WO2011099126A1 - Liquid-cooling system and electronic apparatus provided with liquid-cooling system - Google Patents

Liquid-cooling system and electronic apparatus provided with liquid-cooling system Download PDF

Info

Publication number
WO2011099126A1
WO2011099126A1 PCT/JP2010/051974 JP2010051974W WO2011099126A1 WO 2011099126 A1 WO2011099126 A1 WO 2011099126A1 JP 2010051974 W JP2010051974 W JP 2010051974W WO 2011099126 A1 WO2011099126 A1 WO 2011099126A1
Authority
WO
WIPO (PCT)
Prior art keywords
reserve tank
cooling system
refrigerant
axis
light source
Prior art date
Application number
PCT/JP2010/051974
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 増田
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2010/051974 priority Critical patent/WO2011099126A1/en
Priority to US13/577,864 priority patent/US20120298339A1/en
Priority to CN201080063381.8A priority patent/CN102754537B/en
Publication of WO2011099126A1 publication Critical patent/WO2011099126A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds

Definitions

  • the present invention relates to a liquid cooling system mounted on an electronic device.
  • Electronic devices such as personal computers and projectors have built-in elements and light sources that generate heat during operation.
  • electronic devices also include components and elements that are heated by heat generated from the elements and light sources.
  • a CPU Central Processing Unit
  • LED Light-Emitting Diode
  • the memory, hard disk, etc. built in the personal computer are heated by the heat generated by the CPU.
  • the image forming elements liquid crystal panels and DMD (Digital Micro-mirror Device)) built in the projector, mirrors, lenses, deflectors, etc. arranged on the optical path are heated by the light source (emitted from the light source). Heat). Therefore, it is necessary to cool the elements, light sources, components, and the like.
  • the above elements, light sources, components, and the like are collectively referred to as “cooling targets”.
  • ⁇ Systems for cooling the object to be cooled are roughly divided into air cooling and liquid cooling.
  • the cooling target is cooled by heat exchange between the cooling target and the liquid (refrigerant). Therefore, a general cooling system has a flow path through which the refrigerant circulates, and a pump that circulates the refrigerant and a tank that stores a predetermined amount of the refrigerant are provided on the flow path.
  • a gas layer is provided in the tank to absorb the volume expansion of the refrigerant due to the temperature change.
  • gas may be mixed in the flow path unintentionally. And when the gas in a tank or the gas in a flow path flows into a pump, there exists a possibility of causing the malfunction of a pump.
  • Patent Document 1 describes a liquid cooling system (water cooling system) including a reserve tank.
  • An inflow port is formed on the right side of the reserve tank disclosed in Patent Document 1, and a hollow tube having an outflow port is provided on the left side. And one end (outlet) of the hollow tube extends to the center of the reserve tank. That is, the outflow port is arranged at the center of the reserve tank.
  • the outlet is always kept below the coolant level. Therefore, even if the water surface of the refrigerant fluctuates with the change in the reserve tank posture, the gas in the reserve tank does not flow out from the outlet.
  • Patent Document 1 does not explain whether the hollow tube is integrally formed with the tank body. If the hollow tube is integrally formed with the tank body, there are the following problems. Generally, the reserve tank is molded using a mold. However, it is very difficult to produce a molded product in which an elongated tubular portion such as a hollow tube and a main body portion are integrally molded using a mold.
  • the hollow tube and the tank body are separately molded, there are the following problems.
  • the hollow tube and the tank main body are separately formed, it is necessary to insert and fix the hollow tube into a hole provided in the side surface of the tank main body, which increases the manufacturing process. Specifically, a step of fixing the hollow tube inserted into the hole provided on the side surface of the tank body by a fixing means such as welding or adhesion is required.
  • the liquid cooling system of the present invention is a liquid cooling system mounted on an electronic device.
  • the liquid cooling system of the present invention includes a flow path through which a refrigerant circulates, and a pump and a reserve tank disposed on the flow path. A part of the side surface of the reserve tank is set back to the vicinity of the center of the reserve tank to form a recess. An outflow port through which the refrigerant flows out is formed at the front center of the recess.
  • the outlet is arranged near the center of the tank by setting back the outlet forming surface of the reserve tank toward the center of the tank. Therefore, the outflow port can be provided near the center of the tank without using an elongated tubular member such as a hollow tube.
  • FIG. 2 is an exploded perspective view of the light source unit shown in FIG. It is a perspective view which shows the main flows of the refrigerant
  • FIG. 1 is a perspective view showing a part of the internal structure of a projector equipped with the liquid cooling system of the present invention.
  • the housing is not shown in order to show the internal structure.
  • the projector projects an image forming unit 1, three LED (Light Emitting Diode) light source units 2 arranged around the image forming unit 1, and an image formed in the image forming unit 1. It has a lens 3 and a liquid cooling system 4.
  • LED Light Emitting Diode
  • the three LED light source units 2 include a red light source unit 2R that generates red light, a green light source unit 2G that generates green light, and a blue light source unit 2B that generates blue light.
  • each light source unit 2 includes at least a pair of holders 11 on which the LEDs 10 are mounted, a cooling mechanism 12 for maintaining the temperature of the LEDs 10 below a predetermined temperature, and a condenser lens 13. .
  • the components of each light source unit 2 including the holder 11, the cooling mechanism 12, and the condenser lens 13 are accommodated in and integrated with the box 14.
  • a pair of holders 11 in each light source unit 2 are arranged to face each other, and light emitted from the LEDs 10 mounted on the respective holders 11 is condensed by a condenser lens 13 and is image forming unit 1 (FIG. 1).
  • the image forming unit 1 includes at least a cross dichroic prism and three liquid crystal panels arranged around the prism. Three liquid crystal panels are prepared for each light source unit. Each liquid crystal panel modulates the light emitted from each light source unit 2 based on the video signal. That is, the light (red light) emitted from the red light source unit 2R is incident on the red liquid crystal panel and modulated. Light (green light) emitted from the green light source unit 2G is incident on the green liquid crystal panel and modulated. The light (blue light) emitted from the blue light source unit 2B enters the blue liquid crystal panel and is modulated. The light modulated by each liquid crystal panel is combined by a cross dichroic prism and projected onto a screen or the like via a projection lens 3.
  • the liquid cooling system 4 includes a flow path 20 that passes through the light source units 2R, 2G, and 2B.
  • a pump 21 that supplies cooling air to the radiator 23 are disposed.
  • the liquid cooling system 4 according to the present embodiment includes two radiators (first radiator 23a and second radiator 23b) and two fans (first radiators) that supply cooling air to the radiators 23a and 23b.
  • a fan 24a and a second fan 24b) are provided.
  • the flow path 20 is comprised with the tube which has flexibility.
  • FIG. 3 schematically shows the refrigerant flow in the liquid cooling system 4.
  • the arrows in FIG. 3 indicate the flow of the refrigerant in the liquid cooling system 4.
  • the arrows in FIG. 3 indicate the main flow of the refrigerant and do not completely match the actual flow path design.
  • the refrigerant sent out from the pump 21 is branched before the radiator 23 and flows into the first radiator 23a and the second radiator 23b, respectively.
  • the refrigerant flowing into each radiator 23a, 23b is cooled by heat exchange.
  • the refrigerant that has flowed out of the first radiator 23 a and the second radiator 23 b merges and flows into the reserve tank 22.
  • the refrigerant that has flowed out of the reserve tank 22 flows into the red light source unit 2R, and cools the LEDs in the light source unit 2R. Thereafter, the refrigerant returns to the pump 21 via the green light source unit 2G and the blue light source unit 2B.
  • the refrigerant flowing into the green light source unit 2G and the blue light source unit 2B cools the LEDs in the light source units 2G and 2B. That is, when the pump 21 is the starting point, the refrigerant circulates in the order of pump 21 ⁇ radiator 23 ⁇ reserve tank 22 ⁇ red light source unit 2R ⁇ green light source unit 2G ⁇ blue light source unit 2B ⁇ pump 21. Since the refrigerant follows the circulation path as described above, the temperature of the refrigerant is lowest immediately after flowing out of the radiator 23, and the temperature of the refrigerant gradually increases in the process of passing through the light source units 2R, 2G, and 2B.
  • the amount of heat generated by the red LED incorporated in the red light source unit 2R is smaller than the amount of heat generated by the green LED and the blue LED incorporated in the other light source units 2G, 2B.
  • the red LED has a larger luminance change due to the temperature change than the green LED and the blue LED. In other words, the luminance change due to the temperature change of the red LED is steeper than that of the green LED or the blue LED.
  • red LEDs are more sensitive to temperature changes than green LEDs and blue LEDs. In other words, the change in the temperature characteristic of the red LED is more steep than the change in the temperature characteristic of the green LED or the blue LED. Therefore, temperature management of the red LED is most important. Therefore, the flow path design as described above is adopted. That is, a flow path design is adopted in which the refrigerant cooled in the radiator 23 is first supplied to the red light source unit 2R.
  • each light source unit 2 includes a pair of LEDs 10. Therefore, it is preferable that the temperature difference between the pair of LEDs 10 is small. In particular, the temperature difference between the pair of red LEDs 10 incorporated in the red light source unit 2R is preferably maintained as zero as possible. Therefore, different flow path designs are adopted for the red light source unit 2R and the other light source units 2G, 2B. Specifically, parallel flow paths are provided in the red light source unit 2R, and serial flow paths are provided in the green light source unit 2G and the blue light source unit 2B.
