WO2011097820A1 - 一种异种网络切换时选择网关方法、装置及*** - Google Patents

一种异种网络切换时选择网关方法、装置及*** Download PDF

Info

Publication number
WO2011097820A1
WO2011097820A1 PCT/CN2010/070676 CN2010070676W WO2011097820A1 WO 2011097820 A1 WO2011097820 A1 WO 2011097820A1 CN 2010070676 W CN2010070676 W CN 2010070676W WO 2011097820 A1 WO2011097820 A1 WO 2011097820A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
core network
device identifier
access
terminal
Prior art date
Application number
PCT/CN2010/070676
Other languages
English (en)
French (fr)
Inventor
袁立平
郑磊斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2010/070676 priority Critical patent/WO2011097820A1/zh
Priority to CN201080001622.6A priority patent/CN102763372B/zh
Publication of WO2011097820A1 publication Critical patent/WO2011097820A1/zh
Priority to US13/572,455 priority patent/US8873510B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for selecting a gateway when a heterogeneous network is switched. Background of the invention
  • 3GPP Third Generation Partnership Project
  • the network structure of 3GPP basically consists of two parts: circuit domain and packet domain.
  • the network structure adopts a structure similar to that of the second generation mobile communication system, including Universal Terrestril Radio Access Network (UT AN) > GSM /EDGE Radio Access Network (GERAN, GSM/EDGE Radio Access Network) Core Network (CN, Core Network) and User Equipment (UE, User Equipement)
  • GERAN/UTRAN is used to implement all wireless related functions
  • UE User Equipement
  • GERAN/UTRAN is used to implement all wireless related functions
  • the CN handles all voice calls and data connections in the General Packet Radio Service/General Mobile Service (GPRS/UMTS) system and is used to implement the function of switching and routing with the external network.
  • GPRS/UMTS General Packet Radio Service/General Mobile Service
  • the PS domain includes a service general packet radio service support node (SGSN (Serving GPRS Supporting Node) and gateways such as the Gateway GPRS Supporting Node (GGSN), as shown in Figure 1, where the GGSN is mainly responsible for interfacing with the external network, and the GGSN is also responsible for implementing the user. Transmission of surface data. SGSN implements route forwarding and movement Management, session management and user information storage, etc.
  • the home location register (HLR, Home Location Register) for storing user subscription information.
  • LTE Long Term Evolution
  • SAE System Architecture Evolution
  • a non-3GPP gateway such as an enhanced packet data gateway ePDG or a trusted non-3GPP gateway, accesses the PGW through the S2a or S2b interface, when S2a
  • S2b supports the MIP protocol
  • the non-3GPP gateway acts as the client of PMIP
  • the PGW acts as the server of PMIP.
  • the UE registers the PGW used in the HSS when the UE is not in the 3GPP registration.
  • the UE When the UE switches to the 3GPP, the UE instructs the network to be a handover, the core.
  • the network element MME obtains the registered PGW from the HSS; then routes the request to the non-3GPP registered PGW, thereby completing the anchoring of the PGW to maintain the continuity of the session.
  • This implementation is complex and involves multiple network elements including HSS. The transition from 3GPP to non-3GPP is similar.
  • the UE When switching from 3GPP to DS3 in DSMIP mode, in order to maintain session continuity, the UE acquires IP address information of the PGW in 3GPP, and then switches to non-3GPP, first obtains the IP address of the Home Agent of the current service area in the broadcast message, and then Compare with the saved IP address. If they are the same, contact the PGW directly according to the address. If it is different, the HA of the current service area is selected, and the continuity of the session may not be maintained at this time. In this scenario, the terminal needs to support the MIP protocol stack, and the UE directly obtains the address of the packet gateway, which is easy to bring hidden dangers to network security.
  • the embodiments of the present invention provide a method for selecting a gateway when a heterogeneous network is switched.
  • the embodiment of the invention provides a method for heterogeneous network switching, including:
  • the terminal accesses the access network one;
  • the terminal acquires the device identifier of the core network element 1;
  • the terminal accesses the access network 2, and the access network 2 and the access network are heterogeneous networks;
  • the terminal sends the device identifier of the obtained core network element 1 to the core network element 2, and if the device identifier of the core network element 2 is different from the device identifier of the core network element 1, the core network is selected. Yuanyi is the target gateway.
  • an embodiment of the present invention provides a terminal, including:
  • a network access unit configured to access the access network 1 and the access network 2 in sequence, where the access network 1 and the access network 2 are heterogeneous networks;
  • a device identifier obtaining unit configured to acquire a device identifier of the core network element 1;
  • a device identifier sending unit configured to send, to the core network element 2, a device identifier of the core network element 1 acquired by the device identifier acquiring unit.
  • the embodiment of the invention further provides a core network element, including: a device identifier receiving unit, configured to receive another core network element identifier sent by the terminal; the target gateway selecting unit, configured to select a target gateway according to the core network element identifier received by the device identifier receiving unit; If the device identifier is different from the device identifier of the device, the core network element corresponding to the received device identifier is selected as the target gateway.
  • a core network element including: a device identifier receiving unit, configured to receive another core network element identifier sent by the terminal; the target gateway selecting unit, configured to select a target gateway according to the core network element identifier received by the device identifier receiving unit; If the device identifier is different from the device identifier of the device, the core network element corresponding to the received device identifier is selected as the target gateway.
  • the embodiment of the present invention further provides a communication system, including an access network 1 and an access network 2 different from the access network, and a core network element 1 of the same network as the core network.
  • the terminal is configured to access the access network, obtain the device identifier of the core network element 1, and access the access network 2, and send the acquired device identifier of the core network element 1 to the core network element 2;
  • FIG. 1 is a schematic diagram of a communication network architecture in the prior art
  • FIG. 2 is a schematic flowchart of a method according to Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic flowchart of a method provided by Embodiment 2 of the present invention.
  • Embodiment 4 is a schematic flowchart of a method provided by Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of a method according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic flowchart of a method according to Embodiment 5 of the present invention.
  • Embodiment 6 of the present invention is a schematic flowchart of a method provided by Embodiment 6 of the present invention.
  • Embodiment 8 is a schematic flowchart of a method provided by Embodiment 7 of the present invention.
  • Embodiment 8 of the present invention is a schematic flowchart of a method provided by Embodiment 8 of the present invention.
  • Embodiment 9 is a schematic flowchart of a method provided by Embodiment 9 of the present invention.
  • FIG. 1 is a schematic flowchart of a method according to Embodiment 10 of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal according to Embodiment 11 of the present invention.
  • FIG. 13 is a schematic structural diagram of a core network element according to Embodiment 12 of the present invention.
  • FIG. 14 is a schematic structural diagram of a communication system according to Embodiment 13 of the present invention.
  • the embodiments of the present invention will be clearly and completely described in conjunction with the drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, instead of All embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • a first embodiment of the present invention provides a method for selecting a gateway when a heterogeneous network is switched, and the call continuity can be maintained.
  • the terminal accesses the network in the heterogeneous network and maintains the same core network element. See FIG. 2, which includes :
  • the terminal accesses the access network one;
  • the access network may be a 3GPP access network, such as a UMTS radio access network, an LTE/SAE access network, or a non-3GPP access network, such as WiFi access; specifically, the terminal may send an access request to Access network one.
  • 3GPP access network such as a UMTS radio access network, an LTE/SAE access network, or a non-3GPP access network, such as WiFi access; specifically, the terminal may send an access request to Access network one.
  • the terminal acquires a device identifier of the core network element 1;
  • the core network element 1 may be a GGSN; if the access network one is LTE/SAE, the core network element 1 may be a PGW;
  • the device identifier of the core network element 1 is obtained, and the PGW may be carried in the protocol optional configuration cell or the APN.
  • the identity of the GGSN such as the protocol optional configuration cell or APN acquisition in the Activate PDP Context Accept message, or the optional configuration cell acquisition in the Attach Complete message, or the protocol in the default bearer creation request in the Attach Accept message.
  • Optional configuration of the cell or APN is obtained. For details, refer to the following embodiments.
  • a terminal access and access network is a heterogeneous access network 2;
  • the access network 2 is a non-3GPP access network; likewise, if the access network is a non-3GPP access network, the access network 2 is a 3GPP access network;
  • the terminal sends the device identifier of the obtained core network element 1 to the core network element 2, and if the device identifier of the core network element 2 is different from the device identifier of the core network element 1, the core is selected.
  • the network element one is the target gateway.
  • the terminal sends the device identifier of the core network element 1 acquired in S202 to the core network element 2.
  • the core network element 2 may be a gateway device or a non-gateway device.
  • the core network element 2 and the core network element 1 have different device identifiers, and both the core network element 1 and the core network element 2 are gateway devices, such as PGW; or the core network element is The gateway device, the core network element 2 is a non-gateway device such as an SGW or a non-3GPP access gateway, and the device identifier is naturally different.
  • the core network element 2 is based on the device identifier of the core network element 1 acquired by the terminal. If the device identifier of the core network element 1 is the core network element 2, that is, the core network element 2 is the target gateway, the access is completed. The same terminal address is used, that is, the continuity of the session is maintained.
  • the device identifier of the core network element 1 is different from the core network element 2, obtain the address of the core network element 1 according to the local configuration or DNS domain name resolution, and select the core network element 1 as the target gateway to send the access to the target gateway. request. If the core network element 2 is a non-gateway device, the device identifier of the core network element 1 obtained by the local configuration or the DNS domain name resolution is obtained, and the address of the core network element 1 is obtained, and then the core network element 1 is selected as the target gateway. .
  • the device identifier in the embodiment of the present invention may be an identifier that the device itself can be identified by other devices in the network, for example, when the operator deploys the network, the uniformly assigned identifier, such as the gateway identifier, the gateway 001 or the PLMN ID (Public Land Mobile Network) ID) + Gateway 001; can also be a name, such as Fully Qualified Domain Name (FQDN), which needs to be obtained by parsing or obtaining the address of the target core network element according to the local configuration. It can also be attached to the specific APN.
  • FQDN Fully Qualified Domain Name
  • the prefix and identifier such as the APN encoding format is APN.nri-gw ⁇ GW Number>.APNOI or APN.APNOI.gw ⁇ GW number>, APN is the access point name requested by the terminal, nri-gw ⁇ GW number>3 ⁇ 4gw ⁇ GW number> is a special code indicating device identifier, where nri-gw or gw is a prefix, ⁇ GW number may be a unique serial number of the device within a specified range, and APNOI refers to an identifier of the operator. Prefixes and logos can be placed in different locations of the APN or in different letters. There is no limit here.
  • the title of the target core network element may be different.
  • the core network element in UMTS, the core network element is called GGSN; in LTE/SAE, it is called PGW, in non-3GPP. It is called PGW, but it can be deployed together. It is physically the same network element device and is collectively called PGW in LTE/SAE.
  • Embodiment 2 to Embodiment 5 describe a method for a terminal to acquire a device identifier of a core network element 1, and a core network element 1 and an access network belong to the same network.
  • the access network is a UMTS access network
  • the method for obtaining the GGSN device identification by the terminal is shown in FIG. 3, which is as follows:
  • the terminal sends an activation PDP context request message to the SGSN.
  • the SGSN sends a PDP context request to the GGSN, where the GGSN carries the protocol optional configuration cell in the Create PDP Context Response message, and includes the device identifier of the GGSN in the protocol optional configuration cell.
  • the SGSN optionally sends an update PDP context request message to the GGSN, where the GGSN sends an update PDP.
  • the SGSN sends an Activate PDP Context Accept message to the terminal, the message carries the protocol optional configuration cell, and the device identifier of the GGSN is included in the protocol optional configuration cell.
  • the GGSN can update the device identifier carried in the PDP context response message, and can also remain unchanged.
  • the SGSN sends an activation context accept message to the terminal, where the message carries a protocol optional configuration cell, and the device identifier of the GGSN is included in the protocol optional configuration cell.
  • the terminal accesses the UMTS belonging to the 3GPP, the GGSN device identifier is obtained.
  • the access network is LTE/SAE, and the method for obtaining the device identifier of the PGW by using the terminal is shown in FIG. 4, which is as follows:
  • the network initiates an authentication process for the user.
  • the MME initiates a location update process to the HSS, and obtains user subscription data.
  • S405 The MME initiates a default bearer creation request to the SGW.
  • the SGW sends a default bearer creation request to the PGW.
  • the PGW sends a default bearer response message to the SGW, where the protocol optional configuration cell is included, and the device identifier of the PGW is included in the protocol optional configuration cell.
  • the SGW sends a default bearer response to the MME, where the protocol optional configuration cell is included, and the device identifier of the PGW is included in the protocol optional configuration cell.
  • the MME sends a terminal context creation request to the eNodeB, and carries an attach accept message, where the attach accept message includes a default bearer creation request, and the default bearer creation request carries the received protocol optional configuration cell, where the protocol is configured.
  • the device identifier of the PGW is included in the optional configuration cell, or the device identifier of the PGW is carried in the APN in the default bearer creation request.
  • the eNodeB sends an attach accept message to the terminal.
  • the terminal obtains the device identifier of the PGW by attaching the accept message.
  • the eNodeB sends a terminal context creation response.
  • the terminal sends the attachment completion to the eNodeB;
  • the eNodeB sends an attach complete to the MME
  • the MME updates the bearer to the SGW.
  • the terminal accesses the LTE/SAE belonging to the 3GPP
  • the PGW device identifier is obtained.
  • the access network is a non-3GPP system, and the non-3GPP access gateway sends the PGW device identifier to the terminal. Referring to FIG. 5, the details are as follows:
  • the terminal obtains a local IP address in the non-3GPP access gateway.
  • the terminal completes authentication and authentication through the EAP protocol.
  • the terminal initiates an attach request.
  • the non-3GPP access gateway selects the PGW and sends a proxy binding update to the PGW;
  • the PGW sends a proxy binding acknowledgement message to the non-3GPP access gateway to obtain the address of the terminal.
  • the non-3GPP access gateway sends an attach complete message to the terminal, carrying the protocol optional configuration cell, and configuring the optional cell in the protocol. Contains the device ID of the PGW.
  • S504 may occur before S502, that is, the non-3GPP access gateway first sends a proxy binding update to the PGW, and then performs authentication and authentication.
  • the order of the above steps is not limited herein. If the authentication or authentication fails, the non-3GPP access gateway needs to send the proxy binding to the PGW to delete the terminal context on the PGW.
  • the PGW device identifier when the terminal accesses the non-3GPP, the PGW device identifier is obtained.
  • Embodiment 5 The access network is UMTS, and the method for obtaining the device identification by the terminal is shown in FIG. 6. The following is as follows: S601: The terminal sends an activation PDP context request message to the SGSN.
  • the SGSN selects the GGSN and sends a Create PDP Context Request to the GGSN, and the GGSN sends a Create PDP Context Response message to the SGSN.
  • the device identifier of the GGSN may be the configuration selection of the SGSN through the local GGSN, or may be in the domain name resolution system (DNS, Domain Name). Obtained in the response message of System);
  • the radio access bearer is established
  • the SGSN optionally sends an update PDP context request message to the GGSN, where the GGSN sends an update PDP context response.
  • the SGSN sends an Activate PDP Context Accept message, where the message carries a cell indicating the device identifier of the GGSN to the terminal.
  • the device identifier of the GGSN may be obtained by the SGSN through the configuration of the local GGSN, or may be obtained in a response message of a Domain Name System (DNS); in the PDP context accept message
  • DNS Domain Name System
  • the protocol optional cell or APN cell is carried to the terminal.
  • the GGSN device identifier is obtained. After acquiring the device identifier of the network element of the core network, the terminal accesses the access network 2 of the heterogeneous access network, and the core network element 2 selects the target network element according to the identifier of the access network element 1 acquired by the terminal, thereby Ensure the continuity of the session.
  • the following five to ten embodiments are given in the case of several different access networks. The specific method is as follows: Embodiment 6: The access network 2 is a UMTS network, and the method for selecting a target gateway is shown in FIG.
  • the terminal sends an activation PDP context request message to the SGSN, where the protocol optional configuration cell carries a device identifier, where the device identifier is a device identifier of the core network element 1 acquired by the terminal, and the core network element 1 and the access network One belongs to the same network.
  • the protocol optional configuration cell carries a device identifier, where the device identifier is a device identifier of the core network element 1 acquired by the terminal, and the core network element 1 and the access network One belongs to the same network.
  • the device identifier is a device identifier of the core network element 1 acquired by the terminal, and the core network element 1 and the access network One belongs to the same network.
  • the device identifier is a device identifier of the core network element 1 acquired by the terminal, and the core network element 1 and the access network One belongs to the same network.
  • this is a handover, not a new setup bearer request;
  • the SGSN sends a request to create a PDP context to the GGSN1;
  • the GGSN1 resolution protocol optionally configures the device identifier in the cell. If the identifier is GGSN1, the GGSN1 performs the same process in step S704, and sends a PDP context response message to the SGSN.
  • the GGSN1 can obtain the address of the GGSN2 corresponding to the device identifier, and forward the PDP context request to the GGSN2. In this way, the selection of the target network element is completed.
  • the GGSN sends a PDP context response message to the SGSN, and the GGSN optionally updates the device identifier in the PCO, and indicates the device identifier to the terminal.
  • the GGSN in this step is GGSN1. If the GGSN1 resolves the device identifier to GGSN2, the GGSN in this step is GGSN2.
  • the present invention is not limited to two GGSNs. In the case of more than two, the treatment is the same.
  • the GGSN 1 is used to determine the device identifier as an example. Of course, other GGSNs can also be used for judgment.
  • GGSN2 determines the device identifier.
  • the SGSN optionally sends an update PDP context request message to the GGSN, where the GGSN sends an update PDP context response.
  • the SGSN sends an Activate PDP Context Accept message, where the message carries a cell indicating the identity of the GGSN to the terminal.
  • the judgment in S703 may be judged only according to the device identifier, or may be determined by using the device identifier in combination with the user identifier. That is, the device identifier is first used to determine whether it is itself, and then the user identifier is used to determine whether the user has a context on the device.
  • the access network in this embodiment is a non-3GPP access network. Through the above steps, the handover between heterogeneous networks is completed, and the HSS does not need to participate in the connection, and the terminal does not need to support the MIP protocol stack.
  • Embodiment 7 The access network 2 is LTE/SAE, and the method for selecting the target gateway is shown in FIG. 8. The details are as follows: S801-S802, the terminal initiates an attach request;
  • the device identifier is carried in the protocol optional configuration cell.
  • the device identifier is the device identifier of the core network element 1 of the core network.
  • the core network element 1 and the access network belong to the same network.
  • the MME initiates a default bearer creation request to the SGW;
  • S806 The SGW sends a default bearer creation request to the PGW1.
  • the PGW1 resolution protocol optionally configures the device identifier in the cell. If the identifier is PGW1, the same process is performed in step S808, and a default bearer response message is sent to the SGW.
  • the PGW1 may obtain the address of the PGW2 corresponding to the device identifier, and forward the default bearer creation request to the PGW2 .
  • the PGW sends a create response message to the SGW, where the protocol optional configuration cell is included, and the PGW identifier is included in the protocol optional configuration cell.
  • the PGW in this step is PGW1. If the PGW1 resolves the device ID to PGW2 in S807, the PGW in this step is PGW2.
  • the SGW sends a default bearer response to the MME, and carries a protocol optional configuration cell, where the identifier of the PGW is included in the protocol optional configuration cell.
  • the MME sends a terminal context creation request to the eNodeB, and carries an attach accept message, where the attach accept message includes a default bearer creation request, and the default bearer creation request carries the protocol optional configuration information, and the protocol optional configuration information
  • the device identifier of the above PGW is included in the element;
  • the eNodeB sends a terminal context creation response. 5813, the terminal sends the attachment complete to the eNodeB;
  • the eNodeB sends an attach complete to the MME
  • the MME updates the bearer to the SGW.
  • the access network in this embodiment is a non-3GPP access network. Through the above steps, the connection between the heterogeneous networks is completed.
  • the access network in this embodiment is a non-3GPP access network.
  • the access network 2 is a non-3GPP access network, and the method for selecting a target gateway is shown in FIG. 9, as follows: S901, the terminal obtains a local IP address in the non-3GPP access gateway;
  • the terminal completes authentication and authentication through the EAP protocol
  • the terminal initiates an attach process, and carries the device identifier of the core network element 1 in the protocol optional configuration cell, optionally indicating that the handover is performed, and is not a new setup bearer request;
  • the non-3GPP access gateway sends a proxy binding update to the PGW1, and carries the protocol optional configuration information element: the device identifier of the core network element 1 is carried in the protocol optional configuration cell and sent to the PGW1.
  • the PGW1 parsing protocol optionally configures a device identifier in the cell, and selects a PGW;
  • the device identifier is PGW1
  • the same processing is performed on itself, and the proxy binding response message is sent to the non-3GPP access gateway;
  • the PGW in this step is PGW1. If the PGW1 resolves the device ID to PGW2, the PGW in this step is PGW2.
  • the PGW sends a proxy binding acknowledgement message to the non-3GPP access gateway to obtain the address of the terminal.
  • the non-3GPP access gateway sends an attach complete message to the terminal, carries a protocol optional configuration cell, and includes an identifier of the PGW in the protocol optional configuration cell.
  • the access network in this embodiment is a 3GPP access network, such as UMTS, and the LTE/SAE completes the connection of the call between the heterogeneous networks through the above steps.
  • S904 may occur before S902, and the SP non-3GPP access gateway first binds the PGW to the PGW, and then performs authentication and authentication; the order of the above steps is not limited herein.
  • the access network in this embodiment is a 3GPP access network, such as UMTS, and the LTE/SAE completes the connection of the call between the heterogeneous networks through the above steps, and the connection does not need to participate in the HSS, and the terminal does not need to support the MIP protocol stack.
  • Embodiment 9 The access network 2 is a non-3GPP access network, and the method for selecting a target gateway is shown in FIG. 10, as follows: S 1001, the terminal obtains a local IP address in the non-3GPP access gateway;
  • the terminal completes authentication and authentication through the EAP protocol
  • S1003 The terminal initiates an attach process, where the request message carries the device identifier of the core network element 1, and the core network element 1 and the access network belong to the same network. Optionally, indicate that this is a switch, not a new build request;
  • the non-3GPP access gateway parses the PGW address according to the received device identifier, selects the target gateway PGW, and sends the proxy binding update to the PGW, optionally indicating that the current handover is in the message;
  • the PGW sends a proxy binding confirmation message to the non-3GPP access gateway.
  • the non-3GPP access gateway sends an attach complete message to the terminal, the optional carry protocol optional configuration cell, and the PGW identifier is included in the protocol optional configuration cell.
  • the access network in this embodiment is a 3GPP access network, such as UMTS, and the LTE/SAE completes the connection between the heterogeneous network calls through the above steps, and the connection does not need to participate in the HSS, and the terminal does not need to support the MIP protocol stack.
  • 3GPP access network such as UMTS
  • LTE/SAE completes the connection between the heterogeneous network calls through the above steps, and the connection does not need to participate in the HSS, and the terminal does not need to support the MIP protocol stack.
  • the terminal sends an activation PDP context request message to the SGSN, and carries the device identifier of the core network element 1, for example, the device identifier can be carried in the APN.
  • the optional optional configuration cell in the protocol needs to indicate that this is a handover, not a new setup bearer request;
  • the SGSN resolves the gateway address according to the device identifier carried in the APN, and sends a PDP context request to the GGSN1 according to the parsed gateway address, optionally carrying a handover indication.
  • the specific parsing method may be: extracting the local configuration of the device identifier in the APN to obtain the address of the gateway; or sending the parsing request to the domain name resolution system by the APN carrying the device identifier, and obtaining the address of the gateway. , there are no restrictions here.
  • GGSN1 switches the tunnel to the SGSN (or performs tunnel switching when updating the PDP context request), and sends a Create PDP Context Response message to the SGSN;
  • the SGSN optionally sends an update PDP context request message to the GGSN1, and the GGSN 1 sends an update PDP context response; the optional GGSN1 may indicate the terminal's own identity in the process;
  • the SI 106, the SGSN sends an Activate PDP Context Accept message, where the message carries a cell indicating the identity of the GGSN to the terminal.
  • the processing of the MME is similar, and will not be described here.
  • Embodiments 2 to 5 respectively represent two steps of selecting a gateway at the time of handover. Therefore, the method for switching the selection gateway may be combined in various embodiments, and only the network that is accessed twice is Different species can be used.
  • the terminal may also carry the device identifier of the core network element when the access network 2 accesses, but the device identifier of the core network element may be an invalid identifier.
  • the core network element 2 may select the core network element (PGW/GGSN) randomly or according to its own policy; or may be the device identifier of the core network element of the terminated session, thereby selecting the same core network element as the terminated session.
  • the terminal may send a session connection request one by one when the access network two accesses, and carries the device identifier obtained in the access network, so that the core network element 2 selects the core network element one.
  • the eleventh embodiment of the present invention provides a terminal, as shown in FIG. 12, including: a network access unit 1201, configured to access an access network 1 and an access network 2 in sequence;
  • the device identifier obtaining unit 1202 is configured to acquire a device identifier of the core network element 1;
  • the device identifier sending unit 1203 is configured to send, to the core network element 2, the device identifier of the core network element 1 acquired by the device identifier obtaining unit 1202.
  • the device identifier obtaining unit 1202 is configured to obtain an activated PDP context accept message, or a device identifier in a protocol optional configuration cell carried in the default bearer creation request in the attach accept message, or a device identifier included in the APN. If the access network is a non-3GPP access network, the terminal acquires the device identifier in the optional configuration cell in the attach complete message.
  • the access network 1 and the access network 2 are heterogeneous networks. For example, if the access network 1 is a 3GPP access network, the access network 2 is a non-3GPP access network, and vice versa.
  • the terminal provided in Embodiment 12 of the present invention does not need to support a complex MIP protocol stack when switching between heterogeneous networks.
  • the embodiment of the present invention further provides a core network element, as shown in FIG. 13, including:
  • the device identifier receiving unit 1301 is configured to receive a device identifier of another core network element that is sent by the terminal.
  • the target gateway selecting unit 1302 is configured to receive, according to the core network element, the network identifier received by the device identifier receiving unit 1201. The device identifier is selected as the target gateway. If the received device identifier is different from the device identifier of the device, the core network element corresponding to the received device identifier is selected as the target gateway.
  • the method in which the target gateway selecting unit 1302 selects the target network element can refer to Embodiments 5 to 10.
  • the target gateway selection unit 1302 is configured to determine whether the device identifier in the parsed optional configuration cell is the same as the device identifier of the device, if the same, select itself as the target gateway; if different, select the core that is received.
  • the core network element corresponding to the network element identifier is the target gateway, or the device identifier of the core network element is obtained through local configuration or DNS resolution, and the core network element is selected as the target gateway.
  • the core network element provided by the embodiment of the present invention may be a PGW or a GGSN, or may be a device in which the PGW and the GGSN are deployed together.
  • the PGW can be collectively referred to as a PGW, and the PGW can support the function of the GGSN and complete the UMTS access.
  • a thirteenth embodiment of the present invention provides a communication system, as shown in FIG. 14, including:
  • the access network 1 includes an access network 2 different from the access network, and a core network element 1 of the same network as the core network, and further includes:
  • the terminal 1401 is configured to access the access network, obtain the device identifier of the core network element 1, and access the access network 2, and send the acquired device identifier of the core network element 1 to the core network element 2;
  • the core network element 2140 is configured to receive the device identifier of the core network element 1 sent by the terminal, the device identifier of the received core network element, and select the target gateway; if the device identifier and the device of the core network element 2 If the device identifier of the core network element 1 is different, the core network element 1 is selected as the target gateway.
  • the access network 1 and the access network 2 are heterogeneous networks.
  • the access network 1 is a 3GPP access network
  • the access network 2 is a non-3GPP access network, and vice versa.
  • the communication system provided by the embodiment of the present invention enables the terminal to maintain session continuity when the heterogeneous network is switched, and the number of network elements participating in the handover is small, and the terminal does not need to support the MIP protocol stack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种异种网络切换时选择网关方法、 装置及*** 技术领域
本发明涉及通信技术领域, 尤其涉及一种异种网络切换时选择网关方法及装置。 发明背景
3GPP (Third Generation Partnership Project, 第三代合作伙伴计划)作为下一代数 字通信技术革新发展趋势和目标, 是当今世界最受瞩目的热点之一。 3GPP 的网络结构 基本上由电路域和分组域两部分组成, 网络结构采用了与第二代移动通信***类似的结 构, 包括通用陆地无线接入网 (UT AN, Universal Terrestril Radio Access Network )> GSM/EDGE无线接入网 (GERAN, GSM/EDGE Radio Access Network ) 核心网 (CN, Core Network) 以及用户终端 (UE, User Equipement)„ 其中, GERAN/UTRAN用于实 现所有与无线有关的功能, 而 CN 处理通用分组无线业务 /通用移动通信业务 (GPRS/UMTS ) ***内所有的话音呼叫和数据连接, 并用于实现与外部网络的交换和 路由的功能。 PS 域包括服务通用分组无线业务支持节点 (SGSN , Serving GPRS Supporting Node ) 以及网关通用分组无线业务支持节点 (GGSN , Gateway GPRS Supporting Node) 等节点。 如图 1所示, 其中, GGSN主要负责和外部网络进行接口, 同时, GGSN还负责实现用户面数据的传输。 SGSN实现路由转发、 移动性管理、 会话 管理以及用户信息存储等功能。 归属位置寄存器 (HLR, Home Location Register)用于 存储用户签约信息。
中长期演进 (LTE, long term evolution) /***架构演进 ( SAE , System architecture evolution) 是 3GPP 开发的下一代移动网络, 其中 LTE 由演进的通用陆地无线接入网 (E-UTRAN, evolved-UTRAN) 组成, 其中包含 eNodeB网元; SAE由 MME、 服务网 关(SGW, Serving Gateway), PD 网关(PGW, PDN Gateway)和归属位置服务器(HSS, Home Subscriber Server)组成; eNodeB实现无线相关的功能; 移动性管理网元(MME, Mobility Management Entity) 是分组域的控制网元, 实现认证、 移动管理和会话管理等 与移动相关的功能; SGW和 PGW都是网关, 但因为在网络中的位置不同, 功能有所差 异, 基本功能是实现会话管理、 数据转发和计费信息收集。 SGW由于与 eNodeB相连, 还有本地汇聚 eNodeB连接的功能。
非 3GPP网络与 3GPP网络共存时, 可以通过 PGW连接。 非 3GPP网关, 如增强 分组数据网关 ePDG或者可信的非 3GPP网关, 通过 S2a或 S2b接口接入 PGW, 当 S2a 和 S2b支持 MIP协议时, 非 3GPP网关作为 PMIP的 client, PGW作为 PMIP的 server。 由非 3GPP以 PMIP方式切换至 3GPP时,为了保持会话连续性, UE在非 3GPP注册时, 将使用的 PGW登记在 HSS中, 当 UE切换到 3GPP时, UE指示网络此次为一次切换, 核心网网元 MME向 HSS获取登记的 PGW; 然后将请求路由到非 3GPP注册的 PGW, 从而完成 PGW的锚定保持会话的连续性。此实现方式复杂, 涉及到包括 HSS的多个网 元。 从 3GPP向非 3GPP切换方案类似。
从 3GPP以 DSMIP方式切换至非 3GPP时, 为了保持会话连续性, UE在 3GPP 获取 PGW的 IP地址信息, 然后切换到非 3GPP, 首先在广播消息中获得当前服务区域 的 Home Agent的 IP地址, 然后与其保存的 IP地址进行比较, 如果相同, 则根据地址 直接联系 PGW。如果不同则选择当前服务区域的 HA,这时可能不能保持会话的连续性。 在此场景下, 终端需要支持 MIP协议栈, 而且 UE直接获得分组网关的地址, 容易给网 络安全带来隐患。
发明内容
鉴于现有技术中提到的不足, 本发明实施例提供一种异种网络切换时, 选择网关的 方法。
本发明实施例提供一种异种网络切换的方法, 包括:
终端接入接入网一;
终端获取核心网网元一的设备标识;
终端接入接入网二, 所述接入网二与所述接入网一为异种网络;
终端向核心网网元二发送所述获取的核心网网元一的设备标识,如果所述核心网网 元二的设备标识与所述核心网网元一的设备标识不同, 则选择核心网网元一为目标网 关。
相应地, 本发明实施例提供一种终端, 包括:
网络接入单元, 用于先后接入接入网一和接入网二, 所述接入网一和接入网二为 异种网络;
设备标识获取单元, 用于获取核心网网元一的设备标识;
设备标识发送单元, 用于向核心网网元二发送所述设备标识获取单元获取到的核 心网网元一的设备标识。
本发明实施例还提供一种核心网网元, 包括: 设备标识接收单元, 用于接收终端发送的另一核心网网元标识; 目标网关选择单元, 用于根据所述设备标识接收单元接收到的核心网网元标识, 选择目标网关; 如果所述接收到的设备标识与自身的设备标识不同, 则选择与所述接收 到的设备标识对应的核心网网元为目标网关。
同时, 本发明实施例还提供一种通信***, 包括接入网一和与所述接入网一异种 的接入网二, 以及与核心网一所述同一网络的核心网网元一, 还包括:
终端, 用于接入接入网一, 获取核心网网元一的设备标识; 接入接入网二, 向核 心网网元二发送获取到的核心网网元一的设备标识;
核心网网元, 用于接收终端发送的核心网网元一的设备标识, 根据接收到的核心 网网元标识, 选择目标网关; 如果所述核心网网元二的设备标识与所述核心网网元一的 设备标识不同, 则选择所述核心网网元一为目标网关。 本发明实施例提供的方法实现简单, 不需要将 PGW登记在 HSS中, 减少了参与切换 的网元, 而且终端也不用支持复杂的 MIP协议栈, 提高了网络安全性。 附图简要说明 图 1为现有技术中一种通信网络架构图;
图 2为本发明实施例一所提供的方法流程示意图;
图 3为本发明实施例二所提供的方法流程示意图;
图 4为本发明实施例三所提供的方法流程示意图;
图 5为本发明实施例四所提供的方法流程示意图;
图 6为本发明实施例五所提供的方法流程示意图;
图 7为本发明实施例六所提供的方法流程示意图;
图 8为本发明实施例七所提供的方法流程示意图;
图 9为本发明实施例八所提供的方法流程示意图;
图 10为本发明实施例九所提供的方法流程示意图;
图 1 1为本发明实施例十所提供的方法流程示意图;
图 12为本发明实施例十一所提供的终端结构示意图;
图 13为本发明实施例十二所提供的核心网网元结构示意图;
图 14为本发明实施例十三所提供的通信***结构示意图。 实施本发明的方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 的描述, 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都属于本发明保护的范围。
本发明实施例一提供一种异种网络切换时选择网关的方法, 可以保持呼叫连续性, 终端先后在异种网络中进行接入, 保持选择相同的核心网网元, 参见图 2所示, 具体包 括:
5201、 终端接入接入网一;
接入网一可以是 3GPP接入网, 如 UMTS的无线接入网, LTE/SAE接入网; 也可以为 非 3GPP接入网, 如 WiFi接入; 具体的, 终端可以发送接入请求到接入网一。
5202、 终端获取核心网网元一的设备标识;
若接入网一为 UMTS, 则核心网网元一可以是 GGSN; 若接入网一为 LTE/SAE,则核 心网网元一可以是 PGW;
具体获取核心网网元一的设备标识,可以在协议可选配置信元或 APN中携带 PGW或
GGSN的标识, 如通过激活 PDP上下文接受消息中的协议可选配置信元或 APN获取, 或 附着完成消息中的可选配置信元获取,或附着接受消息中的缺省承载创建请求中的协议 可选配置信元或 APN获取, 具体可以参照下面实施例。
5203、 终端接入与接入网一异种的接入网二;
如果接入网一是 3GPP接入网, 则接入网二是非 3GPP接入网; 同样, 如果接入网一 是非 3GPP接入网, 则接入网二是 3GPP接入网;
5204、终端向核心网网元二发送所述获取的核心网网元一的设备标识, 如果所述核 心网网元二的设备标识与所述核心网网元一的设备标识不同,则选择核心网网元一为目 标网关。
终端将 S202中获取的核心网网元一的设备标识发送给核心网网元二。
核心网网元二可以是网关设备, 也可以是非网关设备。 S204中核心网网元二与核心 网网元一的设备标识不同, 可以是核心网网元一和核心网网元二均为网关设备, 如都是 PGW;也可以是核心网网元一为网关设备,核心网网元二为非网关设备如 SGW或非 3GPP 接入网关等, 其设备标识自然也不同。 核心网网元二根据终端获取的核心网网元一的设备标识,如果核心网网元一的设备 标识就是核心网网元二, 即核心网网元二即是目标网关, 则完成接入和使用相同的终端 地址, 也即保持了会话的连续性。 如果核心网网元一的设备标识与核心网网元二不同, 则根据本地配置或 DNS域名解析获得核心网网元一的地址,选择核心网网元一作为目标 网关, 向目标网关发送接入请求。 如果核心网网元二是非网关设备, 则直接通过本地配 置或 DNS域名解析获取到的核心网网元一的设备标识, 获取核心网网元一的地址, 进而 选择核心网网元一为目标网关。
本发明实施例中的设备标识可以是设备本身在网络中可以被其他设备识别的标识, 比如运营商在部署网络时, 统一分配的标识, 如网关标识, 网关 001或 PLMN ID (公共陆 地移动网标识) +网关 001 ;也可以是一个名字,如全域名(FQDN, Fully Qualified Domain Name) , 需要通过解析或根据本地配置方式获得目标核心网网元的地址; 还可以是附 加在 APN后面特定的前缀与标识, 比如 APN的编码格式是 APN.nri-gw<GW Number>.APNOI或者 APN.APNOI.gw<GW number>, APN是终端请求的接入点名称, nri-gw<GW number>¾gw<GW number>是特殊的编码指示设备标识,其中 nri-gw或 gw是 前缀, <GW number可以是设备在指定范围内唯一的序列号, APNOI是指运营商的标识。 前缀与标识可以放在 APN的不同位置或不同字母拼写方式存在, 这里不做限制。
这里需要说明的是在不同的接入网中, 目标核心网网元的称谓有可能不同, 如在 UMTS中核心网网元一称为 GGSN; 在 LTE/SAE中称为 PGW, 在非 3GPP中称为 PGW, 但 实际上可以部署在一起, 物理上是相同的网元设备, 在 LTE/SAE中统称为 PGW。
下面的实施例二到实施例五介绍终端获取核心网网元一的设备标识的方法,核心网 网元一与接入网一属于同一网络。
实施例二, 接入网一为 UMTS接入网, 终端获取 GGSN的设备标识方法参见图 3, 具 体如下:
S301, 终端发送激活 PDP上下文请求消息给 SGSN;
S302, SGSN发送创建 PDP上下文请求给 GGSN, GGSN在创建 PDP上下文响应消息 中携带协议可选配置信元, 在协议可选配置信元中包含 GGSN的设备标识;
S303, 无线接入承载建立;
S304, 激活跟踪;
S305, SGSN可选的发送更新 PDP上下文请求消息给 GGSN, GGSN发送更新 PDP上 下文响应, SGSN发送激活 PDP上下文接受消息给终端, 消息中携带协议可选配置信元, 在协议可选配置信元中包含 GGSN的设备标识
通过本步骤 GGSN可以更新在创建 PDP上下文响应消息中携带的设备标识, 也可以 保持不变;
S306, SGSN发送激活上下文接受消息至终端, 消息携带协议可选配置信元, 在协 议可选配置信元中包含 GGSN的设备标识。
本实施例完成终端接入属于 3GPP的 UMTS时, 获取到 GGSN设备标识。 实施例三, 接入网一为 LTE/SAE, 终端获取 PGW的设备标识方法参见图 4, 具体如 下:
S401 - S402, 终端发起附着请求;
5403, 网络对用户发起认证流程;
5404, MME向 HSS发起位置更新流程, 获取用户签约数据;
5405, MME发起缺省承载创建请求给 SGW;
S406, SGW将缺省承载创建请求发给 PGW;
5407, PGW向 SGW发送创建缺省承载响应消息, 携带协议可选配置信元, 在协议 可选配置信元中包含 PGW的设备标识;
5408, SGW向 MME发送创建缺省承载响应, 携带协议可选配置信元, 在协议可选 配置信元中包含上述 PGW的设备标识;
S409, MME向 eNodeB发送终端上下文创建请求, 并携带附着接受消息, 在附着接 受消息中包含缺省承载创建请求,在缺省承载创建请求中携带接收到的协议可选配置信 元,在此协议可选配置信元中包含上述 PGW的设备标识; 或者在缺省承载创建请求中的 APN中携带 PGW的设备标识
S410, eNodeB将附着接受消息发送给终端;
这样, 终端通过附着接受消息, 获取到了 PGW的设备标识。
S411, eNodeB发送终端上下文创建响应;
5412, 终端发送附着完成给 eNodeB;
5413, eNodeB发送附着完成给 MME;
S414-S415, MME向 SGW更新承载。 本实施例完成终端接入属于 3GPP的 LTE/SAE时, 获取到 PGW设备标识。 实施例四,接入网一为非 3GPP***,非 3GPP接入网关将 PGW设备标识发送给终端, 参见图 5, 具体如下:
S501 , 终端在非 3GPP接入网关获得本地 IP地址;
5502, 终端通过 EAP协议完成认证和鉴权;
5503, 终端发起附着请求;
5504, 非 3GPP接入网关选择 PGW并发送代理绑定更新给 PGW;
5505, PGW发送代理绑定确认消息给非 3GPP接入网关, 获得终端的地址; S506, 非 3GPP接入网关向终端发送附着完成消息, 携带协议可选配置信元, 在协 议可选配置信元中包含 PGW的设备标识。
S504可以发生在 S502之前, 即非 3GPP接入网关先向 PGW发送代理绑定更新, 然后 再进行认证和鉴权, 这里不限制上述步骤发生顺序。 如果认证或鉴权失败, 非 3GPP接 入网关需发送代理绑定撤销给 PGW, 删除 PGW上的终端上下文。
本实施例完成终端接入非 3GPP时, 获取 PGW设备标识。 实施例五, 接入网一为 UMTS, 终端获取设备标识方法参见图 6, 具体如下: S601, 终端发送激活 PDP上下文请求消息给 SGSN;
S602, SGSN选择 GGSN并且发送创建 PDP上下文请求给 GGSN, GGSN发送创建 PDP 上下文响应消息给 SGSN; GGSN的设备标识可以是 SGSN通过本地 GGSN的配置选择, 也可以是在域名解析*** (DNS, Domain Name System) 的响应消息中获得;
5603, 无线接入承载建立;
5604, 激活跟踪;
S605, SGSN可选的发送更新 PDP上下文请求消息给 GGSN, GGSN发送更新 PDP上 下文响应;
S606, SGSN发送激活 PDP上下文接受消息, 消息中携带信元指示 GGSN的设备标识 给终端。
这里, GGSN的设备标识可以是 SGSN通过本地 GGSN的配置获得, 也可以是在域名 解析*** (DNS, Domain Name System) 的响应消息中获得; 在 PDP上下文接受消息中 使用协议可选信元或者 APN信元携带给终端。
本实施例完成终端接入属于 3GPP的 UMTS时, 获取到 GGSN设备标识。 终端获取到核心网网元一的设备标识后, 接入与接入网一异种的接入网二, 核心网 网元二根据终端获取的接入网元一的标识, 选择目标网元, 从而保证会话的接续性。 下 面的实施例五至十给出几种不同的接入网二的情况, 具体方法如下: 实施例六、 接入网二是 UMTS网络, 目标网关的选择方法参见图 7, 具体如下:
5701 , 终端发送激活 PDP上下文请求消息给 SGSN, 在协议可选配置信元中携带设 备标识, 此设备标识是终端获取的核心网网元一的设备标识, 该核心网网元一与接入网 一属于同一网络。 可选的需指明本次是切换, 并不是一个新的建立承载请求;
5702, SGSN发送创建 PDP上下文请求给 GGSN1;
5703 , GGSN1解析协议可选配置信元中的设备标识, 如果此标识是 GGSN1 , 则在 GGSN1执行步骤 S704相同的处理, 发送创建 PDP上下文响应消息给 SGSN;
如果此设备标识指示另一个网元 GGSN2, GGSN1可以获取设备标识对应的 GGSN2 的地址, 将创建 PDP上下文请求转发给 GGSN2; 这样, 完成了目标网元的选择。
5704, GGSN发送创建 PDP上下文响应消息给 SGSN, GGSN可选的在 PCO中更新其 设备标识, 指示给终端;
若 S703中, GGSN1解析得到设备标识为 GGSN1 , 则本步骤的 GGSN为 GGSN1; 若 S703中, GGSN1解析得到设备标识为 GGSN2, 则本步骤的 GGSN为 GGSN2; 当然, 本发明不限于两个 GGSN, 对多于两个的情况, 处理方式一样。 这里只是以 GGSN 1判断设备标识为例, 当然也可以采用其他的 GGSN作判断,如 GGSN2判断设备标 识。
5705, 无线接入承载建立;
S706, SGSN可选的发送更新 PDP上下文请求消息给 GGSN, GGSN发送更新 PDP上 下文响应;
S707, SGSN发送激活 PDP上下文接受消息, 消息中携带信元指示 GGSN的标识给终 端。
需要说明的是, 这里的 GGSN还可以只有一个, 若只有一个 GGSN, 则自然会选择 自身作为目标网元, 完成会话接续。 S703中的判断可以只根据设备标识判断, 也可以采 用设备标识结合用户标识进行判断。 即先用设备标识判断是否是自身, 然后再用用户标 识判断此用户在本设备上是否存在上下文。
本实施例中的接入网一为非 3GPP接入网, 通过上述步骤, 完成了异种网络间切换, 接续不需要 HSS参与, 而且终端不用支持 MIP协议栈。 实施例七、 接入网二为 LTE/SAE, 目标网关的选择方法参见图 8, 具体如下: S801-S802, 终端发起附着请求;
在协议可选配置信元中携带设备标识,此设备标识是终端已获取的核心网网元一的 设备标识, 该核心网网元一与接入网一属于同一网络。 可选的需指明本次是切换, 并不 是一个新的建立承载请求;
S803-S804, 网络认证, 获取签约数据;
5805, MME发起缺省承载创建请求给 SGW;
5806, SGW将缺省承载创建请求发给 PGW1 ;
S807, PGW1解析协议可选配置信元中的设备标识, 如果此标识是 PGW1 , 则在自 身执行步骤 S808相同的处理, 发送创建缺省承载响应消息给 SGW;
如果此设备标识指示另一个网元 PGW2, PGW1可以获取设备标识对应的 PGW2的地 址, 将缺省承载创建请求转发给 PGW2;
5808, PGW向 SGW发送创建响应消息, 携带协议可选配置信元, 在协议可选配置 信元中包含 PGW的标识;
若 S807中, PGW1解析得到设备标识为 PGW1 , 则本步骤的 PGW为 PGW1; 若 S807中, PGW1解析得到设备标识为 PGW2, 则本步骤的 PGW为 PGW2。
5809, SGW向 MME发送创建缺省承载响应, 携带协议可选配置信元, 在协议可选 配置信元中包含上述 PGW的标识
S810, MME向 eNodeB发送终端上下文创建请求, 并携带附着接受消息, 在附着接 受消息中包含缺省承载创建请求, 在缺省承载创建请求中携带协议可选配置信元, 在协 议可选配置信元中包含上述 PGW的设备标识;
S811 , 无线资源连接建立, eNodeB将附着接受消息传给终端;
S812, eNodeB发送终端上下文创建响应; 5813, 终端发送附着完成给 eNodeB;
5814, eNodeB发送附着完成给 MME;
5815, MME向 SGW更新承载。
本实施例中的接入网一为非 3GPP接入网, 通过上述步骤, 完成了异种网络间呼叫 的接续。
本实施例中的接入网一为非 3GPP接入网, 通过上述步骤, 完成了异种网络间切换, 接续不需要 HSS参与, 而且终端不用支持 MIP协议栈。 实施例八、 接入网二为非 3GPP的接入网, 目标网关的选择方法参见图 9, 如下: S901 , 终端在非 3GPP接入网关获得本地 IP地址;
5902, 终端通过 EAP协议完成认证和鉴权;
5903, 终端发起附着过程, 在协议可选配置信元中携带核心网网元一的设备标识, 可选的需指明本次是切换, 并不是一个新的建立承载请求;
5904, 非 3GPP接入网关发送代理绑定更新给 PGW1 , 携带协议可选配置信元: 核心网网元一的设备标识携带在协议可选配置信元中发送给 PGW1。
S905, PGW1解析协议可选配置信元中的设备标识, 选择 PGW;
如果此设备标识是 PGW1, 则在自身执行 S906相同的处理, 发送代理绑定响应消息 给非 3GPP接入网关;
若 S905中, PGW1解析得到设备标识为 PGW1 , 则本步骤的 PGW为 PGW1; 若 S905中, PGW1解析得到设备标识为 PGW2, 则本步骤的 PGW为 PGW2。
S906, PGW在代理绑定确认消息发给非 3GPP接入网关, 获得终端的地址;
S907, 非 3GPP接入网关向终端发送附着完成消息, 携带协议可选配置信元, 在协 议可选配置信元中包含 PGW的标识。
本实施例中的接入网一为 3GPP接入网, 如 UMTS, LTE/SAE通过上述步骤, 完成了 异种网络间呼叫的接续。
需要说明的是, S904可以发生在 S902之前, SP非 3GPP接入网关先向 PGW绑定更新, 然后再进行认证和鉴权; 这里不限制上述步骤发生顺序。
本实施例中的接入网一为 3GPP接入网, 如 UMTS, LTE/SAE通过上述步骤, 完成了 异种网络间呼叫的接续, 接续不需要 HSS参与, 而且终端不用支持 MIP协议栈。 实施例九、 接入网二为非 3GPP的接入网, 目标网关的选择方法参见图 10, 如下: S 1001, 终端在非 3GPP接入网关获得本地 IP地址;
S1002, 终端通过 EAP协议完成认证和鉴权;
S1003, 终端发起附着过程, 在请求消息中携带核心网网元一的设备标识, 该核心 网网元一与接入网一属于同一网络。可选的需指明本次是切换, 并不是一个新的建立承 载请求;
S1004, 非 3GPP接入网关根据接收到的设备标识, 解析得到 PGW地址, 选择目标网 关 PGW; 发送代理绑定更新给 PGW, 可选的在消息中指示本次是切换;
S1005, PGW在代理绑定确认消息发给非 3GPP接入网关
S1006,非 3GPP接入网关向终端发送附着完成消息,可选的携带协议可选配置信元, 在协议可选配置信元中包含 PGW的标识。
本实施例中的接入网一为 3GPP接入网, 如 UMTS, LTE/SAE通过上述步骤, 完成了 异种网络间呼叫的接续, 接续不需要 HSS参与, 而且终端不用支持 MIP协议栈。 实施例十, 参见图 11,
S1101 ,终端发送激活 PDP上下文请求消息给 SGSN,携带核心网网元一的设备标识, 如设备标识可以在 APN中携带。可选的在协议可选配置信元需指明本次是切换, 并不是 一个新的建立承载请求;
S1102, SGSN根据 APN中携带的设备标识解析网关地址, 并根据解析到的网关地址 发送创建 PDP上下文请求给 GGSN1, 可选的携带切换指示;
需要指出的是, 具体的解析方法可以是提取 APN中的设备标识査询本地配置, 从而 获得网关的地址; 也可以是将携带有设备标识的 APN向域名解析***发送解析请求, 获 得网关的地址, 这里不做限制。
S1103, GGSN1将隧道切换到 SGSN (或者在更新 PDP上下文请求时进行隧道切换), 并发送创建 PDP上下文响应 ( Create PDP Context Response) 消息给 SGSN;
SI 104, 无线接入承载建立;
SI 105, SGSN可选的发送更新 PDP上下文请求消息给 GGSNl , GGSN 1发送更新 PDP 上下文响应; 可选的 GGSN1可以在此过程中指示终端自己的标识; SI 106, SGSN发送激活 PDP上下文接受(Activate PDP Context Accept)消息, 消息 中携带信元指示 GGSN的标识给终端。
MME的处理类似, 这里不再赘述。
需要说明的是, 上述实施例二到五, 实施例六到十分别代表切换时选择网关的两个 步骤, 因此切换选择网关的方法可以有多种实施例组合, 只有两次接入的网络为异种即 可。
另外, 为保持流程的统一, 终端在接入网一也可以如在接入网二接入时携带核心网 网元的设备标识, 但此核心网网元的设备标识可以是无效标识, 这样, 核心网网元二可 以随机或根据自身策略选择核心网网元(PGW/GGSN); 也可以是已结束会话的核心网 网元的设备标识, 从而选择与已结束会话相同的核心网网元。
如果终端同时存在多个会话, 则终端在接入网二接入时, 可以逐个发送会话连接请 求, 携带在接入网一获得的设备标识, 使核心网网元二选择核心网网元一, 从而保持多 个会话的连续性。 其基本原理相同, 细节在此不再赘述。 与上述方法相对应, 本发明实施例十一提供一种终端, 如图 12所示, 包括: 网络接入单元 1201, 用于先后接入接入网一和接入网二;
设备标识获取单元 1202, 用于获取核心网网元一的设备标识;
设备标识发送单元 1203,用于向核心网网元二发送所述设备标识获取单元 1202获取 到的核心网网元一的设备标识。
这里, 设备标识获取单元 1202用于获取激活 PDP上下文接受消息, 或附着接受消息 中在缺省承载创建请求中携带的协议可选配置信元中的设备标识,或 APN中包含的设备 标识。 若接入网一为非 3GPP接入网, 则终端获取附着完成消息中可选配置信元中的设 备标识。 这里, 接入网一和接入网二为异种网络, 如接入网一为 3GPP接入网, 则接入 网二为非 3GPP接入网, 反之亦然。
本发明实施例十二提供的终端, 可以在异种网络间切换时, 不用支持复杂的 MIP协 议栈。
本发明实施例还提供一种核心网网元, 如图 13所示, 包括:
设备标识接收单元 1301, 用于接收终端发送的另一核心网网元的设备标识; 目标网关选择单元 1302,用于根据所述设备标识接收单元 1201接收到的核心网网元 的设备标识, 选择目标网关; 如果所述接收到的设备标识与自身的设备标识不同, 则选 择与所述接收到的设备标识对应的核心网网元为目标网关。
这里, 目标网关选择单元 1302选择目标网元的方法可以参照实施例五至十。
目标网关选择单元 1302用于判断解析得到的可选配置信元中的设备标识是否与自 身的设备标识相同, 若相同, 则选择自身为目标网关; 若不同, 则选择与所述接收到的 核心网网元标识对应的核心网网元为目标网关, 或者通过本地配置或 DNS解析, 获取核 心网网元的设备标识, 选择所述核心网网元为目标网关。
本发明实施例提供的核心网网元可以为 PGW或 GGSN; 也可以是 PGW和 GGSN部署 在一起的设备, 为了方便, 统称为 PGW, PGW可以支持 GGSN的功能, 完成 UMTS接入。 本发明实施例十三提供一种通信***, 如图 14所示, 包括:
包括接入网一和与所述接入网一异种的接入网二, 以及与核心网一所述同一网络的 核心网网元一, 还包括:
终端 1401, 用于接入接入网一, 获取核心网网元一的设备标识; 接入接入网二, 向 核心网网元二发送获取到的核心网网元一的设备标识;
核心网网元二 1402, 用于接收终端发送的核心网网元一的设备标识, 接收到的核心 网网元的设备标识, 选择目标网关; 如果所述核心网网元二的设备标识与所述核心网网 元一的设备标识不同, 则选择所述核心网网元一为目标网关。
这里, 接入网一和接入网二为异种网络, 如接入网一为 3GPP接入网, 则接入网二 为非 3GPP接入网, 反之亦然。 本发明实施例提供的通信***, 使得终端在异种网络切 换时, 保持会话连续性, 且参与切换的网元少, 终端不需要支持 MIP协议栈。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也 应视为本发明的保护范围。

Claims

权利要求
1、 一种异种网络切换时选择网关的方法, 其特征在于, 包括- 终端接入接入网一;
终端获取核心网网元一的设备标识;
终端接入接入网二, 所述接入网二与所述接入网一为异种网络;
终端向核心网网元二发送所述获取的核心网网元一的设备标识, 如果所述核心网 网元二的设备标识与所述核心网网元一的设备标识不同,则选择核心网网元一为目标网 关。
2、 根据权利要求 1所述的方法, 其特征在于,
所述接入网一为通用移动通信*** UMTS接入网, 核心网网元一为网关通用无线 业务支撑点 GGSN, 所述接入网二为非 3GPP接入网; 或
所述接入网一为长期演进 LTE 或***架构演进 SAE接入网, 核心网网元一为 PGW, 所述接入网二为非 3GPP接入网; 或
所述接入网一为非 3GPP接入网,所述核心网网元一为 PDN网关 PGW,所述接入 网二为 3GPP接入网。
3、 根据权利要求 2所述的方法, 其特征在于, 所述终端获取核心网网元一的设备 标识, 包括:
终端获取 3GPP接入的激活 PDP上下文接受消息, 或附着接受消息中在缺省承载 创建请求所携带的协议可选配置信元中的设备标识; 或
或终端获取非 3GPP接入的附着完成消息中携带的协议可选配置信元中的设备标 识; 或
终端获取激活 PDP上下文接受消息, 或附着接受消息中在缺省承载创建请求所携 带接入点名称 APN中的设备标识。
4、根据权利要求 3所述的方法,其特征在于,所述选择核心网网元一为目标网关, 包括:
核心网网元二根据本地配置或 DNS域名解析获得核心网网元一的地址, 选择核心 网网元一作为目标网关。
5、 根据权利要求 1所述的方法, 其特征在于,
如果所述核心网网元二的设备标识与所述核心网网元一的设备标识相同, 则核心 网网元二和核心网网元一为同一网元, 且为选择的目标网关。
6、 根据权利要求 1一 5 中任一项所述的方法, 其特征在于, 所述核心网网元一的 设备标识包括:
运营商部署网络时统一分配的网关标识; 或
全域名 FQDN;
附加在 APN中的前缀和标识。
7、 一种终端, 其特征在于, 包括:
网络接入单元, 用于先后接入接入网一和接入网二, 所述接入网一和接入网二为 异种网络;
设备标识获取单元, 用于获取核心网网元一的设备标识;
设备标识发送单元, 用于向核心网网元二发送所述设备标识获取单元获取到的核 心网网元一的设备标识。
8、 根据权利要求 7所述的终端, 其特征在于, 所述设备标识获取单元用于获取激 活 PDP上下文接受消息, 或附着接受消息中在缺省承载激活请求中携带的协议可选配 置信元中的设备标识, 或接入点名称 APN中包含的设备标识。
9、 一种核心网网元, 其特征在于, 包括:
设备标识接收单元, 用于接收终端发送的另一核心网网元的设备标识; 目标网关选择单元, 用于根据所述设备标识接收单元接收到的核心网网元的设备 标识, 选择目标网关; 如果所述接收到的设备标识与自身的设备标识不同, 则选择与所 述接收到的设备标识对应的核心网网元为目标网关。
10、 根据权利要求 9所述的核心网网元, 其特征在于, 所述目标网关选择单元用 于判断解析得到的可选配置信元中的设备标识或 APN中的设备标识是否与自身的设备 标识相同, 若相同, 则选择自身为目标网关; 若不同, 则选择与所述接收到的核心网网 元的设备标识对应的核心网网元为目标网关。
11、 根据权利要求 9所述的核心网网元, 其特征在于, 所述目标网关选择单元用 于通过本地配置或 DNS解析, 获取核心网网元的设备标识, 选择所述核心网网元为目 标网关。
12、 根据权利要求 10或 11所述的核心网网元, 其特征在于, 所述核心网网元为 PGW或 GGSN。
13、 一种通信***, 包括接入网一和与所述接入网一异种的接入网二, 以及与核 心网一所述同一网络的核心网网元一, 其特征在于, 还包括: 终端, 用于接入接入网一, 获取核心网网元一的设备标识; 接入接入网二, 向核 心网网元二发送获取到的核心网网元一的设备标识;
核心网网元二, 用于接收终端发送的核心网网元一的设备标识, 根据接收到的设 备标识, 选择目标网关; 如果所述核心网网元二的设备标识与所述核心网网元一的设备 标识不同, 则选择所述核心网网元一为目标网关。
PCT/CN2010/070676 2010-02-12 2010-02-12 一种异种网络切换时选择网关方法、装置及*** WO2011097820A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2010/070676 WO2011097820A1 (zh) 2010-02-12 2010-02-12 一种异种网络切换时选择网关方法、装置及***
CN201080001622.6A CN102763372B (zh) 2010-02-12 2010-02-12 一种异种网络切换时选择网关方法、装置及***
US13/572,455 US8873510B2 (en) 2010-02-12 2012-08-10 Gateway selection method, apparatus and system during heterogeneous network handover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070676 WO2011097820A1 (zh) 2010-02-12 2010-02-12 一种异种网络切换时选择网关方法、装置及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/572,455 Continuation US8873510B2 (en) 2010-02-12 2012-08-10 Gateway selection method, apparatus and system during heterogeneous network handover

Publications (1)

Publication Number Publication Date
WO2011097820A1 true WO2011097820A1 (zh) 2011-08-18

Family

ID=44367170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070676 WO2011097820A1 (zh) 2010-02-12 2010-02-12 一种异种网络切换时选择网关方法、装置及***

Country Status (3)

Country Link
US (1) US8873510B2 (zh)
CN (1) CN102763372B (zh)
WO (1) WO2011097820A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205832A1 (zh) * 2013-06-29 2014-12-31 华为技术有限公司 传输数据的方法、边界网关和控制面装置
WO2016115997A1 (en) * 2015-01-19 2016-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Method and nodes for providing handover management

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713040B2 (en) * 2011-04-28 2017-07-18 Panasonic Intellectual Property Corporation Of America Communication system, mobile terminal, router, and mobility management entity
US9408246B2 (en) * 2013-06-28 2016-08-02 Alcatel Lucent System and method for seamless Wi-Fi to UMTS handover
US9491044B2 (en) 2013-11-22 2016-11-08 General Dynamics C4 Systems, Inc. Wireless communication system comprising apparatus and methods for accessing a data network
US9794771B2 (en) * 2014-07-31 2017-10-17 Cisco Technology, Inc. Node selection in network transitions
US9191865B1 (en) * 2015-02-09 2015-11-17 Sprint Communications Company L.P. Long term evolution (LTE) communications over trusted hardware
CN106161561A (zh) * 2015-04-23 2016-11-23 ***通信集团黑龙江有限公司 一种实现区分服务的方法、装置及负载均衡服务器
CN113225784B (zh) * 2016-09-30 2022-08-09 华为技术有限公司 消息的识别方法和装置
WO2018090230A1 (zh) * 2016-11-16 2018-05-24 华为技术有限公司 数据迁移方法及装置
WO2019031874A1 (en) * 2017-08-09 2019-02-14 Samsung Electronics Co., Ltd. METHOD AND SYSTEM FOR RECORDING AND SESSION MANAGEMENT PROCESSING IN A WIRELESS COMMUNICATION SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036356A (zh) * 2004-10-06 2007-09-12 松下电器产业株式会社 具有网络请求的分组数据协议上下文激活的wlan到umts切换
CN101128022A (zh) * 2006-08-18 2008-02-20 华为技术有限公司 终端切换方法及装置、源接入网关地址获取方法及装置
US20080081625A1 (en) * 2006-09-29 2008-04-03 Mustafa Ergen Heterogeneous access service network (asn)-gateway in an asn in a worldwide interoperability for microwave access (wimax) communication network
CN101170808A (zh) * 2006-10-25 2008-04-30 华为技术有限公司 异种接入***间的切换方法及切换***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136226A1 (en) 2001-03-26 2002-09-26 Bluesocket, Inc. Methods and systems for enabling seamless roaming of mobile devices among wireless networks
US7917152B2 (en) * 2003-06-27 2011-03-29 Nokia Corporation Enhanced fast handover procedures
US7738871B2 (en) * 2004-11-05 2010-06-15 Interdigital Technology Corporation Wireless communication method and system for implementing media independent handover between technologically diversified access networks
CN1984436A (zh) 2005-12-15 2007-06-20 上海原动力通信科技有限公司 不同接入***之间移动性管理***及管理方法
CN101345998B (zh) 2007-07-12 2011-12-28 华为技术有限公司 接入网络切换方法、锚点管理设备、移动接入设备
CN101662756A (zh) 2008-08-28 2010-03-03 华为技术有限公司 语音连续性呼叫切换的方法、***及移动业务交换中心

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036356A (zh) * 2004-10-06 2007-09-12 松下电器产业株式会社 具有网络请求的分组数据协议上下文激活的wlan到umts切换
CN101128022A (zh) * 2006-08-18 2008-02-20 华为技术有限公司 终端切换方法及装置、源接入网关地址获取方法及装置
US20080081625A1 (en) * 2006-09-29 2008-04-03 Mustafa Ergen Heterogeneous access service network (asn)-gateway in an asn in a worldwide interoperability for microwave access (wimax) communication network
CN101170808A (zh) * 2006-10-25 2008-04-30 华为技术有限公司 异种接入***间的切换方法及切换***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205832A1 (zh) * 2013-06-29 2014-12-31 华为技术有限公司 传输数据的方法、边界网关和控制面装置
CN105264820A (zh) * 2013-06-29 2016-01-20 华为技术有限公司 传输数据的方法、边界网关和控制面装置
CN105264820B (zh) * 2013-06-29 2020-09-18 华为技术有限公司 传输数据的方法、边界网关和控制面装置
WO2016115997A1 (en) * 2015-01-19 2016-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Method and nodes for providing handover management
US9930579B2 (en) 2015-01-19 2018-03-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and nodes for providing handover management

Also Published As

Publication number Publication date
US20120307797A1 (en) 2012-12-06
CN102763372A (zh) 2012-10-31
CN102763372B (zh) 2015-01-21
US8873510B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
US8873510B2 (en) Gateway selection method, apparatus and system during heterogeneous network handover
JP6148294B2 (ja) 相異なるワイヤレス通信アーキテクチャ間のモビリティのための資源管理
JP5793812B2 (ja) データオフロードをトリガするための方法、ネットワーク側デバイス、ユーザ機器、およびネットワークシステム
EP2858418B1 (en) Method for updating identity information about packet gateway, aaa server and packet gateway
WO2019198717A1 (ja) Ue、及びその通信方法
WO2013047822A1 (ja) 通信システムと方法と装置
WO2014056445A1 (zh) 一种路由转发的方法、***及控制器
JP6847892B2 (ja) Ue及び通信制御方法
WO2009006848A1 (fr) Procédé de commutation de réseau d&#39;accès, dispositif de gestion d&#39;ancrage, et dispositif d&#39;accès mobile
WO2011015140A1 (zh) 一种移动通信寻呼方法、***及装置
KR102443117B1 (ko) 진화형 패킷 데이터 게이트웨이(ePDG) 선택을 위한 공중 육상 모바일 네트워크(PLMN)리스트
JP6918742B2 (ja) UE(User Equipment)
WO2018235791A1 (ja) ユーザ装置、amf、コアネットワーク装置、p-cscf、及び通信制御方法
WO2010108420A1 (zh) 通信业务切换处理方法、网络***与互通功能实体
WO2008154874A1 (fr) Procédé et système permettant d&#39;établir un tunnel dans le réseau en évolution
WO2011011945A1 (zh) 消息发送方法及通用无线分组业务服务支持节点
WO2012142889A1 (zh) 一种网关的选择方法、实现设备及***
WO2009097720A1 (zh) 移动ip中家乡链路的发现方法及装置
WO2010099741A1 (zh) 一种网络选择方法、装置及终端
WO2016065639A1 (zh) 数据处理的方法、装置、终端、移动管理实体及***
WO2011009253A1 (zh) 移动网络中域名查询的方法及***
WO2012174976A1 (zh) Ip分流连接处理方法、装置及***
WO2012068837A1 (zh) 接入网关选择方法和装置
EP3169120B1 (en) Support of wlan location change reporting or retrieval for untrusted wlan access to a 3gpp packet core network
CN106470397B (zh) WiFi网络中获取终端位置的方法、终端、LTE通信设备及***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001622.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7069/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10845494

Country of ref document: EP

Kind code of ref document: A1