WO2011098616A1 - Grease composition - Google Patents

Grease composition Download PDF

Info

Publication number
WO2011098616A1
WO2011098616A1 PCT/EP2011/052217 EP2011052217W WO2011098616A1 WO 2011098616 A1 WO2011098616 A1 WO 2011098616A1 EP 2011052217 W EP2011052217 W EP 2011052217W WO 2011098616 A1 WO2011098616 A1 WO 2011098616A1
Authority
WO
WIPO (PCT)
Prior art keywords
salts
metal salts
alkaline earth
sulphonic acids
overbased
Prior art date
Application number
PCT/EP2011/052217
Other languages
French (fr)
Inventor
Tetsuya Katou
Koichi Numazawa
Takahiro Ozaki
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Publication of WO2011098616A1 publication Critical patent/WO2011098616A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • This invention relates to a grease composition with excellent anti-fretting corrosion characteristics.
  • Fretting corrosion also called abrasion-corrosion, rubbing corrosion and microvibration wear
  • abrasion-corrosion is a wear phenomenon which occurs when two objects pressed together at any pressure repeatedly slide relative to each other with very small amplitudes in the contact space.
  • the frictional dust which arises in the case of steel-steel microvibrations in the atmosphere turns to a fine brown iron oxide ( Fe 2 0 3 ) .
  • the phenomenon of the grease becoming brown occurs in various kinds of machinery, accompanying microvibrations and microsliding between two objects in contacts, as for example in automobile wheel bearings, bolt-tightened flanges and laminated springs. Fretting corrosion promotes wear in machine parts and bearings, and is also a cause of noise.
  • lubricating greases used in the past at lubrication points where fretting corrosion occurs have been highly paraffinic low-viscosity base oils with high penetration (soft greases of penetration not less than 320 are especially effective (NLGI Spokesman, Vol. 45, 1 (1982))), but satisfactory effectiveness has not necessarily been achieved.
  • composition in which at least one additive selected from organic molybdenum compounds, organic fatty acid
  • the aim of this invention is to offer a lubricating grease which will improve the anti-fretting corrosion characteristics compared to the lithium soap greases and urea greases of the prior art.
  • a grease composition comprising (a) a base oil, (b) a thickener, (c) tricalcium phosphate, and (d) at least one kind of salt selected from the group consisting of alkaline earth metal salts, alkali metal salts, amine salts or zinc salts of oxidised waxes, petroleum
  • sulphonic acids alkyl aromatic sulphonic acids or such salts which are salicylates or phenates; and mixtures thereof.
  • the grease composition of this invention can improve anti-fretting corrosion characteristics. Also, it need not be the highly paraffinic low-viscosity base oils with high penetration (soft greases: penetration not less than 320) deemed necessary in the past, as mentioned above, and in this invention it is possible to obtain excellent anti-fretting corrosion characteristics also in cases where a high viscosity oil or a naphthene-based base oil is used in part, and even if the hardness is of Grade 2 Penetration [penetration grade of the NLGI (US grease institute) classification] .
  • the base oil used in the grease composition of this invention it is possible to use the mineral oils, synthetic oils and mixtures thereof normally used for lubricating oils.
  • Their kinematic viscosity at 40°C should preferably be approximately 20 to 400 mm 2 /s.
  • Group III, Group IV and Group V of the API (American Petroleum Institute) base oil categories are Group III, Group IV and Group V of the API (American Petroleum Institute) base oil categories.
  • Group I base oils include, for example, paraffinic mineral oils obtained by appropriate use of a suitable combination of refining processes such as solvent
  • Group II base oils include, for example, paraffinic mineral oils obtained by appropriate use of a suitable combination of refining processes such as hydrorefining and dewaxing in respect of lubricating oil fractions obtained by atmospheric distillation of crude oil.
  • Group II base oils include, for example, paraffinic mineral oils obtained by appropriate use of a suitable combination of refining processes such as hydrorefining and dewaxing in respect of lubricating oil fractions obtained by atmospheric distillation of crude oil.
  • base oils refined by hydrorefining methods such as the Gulf Company method have a total sulphur content of less than 10 ppm and an aromatic content of not more than 5% and so are suitable for use in this invention.
  • Group III and Group 11+ base oils include paraffinic mineral oils manufactured by a high degree of
  • isoparaffins and base oils refined by the Mobil wax isomerisation process. These too are suitable for use in this invention.
  • Fischer-Tropsch method of converting natural gas to liquid fuel have a very low sulphur content and aromatic content compared with mineral oil base oils refined from crude oil and have a very high paraffin constituent ratio, and so have excellent oxidative stability, and because they also have extremely small evaporation losses, they are suitable as base oils for this
  • Group V base oils include, for example, naphthenic mineral oils obtained by appropriate use of a suitable combination of refining processes such as solvent
  • synthetic oils mention may be made of polyolefins, dibasic acid diesters such as dioctyl sebacate, polyol esters, alkylbenzenes ,
  • alkylnaphthalenes esters, polyoxyalkylene glycols, polyoxyalkylene glycol esters, polyoxyalkylene glycol ethers, polyphenyl ethers, dialkyldiphenyl ethers, fluorine-containing compounds (perfluoropolyethers, fluorinated polyolefins) and silicones.
  • polystyrene resins include polymers of various olefins or hydrides thereof. Any olefin may be used, and as examples mention may be made of ethylene, propylene, butene and -olefins with five or more
  • polyolefins one kind of the aforementioned olefins may be used singly or two or more kinds may be used in combination. Particularly suitable are the polyolefins called poly- -olefins (PAO) . These are base oils of Group IV.
  • PAO poly- -olefins
  • aforementioned thickening agent one kind, or two or more kinds in combination, of generally already known urea compounds, alkali metal soaps, alkali metal complex soaps, alkaline earth metal soaps, alkaline earth metal complex soaps, alkali metal sulphonates, alkaline earth metal sulphonates, aluminium soaps, aluminium complex soaps, metal terephthalamate salts, clays,
  • the tricalcium phosphate in this invention is one having the chemical structure of a hydroxyapatite
  • composition as generally represented by [Ca 3 (PO 4 )
  • the tricalcium phosphate preferably will have an average granularity of not more than 5 ⁇ diameter in order to increase the penetration yield of the grease, but it may be used without problems so long as the average granularity is not more than 100 ⁇ diameter.
  • aforementioned grease composition and it is best if it is blended in an amount, relative to the total amount of the grease composition, of from 0.1 to 20% by mass, but preferably from 1 to 15% by mass, and more preferably from 2 to 10% by mass.
  • aforementioned (d) include alkaline earth metal salts of oxidised waxes, alkaline earth metal salts of petroleum sulphonic acids, alkaline earth metal salts of alkyl aromatic sulphonic acids, alkaline earth metal salts which are salicylates, and alkaline earth metal salts which are phenates.
  • overbased alkaline earth metal salts of oxidised waxes overbased alkaline earth metal salts of petroleum sulphonic acids, overbased alkaline earth metal salts of alkyl aromatic sulphonic acids, overbased alkaline earth metal salts which are salicylates, and overbased alkaline earth metal salts which are phenates.
  • Salts of the aforementioned petroleum sulphonic acids and alkyl aromatic sulphonic acids are generally known as sulphonates .
  • alkaline earth metals examples include calcium, magnesium and barium.
  • alkaline earth metal salt it is possible to use one of the aforementioned kinds, or two or more together .
  • Alkali metal salts which are the aforementioned (d) include alkali metal salts of oxidised waxes, alkali metal salts of petroleum sulphonic acids, alkali metal salts of alkyl aromatic sulphonic acids, alkali metal salts which are salicylates, and alkali metal salts which are phenates. In addition, they include overbased
  • overbased alkali metal salts of oxidised waxes overbased alkali metal salts of petroleum sulphonic acids, overbased alkali metal salts of alkyl aromatic sulphonic acids, overbased alkali metal salts which are salicylates, and overbased alkali metal salts which are phenates.
  • alkali metals examples include lithium, sodium and potassium.
  • alkali metal salt it is possible to use one of the aforementioned kinds, or two or more together.
  • amine salts which are the aforementioned (d) include amine salts of oxidised waxes, amine salts of petroleum sulphonic acids, amine salts of alkyl aromatic sulphonic acids, amine salts which are salicylates, and amine salts which are phenates.
  • they include overbased versions thereof, that is overbased amine salts of oxidised waxes, overbased amine salts of petroleum sulphonic acids, overbased amine salts of alkyl aromatic sulphonic acids, overbased amine salts which are salicylates, and overbased amine salts which are
  • Zinc salts which are the aforementioned (d) include zinc salts of oxidised waxes, zinc salts of petroleum sulphonic acids, zinc salts of alkyl aromatic sulphonic acids, zinc salts which are salicylates, and zinc salts which are phenates.
  • alkyl aromatic sulphonic salts mention may be made of those of General Formula (1) and General Formula (2), these being salts of alkyl benzene sulphonic salts or of alkyl naphthalene sulphonic acids.
  • M is selected from alkaline earth metal, alkali metal, amine or zinc
  • Rn 1 and R n 2 are each independently selected from hydrogen atoms or a hydrocarbyl group having from 1 to 30 carbon atoms, preferably an alkyl group having from 6 to 18 carbon atoms
  • n is an integer of from 1 to 3
  • h and k are each an integer of 1 or 2.
  • R 1 group these may the same or different.
  • R 2 group these may the same or different .
  • overbased compounds of alkaline earth metal and the aforementioned alkyl aromatic sulphonic acids may be obtained in respect of the normal salt by reacting excess of an alkaline earth metal salt or a carbonate or a borate which is an alkaline earth metal salt in the presence of carbon dioxide gas.
  • the aforementioned salicylates include alkaline earth metal salts, alkali metal salts, amine salts and zinc salts, and mention may be made for example of the salicylates of the General Formula (3) below.
  • M is selected from alkaline earth metal, alkali metal, amine or zinc, preferably alkaline earth metal, more preferably calcium or magnesium.
  • Each R 3 group is independently selected from hydrogen or a hydrocarbyl group having from 1 to 40 carbon atoms, preferably an alkyl group having from 6 to 22 carbon atoms.
  • n is an integer of from 1 to 4, and
  • j is an integer of 1 or 2. Where there is more than one R 3 group present, these may be the same or different.
  • the normal salt can be used as is, but it is also possible to use a basic Ca salicylate obtained by heating the normal salt of a Ca type salicylate in the presence of excess Ca salt or Ca base and water, or an overbased Ca salicylate obtained by reacting a Ca carbonate or borate with the normal salt of a Ca type salicylate in the presence of carbon dioxide gas.
  • a basic Ca salicylate obtained by heating the normal salt of a Ca type salicylate in the presence of excess Ca salt or Ca base and water
  • an overbased Ca salicylate obtained by reacting a Ca carbonate or borate with the normal salt of a Ca type salicylate in the presence of carbon dioxide gas.
  • Other overbased salts can be
  • alkaline earth metal salts of alkaline earth metal salts of alkylphenols , alkylphenol sulphides or Mannich reaction products of alkylphenols, and in particular magnesium salts or calcium salts among others.
  • examples of the examples of phenate salts mention may be made, as regards alkaline earth metal salts, of alkaline earth metal salts of alkylphenols , alkylphenol sulphides or Mannich reaction products of alkylphenols, and in particular magnesium salts or calcium salts among others. Specifically, mention may be made of the examples
  • R 5 and R 6 in Formula 4 may be the same or different, and are each independently selected from a hydrocarbyl group, preferably a hydrocarbyl group having from 4 to 30 carbon atoms, more preferably an alkyl group having from 9 to 22 carbon atoms.
  • M is an alkaline earth metal, preferably calcium, barium or magnesium, and x is in the range of 1 to 3 depending on which metal is used.
  • calcium phenate and magnesium phenate are preferred.
  • multiple phenate rings may be formed as opposed to the discrete formulae above.
  • Phenates or overbased alkaline earth metals are alkaline earth metal salts of alkylphenols or sulphurised alkylphenols , and are normally obtained by the method of carbonating alkaline earth metal salts of alkyl phenols or sulphurised alkylphenols.
  • alkaline earth metal salts, alkali metal salts, amine salts or zinc salts which constitute the aforementioned (d) may be selected or they may be used in conjunction with each other, and such salts should be used in the blend in an amount of from 0.1 to 10% by mass relative to the total amount of the grease composition, but preferably from 1 to 8% by mass and more preferably from 2 to 7% by mass.
  • the amount thereof added to the blend is less than 0.1% by mass, it will not be possible to maintain superior anti-fretting corrosion properties, and if the amount in the blend exceeds 10% by mass, an increased effect as regards an improvement in anti-fretting
  • dispersants dispersants, surfactants, adhesion improvers (polymers, etc.), oiliness agents, friction reducers, wear
  • Phenol-based anti-oxidants include 2-t-butylphenol ,
  • benzenepropanoic acid 3 5-bis ( 1 , 1-dimethyl-ethyl ) -4- hydroxy-C7-C9 side-chain alkyl esters (Irganox L135, made by Ciba Specialty Chemicals Ltd.), 2 , 6-di-t-butyl- - dimethylamino-p-cresol , and 2 , 2 ' -methylenebis ( 4-alkyl-6- t-butylphenol ) s such as 2 , 2 ' -methylenebis ( 4-methyl-6-t- butylphenol) (Antage W-400, made by Kawaguchi Chemical Industry Ltd.) and 2 , 2 ' -methylenebis ( 4-ethyl-6-t- butylphenol) (Antage W-500, made by Kawaguchi Chemical Industry Ltd) .
  • monoalkyldiphenylamines such as mono-t-butyldiphenylamine and monooctyldiphenylamine, bis (dialkylphenyl ) amines such as di ( 2 , 4-diethylphenyl ) amine and di ( 2-ethyl-4- nonylphenyl ) amine, alkylphenyl-l-naphthylamines such as octyl-phenyl-l-naphthylamine and N-t-dodecylphenyl-1- naphthylamine, 1-naphthylamine, aryl-naphthylamines such as phenyl-l-naphthylamine, phenyl-2-naphthylamine, N- hexylphenyl-2-naphthylamine and N-octylphenyl-2- naphthylamine, phenyl
  • Phenothiazine (made by Hodogaya Chemical Ltd.) and 3,7- dioctylphenothiazine .
  • molybdenum dithiocarbamates such as phosphate esters, acidic phosphate esters, phosphite esters, acidic phosphite esters, amine salts of phosphate esters, amine salts of phosphite esters, amine salts of acidic phosphate esters and amine salts of acidic
  • phosphite esters such as dithiophosphates like zinc dithiophosphates and molybdenum dithiophosphates, or other molybdenum
  • molybdenum amine compounds such as molybdenum amine compounds.
  • Organic molybdenum compounds which have superior friction and wear characteristics, are especially preferred.
  • rust inhibitors and corrosion inhibitors mention may be made of those that are generally used, for example, organic acid derivatives, among which
  • succinic acid ester derivatives particularly preferred for use are succinic acid ester derivatives, aspartic acid derivatives, sarcosinic acid derivatives, and 4-nonylphenoxyacetic acids.
  • organic amide derivatives among which diethanolamines , monoalkyl primary amines,
  • isostearic acid and amides of oleic acid are preferred.
  • sulphurised fatty acids and surfactants (sorbitan trioleate, sorbitan tristearate, sorbitan monolaurate, stearic acid/oleic acid mono/diglycerides).
  • naphthenic acid salts alkali metal salts of dibasic acids, alkaline earth metal salts of dibasic acids, or benzotriazole derivatives, benzoimidazole derivatives and
  • thiocarbamates are also suitable, and as preferred examples mention may be made of sodium sebacate or benzotriazole, or these combined.
  • solid lubricants mention may be made of molybdenum disulphide, graphite, melamine cyanurate, boron nitride, mica, and PTFE (polytetrafluoroethylene) .
  • the aforementioned other additives may of course also be used in a form where they have been pre-added to commercial lubricating oils or semi-solid lubricating oils .
  • Base Oil A A paraffin-based mineral oil, with a 40°C kinematic viscosity of 144.1 mm 2 /s and viscosity index 96.
  • Base Oil B A paraffin-based and naphthene-based oil, with a 40°C kinematic viscosity of 130.2 mm 2 /s and viscosity index 79.
  • Base Oil C A paraffin-based mineral oil belonging to API category Group III which is produced by a high degree of hydrorefining in respect of a lubricating oil fraction obtained by atmospheric distillation of crude oil, with a 40°C kinematic viscosity of 46.87 mm 2 /s and viscosity index 127.
  • Base Oil D A poly- -olefin (PAO) , with a 40°C kinematic viscosity of 46.24 mm 2 /s and viscosity index 137.
  • PAO poly- -olefin
  • Lithium soap lithium-12-hydroxystearate .
  • Tricalcium phosphate [Ca 3 (P0 4 ) 2 ] 3-Ca(OH) 2 , average granularity 5 ⁇ diameter.
  • Ammonium sulphonate (King Industries, Inc.; trade name Na-SUL AS) .
  • compositions were mixed in the blending
  • Comparative Examples 1 to 20 were obtained in similar fashion to the aforementioned examples.
  • Amount of grease 1.0 ⁇ 0.05 g in upper and lower bearings
  • Thrust load 2450 N (550 lb)
  • Test temperature Room temperature
  • the anti-fretting corrosion characteristic was calculated as the loss (mg) being the race weight loss (wear loss) per each bearing using the formula (weight loss in upper bearing race + weight loss in lower bearing race) / 2.
  • Score 1 Amount of fretting wear not more than 3.0 mg
  • Score 2 Amount of fretting wear More than 3.0 mg and less than 4.5 mg
  • Score 3 Amount of fretting wear 4.5 mg and above and less than 10.0 mg
  • Comparative Examples 2 to 7, Comparative Example 9, Comparative Examples 11 to 15, and Comparative Examples 17 to 20 had a score of "3".
  • Comparative Example 1 Comparative Example 8, Comparative Example 10 and Comparative Example 16 has a score of "4", so that it was evident that they had greater weight loss and in this characteristic were inferior to the Examples of the invention.

Abstract

Grease composition comprising (a) a base oil, (b) a thickener, (c) tricalcium phosphate, and (d) at least one compound selected from the group consisting of alkaline earth metal salts, alkali metal salts, amine salts or zinc salts of oxidised waxes, petroleum sulphonic acids, alkyl aromatic sulphonic acids or such salts which are salicylates or phenates, and mixtures thereof. The grease composition of the present invention has excellent anti-fretting corrosion properties, so that it is possible to achieve a satisfactory lubricating function even under the severe conditions accompanying microvibrations.

Description

GREASE COMPOSITION
Technical Field of the Invention
This invention relates to a grease composition with excellent anti-fretting corrosion characteristics.
Background of the Invention
Fretting corrosion, also called abrasion-corrosion, rubbing corrosion and microvibration wear, is a wear phenomenon which occurs when two objects pressed together at any pressure repeatedly slide relative to each other with very small amplitudes in the contact space. When microvibrations and microsliding occur between the two objects, the frictional dust which arises in the case of steel-steel microvibrations in the atmosphere turns to a fine brown iron oxide ( Fe203) . This gets mixed in the grease and turns it brown. The phenomenon of the grease becoming brown occurs in various kinds of machinery, accompanying microvibrations and microsliding between two objects in contacts, as for example in automobile wheel bearings, bolt-tightened flanges and laminated springs. Fretting corrosion promotes wear in machine parts and bearings, and is also a cause of noise.
The mechanism of fretting corrosion has often been investigated but even now it is still unclear. Although they have not been obtained logically from the fretting corrosion mechanism, greases which are acknowledged to have an effect against the phenomenon on the basis of test results or practical experience are being used.
In other words, lubricating greases used in the past at lubrication points where fretting corrosion occurs have been highly paraffinic low-viscosity base oils with high penetration (soft greases of penetration not less than 320 are especially effective (NLGI Spokesman, Vol. 45, 1 (1982))), but satisfactory effectiveness has not necessarily been achieved.
Also, what is already known as means to reduce this fretting corrosion is a grease composition for use in automobile wheel bearings in which an organic molybdenum compound has been added to a urea grease (Japanese Laid- Open Patent 2006-77056), a lithium soap grease
composition in which at least one additive selected from organic molybdenum compounds, organic fatty acid
compounds or organic fatty acid derivatives, and
organophosphorus compounds has been added (Japanese Laid- Open Patent 2001-335792), and a grease composition in which calcium sulphonate has been added to a lithium soap grease using an ester oil for the base oil (Japanese
Laid-Open Patent 2003-147378) .
The aim of this invention is to offer a lubricating grease which will improve the anti-fretting corrosion characteristics compared to the lithium soap greases and urea greases of the prior art.
Summary of the Invention
According to the present invention there is provided a grease composition comprising (a) a base oil, (b) a thickener, (c) tricalcium phosphate, and (d) at least one kind of salt selected from the group consisting of alkaline earth metal salts, alkali metal salts, amine salts or zinc salts of oxidised waxes, petroleum
sulphonic acids, alkyl aromatic sulphonic acids or such salts which are salicylates or phenates; and mixtures thereof.
Detailed Description of the Invention
The grease composition of this invention can improve anti-fretting corrosion characteristics. Also, it need not be the highly paraffinic low-viscosity base oils with high penetration (soft greases: penetration not less than 320) deemed necessary in the past, as mentioned above, and in this invention it is possible to obtain excellent anti-fretting corrosion characteristics also in cases where a high viscosity oil or a naphthene-based base oil is used in part, and even if the hardness is of Grade 2 Penetration [penetration grade of the NLGI (US grease institute) classification] .
As to the applications of this grease composition, whilst it can naturally be used in generally used
machines, bearings and gears, it displays excellent performance under the rather more rigorous conditions which accompany microvibrations. For example, it can be suitably used in automobile parts such as the needle bearings of universal joints, constant velocity joints (CVJ) , wheel bearings, ball screws, screws, flexible couplings, various kinds of gears, cams and chains.
For the base oil used in the grease composition of this invention it is possible to use the mineral oils, synthetic oils and mixtures thereof normally used for lubricating oils. Their kinematic viscosity at 40°C should preferably be approximately 20 to 400 mm2/s.
In particular, it is possible to use, singly or as mixtures, base oils which belong to Group I, Group II,
Group III, Group IV and Group V of the API (American Petroleum Institute) base oil categories.
Group I base oils include, for example, paraffinic mineral oils obtained by appropriate use of a suitable combination of refining processes such as solvent
refining, hydrorefining, and dewaxing in respect of lubricating oil fractions obtained by atmospheric distillation of crude oil. Group II base oils include, for example, paraffinic mineral oils obtained by appropriate use of a suitable combination of refining processes such as hydrorefining and dewaxing in respect of lubricating oil fractions obtained by atmospheric distillation of crude oil. Group
II base oils refined by hydrorefining methods such as the Gulf Company method have a total sulphur content of less than 10 ppm and an aromatic content of not more than 5% and so are suitable for use in this invention.
Group III and Group 11+ base oils include paraffinic mineral oils manufactured by a high degree of
hydrorefining in respect of lubricating oil fractions obtained by atmospheric distillation of crude oil, base oils refined by Isodewaxing which dewaxes and substitutes the wax produced by the dewaxing process with
isoparaffins, and base oils refined by the Mobil wax isomerisation process. These too are suitable for use in this invention.
Also, GTLs (gas to liquid) synthesised by the
Fischer-Tropsch method of converting natural gas to liquid fuel have a very low sulphur content and aromatic content compared with mineral oil base oils refined from crude oil and have a very high paraffin constituent ratio, and so have excellent oxidative stability, and because they also have extremely small evaporation losses, they are suitable as base oils for this
invention .
Group V base oils include, for example, naphthenic mineral oils obtained by appropriate use of a suitable combination of refining processes such as solvent
refining, hydrorefining, and dewaxing in respect of lubricating oil fractions obtained by atmospheric
distillation of crude oil. It is also possible to use mixtures of the above mentioned paraffinic mineral oils and naphthenic mineral oils .
As examples of synthetic oils mention may be made of polyolefins, dibasic acid diesters such as dioctyl sebacate, polyol esters, alkylbenzenes ,
alkylnaphthalenes , esters, polyoxyalkylene glycols, polyoxyalkylene glycol esters, polyoxyalkylene glycol ethers, polyphenyl ethers, dialkyldiphenyl ethers, fluorine-containing compounds (perfluoropolyethers, fluorinated polyolefins) and silicones.
The aforementioned polyolefins include polymers of various olefins or hydrides thereof. Any olefin may be used, and as examples mention may be made of ethylene, propylene, butene and -olefins with five or more
carbons. In the manufacture of polyolefins, one kind of the aforementioned olefins may be used singly or two or more kinds may be used in combination. Particularly suitable are the polyolefins called poly- -olefins (PAO) . These are base oils of Group IV.
In general, it is possible to use for the
aforementioned thickening agent one kind, or two or more kinds in combination, of generally already known urea compounds, alkali metal soaps, alkali metal complex soaps, alkaline earth metal soaps, alkaline earth metal complex soaps, alkali metal sulphonates, alkaline earth metal sulphonates, aluminium soaps, aluminium complex soaps, metal terephthalamate salts, clays,
polytetrafluoroethylenes, silica aerogels (silicon oxide), and so on. In particular, lithium soaps and urea-based thickeners will often be preferred as they have few drawbacks and are excellent for practical use. The tricalcium phosphate in this invention is one having the chemical structure of a hydroxyapatite
composition as generally represented by [Ca3 (PO4)
2] 3-Ca(OH) 2 , but it is also possible to use those
represented by Ca3 (P04) 2-
In the examples described below for this invention, [Ca3 (P04) 2l 3-Ca(OH) 2 is used, and the content is shown as the mass based on this.
The tricalcium phosphate preferably will have an average granularity of not more than 5 μιη diameter in order to increase the penetration yield of the grease, but it may be used without problems so long as the average granularity is not more than 100 μιη diameter.
This tricalcium phosphate is added to the
aforementioned grease composition, and it is best if it is blended in an amount, relative to the total amount of the grease composition, of from 0.1 to 20% by mass, but preferably from 1 to 15% by mass, and more preferably from 2 to 10% by mass.
If the aforementioned tricalcium phosphate is blended in the aforementioned base oil, a thickening effect is exhibited because of the tricalcium phosphate. Even if the previously mentioned lithium soaps, ureas or other thickeners are reduced, it is possible to form the compositions into a grease state, and further into pastes and compounds .
If the amount of this tricalcium phosphate in the blend is less than 0.1% by mass, it will not be possible to maintain superior anti-fretting corrosion properties. If it exceeds 20% by mass, the grease composition may harden and may not become a slippery semi-solid, and there will be many difficulties with its manufacture. Alkaline earth metal salts which are the
aforementioned (d) include alkaline earth metal salts of oxidised waxes, alkaline earth metal salts of petroleum sulphonic acids, alkaline earth metal salts of alkyl aromatic sulphonic acids, alkaline earth metal salts which are salicylates, and alkaline earth metal salts which are phenates.
In addition, they include overbased versions
thereof, that is overbased alkaline earth metal salts of oxidised waxes, overbased alkaline earth metal salts of petroleum sulphonic acids, overbased alkaline earth metal salts of alkyl aromatic sulphonic acids, overbased alkaline earth metal salts which are salicylates, and overbased alkaline earth metal salts which are phenates. Salts of the aforementioned petroleum sulphonic acids and alkyl aromatic sulphonic acids are generally known as sulphonates .
As examples of the aforementioned alkaline earth metals, mention may be made of calcium, magnesium and barium.
For this alkaline earth metal salt it is possible to use one of the aforementioned kinds, or two or more together .
Alkali metal salts which are the aforementioned (d) include alkali metal salts of oxidised waxes, alkali metal salts of petroleum sulphonic acids, alkali metal salts of alkyl aromatic sulphonic acids, alkali metal salts which are salicylates, and alkali metal salts which are phenates. In addition, they include overbased
versions thereof, that is overbased alkali metal salts of oxidised waxes, overbased alkali metal salts of petroleum sulphonic acids, overbased alkali metal salts of alkyl aromatic sulphonic acids, overbased alkali metal salts which are salicylates, and overbased alkali metal salts which are phenates.
As examples of the aforementioned alkali metals, mention may be made of lithium, sodium and potassium.
For this alkali metal salt it is possible to use one of the aforementioned kinds, or two or more together.
Similarly, amine salts which are the aforementioned (d) include amine salts of oxidised waxes, amine salts of petroleum sulphonic acids, amine salts of alkyl aromatic sulphonic acids, amine salts which are salicylates, and amine salts which are phenates. In addition, they include overbased versions thereof, that is overbased amine salts of oxidised waxes, overbased amine salts of petroleum sulphonic acids, overbased amine salts of alkyl aromatic sulphonic acids, overbased amine salts which are salicylates, and overbased amine salts which are
phenates .
As examples of substances forming the aforementioned amine salts, mention may be made of ammonia,
ethylenediamine and diethylenetriamine .
For this amine salt it is possible to use one of the aforementioned kinds, or two or more together.
Zinc salts which are the aforementioned (d) include zinc salts of oxidised waxes, zinc salts of petroleum sulphonic acids, zinc salts of alkyl aromatic sulphonic acids, zinc salts which are salicylates, and zinc salts which are phenates.
For this zinc salt, in the same way as mentioned above, it is possible to use one of the aforementioned kinds, or two or more together.
As examples of the aforementioned alkyl aromatic sulphonic salts, mention may be made of those of General Formula (1) and General Formula (2), these being salts of alkyl benzene sulphonic salts or of alkyl naphthalene sulphonic acids.
General Formula 1 :
Figure imgf000010_0001
General Formula 2 :
Figure imgf000010_0002
In General Formulae (1) and (2), M is selected from alkaline earth metal, alkali metal, amine or zinc, and Rn1 and Rn 2 are each independently selected from hydrogen atoms or a hydrocarbyl group having from 1 to 30 carbon atoms, preferably an alkyl group having from 6 to 18 carbon atoms, n is an integer of from 1 to 3, and h and k are each an integer of 1 or 2. Where there is more than one R1 group, these may the same or different. Where there is more than one R2 group, these may the same or different .
Also, overbased compounds of alkaline earth metal and the aforementioned alkyl aromatic sulphonic acids may be obtained in respect of the normal salt by reacting excess of an alkaline earth metal salt or a carbonate or a borate which is an alkaline earth metal salt in the presence of carbon dioxide gas. The aforementioned salicylates include alkaline earth metal salts, alkali metal salts, amine salts and zinc salts, and mention may be made for example of the salicylates of the General Formula (3) below.
General Formula 3 :
Figure imgf000011_0001
In the General Formula (3), M is selected from alkaline earth metal, alkali metal, amine or zinc, preferably alkaline earth metal, more preferably calcium or magnesium. Each R3 group is independently selected from hydrogen or a hydrocarbyl group having from 1 to 40 carbon atoms, preferably an alkyl group having from 6 to 22 carbon atoms. n is an integer of from 1 to 4, and j is an integer of 1 or 2. Where there is more than one R3 group present, these may be the same or different.
For example, for a Ca type salicylate the normal salt can be used as is, but it is also possible to use a basic Ca salicylate obtained by heating the normal salt of a Ca type salicylate in the presence of excess Ca salt or Ca base and water, or an overbased Ca salicylate obtained by reacting a Ca carbonate or borate with the normal salt of a Ca type salicylate in the presence of carbon dioxide gas. Other overbased salts can be
obtained in accordance with the above.
As examples of phenate salts, mention may be made, as regards alkaline earth metal salts, of alkaline earth metal salts of alkylphenols , alkylphenol sulphides or Mannich reaction products of alkylphenols, and in particular magnesium salts or calcium salts among others. Specifically, mention may be made of the examples
represented by the General Formulae (4), (5) and (6) below .
General Formula 4: -M-
Figure imgf000012_0001
General Formula 5:
Figure imgf000012_0002
General Formula 6 :
Figure imgf000012_0003
R5 and R6 in Formula 4, R7 and R8 in Formula 5, and R9 and R10 in Formula 6 may be the same or different, and are each independently selected from a hydrocarbyl group, preferably a hydrocarbyl group having from 4 to 30 carbon atoms, more preferably an alkyl group having from 9 to 22 carbon atoms.
In Formulae 4 ,5 or 6, M is an alkaline earth metal, preferably calcium, barium or magnesium, and x is in the range of 1 to 3 depending on which metal is used. For the purposes of this invention, calcium phenate and magnesium phenate are preferred. Also, multiple phenate rings may be formed as opposed to the discrete formulae above.
Phenates or overbased alkaline earth metals are alkaline earth metal salts of alkylphenols or sulphurised alkylphenols , and are normally obtained by the method of carbonating alkaline earth metal salts of alkyl phenols or sulphurised alkylphenols.
One of these alkaline earth metal salts, alkali metal salts, amine salts or zinc salts which constitute the aforementioned (d) may be selected or they may be used in conjunction with each other, and such salts should be used in the blend in an amount of from 0.1 to 10% by mass relative to the total amount of the grease composition, but preferably from 1 to 8% by mass and more preferably from 2 to 7% by mass.
If the amount thereof added to the blend is less than 0.1% by mass, it will not be possible to maintain superior anti-fretting corrosion properties, and if the amount in the blend exceeds 10% by mass, an increased effect as regards an improvement in anti-fretting
corrosion properties will often not be apparent.
In addition to the aforementioned constituents, it is possible to use also extreme pressure agents,
dispersants, surfactants, adhesion improvers (polymers, etc.), oiliness agents, friction reducers, wear
inhibitors, rust inhibitors, corrosion inhibitors, solid lubricants and other additives as required by the
application.
For the aforementioned anti-oxidants it is possible to use amine-based, phenol-based, phosphite-based, sulphur-based and dialkyldithiophosphate-based anti- oxidants, but phenol-based and amine-based anti-oxidants will often be particularly preferred as they have
superior oxidative stability at high temperatures.
Phenol-based anti-oxidants include 2-t-butylphenol ,
2-t-butyl-4-methylphenol , 2-t-butyl-5-methylphenol , 2,4- di-t-butylphenol , 2 , 4-dimethyl-6-t-butylphenol , 2-t- butyl-4-methoxyphenol , 3-t-butyl-4-methoxyphenol , 2,5-di- t-butylhydroquinone (Antage DBH, made by Kawaguchi
Chemical Industry Co. Ltd.), 2 , 6-di-t-butylphenol , 2,6- di-t-butyl-4-alkylphenols such as 2 , 6-di-t-butyl-4- methylphenol and 2 , 6-di-t-butyl-4-ethylphenol , and 2,6- di-t-butyl-4-alkoxyphenols such as 2 , 6-di-t-butyl-4- methoxyphenol and 2 , 6-di-t-butyl-4-ethoxyphenol .
Also, there are 3 , 5-di-t-butyl-4- hydroxybenzylmercapto-octylacetate, alkyl-3- (3, 5-di-t- butyl-4-hydroxyphenyl ) propionates such as n-octadecyl-3- ( 3 , 5-di-t-butyl-4-hydroxyphenyl ) propionate (Tominox SS, made by Yoshitomi Fine Chemicals Ltd.), n-dodecyl-3- ( 3 , 5- di-t-butyl-4-hydroxyphenyl ) propionate and 2 ' -ethylhexyl-
3- (3, 5-di-t-butyl-4-hydroxyphenyl ) propionate,
benzenepropanoic acid 3 , 5-bis ( 1 , 1-dimethyl-ethyl ) -4- hydroxy-C7-C9 side-chain alkyl esters (Irganox L135, made by Ciba Specialty Chemicals Ltd.), 2 , 6-di-t-butyl- - dimethylamino-p-cresol , and 2 , 2 ' -methylenebis ( 4-alkyl-6- t-butylphenol ) s such as 2 , 2 ' -methylenebis ( 4-methyl-6-t- butylphenol) (Antage W-400, made by Kawaguchi Chemical Industry Ltd.) and 2 , 2 ' -methylenebis ( 4-ethyl-6-t- butylphenol) (Antage W-500, made by Kawaguchi Chemical Industry Ltd) .
Furthermore, there are bisphenols such as 4,4'- butylidenebis ( 3-methyl-6-t-butylphenol ) (Antage W-300, made by Kawaguchi Chemical Industry Ltd.), 4,4'- methylenebis ( 2 , 6-di-t-butylphenol ) (Ionox 220AH, made by Shell Japan Ltd.)? 4 , 4 ' -bis ( 2 , 6-di-t-butylphenol ) , 2,2- (di-p-hydroxyphenyl ) propane (Bisphenol A, made by Shell Japan Ltd.), 2 , 2-bis ( 3 , 5-di-t-butyl-4- hydroxyphenyl ) propane, 4,4' -cyclohexylidenebis (2, 6-t- butylphenol ) , hexamethylene glycol bis [ 3- ( 3 , 5-di-t-butyl- 4-hydroxyphenyl ) propionate ] (Irganox L109, made by Ciba Specialty Chemicals Ltd.), triethylene glycol bis[3-(3-t- butyl-4-hydroxy-5-methylphenyl ) propionate ] (Tominox 917, made by Yoshitomi Fine Chemicals Ltd.), 2,2'-thio- [diethyl-3-(3, 5-di-t-butyl-4-hydroxyphenyl ) propionate (Irganox L115, made by Ciba Specialty Chemicals Ltd.), 3 , 9-bis { 1 , l-dimethyl-2- [3- ( 3-t-butyl-4-hydroxy-5- methylphenyl ) propionyloxy] ethyl } 2,4,8,10- tetraoxaspiro [ 5 , 5 ] undecane (Sumilizer GA80, made by
Sumitomo Chemicals), 4 , 4 ' -thiobis ( 3-methyl-6-t- butylphenol) (Antage RC, made by Kawaguchi Chemical Industry Ltd.) and 2 , 2 ' -thiobis ( 4 , 6-di-t-butyl- resorcinol ) .
Mention may also be made of polyphenols such as tetrakis [methylene-3- (3, 5-di-t-butyl-4-hydroxyphenyl ) propionate ] methane (Irganox L101, made by Ciba Specialty Chemicals Ltd.), 1 , 1 , 3-tris ( 2-methyl-4-hydroxy-5-t- butylphenyl ) butane (Yoshinox 930, made by Yoshitomi Fine Chemicals Ltd.), 1 , 3 , 5-trimethyl-2 , 4 , 6-tris ( 3 , 5-di-t- butyl-4-hydroxybenzyl ) benzene (Ionox 330, made by Shell Japan Ltd.), bis- [ 3 , 3 ' -bis- ( 4 ' -hydroxy-3 ' -t-butylphenyl ) butyric acid] glycol ester, 2- ( 3 ' , 5 ' -di-t-butyl-4- hydroxyphenyl ) methyl-4- ( 21 1 , 41 1 -di-t-butyl-3 ' ' - hydroxyphenyl ) methyl-6-t-butylphenol and 2, 6, -bis (2 '- hydroxy-3 ' -t-butyl-5 ' -methyl-benzyl) -4-methylphenol , and phenol-aldehyde condensates such as condensates of p-t- butylphenol and formaldehyde and condensates of p-t- butylphenol and acetaldehyde . As examples of amine-based anti-oxidants , mention may be made of dialkyl-diphenylamines such as ρ,ρ'- dioctyl-diphenylamine (Nonflex OD-3, made by Seiko
Chemical Ltd), p, p ' -di- -methylbenzyl-diphenylamine and N-p-butylphenyl-N-p ' -octylphenylamine,
monoalkyldiphenylamines such as mono-t-butyldiphenylamine and monooctyldiphenylamine, bis (dialkylphenyl ) amines such as di ( 2 , 4-diethylphenyl ) amine and di ( 2-ethyl-4- nonylphenyl ) amine, alkylphenyl-l-naphthylamines such as octyl-phenyl-l-naphthylamine and N-t-dodecylphenyl-1- naphthylamine, 1-naphthylamine, aryl-naphthylamines such as phenyl-l-naphthylamine, phenyl-2-naphthylamine, N- hexylphenyl-2-naphthylamine and N-octylphenyl-2- naphthylamine, phenylenediamines such as Ν,Ν'- diisopropyl-p-phenylenediamine and N, N ' -diphenyl-p- phenylenediamine, and phenothiazines such as
Phenothiazine (made by Hodogaya Chemical Ltd.) and 3,7- dioctylphenothiazine .
For the aforementioned extreme pressure agents and wear inhibitors it is possible to use sulphurised oils and fats, sulphurised olefins, sulphur compounds such as dithiocarbamates like zinc dithiocarbamates and
molybdenum dithiocarbamates, phosphorus compounds such as phosphate esters, acidic phosphate esters, phosphite esters, acidic phosphite esters, amine salts of phosphate esters, amine salts of phosphite esters, amine salts of acidic phosphate esters and amine salts of acidic
phosphite esters, thiophosphate esters, sulphur compounds such as dithiophosphates like zinc dithiophosphates and molybdenum dithiophosphates, or other molybdenum
compounds such as molybdenum amine compounds. Organic molybdenum compounds, which have superior friction and wear characteristics, are especially preferred. For rust inhibitors and corrosion inhibitors mention may be made of those that are generally used, for example, organic acid derivatives, among which
particularly preferred for use are succinic acid ester derivatives, aspartic acid derivatives, sarcosinic acid derivatives, and 4-nonylphenoxyacetic acids.
Mention may also be made of organic amine
derivatives and organic amide derivatives, among which diethanolamines , monoalkyl primary amines,
diamine/difatty acid salts, diamines, amides of
isostearic acid and amides of oleic acid are preferred.
As other preferred examples, mention may be made of sulphurised fatty acids, and surfactants (sorbitan trioleate, sorbitan tristearate, sorbitan monolaurate, stearic acid/oleic acid mono/diglycerides).
In addition, those selected from naphthenic acid salts, alkali metal salts of dibasic acids, alkaline earth metal salts of dibasic acids, or benzotriazole derivatives, benzoimidazole derivatives and
thiocarbamates are also suitable, and as preferred examples mention may be made of sodium sebacate or benzotriazole, or these combined.
As examples of solid lubricants, mention may be made of molybdenum disulphide, graphite, melamine cyanurate, boron nitride, mica, and PTFE (polytetrafluoroethylene) .
The aforementioned other additives may of course also be used in a form where they have been pre-added to commercial lubricating oils or semi-solid lubricating oils .
Examples
Further explanation is given below by way of examples and comparative examples, but the invention is not thereby limited. The following compositions and materials were used in preparation of the examples and comparative examples.
(1) Base Oil A: A paraffin-based mineral oil, with a 40°C kinematic viscosity of 144.1 mm2/s and viscosity index 96.
(2) Base Oil B: A paraffin-based and naphthene-based oil, with a 40°C kinematic viscosity of 130.2 mm2/s and viscosity index 79.
(3) Base Oil C: A paraffin-based mineral oil belonging to API category Group III which is produced by a high degree of hydrorefining in respect of a lubricating oil fraction obtained by atmospheric distillation of crude oil, with a 40°C kinematic viscosity of 46.87 mm2/s and viscosity index 127.
(4) Base Oil D: A poly- -olefin (PAO) , with a 40°C kinematic viscosity of 46.24 mm2/s and viscosity index 137.
(5) Lithium soap: lithium-12-hydroxystearate .
(6) Diurea compound: reaction product of 2 mol octylamine (C8H17NH2) and 1 mol MDI ( 4 , 4 ' -diphenylmethane
diisocyanate ) .
(7) Tricalcium phosphate: [Ca3 (P04) 2] 3-Ca(OH) 2, average granularity 5 μηι diameter.
(8) Calcium sulphonate (King Industries, Inc.; trade name Na-SUL 729) .
(9) Calcium salicylate (Infineum Japan Ltd.; trade name Infineum M7121) .
(10) Calcium phenate (Oronite Chemical Co.; trade name Oloa 229) .
(11) Calcium salt of oxidised wax (Lubrizol Corporation; trade name ALOX 165) .
(12) Barium sulphonate (King Industries, Inc.; trade name Na-SUL BSN) . (13) Lithium sulphonate (King Industries, Inc, ; trade name Na-SUL 707) .
(14) Sodium sulphonate (King Industries, Inc.; trade name Na-SUL SS) .
(15) Ammonium sulphonate (King Industries, Inc.; trade name Na-SUL AS) .
(16) Diethylene triamine sulphonate (King Industries, Inc.; trade name Na-SUL DTA) .
(17) Ethylene diamine sulphonate (King Industries, Inc.; trade name Na-SUL EDS) .
(18) Zinc sulphonate (King Industries, Inc.; trade name Na-SUL ZS-HT)
Examples and Comparative Examples
The compositions were mixed in the blending
proportions (mass%) shown in Tables 1, 2 and 3. They were treated in a three-roll mill and finished to a uniform state to give the grease compositions for
Examples 1 to 22.
Using the blending proportions shown in Tables 4, 5 and 6, Comparative Examples 1 to 20 were obtained in similar fashion to the aforementioned examples.
Tests
The following tests were carried out on Examples 1 to 22 and Comparative Examples 1 to 20 in order to compare their characteristics.
(1) Penetration: the worked penetration (25°C, 60W) was measured for penetration in the grease state as
stipulated in JIS K2220 (ASTM D1403) .
Here, a small value for the penetration shows a high consistency.
(2) Fretting corrosion test: carried out in accordance with ASTM D4170. Test bearings: Thrust bearing 51203 (made by
Nippon Seiko Co. Ltd.)
Amount of grease: 1.0 ± 0.05 g in upper and lower bearings
Thrust load: 2450 N (550 lb)
Amplitude: 0.21 radian (12°)
Oscillations: 30 Hz (1800 cycles/min)
Test temperature: Room temperature
Test duration: 22 hours
The anti-fretting corrosion characteristic was calculated as the loss (mg) being the race weight loss (wear loss) per each bearing using the formula (weight loss in upper bearing race + weight loss in lower bearing race) / 2.
Also, an evaluation was made by the following criteria, expressed by a score of 1 to 4. A lower wear loss is preferred.
Score 1: Amount of fretting wear not more than 3.0 mg Score 2: Amount of fretting wear More than 3.0 mg and less than 4.5 mg
Score 3: Amount of fretting wear 4.5 mg and above and less than 10.0 mg
Score 4: Amount of fretting wear 10.0 mg and above. Test Results
The results of the various tests are shown in Tables
1, 2, 3, 4, 5 and 6.
Discussion
What is shown for Examples 1 to 22 and Comparative Examples 1 to 20 is that the penetration is 272 to 295, so that in each case they display a grease hardness of
Penetration Grade 2 (worked penetration 265 to 295) of the NLGI (US grease institute) classification. It can be seen that the ant i-fretting corrosion characteristics of Examples 1 to 14 and 18 to 22 all gave an extremely good score of 1. Also, Examples 15 to 17 gave a score of "2" , which even if not as good as "1" is still excellent. In practical use they would not be inferior .
In addition, good results were obtained in each case even when using various base oils.
On the other hand, Comparative Examples 2 to 7, Comparative Example 9, Comparative Examples 11 to 15, and Comparative Examples 17 to 20 had a score of "3".
Comparative Example 1, Comparative Example 8, Comparative Example 10 and Comparative Example 16 has a score of "4", so that it was evident that they had greater weight loss and in this characteristic were inferior to the Examples of the invention.
Table 1
Figure imgf000022_0001
Table 2
Figure imgf000023_0001
Table 3
Figure imgf000024_0001
Table 4
Figure imgf000025_0001
Table 5
Figure imgf000026_0001
Table 6
Figure imgf000027_0001

Claims

C L A I M S
1. Grease composition comprising (a) a base oil, (b) a thickener, (c) tricalcium phosphate, and (d) at least one compound selected from the group consisting of alkaline earth metal salts, alkali metal salts, amine salts or zinc salts of oxidised waxes, petroleum sulphonic acids, alkyl aromatic sulphonic acids or such salts which are salicylates or phenates, and mixtures thereof.
2. Grease composition in accordance with Claim 1 characterised in that compound (d) is an alkaline earth metal salt selected from the group consisting of alkaline earth metal salts of oxidised waxes, alkaline earth metal salts of petroleum sulphonic acids, alkaline earth metal salts of alkyl aromatic sulphonic acids, alkaline earth metal salts which are salicylates, alkaline earth metal salts which are phenates, overbased alkaline earth metal salts of oxidised waxes, overbased alkaline earth metal salts of petroleum sulphonic acids, overbased alkaline earth metal salts of alkyl aromatic sulphonic acids, overbased alkaline earth metal salts which are
salicylates and overbased alkaline earth metal salts which are phenates, and mixtures thereof.
3. Grease composition in accordance with Claim 2 wherein the alkaline earth metal in the aforementioned alkaline earth metal salt (d) is calcium, magnesium or barium.
4. Grease composition in accordance with Claim 1 characterised in that compound (d) is an alkali metal salt selected from the group consisting of alkali metal salts of oxidised waxes, alkali metal salts of petroleum sulphonic acids, alkali metal salts of alkyl aromatic sulphonic acids, alkali metal salts which are
salicylates, alkali metal salts which are phenates, overbased alkali metal salts of oxidised waxes, overbased alkali metal salts of petroleum sulphonic acids,
overbased alkali metal salts of alkyl aromatic sulphonic acids, overbased alkali metal salts which are salicylates and overbased alkali metal salts which are phenates, and mixtures thereof.
5. Grease composition in accordance with Claim 4 wherein the alkali metal of the alkali metal salt which is the aforementioned (d) is selected from lithium or sodium .
6. Grease composition in accordance with Claim 1 characterised in that compound (d) is an amine salt selected from the group consisting of amine salts of oxidised waxes, amine salts of petroleum sulphonic acids, amine salts of alkyl aromatic sulphonic acids, amine salts which are salicylates, amine salts which are phenates, overbased amine salts of oxidised waxes, overbased amine salts of petroleum sulphonic acids, overbased amine salts of alkyl aromatic sulphonic acids, overbased amine salts which are salicylates and overbased amine salts which are phenates, and mixtures thereof.
7. Grease composition in accordance with Claim 1 characterised in that compound (d) is a zinc salt
selected from the group consisting of zinc salts of oxidised waxes, zinc salts of petroleum sulphonic acids, zinc salts of alkyl aromatic sulphonic acids, zinc salts which are salicylates and zinc salts which are phenates, and mixtures thereof.
8. Grease composition in accordance with any of Claims
1 to 7 characterised in that the aforementioned thickener is a lithium soap or a urea compound.
9. Grease composition in accordance with any of Claims 1 to 8 characterised in that the content of the
aforementioned tricalcium phosphate is 0.1 to 20% by mass relative to the grease composition.
10. Grease composition in accordance with any of Claims
1 to 9 characterised in that the content of the
aforementioned (d) being at least one compound selected from the group consisting of alkaline earth metal salts, alkali metal salts, amine salts and zinc salts is from 0.1 to 10% by mass relative to the grease composition.
PCT/EP2011/052217 2010-02-15 2011-02-15 Grease composition WO2011098616A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010029986 2010-02-15
JP2010-029986 2010-02-15
JP2010284683A JP5643634B2 (en) 2010-02-15 2010-12-21 Grease composition
JP2010-284683 2010-12-21

Publications (1)

Publication Number Publication Date
WO2011098616A1 true WO2011098616A1 (en) 2011-08-18

Family

ID=43881205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/052217 WO2011098616A1 (en) 2010-02-15 2011-02-15 Grease composition

Country Status (2)

Country Link
JP (1) JP5643634B2 (en)
WO (1) WO2011098616A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773589A4 (en) * 2011-10-31 2015-08-26 Nch Corp Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
US9458406B2 (en) 2011-10-31 2016-10-04 Nch Corporation Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture
US9976101B2 (en) 2011-10-31 2018-05-22 Nch Corporation Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents
US9976102B2 (en) 2011-10-31 2018-05-22 Nch Corporation Composition and method of manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
US10087387B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US10087391B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent
US10087388B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid
US10392577B2 (en) 2016-05-18 2019-08-27 Nch Corporation Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease
US10519393B2 (en) 2016-05-18 2019-12-31 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US11661563B2 (en) 2020-02-11 2023-05-30 Nch Corporation Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705621B (en) * 2013-10-24 2019-03-15 国际壳牌研究有限公司 The improved roll stability of lubricant composition
KR102252297B1 (en) * 2016-09-28 2021-05-14 가부시키가이샤 제이텍트 Grease composition and hub unit
JP6804156B2 (en) * 2017-03-29 2020-12-23 日本製鉄株式会社 Grease composition for rolling bearings
JP7399453B2 (en) * 2019-10-24 2023-12-18 株式会社ニッペコ grease composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988506A (en) * 1954-06-29 1961-06-13 Exxon Research Engineering Co Oxidation inhibition of oleaginous materials
US5102565A (en) * 1989-03-31 1992-04-07 Amoco Corporation Calcium soap thickened steel mill grease
US5207935A (en) * 1989-03-31 1993-05-04 Amoco Corporation Wheel bearing grease
JP2001335792A (en) 2000-03-21 2001-12-04 Nsk Ltd Lubricating grease composition, and roller bearing and rolling device using this composition
JP2003147378A (en) 2001-11-16 2003-05-21 Koyo Seiko Co Ltd Grease composition and roller bearing obtained using the same
JP2006077056A (en) 2004-09-07 2006-03-23 Ntn Corp Grease composition for automobile wheel bearings

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2429512C2 (en) * 1974-06-20 1982-04-01 Rhein-Chemie Rheinau Gmbh, 6800 Mannheim Use of a concentrated solution of benzotriazole and / or tetrahydrobenzotriazole as a corrosion protection agent
US4759859A (en) * 1986-02-18 1988-07-26 Amoco Corporation Polyurea grease with reduced oil separation
US4787992A (en) * 1986-02-18 1988-11-29 Amoco Corporation Calcium soap thickened front-wheel drive grease
US4904399A (en) * 1989-03-31 1990-02-27 Amoco Corporation Process for preventing grease fires in steel mills and other metal processing mills
US5000862A (en) * 1989-03-31 1991-03-19 Amoco Corporation Process for protecting bearings in steel mills and other metal processing mills
JP5235278B2 (en) * 2006-03-02 2013-07-10 昭和シェル石油株式会社 Lubricant composition
JP5462451B2 (en) * 2008-05-30 2014-04-02 昭和シェル石油株式会社 Lubricant composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2988506A (en) * 1954-06-29 1961-06-13 Exxon Research Engineering Co Oxidation inhibition of oleaginous materials
US5102565A (en) * 1989-03-31 1992-04-07 Amoco Corporation Calcium soap thickened steel mill grease
US5207935A (en) * 1989-03-31 1993-05-04 Amoco Corporation Wheel bearing grease
JP2001335792A (en) 2000-03-21 2001-12-04 Nsk Ltd Lubricating grease composition, and roller bearing and rolling device using this composition
JP2003147378A (en) 2001-11-16 2003-05-21 Koyo Seiko Co Ltd Grease composition and roller bearing obtained using the same
JP2006077056A (en) 2004-09-07 2006-03-23 Ntn Corp Grease composition for automobile wheel bearings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NLGI SPOKESMAN, vol. 45, no. 1, 1982

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2773589A4 (en) * 2011-10-31 2015-08-26 Nch Corp Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
US9458406B2 (en) 2011-10-31 2016-10-04 Nch Corporation Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture
US9976101B2 (en) 2011-10-31 2018-05-22 Nch Corporation Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents
US9976102B2 (en) 2011-10-31 2018-05-22 Nch Corporation Composition and method of manufacturing calcium sulfonate greases using alkali metal hydroxide and delayed addition of non-aqueous converting agents
US11072756B2 (en) 2011-10-31 2021-07-27 Nch Corporation Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
US10316266B2 (en) 2011-10-31 2019-06-11 Nch Corporation Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture
US10087388B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid
US10087391B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent
US10392577B2 (en) 2016-05-18 2019-08-27 Nch Corporation Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease
US10519393B2 (en) 2016-05-18 2019-12-31 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US10087387B2 (en) 2016-05-18 2018-10-02 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US11168277B2 (en) 2016-05-18 2021-11-09 Nch Corporation Composition and method of manufacturing calcium magnesium sulfonate greases
US11661563B2 (en) 2020-02-11 2023-05-30 Nch Corporation Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases

Also Published As

Publication number Publication date
JP5643634B2 (en) 2014-12-17
JP2011184680A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2011098616A1 (en) Grease composition
US9290715B2 (en) Grease composition
EP1838821B1 (en) Lubricating oil composition
JP5646859B2 (en) Lubricating oil composition for continuously variable transmission
JP5249584B2 (en) Lubricating composition
JP6546727B2 (en) Grease composition
JP5707589B2 (en) Lubricant composition and lubricating liquid composition
JP5383678B2 (en) Lubricant composition and lubrication system using the same
MX2007007175A (en) Lubricating grease composition.
US11220650B2 (en) Grease composition
EP2687584A1 (en) Grease composition
JP2007070461A (en) Waterproof grease composition
JP2024051124A (en) Grease composition
JP2008031416A (en) Grease composition for resin
JP2017145284A (en) Grease composition for propeller shaft spline, and propeller shaft spline
JP4937658B2 (en) Grease composition for resin
JP6511128B2 (en) Grease composition
JP5517266B2 (en) Lubricating grease composition
JP6899788B2 (en) Grease composition
JP6269122B2 (en) Lubricating grease composition
JP2014098063A (en) Lubricating oil composition
WO2015034089A1 (en) Transmission fluid
JP5486246B2 (en) Lubricant composition
JP4198391B2 (en) Lubricant composition
US20230279308A1 (en) Grease composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11703018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11703018

Country of ref document: EP

Kind code of ref document: A1