  • a pair of holders 11 each having an LED 10 mounted on the surface thereof are opposed to each other in the box 14 of each light source unit 2.
  • a heat radiating element (Peltier element 15 in the present embodiment) is disposed in close contact with the back surface of each holder 11 of the red light source unit 2R.
  • cold plates 16 are arranged in close contact with the Peltier element 15 on the back side. Note that two assemblies of the holder 11, the Peltier element 15 and the cold plate 16 are built in the box 14, but only the structure of one of the assemblies is shown in FIG. However, the two assemblies have the same structure.
  • the refrigerant flows into the cold plate 16 through the inlet and flows out of the cold plate 16 through the outlet.
  • heat exchange is performed between the Peltier element 15 and the refrigerant via the cold plate 16.
  • heat exchange is performed between the refrigerant and the LED 10 via the cold plate 16 and the Peltier element 15.
  • the refrigerant flowing into the red light source unit 2R having the above structure is divided and supplied to the two cold plates 16, respectively.
  • the refrigerant flowing into the green light source unit 2G and the blue light source unit 2B is sequentially supplied to the two cold plates 16 without being divided. Therefore, the two red LEDs 10 incorporated in the red light source unit 2R are cooled by the refrigerant having the same temperature.
  • the refrigerant having the lowest temperature is supplied to the red light source unit 2R. That is, the two red LEDs 10 incorporated in the red light source unit 2R are uniformly cooled by the refrigerant having the lowest temperature and the same temperature. As a result, the temperature of the two red LEDs 10 is maintained below a predetermined temperature, and the temperature difference between the two red LEDs 10 is maintained as zero as possible.
  • the two LEDs 10 incorporated in the green light source unit 2G and the blue light source unit 2B having serial flow paths are cooled by refrigerants having different temperatures.
  • the rear-stage LED 10 is cooled by the refrigerant whose temperature has increased due to heat exchange with the front-stage LED 10. More specifically, the refrigerant flowing into the green light source unit 2G flows into the cold plate 16 at the front stage, cools the green LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the green LED 10 at the rear stage.
  • the refrigerant flowing into the blue light source unit flows into the cold plate 16 at the front stage, cools the blue LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the blue LED 10 at the rear stage.
  • the luminance change due to the temperature change of the green LED 10 and the blue LED 10 is smaller than that of the red LED 10. Therefore, a slight temperature difference between the two green LEDs 10 in the green light source unit 2G is acceptable. Similarly, some temperature difference between the two blue LEDs 10 in the blue light source unit 2B is acceptable.
  • FIG. 4 is an external perspective view of the reserve tank 22.
  • FIG. 5 is a plan view of each surface of the reserve tank 22, and
  • FIG. 6 is a cross-sectional view of the reserve tank 22.
  • FIG. 7 is an exploded perspective view of the reserve tank.
  • the reserve tank 22 has a substantially cylindrical main body 30 as a whole, a lower lid 31 disposed at one end in the longitudinal direction of the main body 30, and an upper lid 32 disposed at the other end in the longitudinal direction.
  • the main body 30, the lower lid 31, and the upper lid 32 are made of a metal such as aluminum or an aluminum alloy.
  • the main body 30, the lower lid 31, and the upper lid 32 are individually made by molding and assembled as shown in FIG. Specifically, the four corners of the lower lid 31 are fixed to the lower end surface of the main body 30 by screws 34. The four corners of the upper lid 32 are fixed to the upper end surface of the main body 30 by screws 35.
  • a watertight packing (O-ring 36) is disposed between the main body 30 and the upper and lower lids 31 and 32, respectively. Further, the upper lid 32 is provided with a refrigerant replenishment port 37.
  • a recess 40 is formed on the side of the main body of the reserve tank 22, and an inlet 43 and an outlet 42 are formed on the front surface 41 of the recess 40.
  • three axes orthogonal to each other at the center of the tank 22 are defined.
  • One of two axes existing in a plane parallel to the opening surface of the main body 30 and orthogonal to each other at the center of the tank is defined as an X axis, and the other is defined as a Y axis.
  • An axis perpendicular to both the X axis and the Y axis at the tank center is defined as a Z axis.
  • FIG. 6 shows a cross section of the reserve tank 22 (main body 30) cut along the XY plane. It can also be understood that the Y-axis direction is parallel to the refrigerant inflow direction and the outflow direction.
  • the above definition is only a definition for convenience of explanation.
  • the recess 40 is provided in the center of the main body 30 in the Z-axis direction (center axis direction).
  • the recess 40 is recessed in the Y-axis direction toward the center of the main body 30.
  • the recess 40 is set back in the Y-axis direction.
  • the front surface 41 of the recess 40 is set back to the back of the XZ plane. In other words, the front surface 41 of the recess 40 is set back from the center of the main body 30 to the back.
  • the outlet 42 is provided in the center of the front surface of the recess 40 set back as described above. That is, the outflow port 42 is provided at substantially the center of the reserve tank 22.
  • the inflow port 43 is provided adjacent to the outflow port 42 on the front surface 41 of the recess 40 set back as described above. More precisely, the outlet 42 is located at the center of the reserve tank 22 in the X-axis direction and the Z-axis direction, and is located behind the center of the reserve tank 22 in the Y-axis direction. . In other words, the center of the outlet 42 is shifted along the Y axis from the center of the reserve tank 22 (the intersection of the three axes).
  • the inner diameters of the outlet 42 and the inlet 43 are preferably in the range of 3 mm to 10 mm, and more preferably in the range of 4 mm to 6 mm.
  • the inner diameter of the outlet 42 and the inlet 43 is 4 mm.
  • a joint 51 that communicates with the outlet 42 and a joint 52 that communicates with the inlet 43 are integrally formed on the front surface 41 of the recess 40.
  • the joints 51, 52 protrude from the edges of the outlet 42 and the inlet 43 in the direction opposite to the setback direction of the recess 40.
  • the protruding lengths (heights) of the joints 51 and 52 with respect to the front surface 41 of the recess 40 are shorter than the setback amount of the recess 40.
  • the two joints 51 and 52 are connected to tubes constituting a part of the flow path 20, respectively. Specifically, a tube connecting the reserve tank 22 and the radiator 23 is connected to the joint 52 communicating with the inlet 43.
  • a tube connecting the reserve tank 22 and the red light source unit 2R is connected to the joint 51 communicating with the outflow port 42.
  • the outlet 42 By arranging the outlet 42 at the above position, the gas in the reserve tank 22 does not flow out of the outlet 42 even if the coolant level in the reserve tank 22 fluctuates as the projector changes its attitude. . In other words, the outflow port 42 does not come out above the water surface of the refrigerant.
  • 8A to 13B show the relationship between the attitude of the projector 60 and the attitude of the reserve tank 22. 8B to 13B, the refrigerant in the reserve tank 22 is indicated by hatching.
  • FIG. 8A shows the first posture of the projector 60. In the first posture, the projector 60 is placed horizontally with its bottom surface 61 facing down.
  • FIG. 8B shows the posture of the reserve tank 22 when the projector 60 is in the first posture.
  • FIG. 9A shows the second posture of the projector 60. In the second posture, the projector 60 is placed horizontally with its upper surface 62 facing down.
  • FIG. 9B shows the posture of the reserve tank 20 when the projector 60 is in the second posture.
  • FIG. 10A shows the third posture of the projector 60.
  • the projector 60 stands vertically with its right side surface 63 facing down.
  • FIG. 10B shows the posture of the reserve tank 22 when the projector 60 is in the third posture.
  • FIG. 11A shows a fourth posture of the projector 60.
  • the projector 60 stands vertically with its left side surface 64 down.
  • FIG. 11B shows the posture of the reserve tank 22 when the projector 60 is in the fourth posture.
  • FIG. 12A shows the fifth posture of the projector 60. In the fifth posture, the projector 60 stands vertically with its back surface 65 down.
  • FIG. 12B shows the posture of the reserve tank 22 when the projector 60 is in the fifth posture.
  • FIG. 13A shows the sixth posture of the projector 60.
  • the projector 60 stands vertically with its front surface 66 down.
  • FIG. 13B shows the posture of the reserve tank 22 when the projector 60 is in the sixth posture.
  • the first posture is a posture in the most general use state of the projector 60. Further, when the projector 60 is suspended from the ceiling, the posture of the projector 60 may become the second posture. Further, when the projector 60 is transported, the projector 60 may be in any one of the third to sixth postures. Further, when the image is projected toward the ceiling, the posture of the projector 60 may be the fifth posture. In any case, the attitude of the projector 60 varies depending on the situation during use, transportation, and storage. However, as shown in FIGS. 8B to 13B, when the projector 60 is in any of the first to sixth postures, the outlet 42 of the reserve tank 22 is at a position lower than the coolant level. In other words, the outflow port 42 does not communicate with the gas in the reserve tank 22. Therefore, the gas in the reserve tank 22 does not flow out from the outlet 42.
  • the liquid cooling system of the present invention can be mounted on an electronic device other than a projector, such as a personal computer, and has the same effect as described above when mounted on an electronic device other than a projector.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Disclosed is a liquid-cooling system mounted on an electronic apparatus. The liquid-cooling system has a flow channel (20) wherein a cooling medium is circulated, and a pump (21) and a reserve tank (22) which are disposed on the flow channel (20). A part of the side surface of the reserve tank (22) is set back to the vicinity of the center of the reserve tank (22) and forms a recessed section (40), and at the center on the front surface of the recessed section (40), a flow out port (42) from which the cooling medium flows out is formed.

Description

液冷システムおよび液冷システムを備えた電子機器Liquid cooling system and electronic device equipped with liquid cooling system
 本発明は、電子機器に搭載される液冷システムに関するものである。 The present invention relates to a liquid cooling system mounted on an electronic device.
 パーソナルコンピュータやプロジェクタなどの電子機器には、動作時に熱を発する素子や光源が内蔵されている。また、電子機器には、上記素子や光源から発せられる熱によって加熱される部品や素子も内蔵されている。例えば、パーソナルコンピュータに内蔵されているCPU(Central Processing Unit)、プロジェクタに内蔵されている放電ランプやLED(Light-Emitting Diode)は、その動作時に熱を発する。さらに、パーソナルコンピュータに内蔵されているメモリやハードディスクなどは、CPUが発する熱によって加熱される。また、プロジェクタに内蔵されている画像形成素子(液晶パネルやDMD(Digital Micro-mirror Device))や光路上に配置されているミラー、レンズ、偏向板などは、光源から発せられる熱(光源から出射された光が有する熱)によって加熱される。そこで、上記素子、光源、部品などを冷却する必要がある。以下の説明では、上記素子、光源、部品などを「冷却対象」と総称する。 Electronic devices such as personal computers and projectors have built-in elements and light sources that generate heat during operation. In addition, electronic devices also include components and elements that are heated by heat generated from the elements and light sources. For example, a CPU (Central Processing Unit) built in a personal computer and a discharge lamp or LED (Light-Emitting Diode) built in a projector generate heat during operation. Furthermore, the memory, hard disk, etc. built in the personal computer are heated by the heat generated by the CPU. In addition, the image forming elements (liquid crystal panels and DMD (Digital Micro-mirror Device)) built in the projector, mirrors, lenses, deflectors, etc. arranged on the optical path are heated by the light source (emitted from the light source). Heat). Therefore, it is necessary to cool the elements, light sources, components, and the like. In the following description, the above elements, light sources, components, and the like are collectively referred to as “cooling targets”.
 冷却対象を冷却するシステムは、空冷式と液冷式に大別される。液冷システムでは、冷却対象と液体(冷媒)との間の熱交換によって冷却対象を冷却する。よって、一般的な冷却システムは、冷媒が循環する流路を有し、該流路上には冷媒を循環させるポンプと、所定量の冷媒を貯留するタンクとが設けられる。 ¡Systems for cooling the object to be cooled are roughly divided into air cooling and liquid cooling. In the liquid cooling system, the cooling target is cooled by heat exchange between the cooling target and the liquid (refrigerant). Therefore, a general cooling system has a flow path through which the refrigerant circulates, and a pump that circulates the refrigerant and a tank that stores a predetermined amount of the refrigerant are provided on the flow path.
 ここで、上記タンク内には、温度変化に起因する冷媒の体積膨張を吸収するために気体層が設けられる。また、上記流路内には意に反して気体が混入することがある。そして、タンク内の気体や流路内の気体がポンプに流入すると、ポンプの動作不良を招く虞がある。 Here, a gas layer is provided in the tank to absorb the volume expansion of the refrigerant due to the temperature change. In addition, gas may be mixed in the flow path unintentionally. And when the gas in a tank or the gas in a flow path flows into a pump, there exists a possibility of causing the malfunction of a pump.
 そこで、タンク内の気体や流路内の気体の、ポンプへの流入を防ぐための技術が提案されている。例えば、特許文献1にはリザーブタンクを備えた液冷システム(水冷システム)が記載されている。特許文献1に開示されているリザーブタンクの右側面には流入口が形成されており、左側面には流出口を有する中空管が設けられている。そして、中空管の一端(流出口)は、リザーブタンクの中心まで伸びている。すなわち、リザーブタンクの中心に流出口が配置されている。このように、流出口をリザーブタンクの中心に配置することによって、流出口は常に冷媒の水面下に保持される。したがって、リザーブタンクの姿勢変化に伴って冷媒の水面が変動しても、リザーブタンク内の気体が流出口から流出することがない。 Therefore, a technique for preventing the gas in the tank and the gas in the flow path from flowing into the pump has been proposed. For example, Patent Document 1 describes a liquid cooling system (water cooling system) including a reserve tank. An inflow port is formed on the right side of the reserve tank disclosed in Patent Document 1, and a hollow tube having an outflow port is provided on the left side. And one end (outlet) of the hollow tube extends to the center of the reserve tank. That is, the outflow port is arranged at the center of the reserve tank. Thus, by arranging the outlet in the center of the reserve tank, the outlet is always kept below the coolant level. Therefore, even if the water surface of the refrigerant fluctuates with the change in the reserve tank posture, the gas in the reserve tank does not flow out from the outlet.
特開2003-78271号公報JP 2003-78271 A
 しかし、特許文献1に開示されている技術には次のような課題があった。特許文献1には、中空管がタンク本体と一体成形されているのか否かについて説明されていない。仮に、中空管がタンク本体と一体成形されている場合には次のような課題がある。一般的に、リザーブタンクは、金型を用いて型成形される。しかし、中空管のような細長の管状部分と本体部分とが一体成形された成形品を金型を用いて作製することは非常に困難である。 However, the technique disclosed in Patent Document 1 has the following problems. Patent Document 1 does not explain whether the hollow tube is integrally formed with the tank body. If the hollow tube is integrally formed with the tank body, there are the following problems. Generally, the reserve tank is molded using a mold. However, it is very difficult to produce a molded product in which an elongated tubular portion such as a hollow tube and a main body portion are integrally molded using a mold.
 一方、中空管とタンク本体とが別々に成形されている場合には次のような課題がある。中空管とタンク本体とが別々に成形されている場合には、タンク本体の側面に設けられた穴に中空管を挿入して固定する必要があるので、製造工程が増える。具体的には、タンク本体の側面に設けられた穴に挿入された中空管を溶接や接着など固定手段によって固定する工程が必要になる。 On the other hand, when the hollow tube and the tank body are separately molded, there are the following problems. When the hollow tube and the tank main body are separately formed, it is necessary to insert and fix the hollow tube into a hole provided in the side surface of the tank main body, which increases the manufacturing process. Specifically, a step of fixing the hollow tube inserted into the hole provided on the side surface of the tank body by a fixing means such as welding or adhesion is required.
 総じて、特許文献1に開示されているリザーブタンクは、その製造が困難であるか、製造に手間とコストが掛かる。 In general, the reserve tank disclosed in Patent Document 1 is difficult to manufacture or takes time and effort to manufacture.
 本発明の液冷システムは、電子機器に搭載される液冷システムである。本発明の液冷システムは、冷媒が循環する流路と、前記流路上に配置されたポンプおよびリザーブタンクとを有する。前記リザーブタンクの側面の一部は、該リザーブタンクの中心近傍までセットバックされて凹部を形成している。前記凹部の前面中央に、前記冷媒が流出する流出口が形成されている。 The liquid cooling system of the present invention is a liquid cooling system mounted on an electronic device. The liquid cooling system of the present invention includes a flow path through which a refrigerant circulates, and a pump and a reserve tank disposed on the flow path. A part of the side surface of the reserve tank is set back to the vicinity of the center of the reserve tank to form a recess. An outflow port through which the refrigerant flows out is formed at the front center of the recess.
 本発明の液冷システムでは、リザーブタンクの流出口形成面をタンク中心に向けてセットバックさせることによって、流出口をタンクの中心近傍に配置している。よって、中空管のような細長の管状部材を用いることなく、流出口をタンクの中心近傍に設けることができる。 In the liquid cooling system of the present invention, the outlet is arranged near the center of the tank by setting back the outlet forming surface of the reserve tank toward the center of the tank. Therefore, the outflow port can be provided near the center of the tank without using an elongated tubular member such as a hollow tube.
本発明の液冷システムが搭載されたプロジェクタの内蔵構造を示す斜視図である。It is a perspective view which shows the built-in structure of the projector carrying the liquid cooling system of this invention. 図1に示す光源ユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the light source unit shown in FIG. 図1に示す液冷システムにおける冷媒の主な流れを示す斜視図である。It is a perspective view which shows the main flows of the refrigerant | coolant in the liquid cooling system shown in FIG. 図1に示すリザーブタンクの外観斜視図である。It is an external appearance perspective view of the reserve tank shown in FIG. 図1に示すリザーブタンクの各面を示す平面図である。It is a top view which shows each surface of the reserve tank shown in FIG. 図1に示すリザーブタンクの断面図である。It is sectional drawing of the reserve tank shown in FIG. 図1に示すリザーブタンクの分解斜視図である。It is a disassembled perspective view of the reserve tank shown in FIG. プロジェクタの第1の姿勢を示す斜視図である。It is a perspective view which shows the 1st attitude | position of a projector. プロジェクタが第1の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 1st attitude | position. プロジェクタの第2の姿勢を示す斜視図である。It is a perspective view which shows the 2nd attitude | position of a projector. プロジェクタが第2の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 2nd attitude | position. プロジェクタの第3の姿勢を示す斜視図である。It is a perspective view which shows the 3rd attitude | position of a projector. プロジェクタが第3の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 3rd attitude | position. プロジェクタの第4の姿勢を示す斜視図である。It is a perspective view which shows the 4th attitude | position of a projector. プロジェクタが第4の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 4th attitude | position. プロジェクタの第5の姿勢を示す斜視図である。It is a perspective view which shows the 5th attitude | position of a projector. プロジェクタが第5の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 5th attitude | position. プロジェクタの第6の姿勢を示す斜視図である。It is a perspective view which shows the 6th attitude | position of a projector. プロジェクタが第6の姿勢にあるときのリザーブタンクの姿勢を示す図である。It is a figure which shows the attitude | position of a reserve tank when a projector exists in a 6th attitude | position.
 本発明の液冷システムの第1の実施形態について説明する。図1は、本発明の液冷システムが搭載されたプロジェクタの内部構造の一部を示す斜視図である。なお、図1では、内部構造を示すために筺体の図示は省略してある。 A first embodiment of the liquid cooling system of the present invention will be described. FIG. 1 is a perspective view showing a part of the internal structure of a projector equipped with the liquid cooling system of the present invention. In FIG. 1, the housing is not shown in order to show the internal structure.
 本実施形態に係るプロジェクタは、画像形成ユニット1と、画像形成ユニット1の周囲に配置された3つのLED(Light Emitting Diode)光源ユニット2と、画像形成ユニット1において形成された画像を投射する投射レンズ3と、液冷システム4とを有する。 The projector according to the present embodiment projects an image forming unit 1, three LED (Light Emitting Diode) light source units 2 arranged around the image forming unit 1, and an image formed in the image forming unit 1. It has a lens 3 and a liquid cooling system 4.
 3つのLED光源ユニット2には、赤色光を発生させる赤色光源ユニット2R、緑色光を発生する緑色光源ユニット2Gおよび青色光を発生する青色光源ユニット2Bが含まれる。図2に示すように、各光源ユニット2は、LED10がそれぞれ搭載された一対のホルダー11と、LED10の温度を所定温度以下に維持するための冷却機構12と、集光レンズ13とを少なくとも含む。ホルダー11、冷却機構12および集光レンズ13を含む各光源ユニット2の構成要素は、ボックス14内に収容されて一体化されている。また、各光源ユニット2内の一対のホルダー11は対向配置されており、それぞれのホルダー11に搭載されているLED10から発せられた光は集光レンズ13によって集光されて画像形成ユニット1(図1)に入射する。 The three LED light source units 2 include a red light source unit 2R that generates red light, a green light source unit 2G that generates green light, and a blue light source unit 2B that generates blue light. As shown in FIG. 2, each light source unit 2 includes at least a pair of holders 11 on which the LEDs 10 are mounted, a cooling mechanism 12 for maintaining the temperature of the LEDs 10 below a predetermined temperature, and a condenser lens 13. . The components of each light source unit 2 including the holder 11, the cooling mechanism 12, and the condenser lens 13 are accommodated in and integrated with the box 14. A pair of holders 11 in each light source unit 2 are arranged to face each other, and light emitted from the LEDs 10 mounted on the respective holders 11 is condensed by a condenser lens 13 and is image forming unit 1 (FIG. 1).
 再び図1を参照する。画像形成ユニット1は、クロスダイクロイックプリズムと、該プリズムの周囲に配置された3つの液晶パネルとを少なくとも含む。3つの液晶パネルは、光源ユニット毎に用意されている。各液晶パネルは、各光源ユニット2から出射された光を映像信号に基づいて変調する。すなわち、赤色光源ユニット2Rから出射された光(赤色光)は、赤色用の液晶パネルに入射して変調される。緑色光源ユニット2Gから出射された光(緑色光)は、緑色用の液晶パネルに入射して変調される。青色光源ユニット2Bから出射された光(青色光)は、青色用の液晶パネルに入射して変調される。そして、各液晶パネルによって変調された光は、クロスダイクロイックプリズムによって合成され、投射レンズ3を介してスクリーンなどに投射される。 Refer to FIG. 1 again. The image forming unit 1 includes at least a cross dichroic prism and three liquid crystal panels arranged around the prism. Three liquid crystal panels are prepared for each light source unit. Each liquid crystal panel modulates the light emitted from each light source unit 2 based on the video signal. That is, the light (red light) emitted from the red light source unit 2R is incident on the red liquid crystal panel and modulated. Light (green light) emitted from the green light source unit 2G is incident on the green liquid crystal panel and modulated. The light (blue light) emitted from the blue light source unit 2B enters the blue liquid crystal panel and is modulated. The light modulated by each liquid crystal panel is combined by a cross dichroic prism and projected onto a screen or the like via a projection lens 3.
 次に、本実施形態に係る液冷システム4について説明する。液冷システム4は、光源ユニット2R、2G、2Bを経由する流路20を有する。流路20上には、ポンプ21、リザーブタンク22、ラジエター23およびラジエター23に冷却風を供給するファン24が少なくとも配置されている。さらに、本実施形態に係る液冷システム4は、2つのラジエター(第1のラジエター23a、第2のラジエター23b)と、それぞれのラジエター23a、23bに冷却風を供給する2つのファン(第1のファン24a、第2のファン24b)を備えている。なお、流路20は可撓性を有するチューブによって構成されている。 Next, the liquid cooling system 4 according to this embodiment will be described. The liquid cooling system 4 includes a flow path 20 that passes through the light source units 2R, 2G, and 2B. On the flow path 20, at least a pump 21, a reserve tank 22, a radiator 23, and a fan 24 that supplies cooling air to the radiator 23 are disposed. Furthermore, the liquid cooling system 4 according to the present embodiment includes two radiators (first radiator 23a and second radiator 23b) and two fans (first radiators) that supply cooling air to the radiators 23a and 23b. A fan 24a and a second fan 24b) are provided. In addition, the flow path 20 is comprised with the tube which has flexibility.
 図3に、液冷システム4における冷媒の流れを模式的に示す。図3中の矢印が液冷システム4内における冷媒の流れを示している。もっとも、図3中の矢印は、冷媒の主な流れを示しており、実際の流路デザインと完全には一致していない。 FIG. 3 schematically shows the refrigerant flow in the liquid cooling system 4. The arrows in FIG. 3 indicate the flow of the refrigerant in the liquid cooling system 4. However, the arrows in FIG. 3 indicate the main flow of the refrigerant and do not completely match the actual flow path design.
 ポンプ21から送り出された冷媒は、ラジエター23の手前で分流され、第1のラジエター23aおよび第2のラジエター23bにそれぞれ流入する。各ラジエター23a、23bに流入した冷媒は熱交換によって冷却される。第1のラジエター23aおよび第2のラジエター23bから流出した冷媒は、合流してリザーブタンク22に流入する。リザーブタンク22から流出した冷媒は、赤色光源ユニット2Rに流入し、該光源ユニット2R内のLEDを冷却する。その後、冷媒は、緑色光源ユニット2G、青色光源ユニット2Bを経由してポンプ21に戻る。緑色光源ユニット2Gおよび青色光源ユニット2Bに流入した冷媒は、各光源ユニット2G、2B内のLEDを冷却する。すなわち、ポンプ21を起点としたとき、冷媒は、ポンプ21⇒ラジエター23⇒リザーブタンク22⇒赤色光源ユニット2R⇒緑色光源ユニット2G⇒青色光源ユニット2B⇒ポンプ21の順で循環する。冷媒は上記のような循環経路をたどるので、冷媒の温度はラジエター23から流出した直後において最も低く、各光源ユニット2R、2G、2Bを経由する過程で冷媒の温度が次第に上昇する。 The refrigerant sent out from the pump 21 is branched before the radiator 23 and flows into the first radiator 23a and the second radiator 23b, respectively. The refrigerant flowing into each radiator 23a, 23b is cooled by heat exchange. The refrigerant that has flowed out of the first radiator 23 a and the second radiator 23 b merges and flows into the reserve tank 22. The refrigerant that has flowed out of the reserve tank 22 flows into the red light source unit 2R, and cools the LEDs in the light source unit 2R. Thereafter, the refrigerant returns to the pump 21 via the green light source unit 2G and the blue light source unit 2B. The refrigerant flowing into the green light source unit 2G and the blue light source unit 2B cools the LEDs in the light source units 2G and 2B. That is, when the pump 21 is the starting point, the refrigerant circulates in the order of pump 21 ⇒ radiator 23 ⇒ reserve tank 22 ⇒ red light source unit 2R ⇒ green light source unit 2G ⇒ blue light source unit 2B ⇒ pump 21. Since the refrigerant follows the circulation path as described above, the temperature of the refrigerant is lowest immediately after flowing out of the radiator 23, and the temperature of the refrigerant gradually increases in the process of passing through the light source units 2R, 2G, and 2B.
 ここで、赤色光源ユニット2Rに内蔵されている赤色LEDの発熱量は、他の光源ユニット2G、2Bに内蔵されている緑色LEDや青色LEDの発熱量よりも少ない。
しかし、赤色LEDは、緑色LEDや青色LEDに比べて、温度変化に起因する輝度変化が大きい。換言すれば、赤色LEDの温度変化に起因する輝度変化は、緑色LEDや青色LEDのそれに比べて急峻である。
しかし、赤色LEDは、緑色LEDや青色LEDに比べて、温度変化に対して敏感である。換言すれば、赤色LEDの温度特性の変化は、緑色LEDや青色LEDの温度特性の変化に比べて急峻である。したがって、赤色LEDの温度管理が最も重要である。そこで、上記のような流路デザインが採用されている。すなわち、ラジエター23において冷却された冷媒が最初に赤色光源ユニット2Rに供給される流路デザインが採用されている。
Here, the amount of heat generated by the red LED incorporated in the red light source unit 2R is smaller than the amount of heat generated by the green LED and the blue LED incorporated in the other light source units 2G, 2B.
However, the red LED has a larger luminance change due to the temperature change than the green LED and the blue LED. In other words, the luminance change due to the temperature change of the red LED is steeper than that of the green LED or the blue LED.
However, red LEDs are more sensitive to temperature changes than green LEDs and blue LEDs. In other words, the change in the temperature characteristic of the red LED is more steep than the change in the temperature characteristic of the green LED or the blue LED. Therefore, temperature management of the red LED is most important. Therefore, the flow path design as described above is adopted. That is, a flow path design is adopted in which the refrigerant cooled in the radiator 23 is first supplied to the red light source unit 2R.
 さらに、既述の通り、各光源ユニット2には一対のLED10が内蔵されている。よって、一対のLED10の間の温度差は小さいことが好ましい。特に、赤色光源ユニット2Rに内蔵されている一対の赤色LED10の間の温度差は可能な限り零に維持されることが好ましい。そこで、赤色光源ユニット2Rとその他の光源ユニット2G、2Bとで異なる流路デザインが採用されている。具体的には、赤色光源ユニット2Rには並行な流路が設けられており、緑色光源ユニット2Gおよび青色光源ユニット2Bには直列の流路が設けられている。 Furthermore, as described above, each light source unit 2 includes a pair of LEDs 10. Therefore, it is preferable that the temperature difference between the pair of LEDs 10 is small. In particular, the temperature difference between the pair of red LEDs 10 incorporated in the red light source unit 2R is preferably maintained as zero as possible. Therefore, different flow path designs are adopted for the red light source unit 2R and the other light source units 2G, 2B. Specifically, parallel flow paths are provided in the red light source unit 2R, and serial flow paths are provided in the green light source unit 2G and the blue light source unit 2B.
 図2に示すように、各光源ユニット2のボックス14内には、表面にLED10が搭載された一対のホルダー11が対向配置されている。また、赤光源ユニット2Rの各ホルダー11の裏面には放熱素子(本実施形態ではペルチェ素子15)がそれぞれ密接して配置されている。さらに、ペルチェ素子15に背面にはコールドプレート16がそれぞれ密接して配置されている。なお、ボックス14内には、ホルダー11、ペルチェ素子15およびコールドプレート16のアッセンブリーが2つ内蔵されているが、図2には一方のアッセンブリーの構造のみを示す。ただし、2つのアッセンブリーは同一の構造を有する。 As shown in FIG. 2, a pair of holders 11 each having an LED 10 mounted on the surface thereof are opposed to each other in the box 14 of each light source unit 2. Further, a heat radiating element (Peltier element 15 in the present embodiment) is disposed in close contact with the back surface of each holder 11 of the red light source unit 2R. Further, cold plates 16 are arranged in close contact with the Peltier element 15 on the back side. Note that two assemblies of the holder 11, the Peltier element 15 and the cold plate 16 are built in the box 14, but only the structure of one of the assemblies is shown in FIG. However, the two assemblies have the same structure.
 冷媒は、流入口を介してコールドプレート16に流入し、流出口を介してコールドプレート16から流出する。換言すれば、コールドプレート16を介してペルチェ素子15と冷媒との間で熱交換が行われる。さらに換言すれば、コールドプレート16およびペルチェ素子15を介して、冷媒とLED10との間で熱交換が行われる。 The refrigerant flows into the cold plate 16 through the inlet and flows out of the cold plate 16 through the outlet. In other words, heat exchange is performed between the Peltier element 15 and the refrigerant via the cold plate 16. In other words, heat exchange is performed between the refrigerant and the LED 10 via the cold plate 16 and the Peltier element 15.
 光源ユニットの流路デザインの違いの説明に戻る。上記構造を有する赤色光源ユニット2Rに流入した冷媒は分流され、2つのコールドプレート16にそれぞれ供給される。一方、緑色光源ユニット2Gおよび青色光源ユニット2Bに流入した冷媒は分流されることなく、2つのコールドプレート16に順次供給される。したがって、赤色光源ユニット2Rに内蔵されている2つの赤色LED10は、同一温度の冷媒によって冷却される。上記のように、赤色光源ユニット2Rには、最も温度の低い状態の冷媒が供給される。すなわち、赤色光源ユニット2Rに内蔵されている2つの赤色LED10は、最も温度が低く、かつ、同一温度の冷媒によって均一に冷却される。結果、2つの赤色LED10の温度が所定温度以下に維持され、かつ、2つの赤色LED10の間の温度差が可能な限り零に維持される。 Return to the explanation of the difference in the light source unit flow path design. The refrigerant flowing into the red light source unit 2R having the above structure is divided and supplied to the two cold plates 16, respectively. On the other hand, the refrigerant flowing into the green light source unit 2G and the blue light source unit 2B is sequentially supplied to the two cold plates 16 without being divided. Therefore, the two red LEDs 10 incorporated in the red light source unit 2R are cooled by the refrigerant having the same temperature. As described above, the refrigerant having the lowest temperature is supplied to the red light source unit 2R. That is, the two red LEDs 10 incorporated in the red light source unit 2R are uniformly cooled by the refrigerant having the lowest temperature and the same temperature. As a result, the temperature of the two red LEDs 10 is maintained below a predetermined temperature, and the temperature difference between the two red LEDs 10 is maintained as zero as possible.
 もちろん、直列の流路を有する緑色光源ユニット2Gおよび青色光源ユニット2Bに内蔵されている2つのLED10は、異なる温度の冷媒によって冷却される。具体的には、後段のLED10は、前段のLED10との間の熱交換によって温度が上昇した冷媒によって冷却される。より具体的には、緑色光源ユニット2Gに流入した冷媒は、前段のコールドプレート16に流入して前段の緑色LED10を冷却した後に後段のコールドプレート16に流入して後段の緑色LED10を冷却する。同様に、青色光源ユニットに流入した冷媒は、前段のコールドプレート16に流入して前段の青色LED10を冷却した後に後段のコールドプレート16に流入して後段の青色LED10を冷却する。 Of course, the two LEDs 10 incorporated in the green light source unit 2G and the blue light source unit 2B having serial flow paths are cooled by refrigerants having different temperatures. Specifically, the rear-stage LED 10 is cooled by the refrigerant whose temperature has increased due to heat exchange with the front-stage LED 10. More specifically, the refrigerant flowing into the green light source unit 2G flows into the cold plate 16 at the front stage, cools the green LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the green LED 10 at the rear stage. Similarly, the refrigerant flowing into the blue light source unit flows into the cold plate 16 at the front stage, cools the blue LED 10 at the front stage, and then flows into the cold plate 16 at the rear stage to cool the blue LED 10 at the rear stage.
 しかし、緑色LED10および青色LED10の温度変化に起因する輝度変化は、赤色LED10のそれに比べて小さい。よって、緑色光源ユニット2G内の2つの緑色LED10の間の多少の温度差は許容できる。同様に、青色光源ユニット2B内の2つの青色LED10の間の多少の温度差は許容できる。 However, the luminance change due to the temperature change of the green LED 10 and the blue LED 10 is smaller than that of the red LED 10. Therefore, a slight temperature difference between the two green LEDs 10 in the green light source unit 2G is acceptable. Similarly, some temperature difference between the two blue LEDs 10 in the blue light source unit 2B is acceptable.
 次に、液冷システム4を構成するリザーブタンク22について説明する。図4は、リザーブタンク22の外観斜視図である。図5は、リザーブタンク22の各面の平面図であり、図6はリザーブタンク22の断面図である。図7は、リザーブタンクの分解斜視図である。 Next, the reserve tank 22 constituting the liquid cooling system 4 will be described. FIG. 4 is an external perspective view of the reserve tank 22. FIG. 5 is a plan view of each surface of the reserve tank 22, and FIG. 6 is a cross-sectional view of the reserve tank 22. FIG. 7 is an exploded perspective view of the reserve tank.
 リザーブタンク22は、全体として略円筒状の本体30と、本体30の長手方向一端に配置された下蓋31と、長手方向他端に配置された上蓋32とを有する。本体30、下蓋31および上蓋32は、アルミニウムやアルミニウム合金などの金属によって作られている。本体30、下蓋31および上蓋32は、金型成形によって個別に作られ、図7に示すように組み立てられる。具体的には、下蓋31の四隅は、ネジ34によって本体30の下端面に固定されている。上蓋32の四隅は、ネジ35によって本体30の上端面に固定されている。また、本体30と上下の蓋31、32との間には、それぞれ水密パッキン(Oリング36)が配置されている。さらに、上蓋32には、冷媒補充口37が設けられている。 The reserve tank 22 has a substantially cylindrical main body 30 as a whole, a lower lid 31 disposed at one end in the longitudinal direction of the main body 30, and an upper lid 32 disposed at the other end in the longitudinal direction. The main body 30, the lower lid 31, and the upper lid 32 are made of a metal such as aluminum or an aluminum alloy. The main body 30, the lower lid 31, and the upper lid 32 are individually made by molding and assembled as shown in FIG. Specifically, the four corners of the lower lid 31 are fixed to the lower end surface of the main body 30 by screws 34. The four corners of the upper lid 32 are fixed to the upper end surface of the main body 30 by screws 35. A watertight packing (O-ring 36) is disposed between the main body 30 and the upper and lower lids 31 and 32, respectively. Further, the upper lid 32 is provided with a refrigerant replenishment port 37.
 主に図6に示すように、リザーブタンク22の本体側面には凹部40が形成されており、該凹部40の前面41に流入口43と流出口42が形成されている。ここで、リザーブタンク22の構造を説明するために、該タンク22の中心において互いに直交する3つの軸を定義する。本体30の開口面と平行な面内に存在し、かつ、タンク中心において互いに直交する2つの軸の一方をX軸、他方をY軸と定義する。X軸およびY軸の双方とタンク中心において直交する軸をZ軸と定義する。上記のように定義された各軸を図5または図6中に示す。図6がX-Y平面でリザーブタンク22(本体30)を切断した断面を示していることが理解できる。また、Y軸方向が冷媒の流入方向および流出方向と平行であることも理解できる。もっとも、上記定義は説明の便宜上の定義に過ぎない。 As shown mainly in FIG. 6, a recess 40 is formed on the side of the main body of the reserve tank 22, and an inlet 43 and an outlet 42 are formed on the front surface 41 of the recess 40. Here, in order to describe the structure of the reserve tank 22, three axes orthogonal to each other at the center of the tank 22 are defined. One of two axes existing in a plane parallel to the opening surface of the main body 30 and orthogonal to each other at the center of the tank is defined as an X axis, and the other is defined as a Y axis. An axis perpendicular to both the X axis and the Y axis at the tank center is defined as a Z axis. Each axis defined as described above is shown in FIG. 5 or FIG. It can be understood that FIG. 6 shows a cross section of the reserve tank 22 (main body 30) cut along the XY plane. It can also be understood that the Y-axis direction is parallel to the refrigerant inflow direction and the outflow direction. However, the above definition is only a definition for convenience of explanation.
 凹部40は、本体30のZ軸方向(中心軸方向)の中央に設けられている。凹部40は、本体30の中心に向けて、Y軸方向に凹んでいる。換言すれば、凹部40は、Y軸方向にセットバックしている。さらに、凹部40の前面41は、X-Z平面よりも奥までセットバックしている。換言すれば、凹部40の前面41は、本体30の中心よりも奥までセットバックしている。 The recess 40 is provided in the center of the main body 30 in the Z-axis direction (center axis direction). The recess 40 is recessed in the Y-axis direction toward the center of the main body 30. In other words, the recess 40 is set back in the Y-axis direction. Further, the front surface 41 of the recess 40 is set back to the back of the XZ plane. In other words, the front surface 41 of the recess 40 is set back from the center of the main body 30 to the back.
 流出口42は、上記のようにセットバックした凹部40の前面中央に設けられている。すなわち、流出口42はリザーブタンク22の略中心に設けられている。流入口43は、上記のようにセットバックした凹部40の前面41に、流出口42と隣接して設けられている。より厳密には、流出口42は、X軸方向およびZ軸方向に関しては、リザーブタンク22の中心に位置しており、Y軸方向に関しては、リザーブタンク22の中心よりも奥に位置している。換言すれば、流出口42の中心は、リザーブタンク22の中心(3軸の交点)からY軸に沿ってシフトしている。ここで、流路抵抗と装置の大きさを考えると、流出口42と流入口43の内径は3mmから10mmの範囲内が好ましく、4mmから6mmの範囲内がより好ましい。本実施形態における流出口42と流入口43の内径は4mmである。 The outlet 42 is provided in the center of the front surface of the recess 40 set back as described above. That is, the outflow port 42 is provided at substantially the center of the reserve tank 22. The inflow port 43 is provided adjacent to the outflow port 42 on the front surface 41 of the recess 40 set back as described above. More precisely, the outlet 42 is located at the center of the reserve tank 22 in the X-axis direction and the Z-axis direction, and is located behind the center of the reserve tank 22 in the Y-axis direction. . In other words, the center of the outlet 42 is shifted along the Y axis from the center of the reserve tank 22 (the intersection of the three axes). Here, considering the flow path resistance and the size of the device, the inner diameters of the outlet 42 and the inlet 43 are preferably in the range of 3 mm to 10 mm, and more preferably in the range of 4 mm to 6 mm. In this embodiment, the inner diameter of the outlet 42 and the inlet 43 is 4 mm.
 凹部40の前面41には、流出口42に連通する継ぎ手51と流入口43に連通する継ぎ手52とがそれぞれ一体成形されている。継ぎ手51、52は、流出口42および流入口43の縁から凹部40のセットバック方向と反対方向に突出している。凹部40の前面41に対する継ぎ手51、52の突出長(高さ)は、凹部40のセットバック量よりも短い。2つの継ぎ手51、52には、上記流路20の一部を構成するチューブがそれぞれ接続される。具体的には、流入口43に連通している継ぎ手52には、リザーブタンク22とラジエター23を繋ぐチューブが接続される。流出口42に連通している継ぎ手51には、リザーブタンク22と赤色光源ユニット2Rを繋ぐチューブが接続される。 A joint 51 that communicates with the outlet 42 and a joint 52 that communicates with the inlet 43 are integrally formed on the front surface 41 of the recess 40. The joints 51, 52 protrude from the edges of the outlet 42 and the inlet 43 in the direction opposite to the setback direction of the recess 40. The protruding lengths (heights) of the joints 51 and 52 with respect to the front surface 41 of the recess 40 are shorter than the setback amount of the recess 40. The two joints 51 and 52 are connected to tubes constituting a part of the flow path 20, respectively. Specifically, a tube connecting the reserve tank 22 and the radiator 23 is connected to the joint 52 communicating with the inlet 43. A tube connecting the reserve tank 22 and the red light source unit 2R is connected to the joint 51 communicating with the outflow port 42.
 流出口42を上記の位置に配置することにより、プロジェクタの姿勢変化に伴ってリザーブタンク22内の冷媒の水面が変動しても、リザーブタンク22内の気体が流出口42から流出することがない。換言すれば、流出口42が冷媒の水面よりも上に出ることがない。 By arranging the outlet 42 at the above position, the gas in the reserve tank 22 does not flow out of the outlet 42 even if the coolant level in the reserve tank 22 fluctuates as the projector changes its attitude. . In other words, the outflow port 42 does not come out above the water surface of the refrigerant.
 図8A~図13Bに、プロジェクタ60の姿勢と、リザーブタンク22の姿勢との関係について示す。図8B~図13Bでは、リザーブタンク22内の冷媒を斜線で示してある。 8A to 13B show the relationship between the attitude of the projector 60 and the attitude of the reserve tank 22. 8B to 13B, the refrigerant in the reserve tank 22 is indicated by hatching.
 図8Aは、プロジェクタ60の第1の姿勢を示している。第1の姿勢では、プロジェクタ60は、その底面61を下にして水平に置かれている。図8Bは、プロジェクタ60が第1の姿勢にあるときのリザーブタンク22の姿勢を示している。 FIG. 8A shows the first posture of the projector 60. In the first posture, the projector 60 is placed horizontally with its bottom surface 61 facing down. FIG. 8B shows the posture of the reserve tank 22 when the projector 60 is in the first posture.
 図9Aは、プロジェクタ60の第2の姿勢を示している。第2の姿勢では、プロジェクタ60は、その上面62を下にして水平に置かれている。図9Bは、プロジェクタ60が第2の姿勢にあるときのリザーブタンク20の姿勢を示している。 FIG. 9A shows the second posture of the projector 60. In the second posture, the projector 60 is placed horizontally with its upper surface 62 facing down. FIG. 9B shows the posture of the reserve tank 20 when the projector 60 is in the second posture.
 図10Aは、プロジェクタ60の第3の姿勢を示している。第3の姿勢では、プロジェクタ60は、その右側面63を下にして垂直に立っている。図10Bは、プロジェクタ60が第3の姿勢にあるときのリザーブタンク22の姿勢を示している。 FIG. 10A shows the third posture of the projector 60. In the third posture, the projector 60 stands vertically with its right side surface 63 facing down. FIG. 10B shows the posture of the reserve tank 22 when the projector 60 is in the third posture.
 図11Aは、プロジェクタ60の第4の姿勢を示している。第4の姿勢では、プロジェクタ60は、その左側面64を下にして垂直に立っている。図11Bは、プロジェクタ60が第4の姿勢にあるときのリザーブタンク22の姿勢を示している。 FIG. 11A shows a fourth posture of the projector 60. In the fourth posture, the projector 60 stands vertically with its left side surface 64 down. FIG. 11B shows the posture of the reserve tank 22 when the projector 60 is in the fourth posture.
 図12Aは、プロジェクタ60の第5の姿勢を示している。第5の姿勢では、プロジェクタ60は、その背面65を下にして垂直に立っている。図12Bは、プロジェクタ60が第5の姿勢にあるときのリザーブタンク22の姿勢を示している。 FIG. 12A shows the fifth posture of the projector 60. In the fifth posture, the projector 60 stands vertically with its back surface 65 down. FIG. 12B shows the posture of the reserve tank 22 when the projector 60 is in the fifth posture.
 図13Aは、プロジェクタ60の第6の姿勢を示している。第6の姿勢では、プロジェクタ60は、その正面66を下にして垂直に立っている。図13Bは、プロジェクタ60が第6の姿勢にあるときのリザーブタンク22の姿勢を示している。 FIG. 13A shows the sixth posture of the projector 60. In the sixth posture, the projector 60 stands vertically with its front surface 66 down. FIG. 13B shows the posture of the reserve tank 22 when the projector 60 is in the sixth posture.
 第1の姿勢は、プロジェクタ60の最も一般的な使用状態における姿勢である。また、プロジェクタ60を天井から吊り下げたときなどに、該プロジェクタ60の姿勢が第2の姿勢となる場合がある。また、プロジェクタ60の運搬時などに、該プロジェクタ60の姿勢が第3~第6の姿勢のいずれかの姿勢になる場合がる。さらに、天井に向けて画像を投射する場合にプロジェクタ60の姿勢が第5の姿勢となる場合がある。いずれにしても、プロジェクタ60の姿勢は、使用時、運搬時、保管時の状況に応じて様々に変化する。しかし、図8B~図13Bに示すように、プロジェクタ60が第1~第6のいずれの姿勢にあるときにも、リザーブタンク22の流出口42は冷媒の水面よりも低い位置にある。換言すれば、流出口42がリザーブタンク22内の気体と連通することはない。したがって、リザーブタンク22内の気体が流出口42から流出することはない。 The first posture is a posture in the most general use state of the projector 60. Further, when the projector 60 is suspended from the ceiling, the posture of the projector 60 may become the second posture. Further, when the projector 60 is transported, the projector 60 may be in any one of the third to sixth postures. Further, when the image is projected toward the ceiling, the posture of the projector 60 may be the fifth posture. In any case, the attitude of the projector 60 varies depending on the situation during use, transportation, and storage. However, as shown in FIGS. 8B to 13B, when the projector 60 is in any of the first to sixth postures, the outlet 42 of the reserve tank 22 is at a position lower than the coolant level. In other words, the outflow port 42 does not communicate with the gas in the reserve tank 22. Therefore, the gas in the reserve tank 22 does not flow out from the outlet 42.
 本発明の液冷システムは、パーソナルコンピュータなどのプロジェクタ以外の電子機器に搭載することも可能であり、プロジェクタ以外の電子機器に搭載された場合にも上記と同様の効果を奏する。 The liquid cooling system of the present invention can be mounted on an electronic device other than a projector, such as a personal computer, and has the same effect as described above when mounted on an electronic device other than a projector.
 20 流路
 21 ポンプ
 22 リザーブタンク
 40 凹部
 41 凹部の前面
 42 流出口
 43 流入口
20 channel 21 pump 22 reserve tank 40 recess 41 front of recess 42 outlet 43 inlet

Claims (7)

  1.  電子機器に搭載される液冷システムであって、
     冷媒が循環する流路と、
     前記流路上に配置されたポンプおよびリザーブタンクと、を有し、
     前記リザーブタンクの側面の一部は、該リザーブタンクの中心近傍までセットバックされて凹部を形成しており、
     前記凹部の前面中央に、前記冷媒が流出する流出口が形成されている、液冷システム。
    A liquid cooling system mounted on an electronic device,
    A flow path through which the refrigerant circulates;
    A pump and a reserve tank disposed on the flow path,
    A part of the side surface of the reserve tank is set back to the vicinity of the center of the reserve tank to form a recess,
    A liquid cooling system in which an outflow port through which the refrigerant flows out is formed at the front center of the recess.
  2.  前記流出口は、前記冷媒の流出方向に関して、前記リザーブタンクの中心よりも手前に配置されている、請求項1に記載の液冷システム。 The liquid cooling system according to claim 1, wherein the outlet is disposed in front of the center of the reserve tank with respect to the refrigerant flow direction.
  3.  前記流出口は、前記冷媒の流出方向と直交する方向に関して、前記リザーブタンクの中心に配置されている、請求項2に記載の液冷システム。 The liquid cooling system according to claim 2, wherein the outlet is disposed at the center of the reserve tank with respect to a direction orthogonal to an outlet direction of the refrigerant.
  4.  前記冷媒が流入する流入口が前記凹部の前記前面に形成されている、請求項1乃至請求項3のいずれかに記載の液冷システム。 The liquid cooling system according to any one of claims 1 to 3, wherein an inlet through which the refrigerant flows is formed on the front surface of the recess.
  5.  電子機器に搭載される液冷システムであって、
     冷媒が循環する流路と、
     前記流路上に配置されたポンプおよびリザーブタンクと、を有し、
     前記リサーブタンクの中心軸をZ軸、
     前記リザーブタンクの中心において前記Z軸と直交し、かつ、前記冷媒の流出方向と平行な軸をY軸、
     前記リザーブタンクの中心において前記Z軸と直交し、かつ、前記冷媒の流出方向と直交する軸をX軸としたとき、
     前記リザーブタンクの側面の一部は、前記Y軸方向に、X-Z平面よりも奥までセットバックされて凹部を形成しており、
     前記凹部の前面中央に、前記冷媒が流出する流出口が形成されている、液冷システム。
    A liquid cooling system mounted on an electronic device,
    A flow path through which the refrigerant circulates;
    A pump and a reserve tank disposed on the flow path,
    Z axis is the central axis of the reserve tank,
    An axis perpendicular to the Z-axis at the center of the reserve tank and parallel to the outflow direction of the refrigerant is a Y-axis,
    When the axis perpendicular to the Z axis at the center of the reserve tank and perpendicular to the outflow direction of the refrigerant is the X axis,
    A part of the side surface of the reserve tank is set back to the back of the XZ plane in the Y-axis direction to form a recess,
    A liquid cooling system in which an outflow port through which the refrigerant flows out is formed at the front center of the recess.
  6.  前記流出口は、前記Y軸上であって、前記X軸、Y軸およびZ軸の交点から前記冷媒の流出方向と逆方向にシフトした位置に設けられている、請求項5に記載の液冷システム。 6. The liquid according to claim 5, wherein the outflow port is provided at a position on the Y axis that is shifted from an intersection of the X axis, the Y axis, and the Z axis in a direction opposite to the outflow direction of the refrigerant. Cold system.
  7.  請求項1乃至請求項6のいずれかに記載の液冷システムを備えた電子機器。 An electronic device comprising the liquid cooling system according to any one of claims 1 to 6.
PCT/JP2010/051974 2010-02-10 2010-02-10 Liquid-cooling system and electronic apparatus provided with liquid-cooling system WO2011099126A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/051974 WO2011099126A1 (en) 2010-02-10 2010-02-10 Liquid-cooling system and electronic apparatus provided with liquid-cooling system
US13/577,864 US20120298339A1 (en) 2010-02-10 2010-02-10 Liquid cooling system and electronic device including the same
CN201080063381.8A CN102754537B (en) 2010-02-10 2010-02-10 Liquid-cooling system and the electronic equipment comprising liquid-cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051974 WO2011099126A1 (en) 2010-02-10 2010-02-10 Liquid-cooling system and electronic apparatus provided with liquid-cooling system

Publications (1)

Publication Number Publication Date
WO2011099126A1 true WO2011099126A1 (en) 2011-08-18

Family

ID=44367434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051974 WO2011099126A1 (en) 2010-02-10 2010-02-10 Liquid-cooling system and electronic apparatus provided with liquid-cooling system

Country Status (3)

Country Link
US (1) US20120298339A1 (en)
CN (1) CN102754537B (en)
WO (1) WO2011099126A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734457B (en) * 2020-04-29 2021-07-21 勤力合實業股份有限公司 Liquid cooling device applied to server

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424964A (en) * 2013-09-11 2013-12-04 吴佳明 Projector capable of being used for underwater working
JP6326846B2 (en) * 2014-02-12 2018-05-23 セイコーエプソン株式会社 projector
JP7046656B2 (en) * 2017-03-15 2022-04-04 キヤノン株式会社 Image projection device
JP7154917B2 (en) * 2018-09-28 2022-10-18 キヤノン株式会社 projection display
JP6881491B2 (en) * 2019-03-15 2021-06-02 セイコーエプソン株式会社 projector
CN113391505A (en) 2020-03-13 2021-09-14 中强光电股份有限公司 Projection device and water tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2005228810A (en) * 2004-02-10 2005-08-25 Hitachi Cable Ltd Liquid circulation cooling device
JP2005286119A (en) * 2004-03-30 2005-10-13 Nitto Electric Works Ltd Cooler for board
JP2006059903A (en) * 2004-08-18 2006-03-02 Nec Viewtechnology Ltd Cooling device and electronic apparatus equipped therewith
JP2007264590A (en) * 2005-09-28 2007-10-11 Sanyo Electric Co Ltd Liquid cooling apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117291A1 (en) * 2000-05-25 2002-08-29 Kioan Cheon Computer having cooling apparatus and heat exchanging device of the cooling apparatus
JP3636118B2 (en) * 2001-09-04 2005-04-06 株式会社日立製作所 Water cooling device for electronic equipment
US6981543B2 (en) * 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
CN101876782B (en) * 2005-09-28 2011-12-21 三洋电机株式会社 Liquid cooling apparatus
US8611083B2 (en) * 2007-11-28 2013-12-17 Hewlett-Packard Development Company, L.P. System and method for cooling a computer
CN102033589B (en) * 2009-09-29 2014-01-22 鸿富锦精密工业(深圳)有限公司 Water-cooling cooling system and water receiver thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2005228810A (en) * 2004-02-10 2005-08-25 Hitachi Cable Ltd Liquid circulation cooling device
JP2005286119A (en) * 2004-03-30 2005-10-13 Nitto Electric Works Ltd Cooler for board
JP2006059903A (en) * 2004-08-18 2006-03-02 Nec Viewtechnology Ltd Cooling device and electronic apparatus equipped therewith
JP2007264590A (en) * 2005-09-28 2007-10-11 Sanyo Electric Co Ltd Liquid cooling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734457B (en) * 2020-04-29 2021-07-21 勤力合實業股份有限公司 Liquid cooling device applied to server

Also Published As

Publication number Publication date
CN102754537A (en) 2012-10-24
US20120298339A1 (en) 2012-11-29
CN102754537B (en) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2011099126A1 (en) Liquid-cooling system and electronic apparatus provided with liquid-cooling system
KR100683171B1 (en) Cooling apparatus and projector having the same
JP4874041B2 (en) Cooling device and projection display device
JP4148230B2 (en) COOLING UNIT MANUFACTURING METHOD, COOLING UNIT, OPTICAL DEVICE, AND PROJECTOR
US8944638B2 (en) Light source device and projection type display device including the same
US8398245B2 (en) Heat exchanger and projector
US20050083490A1 (en) Liquid crystal projector, and projection lens unit, optical unit and cooling system for the same
US20160147034A1 (en) Cooling structure of sealed casing and optical apparatus using the same
US8651668B2 (en) Projector
US20060244926A1 (en) Water-cooled projector
JP2007148341A (en) Optical device and optical equipment
US7543962B2 (en) Projection-type image display device
WO2011152217A1 (en) Display device
JP2011090310A (en) Projection-type video display device
JP2016200316A (en) Heat exchange device, cooling device and projector
JP6578715B2 (en) projector
JP4108688B2 (en) Liquid-cooled projector
JP2008176338A (en) Projector
US10852628B2 (en) Projector
JP2007127856A (en) Projection display apparatus
JP2010256864A (en) Projector
JP2004287189A (en) Projector
JP2016200657A (en) projector
JP2016096285A (en) Liquid cooling system, and projection type display device and electronic apparatus including the same
JP6578714B2 (en) projector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063381.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13577864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP