WO2011104873A1 - 建築物用断熱パネル - Google Patents

建築物用断熱パネル Download PDF

Info

Publication number
WO2011104873A1
WO2011104873A1 PCT/JP2010/053133 JP2010053133W WO2011104873A1 WO 2011104873 A1 WO2011104873 A1 WO 2011104873A1 JP 2010053133 W JP2010053133 W JP 2010053133W WO 2011104873 A1 WO2011104873 A1 WO 2011104873A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
heat storage
heat
latent heat
vacuum
Prior art date
Application number
PCT/JP2010/053133
Other languages
English (en)
French (fr)
Inventor
麻理 内田
小谷 正直
智弘 小松
大五郎 嘉本
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to EP10846537.8A priority Critical patent/EP2540925B1/en
Priority to CN201080063643.0A priority patent/CN102762802B/zh
Priority to PCT/JP2010/053133 priority patent/WO2011104873A1/ja
Priority to JP2012501601A priority patent/JP5331240B2/ja
Publication of WO2011104873A1 publication Critical patent/WO2011104873A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention includes a refrigeration / air conditioning circuit to which a new refrigerant having a low global warming potential (GWP) is applied, and is suitable for use in combination with an air conditioning and hot water supply system for a new generation house having a high eco (environmental) effect. Further, the present invention relates to a heat insulating panel for a building having a simple unit structure with excellent heat insulating performance for reducing the amount of heat leakage in a vacuum heat insulating material by the amount of latent heat of a latent heat storage material.
  • GWP global warming potential
  • a heat insulating structure having a structure in which a plurality of vacuum heat insulators arranged in two rows in a direction perpendicular to the face material is covered with a foam heat insulating material in a space portion surrounded by a pair of face materials and a frame material.
  • An insulated panel see Patent Document 1.
  • the vacuum insulators in one row are arranged with a smaller spacing than the dimensions of the vacuum insulators in the other row, and for the vacuum insulators in the other row, the adjacent vacuum insulators in one row It arrange
  • a thin heat insulating panel using a material having low thermal conductivity is effective in order to increase heat insulation in a limited thickness portion such as a door.
  • a limited thickness portion such as a door.
  • heat-insulating materials such as general-purpose urethane foam and glass wool.
  • a regenerator material is integrated so as to cover the periphery of a jacket material that contains a core material and evacuates the inside. And a heat insulating container using the same (see Patent Document 2).
  • This vacuum heat insulating material has a structure that makes full use of heat storage cold material to suppress heat bridges (heat bridges) that occur due to heat leakage that occurs between the high-temperature part and low-temperature part under operating conditions with temperature changes. It has become.
  • a core material such as glass wool and an adsorbent material such as gas or moisture are sealed with an outer covering material (outer packaging material), and the inner pressure is reduced so that the inside becomes a vacuum, and the outer covering material is thermally welded. It is produced by sealing (sealing) by a method such as the above.
  • the fin part which is a welding part of fixed width exists in the outer periphery of a vacuum heat insulating material. If the jacket material is processed into a normal bag shape, the dimensions of the fins formed after the core material, etc. is sealed and finally thermally welded will be longer than the dimensions of the other three sides There is also.
  • Patent Document 2 In order to keep the inside of the vacuum heat insulating material in a decompressed state for a long period of time, it is necessary to devise a method such as making the outer cover material a multilayer structure, and the technique of Patent Document 2 also has a multilayer structure. It can be regarded as a form.
  • the foam heat insulating material covering the entire surface of the vacuum heat insulating material here cannot sufficiently suppress the heat bridge generated between the adjacent vacuum heat insulating materials arranged to be separated from each other. If the vacuum insulation material is arranged so as to compensate for the relatively low heat insulation performance (the part where there is no vacuum insulation), the laminated structure will be stacked with the vacuum insulation material covered with foam insulation material, and the plate thickness will increase. Therefore, there is a problem that it is difficult to apply to a building (house) where the wall thickness cannot be secured so much.
  • the heat storage cold material formed integrally with the jacket material here has a considerable processing accuracy because it is necessary to cover the whole of the jacket material with the heat storage cold material and ensure the airtightness integrally.
  • the heat storage cold material thickness is added to the fins formed on at least one side of the fins, so heat insulation for buildings as a structure covered with a heat insulating material.
  • the vacuum heat insulating material which concerns on patent document 2 is difficult to set the thickness of the heat storage cold material with respect to a vacuum heat insulating material main body in the single-piece
  • the total weight increases accordingly, it becomes difficult to apply in applications where a large number of unit structures are joined together in a planar shape when used as a thermal insulation panel for buildings. ing.
  • the heat storage cold material is not formed integrally with the jacket material, and the decompressed state inside the vacuum heat insulating material is stably maintained for a long time, and the mechanical strength is durable.
  • the fin part is folded or the unnecessary part is cut out, and the surface of the jacket material is a metal such as aluminum foil. A structure covered with a material foil has been studied.
  • heat bridges can be reduced in building insulation panels (insulation panels) that are used for the purpose of linking and arranging single-layer structures combining existing vacuum insulation materials and heat storage materials (or insulation materials) in a flat shape.
  • insulation panels building insulation panels
  • the current situation is that the cost is increased or it takes time to develop the material, and as a result, measures to suppress the heat bridge can be achieved efficiently at a low cost. There is a problem that it is not versatile.
  • the present invention has been made to solve such problems, and a technical problem thereof is to provide a heat insulating panel for buildings having a high heat insulating effect and capable of storing heat.
  • one of the basic components of the heat insulation panel for buildings of the present invention is a vacuum heat insulating material, a latent heat storage material covering a predetermined portion of the vacuum heat insulating material, a latent heat storage material, and a vacuum heat insulation. And a heat insulating material covering the material.
  • the latent heat storage material was deployed in a place where the heat bridge caused by the amount of heat leakage generated between the high temperature part and the low temperature part can be mitigated by the latent heat quantity as a predetermined place in the vacuum heat insulating material. Is preferred.
  • another basic structure of the heat insulating panel for building of the present invention is a plurality of vacuum heat insulating materials and a plurality of latent heat storage materials respectively covering predetermined portions of the plurality of vacuum heat insulating materials. And a heat insulating material covering a plurality of latent heat storage materials and a plurality of vacuum heat insulating materials.
  • the plurality of latent heat storage materials can be used as predetermined locations in the plurality of vacuum thermal insulation materials at locations where the heat bridge caused by the amount of heat leakage generated between the high temperature portion and the low temperature portion can be mitigated by the amount of latent heat.
  • Each is preferably deployed.
  • the plurality of vacuum heat insulating materials are each flat and arranged so as not to overlap each other in the thickness direction.
  • the plurality of vacuum heat insulating materials are arranged on the same plane.
  • One of the basic configurations of the heat insulating panel for a building of the present invention is a vacuum heat insulating material, a latent heat storage material covering a predetermined portion of the vacuum heat insulating material, and a heat insulating material covering the latent heat storage material and the vacuum heat insulating material. It is provided.
  • the latent heat storage material is provided as a predetermined location in the vacuum heat insulating material at a location where a heat bridge caused by the amount of heat leakage generated between the high temperature portion and the low temperature portion can be mitigated by the latent heat amount.
  • another basic configuration of the heat insulating panel for a building according to the present invention includes a plurality of vacuum heat insulating materials, a plurality of latent heat storage materials each covering a predetermined portion of the plurality of vacuum heat insulating materials, and a plurality of latent heat storage materials. And a heat insulating material covering a plurality of vacuum heat insulating materials.
  • the plurality of latent heat storage materials are respectively disposed in places where the heat bridge due to the amount of heat leakage generated between the high temperature part and the low temperature part can be mitigated by the amount of latent heat as the predetermined place in the plurality of vacuum heat insulating materials.
  • each vacuum heat insulating material has a flat plate shape and is arranged so as not to overlap each other in the thickness direction.
  • FIG. 1 is a diagram illustrating a schematic configuration of a thermal insulation panel 101A for a building according to a first embodiment of the present invention.
  • FIG. 1 (A) is a plan view illustrating a partially transparent interior from the upper surface direction.
  • FIG. (B) is a side cross-sectional view in the short direction of the arrow BB in FIG.
  • the heat insulating panel 101A for building has a basic structure in which the entire flat plate heat insulating material 102 is covered with a heat insulating material 104, and also the vacuum heat insulating material 102.
  • the latent heat storage material 103 is provided in a substantially frame shape that extends from one main surface of the vacuum heat insulating material 102 to the other main surface so as to cover the entire periphery of the vacuum heat insulating material 102.
  • This latent heat storage material 103 is provided in order to relieve the heat bridge due to the amount of heat leakage generated between the high temperature portion and the low temperature portion in the vacuum heat insulating material 102 under the use condition with temperature change.
  • the heat insulating material 104 is provided so as to cover the entire surface of the latent heat storage material 103 here and the entire exposed surface of the vacuum heat insulating material 102.
  • the vacuum heat insulating material 102 has a thin and well-known structure in which the fin portion is composed only of the jacket material (or the mechanical strength is increased by covering the jacket material with a metal material, as in the following).
  • the fin portion may be folded so as to have a shape along the surface of the jacket material.
  • the latent heat storage material 103 disposed around the vacuum heat insulating material 102 stores and releases latent heat at the time of phase transition (phase change) between a liquid and a solid. Suppresses the generation of heat bridges due to thermal effects.
  • As the material of the latent heat storage material 103 for example, n-Octadecane C 18 H 38 , n-Hexadecane C 16 H 34 , n-Tetradecane C 14 H 30 or the like belonging to n-paraffins of organic material storage materials may be used. preferable.
  • the heat insulating panel 101A for a building having such a single structure is connected to a flat surface as a heat insulating material for a house equipped with an air conditioner, for example, the room is heated by the air conditioner in the winter, and the temperature is kept warm.
  • the latent heat storage material 103 is normally melted. Therefore, when the room is warm and the outside air is cold and the temperature of the latent heat storage material 103 becomes lower than its freezing point temperature, heat begins to leak from the surroundings, and the latent heat storage material 103 releases latent heat and starts to solidify accordingly. To do.
  • the solidification interface (the boundary surface between the solid and the liquid) moves according to the balance between the amount of heat released from the periphery of the latent heat storage material 103 and the amount of latent heat released. Even if the movement of the solidification interface proceeds, the liquid phase latent heat storage material 103 existing on the outer peripheral edge of the vacuum heat insulating material 102 retains the amount of heat, and therefore, until all of the latent heat storage material 103 is solidified and dissipates heat.
  • the temperature of the vacuum heat insulating material 102 can be kept constant.
  • the solidified latent heat storage material 103 has the effect of increasing the thermal resistance that hinders heat transfer, and therefore has the effect of reducing the amount of heat leakage of the vacuum heat insulating material 102 as the solidification progresses.
  • the latent heat storage material 103 is normally solidified.
  • the latent heat storage material 103 is melted and stored in a liquid phase to store heat.
  • the latent heat storage material 103 maintains the melting temperature until the specified amount of latent heat is stored, the temperature of the vacuum heat insulating material 102 to be kept cold is maintained at the melting temperature.
  • the latent heat storage material 103 having a freezing point temperature of 18 ° C.
  • the latent heat storage material 103 melts and stores heat when the room temperature is about 20 ° C. to 22 ° C., and the outdoor temperature is about 0 ° C. to 2 ° C.
  • the latent heat storage material 103 is solidified and dissipated.
  • the heat insulation effect is greatly improved, and the latent heat storage material 103 is stored with surplus heating temperature to prepare for a temperature drop in the early morning.
  • the use of the heat insulation panel 101A with a change in temperature The heat generated between the high temperature part and the low temperature part in the vacuum heat insulating material 102 is transferred to the latent heat storage material 103 instead of being transmitted from one main surface of the vacuum heat insulating material 102 to the other main surface, and the latent heat storage material 103 is thermally Since it functions as a buffer material, heat bridge can be sufficiently suppressed.
  • the latent heat storage material 103 absorbs or releases heat and suppresses the flow of heat depending on the amount of latent heat, it is possible to prevent the heat insulation performance of the vacuum heat insulating material 102 from being deteriorated, and the single structure is made flat. Even if it applies in the use arrange
  • the unit structure of the thermal insulation panel 101A for buildings is simple and lightweight, and can be easily manufactured at low cost. Therefore, the thermal insulation panel 101A is suitable for applications that require an excellent thermal insulation effect for a new generation house with a high eco-effect. Become.
  • the material of the latent heat storage material 103 is selected to have an appropriate temperature zone and heat storage amount according to the climate of the area where the house is located. It is preferable to do.
  • FIG. 2 is a diagram showing a schematic configuration of a building thermal insulation panel 101B according to a second embodiment of the present invention
  • FIG. 2 (A) is a plan view partially showing the interior from the upper surface direction
  • FIG. (B) is a side cross-sectional view in the longitudinal direction as viewed in the direction of arrows CC in FIG.
  • the building heat insulation panel 101B is the entirety of a plurality of (here, two) flat plate-like vacuum heat insulating materials 102 arranged at a predetermined interval.
  • the one main surface of each vacuum heat insulating material 102 extends from the one main surface to the other main surface so as to cover the vicinity of each peripheral edge.
  • a plurality of (in this case, two) latent heat storage materials 103 are provided so as to form a substantially frame-like shape to be connected and so that adjacent ones come into contact with each other at the side wall portions.
  • each of the latent heat storage materials 103 here the heat bridge due to the amount of heat leakage generated between the high temperature portion and the low temperature portion in each vacuum heat insulating material 102 under use conditions with temperature change is provided to alleviate the heat bridge by the latent heat amount.
  • the heat insulating material 104 is provided so as to cover the entire surface of each latent heat storage material 103 here and the entire exposed surface of each vacuum heat insulating material 102.
  • the materials of the vacuum heat insulating materials 102, the latent heat storage materials 103, and the heat insulating materials 104 may be the same as those disclosed in the first embodiment.
  • each of the latent heat storage materials 103 having a substantially frame shape is provided so as to cover the vicinity of the entire periphery of each vacuum heat insulating material 102
  • the use conditions with temperature changes are used.
  • the heat generated between the high temperature portion and the low temperature portion in each vacuum heat insulating material 102 is transferred to each latent heat storage material 103 instead of being transmitted from one main surface of each vacuum heat insulating material 102 to the other main surface, and each latent heat storage material Since 103 functions as a thermal buffer, heat bridge can be sufficiently suppressed.
  • each latent heat storage material 103 absorbs or releases heat and suppresses the flow of heat depending on the amount of latent heat, so that the heat insulation performance of each vacuum heat insulating material 102 can be prevented from being lowered, and a single structure can be flattened. Even if it applies in the use arrange
  • the heat insulation performance of the heat insulating material 104 in the portion where each vacuum heat insulating material 102 does not exist is relatively low as compared with the portion where each vacuum heat insulating material 102 is arranged.
  • this portion is provided as a place where each latent heat storage material 103 is brought into contact with the side wall portion, so that a decrease in the heat insulating effect as a whole of the heat insulating panel 101B for buildings is suppressed. it can.
  • the single structure of the thermal insulation panel 101B for buildings here is simple and lightweight, and can be easily manufactured at low cost. Is suitable.
  • each latent heat storage material 103 is appropriate. It is preferable to select one having a proper temperature range and heat storage amount.
  • FIG. 3 is a diagram showing a schematic configuration of a thermal insulation panel 101C for a building according to Example 3 of the present invention
  • FIG. 3 (A) is a plan view partially showing the interior from the top surface direction
  • FIG. (B) is a side cross-sectional view in the longitudinal direction as viewed in the direction of arrows CC in FIG.
  • the building heat insulation panel 101C is the entirety of a plurality of (here, two) flat plate-like vacuum heat insulating materials 102 arranged at a predetermined interval.
  • the first latent heat storage material 103a is provided, and the shape is connected in a substantially lattice frame shape so as to cover the other half main surface from the other main surface side of each vacuum heat insulating material 102 in the thickness direction and the other half.
  • the second latent heat storage material 103b is arranged so as to face the first latent heat storage material 103a.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are made of different types of materials, and both are high temperature portions in each vacuum heat insulating material 102 under use conditions with temperature changes.
  • the amount of latent heat In order to mitigate the heat bridge caused by the amount of heat leakage that occurs between the low-temperature part and the low-temperature part, the amount of latent heat.
  • the heat insulating material 104 is provided so as to cover the entire surfaces of the first latent heat storage material 103 a and the second latent heat storage material 103 b and the entire exposed surface of each vacuum heat insulating material 102.
  • the materials of the vacuum heat insulating materials 102, the first latent heat storage material 103a, the second latent heat storage material 103b, and the heat insulating material 104 may be the same as those disclosed in the first embodiment.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are different materials belonging to the n-paraffins of the organic heat storage material as described above.
  • the first latent heat storage material 103a and the second latent heat storage material 103b having different shapes that cover the entire periphery of each vacuum heat insulating material 102 and are connected to each other in a substantially lattice frame shape are respectively included in the vacuum heat insulating materials 102.
  • the heat insulating panel 101C for a single structure that is arranged so as to be faced from both main surface directions heat generated between the high temperature portion and the low temperature portion in each vacuum heat insulating material 102 under a use condition with temperature change.
  • each vacuum heat insulating material 102 is transmitted to the other main surface, it is transmitted to the first latent heat storage material 103a and the second latent heat storage material 103b, and the first latent heat storage material 103a and the second latent heat storage Since the material 103b functions as a thermal buffer material, the heat bridge can be sufficiently suppressed.
  • the first latent heat storage material 103a and the second latent heat storage material 103b absorb or release heat to suppress the heat flow according to the amount of latent heat, thereby preventing the heat insulation performance of each vacuum heat insulating material 102 from being deteriorated. Even if it is applied for the purpose of connecting a single structure in a planar shape, the heat insulating effect of the heat insulating panel 101C for buildings is enhanced.
  • the building heat insulation panel 101C according to the third embodiment uses the first latent heat storage material 103a and the second latent heat storage material 103b of different materials.
  • the second latent heat storage material 103b is used on the indoor side.
  • the first latent heat storage material 103a When the first latent heat storage material 103a is arranged on the outdoor side, heat is absorbed and released in each temperature range, so that the time for functioning as a heat buffer material can be extended.
  • the simple structure of the thermal insulation panel 101C for buildings here is simple and lightweight, and can be easily manufactured at low cost, it is required to have an excellent thermal insulation effect for a new generation house with a high eco effect. Is suitable.
  • 1st latent heat storage The material of the material 103a and the second latent heat storage material 103b is preferably selected to have an appropriate temperature range and heat storage amount. Unlike the structure having the latent heat storage material 103 of the same material as in the case of Example 1 or Example 2, the building heat insulation panel 101C according to Example 3 is rich in material selection. Therefore, the applicability is high because it can be selected according to the local climate.
  • FIG. 4 is a diagram showing a schematic configuration of a thermal insulation panel 101D for a building according to Example 4 of the present invention
  • FIG. 4 (A) is a plan view partially showing the interior from the top surface direction
  • FIG. (B) is a side cross-sectional view in the longitudinal direction as viewed in the direction of arrows CC in FIG.
  • this building heat insulation panel 101D is the entirety of a plurality of (here, two) flat plate-like vacuum heat insulating materials 102 arranged at a predetermined interval.
  • the one main surface of each vacuum heat insulating material 102 extends from the one main surface to the other main surface so as to cover the vicinity of each peripheral edge.
  • the first latent heat storage material 103a and the second latent heat storage are made of a plurality of (two in this case) different materials so that adjacent ones are in contact with each other at the side wall portions.
  • a material 103b is provided.
  • a heat bridge is caused by the amount of heat leakage generated between the high temperature portion and the low temperature portion in each vacuum heat insulating material 102 under use conditions with temperature changes. Is deployed to alleviate the amount of latent heat.
  • the heat insulating material 104 is provided so as to cover the entire surfaces of the first latent heat storage material 103 a and the second latent heat storage material 103 b and the entire exposed surface of each vacuum heat insulating material 102.
  • the materials of the vacuum heat insulating materials 102, the first latent heat storage material 103a, the second latent heat storage material 103b, and the heat insulating material 104 may be the same as those disclosed in the first embodiment.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are different materials belonging to the n-paraffins of the organic heat storage material as described above.
  • a single-structured building in which the first latent heat storage material 103a and the second latent heat storage material 103b, each of which has a substantially frame-like shape, are disposed so as to cover the entire periphery of each vacuum heat insulating material 102.
  • the heat generated between the high temperature portion and the low temperature portion of each vacuum heat insulating material 102 under use conditions with temperature changes is transferred from one main surface of each vacuum heat insulating material 102 to the other main surface.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are transmitted to the first latent heat storage material 103b, and the first latent heat storage material 103a and the second latent heat storage material 103b function as a thermal buffer material. Can be suppressed.
  • the first latent heat storage material 103a and the second latent heat storage material 103b absorb or release heat to suppress the heat flow according to the amount of latent heat, thereby preventing the heat insulation performance of each vacuum heat insulating material 102 from being deteriorated. Even if it is applied for the purpose of connecting a single structure in a planar shape, the heat insulating effect of the heat insulating panel 101D for buildings is enhanced. In particular, in the heat insulating panel 101D for a building according to the fourth embodiment, the heat insulating performance of the heat insulating material 104 in the portion where each vacuum heat insulating material 102 does not exist is relatively low as compared with the portion where each vacuum heat insulating material 102 is disposed.
  • this part is provided as a place where the first latent heat storage material 103a and the second latent heat storage material 103b are brought into contact with each other at the side wall, so that the thermal insulation panel 101D for buildings is used. Decrease in the heat insulation effect as a whole can be suppressed. Moreover, since the first latent heat storage material 103a and the second latent heat storage material 103b of different materials are used, for example, the side wall opposite to the contact side of the first latent heat storage material 103a is close to the roof or ceiling.
  • the side wall opposite to the contact side of the second latent heat storage material 103b When the side wall opposite to the contact side of the second latent heat storage material 103b is arranged on the side close to the floor, heat is absorbed and released in each temperature zone, so the time for functioning as a heat buffer material Has the advantage that can be lengthened.
  • the simple structure of the heat insulating panel 101D for building here is simple and lightweight, and can be easily manufactured at low cost, an application that requires an excellent heat insulating effect for a new generation house with a high eco effect is required. Is suitable.
  • 1st latent heat storage material 103a and The material of the second latent heat storage material 103b is preferably selected to have an appropriate temperature range and heat storage amount.
  • the building thermal insulation panel 101D according to the fourth embodiment has abundant material selection. As a result, the applicability is high because selection according to the local climate is possible.
  • FIG. 5 is the figure which showed schematic structure of the heat insulation panel 101E for buildings which concerns on Example 5 of this invention, and the same figure (A) is the top view which showed the inside partially from the upper surface direction, and showed the same FIG. (B) is a side cross-sectional view in the longitudinal direction taken along the line DD in FIG.
  • the building thermal insulation panel 101E is the entirety of a plurality of (here, two) flat plate-like vacuum thermal insulation materials 102 arranged at a predetermined interval.
  • the vacuum heat insulating material 102 extends from the main surface side of each vacuum heat insulating material 102 into a substantially partition box shape so as to cover the entire surface including the vicinity of the entire periphery half in the thickness direction.
  • the first latent heat storage material 103a is provided in an existing shape, and covers the other half of the entire surface including the vicinity of the entire periphery from the other main surface side of each vacuum heat insulating material 102 in the thickness direction.
  • the second latent heat storage material 103b is disposed so as to extend in a substantially partition box shape and abut against the first latent heat storage material 103a.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are made of different types of materials, and both are high temperature portions in each vacuum heat insulating material 102 under use conditions with temperature changes.
  • the amount of latent heat In order to mitigate the heat bridge caused by the amount of heat leakage that occurs between the low-temperature part and the low-temperature part, the amount of latent heat.
  • the heat insulating material 104 is disposed so as to cover the entire surfaces of the first latent heat storage material 103a and the second latent heat storage material 103b here.
  • the materials of the vacuum heat insulating materials 102, the first latent heat storage material 103a, the second latent heat storage material 103b, and the heat insulating material 104 may be the same as those disclosed in the first embodiment.
  • the first latent heat storage material 103a and the second latent heat storage material 103b are different materials belonging to the n-paraffins of the organic heat storage material as described above.
  • the first latent heat storage material 103a and the second latent heat are made of different materials extending in a substantially partition box shape covering the entire surface including the vicinity of the entire periphery of each vacuum heat insulating material 102 in the thickness direction.
  • the heat insulating panel for building 101E having a single structure in which the heat storage material 103b is disposed so as to be abutted from both main surface directions of each vacuum heat insulating material 102, the high temperature portion in each vacuum heat insulating material 102 under a use condition with temperature change Instead of being transmitted from one main surface of each vacuum heat insulating material 102 to the other main surface, the heat generated between each of the vacuum heat insulating materials 102 is transferred to the first latent heat storage material 103a and the second latent heat storage material 103b. Since the latent heat storage material 103a and the second latent heat storage material 103b function as thermal buffer materials, the heat bridge can be sufficiently suppressed.
  • the first latent heat storage material 103a and the second latent heat storage material 103b absorb or release heat to suppress the heat flow according to the amount of latent heat, thereby preventing the heat insulation performance of each vacuum heat insulating material 102 from being deteriorated. Even if it is applied for the purpose of connecting a single structure in a planar shape, the heat insulating effect of the heat insulating panel 101E for buildings is enhanced.
  • the building heat insulating panel 101E according to the fifth embodiment uses, for example, the second latent heat storage material 103b and the second latent heat storage material 103b of different materials.
  • the latent heat storage material 103b is arranged indoors and the first latent heat storage material 103a is arranged outdoors, heat is absorbed and released in each temperature range, so that the time for functioning as a heat buffering material can be lengthened. Has the advantage of being able to. Moreover, since the first latent heat storage material 103a and the second latent heat storage material 103b of different materials cover the entire vacuum heat insulating material 102 from both main surface directions, each of the vacuum heat insulating materials 102 is more than in the case of the third embodiment. A decrease in the heat insulation performance can be sufficiently suppressed, which can contribute to a reduction in the air conditioning load of the air conditioner. In addition, since the single structure of the thermal insulation panel 101E for buildings here is simple and lightweight, and can be easily manufactured at low cost, it is required to have an excellent thermal insulation effect for a new generation house with a high eco-effect. Is suitable.
  • the 1st latent heat storage material 103a is preferably selected to have an appropriate temperature range and heat storage amount. Also in the heat insulating panel 101E for the building according to the fifth embodiment, unlike the structure having the latent heat storage material 103 of the same material as in the first and second embodiments, the material is the same as in the third embodiment.
  • each vacuum heat insulating material 102 Since the selection is abundant, the applicability is high because selection according to the local climate is possible, and the effect of suppressing the decrease in the heat insulating performance of each vacuum heat insulating material 102 is the most in each embodiment. It is effective to apply it to every part of the house, such as indoors, outdoors, close to the ceiling, close to the floor.
  • the thermal insulation panels 101A to 101E for buildings according to the above-described embodiments (particularly, the thermal insulation panel 101B for buildings according to the second embodiment, the thermal insulation panel 101C for buildings according to the third embodiment, and the building according to the fifth embodiment)
  • the form in the case where the first latent heat storage material 103a and the second latent heat storage material 103b, which are different from the latent heat storage material 103, are arranged around the vacuum heat insulating material 102 is roughly divided into heat storage materials. It is divided into the case of using the material itself and the case of using a material similar to the heat storage board material.
  • the heat storage material When using the heat storage material itself, use a container that is filled with a certain amount of heat storage material and molded into a predetermined shape, or a case that is molded into a predetermined shape is filled with the heat storage material. Alternatively, it is possible to use a case in which a case containing a heat storage material is arranged on the surface of a component molded as a spacer.
  • the heat storage material filled in the container or the case storing the heat storage material may be an integral structure or a divided structure.
  • the heat storage material is preferably in close contact with the vacuum heat insulating material 102 and the heat insulating material 104.
  • the heat storage material functions as a spacer or positioning member when assembling the heat insulation panels 101A to 101E for buildings (particularly the heat insulation panel 101B for buildings, the heat insulation panel 101C for buildings, and the heat insulation panel 101E for buildings). Therefore, the manufacture becomes easy.
  • FIG. 6 is the hottest day illustrated to explain the heat storage effect when the latent heat storage material 103, which is the main part of the thermal insulation panel 101A for building according to Example 1 of the present invention, is used for the vacuum heat insulating material 102. It is a total heat load curve.
  • the biggest reason why the latent heat storage material 103 is used as the heat insulating panel 101A for the building by arranging it in the vacuum heat insulating material 102 is because it has an advantage that the temperature of the wall of the house cannot be raised in summer.
  • the density of the latent heat storage material 103 is 800 kg / m 3 , latent heat 242 kJ / kg,
  • the total heat load characteristic is shown as an example of the effect of PCM shown in FIG.
  • the total Qc of the total heat load that exceeds 4 kW from 6:00 to 18:00 on the hottest day is 10693.9 (kJ).
  • the total area of the heat insulation part of the standard house is 260.75 m 2 (the roof or ceiling is 67.90 m 2 , the wall 124.95 m 2 , the first floor 67.90 m 2 ), of which 80%
  • the required number of sheets is about 209 if it is covered with a vacuum insulation material of length 0.8m x width 0.8m, and about 235 if 90% is covered with the same vacuum insulation material 102 It becomes.
  • the heat storage amount Qpcm by the latent heat storage material 103 arranged around the vacuum heat insulating material 102 is the thickness, volume, It fluctuates depending on the correlation between the weight and the number of vacuum heat insulating materials 102 used.
  • the heat storage amount Qpcm is 58080 kJ.
  • the heat storage amount Qpcm is 116160 kJ. If the thickness of the latent heat storage material 103 is 0.01 m, the volume is 0.003 m 3 , the weight is 2.4 kg, and the number of vacuum heat insulating materials 102 used is 200, the heat storage amount Qpcm is 116160 kJ. If the thickness of the latent heat storage material 103 is 0.01 m, the volume is 0.003 m 3 , the weight is 2.4 kg, and the number of the vacuum heat insulating materials 102 used is 100, the heat storage amount Qpcm is 58080 kJ.
  • the thickness of the latent heat storage material 103 is 0.01 m (10 mm)
  • the heat storage amount is about 10 times the total Qc of the total heat load described above. For this reason, if the amount of stored heat is taken into consideration, the peak is shifted to level the load, and the stored heat is dissipated outdoors at night, the total amount of heat load can be reduced.
  • FIG. 7 shows changes in the outside air temperature on the hottest day and the coldest day in the mid-latitude region (Tokyo), which is an example of the usage target of the thermal insulation panels 101A to 101E for buildings according to each embodiment of the present invention. It is the figure which illustrated the relationship with an air-conditioning mode.
  • the thermal insulation panels 101A to 101E for buildings according to the above-described embodiments show a correlation with the air conditioning mode of the air conditioner depending on the location conditions of the house to which they are applied.
  • FIG. 7 shows an example in which the air conditioner is cooled on the hottest day in Tokyo and the room temperature is set to about 26 ° C., and on the coldest day, the air conditioner is heated and the room temperature is set to about 22 ° C.
  • the temperature difference between the outside temperature and the room temperature differs between winter and summer.
  • the latent heat storage material 103, the first latent heat storage material 103a, and the second latent heat storage material 103b arranged around the vacuum heat insulating material 102 are in a temperature range effective for heat bridge suppression. It is preferable to select the type and select the type in a temperature zone suitable for use as a heat storage material in other parts.
  • FIG. 8 illustrates, as a comparison, a total heat load curve when a glass wool material that is a core material of a general-purpose vacuum heat insulating material 102 is used as a heat insulating panel for a building.
  • the total heat load curve, (B) is the total heat load curve on the coldest day.
  • the heat load is calculated using a housing heat load calculation program (SMASH) using the Architectural Institute of Japan standard housing model.
  • SMASH housing heat load calculation program
  • FIG. 9 illustrates, as a comparison, a total heat load curve when a known vacuum heat insulating material 102 is used as a heat insulating panel for a building.
  • A is a total heat load curve on a hottest day
  • B is the total heat load curve on the coldest day.
  • the heat load is calculated using a housing heat load calculation program (SMASH) using the Architectural Institute of Japan standard housing model.
  • the thickness of the vacuum heat insulating material 102 is 20 mm and the thickness of the heat insulating material 104 is 70 mm.
  • the vacuum heat insulating material 102 is used as a heat insulating panel for buildings, the heat penetration rate K can be lowered. It can be seen that it is preferable to increase the proportion of the material 102 and reduce the influence of the heat bridge. By the way, when the vacuum heat insulating material 102 is used as a heat insulating panel for buildings, it can be used even if one with a low heat exchange capacity of the air conditioner is selected, but in order to quickly lower the room temperature that has risen in the absence of long term in summer. Must have high heat exchange performance.
  • FIG. 10 is a schematic view showing an example when the building heat insulation panels 101A to 101E according to the respective embodiments of the present invention are applied to the house 60 and a case where the air conditioning hot water supply system 62 is installed in the house 60.
  • the air conditioning and hot water supply system 62 (the details of the overall configuration are omitted) are installed outdoors and connected to the indoor heat exchanger 61 by a pipe 63.
  • the heat medium whose temperature has been adjusted by the air conditioning and hot water supply system 62 flows through the pipe 63 to the indoor heat exchanger 61, and at this time, heat exchange with the air inside the house 60 is performed, thereby air conditioning of the house 60 is performed.
  • the heat insulation performance of the house 60 is high. That is, the interior of the summer is not so hot and the interior of the winter is not so cold, and the environment (environmental) effect is high. For this reason, the air-conditioning load required in the air-conditioning hot-water supply system 62 installed in a house can be reduced.
  • coolant which can be used with the air-conditioning hot-water supply system 62
  • R410a, R134a, HFO1234yf, HFO1234ze etc. are mentioned, for example.
  • examples of the heat source that can be used for air conditioning and hot water supply of the air conditioning and hot water supply system 62 include natural energy such as solar heat and geothermal heat in addition to air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)
  • Thermal Insulation (AREA)

Abstract

【課題】真空断熱材と蓄熱材とを組み合わせた単体構造を平面状に繋げて配置する用途で断熱効果が高く、蓄熱可能な建築物用断熱パネルを提供すること。 【解決手段】この建築物用断熱パネル101Aは、平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、真空断熱材102の全周縁付近を覆うように、真空断熱材102の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成して潜熱蓄熱材103が配備されている。潜熱蓄熱材103は、温度変化のある使用条件下で真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、潜熱蓄熱材103の表面全体と真空断熱材102の露呈する表面全体とを覆うように配備されている。

Description

建築物用断熱パネル
 本発明は、地球温暖化係数(GWP)の低い新冷媒を適用した冷凍・空調回路を含むと共に、エコ(環境対応)効果が高い新世代住宅向けの空調給湯システムとの併用が好適であって、真空断熱材における熱漏れ量を潜熱蓄熱材の潜熱量によって緩和する断熱性能の優れた簡素な単体構造の建築物用断熱パネルに関する。
 近年、地球温暖化を抑制するための対策が急務となっており、住宅環境においても省エネルギー化を図ることが求められている。これを具現するためには、住宅(建築物)を高断熱化して消費エネルギーを削減することが望まれる他、屋内で使用される家電機器や産業機器を高効率化して消費エネルギーを削減することが望ましい。家電機器や産業機器においては、特に冷蔵庫や給湯機の貯湯タンク等の断熱性を向上させる対策が重要視されている。
 上述した住宅を高断熱化して消費エネルギーを削減するための建築物用断熱パネルの周知技術としては、例えば住宅壁厚を低減させて施行性を改善し、且つ住宅の高断熱化を図るため、一対の面材と枠材とで囲まれた空間部分に対し、面材に対して垂直方向に2列配列された複数の真空断熱体を発泡断熱材で覆った構造の断熱構造体を配設した断熱パネル(特許文献1参照)が挙げられる。
 この断熱パネルでは、一方の列の真空断熱体が他方の列の真空断熱体の寸法より小さい間隔を空けて配置され、他方の列の真空断熱体については、一方の列の隣接する真空断熱体の間における断熱性能が相対的に低くなる部分(真空断熱体が無い部分)を補うように配置されている。
 一般に、住宅環境において、扉等の限られた厚さの箇所を高断熱化させるためには、熱伝導率が低い素材を用いた薄い構造の断熱パネルが有効である。また、壁、天井、床等の基礎部分を高断熱化させるためには、汎用的なウレタンフォーム、グラスウール等の断熱材を用いた場合には厚さを増やす必要があるが、断熱性の優れた真空断熱材を複合した断熱壁を用いた場合には汎用的な断熱材を用いた場合と比べて厚さを薄くすることができる。
 また、上述した家電機器や産業機器に適用される真空断熱材としては、芯材を収納して内部を真空排気して成る外被材に対し、その周囲を覆うように蓄熱冷材が一体的に設けられた構造の真空断熱材及びこれを用いた断熱容器(特許文献2参照)が挙げられる。
 この真空断熱材は、温度変化のある使用条件下で高温部と低温部との間で生じる熱漏れにより発生するヒートブリッジ(熱橋)を抑制するために蓄熱冷材を十分に活用した構造になっている。一般的な真空断熱材の場合、グラスウール等の芯材とガスや水分等の吸着材とを外被材(外包材)で密閉し、内部を真空となるよう減圧して外被材を熱溶着等の手法で封止(シール)して作製される。このため、真空断熱材の外周囲には一定の幅の溶着部分であるひれ部が存在する。外被材が通常の袋状に加工された形状であれば、芯材等を封入して最終的に熱溶着した後に形成されるひれ部の寸法は他の三辺の寸法よりも長くなる場合もある。
 真空断熱材の内部を減圧された状態として長期間保持するためには、外被材を多層構造にする等の工夫が必要であり、特許文献2の技術についても外被材を多層構造にした形態とみなすことができる。
特許第3786755号公報 特開2009-299764号公報
 上述した特許文献1に係る断熱パネルは、2列に配列された真空断熱材を持つ構造であるため、断熱性能は向上している。
 しかしながら、ここでの真空断熱材の全面を覆っている発泡断熱材は、隔てられて配置された隣り合う真空断熱材同士において生じるヒートブリッジを十分に抑制することができず、これを対策するために断熱性能が相対的に低くなる部分(真空断熱体が無い部分)を補うように真空断熱材を配置すると、発泡断熱材で覆われた真空断熱材を重ねる積層構造となり、板厚が増大してしまうため、壁厚をさほど確保できない建築物(住宅)には適用し難いという問題がある。
 特許文献2に係る真空断熱材の場合には、外被材の全面を蓄熱冷材で覆う構造としているために、外被材の熱伝導率を下げる効果があり、特に冷蔵庫等の電気機器への断熱効果(断熱箱内の保冷目的)としては有効である。
 しかしながら、ここでの外被材と一体的に形成される蓄熱冷材は、外被材の全体を蓄熱冷材で覆って一体的に密閉性を確保する必要があるために相当な加工精度が要求されてコスト高になり易い上、少なくとも一辺に形成されるひれ部に外被材の厚さ以外に蓄熱冷材の厚さが加わることになるため、断熱材で覆う構造として建築物用断熱パネルへ適用すると、ひれ部を折り畳むときに蓄熱冷材の表面に沿わせる形状にすることが容易でなかったり、或いは不要部分を切除すると切除加工に手数がかかってしまうばかりでなく、機械的強度が弱くて重量が増大されてしまうことにより、建築物用断熱パネルとして適用し難いという問題がある。
 また、特許文献2に係る真空断熱材は、その単体構造において真空断熱材本体に対する蓄熱冷材の厚さの設定が難しく、蓄熱冷材の厚さを増大させれば蓄熱量を多くすることができるが、その分総重量も大きくなってしまうため、建築物用断熱パネルとして広大な面積分使用するときに単体構造の多数のものを平面状に繋ぎ合わせて用いる用途では適用し難いものになっている。
 そこで、特許文献2のように外被材に対して蓄熱冷材を一体的に形成せず、真空断熱材内部の減圧状態を長期間安定して維持すると共に、機械的強度の耐久性を持たせて薄型で軽量の建築物用断熱パネルとしての適用性を高めるため、ひれ部を折り畳んだ状態か、或いは不要部分を切除した形状とした上、外被材の表面上をアルミニウム箔等の金属材箔で覆う構造が検討されている。
 ところが、こうした構造の場合には、真空断熱材の周辺部で金属材を介して熱の漏洩によるヒートブリッジが発生してしまうためにそのままでは適用し難いものとなっている。このときの熱の漏洩量は真空断熱材の使用条件の他、真空断熱材の厚さや大きさ等の基本構造、金属材箔の種類や厚さ等により相違し、ヒートブリッジの発生する領域が真空断熱材周囲の数センチメートルの範囲となることが実験観察、並びにそれに要する理論上の計算により確認されている。
 要するに、既存の真空断熱材と蓄熱材(或いは断熱材)とを組み合わせた単体構造を平面状に繋げて配置する用途に供される建築物用断熱パネル(断熱パネル)では、ヒートブリッジを低減可能な真空断熱材を実現するためには、現状ではコストが増大したり、或いは材料開発に時間がかかっているという状況にあるため、結果として、ヒートブリッジの抑制対策が低コストで効率良く図られておらず、汎用性に乏しいという問題がある。
 本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、断熱効果が高く、蓄熱可能な建築物用断熱パネルを提供することにある。
 上記技術的課題を解決するため、本発明の建築物用断熱パネルの基本構成の1つは、真空断熱材と、真空断熱材の所定箇所を覆った潜熱蓄熱材と、潜熱蓄熱材及び真空断熱材を覆った断熱材と、を備えたことを特徴とする。
 この建築物用断熱パネルにおいて、潜熱蓄熱材は、真空断熱材における所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所に配備されたことが好ましい。
 上記技術的課題を解決するため、本発明の建築物用断熱パネルの基本構成のもう1つは、複数の真空断熱材と、複数の真空断熱材の所定箇所をそれぞれ覆った複数の潜熱蓄熱材と、複数の潜熱蓄熱材及び複数の真空断熱材を覆った断熱材と、を備えたことを特徴とする。
 この建築物用断熱パネルにおいて、複数の潜熱蓄熱材は、複数の真空断熱材における所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所にそれぞれ配備されたことが好ましい。また、複数の真空断熱材は、それぞれ平板状であり、且つ厚さ方向で互いに重ならないように配備されたことが好ましい。更に、複数の真空断熱材は、同一平面上に配備されていることが好ましい。
 本発明によれば、断熱効果が十分に高く、しかも十分に蓄熱可能な建築物用断熱パネルが得られる。
本発明の実施例1に係る建築物用断熱パネルの概略構成を示した図で、(A)は上面方向からの内部を一部透視させて示した平面図、(B)は(A)のB-B線矢視の短手方向における側面断面図である。 本発明の実施例2に係る建築物用断熱パネルの概略構成を示した図で、(A)は上面方向からの内部を一部透視させて示した平面図、(B)は(A)のC-C線矢視の長手方向における側面断面図である。 本発明の実施例3に係る建築物用断熱パネルの概略構成を示した図で、(A)は上面方向からの内部を一部透視させて示した平面図、(B)は(A)のC-C線矢視の長手方向における側面断面図である。 本発明の実施例4に係る建築物用断熱パネルの概略構成を示した図で、(A)は上面方向からの内部を一部透視させて示した平面図、(B)は(A)のC-C線矢視の長手方向における側面断面図である。 本発明の実施例5に係る建築物用断熱パネルの概略構成を示した図で、(A)は上面方向からの内部を一部透視させて示した平面図、(B)は(A)のD-D線矢視の長手方向における側面断面図である。 本発明の実施例1に係る建築物用断熱パネルの要部である潜熱蓄熱材を真空断熱材に用いたときの蓄熱効果を説明するために例示した最暑日の全熱負荷曲線である。 本発明の各実施例に係る建築物用断熱パネルの使用対象の一例である中緯度地方における最暑日並びに最寒日の外気温の変化と空調装置の空調モードとの関係を例示した図である。 比較として、汎用的な真空断熱材の芯材であるグラスウール材を建築物用断熱パネルとして用いたときの全熱負荷曲線を例示したもので、(A)は最暑日の全熱負荷曲線、(B)は最寒日の全熱負荷曲線である。 比較として、周知の真空断熱材を建築物用断熱パネルとして用いたときの全熱負荷曲線を例示したもので、(A)は最暑日の全熱負荷曲線、(B)は最寒日の全熱負荷曲線である。 本発明の各実施例に係る建築物用断熱パネルを住宅へ適用したときの一例と、住宅に空調給湯システムを設置した場合を示す概略図である。
 以下に本発明の建築物用断熱パネルについて、図面を参照して詳細に説明する。
 最初に、本発明の建築物用断熱パネルの技術的概要を説明する。本発明の建築物用断熱パネルの基本構成の1つは、真空断熱材と、真空断熱材の所定箇所を覆った潜熱蓄熱材と、潜熱蓄熱材及び真空断熱材を覆った断熱材と、を備えたものである。
 ここで、潜熱蓄熱材は、真空断熱材における所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所に配備されたことが望ましい。
 また、本発明の建築物用断熱パネルの基本構成のもう1つは、複数の真空断熱材と、複数の真空断熱材の所定箇所をそれぞれ覆った複数の潜熱蓄熱材と、複数の潜熱蓄熱材及び複数の真空断熱材を覆った断熱材と、を備えたものである。ここで、複数の潜熱蓄熱材は、複数の真空断熱材における所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所にそれぞれ配備されたことが望ましい。更に、各真空断熱材については、それぞれ平板状であり、且つ厚さ方向で互いに重ならないように配備されたことが望ましい。加えて、ここでの各真空断熱材については、同一平面上に配備されていることが望ましい。
 以下は、本発明の建築物用断熱パネルに係る具体的な細部構成について、幾つかの実施例を挙げて説明する。
 図1は、本発明の実施例1に係る建築物用断熱パネル101Aの概略構成を示した図で、同図(A)は上面方向からの内部を一部透視させて示した平面図、同図(B)は同図(A)のB-B線矢視の短手方向における側面断面図である。
 図1(A)、(B)を参照すれば、この建築物用断熱パネル101Aは、平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、真空断熱材102の全周縁付近を覆うように、真空断熱材102の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成して潜熱蓄熱材103が配備されている。この潜熱蓄熱材103は、温度変化のある使用条件下で真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、ここでの潜熱蓄熱材103の表面全体と真空断熱材102の露呈する表面全体とを覆うように配備されている。
 このうち、真空断熱材102は、以下も同様であるように、ひれ部が外被材のみで構成された肉薄の周知構造のもの(或いは、外被材を金属材で覆って機械的強度を向上させた構造のものでも良い)であり、このひれ部が外被材の表面に沿った形状となるように折り畳まれている。
 真空断熱材102の周囲に配備された潜熱蓄熱材103は、液体と固体との間の相転移(相変化)時に潜熱を蓄熱、放出するもので、この性質を利用して真空断熱材102の熱的な影響によるヒートブリッジの発生を抑制する。潜熱蓄熱材103の材質としては、例えば有機物系蓄熱材料のn-パラフィン類に属されるn-Octadecane C1838、n-Hexadecane C1634、n-Tetradecane C1430等を用いることが好ましい。
 断熱材104は、周知の発泡ウレタンや発泡軽量コンクリート(ALC)を使用することが好ましい。
 このような単体構造の建築物用断熱パネル101Aを空調装置が設備された住宅用の断熱材として、平面状に繋げて配置した場合を想定すると、例えば冬季に空調装置で室内を暖房し、保温した場合には潜熱蓄熱材103が通常融解した状態にある。そこで、室内が暖かく、外気が寒くて潜熱蓄熱材103の温度がその凝固点温度よりも低くなった場合、周囲から熱が漏れ始め、それに伴って潜熱蓄熱材103は潜熱を放出して凝固を開始する。ここで放熱が進行するに伴い、凝固界面(固体と液体との境界面)は潜熱蓄熱材103の周囲からの放熱量と潜熱放出量とのバランスに従って移動する。凝固界面の移動が進行しても、真空断熱材102の外周縁に存在する液相の潜熱蓄熱材103が熱量を保持するため、潜熱蓄熱材103の全てが凝固して放熱するまでの間は真空断熱材102の温度を一定に保持することができる。凝固した潜熱蓄熱材103は、伝熱を阻害する熱抵抗を増大させる作用を持つため、凝固の進行と共に真空断熱材102の熱漏れ量を減少させる効果を合わせ持つ。
 また、例えば夏期に空調装置で室内を冷房し、保冷した場合には潜熱蓄熱材103が通常凝固した状態にある。潜熱蓄熱材103の周囲の温度がその凝固点温度以上に高い温度条件になると、潜熱蓄熱材103は融解して液相となって蓄熱する。このとき、潜熱蓄熱材103は、規定される潜熱量が蓄熱されるまでの間、融解温度を保つため、保冷対象となる真空断熱材102の温度が融解温度に保たれる。
 平板状の真空断熱材102の場合、厚さ方向の周縁点での温度差を小さくできれば、ヒートブリッジを形成する経路の熱伝を抑制することができる。一例として、潜熱蓄熱材103の凝固点温度が18℃のものを使用した場合、室内温度が20℃~22℃程度で潜熱蓄熱材103は融解して蓄熱し、屋外温度が0℃~2℃程度で潜熱蓄熱材103は凝固して放熱する。空調装置の暖房時には断熱効果が大幅に向上し、余剰の暖房温熱で潜熱蓄熱材103に蓄熱させておき、早朝の温度低下に備えることが可能となる。
 ここでの1つの真空断熱材102の全周縁付近を覆って略枠体状の形状の潜熱蓄熱材103が配備された単体構造の建築物用断熱パネル101Aでは、温度変化のある使用条件下で真空断熱材102における高温部と低温部との間で生じる熱が真空断熱材102の一方の主面から他方の主面へ伝わる代わりに潜熱蓄熱材103に伝わり、潜熱蓄熱材103が熱的な緩衝材として機能するため、ヒートブリッジを十分に抑制できる。
 これにより、潜熱蓄熱材103が熱の吸収或いは放出を行って潜熱量により熱の流れを抑制するため、真空断熱材102の断熱性能の低下を防ぐことができ、単体構造のものを平面状に繋げて配置する用途で適用しても建築物用断熱パネル101Aの断熱効果が高められる。また、建築物用断熱パネル101Aの単体構造は簡素で軽量であり、しかも低コストで容易に作製可能あるため、エコ効果が高い新世代住宅向けの優れた断熱効果が要求される用途で好適となる。
 尚、実施例1に係る建築物用断熱パネル101Aを住宅に適用する場合、住宅が立地する地域の気候に応じて、潜熱蓄熱材103の材質を適切な温度帯並びに蓄熱量を持つものに選定することが好ましい。
 図2は、本発明の実施例2に係る建築物用断熱パネル101Bの概略構成を示した図で、同図(A)は上面方向からの内部を一部透視させて示した平面図、同図(B)は同図(A)のC-C線矢視の長手方向における側面断面図である。
 図2(A)、(B)を参照すれば、この建築物用断熱パネル101Bは、所定の間隔を有して配列された複数(ここでは2つ)の平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、各真空断熱材102のそれぞれの全周縁付近を覆うように、各真空断熱材102の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成し、且つ隣り合うもの同士が側壁箇所で当接されるように複数(ここでは2つ)の潜熱蓄熱材103が配備されている。ここでの各潜熱蓄熱材103においても、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、ここでの各潜熱蓄熱材103の表面全体と各真空断熱材102の露呈する表面全体とを覆うように配備されている。
 この建築物用断熱パネル101Bにおいて、各真空断熱材102、各潜熱蓄熱材103、及び断熱材104の材質は実施例1で開示したものと同様で良い。
 ここでの各真空断熱材102の全周縁付近を覆ってそれぞれ略枠体状の形状の各潜熱蓄熱材103が配備された単体構造の建築物用断熱パネル101Bでは、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱が各真空断熱材102の一方の主面から他方の主面へ伝わる代わりに各潜熱蓄熱材103に伝わり、各潜熱蓄熱材103が熱的な緩衝材として機能するため、ヒートブリッジを十分に抑制できる。
 これにより、各潜熱蓄熱材103が熱の吸収或いは放出を行って潜熱量により熱の流れを抑制するため、各真空断熱材102の断熱性能の低下を防ぐことができ、単体構造のものを平面状に繋げて配置する用途で適用しても建築物用断熱パネル101Bの断熱効果が高められる。特に、実施例2に係る建築物用断熱パネル101Bでは、各真空断熱材102が存在しない部分の断熱材104の断熱性能は各真空断熱材102が配置されている部分と比べて相対的に低く、熱漏れの影響が考えられるため、この部分を各潜熱蓄熱材103が側壁箇所で当接される箇所として配備しているため、建築物用断熱パネル101Bの全体としての断熱効果の低下を抑制できる。また、ここでの建築物用断熱パネル101Bの単体構造も簡素で軽量であり、しかも低コストで容易に作製可能あるため、エコ効果が高い新世代住宅向けの優れた断熱効果が要求される用途で好適となる。
 尚、実施例2に係る建築物用断熱パネル101Bを住宅に適用する場合においても、実施例1の場合と同様に住宅が立地する地域の気候に応じて、各潜熱蓄熱材103の材質を適切な温度帯並びに蓄熱量を持つものに選定することが好ましい。
 図3は、本発明の実施例3に係る建築物用断熱パネル101Cの概略構成を示した図で、同図(A)は上面方向からの内部を一部透視させて示した平面図、同図(B)は同図(A)のC-C線矢視の長手方向における側面断面図である。
 図3(A)、(B)を参照すれば、この建築物用断熱パネル101Cは、所定の間隔を有して配列された複数(ここでは2つ)の平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、各真空断熱材102のそれぞれの一方の主面側から全周縁付近を厚さ方向で半分覆うように略格子枠状に繋がった形状を成して第1の潜熱蓄熱材103aが配備されると共に、各真空断熱材102のそれぞれの他方の主面側から全周縁付近を厚さ方向で残り半分覆うように略格子枠状に繋がった形状を成して第1の潜熱蓄熱材103aと突き合わされるように第2の潜熱蓄熱材103bが配備されている。ここでの第1の潜熱蓄熱材103aと第2の潜熱蓄熱材103bとは、異なる種類の材質から成るものであるが、何れも温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、ここでの第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの表面全体と各真空断熱材102の露呈する表面全体とを覆うように配備されている。
 この建築物用断熱パネル101Cにおいて、各真空断熱材102、第1の潜熱蓄熱材103a、第2の潜熱蓄熱材103b、及び断熱材104の材質は実施例1で開示したものと同様で良いが、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bについては上述した通りの有機物系蓄熱材料のn-パラフィン類に属される異なる材質とする。
 ここでの各真空断熱材102の全周縁付近を覆ってそれぞれ略格子枠状に繋がった形状の異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが各真空断熱材102の両主面方向から突き合わされるように配備された単体構造の建築物用断熱パネル101Cでは、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱が各真空断熱材102の一方の主面から他方の主面へ伝わる代わりに第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bに伝わり、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱的な緩衝材として機能するため、ヒートブリッジを十分に抑制できる。
 これにより、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱の吸収或いは放出を行って潜熱量により熱の流れを抑制するため、各真空断熱材102の断熱性能の低下を防ぐことができ、単体構造のものを平面状に繋げて配置する用途で適用しても建築物用断熱パネル101Cの断熱効果が高められる。特に、実施例3に係る建築物用断熱パネル101Cでは、異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bを用いているため、例えば第2の潜熱蓄熱材103bを室内側、第1の潜熱蓄熱材103aを屋外側へ配置すると、それぞれの温度帯で熱の吸収、放出が行われるため、熱緩衝材として機能する時間を長くすることができる長所を持つ。また、ここでの建築物用断熱パネル101Cの単体構造も簡素で軽量であり、しかも低コストで容易に作製可能あるため、エコ効果が高い新世代住宅向けの優れた断熱効果が要求される用途で好適となる。
 尚、実施例3に係る建築物用断熱パネル101Cを住宅に適用する場合においても、実施例1や実施例2の場合と同様に住宅が立地する地域の気候に応じて、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの材質を適切な温度帯並びに蓄熱量を持つものに選定することが好ましい。実施例3に係る建築物用断熱パネル101Cでは、実施例1や実施例2の場合のように同一の材質の潜熱蓄熱材103を持つ構造とは異なり、材質選定が豊富になっていることにより、地域の気候に合わせた選定が可能である分、適用性が高くなっている。
 図4は、本発明の実施例4に係る建築物用断熱パネル101Dの概略構成を示した図で、同図(A)は上面方向からの内部を一部透視させて示した平面図、同図(B)は同図(A)のC-C線矢視の長手方向における側面断面図である。
 図4(A)、(B)を参照すれば、この建築物用断熱パネル101Dは、所定の間隔を有して配列された複数(ここでは2つ)の平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、各真空断熱材102のそれぞれの全周縁付近を覆うように、各真空断熱材102の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成し、且つ隣り合うもの同士が側壁箇所で当接されるように複数(ここでは2つ)の異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが配備されている。これらの第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bにおいても、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、ここでの第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの表面全体と各真空断熱材102の露呈する表面全体とを覆うように配備されている。
 この建築物用断熱パネル101Dにおいて、各真空断熱材102、第1の潜熱蓄熱材103a、第2の潜熱蓄熱材103b、及び断熱材104の材質は実施例1で開示したものと同様で良いが、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bについては上述した通りの有機物系蓄熱材料のn-パラフィン類に属される異なる材質とする。
 ここでの各真空断熱材102の全周縁付近を覆ってそれぞれ略枠体状の形状の異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが配備された単体構造の建築物用断熱パネル101Dでは、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱が各真空断熱材102の一方の主面から他方の主面へ伝わる代わりに第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bに伝わり、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱的な緩衝材として機能するため、ヒートブリッジを十分に抑制できる。
 これにより、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱の吸収或いは放出を行って潜熱量により熱の流れを抑制するため、各真空断熱材102の断熱性能の低下を防ぐことができ、単体構造のものを平面状に繋げて配置する用途で適用しても建築物用断熱パネル101Dの断熱効果が高められる。特に、実施例4に係る建築物用断熱パネル101Dでは、各真空断熱材102が存在しない部分の断熱材104の断熱性能は各真空断熱材102が配置されている部分と比べて相対的に低く、熱漏れの影響が考えられるため、この部分を第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが側壁箇所で当接される箇所として配備しているため、建築物用断熱パネル101Dの全体としての断熱効果の低下を抑制できる。しかも、異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bを用いているため、例えば第1の潜熱蓄熱材103aの当接側とは反対側の側壁を屋根や天井に近い側、第2の潜熱蓄熱材103bの当接側とは反対側の側壁を床に近い側へ配置すると、それぞれの温度帯で熱の吸収、放出が行われるため、熱緩衝材として機能する時間を長くすることができる長所を持つ。また、ここでの建築物用断熱パネル101Dの単体構造も簡素で軽量であり、しかも低コストで容易に作製可能あるため、エコ効果が高い新世代住宅向けの優れた断熱効果が要求される用途で好適となる。
 尚、実施例4に係る建築物用断熱パネル101Dを住宅に適用する場合においても、上記各実施例の場合と同様に住宅が立地する地域の気候に応じて、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの材質を適切な温度帯並びに蓄熱量を持つものに選定することが好ましい。実施例4に係る建築物用断熱パネル101Dについても、実施例1や実施例2の場合のように同一の材質の潜熱蓄熱材103を持つ構造とは異なり、材質選定が豊富になっていることにより、地域の気候に合わせた選定が可能である分、適用性が高くなっている。
 図5は、本発明の実施例5に係る建築物用断熱パネル101Eの概略構成を示した図で、同図(A)は上面方向からの内部を一部透視させて示した平面図、同図(B)は同図(A)のD-D線矢視の長手方向における側面断面図である。
 図5(A)、(B)を参照すれば、この建築物用断熱パネル101Eは、所定の間隔を有して配列された複数(ここでは2つ)の平板状の真空断熱材102の全体を断熱材104で覆って成る基本構造を有する他、各真空断熱材102のそれぞれの一方の主面側から全周縁付近を含む表面全体を厚さ方向で半分覆うように略仕切箱状に延在する形状を成して第1の潜熱蓄熱材103aが配備されると共に、各真空断熱材102のそれぞれの他方の主面側から全周縁付近を含む表面全体を厚さ方向で残り半分覆うように略仕切箱状に延在する形状を成して第1の潜熱蓄熱材103aと突き合わされるように第2の潜熱蓄熱材103bが配備されている。ここでの第1の潜熱蓄熱材103aと第2の潜熱蓄熱材103bとは、異なる種類の材質から成るものであるが、何れも温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和するために配備されている。断熱材104は、ここでの第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの表面全体を覆うように配備されている。
 この建築物用断熱パネル101Eにおいて、各真空断熱材102、第1の潜熱蓄熱材103a、第2の潜熱蓄熱材103b、及び断熱材104の材質は実施例1で開示したものと同様で良いが、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bについては上述した通りの有機物系蓄熱材料のn-パラフィン類に属される異なる材質とする。
 ここでの各真空断熱材102の全周縁付近を含む表面全体を厚さ方向でそれぞれ半分ずつ覆う略仕切箱状に延在する形状の異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが各真空断熱材102の両主面方向から突き合わされるように配備された単体構造の建築物用断熱パネル101Eでは、温度変化のある使用条件下で各真空断熱材102における高温部と低温部との間で生じる熱が各真空断熱材102の一方の主面から他方の主面へ伝わる代わりに第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bに伝わり、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱的な緩衝材として機能するため、ヒートブリッジを十分に抑制できる。
 これにより、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bが熱の吸収或いは放出を行って潜熱量により熱の流れを抑制するため、各真空断熱材102の断熱性能の低下を防ぐことができ、単体構造のものを平面状に繋げて配置する用途で適用しても建築物用断熱パネル101Eの断熱効果が高められる。特に、実施例5に係る建築物用断熱パネル101Eでは、異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bを用いているため、実施例3の場合と同様に例えば第2の潜熱蓄熱材103bを室内側、第1の潜熱蓄熱材103aを屋外側へ配置すると、それぞれの温度帯で熱の吸収、放出が行われるため、熱緩衝材として機能する時間を長くすることができる長所を持つ。しかも、異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bは各真空断熱材102を両主面方向から全体を覆うため、実施例3の場合よりも各真空断熱材102の断熱性能の低下を十分に抑制でき、空調装置の空調負荷の低減に寄与することができる。また、ここでの建築物用断熱パネル101Eの単体構造も簡素で軽量であり、しかも低コストで容易に作製可能あるため、エコ効果が高い新世代住宅向けの優れた断熱効果が要求される用途で好適となる。
 尚、実施例5に係る建築物用断熱パネル101Eを住宅に適用する場合においても、上述した各実施例の場合と同様に住宅が立地する地域の気候に応じて、第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bの材質を適切な温度帯並びに蓄熱量を持つものに選定することが好ましい。実施例5に係る建築物用断熱パネル101Eにおいても、実施例1や実施例2の場合のように同一の材質の潜熱蓄熱材103を持つ構造とは異なり、実施例3の場合と同様に材質選定が豊富になっていることにより、地域の気候に合わせた選定が可能である分、適用性が高くなっており、しかも各真空断熱材102の断熱性能の低下抑制効果が各実施例中最も高い分、屋内側、屋外側、天井に近い側、床に近い側という具合に住宅のあらゆる箇所へ適用させることが有効となる。
 因みに、上述した各実施例に係る建築物用断熱パネル101A~101E(特に実施例2に係る建築物用断熱パネル101B、実施例3に係る建築物用断熱パネル101C、実施例5に係る建築物用断熱パネル101E)について、真空断熱材102の周囲に潜熱蓄熱材103と異なる材質の第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bとを配備する場合の形態は、大別して蓄熱材そのものを使用する場合と蓄熱ボード材に類する材料を使用する場合とに分けられる。
 蓄熱材そのものを使用する場合には、容器内に一定量の蓄熱材を充填して所定の形状に成型したものを用いるか、或いは所定の形状に成型したケース内に蓄熱材を充填して使用するか、或いはスペーサとして成型された部品表面に蓄熱材を収納したケースを配置したものを用いるのが可能である。ここで、容器内に充填された蓄熱材、或いは蓄熱材を収納したケースは、一体構造でも分割構造でも良い。
 また、蓄熱ボード材に類する材料を使用する場合には、蓄熱材を内包したマイクロカプセルを部材内に分散させた材料を成型したものを用いるか、或いは蓄熱材を含浸させたボード状部材を用いることが可能である。何れにしても、蓄熱材は真空断熱材102及び断熱材104と密着されていることが好ましい。
 こうした形態を適用すれば、建築物用断熱パネル101A~101E(特に建築物用断熱パネル101B、建築物用断熱パネル101C、建築物用断熱パネル101E)の組み立て時に蓄熱材がスペーサや位置決め部材として機能するため、作製が容易となる。
 以下には、説明を簡単にするため、実施例1の建築物用断熱パネル101aにおける真空断熱材(VIP)102に対する潜熱蓄熱材(PCM)103の配備による蓄熱効果について、特性図を示して説明する。
 図6は、本発明の実施例1に係る建築物用断熱パネル101Aの要部である潜熱蓄熱材103を真空断熱材102に用いたときの蓄熱効果を説明するために例示した最暑日の全熱負荷曲線である。潜熱蓄熱材103を真空断熱材102に配備して建築物用断熱パネル101Aとして用いる最大の理由は、夏期に住宅の壁の温度を上昇させないことができるという長所を持つためである。
 例えば最暑日の時刻に対する全熱負荷(W)の特性を示す全熱負荷曲線が図6に示される様相である場合、潜熱蓄熱材103について、密度が800kg/m、潜熱242kJ/kg、温度25℃であるときには図6中に示されるPCMの効果の一例のような全熱負荷特性を示す。最暑日の6時~18時までの4kWを超えた分の全熱負荷の合計Qcは10693.9(kJ)となる。
 そこで、標準住宅の断熱部位の総面積が260.75mである(屋根又は天井が67.90m、壁124.95m、1階床67.90m)と仮定し、そのうちの80%が縦0.8m×横0.8mの真空断熱材102で覆われていればその必要枚数は約209枚、90%が同様な真空断熱材102で覆われていればその必要枚数は約235枚となる。
 真空断熱材102におけるヒートブリッジが発生する縁部分の幅を0.05mとすると、真空断熱材102の周囲に配備する潜熱蓄熱材103による蓄熱量Qpcmは、潜熱蓄熱材103の厚さ、体積、重量と真空断熱材102の使用枚数との相関により変動する。
 具体的に云えば、潜熱蓄熱材103の厚さが0.001m、体積が0.0003m、重量が0.24kgであり、真空断熱材102の使用枚数が200枚であれば、蓄熱量Qpcmは11616kJとなる。潜熱蓄熱材103の厚さが0.005m、体積が0.0015m、重量が1.2kgであり、真空断熱材102の使用枚数が200枚であれば、蓄熱量Qpcmは58080kJとなる。潜熱蓄熱材103の厚さが0.01m、体積が0.003m、重量が2.4kgであり、真空断熱材102の使用枚数が200枚であれば、蓄熱量Qpcmは116160kJとなる。潜熱蓄熱材103の厚さが0.01m、体積が0.003m、重量が2.4kgであり、真空断熱材102の使用枚数が100枚であれば、蓄熱量Qpcmは58080kJとなる。
 こうした結果からは、潜熱蓄熱材103の厚さを0.01m(10mm)とすれば、上述した全熱負荷の合計Qcの約10倍の蓄熱量を持つことが判る。このため、係る蓄熱量を考慮し、ピークをシフトさせて負荷の平準化を図り、蓄熱した熱を夜間に屋外へ放熱すれば、熱負荷の総量を減少させることができる。
 図7は、本発明の各実施例に係る建築物用断熱パネル101A~101Eの使用対象の一例である中緯度地方(東京)における最暑日並びに最寒日の外気温の変化と空調装置の空調モードとの関係を例示した図である。
 上述した各実施例に係る建築物用断熱パネル101A~101Eは、一般にそれらを適用する住宅の立地条件により空調装置の空調モードとの相関を示すものである。図7では、東京の最暑日には空調装置を冷房にして室内温度を約26℃に設定し、最寒日には空調装置を暖房にして室内温度を約22℃に設定する例を示しているが、冬期と夏期とでは外気温と室内温度との温度差が違うことが判る。こうした点を着目し、真空断熱材102の周囲部へ配備する潜熱蓄熱材103や第1の潜熱蓄熱材103a及び第2の潜熱蓄熱材103bは、ヒートブリッジ抑制のために有効な温度帯でその種類を選定し、その他の部位では蓄熱材としての利用に適した温度帯でその種類を選定することが好ましい。
 図8は、比較として、汎用的な真空断熱材102の芯材であるグラスウール材を建築物用断熱パネルとして用いたときの全熱負荷曲線を例示したもので、(A)は最暑日の全熱負荷曲線、(B)は最寒日の全熱負荷曲線である。
 ここでは、室内の暖房の設定温度が22℃、室内の冷房設定温度が25℃であるときの時刻に対する全熱負荷特性を示している。熱負荷の計算には、日本建築学会標準住宅モデルを用い、住宅用熱負荷計算プログラム(SMASH)で計算している。建築用断熱パネルの厚さtは90mmであり、このときのグラスウールのλ=0.038W/mKの場合に熱貫通率K=λ/tは0.42である。
 図9は、比較として、周知の真空断熱材102を建築物用断熱パネルとして用いたときの全熱負荷曲線を例示したもので、(A)は最暑日の全熱負荷曲線、(B)は最寒日の全熱負荷曲線である。
 ここでも、同様に室内の暖房の設定温度が22℃、室内の冷房設定温度が25℃であるときの時刻に対する全熱負荷特性を示している。熱負荷の計算には、日本建築学会標準住宅モデルを用い、住宅用熱負荷計算プログラム(SMASH)で計算している。真空断熱材102の厚さが20mm、断熱材104の厚さが70mmであり、このときの建築物用断熱パネルのλ=0.018W/mKの場合に熱貫通率K=λ/tは0.2である。
 図8(A)、(B)と図9(A)、(B)とを比較すれば、真空断熱材102を建築物用断熱パネルとして用いると、熱貫通率Kを低くできるため、真空断熱材102が占める割合を大きくし、ヒートブリッジの影響を緩和すれば好適となることが判る。因みに、真空断熱材102を建築物用断熱パネルとして用いたときには、空調装置の熱交換能力の低いものを選定しても使用可能であるが、夏期に長期不在で上昇した室温を速やかに下げるためには、熱交換能力の高い性能を持つ必要がある。
 図10は、本発明の各実施例に係る建築物用断熱パネル101A~101Eを住宅60へ適用したときの一例と、住宅60に空調給湯システム62を設置した場合を示す概略図である。
 ここでの空調給湯システム62(全体的構成の細部を省略する)は、屋外に設置されて配管63により屋内熱交換器61との間で接続される。空調給湯システム62で温度調整された熱媒体が配管63を通って屋内熱交換器61に流れ、このときに住宅60内部の空気と熱交換することにより、住宅60の空気調和が行われる。
 住宅60は、各実施例で説明した断熱効果が高く蓄熱性を持つ建築物用断熱パネル101A~101Eの何れかを選択して設備しているため、それ自体の断熱性能が高くなっている。即ち、夏期の室内が余り暑くならず、冬期の室内が余り寒くならない使用条件下にあって、エコ(環境対応)効果の高いものとなる。このため、住宅に設置される空調給湯システム62において必要となる空調負荷を少なくすることができる。なお、空調給湯システム62で使用可能な冷媒としては、例えばR410a、R134a、HFO1234yf、HFO1234ze等が挙げられる。また、空調給湯システム62の空調や給湯で利用可能な熱源としては、空気の他、太陽熱や地熱等の自然エネルギーが挙げられる。
 60 住宅(被空調空間)
 61 室内熱交換器
 62 空調給湯システム
 63 配管
 101A~101E 建築物用断熱パネル
 102 真空断熱材
 103、103a、103b 潜熱蓄熱材
 104 断熱材

Claims (11)

  1.  真空断熱材と、前記真空断熱材の所定箇所を覆った潜熱蓄熱材と、前記潜熱蓄熱材及び前記真空断熱材を覆った断熱材と、を備えたことを特徴とする建築物用断熱パネル。
  2.  請求項1記載の建築物用断熱パネルにおいて、前記潜熱蓄熱材は、前記真空断熱材における前記所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所に配備されたことを特徴とする建築物用断熱パネル。
  3.  請求項2記載の建築物用断熱パネルにおいて、前記真空断熱材は、平板状であり、前記潜熱蓄熱材は、前記真空断熱材の全周縁付近を覆うように当該真空断熱材の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成して配備され、前記断熱材は、前記潜熱蓄熱材の表面全体と前記真空断熱材の露呈する表面全体とを覆うように配備されたことを特徴とする建築物用断熱パネル。
  4.  複数の真空断熱材と、前記複数の真空断熱材の所定箇所をそれぞれ覆った複数の潜熱蓄熱材と、前記複数の潜熱蓄熱材及び前記複数の真空断熱材を覆った断熱材と、を備えたことを特徴とする建築物用断熱パネル。
  5.  請求項4記載の建築物用断熱パネルにおいて、前記複数の潜熱蓄熱材は、前記複数の真空断熱材における前記所定箇所として、高温部と低温部との間で生じる熱漏れ量によるヒートブリッジを潜熱量によって緩和し得る箇所にそれぞれ配備されたことを特徴とする建築物用断熱パネル。
  6.  請求項5記載の建築物用断熱パネルにおいて、前記複数の真空断熱材は、それぞれ平板状であり、且つ厚さ方向で互いに重ならないように配備されたことを特徴とする建築物用断熱パネル。
  7.  請求項6記載の建築物用断熱パネルにおいて、前記複数の真空断熱材は、同一平面上に配備されていることを特徴とする建築物用断熱パネル。
  8.  請求項7記載の建築物用断熱パネルにおいて、前記複数の真空断熱材は、所定の間隔を有して配列され、前記複数の潜熱蓄熱材は、前記複数の真空断熱材のそれぞれの全周縁付近を覆うように当該複数の真空断熱材の一方の主面から側壁を越えて他方の主面に繋がる略枠体状の形状を成し、且つ隣り合うもの同士が当該側壁箇所で当接されるように配備され、前記断熱材は、前記複数の潜熱蓄熱材の表面全体と前記複数の真空断熱材の露呈する表面全体とを覆うように配備されたことを特徴とする建築物用断熱パネル。
  9.  請求項8記載の建築物用断熱パネルにおいて、前記複数の潜熱蓄熱材は、隣り合うもの同士の当接されるものが異なる種類の材質から成ることを特徴とする建築物用断熱パネル。
  10.  請求項7記載の建築物用断熱パネルにおいて、前記複数の真空断熱材は、所定の間隔を有して配列され、前記複数の潜熱蓄熱材は、前記複数の真空断熱材のそれぞれの一方の主面側から全周縁付近を厚さ方向で半分覆うように略格子枠状に繋がった形状を成して配備された第1の潜熱蓄熱材と、前記複数の真空断熱材のそれぞれの他方の主面側から全周縁付近を厚さ方向で残り半分覆うように略格子枠状に繋がった形状を成して前記第1の潜熱蓄熱材と突き合わされるように配備された当該第1の潜熱蓄熱材とは異なる種類の材質から成る第2の潜熱蓄熱材と、を有し、前記断熱材は、前記第1の潜熱蓄熱材及び前記第2の潜熱蓄熱材の表面全体と前記複数の真空断熱材の露呈する表面全体とを覆うように配備されたことを特徴とする建築物用断熱パネル。
  11.  請求項7記載の建築物用断熱パネルにおいて、前記複数の真空断熱材は、所定の間隔を有して配列され、前記複数の潜熱蓄熱材は、前記複数の真空断熱材のそれぞれの一方の主面側から全周縁付近を含む表面全体を厚さ方向で半分覆うように略仕切箱状に延在する形状を成して配備された第1の潜熱蓄熱材と、前記複数の真空断熱材のそれぞれの他方の主面側から全周縁付近を含む表面全体を厚さ方向で残り半分覆うように略仕切箱状に延在する形状を成して前記第1の潜熱蓄熱材と突き合わされるように配備された当該第1の潜熱蓄熱材とは異なる種類の材質から成る第2の潜熱蓄熱材と、を有し、前記断熱材は、前記第1の潜熱蓄熱材及び前記第2の潜熱蓄熱材の表面全体を覆うように配備されたことを特徴とする建築物用断熱パネル。
PCT/JP2010/053133 2010-02-26 2010-02-26 建築物用断熱パネル WO2011104873A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10846537.8A EP2540925B1 (en) 2010-02-26 2010-02-26 Heat-insulating panel for use in buildings
CN201080063643.0A CN102762802B (zh) 2010-02-26 2010-02-26 建筑物用绝热板
PCT/JP2010/053133 WO2011104873A1 (ja) 2010-02-26 2010-02-26 建築物用断熱パネル
JP2012501601A JP5331240B2 (ja) 2010-02-26 2010-02-26 建築物用断熱パネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053133 WO2011104873A1 (ja) 2010-02-26 2010-02-26 建築物用断熱パネル

Publications (1)

Publication Number Publication Date
WO2011104873A1 true WO2011104873A1 (ja) 2011-09-01

Family

ID=44506316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053133 WO2011104873A1 (ja) 2010-02-26 2010-02-26 建築物用断熱パネル

Country Status (4)

Country Link
EP (1) EP2540925B1 (ja)
JP (1) JP5331240B2 (ja)
CN (1) CN102762802B (ja)
WO (1) WO2011104873A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839757A (zh) * 2012-09-03 2012-12-26 杨新安 一种室内保温方法
JP2013057226A (ja) * 2011-09-06 2013-03-28 Masaru Hiyamizu 外壁材、屋根材の省エネルギ−材
JP2013194470A (ja) * 2012-03-22 2013-09-30 Sekisui Plastics Co Ltd 真空断熱パネルの製造方法及び断熱工法
JP2018109424A (ja) * 2016-12-28 2018-07-12 旭ファイバーグラス株式会社 真空断熱材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20130669A1 (it) * 2013-12-04 2015-06-05 Univ Roma Parete per involucro edilizio
FR3019839A1 (fr) * 2014-04-10 2015-10-16 Electricite De France Ensemble d'isolation thermique incluant des panneaux piv et procede d'assemblage d'un tel ensemble
EP3141370B1 (en) * 2015-09-11 2023-05-24 Mitsubishi Electric Corporation Method for producing composite thermal insulator, method for producing water heater, and composite thermal insulator
FR3048765B1 (fr) * 2016-03-11 2019-05-17 Hutchinson Barriere thermique isolante a mcp chaud et froid
FR3048768B1 (fr) * 2016-03-11 2020-10-30 Hutchinson Barriere thermique en particulier pour une batterie ainsi pourvue
FR3052534B1 (fr) * 2016-06-10 2018-11-16 Hutchinson Ensemble a ponts thermiques contraries
JP6569832B1 (ja) * 2019-01-11 2019-09-04 住友化学株式会社 外壁部材及び建築物
KR102642374B1 (ko) * 2021-08-18 2024-02-28 인천대학교 산학협력단 복합 플라스틱 패널

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166616A (ja) * 1993-10-19 1995-06-27 Kubota Corp 省熱エネルギ壁板
JP2004150539A (ja) * 2002-10-30 2004-05-27 Tadahiro Omi 断熱用パネル
JP3786755B2 (ja) 1997-02-03 2006-06-14 松下冷機株式会社 断熱パネル
JP2008240507A (ja) * 2007-02-27 2008-10-09 Mitsubishi Electric Corp 断熱材、断熱シートおよび保温シート
JP2009299764A (ja) 2008-06-12 2009-12-24 Hitachi Appliances Inc 真空断熱材及びこれを用いた断熱容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070141343A1 (en) * 2005-12-21 2007-06-21 Miller Douglas J Carbon foam structural insulated panel
US7669372B2 (en) * 2005-02-07 2010-03-02 T. Clear Corporation Structural insulated panel and panel joint
DE102008019717B4 (de) * 2008-04-18 2012-08-09 Va-Q-Tec Ag Verbunddämmplatte mit Vakuumdämmung und Latentwärmespeicher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166616A (ja) * 1993-10-19 1995-06-27 Kubota Corp 省熱エネルギ壁板
JP3786755B2 (ja) 1997-02-03 2006-06-14 松下冷機株式会社 断熱パネル
JP2004150539A (ja) * 2002-10-30 2004-05-27 Tadahiro Omi 断熱用パネル
JP2008240507A (ja) * 2007-02-27 2008-10-09 Mitsubishi Electric Corp 断熱材、断熱シートおよび保温シート
JP2009299764A (ja) 2008-06-12 2009-12-24 Hitachi Appliances Inc 真空断熱材及びこれを用いた断熱容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2540925A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057226A (ja) * 2011-09-06 2013-03-28 Masaru Hiyamizu 外壁材、屋根材の省エネルギ−材
JP2013194470A (ja) * 2012-03-22 2013-09-30 Sekisui Plastics Co Ltd 真空断熱パネルの製造方法及び断熱工法
CN102839757A (zh) * 2012-09-03 2012-12-26 杨新安 一种室内保温方法
CN102839757B (zh) * 2012-09-03 2015-01-28 杨新安 一种室内保温方法
JP2018109424A (ja) * 2016-12-28 2018-07-12 旭ファイバーグラス株式会社 真空断熱材

Also Published As

Publication number Publication date
EP2540925A1 (en) 2013-01-02
JP5331240B2 (ja) 2013-10-30
CN102762802A (zh) 2012-10-31
CN102762802B (zh) 2014-12-17
EP2540925A4 (en) 2014-07-16
JPWO2011104873A1 (ja) 2013-06-17
EP2540925B1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5331240B2 (ja) 建築物用断熱パネル
Du et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges
JP5391499B2 (ja) 熱交換器型蓄熱システム
WO1995019533A1 (en) Thermoelectric refrigerator
JP2008002741A (ja) 冷凍装置
CN214791609U (zh) 一种结合相变蓄能辐射末端的天空辐射制冷***
JP2010223522A (ja) 床暖房システムおよび蓄熱ユニット
US11085668B2 (en) Solar energy utilization system
US11165111B2 (en) Thermal barrier, in particular for a battery or batteries thus equipped
JP2005048979A (ja) 冷蔵庫
US7913685B2 (en) Textile heat accumulator for utilization of solar energy
WO2013042273A1 (ja) 空気調和装置
JP2006125804A (ja) 断熱箱体及び冷蔵庫
CN109070691B (zh) 热屏障和内部蓄热元件
JP4939694B2 (ja) 断熱と伝熱を行なう壁構造体
JP2008170068A (ja) 建築物の温度調整装置
CN103851943A (zh) 蓄热器及具有该蓄热器的空调器
JP2019078413A (ja) 自然エネルギー利用型冷熱システム
US11009299B2 (en) Insulating thermal barrier having hot and cold PCM
KR101515289B1 (ko) 배관을 둘러싸는 축열체
JP2009162469A (ja) 暖冷房システム及びユニット建物
JP2004156824A (ja) 冷蔵庫
JP6504379B2 (ja) 冷蔵庫
CN213837163U (zh) 一种增强隔热的蓄水模块围护结构
JP2562464B2 (ja) 蓄熱面材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063643.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501601

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010846537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE