WO2011099326A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2011099326A1
WO2011099326A1 PCT/JP2011/050683 JP2011050683W WO2011099326A1 WO 2011099326 A1 WO2011099326 A1 WO 2011099326A1 JP 2011050683 W JP2011050683 W JP 2011050683W WO 2011099326 A1 WO2011099326 A1 WO 2011099326A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
turbocharger
electric motor
compressor
turbochargers
Prior art date
Application number
PCT/JP2011/050683
Other languages
French (fr)
Japanese (ja)
Inventor
徳永 裕之
平木 彦三郎
昭浩 大澤
昇 飯田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2011099326A1 publication Critical patent/WO2011099326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine, and more specifically to a multi-stage supercharged engine equipped with an EGR (Exhaust Gas Recirculation) device.
  • EGR Exhaust Gas Recirculation
  • a supercharged engine equipped with an EGR device that suppresses the generation of NOx by lowering the internal combustion temperature of the air-fuel mixture is known.
  • a part of the exhaust gas can be returned to the supply side by the EGR device.
  • the engine operating state for example, when the engine is operated at a medium to high speed and in a high load region is used.
  • the supply pressure by a turbocharger such as a turbocharger may be higher than the exhaust gas pressure. In this case, the exhaust gas does not return to the supply side, and the EGR rate decreases.
  • turbochargers are provided in series to perform multi-stage supercharging, and all turbochargers are provided with electric motors to generate or drive electric motors, so that the air supply pressure is controlled regardless of the engine operating state.
  • the turbocharger provided with the electric motor has a lower rotational speed of the turbine and the compressor than the turbocharger without the electric motor because of the rotor of the electric motor.
  • the capacity (power generation amount and driving amount) of the motor also decreases.
  • the high-pressure stage turbocharger is provided with an electric motor, the low-pressure stage turbocharger is substantially responsible for most of the motor capacity necessary for controlling the EGR rate. End up. That is, when an electric motor is provided in the turbocharger on the high pressure stage side, there is a problem that the effect may not be obtained sufficiently.
  • An object of the present invention is to provide a compact multistage supercharged engine that can enjoy the effect of an electric motor provided in a turbocharger.
  • An engine of the present invention is a multi-stage supercharged engine, and an EGR device having an EGR passage that extracts a part of exhaust gas from an exhaust passage of the engine body and returns it to the air supply passage of the engine body;
  • a compressor that sucks and pressurizes and supplies the compressor to the engine body, and a plurality of turbochargers each having a turbine that drives the compressor, and the plurality of turbochargers provide rotational driving force to the compressor and the turbine.
  • At least one first turbocharger having an electric motor provided so as to be able to exchange, and at least one second turbocharger provided in series with the first turbocharger and not having the electric motor.
  • One of the plurality of turbochargers is provided on a side closest to the engine body of the supply passage. And wherein the are.
  • the engine is a two-stage supercharging type in which each of the first and second turbochargers is provided as the plurality of turbochargers.
  • At least one of the traveling body for self-running, the working machine for work, and the revolving body on which the work machine is mounted has generated electric power generated using the engine as a drive source. It is desirable that the engine is a hybrid type construction machine that is driven by an electric motor.
  • the turbocharger includes a plurality of turbochargers including a first turbocharger having an electric motor and a second turbocharger not having an electric motor. Since one of the second turbochargers among the superchargers is provided on the side of the air supply passage closest to the engine body, a turbocharger on the high pressure stage side close to the engine body and its While avoiding the increase in size of the auxiliary machine, it is possible to improve the transient response of the engine or to secure a sufficient EGR rate. Therefore, the effect of the electric motor provided in the turbocharger can be enjoyed, and a compact multistage supercharged engine can be obtained.
  • turbocharger when the engine is a two-stage turbocharger in which each of the first and second turbochargers is provided as the plurality of turbochargers, a minimum number of turbochargers is provided.
  • a turbocharger can constitute a multi-stage supercharged engine. Therefore, the engine of the present invention can be obtained with the simplest configuration.
  • the engine of the present invention is a hybrid construction machine engine, the above-described effects of the present invention can be obtained particularly remarkably.
  • the response delay of other hydraulic drive parts tends to be conspicuous as the traveling body, work machine, and swivel body are driven by an electric motor.
  • Some engines are also required to have higher responsiveness than conventional hydraulically driven construction machines.
  • the engine displacement and the turbocharger turbine size are significantly larger than passenger cars and commercial vehicles, so the time lag during supercharging is large, which is required for hybrid construction machinery.
  • the engine's transient response could not be fully met.
  • the engine of the present invention is used, sufficient transient response required in a hybrid construction machine can be obtained.
  • the engine of construction machinery has a very high ratio of driving at a high load compared to passenger cars and commercial vehicles, and the engine is frequently subjected to rapid acceleration / deceleration, so that the generation of NOx can be suppressed. was difficult.
  • the engine of the present invention is used, a high EGR rate can be realized, and therefore, it is possible to promote suppression of NOx generation that is also required for a hybrid construction machine.
  • FIG. 1 is a block diagram showing a system configuration of a construction machine according to an embodiment of the present invention.
  • the schematic diagram which shows the engine mounted in the construction machine.
  • the operation movement flowchart of an engine.
  • a power shovel 1 as a construction machine includes an engine 2 as a drive source.
  • a generator motor 3 and a pair of hydraulic pumps 4, 4 are connected in series to the output shaft of the engine 2, and are driven by the engine 2.
  • the work machine 11 in the excavator 1 is composed of a boom, an arm, and a bucket (not shown), and allows hydraulic oil to flow into and out of the boom cylinder 12, the arm cylinder 13, and the bucket cylinder 14 that are respectively provided.
  • the work machine 11 is operated by hydraulic pressure.
  • the vehicle body of the excavator 1 is provided with a pair of crawler-type lower traveling bodies in addition to the above-described upper revolving body 9 being turnably installed, although the detailed illustration is omitted.
  • the lower traveling body has a traveling hydraulic motor 15 for driving a sprocket that meshes with the crawler.
  • the hydraulic oil from the hydraulic pump 4 also controls the control valve 10 with respect to these traveling hydraulic motors 15. Supplied through.
  • the power shovel 1 of the present embodiment is a hybrid construction machine that drives the upper swing body 9 to swing with electric energy and drives the work implement 11 and the lower traveling body with hydraulic pressure.
  • Each configuration described above is mounted on the upper swing body 9 except for the traveling hydraulic motor 15, and rotates together with the upper swing body 9.
  • the upper revolving structure 9 of the power shovel 1 is provided with a cab that is operated by an operator.
  • a cab In such a cab, there are provided an operator's seat, a fuel dial for setting a fuel supply amount to the engine 2, levers, pedals, monitors, and other switches.
  • the upper swing body 9 is provided with a control box in which the inverter 5 and a swing control device 30 to be described later are accommodated, and an engine controller 40 for controlling the operation of the engine 2.
  • FIG. 1 shows a working machine 11 installed in a cab, a working machine lever 16 for operation, and a turning lever 17 for turning operation.
  • the work machine lever 16 includes a PPC (Proportional Pressure Control) valve.
  • the work machine lever 16 performs the switching operation of the control valve 10 by the pilot pressure generated by the PPC valve, and operates the work machine 11.
  • the turning lever 17 includes a potentiometer and the like so as to output a lever signal corresponding to the tilt angle to the turning control device 30.
  • the turning control device 30 controls the turning operation of the upper turning body 9, and is composed of various hardware and software used in computer technology.
  • the turning control device 30 of the present embodiment is provided in a form mounted on the inverter 5 and is electrically connected to the inverter 5.
  • the engine controller 40 receives detection signals such as a fuel dial set position, an accelerator pedal opening, an engine rotation speed, and a fuel injection amount from detection means (not shown), and the operation state of the engine 2 is detected by these detection signals. The amount of fuel injected into the combustion chamber and the fuel injection timing are controlled according to the state.
  • the engine controller 40 also controls operations of an electric motor 254 and an EGR valve 292 (see FIG. 2), which will be described later.
  • the engine 2 is a diesel engine in the present embodiment, and includes an engine body 20 in which a plurality of combustion chambers are formed, an air supply passage 21 that supplies air to the combustion chambers of the engine body 20, an engine body 20, An air supply manifold 22 that is provided between the air passages 21 and distributes air from the air supply passages 21 to the combustion chambers, an exhaust passage 23 that discharges exhaust gas from the engine body 20, and between the engine body 20 and the exhaust passages 23.
  • An exhaust manifold 24 that collects exhaust gas and flows into the exhaust passage 23, a first turbocharger 25 that supercharges the outside air sucked into the air supply passage 21, and the first turbocharger 25 compresses the exhaust gas. Compressed by an intercooler 26 that cools air, a second turbocharger 27 that further compresses compressed air from the first turbocharger 25, and a second turbocharger 27 The the aftercooler 28 for cooling air, and a EGR device 29 for suppressing the generation of NOx.
  • the first turbocharger 25 includes a turbine 251 that rotates with exhaust energy of exhaust gas, a compressor 252 that rotates together with the turbine 251 and compresses outside air, and a rotating shaft that connects the turbine 251 and the compressor 252.
  • 253 includes a turbine 251 and a compressor 252 and an electric motor 254 provided so as to be able to transmit and receive a rotational driving force.
  • the electric motor 254 can also function as a generator, and switching between the electric function and the power generation function is performed by the engine controller 40.
  • the air supply passage 21 communicates from the compressor 252 outlet to the second turbocharger 27, and an intercooler 26 is provided between the compressor 252 and the second turbocharger 27 in the air supply passage 21.
  • the second turbocharger 27 is provided on the high-pressure stage side closer to the engine body 20 than the first turbocharger 25. Unlike the first turbocharger 25, the second turbocharger 27 is a turbocharger that does not have an electric motor, and includes a turbine 271 and a compressor 272 that are directly connected to each other by a rotating shaft 273. . The outlet of the compressor 272 and the supply manifold 22 communicate with each other through the supply passage 21, and an after cooler 28 is provided between the compressor 272 and the supply manifold 22 in the supply passage 21.
  • the EGR device 29 includes an EGR passage 291 that branches from the exhaust passage 23 and communicates with the downstream side of the air supply passage 21 (downstream side after the aftercooler 28).
  • the EGR passage 291 is provided with an EGR valve 292 that opens and closes the EGR passage 291 and an EGR cooler 293 that cools the exhaust gas from the exhaust manifold 24.
  • the opening / closing control of the EGR valve 292 is performed by the engine controller 40 based on a detection signal from a NOx amount detection means (not shown) provided in the exhaust passage 23 or the exhaust manifold 24.
  • exhaust gas is generated by internal combustion (S 8), and the generated exhaust gas passes through the exhaust manifold 24 and is distributed toward the turbine 271 and the EGR passage 291 of the second turbocharger 27. (S9).
  • the exhaust gas distributed to the EGR passage 291 is cooled by the EGR cooler 293 (S10) and then mixed with the compressed air from the second turbocharger 27 (S6).
  • the exhaust gas distributed to the turbine 271 of the second turbocharger 27 drives the turbine 271 on the high-pressure stage side (S11).
  • the driving force of the turbine 271 is transmitted to the compressor 272 and further compresses the compressed air from the first turbocharger 25 as described above (S4).
  • the exhaust gas that has driven the turbine 271 of the second turbocharger 27 drives the low-pressure stage turbine 251 by the first turbocharger 25 (S12), and is discharged from the exhaust passage 23 (S13).
  • the driving force of the turbine 251 at this time is transmitted to the electric motor 254 to drive the electric motor 254.
  • the engine controller 254 when the engine controller 40 determines that the engine 2 is in an acceleration operation state based on information such as a fuel dial setting position and an accelerator pedal opening (not shown), the engine controller 254 causes the motor 254 to function as an electric motor. If it determines with it not being in an acceleration driving
  • the exhaust gas pressure, the supply pressure, and the EGR rate are generated or driven by the electric motor 254 of the first turbocharger 25.
  • the exhaust gas pressure of the exhaust manifold 24 can be made significantly higher than the supply pressure of the supply manifold 22. Accordingly, the amount of exhaust gas flowing through the EGR cooler 293 to the air supply manifold 22 increases, so that the EGR rate can be increased.
  • the motor 254 of the first turbocharger 25 is caused to function as an electric motor and the turbine 251 is driven, the exhaust gas pressure decreases and the supply air pressure increases, so the EGR rate decreases. In this way, the EGR rate can be controlled according to the amount of power generation or driving amount of the electric motor 254.
  • the motor 254 of the first turbocharger 25 is made to function as an electric motor during the acceleration operation of the engine 2 to assist the rotation of the compressor 252, the supercharging pressure will rise faster than when there is no assist. Become. Therefore, the transient response of the engine 2 can be improved.
  • the fuel consumption can be improved by returning the electric power generated by the electric motor 254 of the first turbocharger 25 to the electric power supply system including a battery, a capacitor, and the like. That is, in the case of the power shovel 1 of the present embodiment, the generator motor 3 coupled to the output shaft of the engine 2 is driven by the electric power generated by the first turbocharger 25 to assist the drive of the engine 2. , Fuel economy can be improved. On the contrary, the rotation of the compressor 252 can be assisted by driving the electric motor 254 of the first turbocharger 25 using the electric power generated by the generator motor 3.
  • the resonance rotational speed is reduced by the amount provided by the electric motor 254.
  • the turbine 271 and the compressor are originally provided. Since the maximum rotational speed of 272 is low, the maximum rotational speed does not exceed the resonant rotational speed even when the electric motor 254 is provided.
  • the second turbocharger 27 on the high-pressure stage side is a turbocharger that does not have an electric motor and has a high resonance speed
  • the turbine and the compressor can be driven at a high speed, and the exhaust gas The pressure and the supply air pressure can be sufficiently increased. For this reason, a high EGR rate can be ensured, and engine output can be improved by supercharging.
  • auxiliary equipment such as cooling equipment related to the second turbocharger 27 can be used without increasing its size.
  • the second turbocharger 27 that does not have an electric motor is provided on the high-pressure stage side closest to the engine body 20. Since the first turbocharger 25 provided with the electric motor 254 is provided on the low pressure stage side away from the engine body 20, the engine 2 becomes larger with the adoption of the electric motor for the turbocharger, The above-described effects of the electric motor provided in the turbocharger can be enjoyed without increasing the cost.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the engine 2 is a diesel engine, but may be another engine such as a gasoline engine.
  • the engine 2 employs the two-stage supercharging system using the first turbocharger 25 and the second turbocharger 27, but the supercharger closest to the engine body 20 generates power. If the turbocharger does not have a machine, the engine 2 may be provided with three or more turbochargers. If three or more superchargers are provided in series, the supercharging pressure of the engine 2 can be further increased, so that the EGR rate can be further improved.
  • the electric motor 254 is provided on the rotary shaft 253 between the turbine 251 and the compressor 252 of the first turbocharger 25, but is not limited thereto.
  • the electric motor 254 only needs to be provided so as to be able to exchange rotational driving force with the turbine 251 and the compressor 252.
  • the first turbocharger 25 rotates with the turbine 251 and the compressor 252 using a power transmission mechanism such as a gear. The driving force may be exchanged.
  • the upper swing body 9 is driven to swing with electric energy, and the work implement 11 and the lower traveling body are driven with hydraulic pressure, but the present invention is not limited thereto. That is, as long as it is a hybrid type that drives the traveling body, the work machine, the turning body, and the like with electric energy and hydraulic pressure, it is arbitrary which electric power and hydraulic pressure are allocated to drive of the driven body.
  • the hybrid construction machine is not limited to the power shovel 1, and may be another construction machine such as a wheel loader or a dump truck.
  • the working machine may be driven by hydraulic pressure and the traveling body may be driven by electric energy.
  • the vessel is driven by hydraulic pressure and the traveling body may be driven by electric energy. That's fine.
  • the working machine may be driven by electric energy and the traveling body may be driven hydraulically.
  • the present invention can be used not only for construction machines such as power shovels but also for work machines such as cranes having an upper rotating body.
  • SYMBOLS 1 Power excavator which is a hybrid type construction machine, 2 ... Engine, 20 ... Engine main body, 21 ... Air supply passage, 23 ... Exhaust passage, 25 ... 1st turbocharger, 27 ... 2nd turbocharger, 29 ... EGR device, 40 ... engine controller, 251,271 ... turbine, 252,272 ... compressor, 254 ... electric motor, 291 ... EGR passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

A multi-stage supercharged engine (2) comprises: an EGR device (29) which is provided with an EGR path (291) for extracting a portion of the exhaust gas from the exhaust path (23) of the engine body (20) and returning the gas to the air supply path (21) of the engine body (20); and turbo superchargers (25, 27) which are provided with compressors (252, 272) for sucking and pressurizing the outside air and supplying the air to the engine body (20), and also with turbines (251, 271). The turbo superchargers (25, 27) are the first turbo supercharger (25) which has an electric motor (254) capable of supplying and receiving rotational driving power to and from both the compressor (252) and the turbine (251), and the second turbo supercharger (27) which has no electric motor. The second turbo supercharger (27) among the turbo superchargers (25, 27) is provided at a position in the air supply path (21) closer to the engine body (20) than the other.

Description

エンジンengine
 本発明は、エンジンに係り、より具体的には、EGR(Exhaust Gas Recirculation)装置を備えた多段過給式のエンジンに関する。 The present invention relates to an engine, and more specifically to a multi-stage supercharged engine equipped with an EGR (Exhaust Gas Recirculation) device.
 従来、混合気の内燃温度を下げてNOxの発生を抑制するEGR装置を備えた過給式のエンジンが知られている。このようなエンジンでは、EGR装置により、排気ガスの一部を給気側に戻すことができるのであるが、エンジンを例えば中高速でかつ高負荷領域で運転する場合のように、エンジンの運転状態によってはターボ過給機等の過給機による給気圧力が排気ガス圧力よりも高くなることがある。この場合には、排気ガスが給気側に戻らずに、EGR率が低下してしまうことになる。 Conventionally, a supercharged engine equipped with an EGR device that suppresses the generation of NOx by lowering the internal combustion temperature of the air-fuel mixture is known. In such an engine, a part of the exhaust gas can be returned to the supply side by the EGR device. However, the engine operating state, for example, when the engine is operated at a medium to high speed and in a high load region is used. Depending on the case, the supply pressure by a turbocharger such as a turbocharger may be higher than the exhaust gas pressure. In this case, the exhaust gas does not return to the supply side, and the EGR rate decreases.
 そこで、複数のターボ過給機を直列に設けて多段過給するとともに、全てのターボ過給機に電動機を設けて電動機を発電または駆動させることで、エンジンの運転状態にかかわらず、給気圧力および排気ガス圧力を適切な状態に調節して、EGR率を確保することが提案されている(例えば特許文献1参照)。 Therefore, a plurality of turbochargers are provided in series to perform multi-stage supercharging, and all turbochargers are provided with electric motors to generate or drive electric motors, so that the air supply pressure is controlled regardless of the engine operating state. In addition, it has been proposed to secure the EGR rate by adjusting the exhaust gas pressure to an appropriate state (see, for example, Patent Document 1).
米国特許第6324846号明細書US Pat. No. 6,324,846
 特許文献1に記載のような多段過給式のエンジンにおいて、高圧段側(エンジンの給気通路における下流側)のターボ過給機では、低圧段側(エンジンの給気通路における上流側)のターボ過給機よりもタービンやコンプレッサの最大回転数が高いため、高圧段側のタービンおよびコンプレッサの共振回転数を高くする必要がある。 In a multistage supercharged engine as described in Patent Document 1, in a turbocharger on the high pressure side (downstream side in the engine air supply passage), on the low pressure stage side (upstream side in the engine air supply passage) Since the maximum rotational speed of the turbine and the compressor is higher than that of the turbocharger, it is necessary to increase the resonant rotational speed of the turbine and the compressor on the high-pressure stage side.
 しかしながら、電動機を設けたターボ過給機は、電動機のロータを有する分、タービンおよびコンプレッサの共振回転数が、電動機を有さないターボ過給機よりも低くなってしまう。共振回転数を最大回転数以上とするためには、電動機のロータを小さくして軽量化する必要があるが、その場合には、電動機の容量(発電量、駆動量)も小さくなる。このため、高圧段側のターボ過給機に電動機を設けても、実質的には、低圧段側のターボ過給機でEGR率の制御に必要な電動機容量の大部分を受け持つことになってしまう。つまり、高圧段側のターボ過給機に電動機を設けた場合は、その効果が十分に得られないことがあるという問題がある。 However, the turbocharger provided with the electric motor has a lower rotational speed of the turbine and the compressor than the turbocharger without the electric motor because of the rotor of the electric motor. In order to set the resonance rotational speed to be equal to or higher than the maximum rotational speed, it is necessary to make the rotor of the motor smaller and lighter, but in that case, the capacity (power generation amount and driving amount) of the motor also decreases. For this reason, even if the high-pressure stage turbocharger is provided with an electric motor, the low-pressure stage turbocharger is substantially responsible for most of the motor capacity necessary for controlling the EGR rate. End up. That is, when an electric motor is provided in the turbocharger on the high pressure stage side, there is a problem that the effect may not be obtained sufficiently.
 また、高圧段側のターボ過給機に電動機を設けた場合は、電動機が、排気直後の排気ガスにより高温となるタービンと直接接続されることになる。この場合に、電動機内の絶縁用樹脂や磁石等が熱によるダメージを受けないようにするためには、電動機に対する高い冷却能力が必要となる。このため、電動機への冷却媒体流路の断面積を大きくすることが必要になるとともに、冷却媒体を冷却するためのクーラ等の冷却装置も高い冷却能力が必須となる。従って、冷却装置等の補機が大型化して、エンジンへの搭載性が悪化するとともに、エンジン全体が大型化するという問題もある。 Also, when an electric motor is provided in the turbocharger on the high-pressure stage side, the electric motor is directly connected to a turbine that becomes hot due to exhaust gas immediately after exhaust. In this case, in order to prevent the insulating resin and magnets in the motor from being damaged by heat, a high cooling capacity for the motor is required. For this reason, it is necessary to increase the cross-sectional area of the cooling medium flow path to the electric motor, and a cooling device such as a cooler for cooling the cooling medium is also required to have a high cooling capacity. Therefore, there is a problem that the auxiliary equipment such as the cooling device is increased in size, the mountability to the engine is deteriorated, and the entire engine is increased in size.
 本発明の目的は、ターボ過給機に設けた電動機の効果を享受できるコンパクトな多段過給式のエンジンを提供することにある。 An object of the present invention is to provide a compact multistage supercharged engine that can enjoy the effect of an electric motor provided in a turbocharger.
 本発明のエンジンは、多段過給式のエンジンであって、エンジン本体の排気通路から排気ガスの一部を取り出して前記エンジン本体の給気通路に戻すEGR通路を有したEGR装置と、外気を吸入、加圧して前記エンジン本体に供給するコンプレッサおよびこのコンプレッサを駆動するタービンを有する複数のターボ過給機とを備え、前記複数のターボ過給機は、前記コンプレッサおよび前記タービンと回転駆動力を授受可能に設けられた電動機を有する少なくとも1つの第1ターボ過給機と、前記第1ターボ過給機と直列に設けられ、前記電動機を有さない少なくとも1つの第2ターボ過給機とを備えて構成され、前記複数のターボ過給機のうちの前記第2ターボ過給機の1つが、前記給気通路の前記エンジン本体に最も近い側に設けられていることを特徴とする。 An engine of the present invention is a multi-stage supercharged engine, and an EGR device having an EGR passage that extracts a part of exhaust gas from an exhaust passage of the engine body and returns it to the air supply passage of the engine body; A compressor that sucks and pressurizes and supplies the compressor to the engine body, and a plurality of turbochargers each having a turbine that drives the compressor, and the plurality of turbochargers provide rotational driving force to the compressor and the turbine. At least one first turbocharger having an electric motor provided so as to be able to exchange, and at least one second turbocharger provided in series with the first turbocharger and not having the electric motor. One of the plurality of turbochargers is provided on a side closest to the engine body of the supply passage. And wherein the are.
 本発明のエンジンにおいて、当該エンジンは、前記複数のターボ過給機として前記第1および前記第2ターボ過給機がそれぞれ1つずつ設けられた2段過給式であることが望ましい。 In the engine according to the present invention, it is preferable that the engine is a two-stage supercharging type in which each of the first and second turbochargers is provided as the plurality of turbochargers.
