WO2011099323A1 - Reversible receiver, and air conditioner - Google Patents

Reversible receiver, and air conditioner Download PDF

Info

Publication number
WO2011099323A1
WO2011099323A1 PCT/JP2011/050636 JP2011050636W WO2011099323A1 WO 2011099323 A1 WO2011099323 A1 WO 2011099323A1 JP 2011050636 W JP2011050636 W JP 2011050636W WO 2011099323 A1 WO2011099323 A1 WO 2011099323A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
container
air conditioner
heat exchanger
Prior art date
Application number
PCT/JP2011/050636
Other languages
French (fr)
Japanese (ja)
Inventor
神原 裕志
佐藤 誠
丈幸 是澤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11742072.9A priority Critical patent/EP2535668A4/en
Publication of WO2011099323A1 publication Critical patent/WO2011099323A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions

Definitions

  • the present invention relates to a reversible direction receiver and an air conditioner suitable for application to an air conditioner that is operated in a heat pump refrigeration cycle in which the direction of refrigerant flow is switched.
  • an air conditioner that employs a heat pump refrigeration cycle that switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows
  • a reversible direction receiver which is a component that temporarily stores (holds) excess refrigerant, so that the amount of refrigerant circulating through the air conditioner is optimized. It is adjusted (for example, refer patent document 1).
  • a refrigerant that is temporarily stored during the cooling operation is temporarily stored (held) in the receiver, and a refrigerant that is excessive during the heating operation.
  • the number of indoor units in the multi-type air conditioner decreases, there is a problem that the refrigerant pressure in the indoor unit during heating operation becomes excessively high. That is, when the number of indoor units decreases, the number of indoor heat exchangers that can be used for holding the refrigerant during the heating operation also decreases. As a result, the ability to adjust the amount of refrigerant circulating during heating operation may be reduced. In other words, since the amount of refrigerant that can be held during the heating operation is reduced, there is a risk that the refrigerant pressure in the portion where the refrigerant becomes high during the heating operation, for example, the refrigerant pressure in the indoor heat exchanger during the heating operation, becomes excessively high.
  • the present invention has been made to solve the above problems, and in a multi-type air conditioner, even if the number of indoor units is reduced, an excessive increase in the refrigerant pressure during heating operation can be suppressed. It aims at providing a reversible direction receiver and an air conditioner.
  • a reversible direction receiver is a reversible direction receiver used in a heat pump type air conditioner in which a refrigerant flow direction can be reversibly switched, and a container that stores the refrigerant therein,
  • One pipe extending from the bottom to the top of the container and having an opening at the upper end, and the air conditioner allows the refrigerant to flow into the container during cooling operation, and causes the refrigerant to flow out from the container during heating operation;
  • the other pipe extending from the bottom to the top of the container and having an opening at the upper end thereof, the air conditioner causes the refrigerant to flow out of the container during cooling operation, and allows the refrigerant to flow into the container during heating operation;
  • the one pipe extends above the other pipe, and the side surface of the region disposed in the container in the one pipe has the above-mentioned Communicating hole is provided for connecting the interior of the pipe and the container of square, the other pipe is connected
  • the reversible direction receiver can temporarily store (hold) the liquid refrigerant during the heating operation or the cooling operation of the air conditioner in which the refrigerant flow direction is switched. That is, during the heating operation, the refrigerant in which the gas refrigerant and the liquid refrigerant decompressed by the throttle mechanism are mixed flows into the reversible direction receiver through the other pipe. The gaseous refrigerant flows into the pipe from the opening formed at the upper end of one pipe and flows out from the reversible receiver. Most of the liquid refrigerant is held inside the container.
  • a part of the liquid refrigerant flows into the pipe together with a lubricant (for example, lubricating oil) contained in the liquid refrigerant from a communication hole formed on the side surface of one pipe and flows out from the reversible receiver. Therefore, the liquid refrigerant can be held in the reversible direction receiver even during the heating operation of the air conditioner.
  • a lubricant for example, lubricating oil
  • the flow direction of the refrigerant is reversed from that during the heating operation, and the liquid refrigerant condensed by the heat exchanger flows into the reversible direction receiver through one pipe.
  • the liquid refrigerant flows into the throttle mechanism through the other pipe.
  • excess liquid refrigerant is accumulated in the reversible receiver. Therefore, the reversible direction receiver can temporarily store the liquid refrigerant during the cooling operation.
  • the opening and the communication hole in the other pipe are arranged in the vicinity of the lower end of the container, and the opening in the one pipe is arranged in the vicinity of the upper end of the container.
  • the amount of liquid refrigerant that can be held by the reversible direction receiver can be increased, and the lubricant contained in the liquid refrigerant can easily flow out of the reversible direction receiver to the outside. . That is, by arranging the opening in one pipe in the vicinity of the upper end of the container, the liquid refrigerant begins to rise to the opening, and the liquid refrigerant flows out of the reversible receiver through the one pipe. In other words, the amount of liquid refrigerant held inside the container is increased. Furthermore, by arranging the communication hole in the vicinity of the lower end of the container, the lubricant that easily accumulates in the lower part of the container can easily flow into one of the pipes through the communication hole.
  • the opening of the other pipe for supplying the refrigerant to the throttle mechanism in the vicinity of the lower end of the container, the opening can be arranged inside the accumulated liquid refrigerant, and it becomes easy to supply the liquid refrigerant to the throttle mechanism. .
  • An air conditioner includes an outdoor unit having an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, and the reversible direction receiver of the present invention, wherein the one pipe is The outdoor heat exchanger and the refrigerant are connected so as to be able to flow, and the other pipe is connected via the throttle mechanism so that the indoor heat exchanger and the refrigerant can flow.
  • a liquid refrigerant can be hold
  • the minimum number of indoor units connected to the outdoor unit can be reduced. In other words, installation variations in the multi-type air conditioner can be increased.
  • one pipe is extended to the upper side of the other pipe, a communication hole is provided on the side surface of the one pipe, and the other pipe is used as a throttle mechanism in the air conditioner.
  • FIGS. 1 and 2 are mimetic diagram explaining composition of an air harmony machine concerning this embodiment.
  • the air conditioner 1 of this embodiment is what is called a multi-type air conditioner provided with four indoor units 4A, 4B, 4C, and 4D with respect to one outdoor unit 2, as shown in FIG. .
  • the number of indoor units may be plural, and may be more or less than the above four, and is not particularly limited.
  • the outdoor unit 2 is mainly provided with a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, and expansion valves (throttle mechanisms) 24A, 24B, 24C, and 24D. ing.
  • Liquid side operation valves 25A, 25B, 25C, 25D and gas side operation valves 26A, 26B, 26C, 26D are provided between the outdoor unit 2 and the indoor units 4A, 4B, 4C, 4D. .
  • the compressor 21 circulates the refrigerant between the one outdoor unit 2 and the four indoor units 4A, 4B, 4C, 4D, sucks and compresses the low-temperature and low-pressure refrigerant, and the high-temperature and high-pressure refrigerant. It is what.
  • An accumulator 27 and a separate accumulator 28 are connected to the suction port of the compressor 21 so that the refrigerant can flow, and a muffler 29 is connected to the discharge port so that the refrigerant can flow.
  • the compressor 21 may be a known compressor such as a scroll compressor, and is not particularly limited.
  • the accumulator 27 and the separate accumulator 28 supply the gas refrigerant to the compressor 21 and temporarily store the liquid refrigerant so that the refrigerant is between one outdoor unit 2 and the four indoor units 4A, 4B, 4C, 4D.
  • the flow rate is adjusted.
  • the accumulator 27 is disposed between the compressor 21 and the separate accumulator 28 and is connected to the suction port of the compressor 21 so as to be able to supply a gaseous refrigerant.
  • the separate accumulator 28 is disposed between the accumulator 27 and the four-way valve 22, and is connected to the accumulator 27 so that a gaseous refrigerant can be supplied.
  • a suction pipe sensor 31 that measures the temperature of the refrigerant sucked into the compressor 21 is disposed in a pipe connecting the accumulator 27 and the separate accumulator 28.
  • the muffler 29 relaxes the pressure fluctuation of the refrigerant discharged from the compressor 21 and suppresses the generation of vibration and noise due to the pressure fluctuation.
  • the muffler 29 is disposed between the compressor 21 and the four-way valve 22 and is connected to the discharge port of the compressor 21 so that the refrigerant can flow.
  • a discharge pipe sensor 32 that measures the temperature of the refrigerant discharged from the compressor 21 is disposed on the pipe connecting the muffler 29 and the compressor 21.
  • the four-way valve 22 controls the outflow destination of the refrigerant discharged from the compressor 21 according to the operating state of the air conditioner 1. Specifically, during the cooling operation, the refrigerant discharged from the compressor 21 is guided to the outdoor heat exchanger 23, and the refrigerant flowing out from the indoor heat exchanger 41 is guided to the compressor 21. During the heating operation, the refrigerant discharged from the compressor 21 is guided to the indoor heat exchanger 41, and the refrigerant flowing out of the outdoor heat exchanger 23 is guided to the compressor 21.
  • the four-way valve 22 is connected so that the refrigerant can flow out toward the separate accumulator 28 and the refrigerant can flow in from the muffler 29. Furthermore, the refrigerant is connected to the outdoor heat exchanger 23 and the indoor heat exchangers 41 of the indoor units 4A, 4B, 4C, and 4D so that the refrigerant can flow in or out.
  • a known valve can be used as the four-way valve 22 and is not particularly limited.
  • the outdoor heat exchanger 23 performs heat exchange between the outdoor air and the refrigerant. Specifically, during the cooling operation, the heat of the refrigerant is dissipated to the outdoor air, and during the heating operation, the heat of the outdoor air is absorbed by the refrigerant.
  • the outdoor heat exchanger 23 is disposed between the four-way valve 22 and a receiver (reversible direction receiver) 50, and is connected so as to allow the refrigerant to flow therethrough.
  • an outdoor heat exchanger sensor 34 that measures the temperature of the outdoor heat exchanger 23 and an outdoor air temperature sensor 35 that measures the temperature of outdoor air are arranged.
  • FIG. 2 is a front view illustrating the configuration of the receiver of FIG.
  • the receiver 50 is disposed between the outdoor heat exchanger 23 and the expansion valves 24A, 24B, 24C, and 24D, and is connected so as to allow the refrigerant to flow therethrough.
  • the receiver 50 supplies liquid refrigerant to the expansion valves 24A, 24B, 24C, and 24D during the cooling operation, and stores (holds) excess liquid refrigerant during the heating operation.
  • the receiver 50 is provided with a container 51, a first pipe (one pipe) 52A, and a second pipe (the other pipe) 52B.
