定され、回転している場合には、S29において、第2設定時間Δt2が経過したか否かが判定される。経過する以前においては、S21,22,28,29が繰り返し実行されるが、ブレーキスイッチ158がOFFにされてから、第2設定時間Δt2が経過すると、S29の判定がYESとなって、S30において、ポンプモータ28が停止させられる。
 それに対して、ポンプモータ55が始動させられた後、第1設定時間Δt1が経過する前に、ブレーキスイッチ158がOFFにされた場合には、S28の判定がNOとなり、S30において、ポンプモータ55が停止させられる。
 また、ブレーキスイッチ158がOFFであり、かつ、ポンプモータ55が停止している状態においては、異常であっても、S21,22,28,30が繰り返し実行され、ポンプモータ55は停止状態に保持される。
 以上のように、本実施例においては、制御系の異常時に、ポンプモータ55が作動させられるため、ブレーキシリンダ42FL、FRの液圧を操作力Fに対応する液圧(第2加圧室69bに液圧が逆流されない場合の第1,第2加圧室69a,bの液圧)より大きくすることができる。回生制動トルクが加えられない場合であっても、液圧制動トルクの低下を抑制することができる。
 また、異常時に増圧リニア制御弁112を経て作動液が共通通路102に供給されるようにする場合に比較して、増圧リニア制御弁112に大きな差圧が作用する回数を減らすことが可能となり、増圧リニア制御弁112の寿命を長くすることができる。
 さらに、アキュムレータ66が設けられるため、ポンプ装置65の作動によって生じる脈動が抑制される。その結果、第2加圧室69bに供給される液圧の脈動を抑制することができる。
 本実施例においては、リリーフ弁146と増圧リニア制御弁112とが、マニュアル関連ブレーキ系統148に対して互いに並列に設けられるため、増圧リニア制御弁112によって制御された液圧がリリーフ弁146を経てマニュアル関連ブレーキ系統148に供給されることはない。
 なお、制御系の異常が検出された場合のポンプモータ55の制御の態様については、本実施例の態様に限定されない。
 例えば、異常が検出された後には、ブレーキスイッチ158がOFFである場合にも、ポンプモータ55が連続して作動させられるようにすることもできる。その場合には、ブレーキシリンダ42,52の液圧の低下を良好に抑制することができる。ブレーキペダル60が操作されていない場合には、第2加圧室69bに供給された作動液はリザーバ72に流出させられるため差し支えない。
 また、制御系の異常時におけるポンプモータ55の制御において、第1設定回転数R1、第1設定時間Δt1は、異常検出時の第2液圧発生装置64の液圧(アキュムレータ圧センサ164の検出値)に基づいて決めることもできる。
 さらに、第2設定回転数R2、すなわち、ポンプ90から吐出される作動液の流量の設定値の大きさは問わない。例えば、運転者のブレーキペダル60に加えられる操作力に基づいて決定することもできる。例えば、ブレーキ操作力が大きい場合には、大きなブレーキ力が要求されているため、設定値を大きくすることができる。
 一方、ブレーキECU56もポンプモータECU57も異常となった場合、電源が電気エネルギを供給できない異常となった場合には、図11に示すようにすべての電磁開閉弁は原位置とされ、ポンプモータ55は停止させられる。ブレーキペダル60の操作に伴ってマスタシリンダ62の第1,第2加圧室69a,bに液圧が発生させられ、第1,第2マスタ通路70a,bを介してブレーキシリンダ42FL,FRに供給される。
3)液漏れの可能性が有ると検出された場合
 図12に示すように、左右前輪2,4の保持弁103FL,FRは閉状態とされ、左右後輪46,48の保持弁103RL、RRは開状態とされる。また、第1,第2マスタ遮断弁134FL,FRは開状態とされ、シミュレータ制御弁142は閉状態とされる。さらに、すべての減圧弁106は閉状態とされる。
 そして、左右前輪2,4のブレーキシリンダ42FL,FRには、マスタシリンダ62の第1,第2加圧室69b、aの液圧が供給され、左右後輪46,48のブレーキシリンダ52RL,RRには、制御された第2液圧発生装置64の液圧が供給される。
 このように、左前輪2のブレーキシリンダ42FLと、右前輪4のブレーキシリンダ42FRと、左右後輪46,48のブレーキシリンダ52RL,RRとに、互いに異なる液圧源から作動液が供給されるため、(左前輪のブレーキシリンダ42FLを含むブレーキ系統180FL)、(右前輪のブレーキシリンダ42FRを含むブレーキ系統180FR)、(左右後輪のブレーキシリンダ52FL,RRを含むブレーキ系統180R)の3つのブレーキ系統のいずれかに液漏れが生じても、他のブレーキ系統に影響が及び難くされ、より確実に液圧ブレーキを作動させることができる。
 左前輪のブレーキ系統180FLは、加圧室69b,ブレーキシリンダ42FL,第2マスタ通路70b,個別通路100FL等から構成されるものであり、前述のマニュアル関連ブレーキ系統148の一部によって構成される。右前輪のブレーキ系統180FRは、加圧室69a,ブレーキシリンダ42FR,第1マスタ通路70a,個別通路100FR等から構成されるものであり、後輪のブレーキ系統180Rは、ブレーキシリンダ52RL,RR,個別通路100RL,RR,共通通路102,制御圧通路110,第2液圧発生装置64等から構成されるものである。
4)液圧ブレーキが解除される場合
 ブレーキ操作が解除されると、すべての電磁開閉弁のソレノイドに電流が供給されなくなることにより、図2の原位置に戻される。
 左右前輪のブレーキシリンダ42FL,FRの液圧は開状態にある第1,第2マスタ遮断弁134FL,FRを経て、マスタシリンダ62,リザーバ72に戻され、左右後輪52RL,RRのブレーキシリンダ52RL、RRの液圧は開状態にある減圧弁106RL,RRを経てリザーバ72に戻される。
 以上のように、本実施例においては、イニシャルチェックの結果に応じて、ブレーキシリンダ42,52への液圧の供給状態が制御される。
 制御系の異常には、ポンプモータ55が作動させられるため、停止状態に保持される場合より高い液圧をブレーキシリンダ42FL、FRに供給することができる。その結果、車両全体の制動力不足を抑制することができる。
 液漏れの可能性がある場合には、ブレーキ系統180FL,FR,Rが互いに遮断される。そのため、3つのブレーキ系統180FL,FR,Rのうちの1つに液漏れが生じていても、その影響が他のブレーキ系統に及ぶことを良好に回避することができる。また、液漏れが生じていないブレーキ系統においては、より確実に液圧ブレーキを作動させることが可能となる。
 さらに、本実施例においては、保持弁103FR,103RL,103RRが常閉の電磁開閉弁であるため、ソレノイドに電流が供給されない状態において、ブレーキシリンダ42FL,FR,52RL,RRを互いに遮断することが可能となり、いずれか1つにおいて液漏れが生じていても他のブレーキシリンダに影響が及ばないようにすることができる。
 以上のように構成された液圧ブレーキシステムにおいて、ブレーキECU56の図6のフローチャートで表されるブレーキ液圧制御プログラムを記憶する部分、実行する部分等によりブレーキ液圧制御装置が構成される。また、ポンプモータECU57の図10のフロチャートで表される異常時ポンプモータ制御プログラムを記憶する部分、実行する部分等により動力式液圧源制御装置が構成される。さらに、リリーフ弁146が流れ抑制装置に対応する。
 また、第2マスタ通路70b、個別通路100FLの第2マスタ通路70bの接続部よりブレーキシリンダ側の部分によってマニュアル通路が構成される。
 さらに、第2マスタ通路70bが一方の前輪用個別接続通路に対応し、保持弁103FLが一方の前輪用個別制御弁に対応し、個別通路100FLが一方の前輪用個別通路に対応する。また、第1マスタ通路70aが他方の前輪用個別接続通路に対応し、保持弁103FRが他方の前輪用個別制御弁に対応し、個別通路100FRは他方の前輪用個別通路に対応する。共通通路102は前輪用共通通路でもある。
 第2液圧発生装置64は、動力式液圧発生装置、蓄圧機能付き動力式液圧発生装置でもある。
 なお、マスタシリンダ62は伸長規制部77が設けられないものとすることができる。その場合には、液圧が第1加圧室に供給されるようにすることができる。
 また、シミュレータ制御弁142は不可欠ではない。特に、小型車両において、ブレーキシリンダ42,52の容量が小さい場合には、ストロークシミュレータ140において作動液が消費されても差し支えないからである。
 実施例2に係る液圧ブレーキシステムにおいては、電源系が二重系とされる。その場合の一例を図13に示す。
 本実施例においては、ブレーキECU56,各センサ160~174、すべての電磁開閉弁のソレノイド等はメイン電源188(蓄電装置22と同じものであっても、異なるものであってもよい。)に接続され、ポンプモータECU57、ポンプモータ55、ブレーキスイッチ158等にはメイン電源188とサブ電源189との両方が接続される。そのため、メイン電源188から電気エネルギを供給できない異常が生じた場合、メイン電源188を含む電気系統の異常が生じた場合であっても、サブ電源189が正常に電気エネルギを供給可能な状態にある場合には、ポンプモータ55を作動させることが可能となり、ブレーキシリンダ42a,bの液圧を大きくすることができる。
 実施例3に係る液圧ブレーキシステムのブレーキ回路を図14に示す。
 本実施例においては、連結通路190が制御圧通路110のアキュムレータ66と増圧リニア制御弁112との間の部分と、第2マスタ通路70bの第2マスタ遮断弁134FLのブレーキシリンダ側の部分とを接続する状態で設けられる。また、実施例1における場合と同様に、連結通路190の途中に流れ抑制装置としてのリリーフ弁192が設けられる。
 液圧ブレーキ40,50の作用中には原則として第2マスタ遮断弁134FLは閉状態にある。そのため、実施例1における場合において、リリーフ弁146に液漏れが生じると、作動液が第2加圧室69bに供給され、ブレーキペダル60に力が加えられ、運転者は違和感を感じる。また、ブレーキペダル60のストロークと加圧室69a,bの液圧との関係において、加圧室69a,bの液圧が高くなるため、正常であるにもかかわらず、異常であると誤判定されることがある。
 それに対して、連結通路190が第2マスタ遮断弁134FLの下流側に接続されれば、リリーフ弁192における漏れにより、第2液圧発生装置64の作動液が第2マスタ通路70bに供給されても、第2加圧室69bに供給されることが防止されるため、運転者の違和感を軽減させることができる。ブレーキシリンダ42に供給されても差し支えないのである。また、ストロークに対して加圧室69a,bの液圧が高くなることが防止されるため、異常であるとの誤判定を防止することができる。
 実施例4の液圧ブレーキシステムのブレーキ回路を図15に示す。
 本実施例においては、第2液圧発生装置64と共通通路102とが、増圧リニア制御弁112をバイパスして連結通路200によって接続され、連結通路200の途中に流れ抑制装置としてのリリーフ弁(実施例1における場合と同様のもの)202が設けられる。本実施例においては、第2液圧発生装置64と共通通路102との間に、互いに並列に、増圧リニア制御弁112とリリーフ弁202とが設けられるのである。
 1)当該液圧ブレーキシステムの制御系の異常時には、すべてのソレノイドに電流が供給されなくなることにより、図16に示す状態とされる。ポンプモータ55の制御により、ポンプ90から吐出された作動液の液圧と共通通路102の液圧との差がリリーフ弁202の設定圧Prより大きくなると、ポンプ90から吐出された作動液が共通通路102に供給される。共通通路102に供給された作動液は、開状態にある個別制御弁103FLを経てブレーキシリンダ42FLに供給されるとともに、開状態にある第2マスタ遮断弁134FLを経て第2加圧室69bに供給される。以下、同様に、第1加圧室69aの液圧が増圧され、ブレーキシリンダ42FRに供給される。
 2)液漏れの可能性があると検出された場合には、図17に示す状態とされる。実施例1における場合と同様に、保持弁103FL,FRが閉状態とされ、減圧弁106RL,RRが閉状態とされる。そして、左右前輪2,4のブレーキシリンダ42FL,FRには、それぞれ、マスタシリンダ62の加圧室69b,aから液圧が供給され、左右後輪46,48には第2液圧発生装置64から供給される。
 保持弁103FL,FRが閉状態とされ、かつ、連結通路200が共通通路102に接続されているため、左前輪2のブレーキシリンダ42FLを含むブレーキ系統210FLと、右前輪4のブレーキシリンダ42FRを含むブレーキ系統210FRと、左右後輪46,48のブレーキシリンダ52RL,RRを含むブレーキ系統210Rとを互いに遮断することができる。仮に、いずれかのブレーキ系統に液漏れが生じても、他のブレーキ系統に影響が及ばないようにすることができる。
 実施例5の液圧ブレーキシステムのブレーキ回路を図18に示す。
 本実施例においては、第2液圧発生装置64と共通通路102とが連結通路220によって接続され、連結通路220の途中に流れ抑制装置としての電磁開閉弁222が設けられる。第2液圧発生装置64と共通通路102との間に、互いに並列に、増圧リニア制御弁112と電磁開閉弁222とが設けられるのである。
 電磁開閉弁222は、弁子、弁座、スプリングを含むシーティング弁と、ソレノイドとを含むものであり、構造としては、図4(a)に示すものと同様のものである。電磁開閉弁222は、弁子に第2液圧発生装置64の液圧が作用する姿勢で配設される。ソレノイドに電流が供給されない間、スプリングの付勢力により弁子が弁座に押し付けられて閉状態にある。そのため、ソレノイドに電流が供給されない状態ではリリーフ弁として機能する。設定圧(開弁圧)は、スプリングのセット荷重で決まるが、電磁開閉弁222のスプリングのセット荷重は、図4(a)に示す増圧リニア制御弁112のスプリング124のセット荷重より小さい。
  電磁開閉弁222は、リニア制御弁であっても単なる開閉弁であってもよい。
 リニア制御弁とした場合には、ソレノイドへの供給電流の連続的な制御により、共通通路102の液圧を連続的に制御可能なものとすることができる。その場合には、回生協調制御が行われる場合において、増圧リニア制御弁112の代わりに電磁開閉弁222を利用することもできる。例えば、増圧リニア制御弁112と電磁開閉弁222とが選択的に使用されるようにしたり、予め定められた規則に従って使用されるようにしたりすることができる。いずれにしても、増圧リニア制御弁112の使用回数を減らすことができ、寿命を長くすることができる。また、両方使用すれば、その分、共通通路102に供給される作動液量を増やすことができ、ブレーキシリンダ42,52に供給可能な作動液の流量を大きくすることができる。
 単なる開閉弁とした場合には、ソレノイドへの供給電流のデューティ制御により、共通通路102の液圧を細かに制御することができる。
 実施例6に係る液圧ブレーキシステムのブレーキ回路を図19に示す。
 本実施例において、第1液圧発生装置300は、ハウジング310と、ハウジング310に液密かつ軸方向に摺動可能に嵌合された第1加圧ピストン312および第2加圧ピストン314と、中間ピストン316と、入力ピストン318とを含む。
 入力ピストン318には、ブレーキペダル60が連携させられ、ブレーキペダル60が作用操作(液圧ブレーキ40,50を作用させるための操作)されると、入力ピストン318が前進可能とされている。
 中間ピストン316は概して有底円筒形状を成したものであり、内周側において入力ピストン318が軸方向に相対移動可能に嵌合されている。中間ピストン316と入力ピストン318とによって内部液圧室320が形成され、これら中間ピストン316と入力ピストン318との間にスプリング322が配設される。
 なお、中間ピストン316と入力ピストン318との間の相対移動を規定するストッパが設けられ、入力ピストン318の中間ピストン316に対する前進端および後退端が規定される。
 中間ピストン316は、ハウジング310に形成された段付きのシリンダボアに摺動可能に嵌合させられる。中間ピストン316の外周部には外周側に突出した環状の大径部(フランジ)326が設けられ、シリンダボアの大径部に位置する。その結果、中間ピストン316の後方に後方液圧室330が形成され、中間に環状室332が形成される。また、中間ピストン316の前方の第1加圧ピストン312との間に中間液圧室336が形成される。
 なお、中間ピストン316の後方液圧室330に対する受圧面積SRと中間液圧室336に対する受圧面積SMとは同じとされており、後方液圧室330,中間液圧室336に同じ大きさの液圧が加えられた場合において、中間ピストン316がこれらの液圧により受ける力は同じ大きさとなる。
 また、中間ピストン316の後退端位置において、中間ピストン316に形成された連通路340とハウジング310に形成されたリザーバポート342とが対向するため、内部液圧室320は、リザーバ72に連通させられる。この状態において、入力ピストン318の中間ピストン316に対する軸方向の相対移動が許容され、入力ピストン318には、スプリング322の弾性力に応じた反力が加えられる。
 中間ピストン316の前進によりリザーバポート342が塞がれると、内部液圧室320はリザーバ72から遮断され、入力ピストン318の中間ピストン316に対する相対移動が阻止される。
 環状室332は、リザーバポート344を介してリザーバ72に接続されるが、リザーバ72との間に、常開の電磁開閉弁であるリザーバ遮断弁346が設けられる。リザーバ遮断弁346の開状態において、環状室332がリザーバ72に連通させられるため、中間ピストン316のハウジング310に対する相対移動が許容されるが、リザーバ遮断弁346の閉状態においては、環状室332がリザーバ72から遮断され、中間ピストン316の相対移動が阻止される。
 第1、第2加圧ピストン312,314の前方は、それぞれ、第1、第2マニュアル式液圧源としての第1,第2加圧室360,362とされている。ハウジング310には、リザーバポート364,366が形成され、第1,第2加圧ピストン312,314には、それぞれ、連通穴367,368が形成され、第1,第2加圧ピストン312,314の後退端位置において、これらが連通させられ、第1,第2加圧室360,362はリザーバ72と連通させられた状態にある。第1,第2加圧ピストン312,314の前進に伴ってリザーバポート364,366が塞がれ、第1,第2加圧室360,362は、リザーバ72から遮断されて、液圧が発生させられる。
 また、第1,第2加圧ピストン312,314の間には、伸長規制機構368が設けられ、第1,第2加圧ピストン312,314の離間限度が規定される。
 後方液圧室330と中間液圧室336とには、第2液圧発生装置370が出力液圧制御装置372を介して接続される。
 第2液圧発生装置370は、駆動源としてのポンプモータ374と、作動液供給部としてのポンプ376とを備えた動力式液圧源としてのポンプ装置378と、ポンプ376から吐出された作動液を加圧した状態で蓄えるアキュムレータ380とを含む。当該液圧ブレーキシステムが正常である場合には、ポンプモータ374は、アキュムレータ380に蓄えられる液圧が設定範囲内に保たれるように制御される。
 出力液圧制御装置372は、増圧リニア制御弁382と減圧リニア制御弁384とを含む。増圧リニア制御弁382は、実施例1における増圧リニア制御弁112と同じ構造を成したものであり、ソレノイドに電流が供給されない状態で閉状態にある常閉の電磁開閉弁である。減圧リニア制御弁384は、本実施例においては、ソレノイドに電流が供給されない場合に開状態にある常開のリニア制御弁であり、ソレノイドへの供給電流を連続的に制御することにより、前後の差圧を連続的に制御することができる。常開のリニア制御弁であるため、ソレノイドへの供給電流を小さくすると、前後の差圧が小さくなり、制御圧が小さくされる。増圧リニア制御弁382,減圧リニア制御弁384のソレノイドに電流が供給されない場合には、増圧リニア制御弁382が閉状態にあり、減圧リニア制御弁384は開状態にあるため、中間液圧室326,後方液圧室330はリザーバ72に連通させられる。
 また、後方液圧室330と中間液圧室336との両方に、出力液圧制御装置372が接続されているため、これら後方液圧室330,中間液圧室336の液圧は同じ大きさに制御されることになる。
 第1,第2加圧室360,362には、それぞれ、第1,第2マスタ通路390,392が接続され、左右前輪のブレーキシリンダ42FL,FR,左右後輪のブレーキシリンダ52RL,RRが接続される。本実施例においては、前後2系統とされているのである。
 また、本液圧ブレーキシステムには、スリップ制御装置394,396が設けられ、ブレーキシリンダ42FL、FR,52RL、RRの液圧が個別に制御可能とされている。スリップ制御装置は、ブレーキシリンダ42,52を第1,第2加圧室360,362に連通させる増圧状態と、ブレーキシリンダ42,52をリザーバ72に連通させる減圧状態と、ブレーキシリンダ42,52を加圧室360,362からもリザーバ72からも遮断する保持状態とに切り換え可能な複数のバルブを含むものである。
 さらに、第2マスタ通路392のブレーキシリンダ52RL,RR(スリップ制御装置396)と第2加圧室362との間の部分と、第2液圧発生装置370とが連結通路400によって接続され、連結通路400に、リリーフ弁402が設けられる。リリーフ弁402は、第2液圧発生装置370の液圧が第2マスタ通路392の液圧より設定圧Pr以上大きくなった場合に、閉状態から開状態に切り換えられ、第2液圧発生装置370から第2マスタ通路392への作動液の流れが許容される。
 以上のように構成された液圧ブレーキシステムにおける作動を説明する。
1)回生協調制御
 液圧ブレーキシステムが正常である場合には、回生協調制御が行われる。リザーバ遮断弁346の閉状態において、出力液圧制御装置372の制御により、第1,第2加圧室360,362の液圧が制御される。回生制動トルクと液圧制動トルクとの和が運転者の総要求制動トルクと等しくなる大きさにブレーキシリンダ42,52の液圧が制御されるのである。
 リザーバ遮断弁346が閉状態とされることにより、中間ピストン316の前進が阻止される。入力ピストン318は中間ピストン316に対して相対移動可能とされ、入力ピストン318の相対的な前進に伴ってスプリング322の弾性力に応じた反力が加えられる。
 制動開始当初において、たいていの場合には、回生制動トルクのみによって総要求制動トルクが満たされる。その場合には、増圧リニア制御弁382,減圧リニア制御弁384のソレノイドに電流が供給されることがなく、中間液圧室326、後方液圧室320はリザーバ72に連通させられる。第1,第2加圧室360,362に液圧が発生させられることはない。ブレーキペダル60の操作に伴って、スプリング322の弾性力に応じた反力が加えられるのであり、第1液圧発生装置300は、ストロークシミュレータとして機能する。
 総要求制動トルクが回生制動トルクより大きくなると、出力液圧制御装置372の制御により、後方液圧室330、中間液圧室326の液圧が制御される。後方液圧室330、中間液圧室336の液圧により中間ピストン326に加えられる力は釣り合っているため、それによって、中間ピストン326が移動させられることはないのであり、運転者の操作フィーリングの変化を抑制することができる。
 また、中間液圧室326に液圧が供給されることにより、第1加圧ピストン312が前進させられ、第2加圧ピストン314が前進させられる。第1加圧室360、第2加圧室362の液圧が、中間液圧室326の液圧に応じた大きさとなる。
 換言すれば、ブレーキシリンダ42,52の液圧は、中間液圧室326の液圧の制御によって制御されるのである。
 ブレーキシリンダ42,52の液圧は、ブレーキペダル60の操作力とは関係ない大きさに制御可能であり、ブレーキペダル60の操作力に応じた液圧(入力ピストン318,中間ピストン316,第1,第2加圧ピストン312,314が一体的に前進させられた場合に、第1,第2加圧室360,362に発生させられる液圧)より、小さい値に制御されるようにすることも可能である。
 第1液圧発生装置300は、ストロークシミュレータとして機能するとともに、第2液圧依拠液圧発生装置として機能する。
<制御系が異常である場合>
 液圧ブレーキシステムの制御系が異常である場合には、全てのソレノイドに電流が供給されないことにより、原位置に戻される。後方液圧室330、環状室332、中間液圧室326は、リザーバ72に連通させられる。また、後退端位置において内部液圧室320はリザーバ72に連通させられる。
 ブレーキペダル60が作用操作されると、入力ピストン318が前進させられ、中間ピストン316が前進させられる。中間ピストン316の前進により内部液圧室320がリザーバ72から遮断されると、入力ピストン318と中間ピストン316とは一体的に前進させられる。
 中間ピストン316が第1加圧ピストン312に当接すると、第1加圧ピストン312が前進させられ、第2加圧ピストン314が前進させられる。それによって、第1,第2加圧室360,362に液圧が発生させられ、第1,第2マスタ通路390,392を経てブレーキシリンダ42,52に液圧が供給されて、液圧ブレーキ40,50が作動させられる。
 この場合には、第1液圧発生装置300は、通常のタンデムマスタシリンダとして機能する。
 ポンプモータ374は、実施例1における場合と同様に制御される。
 ポンプ376から吐出された作動液は、リリーフ弁402を経て第2マスタ通路392に供給されて、ブレーキシリンダ52に供給されるとともに第2加圧室362に供給される。実施例1における場合と同様に、第2加圧室362の液圧が増加させられ、それによって、第2加圧ピストン314が後退させられ、第1加圧室360の液圧が増加させられるのであり、ブレーキシリンダ42の液圧が増加させられる。
 このように、制御系の異常時に、ポンプ376から吐出された作動液がリリーフ弁402を経て第2加圧室362に供給されるため、ブレーキシリンダ42,52の液圧を大きくすることができる。また、アキュムレータ380により脈動を抑制することができる。
 本実施例においては、第2マスタ通路392、第1液圧発生装置300、左右後輪のブレーキシリンダ52RL,RR等によってマニュアル関連ブレーキ系統が構成される。また、増圧リニア制御弁382(出力液圧制御装置372)は、第1液圧発生装置300の加圧ピストン312の後方の中間液圧室336に接続される。本実施例において、マニュアル関連ブレーキ系統と第2液圧発生装置370との間に、増圧リニア制御弁382とリリーフ弁402とが並列に配設されることになる。
 以上、実施例1~6について説明したが、本発明は、これら実施例1~6を組み合わせた態様で実施することもできる。例えば、第2液圧発生装置とマニュアル関連ブレーキ系統との間に、リリーフ弁と、電磁開閉弁との両方を設けることもできる。また、リリーフ弁や電磁開閉弁に加えて、絞り等を設けることも可能である。
 また、第2液圧発生装置がアキュムレータを含むことは不可欠ではない。
 さらに、出力液圧制御装置118は不可欠ではない。また、減圧リニア制御弁116も不可欠ではない。減圧弁106の少なくとも1つにより、共通通路102の液圧の減圧制御を行うことができる。
 ブレーキECU56が正常である場合には、ブレーキECU56によるポンプモータ55の制御によりポンプ90の出力液圧を制御することができる。ブレーキECU56の異常によりポンプモータ55の制御が不可能である場合には、ポンプモータ55がポンプモータECU57によって、ブレーキECU56とは異なる態様で制御され、流れ抑制装置を介してマニュアル関連ブレーキ系統に供給されるようにすることができる。
 その他、本発明は、上述に記載の態様の他、当業者の知識に基づいて種々の変更、改良を施した態様で実施することができる。
 40,50:液圧ブレーキ 42,52:ブレーキシリンダ 54:液圧制御部 56:ブレーキECU 57:ポンプモータECU 60:ブレーキペダル 62:第1液圧発生装置 64:第2液圧発生装置 66:アキュムレータ 100:個別通路 102:共通通路 103:保持弁 106;減圧弁 110:制御圧通路 112:増圧リニア制御弁 116:減圧リニア制御弁 118:出力液圧制御装置 144:連結通路 146:リリーフ弁 148:マニュアル関連ブレーキ系統 158:ブレーキスイッチ 160:ストロークセンサ 162:マスタシリンダ圧センサ 164:アキュムレータ圧センサ 168:レベルウォーニング 188:メイン電源 189:サブ電源 190:連結通路 192:リリーフ弁 200:連結通路 202:リリーフ弁 220:連結通路 222:リニア制御弁 300:第1液圧発生装置 312,314:加圧ピストン 316:中間ピストン 318:入力ピストン 330:後方液圧室 332:環状室 336:中間液圧室 346:リザーバ遮断弁 360,362:第1,第2加圧室 370:第2液圧発生装置 372:出力液圧制御装置 400:連結通路 402:リリーフ弁

Claims (17)

  1.  運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源を備えた第1液圧発生装置と、
     駆動源への電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた第2液圧発生装置と、
     車両の複数の車輪の各々に対応して設けられ、それぞれ、ブレーキシリンダの液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、
     (i)前記マニュアル式液圧源と前記複数の液圧ブレーキのうちの少なくとも1つの前記ブレーキシリンダとに連通可能な連通装置と、(ii)前記第1液圧発生装置と、(iii)前記少なくとも1つのブレーキシリンダとを含むマニュアル関連ブレーキ系統と、
     前記マニュアル関連ブレーキ系統と前記第2液圧発生装置との間に、互いに並列に設けられ、(i)前記第2液圧発生装置の出力液圧を制御可能な出力液圧制御装置と、(ii)前記第2液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを抑制する流れ抑制装置と
    を含むことを特徴とする液圧ブレーキシステム。
  2.  当該液圧ブレーキシステムが、当該液圧ブレーキシステムが前記出力液圧制御装置によって前記第2液圧発生装置の出力液圧を制御できない状態である場合に、前記動力式液圧源を制御する動力式液圧源制御装置を含む請求項1に記載の液圧ブレーキシステム。
  3.  前記連通装置が、前記マニュアル式液圧源と前記少なくとも1つのブレーキシリンダとを接続するマニュアル通路を含み、
     前記流れ抑制装置が、前記第2液圧発生装置と前記マニュアル通路との間に設けられた請求項1または2に記載の液圧ブレーキシステム。
  4.  当該液圧ブレーキシステムが、前記マニュアル通路に設けられ、少なくとも開状態と閉状態とに切換え可能なマニュアル遮断弁を含み、
     前記流れ抑制装置が、前記第2液圧発生装置と前記マニュアル通路の前記マニュアル遮断弁より前記ブレーキシリンダ側の部分との間に設けられた請求項3に記載の液圧ブレーキシステム。
  5.  前記連通装置が、(i)前記少なくとも1つのブレーキシリンダが、それぞれ、個別通路を介して接続された共通通路と、(ii)前記少なくとも1つの個別通路のうちの1つと、(iii)その1つの個別通路と前記マニュアル式液圧源とを接続する個別接続通路とを含み、
     前記流れ抑制装置が、前記第2液圧発生装置と前記共通通路との間に設けられた請求項1または2に記載の液圧ブレーキシステム。
  6.  前記1つの個別通路に、その個別通路に接続された前記ブレーキシリンダの液圧を制御可能な個別制御弁が設けられ、前記個別接続通路が、前記1つの個別通路の、前記個別制御弁より前記ブレーキシリンダ側の部分に接続された請求項5に記載の液圧ブレーキシステム。
  7.  前記連通装置が、(i)前記少なくとも1つのブレーキシリンダが、それぞれ、個別通路を介して接続された共通通路と、(ii)前記少なくとも1つの個別通路のうちの1つと、(iii)その1つの個別通路と前記マニュアル式液圧源とを接続する個別接続通路とを含み、
     前記出力液圧制御装置が、前記第2液圧発生装置と前記共通通路との間に設けられた請求項1ないし6のいずれか1つに記載の液圧ブレーキシステム。
  8.  前記出力液圧制御装置が、ソレノイドへの供給電流の大きさの制御により、前後の差圧を制御可能なリニア制御弁を含む請求項1ないし7のいずれか1つに記載の液圧ブレーキシステム。
  9.  前記流れ抑制装置が、前記第2液圧発生装置の液圧が前記マニュアル関連ブレーキ系統の液圧より設定圧以上大きくなると、前記第2液圧発生装置から前記マニュアル関連ブレーキ系統への作動液の流れを許容するリリーフ弁を含む請求項1ないし8のいずれか1つに記載の液圧ブレーキシステム。
  10.  前記流れ抑制装置が、ソレノイドへの電流の供給制御により、少なくとも、開状態と閉状態とに切り換え可能であって、前記ソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁を含む請求項1ないし9のいずれか1つに記載の液圧ブレーキシステム。
  11.  前記動力式液圧源が、(i)電気エネルギにより作動可能な駆動源と、(ii)その駆動源により作動させられ、作動液を供給する作動液供給部とを含み、前記第2液圧発生装置が、前記作動液供給部から供給された作動液を加圧した状態で蓄えるアキュムレータを含む請求項1ないし10のいずれか1つに記載の液圧ブレーキシステム。
  12.  当該液圧ブレーキシステムが、前記複数の車輪のうちの左右前輪に対応して設けられた前記液圧ブレーキの前記ブレーキシリンダが、それぞれ、前輪用個別通路を介して接続された前輪用共通通路を含み、
     前記マニュアル式液圧源が、2つの加圧ピストンを備え、前記ブレーキ操作部材の操作により2つの加圧室にそれぞれ液圧を発生させるタンデム式のマスタシリンダの加圧室の各々とされ、それら加圧室の各々が前記前輪用個別通路の各々に、それぞれ、前輪用個別接続通路を介して接続され、
     前記連通装置が、(i)前記前輪用共通通路と、(ii)前記2つの前輪用個別通路のいずれか一方と、(iii)その一方の前輪用個別通路に接続された前記2つの前輪用個別接続通路の一方とを含む請求項1ないし11のいずれか1つに記載の液圧ブレーキシステム。
  13.  当該液圧ブレーキシステムが、(i)前記一方の前輪用個別通路に設けられ、ソレノイドへの電流の供給制御により開状態と閉状態とに切り換え可能であって、ソレノイドに電流が供給されない場合に開状態にある常開の電磁開閉弁である前輪用個別制御弁と、(ii)前記2つの前輪用個別通路の他方に設けられ、ソレノイドへの電流の供給制御により開状態と閉状態とに切り換え可能であって、ソレノイドに電流が供給されない場合に閉状態にある常閉の電磁開閉弁である前輪用個別制御弁とを含み、
     前記一方の前輪用個別接続通路が、前記一方の前輪用個別通路の前記常開の前輪用個別制御弁より下流側の部分に接続され、前記他方の前輪用個別接続通路が、前記他方の前輪用個別通路の前記常閉の前輪用個別制御弁より下流側の部分に接続された請求項12に記載の液圧ブレーキシステム。
  14.  当該液圧ブレーキシステムが、前記2つの前輪用個別接続通路の各々に設けられ、ソレノイドに電流が供給されない場合に開状態にある常開の電磁開閉弁であるマニュアル遮断弁を含む請求項13に記載の液圧ブレーキシステム。
  15.  前記2つの加圧室の他方に、前記2つの加圧ピストンの移動を規制する移動規制部が設けられた請求項12ないし14のいずれか1つに記載の液圧ブレーキシステム。
  16.  運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源と、
     (a)電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源と、(b)その動力式液圧源から供給された作動液を加圧した状態で蓄えるアキュムレータとを含む蓄圧機能付き動力式液圧発生装置と、
     車両の複数の車輪の各々に対応して設けられ、それぞれ、前記マニュアル式液圧源の液圧がブレーキシリンダに供給されることにより作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと、
     前記マニュアル式液圧源と前記蓄圧機能付き動力式液圧発生装置との間に設けられ、前記蓄圧機能付き動力式液圧発生装置の液圧が前記マニュアル式液圧源の液圧より設定圧以上大きい場合に、前記蓄圧機能付き動力式液圧発生装置から前記マニュアル式液圧源への作動液の流れを許容するリリーフ弁と
    を含むことを特徴とする液圧ブレーキシステム。
  17.  運転者のブレーキ操作部材の操作により液圧を発生させるマニュアル式液圧源と、
     電気エネルギの供給により作動させられ、液圧を発生させる動力式液圧源を備えた動力式液圧発生装置と、
     車両の複数の車輪の各々に対応して設けられ、それぞれ、ブレーキシリンダの液圧により作動させられ、その車輪の回転を抑制する複数の液圧ブレーキと
    を含む液圧ブレーキシステムであって、
     前記動力式液圧発生装置と前記マニュアル式液圧源との間に設けられ、前記動力式液圧発生装置の液圧が前記マニュアル式液圧源の液圧より設定圧以上大きい場合に、前記動力式液圧源から前記マニュアル式液圧源への作動液の流れを許容するリリーフ弁と、
     当該液圧ブレーキシステムが正常である場合に、前記動力式液圧発生装置の出力液圧を制御して前記複数のブレーキシリンダに、前記リリーフ弁をバイパスして供給する正常時液圧供給部と、
     当該液圧ブレーキシステムの制御系の異常時に、前記動力式液圧源を作動させて、前記動力式液圧発生装置の出力液圧を、前記リリーフ弁を経て、前記マニュアル式液圧源に供給する異常時液圧供給部と
    を含むことを特徴とする液圧ブレーキシステム。
PCT/JP2010/053447 2010-03-03 2010-03-03 液圧ブレーキシステム WO2011108090A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080065198.1A CN102791551B (zh) 2010-03-03 2010-03-03 液压制动***
US13/508,818 US9533663B2 (en) 2010-03-03 2010-03-03 Hydraulic brake system
JP2012502929A JP5170341B2 (ja) 2010-03-03 2010-03-03 液圧ブレーキシステム
PCT/JP2010/053447 WO2011108090A1 (ja) 2010-03-03 2010-03-03 液圧ブレーキシステム
DE112010005332T DE112010005332T5 (de) 2010-03-03 2010-03-03 Hydraulikbremssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053447 WO2011108090A1 (ja) 2010-03-03 2010-03-03 液圧ブレーキシステム

Publications (1)

Publication Number Publication Date
WO2011108090A1 true WO2011108090A1 (ja) 2011-09-09

Family

ID=44541775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053447 WO2011108090A1 (ja) 2010-03-03 2010-03-03 液圧ブレーキシステム

Country Status (5)

Country Link
US (1) US9533663B2 (ja)
JP (1) JP5170341B2 (ja)
CN (1) CN102791551B (ja)
DE (1) DE112010005332T5 (ja)
WO (1) WO2011108090A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150632A1 (ja) * 2012-04-05 2013-10-10 トヨタ自動車株式会社 車両のブレーキ装置
CN104494586A (zh) * 2014-11-19 2015-04-08 吉林大学 自动挡车辆的自动驻车控制***及控制方法
CN112224391A (zh) * 2020-10-12 2021-01-15 四川航天烽火伺服控制技术有限公司 一种刹车装置及***
KR20210035842A (ko) * 2018-07-24 2021-04-01 로베르트 보쉬 게엠베하 브레이크 시스템의 작동 방법 및 브레이크 시스템

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421644B (zh) * 2010-02-02 2014-11-19 丰田自动车株式会社 制动***
US9533663B2 (en) * 2010-03-03 2017-01-03 Toyota Jidosha Kabushiki Kaisha Hydraulic brake system
JP5814171B2 (ja) * 2012-03-30 2015-11-17 トヨタ自動車株式会社 シリンダ装置および液圧ブレーキシステム
JP6197098B2 (ja) * 2013-03-28 2017-09-13 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両のためのブレーキシステム
DE102013104601A1 (de) * 2013-05-06 2014-11-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Verhindern eines Wegrollens eines stillstehenden Fahrzeugs
FR3019612B1 (fr) * 2014-04-02 2016-04-08 Poclain Hydraulics Ind Systeme d'assistance hydraulique
GB2528321A (en) * 2014-07-18 2016-01-20 Airbus Operations Ltd Determining integrity of braking control system
KR101664580B1 (ko) * 2014-11-12 2016-10-11 현대자동차주식회사 친환경 차량의 회생제동을 위한 협조 제어 방법
JP6678996B2 (ja) * 2016-09-02 2020-04-15 日立オートモティブシステムズ株式会社 液圧制御装置およびブレーキシステム
US10124783B2 (en) 2016-11-02 2018-11-13 Veoneer Nissin Brake Systems Japan Co. Ltd. Brake circuit leak detection and isolation
US10501065B2 (en) * 2017-06-30 2019-12-10 Veoneer Nissin Brake Systems Japan Co. Ltd. System and method for validating operation of secondary braking system of a vehicle
KR102100647B1 (ko) * 2017-09-29 2020-04-14 주식회사 만도 전자식 브레이크 시스템 및 제어방법
US11014546B2 (en) * 2018-03-29 2021-05-25 Veoneer-Nissin Brake Systems Japan Co., Ltd. Brake system and method for responding to external boost requests during predetermined loss or degraded boost assist conditions
US10766474B2 (en) 2018-03-30 2020-09-08 Veoneer-Nissin Brake Systems Japan Co., Ltd. Validating operation of a secondary braking system of a vehicle
JP7206834B2 (ja) * 2018-11-19 2023-01-18 株式会社アドヴィックス 車両用制動装置
DE202019101586U1 (de) * 2019-02-12 2020-05-13 Ipgate Ag Packaging für ein Bremssystem
KR102227220B1 (ko) * 2019-08-19 2021-03-12 현대모비스 주식회사 Esc 통합형 회생제동 시스템의 제어 장치 및 방법
DE102020214634A1 (de) 2020-11-20 2022-05-25 Continental Teves Ag & Co. Ohg Verfahren zum Erkennen einer Ventilleckage
JP7359795B2 (ja) * 2021-03-04 2023-10-11 トヨタ自動車株式会社 車両用ブレーキシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103756A (ja) * 1986-10-15 1988-05-09 アルフレッド・デヴエス・ゲーエムベーハー ブレーキシステム
JP2002002464A (ja) * 2000-06-26 2002-01-09 Sumitomo Denko Brake Systems Kk 電動車両用制動装置
JP2007106143A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp 車両用制動制御装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199634A (en) * 1962-11-22 1965-08-10 Automotive Prod Co Ltd Pivotable and slidable, closed loop type spot disc brake
US3721321A (en) * 1971-06-25 1973-03-20 G Yarber Friction coefficient compensating braking apparatus
GB1425753A (en) * 1973-06-27 1976-02-18 Girling Ltd Brakes for vehicles
US4301895A (en) * 1978-04-08 1981-11-24 Girling Limited Disc brakes for railway vehicles
US4344510A (en) * 1980-08-22 1982-08-17 The Bendix Corporation Disc brake and improved adjuster therefor
JPS5833560A (ja) * 1981-08-24 1983-02-26 Honda Motor Co Ltd 車両の制動装置
US4856852A (en) * 1986-06-07 1989-08-15 Alfred Teves Gmbh Brake system with slip control
DE3624722A1 (de) * 1986-07-22 1988-01-28 Teves Gmbh Alfred Ventilanordnung fuer fahrzeug-bremsanlagen mit elektronischer blockier- und antriebsschlupfregelung
DE3837315A1 (de) * 1988-11-03 1990-05-10 Teves Gmbh Alfred Blockiergeschuetzte bremsanlage mit antriebsschlupf-regelung
DE4015747C2 (de) * 1990-05-16 2000-08-03 Continental Teves Ag & Co Ohg Bremsanlage für Kraftfahrzeuge mit elektronisch gesteuerter Bremskraftverteilung und mit Blockierschutzregelung
DE4133484A1 (de) * 1991-10-09 1993-04-15 Teves Gmbh Alfred Bremsanlage mit blockierschutz und antriebsschlupfregelung
DE4203878A1 (de) * 1992-02-11 1993-08-12 Teves Gmbh Alfred Schlupfgeregelte bremsanlage
FR2698336B1 (fr) * 1992-11-26 1995-02-17 Notion Progres Procédé et dispositif de freinage notamment pour cycles.
JP3508458B2 (ja) 1997-04-14 2004-03-22 トヨタ自動車株式会社 液圧ブレーキ制御装置
JP4059633B2 (ja) * 2000-02-03 2008-03-12 ボッシュ株式会社 ブレーキシステム
US6871917B2 (en) * 2000-11-10 2005-03-29 Continental Teves Ag & Co. Ohg Device for controlling electromagnetically operated valves
JP4045969B2 (ja) * 2003-02-17 2008-02-13 トヨタ自動車株式会社 車両用制動制御装置
JP4760246B2 (ja) * 2004-09-30 2011-08-31 トヨタ自動車株式会社 液圧ブレーキ装置
DE102006015906A1 (de) 2005-08-02 2007-07-26 Continental Teves Ag & Co. Ohg Elektrohydraulische Bremsanlage für Kraftfahrzeuge
JP4470867B2 (ja) * 2005-11-18 2010-06-02 トヨタ自動車株式会社 ブレーキ制御装置
JP4375385B2 (ja) * 2006-11-07 2009-12-02 トヨタ自動車株式会社 ブレーキ制御装置
JP4506793B2 (ja) * 2007-07-17 2010-07-21 トヨタ自動車株式会社 ブレーキ制御装置
JP5150919B2 (ja) * 2008-02-27 2013-02-27 本田技研工業株式会社 車両のブレーキ装置
JP4497230B2 (ja) * 2008-05-12 2010-07-07 トヨタ自動車株式会社 制動制御装置および制動制御方法
CN102421644B (zh) * 2010-02-02 2014-11-19 丰田自动车株式会社 制动***
JP5527332B2 (ja) * 2010-02-02 2014-06-18 トヨタ自動車株式会社 ブレーキシステム
US9533663B2 (en) * 2010-03-03 2017-01-03 Toyota Jidosha Kabushiki Kaisha Hydraulic brake system
US8899697B2 (en) * 2010-04-29 2014-12-02 Toyota Jidosha Kabushiki Kaisha Hydraulic brake system for vehicle
CN102574514B (zh) * 2010-09-17 2015-08-19 丰田自动车株式会社 液压制动***
CN103228513B (zh) * 2010-12-01 2015-10-14 丰田自动车株式会社 液压制动***
US9004613B2 (en) * 2010-12-01 2015-04-14 Toyota Jidosha Kabushiki Kaisha Hydraulic brake system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103756A (ja) * 1986-10-15 1988-05-09 アルフレッド・デヴエス・ゲーエムベーハー ブレーキシステム
JP2002002464A (ja) * 2000-06-26 2002-01-09 Sumitomo Denko Brake Systems Kk 電動車両用制動装置
JP2007106143A (ja) * 2005-10-11 2007-04-26 Toyota Motor Corp 車両用制動制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150632A1 (ja) * 2012-04-05 2013-10-10 トヨタ自動車株式会社 車両のブレーキ装置
CN104169143A (zh) * 2012-04-05 2014-11-26 丰田自动车株式会社 车辆的制动装置
JP5725257B2 (ja) * 2012-04-05 2015-05-27 トヨタ自動車株式会社 車両のブレーキ装置
CN104494586A (zh) * 2014-11-19 2015-04-08 吉林大学 自动挡车辆的自动驻车控制***及控制方法
KR20210035842A (ko) * 2018-07-24 2021-04-01 로베르트 보쉬 게엠베하 브레이크 시스템의 작동 방법 및 브레이크 시스템
JP2021530406A (ja) * 2018-07-24 2021-11-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh ブレーキシステムを作動させる方法およびブレーキシステム
JP7032611B2 (ja) 2018-07-24 2022-03-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ブレーキシステムを作動させる方法およびブレーキシステム
US11767001B2 (en) 2018-07-24 2023-09-26 Robert Bosch Gmbh Method for operating a brake system, and brake system
KR102628651B1 (ko) 2018-07-24 2024-01-25 로베르트 보쉬 게엠베하 브레이크 시스템의 작동 방법 및 브레이크 시스템
CN112224391A (zh) * 2020-10-12 2021-01-15 四川航天烽火伺服控制技术有限公司 一种刹车装置及***

Also Published As

Publication number Publication date
JP5170341B2 (ja) 2013-03-27
JPWO2011108090A1 (ja) 2013-06-20
US9533663B2 (en) 2017-01-03
CN102791551A (zh) 2012-11-21
US20120235469A1 (en) 2012-09-20
CN102791551B (zh) 2015-05-13
DE112010005332T5 (de) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5170341B2 (ja) 液圧ブレーキシステム
JP5163816B2 (ja) ブレーキシステム
CN110944889B (zh) 制动***
JP5527332B2 (ja) ブレーキシステム
JP5488009B2 (ja) ブレーキシステム
JP5516753B2 (ja) 液圧ブレーキシステム
US8496301B2 (en) Vehicle brake mechanism and method for controlling the vehicle brake mechanism
JP5516752B2 (ja) 液圧ブレーキシステム
US20120326491A1 (en) Vehicle brake apparatus
JP5471528B2 (ja) ブレーキシステム
KR20170103893A (ko) 브레이크 장치
JP5561131B2 (ja) ブレーキシステム
JP5614267B2 (ja) 液圧ブレーキシステム
JP5652168B2 (ja) 液圧ブレーキシステム
JP5392123B2 (ja) ブレーキシステム
JP5947691B2 (ja) ブレーキ装置
JP2022138690A (ja) 車両用制動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065198.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508818

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005332

Country of ref document: DE

Ref document number: 1120100053324

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846995

Country of ref document: EP

Kind code of ref document: A1