 本発明のエンジンにおいて、当該エンジンは、自走用の走行体、作業用の作業機、および前記作業機を搭載する旋回体のうちの少なくとも1つが、当該エンジンを駆動源として発電された電力を用いて電動モータで駆動されるハイブリッド型の建設機械のエンジンであることが望ましい。 In the engine of the present invention, at least one of the traveling body for self-running, the working machine for work, and the revolving body on which the work machine is mounted has generated electric power generated using the engine as a drive source. It is desirable that the engine is a hybrid type construction machine that is driven by an electric motor.
 本発明の多段過給式のエンジンによれば、電動機を有する第1ターボ過給機と電動機を有さない第2ターボ過給機とを含む複数のターボ過給機を備え、前記複数のターボ過給機のうちの前記第2ターボ過給機の1つが、前記給気通路の前記エンジン本体に最も近い側に設けられているため、エンジン本体に近い高圧段側のターボ過給機やその補機が大型化することを回避しつつ、エンジンの過渡応答性を向上したり、十分なEGR率を確保したりすることができる。従って、ターボ過給機に設けた電動機の効果を享受でき、かつコンパクトな多段過給式のエンジンを得ることができる。 According to the multi-stage turbocharged engine of the present invention, the turbocharger includes a plurality of turbochargers including a first turbocharger having an electric motor and a second turbocharger not having an electric motor. Since one of the second turbochargers among the superchargers is provided on the side of the air supply passage closest to the engine body, a turbocharger on the high pressure stage side close to the engine body and its While avoiding the increase in size of the auxiliary machine, it is possible to improve the transient response of the engine or to secure a sufficient EGR rate. Therefore, the effect of the electric motor provided in the turbocharger can be enjoyed, and a compact multistage supercharged engine can be obtained.
 本発明において、エンジンが、前記複数のターボ過給機として前記第1および前記第2ターボ過給機がそれぞれ1つずつ設けられた2段過給式である場合には、最小限の数のターボ過給機により多段過給式のエンジンを構成することができる。従って、最も簡易な構成で本発明のエンジンを得ることができる。 In the present invention, when the engine is a two-stage turbocharger in which each of the first and second turbochargers is provided as the plurality of turbochargers, a minimum number of turbochargers is provided. A turbocharger can constitute a multi-stage supercharged engine. Therefore, the engine of the present invention can be obtained with the simplest configuration.
 本発明のエンジンが、ハイブリッド型の建設機械のエンジンである場合には、前述した本発明の効果が、特に顕著に得られる。 When the engine of the present invention is a hybrid construction machine engine, the above-described effects of the present invention can be obtained particularly remarkably.
 すなわち、ハイブリッド型の建設機械では、走行体、作業機、および旋回体等を電気モータで駆動している分、他の油圧駆動部分の応答遅れが目立つ傾向にあるため、油圧ポンプの駆動源であるエンジンについても、従来の油圧駆動式の建設機械の場合と比べて高い応答性が要求される。しかし、建設機械の場合、乗用車や商用車などに比べてエンジンの排気量やターボ過給機のタービンの大きさが格段に大きいため、過給時のタイムラグが大きく、ハイブリッド型の建設機械に要求されるエンジンの過渡応答性に十分に応えることができなかった。
 これに対し、本発明のエンジンを利用すれば、ハイブリッド型の建設機械において必要とされる十分な過渡応答性を得ることができる。
That is, in a hybrid type construction machine, the response delay of other hydraulic drive parts tends to be conspicuous as the traveling body, work machine, and swivel body are driven by an electric motor. Some engines are also required to have higher responsiveness than conventional hydraulically driven construction machines. However, in the case of construction machinery, the engine displacement and the turbocharger turbine size are significantly larger than passenger cars and commercial vehicles, so the time lag during supercharging is large, which is required for hybrid construction machinery. The engine's transient response could not be fully met.
On the other hand, if the engine of the present invention is used, sufficient transient response required in a hybrid construction machine can be obtained.
 また、建設機械のエンジンは、乗用車や商用車に比べて、高負荷で運転する割合が非常に高く、かつエンジンの急激な加減速運転も頻繁に行われるため、NOxの発生を抑制することが難しかった。
 これに対しても、本発明のエンジンを利用すれば、高いEGR率を実現することができるので、ハイブリッド型の建設機械にも要求されるNOx発生の抑制を促進することができる。
Moreover, the engine of construction machinery has a very high ratio of driving at a high load compared to passenger cars and commercial vehicles, and the engine is frequently subjected to rapid acceleration / deceleration, so that the generation of NOx can be suppressed. was difficult.
In contrast, if the engine of the present invention is used, a high EGR rate can be realized, and therefore, it is possible to promote suppression of NOx generation that is also required for a hybrid construction machine.
本発明の一実施形態に係る建設機械のシステム構成を示すブロック図。1 is a block diagram showing a system configuration of a construction machine according to an embodiment of the present invention. 建設機械に搭載されたエンジンを示す模式図。The schematic diagram which shows the engine mounted in the construction machine. エンジンの動作フロー図。The operation | movement flowchart of an engine.
 以下、本発明の一実施形態を図面に基づいて説明する。
〔1〕パワーショベルの全体構成
 図1において、建設機械としてのパワーショベル1は、駆動源としてエンジン2を備えている。エンジン2の出力軸には、発電機モータ3および一対の油圧ポンプ4,4がそれぞれ直列に連結されており、エンジン2によって駆動される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Overall Configuration of Power Excavator In FIG. 1, a power shovel 1 as a construction machine includes an engine 2 as a drive source. A generator motor 3 and a pair of hydraulic pumps 4, 4 are connected in series to the output shaft of the engine 2, and are driven by the engine 2.
 発電機モータ3にて発電された電力は、インバータ5を介してキャパシタ6に充電される。キャパシタ6に充電された電力は、昇圧器5Aで昇圧されるとともに、インバータ5を介して旋回電動モータ7に出力される。旋回電動モータ7は、遊星歯車機構等を有した減速機8を介して上部旋回体9を駆動する。キャパシタ6からの電力はまた、発電機モータ3に供給される場合もあり、このような場合には、発電機モータ3を電動モータとして機能させて油圧ポンプ4を駆動し、エンジン2をアシストする。 The electric power generated by the generator motor 3 is charged to the capacitor 6 via the inverter 5. The electric power charged in the capacitor 6 is boosted by the booster 5 </ b> A and output to the swing electric motor 7 through the inverter 5. The turning electric motor 7 drives the upper turning body 9 via a speed reducer 8 having a planetary gear mechanism or the like. The electric power from the capacitor 6 may also be supplied to the generator motor 3. In such a case, the generator motor 3 is caused to function as an electric motor to drive the hydraulic pump 4 and assist the engine 2. .
 一方、油圧ポンプ4から圧送された作動油は、コントロールバルブ10を介して作業機11に供給される。パワーショベル1での作業機11は、図示しないブーム、アーム、およびバケットで構成され、それぞれに設けられたブームシリンダ12、アームシリンダ13、およびバケットシリンダ14に対して作動油を流出入させることで、作業機11が油圧によって動作する。 On the other hand, the hydraulic oil pumped from the hydraulic pump 4 is supplied to the work machine 11 via the control valve 10. The work machine 11 in the excavator 1 is composed of a boom, an arm, and a bucket (not shown), and allows hydraulic oil to flow into and out of the boom cylinder 12, the arm cylinder 13, and the bucket cylinder 14 that are respectively provided. The work machine 11 is operated by hydraulic pressure.
 また、パワーショベル1の車両本体には、詳細な図示を省略するが、前述の上部旋回体9が旋回自在に設置されている他、一対のクローラ式の下部走行体が設けられている。下部走行体は、クローラに噛合するスプロケットを駆動するための走行用油圧モータ15を有しており、これらの走行用油圧モータ15に対しても、油圧ポンプ4からの作動油がコントロールバルブ10を介して供給される。 The vehicle body of the excavator 1 is provided with a pair of crawler-type lower traveling bodies in addition to the above-described upper revolving body 9 being turnably installed, although the detailed illustration is omitted. The lower traveling body has a traveling hydraulic motor 15 for driving a sprocket that meshes with the crawler. The hydraulic oil from the hydraulic pump 4 also controls the control valve 10 with respect to these traveling hydraulic motors 15. Supplied through.
 従って、本実施形態のパワーショベル1は、上部旋回体9を電気エネルギで旋回駆動するとともに、作業機11や下部走行体を油圧によって駆動するハイブリッド型の建設機械である。なお、前述した各構成は、走行用油圧モータ15を除いて上部旋回体9に搭載され、上部旋回体9と共に旋回する。 Therefore, the power shovel 1 of the present embodiment is a hybrid construction machine that drives the upper swing body 9 to swing with electric energy and drives the work implement 11 and the lower traveling body with hydraulic pressure. Each configuration described above is mounted on the upper swing body 9 except for the traveling hydraulic motor 15, and rotates together with the upper swing body 9.
 さらに、パワーショベル1の上部旋回体9には、オペレータが操縦操作を行うキャブが設けられている。このようなキャブ内には、オペレータの座席や、エンジン2への燃料供給量を設定する燃料ダイヤル、レバー類、ペダル類、モニタ類、その他のスイッチ類などが設けられている。また、上部旋回体9には、インバータ5や後述する旋回制御装置30が収容された制御ボックス、およびエンジン2の動作を制御するエンジンコントローラ40が設けられている。図1には代表して、キャブ内に設置される作業機11、操作用の作業機レバー16、および旋回操作用の旋回レバー17が図示されている。 Furthermore, the upper revolving structure 9 of the power shovel 1 is provided with a cab that is operated by an operator. In such a cab, there are provided an operator's seat, a fuel dial for setting a fuel supply amount to the engine 2, levers, pedals, monitors, and other switches. Further, the upper swing body 9 is provided with a control box in which the inverter 5 and a swing control device 30 to be described later are accommodated, and an engine controller 40 for controlling the operation of the engine 2. As a representative, FIG. 1 shows a working machine 11 installed in a cab, a working machine lever 16 for operation, and a turning lever 17 for turning operation.
 作業機レバー16はPPC(Proportional Pressure Control)バルブを含んで構成され、PPCバルブにて生成されたパイロット圧によりコントロールバルブ10の切換動作を行い、作業機11を動作させる。
 旋回レバー17は、その傾倒角度に応じたレバー信号を旋回制御装置30に出力するよう、ポテンショメータ等を含んで構成されている。
The work machine lever 16 includes a PPC (Proportional Pressure Control) valve. The work machine lever 16 performs the switching operation of the control valve 10 by the pilot pressure generated by the PPC valve, and operates the work machine 11.
The turning lever 17 includes a potentiometer and the like so as to output a lever signal corresponding to the tilt angle to the turning control device 30.
 旋回制御装置30は、上部旋回体9の旋回動作を制御するものであり、コンピュータ技術に用いられる各種のハードウェアやソフトウェアで構成される。本実施形態の旋回制御装置30は、インバータ5に搭載されるかたちで設けられ、インバータ5に対して電気的に接続されている。 The turning control device 30 controls the turning operation of the upper turning body 9, and is composed of various hardware and software used in computer technology. The turning control device 30 of the present embodiment is provided in a form mounted on the inverter 5 and is electrically connected to the inverter 5.
 エンジンコントローラ40は、図示しない検出手段から燃料ダイヤルの設定位置、アクセルペダルの開度、エンジン回転速度、および燃料噴射量等の検出信号を受信しており、これらの検出信号によりエンジン2の運転状態を把握し、状態に応じて燃焼室への燃料噴射量や燃料噴射タイミングなどの制御を行っている。また、エンジンコントローラ40は、後述する電動機254やEGRバルブ292(ともに図2参照)の動作も制御する。 The engine controller 40 receives detection signals such as a fuel dial set position, an accelerator pedal opening, an engine rotation speed, and a fuel injection amount from detection means (not shown), and the operation state of the engine 2 is detected by these detection signals. The amount of fuel injected into the combustion chamber and the fuel injection timing are controlled according to the state. The engine controller 40 also controls operations of an electric motor 254 and an EGR valve 292 (see FIG. 2), which will be described later.
〔2〕エンジンの構成
 以下、図2を参照して、エンジン2の構成について詳説する。
 エンジン2は、本実施形態ではディーゼルエンジンであり、内部に複数の燃焼室が形成されたエンジン本体20と、エンジン本体20の燃焼室に空気を供給する給気通路21と、エンジン本体20および給気通路21間に設けられ給気通路21からの空気を各燃焼室に分配する給気マニホールド22と、エンジン本体20から排気ガスを排出する排気通路23と、エンジン本体20および排気通路23間に設けられ排気ガスを集めて排気通路23に流入させる排気マニホールド24と、給気通路21に吸い込んだ外気を過給する第1ターボ過給機25と、第1ターボ過給機25で圧縮された空気を冷却するインタークーラ26と、第1ターボ過給機25からの圧縮空気をさらに圧縮する第2ターボ過給機27と、第2ターボ過給機27で圧縮された空気を冷却するアフタークーラ28と、NOxの生成を抑制するためのEGR装置29とを備えている。
[2] Configuration of Engine Hereinafter, the configuration of the engine 2 will be described in detail with reference to FIG.
The engine 2 is a diesel engine in the present embodiment, and includes an engine body 20 in which a plurality of combustion chambers are formed, an air supply passage 21 that supplies air to the combustion chambers of the engine body 20, an engine body 20, An air supply manifold 22 that is provided between the air passages 21 and distributes air from the air supply passages 21 to the combustion chambers, an exhaust passage 23 that discharges exhaust gas from the engine body 20, and between the engine body 20 and the exhaust passages 23. An exhaust manifold 24 that collects exhaust gas and flows into the exhaust passage 23, a first turbocharger 25 that supercharges the outside air sucked into the air supply passage 21, and the first turbocharger 25 compresses the exhaust gas. Compressed by an intercooler 26 that cools air, a second turbocharger 27 that further compresses compressed air from the first turbocharger 25, and a second turbocharger 27 The the aftercooler 28 for cooling air, and a EGR device 29 for suppressing the generation of NOx.
 このうちの第1ターボ過給機25は、排気ガスの排気エネルギで回転するタービン251と、このタービン251と共に回転して外気を圧縮するコンプレッサ252と、タービン251とコンプレッサ252とを連結する回転軸253において、タービン251およびコンプレッサ252と回転駆動力を授受可能に設けられた電動機254とを備えている。電動機254は、発電機としても機能させることができ、電動機能および発電機能間の切り換えは、エンジンコントローラ40により行われる。コンプレッサ252出口から第2ターボ過給機27までは給気通路21で連通しており、給気通路21のコンプレッサ252および第2ターボ過給機27間に、インタークーラ26が設けられている。 Of these, the first turbocharger 25 includes a turbine 251 that rotates with exhaust energy of exhaust gas, a compressor 252 that rotates together with the turbine 251 and compresses outside air, and a rotating shaft that connects the turbine 251 and the compressor 252. 253 includes a turbine 251 and a compressor 252 and an electric motor 254 provided so as to be able to transmit and receive a rotational driving force. The electric motor 254 can also function as a generator, and switching between the electric function and the power generation function is performed by the engine controller 40. The air supply passage 21 communicates from the compressor 252 outlet to the second turbocharger 27, and an intercooler 26 is provided between the compressor 252 and the second turbocharger 27 in the air supply passage 21.
 第2ターボ過給機27は、第1ターボ過給機25よりもエンジン本体20に近い高圧段側に設けられている。この第2ターボ過給機27は、第1ターボ過給機25とは異なって電動機を有さないターボ過給機であり、互いに回転軸273によって直結されたタービン271およびコンプレッサ272を備えている。コンプレッサ272出口から給気マニホールド22までは給気通路21で連通しており、給気通路21のコンプレッサ272および給気マニホールド22間に、アフタークーラ28が設けられている。 The second turbocharger 27 is provided on the high-pressure stage side closer to the engine body 20 than the first turbocharger 25. Unlike the first turbocharger 25, the second turbocharger 27 is a turbocharger that does not have an electric motor, and includes a turbine 271 and a compressor 272 that are directly connected to each other by a rotating shaft 273. . The outlet of the compressor 272 and the supply manifold 22 communicate with each other through the supply passage 21, and an after cooler 28 is provided between the compressor 272 and the supply manifold 22 in the supply passage 21.
 EGR装置29は、排気通路23から分岐して給気通路21の下流側(アフタークーラ28よりも下流側)に連通するEGR通路291を備えている。このEGR通路291には、当該EGR通路291を開閉するEGRバルブ292と、排気マニホールド24からの排気ガスを冷却するEGRクーラ293とが設けられている。このEGR装置29において、排気ガス圧力が給気圧力よりも高い場合に、EGRバルブ292を開くことで、排気ガスの一部を給気側に戻すことが可能である。EGRバルブ292の開閉制御は、排気通路23または排気マニホールド24に設けられた図示しないNOx量検出手段からの検出信号に基づき、エンジンコントローラ40によって行われる。 The EGR device 29 includes an EGR passage 291 that branches from the exhaust passage 23 and communicates with the downstream side of the air supply passage 21 (downstream side after the aftercooler 28). The EGR passage 291 is provided with an EGR valve 292 that opens and closes the EGR passage 291 and an EGR cooler 293 that cools the exhaust gas from the exhaust manifold 24. In the EGR device 29, when the exhaust gas pressure is higher than the supply air pressure, it is possible to return a part of the exhaust gas to the supply air side by opening the EGR valve 292. The opening / closing control of the EGR valve 292 is performed by the engine controller 40 based on a detection signal from a NOx amount detection means (not shown) provided in the exhaust passage 23 or the exhaust manifold 24.
〔3〕エンジンの作用
 次に、エンジン2の動作フローを示す図3を参照しつつ、エンジン2の作用について説明する。
[3] Action of Engine Next, the action of the engine 2 will be described with reference to FIG.
 図3において、先ず、エンジン2の給気通路21に外気が流入し(S1)、低圧段側の第1ターボ過給機25のコンプレッサ252で圧縮される(S2)。圧縮された空気は、インタークーラ26で冷却された後(S3)、高圧段側の第2ターボ過給機27のコンプレッサ272でさらに圧縮される(S4)。第2ターボ過給機27で圧縮された空気は、アフタークーラ28で冷却された後(S5)、EGR装置29によって排気通路23から戻された排気ガスと混合される(S6)。圧縮空気と排気ガスとの混合気は、給気マニホールド22を経由してエンジン本体20へ給気される(S7)。これにより、エンジン本体20に供給される空気量が増加してエンジン2の出力が向上するとともに、NOxの発生が抑制され、燃費も向上する。 3, first, outside air flows into the air supply passage 21 of the engine 2 (S1), and is compressed by the compressor 252 of the first turbocharger 25 on the low pressure stage side (S2). The compressed air is cooled by the intercooler 26 (S3), and further compressed by the compressor 272 of the second turbocharger 27 on the high pressure stage side (S4). The air compressed by the second turbocharger 27 is cooled by the aftercooler 28 (S5) and then mixed with the exhaust gas returned from the exhaust passage 23 by the EGR device 29 (S6). The mixture of compressed air and exhaust gas is supplied to the engine body 20 via the supply manifold 22 (S7). As a result, the amount of air supplied to the engine body 20 is increased, the output of the engine 2 is improved, the generation of NOx is suppressed, and the fuel consumption is also improved.
 エンジン本体20では内燃によって排気ガスが発生し(S8)、発生した排気ガスは、排気マニホールド24を通った後、第2ターボ過給機27のタービン271とEGR通路291とに向けて分配される(S9)。EGR通路291へ分配された排気ガスは、EGRクーラ293で冷却された後(S10)、第2ターボ過給機27からの圧縮空気と混合される(S6)。 In the engine body 20, exhaust gas is generated by internal combustion (S 8), and the generated exhaust gas passes through the exhaust manifold 24 and is distributed toward the turbine 271 and the EGR passage 291 of the second turbocharger 27. (S9). The exhaust gas distributed to the EGR passage 291 is cooled by the EGR cooler 293 (S10) and then mixed with the compressed air from the second turbocharger 27 (S6).
 一方、第2ターボ過給機27のタービン271へ分配された排気ガスは、高圧段側のタービン271を駆動する(S11)。タービン271の駆動力は、コンプレッサ272に伝達され、前述のように第1ターボ過給機25からの圧縮空気をさらに圧縮する(S4)。
 第2ターボ過給機27のタービン271を駆動した排気ガスは、第1ターボ過給機25で低圧段側のタービン251を駆動し(S12)、排気通路23から排出される(S13)。この際のタービン251の駆動力は、電動機254に伝達されて、電動機254を駆動する。
On the other hand, the exhaust gas distributed to the turbine 271 of the second turbocharger 27 drives the turbine 271 on the high-pressure stage side (S11). The driving force of the turbine 271 is transmitted to the compressor 272 and further compresses the compressed air from the first turbocharger 25 as described above (S4).
The exhaust gas that has driven the turbine 271 of the second turbocharger 27 drives the low-pressure stage turbine 251 by the first turbocharger 25 (S12), and is discharged from the exhaust passage 23 (S13). The driving force of the turbine 251 at this time is transmitted to the electric motor 254 to drive the electric motor 254.
 ここで、エンジンコントローラ40は、図示しない燃料ダイヤルの設定位置やアクセルペダルの開度等の情報に基づき、エンジン2が加速運転状態にあると判定すると、電動機254を電動機として機能させ、エンジン2が加速運転状態にないと判定すると、電動機254を発電機として機能させる。その結果、電動機254が発電機として機能する場合は、タービン251の駆動力により発電が行われて(S14)、電力が発生する(S15)。また、電動機として機能する場合は、電動機254が駆動力を出力してコンプレッサ252の駆動をアシストし(S15)、タービン251とともにコンプレッサ252を駆動して、コンプレッサ252に外気を圧縮させる(S2)。 Here, when the engine controller 40 determines that the engine 2 is in an acceleration operation state based on information such as a fuel dial setting position and an accelerator pedal opening (not shown), the engine controller 254 causes the motor 254 to function as an electric motor. If it determines with it not being in an acceleration driving | running state, the electric motor 254 will function as a generator. As a result, when the electric motor 254 functions as a generator, electric power is generated by the driving force of the turbine 251 (S14), and electric power is generated (S15). When functioning as an electric motor, the electric motor 254 outputs a driving force to assist the driving of the compressor 252 (S15), drives the compressor 252 together with the turbine 251, and compresses the outside air to the compressor 252 (S2).
 以上のような第1ターボ過給機25および第2ターボ過給機27の作用により、排気ガス圧力、給気圧力、およびEGR率は、第1ターボ過給機25の電動機254の発電または駆動に応じて、以下の表1に示すように変化する。 Due to the action of the first turbocharger 25 and the second turbocharger 27 as described above, the exhaust gas pressure, the supply pressure, and the EGR rate are generated or driven by the electric motor 254 of the first turbocharger 25. Depending on the above, it changes as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 すなわち、第1ターボ過給機25の電動機254を発電機として機能させると、低圧段側のタービン251の回転抵抗が大きくなるため、タービン251入口の排気ガス圧力が高くなり、高圧段側のタービン271出口や排気マニホールド24の排気ガス圧力も高くなる。
 一方、電動機254の回転抵抗によりタービン251の回転数が低下するため、低圧段側のコンプレッサ252出口の給気圧力は低くなり、高圧段側のコンプレッサ272出口および給気マニホールド22の給気圧力も低くなる。
That is, when the electric motor 254 of the first turbocharger 25 is caused to function as a generator, the rotational resistance of the turbine 251 on the low pressure stage side increases, so the exhaust gas pressure at the inlet of the turbine 251 increases and the turbine on the high pressure stage side increases. The exhaust gas pressure at the outlet 271 and the exhaust manifold 24 also increases.
On the other hand, since the rotational speed of the turbine 251 is reduced by the rotational resistance of the electric motor 254, the supply air pressure at the outlet of the compressor 252 on the low pressure stage side becomes low, and the supply pressure of the compressor 272 outlet on the high pressure stage side and the supply manifold 22 also Lower.
 このように、第1ターボ過給機25の電動機254を発電機として機能させることにより、排気マニホールド24の排気ガス圧力を給気マニホールド22の給気圧力よりも大幅に高くすることができる。その分、EGRクーラ293を通って給気マニホールド22に流れる排気ガス量が増加するため、EGR率を増加させることができる。 Thus, by causing the electric motor 254 of the first turbocharger 25 to function as a generator, the exhaust gas pressure of the exhaust manifold 24 can be made significantly higher than the supply pressure of the supply manifold 22. Accordingly, the amount of exhaust gas flowing through the EGR cooler 293 to the air supply manifold 22 increases, so that the EGR rate can be increased.
 反対に、第1ターボ過給機25の電動機254を電動機として機能させてタービン251を駆動させると、排気ガス圧力が低下し、かつ給気圧力が増加するため、EGR率は減少する。このように、電動機254の発電量または駆動量に応じて、EGR率の制御が可能となる。 Conversely, when the motor 254 of the first turbocharger 25 is caused to function as an electric motor and the turbine 251 is driven, the exhaust gas pressure decreases and the supply air pressure increases, so the EGR rate decreases. In this way, the EGR rate can be controlled according to the amount of power generation or driving amount of the electric motor 254.
 また、エンジン2の加速運転時に第1ターボ過給機25の電動機254を電動機として機能させて、コンプレッサ252の回転をアシストすれば、アシストがない場合に比べて、過給圧力が早く立ち上がることになる。従って、エンジン2の過渡応答性を向上できる。 Further, if the motor 254 of the first turbocharger 25 is made to function as an electric motor during the acceleration operation of the engine 2 to assist the rotation of the compressor 252, the supercharging pressure will rise faster than when there is no assist. Become. Therefore, the transient response of the engine 2 can be improved.
 さらに、第1ターボ過給機25の電動機254で発電した電力を、バッテリやキャパシタ等を含む電力供給系に戻すことにより、燃費の向上が可能となる。すなわち、本実施形態のパワーショベル1の場合、エンジン2の出力軸に結合した発電機モータ3を第1ターボ過給機25で発電した電力により駆動して、エンジン2の駆動をアシストすることにより、燃費の向上が可能である。反対に、発電機モータ3で発電した電力を利用して第1ターボ過給機25の電動機254を駆動することで、コンプレッサ252の回転をアシストすることもできる。 Furthermore, the fuel consumption can be improved by returning the electric power generated by the electric motor 254 of the first turbocharger 25 to the electric power supply system including a battery, a capacitor, and the like. That is, in the case of the power shovel 1 of the present embodiment, the generator motor 3 coupled to the output shaft of the engine 2 is driven by the electric power generated by the first turbocharger 25 to assist the drive of the engine 2. , Fuel economy can be improved. On the contrary, the rotation of the compressor 252 can be assisted by driving the electric motor 254 of the first turbocharger 25 using the electric power generated by the generator motor 3.
 このように、低圧段側の第1ターボ過給機25に電動機254を設けることにより、前述した様々な効果が得られる。ここで、第1ターボ過給機25では、電動機254を設けた分だけ共振回転数が低下することになるが、低圧段側に設けられている第1ターボ過給では、そもそもタービン271およびコンプレッサ272の最大回転数が低いため、電動機254を設けた場合であっても、最大回転数が共振回転数を上回ることがない。 Thus, by providing the electric motor 254 in the first turbocharger 25 on the low pressure stage side, the various effects described above can be obtained. Here, in the first turbocharger 25, the resonance rotational speed is reduced by the amount provided by the electric motor 254. However, in the first turbocharger provided on the low pressure stage side, the turbine 271 and the compressor are originally provided. Since the maximum rotational speed of 272 is low, the maximum rotational speed does not exceed the resonant rotational speed even when the electric motor 254 is provided.
 しかも、高圧段側の第2ターボ過給機27は、電動機を有しておらず共振回転数の高いターボ過給機であるため、タービンおよびコンプレッサを高回転で駆動させることができ、排気ガス圧力や給気圧力を十分に高くすることができる。このため、高いEGR率が確保できるとともに、過給によるエンジン出力の向上も実現できる。また、第2ターボ過給機27が電動機を有していないため、第2ターボ過給機27に関する冷却設備等の補機も、大型化することなく従来のものを使用できる。 Moreover, since the second turbocharger 27 on the high-pressure stage side is a turbocharger that does not have an electric motor and has a high resonance speed, the turbine and the compressor can be driven at a high speed, and the exhaust gas The pressure and the supply air pressure can be sufficiently increased. For this reason, a high EGR rate can be ensured, and engine output can be improved by supercharging. In addition, since the second turbocharger 27 does not have an electric motor, auxiliary equipment such as cooling equipment related to the second turbocharger 27 can be used without increasing its size.
 以上の本実施形態によれば、EGR装置29を備えた多段過給式のエンジン2において、エンジン本体20に最も近い高圧段側には電動機を有さない第2ターボ過給機27が設けられ、エンジン本体20から離れた低圧段側には電動機254を備えた第1ターボ過給機25が設けられているので、ターボ過給機への電動機の採用に伴ってエンジン2が大型化したり、コストが上昇したりすることなく、ターボ過給機に設けた電動機による前述した効果を享受することができる。 According to the present embodiment described above, in the multistage supercharged engine 2 provided with the EGR device 29, the second turbocharger 27 that does not have an electric motor is provided on the high-pressure stage side closest to the engine body 20. Since the first turbocharger 25 provided with the electric motor 254 is provided on the low pressure stage side away from the engine body 20, the engine 2 becomes larger with the adoption of the electric motor for the turbocharger, The above-described effects of the electric motor provided in the turbocharger can be enjoyed without increasing the cost.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記実施形態において、エンジン2は、ディーゼルエンジンであったが、ガソリンエンジン等の他のエンジンであってもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the embodiment, the engine 2 is a diesel engine, but may be another engine such as a gasoline engine.
 前記実施形態において、エンジン2は、第1ターボ過給機25および第2ターボ過給機27による2段過給方式を採用していたが、エンジン本体20に最も近い側の過給機が発電機を有さないターボ過給機であれば、エンジン2において3つ以上の過給機を設けてもよい。3つ以上の過給機を直列に設ければ、エンジン2の過給圧をより高めることができるので、EGR率をさらに向上させることができる。 In the above-described embodiment, the engine 2 employs the two-stage supercharging system using the first turbocharger 25 and the second turbocharger 27, but the supercharger closest to the engine body 20 generates power. If the turbocharger does not have a machine, the engine 2 may be provided with three or more turbochargers. If three or more superchargers are provided in series, the supercharging pressure of the engine 2 can be further increased, so that the EGR rate can be further improved.
 前記実施形態において、電動機254は、第1ターボ過給機25のタービン251およびコンプレッサ252間の回転軸253に設けられていたがこれに限られない。電動機254は、タービン251およびコンプレッサ252と回転駆動力を授受可能に設けられていればよく、例えば、第1ターボ過給機25に歯車等の動力伝達機構を用いてタービン251およびコンプレッサ252と回転駆動力を授受可能に構成してもよい。 In the above embodiment, the electric motor 254 is provided on the rotary shaft 253 between the turbine 251 and the compressor 252 of the first turbocharger 25, but is not limited thereto. The electric motor 254 only needs to be provided so as to be able to exchange rotational driving force with the turbine 251 and the compressor 252. For example, the first turbocharger 25 rotates with the turbine 251 and the compressor 252 using a power transmission mechanism such as a gear. The driving force may be exchanged.
 前記実施形態では、パワーショベル1において、上部旋回体9を電気エネルギで旋回駆動し、作業機11や下部走行体を油圧によって駆動していたがこれに限られない。すなわち、走行体、作業機、および旋回体等を電気エネルギおよび油圧で駆動するハイブリッド型のものであれば、どの被駆動体の駆動に電気エネルギおよび油圧を割り当てるかは任意である。 In the above-described embodiment, in the power shovel 1, the upper swing body 9 is driven to swing with electric energy, and the work implement 11 and the lower traveling body are driven with hydraulic pressure, but the present invention is not limited thereto. That is, as long as it is a hybrid type that drives the traveling body, the work machine, the turning body, and the like with electric energy and hydraulic pressure, it is arbitrary which electric power and hydraulic pressure are allocated to drive of the driven body.
 ハイブリッド型の建設機械としてはパワーショベル1に限られず、ホイルローダやダンプトラック等の他の建設機械であってもよい。例えば、ホイルローダの場合は、作業機を油圧で駆動し、走行体を電気エネルギで駆動すればよく、ダンプトラックの場合は、ベッセルを作業機として油圧で駆動し、走行体を電気エネルギで駆動すればよい。当然のことながら、これとは反対に、作業機を電気エネルギで駆動し、走行体を油圧で駆動してもよい。 The hybrid construction machine is not limited to the power shovel 1, and may be another construction machine such as a wheel loader or a dump truck. For example, in the case of a wheel loader, the working machine may be driven by hydraulic pressure and the traveling body may be driven by electric energy. In the case of a dump truck, the vessel is driven by hydraulic pressure and the traveling body may be driven by electric energy. That's fine. As a matter of course, on the contrary, the working machine may be driven by electric energy and the traveling body may be driven hydraulically.
 本発明は、パワーショベル等の建設機械に利用できる他、上部旋回体を有したクレーン等の作業機械にも利用することができる。 The present invention can be used not only for construction machines such as power shovels but also for work machines such as cranes having an upper rotating body.
 1…ハイブリッド型の建設機械であるパワーショベル、2…エンジン、20…エンジン本体、21…給気通路、23…排気通路、25…第1ターボ過給機、27…第2ターボ過給機、29…EGR装置、40…エンジンコントローラ、251,271…タービン、252,272…コンプレッサ、254…電動機、291…EGR通路。 DESCRIPTION OF SYMBOLS 1 ... Power excavator which is a hybrid type construction machine, 2 ... Engine, 20 ... Engine main body, 21 ... Air supply passage, 23 ... Exhaust passage, 25 ... 1st turbocharger, 27 ... 2nd turbocharger, 29 ... EGR device, 40 ... engine controller, 251,271 ... turbine, 252,272 ... compressor, 254 ... electric motor, 291 ... EGR passage.

Claims (3)

  1.  多段過給式のエンジンであって、
     エンジン本体の排気通路から排気ガスの一部を取り出して前記エンジン本体の給気通路に戻すEGR通路を有したEGR装置と、
     外気を吸入、加圧して前記エンジン本体に供給するコンプレッサおよびこのコンプレッサを駆動するタービンを有する複数のターボ過給機とを備え、
     前記複数のターボ過給機は、
     前記コンプレッサおよび前記タービンと回転駆動力を授受可能に設けられた電動機を有する少なくとも1つの第1ターボ過給機と、
     前記第1ターボ過給機と直列に設けられ、前記電動機を有さない少なくとも1つの第2ターボ過給機とを備えて構成され、
     前記複数のターボ過給機のうちの前記第2ターボ過給機の1つが、前記給気通路の前記エンジン本体に最も近い側に設けられている
     ことを特徴とするエンジン。
    A multi-stage supercharged engine,
    An EGR device having an EGR passage for taking out a part of the exhaust gas from the exhaust passage of the engine body and returning it to the supply passage of the engine body;
    A compressor that sucks and pressurizes outside air and supplies the compressed air to the engine body, and a plurality of turbochargers having a turbine that drives the compressor,
    The plurality of turbochargers are:
    At least one first turbocharger having an electric motor provided so as to be able to exchange rotational driving force with the compressor and the turbine;
    The first turbocharger is provided in series, and includes at least one second turbocharger that does not have the electric motor.
    One of the plurality of turbochargers, wherein one of the second turbochargers is provided on a side of the supply passage that is closest to the engine body.
  2.  請求項1に記載のエンジンにおいて、
     当該エンジンは、前記複数のターボ過給機として前記第1および前記第2ターボ過給機がそれぞれ1つずつ設けられた2段過給式である
     ことを特徴とするエンジン。
    The engine according to claim 1,
    The engine is a two-stage supercharging type in which each of the first and second turbochargers is provided as each of the plurality of turbochargers.
  3.  請求項1または請求項2に記載のエンジンにおいて、
     当該エンジンは、自走用の走行体、作業用の作業機、および前記作業機を搭載する旋回体のうちの少なくとも1つが、当該エンジンを駆動源として発電された電力を用いて電動モータで駆動されるハイブリッド型の建設機械のエンジンである
     ことを特徴とするエンジン。
    The engine according to claim 1 or 2,
    The engine is driven by an electric motor using at least one of a self-propelled traveling body, a working working machine, and a revolving body equipped with the working machine using electric power generated by using the engine as a driving source. An engine characterized by being an engine of a hybrid type construction machine.
PCT/JP2011/050683 2010-02-09 2011-01-18 Engine WO2011099326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010026497A JP2011163201A (en) 2010-02-09 2010-02-09 Engine
JP2010-026497 2010-02-09

Publications (1)

Publication Number Publication Date
WO2011099326A1 true WO2011099326A1 (en) 2011-08-18

Family

ID=44367612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050683 WO2011099326A1 (en) 2010-02-09 2011-01-18 Engine

Country Status (2)

Country Link
JP (1) JP2011163201A (en)
WO (1) WO2011099326A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211127A1 (en) * 2014-06-11 2015-12-17 Ford Global Technologies, Llc Supercharged internal combustion engine with exhaust gas turbochargers arranged in series and exhaust gas recirculation and method for operating such an internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552983B2 (en) * 2010-09-16 2014-07-16 いすゞ自動車株式会社 Electric turbo system
US9777619B2 (en) 2012-01-20 2017-10-03 Yanmar Co., Ltd. Ship engine
JP5963496B2 (en) 2012-03-28 2016-08-03 ヤンマー株式会社 engine
US9903323B2 (en) 2015-03-10 2018-02-27 Denso International America, Inc. Emissions reduction system for an internal combustion engine
US9745927B2 (en) * 2015-03-10 2017-08-29 Denso International America, Inc. Emissions reduction system for an internal combustion engine
JP6114446B1 (en) * 2016-07-14 2017-04-12 矢野 隆志 Low-pressure stage drive hierarchical electric turbocharger device and power system equipped with the low-pressure stage drive hierarchical electric turbocharger device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230924A (en) * 1988-07-18 1990-02-01 Isuzu Ceramics Kenkyusho:Kk Turbocharger control unit
JP2002038962A (en) * 2000-07-24 2002-02-06 Hitachi Ltd Controller for internal combustion engine with turbocharger
JP2004076687A (en) * 2002-08-21 2004-03-11 Toyota Motor Corp Exhaust/electric supercharging type hybrid vehicle
JP2005009315A (en) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd Two-stage supercharger for engine
JP2005248860A (en) * 2004-03-04 2005-09-15 Toyota Motor Corp Control device for supercharger with motor
JP2007239566A (en) * 2006-03-08 2007-09-20 Hino Motors Ltd Auxiliary device of supercharger using waste heat energy of egr gas
JP2008075549A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230924A (en) * 1988-07-18 1990-02-01 Isuzu Ceramics Kenkyusho:Kk Turbocharger control unit
JP2002038962A (en) * 2000-07-24 2002-02-06 Hitachi Ltd Controller for internal combustion engine with turbocharger
JP2004076687A (en) * 2002-08-21 2004-03-11 Toyota Motor Corp Exhaust/electric supercharging type hybrid vehicle
JP2005009315A (en) * 2003-06-16 2005-01-13 Nissan Diesel Motor Co Ltd Two-stage supercharger for engine
JP2005248860A (en) * 2004-03-04 2005-09-15 Toyota Motor Corp Control device for supercharger with motor
JP2007239566A (en) * 2006-03-08 2007-09-20 Hino Motors Ltd Auxiliary device of supercharger using waste heat energy of egr gas
JP2008075549A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211127A1 (en) * 2014-06-11 2015-12-17 Ford Global Technologies, Llc Supercharged internal combustion engine with exhaust gas turbochargers arranged in series and exhaust gas recirculation and method for operating such an internal combustion engine
DE102014211127B4 (en) 2014-06-11 2022-10-06 Ford Global Technologies, Llc Supercharged internal combustion engine with exhaust gas turbochargers arranged in series and exhaust gas recirculation and method for operating such an internal combustion engine

Also Published As

Publication number Publication date
JP2011163201A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2011099326A1 (en) Engine
CN1090284C (en) Motor-assisted variable geometry turbocyarging system
JP4448852B2 (en) Open / close control device for intake / exhaust communication circuit
CN103590912B (en) The method of engine system and control engine system
US11007998B1 (en) Hybrid vehicle
JP2011501043A (en) Internal combustion engine with turbocharger and intercooler
CN112384690A (en) Internal combustion engine
JP5504772B2 (en) Engine with turbocharger mounted on vehicle and control method thereof
JP5709293B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP2012246929A (en) Supercharging internal combustion engine
JP2011214461A (en) Supercharger surplus power recovery device of internal combustion engine
JP4339643B2 (en) Supercharged internal combustion engine
US11591992B2 (en) Engine system with air pump for enhanced turbocharger air exchange
CN112424461B (en) Method for operating a four-stroke internal combustion engine system
JP5504771B2 (en) Turbocharged engine for vehicle installation
EP2634406B1 (en) Turbocharge system
JP6364691B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP5886188B2 (en) Supercharger surplus power recovery device for internal combustion engine
JP4965603B2 (en) Vehicle control device
EP3199819A1 (en) Electric supercharging apparatus and electric supercharging system
KR20110129130A (en) Internal combustion engine
JP4582054B2 (en) Control device for vehicle engine system
JP2012251472A (en) Internal combustion engine control system
KR20200069927A (en) Engine system
JPS6357824A (en) Turbo-compound engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742075

Country of ref document: EP

Kind code of ref document: A1