  • the container 51 stores liquid refrigerant or gas refrigerant therein, and in this embodiment, the container 51 will be described by applying to an example in which the container 51 is formed in a cylindrical shape with both ends closed.
  • the first pipe 52 ⁇ / b> A is a pipe that connects the container 51 and the outdoor heat exchanger 23 so that the refrigerant can flow therethrough.
  • the first pipe 52 ⁇ / b> A is inserted into the container 51 from the lower end of the container 51.
  • the first pipe 52 ⁇ / b> A extends inside the container 51 toward the upper end of the container 51, and the opening 53 ⁇ / b> A connected to the inside of the container 51 in the first pipe 52 ⁇ / b> A is arranged near the upper end of the container 51.
  • a communication hole 54 that connects the inside of the first pipe 52A and the inside of the container 51 is provided on the side surface of the first pipe 52A.
  • the communication hole 54 is a hole through which the lubricating oil (lubricant) of the compressor 21 stored in the container 51 flows into the first pipe 52A.
  • the communication hole 54 is formed below the region of the first pipe 52 ⁇ / b> A disposed inside the container 51, in other words, near the lower end of the container 51.
  • the communication hole 54 is formed in the vicinity of the opening 53B of the second pipe 52B.
  • the diameter of the communication hole 54 is determined based on a target value of the amount of liquid refrigerant held in the container 51 during the heating operation. That is, it is determined based on the flow rate of the liquid refrigerant flowing into the container 51 during the heating operation and the flow rate of the liquid refrigerant flowing into the communication hole 54.
  • the second pipe 52B is a pipe that connects the refrigerant between the container 51 and the expansion valves 24A, 24B, 24C, and 24D.
  • the pipe connects the container 51 and the indoor heat exchanger 41 so that the refrigerant can flow therethrough.
  • the second pipe 52 ⁇ / b> B is inserted into the container 51 from the lower end of the container 51.
  • An opening 53 ⁇ / b> B connected to the inside of the container 51 in the second pipe 52 ⁇ / b> B is disposed in the vicinity of the lower end of the container 51.
  • the expansion valves 24A, 24B, 24C and 24D are for adiabatically expanding the refrigerant passing therethrough, and for reducing the temperature and pressure of the refrigerant.
  • the expansion valves 24A, 24B, 24C, and 24D are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, in other words, are connected so that the refrigerant can flow therethrough.
  • the expansion valves 24A, 24B, 24C, and 24D are respectively arranged in four pipes that branch from one pipe extending from the receiver 50 in correspondence with the indoor units 4A, 4B, 4C, and 4D. .
  • the liquid side operation valves 25A, 25B, 25C, and 25D are portions connected to pipes extending from the indoor units 4A, 4B, 4C, and 4D, and are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, respectively. It is an operated valve.
  • the liquid side operation valves 25A, 25B, 25C, and 25D are disposed corresponding to the expansion valves 24A, 24B, 24C, and 24D, and a sound deadening capillary 36 and a strainer 37 are disposed therebetween.
  • the gas side operation valves 26A, 26B, 26C, and 26D are portions connected to pipes extending from the indoor units 4A, 4B, 4C, and 4D, and are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, respectively. It is an operated valve.
  • the gas side operation valves 26A, 26B, 26C, and 26D are connected to the four-way valve 22 through the manifold 38 so that the refrigerant can flow therethrough.
  • the indoor units 4A, 4B, 4C, and 4D are mainly provided with an indoor heat exchanger 41, a suction sensor 42, a central heat exchange sensor 43, and a cooling outlet heat exchange sensor 44. It has been.
  • the indoor heat exchanger 41 is disposed in each of the indoor units 4A, 4B, 4C, and 4D, and performs heat exchange between the indoor air and the refrigerant. Specifically, the heat of the room air is absorbed by the refrigerant during the cooling operation, and the heat of the refrigerant is radiated to the room air during the heating operation.
  • the indoor heat exchanger 41 of the indoor units 4A, 4B, 4C, and 4D allows refrigerant to flow through the liquid side operation valves 25A, 25B, 25C, and 25D and the gas side operation valves 26A, 26B, 26C, and 26D, respectively. It is connected.
  • the indoor heat exchanger 41 includes a suction sensor 42 that measures the temperature of indoor air sucked into the indoor units 4A, 4B, 4C, and 4D, and a central heat exchange sensor that measures the temperature of the central portion of the indoor heat exchanger 41. 43 and a cooling outlet heat exchange sensor 44 that measures the end temperature of the indoor heat exchanger 41 that serves as a refrigerant outlet during cooling.
  • the four-way valve 22 When the cooling operation is performed, as shown in FIG. 1, the four-way valve 22 is switched, the discharge port of the compressor 21 and the outdoor heat exchanger 23 are connected, and the suction port of the compressor 21 and the indoor heat exchange are connected.
  • the device 41 is connected.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 through the muffler 29 and the four-way valve 22.
  • the refrigerant releases heat to the outdoor air and condenses to become a liquid refrigerant.
  • the high-pressure liquid refrigerant is led from the outdoor heat exchanger 23 to the expansion valves 24A, 24B, 24C, and 24D via the receiver 50.
  • the high-pressure liquid refrigerant undergoes adiabatic expansion when passing through the expansion valves 24A, 24B, 24C, and 24D, and becomes a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 41 of the indoor units 4A, 4B, 4C, and 4D through the silencer capillary 36, the strainer 37, and the liquid side operation valves 25A, 25B, 25C, and 25D.
  • the refrigerant absorbs heat from indoor air in the indoor heat exchanger 41 and evaporates to become a gaseous refrigerant. On the other hand, the indoor air is deprived of heat and cooled.
  • the gaseous refrigerant is sucked into the suction port of the compressor 21 through the gas side operation valves 26A, 26B, 26C, and 26D, the manifold 38, the four-way valve 22, the separate accumulator 28, and the accumulator 27.
  • the sucked refrigerant is compressed by the compressor 21 and discharged from the discharge port as a high-temperature and high-pressure refrigerant. Thereafter, the cooling operation is continued by repeating the above-described process.
  • the four-way valve 22 When the heating operation is performed, as shown in FIG. 1, the four-way valve 22 is switched, the discharge port of the compressor 21 and the indoor heat exchanger 41 are connected, and the suction port of the compressor 21 and the outdoor heat exchange are connected.
  • the device 23 is connected.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 41 through the muffler 29 and the four-way valve 22.
  • the indoor heat exchanger 41 the refrigerant releases heat to the indoor air and condenses to become a liquid refrigerant.
  • indoor air absorbs heat and is heated.
  • the high-pressure liquid refrigerant is guided from the indoor heat exchanger 41 to the expansion valves 24A, 24B, 24C, and 24D via the liquid side operation valves 25A, 25B, 25C, and 25D, the strainer 37, and the sound-eliminating capillary 36.
  • the high-pressure liquid refrigerant undergoes adiabatic expansion when passing through the expansion valves 24A, 24B, 24C, and 24D, and becomes a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerant flows into the outdoor heat exchanger 23 via the receiver 50.
  • the refrigerant absorbs heat from the outdoor air in the outdoor heat exchanger 23 and evaporates to become a gaseous refrigerant.
  • the gaseous refrigerant is sucked into the suction port of the compressor 21 through the four-way valve 22, the separate accumulator 28 and the accumulator 27.
  • the sucked refrigerant is compressed by the compressor 21 and discharged from the discharge port as a high-temperature and high-pressure refrigerant. Thereafter, the cooling operation is continued by repeating the above-described process.
  • the refrigerant flow and storage in the receiver 50 which is a feature of the present embodiment, will be described.
  • the storage of the liquid refrigerant in the receiver 50 during the heating operation in other words, the holding of the liquid refrigerant by the receiver 50 will be described.
  • the refrigerant in which the gas refrigerant and the liquid refrigerant decompressed by the expansion valves 24A, 24B, 24C, 24D are mixed flows into the receiver 50 through the second pipe 52B.
  • the gaseous refrigerant flows into the pipe from the opening 53A formed at the upper end of the first pipe 52A and flows out from the receiver 50. Therefore, most of the liquid refrigerant is held inside the container.
  • a part of the liquid refrigerant flows into the pipe together with the lubricating oil contained in the liquid refrigerant from the communication hole 54 formed on the side surface of the first pipe 52 ⁇ / b> A and flows out from the receiver 50.
  • the flow rate of the liquid refrigerant flowing into the container 51 from the second pipe 52B is small. Also, the liquid refrigerant is held in the receiver 50.
  • the opening 53A in the first pipe 52A is arranged in the vicinity of the upper end of the container 51, so that the liquid refrigerant begins to rise up to the opening 53A, and the liquid refrigerant goes out of the receiver 50 through the first pipe 52A. leak. In other words, the amount of liquid refrigerant held in the container 51 is increased. Furthermore, by arranging the communication hole 54 in the vicinity of the lower end of the container 51, the lubricating oil that tends to accumulate below the container 51 easily flows into one pipe through the communication hole 54.
  • the flow direction of the refrigerant is reversed from that during the heating operation, and the liquid refrigerant condensed by the outdoor heat exchanger 23 flows into the receiver 50 through the first pipe 52A.
  • the liquid refrigerant flows into the expansion valves 24A, 24B, 24C, and 24D through the second pipe 52B.
  • the excess liquid refrigerant Accumulates in the receiver 50. Therefore, the liquid refrigerant is temporarily stored in the receiver 50 during the cooling operation.
  • the liquid refrigerant accumulates downward, and the gas refrigerant easily accumulates upward.
  • the opening 53B of the second pipe 52B for supplying the refrigerant to the expansion valves 24A, 24B, 24C, 24D in the vicinity of the lower end of the container 51, the opening 53B can be arranged inside the accumulated liquid refrigerant, It becomes easy to supply the liquid refrigerant to the expansion valves 24A, 24B, 24C, and 24D.
  • the liquid refrigerant can be held in the receiver 50 even during heating operation, and the number of indoor units 4A, 4B, 4C, 4D connected to the outdoor unit 2 can be reduced.
  • the minimum number of indoor units 4A, 4B, 4C, 4D in the air conditioner 1 can be reduced, the number of installation variations in the air conditioner 1 can be increased, and air that meets market needs in a wider range.
  • the harmony machine 1 can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Provided are a reversible receiver and an air conditioner wherein it is possible to suppress the refrigerant pressure in a multi-type air conditioner from rising excessively during a heating operation even when the number of indoor units are reduced. Specifically, disclosed is an air conditioner provided with: a container (51) for storing a refrigerant; a pipe (52A) which extends from the bottom side to the upper side of the container (51), has an opening (53A) on the upper edge, is used to introduce the refrigerant to the container (51) when the air conditioner is in a cooling operation, and is used to remove the refrigerant from the container (51) when the air conditioner is in a heating operation; and another pipe (52B) which extends from the bottom side to the upper side of the container (51), has an opening (53B) on the upper edge, is used to remove the refrigerant from the container (51) when the air conditioner is in a cooling operation, and is used to introduce the refrigerant to the container (51) when the air conditioner is in a heating operation. Pipe (52A) extends further upward than pipe (52B). A communication hole (54) for connecting pipe (52A) and the inside of the container (51) is provided on the side surface of pipe (52A) and on a region positioned within the container (51).

Description

可逆方向レシーバおよび空気調和機Reversible direction receiver and air conditioner
 本発明は、冷媒の流れる方向が切り替えられるヒートポンプ式冷凍サイクルで運転される空気調和機に適用して好適な可逆方向レシーバおよび空気調和機に関する。 The present invention relates to a reversible direction receiver and an air conditioner suitable for application to an air conditioner that is operated in a heat pump refrigeration cycle in which the direction of refrigerant flow is switched.
 一般に、冷媒が流れる方向を切り替えることにより冷房運転と暖房運転とを切り替えるヒートポンプ式冷凍サイクルを採用する空気調和機にあっては、最適冷媒量が変化することが知られている。そのため、このような空気調和機には、余剰になる冷媒を一時的に貯留する(ホールドする)構成要素である可逆方向レシーバが設けられ、空気調和機を循環する冷媒量が最適になるように調節されている(例えば、特許文献1参照。)。 Generally, in an air conditioner that employs a heat pump refrigeration cycle that switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows, it is known that the optimum amount of refrigerant changes. Therefore, such an air conditioner is provided with a reversible direction receiver, which is a component that temporarily stores (holds) excess refrigerant, so that the amount of refrigerant circulating through the air conditioner is optimized. It is adjusted (for example, refer patent document 1).
 例えば、1台の室外機に対して複数台の室内機を備えるマルチ型空気調和機では、冷房運転時に余剰となる冷媒をレシーバに一時的に貯留(ホールド)し、暖房運転時に余剰となる冷媒を暖房運転が停止されている室内機に関する電子膨張弁を僅かに開けて(微開して)室内熱交換器にホールドすることにより、循環する冷媒量が最適になるように制御されている。 For example, in a multi-type air conditioner that includes a plurality of indoor units for one outdoor unit, a refrigerant that is temporarily stored during the cooling operation is temporarily stored (held) in the receiver, and a refrigerant that is excessive during the heating operation. Is controlled so that the amount of circulating refrigerant is optimized by slightly opening (slightly opening) the electronic expansion valve relating to the indoor unit in which the heating operation is stopped and holding it in the indoor heat exchanger.
特開平10-170107号公報JP-A-10-170107
 しかしながら、マルチ型空気調和機における室内機の数が少なくなると、暖房運転中の室内機における冷媒圧力が過剰に高くなる問題があった。
 つまり、室内機の数が少なくなると、暖房運転時に冷媒のホールドに用いることができる室内熱交換器の数も少なくなる。すると、暖房運転時における循環する冷媒量の調節能力が低下するおそれがあった。言い換えると、暖房運転時にホールドできる冷媒量が減るため、暖房運転時に冷媒が高圧になる部分、例えば、暖房運転中の室内熱交換器における冷媒圧力が過剰に高くなるおそれがあった。
However, when the number of indoor units in the multi-type air conditioner decreases, there is a problem that the refrigerant pressure in the indoor unit during heating operation becomes excessively high.
That is, when the number of indoor units decreases, the number of indoor heat exchangers that can be used for holding the refrigerant during the heating operation also decreases. As a result, the ability to adjust the amount of refrigerant circulating during heating operation may be reduced. In other words, since the amount of refrigerant that can be held during the heating operation is reduced, there is a risk that the refrigerant pressure in the portion where the refrigerant becomes high during the heating operation, for example, the refrigerant pressure in the indoor heat exchanger during the heating operation, becomes excessively high.
 本発明は、上記の課題を解決するためになされたものであって、マルチ型空気調和機において、室内機の数を減らしても暖房運転時における冷媒圧力の過剰な上昇を抑制することができる可逆方向レシーバおよび空気調和機を提供することを目的とする。 The present invention has been made to solve the above problems, and in a multi-type air conditioner, even if the number of indoor units is reduced, an excessive increase in the refrigerant pressure during heating operation can be suppressed. It aims at providing a reversible direction receiver and an air conditioner.
 上記目的を達成するために、本発明は、以下の手段を提供する。
 本発明の一態様に係る可逆方向レシーバは、冷媒の流れ方向が可逆的に切替可能なヒートポンプ式の空気調和機に用いられる可逆方向レシーバであって、内部に前記冷媒を貯留する容器と、前記容器の下方から上方に向かって延びるとともに上端に開口を有し、前記空気調和機が冷房運転時に前記容器に前記冷媒を流入させ、暖房運転時に前記容器から前記冷媒を流出させる一方の配管と、前記容器の下方から上方に向かって延びるとともに上端に開口を有し、前記空気調和機が冷房運転時に前記容器から前記冷媒を流出させ、暖房運転時に前記容器に前記冷媒を流入させる他方の配管と、が設けられ、前記一方の配管は前記他方の配管よりも上方まで延びるとともに、前記一方の配管における前記容器内に配置された領域の側面には、前記一方の配管および前記容器の内部をつなぐ連通孔が設けられ、前記他方の配管は、前記空気調和機における前記冷媒の圧力を減圧させる絞り機構に接続されている。
In order to achieve the above object, the present invention provides the following means.
A reversible direction receiver according to an aspect of the present invention is a reversible direction receiver used in a heat pump type air conditioner in which a refrigerant flow direction can be reversibly switched, and a container that stores the refrigerant therein, One pipe extending from the bottom to the top of the container and having an opening at the upper end, and the air conditioner allows the refrigerant to flow into the container during cooling operation, and causes the refrigerant to flow out from the container during heating operation; The other pipe extending from the bottom to the top of the container and having an opening at the upper end thereof, the air conditioner causes the refrigerant to flow out of the container during cooling operation, and allows the refrigerant to flow into the container during heating operation; The one pipe extends above the other pipe, and the side surface of the region disposed in the container in the one pipe has the above-mentioned Communicating hole is provided for connecting the interior of the pipe and the container of square, the other pipe is connected to the pressure of the refrigerant in the air conditioner to the throttle mechanism for decompressing.
 上記態様によれば、可逆方向レシーバは、冷媒の流れ方向が切り替わる空気調和機の暖房運転時や冷房運転時にも液体冷媒を一時的に貯留(ホールド)することができる。
 つまり、暖房運転時には、絞り機構により減圧された気体冷媒および液体冷媒が混合した冷媒が、他方の配管を通じて可逆方向レシーバに流入する。気体冷媒は一方の配管上端に形成された開口から配管内に流入して可逆方向レシーバから流出する。液体冷媒の大半は容器の内部にホールドされる。一部の液体冷媒は、一方の配管の側面に形成された連通孔から、液体冷媒に含まれる潤滑剤(例えば潤滑油)とともに配管内に流入して可逆方向レシーバから流出する。そのため、空気調和機の暖房運転時であっても、液体冷媒を可逆方向レシーバにホールドすることができる。
According to the above aspect, the reversible direction receiver can temporarily store (hold) the liquid refrigerant during the heating operation or the cooling operation of the air conditioner in which the refrigerant flow direction is switched.
That is, during the heating operation, the refrigerant in which the gas refrigerant and the liquid refrigerant decompressed by the throttle mechanism are mixed flows into the reversible direction receiver through the other pipe. The gaseous refrigerant flows into the pipe from the opening formed at the upper end of one pipe and flows out from the reversible receiver. Most of the liquid refrigerant is held inside the container. A part of the liquid refrigerant flows into the pipe together with a lubricant (for example, lubricating oil) contained in the liquid refrigerant from a communication hole formed on the side surface of one pipe and flows out from the reversible receiver. Therefore, the liquid refrigerant can be held in the reversible direction receiver even during the heating operation of the air conditioner.
 その一方で、冷房運転時には、暖房運転時とは冷媒の流れ方向が逆になり、熱交換器により凝縮された液体冷媒が、一方の配管を通じて可逆方向レシーバに流入する。液体冷媒は、他方の配管を通じて絞り機構に流入するが、絞り機構を通過する液体冷媒の流量は制限されているため、余剰な液体冷媒は可逆方向レシーバに溜まる。そのため、可逆方向レシーバは、冷房運転時に液体冷媒を一時的に貯留することができる。
 先行技術文献に記載された可逆方向レシーバと比較して、容器の内部に一方の配管が配置された領域と他方の配管が配置された領域とを区画する仕切り板が設けられていないため、冷媒が可逆方向レシーバを通過する際の流れ抵抗が小さくなる。
On the other hand, during the cooling operation, the flow direction of the refrigerant is reversed from that during the heating operation, and the liquid refrigerant condensed by the heat exchanger flows into the reversible direction receiver through one pipe. The liquid refrigerant flows into the throttle mechanism through the other pipe. However, since the flow rate of the liquid refrigerant passing through the throttle mechanism is limited, excess liquid refrigerant is accumulated in the reversible receiver. Therefore, the reversible direction receiver can temporarily store the liquid refrigerant during the cooling operation.
Compared to the reversible direction receiver described in the prior art document, there is no partition plate that divides the region in which one pipe is arranged and the region in which the other pipe is arranged inside the container. Reduces the flow resistance when passing through the reversible receiver.
 上記態様においては、前記他方の配管における前記開口および前記連通孔は、前記容器の下端近傍に配置され、前記一方の配管における前記開口は、前記容器の上端近傍に配置されてことが望ましい。 In the above aspect, it is preferable that the opening and the communication hole in the other pipe are arranged in the vicinity of the lower end of the container, and the opening in the one pipe is arranged in the vicinity of the upper end of the container.
 上記態様によれば、空気調和機の暖房運転時には、可逆方向レシーバがホールドできる液体冷媒の量を増やすことができ、かつ、液体冷媒に含まれる潤滑剤を可逆方向レシーバから外部に流出させやすくなる。
 つまり、一方の配管における開口を、容器の上端近傍に配置することにより、液体冷媒の液面が当該開口まで上昇して始めて、液体冷媒が一方の配管を通じて可逆方向レシーバの外へ流出する。言い換えると、容器の内部にホールドされる液体冷媒の量が増やされる。さらに、連通孔を容器の下端近傍に配置することにより、容器の下方に溜まりやすい潤滑剤は、容易に連通孔を介して一方の配管の内部に流入することができる。
According to the above aspect, during the heating operation of the air conditioner, the amount of liquid refrigerant that can be held by the reversible direction receiver can be increased, and the lubricant contained in the liquid refrigerant can easily flow out of the reversible direction receiver to the outside. .
That is, by arranging the opening in one pipe in the vicinity of the upper end of the container, the liquid refrigerant begins to rise to the opening, and the liquid refrigerant flows out of the reversible receiver through the one pipe. In other words, the amount of liquid refrigerant held inside the container is increased. Furthermore, by arranging the communication hole in the vicinity of the lower end of the container, the lubricant that easily accumulates in the lower part of the container can easily flow into one of the pipes through the communication hole.
 その一方で、空気調和機の冷房運転時には、絞り機構へ液体冷媒を供給しやすくなる。
 つまり、容器の内部では液体冷媒は下方に溜まり、気体冷媒は上方に溜まりやすい。絞り機構へ冷媒を供給する他方の配管の開口を、容器の下端近傍に配置することにより、当該開口を溜まった液体冷媒の内部に配置させることができ、絞り機構へ液体冷媒を供給しやすくなる。
On the other hand, during the cooling operation of the air conditioner, it becomes easy to supply the liquid refrigerant to the throttle mechanism.
That is, in the container, the liquid refrigerant collects downward and the gas refrigerant easily collects upward. By arranging the opening of the other pipe for supplying the refrigerant to the throttle mechanism in the vicinity of the lower end of the container, the opening can be arranged inside the accumulated liquid refrigerant, and it becomes easy to supply the liquid refrigerant to the throttle mechanism. .
 本発明の一態様に係る空気調和機は、室外熱交換器を有する室外機と、室内熱交換器を有する室内機と、上記本発明の可逆方向レシーバと、が設けられ、前記一方の配管は、前記室外熱交換器と前記冷媒が流通可能に接続され、前記他方の配管は、前記絞り機構を介して前記室内熱交換器と前記冷媒が流通可能に接続されている。 An air conditioner according to an aspect of the present invention includes an outdoor unit having an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, and the reversible direction receiver of the present invention, wherein the one pipe is The outdoor heat exchanger and the refrigerant are connected so as to be able to flow, and the other pipe is connected via the throttle mechanism so that the indoor heat exchanger and the refrigerant can flow.
 上記態様によれば、空気調和機が暖房運転されても、液体冷媒を可逆方向レシーバにホールドすることができる。
 例えば、1台の室外機に複数台の室内機が接続されるマルチ型空気調和機では、室外機に接続される室内機の最小台数を減らすことができる。言い換えると、マルチ型空気調和機における据え付けバリエーションを増やすことができる。
According to the said aspect, even if an air conditioner is heating-operated, a liquid refrigerant can be hold | maintained at a reversible direction receiver.
For example, in a multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit, the minimum number of indoor units connected to the outdoor unit can be reduced. In other words, installation variations in the multi-type air conditioner can be increased.
 本発明の可逆方向レシーバおよび空気調和機によれば、一方の配管を他方の配管よりも上方まで延ばすとともに、一方の配管の側面に連通孔を設け、他方の配管を空気調和機における絞り機構に接続することにより、マルチ型空気調和機において、室内機の数を減らしても暖房運転時における冷媒圧力の過剰な上昇を抑制することができるという効果を奏する。 According to the reversible direction receiver and the air conditioner of the present invention, one pipe is extended to the upper side of the other pipe, a communication hole is provided on the side surface of the one pipe, and the other pipe is used as a throttle mechanism in the air conditioner. By connecting, in a multi-type air conditioner, even if it reduces the number of indoor units, there exists an effect that the excessive raise of the refrigerant pressure at the time of heating operation can be suppressed.
本発明の一実施形態に係る空気調和機の構成を説明する模式図である。It is a mimetic diagram explaining composition of an air harmony machine concerning one embodiment of the present invention. 図1のレシーバの構成を説明する正面図である。It is a front view explaining the structure of the receiver of FIG.
 この発明の一実施形態に係る空気調和機について、図1および図2を参照して説明する。
 図1は、本実施形態に係る空気調和機の構成を説明する模式図である。
 本実施形態の空気調和機1は、図1に示すように、1台の室外機2に対して4台の室内機4A,4B,4C,4Dと、備える、いわゆるマルチ型空気調和機である。室内機の台数は複数であればよく、上述の4台よりも多くても少なくてもよく、特に限定するものではない。
An air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
Drawing 1 is a mimetic diagram explaining composition of an air harmony machine concerning this embodiment.
The air conditioner 1 of this embodiment is what is called a multi-type air conditioner provided with four indoor units 4A, 4B, 4C, and 4D with respect to one outdoor unit 2, as shown in FIG. . The number of indoor units may be plural, and may be more or less than the above four, and is not particularly limited.
 室外機2には、図1に示すように、圧縮機21と、四方弁22と、室外熱交換器23と、膨張弁(絞り機構)24A,24B,24C,24Dと、が主に設けられている。
 室外機2と室内機4A,4B,4C,4Dとの間には、液側操作弁25A,25B,25C,25Dと、ガス側操作弁26A,26B,26C,26Dと、が設けられている。
As shown in FIG. 1, the outdoor unit 2 is mainly provided with a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, and expansion valves (throttle mechanisms) 24A, 24B, 24C, and 24D. ing.
Liquid side operation valves 25A, 25B, 25C, 25D and gas side operation valves 26A, 26B, 26C, 26D are provided between the outdoor unit 2 and the indoor units 4A, 4B, 4C, 4D. .
 圧縮機21は、1台の室外機2および4台の室内機4A,4B,4C,4Dの間で冷媒を循環させるものであり、低温低圧の冷媒を吸入して圧縮し、高温高圧の冷媒とするものである。圧縮機21の吸入口には、アキュムレータ27および別置アキュムレータ28が冷媒の流通が可能に接続され、吐出口にはマフラ29が冷媒の流通が可能に接続されている。
 圧縮機21としては、スクロール型圧縮機などの公知の圧縮機を用いることができ、特に限定するものではない。
The compressor 21 circulates the refrigerant between the one outdoor unit 2 and the four indoor units 4A, 4B, 4C, 4D, sucks and compresses the low-temperature and low-pressure refrigerant, and the high-temperature and high-pressure refrigerant. It is what. An accumulator 27 and a separate accumulator 28 are connected to the suction port of the compressor 21 so that the refrigerant can flow, and a muffler 29 is connected to the discharge port so that the refrigerant can flow.
The compressor 21 may be a known compressor such as a scroll compressor, and is not particularly limited.
 アキュムレータ27および別置アキュムレータ28は、圧縮機21に気体冷媒を供給するとともに、液体冷媒を一時的に貯留して一つの室外機2および4つの室内機4A,4B,4C,4Dの間で冷媒の流量を調節するものである。
 アキュムレータ27は、圧縮機21と別置アキュムレータ28との間に配置され、圧縮機21の吸入口に気体冷媒を供給可能に接続されている。別置アキュムレータ28は、アキュムレータ27と四方弁22との間に配置され、アキュムレータ27に気体冷媒を供給可能に接続されている。
 アキュムレータ27と別置アキュムレータ28とを接続する配管には、圧縮機21に吸入される冷媒温度を測定する吸入管センサ31が配置されている。
The accumulator 27 and the separate accumulator 28 supply the gas refrigerant to the compressor 21 and temporarily store the liquid refrigerant so that the refrigerant is between one outdoor unit 2 and the four indoor units 4A, 4B, 4C, 4D. The flow rate is adjusted.
The accumulator 27 is disposed between the compressor 21 and the separate accumulator 28 and is connected to the suction port of the compressor 21 so as to be able to supply a gaseous refrigerant. The separate accumulator 28 is disposed between the accumulator 27 and the four-way valve 22, and is connected to the accumulator 27 so that a gaseous refrigerant can be supplied.
A suction pipe sensor 31 that measures the temperature of the refrigerant sucked into the compressor 21 is disposed in a pipe connecting the accumulator 27 and the separate accumulator 28.
 マフラ29は、圧縮機21から吐出される冷媒の圧力変動を緩和するものであり、圧力変動に起因する振動や騒音の発生を抑制するものである。
 マフラ29は、圧縮機21と四方弁22との間に配置され、圧縮機21の吐出口と冷媒の流通が可能に接続されている。マフラ29と圧縮機21とを接続する配管には、圧縮機21から吐出された冷媒の温度を測定する吐出管センサ32が配置されている。
The muffler 29 relaxes the pressure fluctuation of the refrigerant discharged from the compressor 21 and suppresses the generation of vibration and noise due to the pressure fluctuation.
The muffler 29 is disposed between the compressor 21 and the four-way valve 22 and is connected to the discharge port of the compressor 21 so that the refrigerant can flow. A discharge pipe sensor 32 that measures the temperature of the refrigerant discharged from the compressor 21 is disposed on the pipe connecting the muffler 29 and the compressor 21.
 四方弁22は、空気調和機1の運転状態に応じて、圧縮機21から吐出された冷媒の流出先を制御するものである。
 具体的には、冷房運転時には、圧縮機21から吐出された冷媒を室外熱交換器23に導き、室内熱交換器41から流出した冷媒を圧縮機21に導くものである。暖房運転時には、圧縮機21から吐出された冷媒を室内熱交換器41に導き、室外熱交換器23から流出した冷媒を圧縮機21に導くものである。
The four-way valve 22 controls the outflow destination of the refrigerant discharged from the compressor 21 according to the operating state of the air conditioner 1.
Specifically, during the cooling operation, the refrigerant discharged from the compressor 21 is guided to the outdoor heat exchanger 23, and the refrigerant flowing out from the indoor heat exchanger 41 is guided to the compressor 21. During the heating operation, the refrigerant discharged from the compressor 21 is guided to the indoor heat exchanger 41, and the refrigerant flowing out of the outdoor heat exchanger 23 is guided to the compressor 21.
 四方弁22は、別置アキュムレータ28に向かって冷媒を流出可能に、かつ、マフラ29から冷媒が流入可能に接続されている。さらに、室外熱交換器23および室内機4A,4B,4C,4Dの室内熱交換器41に対して冷媒が流入または流出可能に接続されている。
 四方弁22としては、公知の弁を用いることができ、特に限定するものではない。
The four-way valve 22 is connected so that the refrigerant can flow out toward the separate accumulator 28 and the refrigerant can flow in from the muffler 29. Furthermore, the refrigerant is connected to the outdoor heat exchanger 23 and the indoor heat exchangers 41 of the indoor units 4A, 4B, 4C, and 4D so that the refrigerant can flow in or out.
A known valve can be used as the four-way valve 22 and is not particularly limited.
 室外熱交換器23は、室外の空気と冷媒との間で熱交換を行うものである。具体的には、冷房運転時には、冷媒の熱を室外の空気に放熱させるものであり、暖房運転時には、室外の空気の熱を冷媒に吸熱させるものである。室外熱交換器23は、四方弁22とレシーバ(可逆方向レシーバ)50との間に配置され、両者と冷媒の流通が可能に接続されたものである。
 室外熱交換器23には、室外熱交換器23の温度を測定する室外熱交換器センサ34と、室外空気の温度を測定する外気温度センサ35と、が配置されている。
The outdoor heat exchanger 23 performs heat exchange between the outdoor air and the refrigerant. Specifically, during the cooling operation, the heat of the refrigerant is dissipated to the outdoor air, and during the heating operation, the heat of the outdoor air is absorbed by the refrigerant. The outdoor heat exchanger 23 is disposed between the four-way valve 22 and a receiver (reversible direction receiver) 50, and is connected so as to allow the refrigerant to flow therethrough.
In the outdoor heat exchanger 23, an outdoor heat exchanger sensor 34 that measures the temperature of the outdoor heat exchanger 23 and an outdoor air temperature sensor 35 that measures the temperature of outdoor air are arranged.
 図2は、図1のレシーバの構成を説明する正面図である。
 レシーバ50は、室外熱交換器23と膨張弁24A,24B,24C,24Dとの間に配置され、両者と冷媒の流通が可能に接続されたものである。レシーバ50は、冷房運転時に液体冷媒を膨張弁24A,24B,24C,24Dに供給するものであり、暖房運転時に余剰な液体冷媒を貯留(ホールド)するものである。
 レシーバ50には、図2に示すように、容器51と、第1配管(一方の配管)52Aと、第2配管(他方の配管)52Bと、が設けられている。
FIG. 2 is a front view illustrating the configuration of the receiver of FIG.
The receiver 50 is disposed between the outdoor heat exchanger 23 and the expansion valves 24A, 24B, 24C, and 24D, and is connected so as to allow the refrigerant to flow therethrough. The receiver 50 supplies liquid refrigerant to the expansion valves 24A, 24B, 24C, and 24D during the cooling operation, and stores (holds) excess liquid refrigerant during the heating operation.
As shown in FIG. 2, the receiver 50 is provided with a container 51, a first pipe (one pipe) 52A, and a second pipe (the other pipe) 52B.
 容器51は、内部に液体冷媒や気体冷媒が貯留されるものであり、本実施形態では、容器51が、両端が閉じられた円筒状に形成された例に適用して説明する。 The container 51 stores liquid refrigerant or gas refrigerant therein, and in this embodiment, the container 51 will be described by applying to an example in which the container 51 is formed in a cylindrical shape with both ends closed.
 第1配管52Aは、図1および図2に示すように、容器51と室外熱交換器23との間を冷媒が流通可能に接続する配管である。
 第1配管52Aは、図2に示すように、容器51の下端から容器51の内部に挿入されている。第1配管52Aは容器51の内部を容器51の上端に向かって延びて配置され、第1配管52Aにおける容器51内とつながる開口53Aは、容器51の上端近傍に配置されている。
As shown in FIGS. 1 and 2, the first pipe 52 </ b> A is a pipe that connects the container 51 and the outdoor heat exchanger 23 so that the refrigerant can flow therethrough.
As shown in FIG. 2, the first pipe 52 </ b> A is inserted into the container 51 from the lower end of the container 51. The first pipe 52 </ b> A extends inside the container 51 toward the upper end of the container 51, and the opening 53 </ b> A connected to the inside of the container 51 in the first pipe 52 </ b> A is arranged near the upper end of the container 51.
 第1配管52Aにおける側面には、第1配管52Aの内部と、容器51の内部とをつなぐ連通孔54が設けられている。連通孔54は、容器51の内部に貯留した圧縮機21の潤滑油(潤滑剤)を第1配管52Aの内部に流入させる孔である。連通孔54は、第1配管52Aにおける容器51の内部に配置された領域の下方、言い換えると、容器51の下端近傍に形成されている。本実施形態では、連通孔54は、第2配管52Bの開口53Bの近傍に形成されている。 A communication hole 54 that connects the inside of the first pipe 52A and the inside of the container 51 is provided on the side surface of the first pipe 52A. The communication hole 54 is a hole through which the lubricating oil (lubricant) of the compressor 21 stored in the container 51 flows into the first pipe 52A. The communication hole 54 is formed below the region of the first pipe 52 </ b> A disposed inside the container 51, in other words, near the lower end of the container 51. In the present embodiment, the communication hole 54 is formed in the vicinity of the opening 53B of the second pipe 52B.
 連通孔54の径は、暖房運転時における容器51の内部にホールドする液体冷媒の量の目標値に基づいて定められる。つまり、暖房運転時に容器51に流入する液体冷媒の流量と、連通孔54に流入する液体冷媒の流量とに基づいて定められる。 The diameter of the communication hole 54 is determined based on a target value of the amount of liquid refrigerant held in the container 51 during the heating operation. That is, it is determined based on the flow rate of the liquid refrigerant flowing into the container 51 during the heating operation and the flow rate of the liquid refrigerant flowing into the communication hole 54.
 第2配管52Bは、図1および図2に示すように、容器51と膨張弁24A,24B,24C,24Dとの間を冷媒が流通可能に接続する配管である。言い換えると、容器51と室内熱交換器41との間を冷媒が流通可能に接続する配管である。
 第2配管52Bは、図2に示すように、容器51の下端から容器51の内部に挿入されている。第2配管52Bにおける容器51内とつながる開口53Bは、容器51の下端近傍に配置されている。
As shown in FIGS. 1 and 2, the second pipe 52B is a pipe that connects the refrigerant between the container 51 and the expansion valves 24A, 24B, 24C, and 24D. In other words, the pipe connects the container 51 and the indoor heat exchanger 41 so that the refrigerant can flow therethrough.
As shown in FIG. 2, the second pipe 52 </ b> B is inserted into the container 51 from the lower end of the container 51. An opening 53 </ b> B connected to the inside of the container 51 in the second pipe 52 </ b> B is disposed in the vicinity of the lower end of the container 51.
 膨張弁24A,24B,24C,24Dは、通過する冷媒を断熱膨張させるものであり、冷媒の温度および圧力を低下させるものである。膨張弁24A,24B,24C,24Dは、それぞれ室内機4A,4B,4C,4Dに対応して配置、言い換えると、冷媒が流通可能に接続されている。具体的には、膨張弁24A,24B,24C,24Dは、レシーバ50から延びる1本の配管を室内機4A,4B,4C,4Dに対応して分岐させた4つの配管にそれぞれ配置されている。 The expansion valves 24A, 24B, 24C and 24D are for adiabatically expanding the refrigerant passing therethrough, and for reducing the temperature and pressure of the refrigerant. The expansion valves 24A, 24B, 24C, and 24D are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, in other words, are connected so that the refrigerant can flow therethrough. Specifically, the expansion valves 24A, 24B, 24C, and 24D are respectively arranged in four pipes that branch from one pipe extending from the receiver 50 in correspondence with the indoor units 4A, 4B, 4C, and 4D. .
 液側操作弁25A,25B,25C,25Dは、室内機4A,4B,4C,4Dから延びる配管と接続される部分であって、室内機4A,4B,4C,4Dのそれぞれに対応して配置された操作弁である。液側操作弁25A,25B,25C,25Dは、膨張弁24A,24B,24C,24Dと対応して配置され、両者の間には、音消しキャピラリ36およびストレーナ37が配置されている。 The liquid side operation valves 25A, 25B, 25C, and 25D are portions connected to pipes extending from the indoor units 4A, 4B, 4C, and 4D, and are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, respectively. It is an operated valve. The liquid side operation valves 25A, 25B, 25C, and 25D are disposed corresponding to the expansion valves 24A, 24B, 24C, and 24D, and a sound deadening capillary 36 and a strainer 37 are disposed therebetween.
 ガス側操作弁26A,26B,26C,26Dは、室内機4A,4B,4C,4Dから延びる配管と接続される部分であって、室内機4A,4B,4C,4Dのそれぞれに対応して配置された操作弁である。ガス側操作弁26A,26B,26C,26Dは、マニフォールド38を介して四方弁22と冷媒が流通可能に接続されている。 The gas side operation valves 26A, 26B, 26C, and 26D are portions connected to pipes extending from the indoor units 4A, 4B, 4C, and 4D, and are arranged corresponding to the indoor units 4A, 4B, 4C, and 4D, respectively. It is an operated valve. The gas side operation valves 26A, 26B, 26C, and 26D are connected to the four-way valve 22 through the manifold 38 so that the refrigerant can flow therethrough.
 室内機4A,4B,4C,4Dには、図1に示すように、室内熱交換器41と、吸込センサ42と、中央熱交センサ43と、冷房出口熱交センサ44と、が主に設けられている。 As shown in FIG. 1, the indoor units 4A, 4B, 4C, and 4D are mainly provided with an indoor heat exchanger 41, a suction sensor 42, a central heat exchange sensor 43, and a cooling outlet heat exchange sensor 44. It has been.
 室内熱交換器41は、それぞれ室内機4A,4B,4C,4Dに配置され、室内の空気と冷媒との間で熱交換を行うものである。具体的には、冷房運転時には、室内空気の熱を冷媒に吸熱させるものであり、暖房運転時には、冷媒の熱を室内空気に放熱させるものである。
 室内機4A,4B,4C,4Dの室内熱交換器41は、それぞれ液側操作弁25A,25B,25C,25Dと、ガス側操作弁26A,26B,26C,26Dと、に冷媒が流通可能に接続されている。
The indoor heat exchanger 41 is disposed in each of the indoor units 4A, 4B, 4C, and 4D, and performs heat exchange between the indoor air and the refrigerant. Specifically, the heat of the room air is absorbed by the refrigerant during the cooling operation, and the heat of the refrigerant is radiated to the room air during the heating operation.
The indoor heat exchanger 41 of the indoor units 4A, 4B, 4C, and 4D allows refrigerant to flow through the liquid side operation valves 25A, 25B, 25C, and 25D and the gas side operation valves 26A, 26B, 26C, and 26D, respectively. It is connected.
 室内熱交換器41には、室内機4A,4B,4C,4Dに吸い込まれた室内空気の温度を測定する吸込センサ42と、室内熱交換器41における中央部の温度を測定する中央熱交センサ43と、冷房時における冷媒出口となる室内熱交換器41の端部温度を測定する冷房出口熱交センサ44と、が配置されている。 The indoor heat exchanger 41 includes a suction sensor 42 that measures the temperature of indoor air sucked into the indoor units 4A, 4B, 4C, and 4D, and a central heat exchange sensor that measures the temperature of the central portion of the indoor heat exchanger 41. 43 and a cooling outlet heat exchange sensor 44 that measures the end temperature of the indoor heat exchanger 41 that serves as a refrigerant outlet during cooling.
 次に、上記の構成からなる空気調和機1における冷房運転および暖房運転について説明する。 Next, the cooling operation and the heating operation in the air conditioner 1 having the above configuration will be described.
 冷房運転が行われる場合には、図1に示すように、四方弁22が切り替えられ、圧縮機21の吐出口と室外熱交換器23とが接続され、圧縮機21の吸入口と室内熱交換器41とが接続される。
 圧縮機21から吐出された高温高圧の冷媒は、マフラ29および四方弁22を介して、室外熱交換器23に流入する。冷媒は室外熱交換器23において熱を室外空気に放出して凝縮し、液体冷媒となる。高圧の液体冷媒は、室外熱交換器23からレシーバ50を介して膨張弁24A,24B,24C,24Dに導かれる。
When the cooling operation is performed, as shown in FIG. 1, the four-way valve 22 is switched, the discharge port of the compressor 21 and the outdoor heat exchanger 23 are connected, and the suction port of the compressor 21 and the indoor heat exchange are connected. The device 41 is connected.
The high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 through the muffler 29 and the four-way valve 22. In the outdoor heat exchanger 23, the refrigerant releases heat to the outdoor air and condenses to become a liquid refrigerant. The high-pressure liquid refrigerant is led from the outdoor heat exchanger 23 to the expansion valves 24A, 24B, 24C, and 24D via the receiver 50.
 高圧の液体冷媒は、膨張弁24A,24B,24C,24Dを通過する際に断熱膨張し、低温低圧の冷媒となる。低温低圧の冷媒は、音消しキャピラリ36、ストレーナ37および液側操作弁25A,25B,25C,25Dを介して室内機4A,4B,4C,4Dの室内熱交換器41に流入する。冷媒は室内熱交換器41において室内空気から熱を吸収して蒸発し、気体冷媒となる。その一方で、室内空気は熱を奪われて冷却される。 The high-pressure liquid refrigerant undergoes adiabatic expansion when passing through the expansion valves 24A, 24B, 24C, and 24D, and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 41 of the indoor units 4A, 4B, 4C, and 4D through the silencer capillary 36, the strainer 37, and the liquid side operation valves 25A, 25B, 25C, and 25D. The refrigerant absorbs heat from indoor air in the indoor heat exchanger 41 and evaporates to become a gaseous refrigerant. On the other hand, the indoor air is deprived of heat and cooled.
 気体冷媒は、ガス側操作弁26A,26B,26C,26D、マニフォールド38、四方弁22、別置アキュムレータ28およびアキュムレータ27を介して圧縮機21の吸入口に吸入される。吸入された冷媒は圧縮機21により圧縮され、高温高圧の冷媒として吐出口から吐出される。以後、上述の過程が繰り返されることにより冷房運転が継続される。 The gaseous refrigerant is sucked into the suction port of the compressor 21 through the gas side operation valves 26A, 26B, 26C, and 26D, the manifold 38, the four-way valve 22, the separate accumulator 28, and the accumulator 27. The sucked refrigerant is compressed by the compressor 21 and discharged from the discharge port as a high-temperature and high-pressure refrigerant. Thereafter, the cooling operation is continued by repeating the above-described process.
 暖房運転が行われる場合には、図1に示すように、四方弁22が切り替えられ、圧縮機21の吐出口と室内熱交換器41とが接続され、圧縮機21の吸入口と室外熱交換器23とが接続される。
 圧縮機21から吐出された高温高圧の冷媒は、マフラ29および四方弁22を介して、室内熱交換器41に流入する。冷媒は室内熱交換器41において熱を室内空気に放出して凝縮し、液体冷媒となる。その一方で、室内空気は熱を吸収して加熱される。高圧の液体冷媒は、室内熱交換器41から液側操作弁25A,25B,25C,25D、ストレーナ37および音消しキャピラリ36を介して膨張弁24A,24B,24C,24Dに導かれる。
When the heating operation is performed, as shown in FIG. 1, the four-way valve 22 is switched, the discharge port of the compressor 21 and the indoor heat exchanger 41 are connected, and the suction port of the compressor 21 and the outdoor heat exchange are connected. The device 23 is connected.
The high-temperature and high-pressure refrigerant discharged from the compressor 21 flows into the indoor heat exchanger 41 through the muffler 29 and the four-way valve 22. In the indoor heat exchanger 41, the refrigerant releases heat to the indoor air and condenses to become a liquid refrigerant. On the other hand, indoor air absorbs heat and is heated. The high-pressure liquid refrigerant is guided from the indoor heat exchanger 41 to the expansion valves 24A, 24B, 24C, and 24D via the liquid side operation valves 25A, 25B, 25C, and 25D, the strainer 37, and the sound-eliminating capillary 36.
 高圧の液体冷媒は、膨張弁24A,24B,24C,24Dを通過する際に断熱膨張し、低温低圧の冷媒となる。低温低圧の冷媒は、レシーバ50を介して室外熱交換器23に流入する。冷媒は室外熱交換器23において室外空気から熱を吸収して蒸発し、気体冷媒となる。 The high-pressure liquid refrigerant undergoes adiabatic expansion when passing through the expansion valves 24A, 24B, 24C, and 24D, and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows into the outdoor heat exchanger 23 via the receiver 50. The refrigerant absorbs heat from the outdoor air in the outdoor heat exchanger 23 and evaporates to become a gaseous refrigerant.
 気体冷媒は、四方弁22、別置アキュムレータ28およびアキュムレータ27を介して圧縮機21の吸入口に吸入される。吸入された冷媒は圧縮機21により圧縮され、高温高圧の冷媒として吐出口から吐出される。以後、上述の過程が繰り返されることにより冷房運転が継続される。 The gaseous refrigerant is sucked into the suction port of the compressor 21 through the four-way valve 22, the separate accumulator 28 and the accumulator 27. The sucked refrigerant is compressed by the compressor 21 and discharged from the discharge port as a high-temperature and high-pressure refrigerant. Thereafter, the cooling operation is continued by repeating the above-described process.
 次に、本実施形態の特徴であるレシーバ50における冷媒の流れおよび貯留について説明する。
 最初に暖房運転時におけるレシーバ50への液体冷媒の貯留、言い換えると、レシーバ50による液体冷媒のホールドについて説明する。
Next, the refrigerant flow and storage in the receiver 50, which is a feature of the present embodiment, will be described.
First, the storage of the liquid refrigerant in the receiver 50 during the heating operation, in other words, the holding of the liquid refrigerant by the receiver 50 will be described.
 空気調和機1における暖房運転時には、膨張弁24A,24B,24C,24Dにより減圧された気体冷媒および液体冷媒が混合した冷媒が、第2配管52Bを通じてレシーバ50に流入する。気体冷媒は第1配管52Aの上端に形成された開口53Aから配管内に流入してレシーバ50から流出する。そのため、液体冷媒の大半は容器の内部にホールドされる。一部の液体冷媒は、第1配管52Aの側面に形成された連通孔54から、液体冷媒に含まれる潤滑油とともに配管内に流入してレシーバ50から流出する。
 第2配管52Bから容器51に流入する液体冷媒の流量と比較して、連通孔54を通過して容器51から流出する液体冷媒の流量は少ないため、空気調和機1の暖房運転時であっても、液体冷媒をレシーバ50にホールドされる。
During the heating operation of the air conditioner 1, the refrigerant in which the gas refrigerant and the liquid refrigerant decompressed by the expansion valves 24A, 24B, 24C, 24D are mixed flows into the receiver 50 through the second pipe 52B. The gaseous refrigerant flows into the pipe from the opening 53A formed at the upper end of the first pipe 52A and flows out from the receiver 50. Therefore, most of the liquid refrigerant is held inside the container. A part of the liquid refrigerant flows into the pipe together with the lubricating oil contained in the liquid refrigerant from the communication hole 54 formed on the side surface of the first pipe 52 </ b> A and flows out from the receiver 50.
Compared with the flow rate of the liquid refrigerant flowing into the container 51 from the second pipe 52B, the flow rate of the liquid refrigerant flowing through the communication hole 54 and out of the container 51 is small. Also, the liquid refrigerant is held in the receiver 50.
 ここで、第1配管52Aにおける開口53Aは、容器51の上端近傍に配置することにより、液体冷媒の液面が開口53Aまで上昇して始めて、液体冷媒が第1配管52Aを通じてレシーバ50の外へ流出する。言い換えると、容器51の内部にホールドされる液体冷媒の量が増やされる。さらに、連通孔54を容器51の下端近傍に配置することにより、容器51の下方に溜まりやすい潤滑油は、容易に連通孔54を介して一方の配管の内部に流入する。 Here, the opening 53A in the first pipe 52A is arranged in the vicinity of the upper end of the container 51, so that the liquid refrigerant begins to rise up to the opening 53A, and the liquid refrigerant goes out of the receiver 50 through the first pipe 52A. leak. In other words, the amount of liquid refrigerant held in the container 51 is increased. Furthermore, by arranging the communication hole 54 in the vicinity of the lower end of the container 51, the lubricating oil that tends to accumulate below the container 51 easily flows into one pipe through the communication hole 54.
 空気調和機1における冷房運転時には、暖房運転時とは冷媒の流れ方向が逆になり、室外熱交換器23により凝縮された液体冷媒が、第1配管52Aを通じてレシーバ50に流入する。液体冷媒は、第2配管52Bを通じて膨張弁24A,24B,24C,24Dに流入するが、膨張弁24A,24B,24C,24Dを通過する液体冷媒の流量は制限されているため、余剰な液体冷媒はレシーバ50に溜まる。そのため、冷房運転時にレシーバ50には、液体冷媒が一時的に貯留される。
 先行技術文献に記載された可逆方向レシーバと比較して、容器の内部に第1配管52Aが配置された領域と第2配管52Bが配置された領域とを区画する仕切り板が設けられていないため、冷媒がレシーバ50を通過する際の流れ抵抗が小さくなる。
During the cooling operation of the air conditioner 1, the flow direction of the refrigerant is reversed from that during the heating operation, and the liquid refrigerant condensed by the outdoor heat exchanger 23 flows into the receiver 50 through the first pipe 52A. The liquid refrigerant flows into the expansion valves 24A, 24B, 24C, and 24D through the second pipe 52B. However, since the flow rate of the liquid refrigerant that passes through the expansion valves 24A, 24B, 24C, and 24D is limited, the excess liquid refrigerant Accumulates in the receiver 50. Therefore, the liquid refrigerant is temporarily stored in the receiver 50 during the cooling operation.
Compared to the reversible direction receiver described in the prior art document, there is no partition plate that divides the region where the first pipe 52A is arranged and the region where the second pipe 52B is arranged inside the container. The flow resistance when the refrigerant passes through the receiver 50 is reduced.
 ここで、容器51の内部では液体冷媒は下方に溜まり、気体冷媒は上方に溜まりやすい。膨張弁24A,24B,24C,24Dへ冷媒を供給する第2配管52Bの開口53Bを、容器51の下端近傍に配置することにより、開口53Bを溜まった液体冷媒の内部に配置させることができ、膨張弁24A,24B,24C,24Dへ液体冷媒を供給しやすくなる。 Here, in the container 51, the liquid refrigerant accumulates downward, and the gas refrigerant easily accumulates upward. By arranging the opening 53B of the second pipe 52B for supplying the refrigerant to the expansion valves 24A, 24B, 24C, 24D in the vicinity of the lower end of the container 51, the opening 53B can be arranged inside the accumulated liquid refrigerant, It becomes easy to supply the liquid refrigerant to the expansion valves 24A, 24B, 24C, and 24D.
 上記の構成によれば、暖房運転時であってもレシーバ50に液体冷媒をホールドすることができるようになり、室外機2に接続される室内機4A,4B,4C,4Dの台数を減らしても、室内熱交換器41などにおける冷媒の圧力が過度に上昇することを防止することができる。言い換えると、空気調和機1における室内機4A,4B,4C,4Dの最小接続台数を減らすことができ、空気調和機1における据え付けバリエーションを増やすことができ、より広い範囲で市場ニーズに合致した空気調和機1を提供することができる。 According to the above configuration, the liquid refrigerant can be held in the receiver 50 even during heating operation, and the number of indoor units 4A, 4B, 4C, 4D connected to the outdoor unit 2 can be reduced. In addition, it is possible to prevent the refrigerant pressure in the indoor heat exchanger 41 and the like from rising excessively. In other words, the minimum number of indoor units 4A, 4B, 4C, 4D in the air conditioner 1 can be reduced, the number of installation variations in the air conditioner 1 can be increased, and air that meets market needs in a wider range. The harmony machine 1 can be provided.
 1 空気調和機
 2 室外機
 4A,4B,4C,4D 室内機
 23 室外熱交換器
 24A,24B,24C,24D 膨張弁(絞り機構)
 41 室内熱交換器
 50 レシーバ(可逆方向レシーバ)
 51 容器
 52A 第1配管(一方の配管)
 52B 第2配管(他方の配管)
 53A 開口
 53B 開口
 54 連通孔
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 4A, 4B, 4C, 4D Indoor unit 23 Outdoor heat exchanger 24A, 24B, 24C, 24D Expansion valve (throttle mechanism)
41 Indoor heat exchanger 50 Receiver (Reversible receiver)
51 container 52A first pipe (one pipe)
52B Second piping (the other piping)
53A opening 53B opening 54 communication hole

Claims (3)

  1.  冷媒の流れ方向が可逆的に切替可能なヒートポンプ式の空気調和機に用いられる可逆方向レシーバであって、
     内部に前記冷媒を貯留する容器と、
     前記容器の下方から上方に向かって延びるとともに上端に開口を有し、前記空気調和機が冷房運転時に前記容器に前記冷媒を流入させ、暖房運転時に前記容器から前記冷媒を流出させる一方の配管と、
     前記容器の下方から上方に向かって延びるとともに上端に開口を有し、前記空気調和機が冷房運転時に前記容器から前記冷媒を流出させ、暖房運転時に前記容器に前記冷媒を流入させる他方の配管と、
    が設けられ、
     前記一方の配管は前記他方の配管よりも上方まで延びるとともに、前記一方の配管における前記容器内に配置された領域の側面には、前記一方の配管および前記容器の内部をつなぐ連通孔が設けられ、
     前記他方の配管は、前記空気調和機における前記冷媒の圧力を減圧させる絞り機構に接続されている可逆方向レシーバ。
    A reversible direction receiver used in a heat pump type air conditioner capable of reversibly switching the flow direction of the refrigerant,
    A container for storing the refrigerant therein;
    One pipe extending from the bottom to the top of the container and having an opening at the upper end, and the air conditioner allows the refrigerant to flow into the container during cooling operation and allows the refrigerant to flow out from the container during heating operation; ,
    The other pipe extending from the bottom to the top of the container and having an opening at the upper end thereof, the air conditioner causes the refrigerant to flow out of the container during cooling operation, and allows the refrigerant to flow into the container during heating operation; ,
    Is provided,
    The one pipe extends to a position higher than the other pipe, and a communication hole that connects the one pipe and the inside of the container is provided on a side surface of an area of the one pipe disposed in the container. ,
    The other pipe is a reversible direction receiver connected to a throttle mechanism for reducing the pressure of the refrigerant in the air conditioner.
  2.  前記他方の配管における前記開口および前記連通孔は、前記容器の下端近傍に配置され、
     前記一方の配管における前記開口は、前記容器の上端近傍に配置されている請求項1記載の可逆方向レシーバ。
    The opening and the communication hole in the other pipe are arranged near the lower end of the container,
    The reversible direction receiver according to claim 1, wherein the opening in the one pipe is disposed in the vicinity of an upper end of the container.
  3.  室外熱交換器を有する室外機と、
     室内熱交換器を有する室内機と、
     請求項1または2に記載の可逆方向レシーバと、
    が設けられ、
     前記一方の配管は、前記室外熱交換器と前記冷媒が流通可能に接続され、
     前記他方の配管は、前記絞り機構を介して前記室内熱交換器と前記冷媒が流通可能に接続されている空気調和機。
    An outdoor unit having an outdoor heat exchanger;
    An indoor unit having an indoor heat exchanger;
    Reversible direction receiver according to claim 1 or 2,
    Is provided,
    The one pipe is connected so that the outdoor heat exchanger and the refrigerant can flow,
    The other pipe is an air conditioner in which the indoor heat exchanger and the refrigerant are connected to each other through the throttle mechanism.
PCT/JP2011/050636 2010-02-10 2011-01-17 Reversible receiver, and air conditioner WO2011099323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11742072.9A EP2535668A4 (en) 2010-02-10 2011-01-17 Reversible receiver, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-027738 2010-02-10
JP2010027738A JP2011163674A (en) 2010-02-10 2010-02-10 Reversible receiver and air conditioner

Publications (1)

Publication Number Publication Date
WO2011099323A1 true WO2011099323A1 (en) 2011-08-18

Family

ID=44367609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050636 WO2011099323A1 (en) 2010-02-10 2011-01-17 Reversible receiver, and air conditioner

Country Status (3)

Country Link
EP (1) EP2535668A4 (en)
JP (1) JP2011163674A (en)
WO (1) WO2011099323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672205A3 (en) * 2012-06-06 2014-03-12 Mitsubishi Heavy Industries, Ltd. Heat exchanger system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494916B2 (en) * 2014-03-07 2019-04-03 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner using the same
JP7303172B2 (en) * 2015-07-30 2023-07-04 ダイキン工業株式会社 refrigeration equipment
CN105241132B (en) * 2015-09-17 2017-10-20 芜湖三花制冷配件有限公司 A kind of production technology of reservoir
DE102017107051A1 (en) * 2017-04-01 2018-10-04 Viessmann Werke Gmbh & Co Kg heat pump
US11592216B2 (en) 2018-09-12 2023-02-28 Carrier Corporation Liquid receiver for heating, air conditioning and refrigeration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139833A (en) * 1993-11-17 1995-06-02 Daikin Ind Ltd Air conditioner
JPH11248267A (en) * 1997-12-19 1999-09-14 Mitsubishi Electric Corp Refrigeration cycle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485366U (en) * 1971-06-04 1973-01-22
JPS544464U (en) * 1977-06-14 1979-01-12
JPH10148407A (en) * 1996-11-20 1998-06-02 Yamaha Motor Co Ltd Air-conditioning apparatus
JP3336884B2 (en) * 1996-11-25 2002-10-21 株式会社日立製作所 Air conditioner
JP2009047326A (en) * 2007-08-16 2009-03-05 Total Air Service Kk Air conditioning, freezing and refrigerating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139833A (en) * 1993-11-17 1995-06-02 Daikin Ind Ltd Air conditioner
JPH11248267A (en) * 1997-12-19 1999-09-14 Mitsubishi Electric Corp Refrigeration cycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2535668A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672205A3 (en) * 2012-06-06 2014-03-12 Mitsubishi Heavy Industries, Ltd. Heat exchanger system

Also Published As

Publication number Publication date
JP2011163674A (en) 2011-08-25
EP2535668A4 (en) 2013-08-28
EP2535668A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4715561B2 (en) Refrigeration equipment
JP3925545B2 (en) Refrigeration equipment
WO2011099323A1 (en) Reversible receiver, and air conditioner
JP5306766B2 (en) Air conditioner
US20060123817A1 (en) Air conditioner
JP2005233179A (en) Suction pipe structure of compressor
JP4274235B2 (en) Refrigeration equipment
KR101288745B1 (en) Air conditioner
EP1691146A1 (en) Multi-air conditioner capable of performing simultaneous cooling and heating
JP2008051373A (en) Gas-liquid separator
JP5377041B2 (en) Refrigeration cycle equipment
JPWO2020255484A1 (en) Air conditioner
JP5645453B2 (en) Air conditioner
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP4844601B2 (en) Refrigeration equipment
JP6399068B2 (en) accumulator
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2015152241A (en) Outdoor unit of air conditioner
JP6222493B2 (en) Air conditioner
KR100535807B1 (en) Refrigerating cycle
KR100857315B1 (en) Compress/condensor unit for air - conditioner
JP4739883B2 (en) Air conditioner
JP2018096582A (en) Freezer
KR100850953B1 (en) Air conditioner
KR100696715B1 (en) Accumulator of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011742072

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE