WO2011096212A1 - 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法 - Google Patents

鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法 Download PDF

Info

Publication number
WO2011096212A1
WO2011096212A1 PCT/JP2011/000592 JP2011000592W WO2011096212A1 WO 2011096212 A1 WO2011096212 A1 WO 2011096212A1 JP 2011000592 W JP2011000592 W JP 2011000592W WO 2011096212 A1 WO2011096212 A1 WO 2011096212A1
Authority
WO
WIPO (PCT)
Prior art keywords
billet
forged
wheel
forging
forged billet
Prior art date
Application number
PCT/JP2011/000592
Other languages
English (en)
French (fr)
Inventor
小野光太郎
餅川昭二
Original Assignee
ワシ興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワシ興産株式会社 filed Critical ワシ興産株式会社
Publication of WO2011096212A1 publication Critical patent/WO2011096212A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/32Making machine elements wheels; discs discs, e.g. disc wheels

Definitions

  • the present invention relates to a forged billet, a method for producing a forged billet, a finished product or a semi-finished product using the forged billet, and a method for producing a wheel using the forged billet.
  • a method of manufacturing a wheel by forging a billet obtained by cutting an aluminum alloy round bar manufactured by casting with a die see, for example, Patent Document 1
  • a vehicle wheel for example, see Patent Document 2
  • a wheel for use see, for example, Patent Document 3
  • what was formed by forging an aluminum alloy is known as a wheel for aircrafts (for example, refer nonpatent literature 1).
  • cast billet a cast billet
  • the conventional wheel has a drawback that the weight of the wheel itself is increased because it is necessary to increase the thickness of the wheel in order to ensure sufficient mechanical strength.
  • the present invention has been made in view of the above circumstances, and has a forged billet excellent in mechanical strength that can be used in various applications, a manufacturing method of the forged billet, and a lightweight and mechanical strength by using the forged billet. It aims at providing the manufacturing method of the finished product or semi-finished product, and wheel which is excellent in thickness.
  • the present inventors diligently studied to solve the above-mentioned problems. As a result, duralumin was used as a light metal alloy, and the cast billet was temporarily pressed to a predetermined size, rather than forging the cast billet. The inventors have found that the above problems can be solved by compressing and setting the Charpy impact value measured according to JIS-Z2242 to 30 J / cm 2 or more, and have completed the present invention.
  • the present invention is (1) a forged billet obtained by casting a light metal alloy to form a cast billet, and compressing and compressing the cast billet to refine the metal structure of the cast billet, wherein the light metal alloy is duralumin. Forged billets.
  • the present invention resides in (2) the forged billet according to the above (1), wherein 50 to 80% of the total volume of grain boundary precipitates is refined by pressure compression and stress corrosion cracking is suppressed.
  • the present invention resides in (3) the forged billet according to the above (1) or (2), wherein the tensile strength measured according to JIS-Z2241 is 400 MPa or more.
  • the present invention resides in (4) the forged billet according to any one of the above (1) to (3), wherein the 0.2% proof stress measured according to JIS-Z2241 is 300 MPa or more.
  • the elongation measured according to JIS-Z2241 is 20% or more, and the Charpy impact value measured according to JIS-Z2242 is 30 J / cm 2 or more. It exists in the forge billet as described in any one of these.
  • the present invention resides in (6) a method for producing a forged billet according to any one of the above (1) to (5), which satisfies the following formula.
  • H1 / H2 ⁇ 4.0 In the formula, H1 indicates the length in the direction in which the cast billet is compressed and compressed, and H2 indicates the length in the direction in which the forged billet is compressed and compressed.
  • the present invention resides in (7) the method for producing a forged billet according to the above (6), wherein the pressure compression is performed by closed forging, swing forging, hammer forging, section forging or free forging.
  • the present invention (8) is obtained by compressing and compressing a cast billet in one direction to obtain a pre-forged billet, and further compressing and compressing the pre-forged billet in a direction different from the direction in which the pre-forged billet is compressed and compressed. Or it exists in the manufacturing method of the forge billet as described in (7).
  • a cast billet is pressure-compressed in one direction to form a pre-forged billet, and the pre-forged billet is further pressure-compressed in a direction different from the pressure-compressed direction to deform the outer portion.
  • the present invention is (10) press-compressing a cast billet in one direction to form a pre-forged billet, further compressing and compressing the pre-forged billet in a direction different from the direction in which the pre-forged billet is compressed,
  • the step of compressing and compressing the cast billet in one direction and the step of compressing and compressing the cast billet in a direction different from the direction of pressurizing and compressing are performed in the same step using swing forging. 8) It exists in the manufacturing method of the forge billet of description.
  • the present invention is (12) the above-mentioned (6) to (11), which is used for flying parts, transportation equipment parts, industrial equipment parts, building materials, optical equipment parts, or members for these uses.
  • the present invention resides in (13) a finished product or a semi-finished product obtained by molding the forged billet according to any one of (1) to (5) above.
  • the semi-finished product means a product in the previous stage of machining in a process of forging a forged billet and machining to a finished product.
  • a semi-finished product distributes it may be called an intermediate product.
  • the present invention resides in (14) a finished product or a semi-finished product obtained by molding a forged billet obtained by the method for producing a forged billet according to any one of (6) to (12) above.
  • the present invention is (15) a method for manufacturing a wheel using a forged billet obtained by the method for manufacturing a forged billet according to any one of (6) to (11) above, comprising a hub portion, a spoke portion,
  • the disk part, the outer flange part, the inner rim part, and the inner flange part are made of a wheel having a Charpy impact value of 30 J / cm 2 or more.
  • the wheel when the (16) wheel and the A6000 series wheel made of an A6000 series aluminum alloy have the same mechanical strength, the wheel is at least 10% lighter than the A6000 series wheel made of an A6000 series aluminum alloy.
  • the average thickness of the well portion and the inner rim portion is 1.8 to 2.5 mm
  • the average thickness of the hub portion is 35 to 66 mm
  • the wheel and the A6000 series aluminum alloy are used.
  • the wheel is at least 15% lighter than the A6000 series wheel made of an A6000 series aluminum alloy.
  • a pre-disc portion, a pre-outer rim portion and a pre-inner rim portion are formed by extrusion forging on a forged billet, and then the pre-disc portion is used as a disc portion, and the pre-outer rim portion is used as an outer portion.
  • extrusion forging is included in closed forging.
  • Extrusion forging includes forward extrusion forging and backward extrusion forging. A product obtained by extrusion is continuously formed in a fixed shape, and by using a forged billet, the crystal grain size of the metal structure can be reduced.
  • the outer rim portion and the inner rim portion are formed by machining forging a forged billet and then removing a forging margin by a milling machine including a lathe or a machining center. It exists in the manufacturing method of the wheel as described in any one.
  • the present invention includes (20) a forging process for forging a billet into a semi-finished product, and performing a machining process by boring, a milling machine including a lathe, a machining center, etc. 15) It exists in the manufacturing method of the wheel as described in any one of (17).
  • a pre-inner rim portion is formed by extrusion forging on a forged billet and pressed with a rolling roller from an oblique direction in a state where a gap is provided between the pre-inner rim portion and a mold.
  • the wheel manufacturing method according to any one of (15) to (17), wherein the inner rim portion is formed by spinning.
  • the present invention is (23) forging a disk part, an outer rim part or an inner rim part using a forged billet, and casting or forging the other parts not formed by forging with an aluminum alloy other than duralumin and combining them.
  • the crystal grain size of the metal structure is refined by compressing and compressing a cast billet made of duralumin. Therefore, for example, when forging is performed using a refined forged billet to form a forged product (for example, a wheel) having a complicated shape, the metal of the forged billet, even in a portion that is only partially stretched Since the structure has already been refined, the resulting forged product has a fine crystal grain size as a whole. For this reason, according to the forged billet, it is possible to produce a forged product with excellent mechanical strength and uniform mechanical strength, or a forged product (finished product or semi-finished product) that performs machining after forging. It becomes.
  • duralumin In general, duralumin is poor in corrosion resistance because it contains a large amount of copper. However, in the forged billet, the proportion of crystal grain boundaries and grain boundary precipitates, which are considered to be the cause, is reduced, so that corrosion resistance can be improved. . Generally, since 2000 series duralumin contains a lot of copper, when an aqueous solution or the like is in contact with the metal surface, an anode portion and a cathode portion are locally generated by a potential difference to constitute a local battery, and there is a portion corresponding to the anode portion. It is easy to corrode.
  • the main cause is that an electrolyte such as an aqueous solution permeates along the crystal grain boundaries and precipitates of the metal structure, and the residual stress is also applied, thereby making it easy to generate a local battery, progressing corrosion, and generating cracks.
  • an electrolyte such as an aqueous solution permeates along the crystal grain boundaries and precipitates of the metal structure, and the residual stress is also applied, thereby making it easy to generate a local battery, progressing corrosion, and generating cracks.
  • the forged billet of the present invention by reducing the crystal grain size, the ratio of crystal grain boundaries and precipitates is reduced by 50% to 80%, so that the stress corrosion cracking property can be greatly improved. .
  • the effect of suppressing the progress of stress corrosion cracking is expected because the fiber structure is subdivided by reducing the crystal grain size.
  • the mechanical strength is further improved by using duralumin as the forged billet. And when a forge billet is equipped with the physical property mentioned above, all the forged products using a forge billet can exhibit sufficient mechanical strength.
  • the forging ratio (H1 / H2) is preferably 4.0 or more.
  • a cast billet made of duralumin is pressure-compressed in one direction to form a pre-forged billet, and further compressed in a direction different from the direction in which the pre-forged billet is compressed. If it is, the proportion of the structure having a small crystal grain size in the entire metal crystal particle becomes large. Thereby, it is possible to produce a forged product having better mechanical strength and uniform mechanical strength. Since the cast billet is duralumin, the material flow of the outer portion of the forged billet can be positively performed by further compressing and compressing the outer portion to deform it.
  • the particle size of the metal crystal particles in the central portion and the particle size of the metal crystal particles in the other portions are approximately the same, and uniform refinement is possible.
  • the finished product or semi-finished product of the present invention is formed using the forged billet described above, it has sufficient mechanical strength. Note that if the finished product or semi-finished product is forged using a forged billet, the forging ratio is higher than the mechanical strength of the forged billet itself, so that it becomes stronger. Moreover, since sufficient mechanical strength is provided, weight reduction can be achieved, maintaining mechanical strength by reducing the thickness or volume of a finished product or a semi-finished product.
  • the wheel manufacturing method of the present invention uses the forged billet described above, and the Charpy impact value of the disk portion, outer flange portion, inner rim portion, and inner flange portion is 30 J / cm 2 or more.
  • the Charpy impact value of the disk portion, outer flange portion, inner rim portion, and inner flange portion is 30 J / cm 2 or more.
  • the wheel obtained by the method for producing a wheel of the present invention and an A6000 series wheel made of an A6000 series aluminum alloy have the same mechanical strength
  • the wheel is at least more than an A6000 series wheel made of an A6000 series aluminum alloy.
  • the weight can be reduced by 10% or more.
  • the average thickness of the well portion and the inner rim portion is 1.8 to 2.5 mm
  • the average thickness of the hub portion is 35 to 66 mm
  • a wheel and an A6000 series wheel made of an A6000 series aluminum alloy are provided.
  • the wheel can be reduced in weight by at least 15% or more than the A6000 series wheel made of the A6000 series aluminum alloy.
  • the above-mentioned wheel has extremely high toughness, even if the rim part (inner rim part, outer rim part) or the disk part of the light alloy wheel is cracked for some reason during vehicle running, Does not grow at a stretch. In this case, the tire pressure gradually decreases and the operator notices abnormally, so that it does not lead to a major accident. Therefore, safety can be ensured by using such a wheel.
  • the pre-inner rim portion when spinning the pre-inner rim portion, it is preferable to form the inner rim portion by pressing with a rolling roller from an oblique direction in a state where a gap is provided between the pre-inner rim portion and the mold.
  • a rolling roller When spinning is performed using a forged billet with a refined crystal grain size, the use of a forged billet with increased mechanical strength increases the pressing force of the rolling roller and tends to cause secondary recrystallization.
  • the gap is provided and pressed by the rolling roller from the oblique direction, secondary recrystallization of the inner rim portion can be suppressed.
  • FIG. 1 is a perspective view showing a first embodiment of a forged billet according to the present invention.
  • FIG. 2 is a cross-sectional view showing a forged billet according to the first embodiment and a cast billet before pressure compression.
  • FIGS. 3A and 3B are cross-sectional views showing a state where the cast billet before pressure compression is a forged billet according to the first embodiment by closed forging.
  • FIGS. 4A to 4D are cross-sectional views showing an example in which a cast billet is compressed and compressed a plurality of times to obtain a forged billet according to the present invention.
  • 5A and 5B are cross-sectional views showing forward extrusion forging in the wheel manufacturing method according to this embodiment.
  • FIGS. 1 is a perspective view showing a first embodiment of a forged billet according to the present invention.
  • FIG. 2 is a cross-sectional view showing a forged billet according to the first embodiment and a cast billet before pressure compression.
  • FIGS. 3A and 3B are cross-section
  • FIGS. 6A and 6B are cross-sectional views illustrating the backward extrusion forging process in the wheel manufacturing method according to the present embodiment.
  • FIGS. 7A and 7B are cross-sectional views showing the flaring process in the wheel manufacturing method according to the present embodiment.
  • (A) of FIG. 8 is sectional drawing which shows the 1st spinning process in the manufacturing method of the wheel which concerns on this embodiment,
  • (b) And (c) is sectional drawing which shows a 2nd spinning process.
  • FIG. 9A is a front view showing a wheel obtained by the wheel manufacturing method according to the present embodiment
  • FIG. 9B is a cross-sectional view taken along the line I-I ′ of FIG.
  • FIG. 11 is a perspective view showing a second embodiment of the forged billet according to the present invention.
  • FIGS. 12A to 12D are a top view and a side view showing the manufacturing process of the forged billet according to the second embodiment.
  • FIGS. 13A to 13E are schematic views for explaining the effect when the cast billet is compressed and compressed in one direction and further compressed and compressed in different directions.
  • FIGS. 14A to 14F are a top view and a side view showing a manufacturing process of the forged billet according to the third embodiment.
  • FIG. 15 is a schematic view illustrating a manufacturing process of a forged billet according to the fourth embodiment.
  • FIG. 16 is a schematic view showing a manufacturing process from a forged billet to a wheel according to another embodiment.
  • FIG. 1 is a perspective view showing a first embodiment of a forged billet according to the present invention.
  • a forged billet 10 according to the first embodiment shown in FIG. 1 includes a cylindrical main body 1.
  • the average particle size of the metal crystal particles of the forged billet 10 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less. When the average particle size exceeds 30 ⁇ m, the mechanical strength may be insufficient as compared with the case where the average particle size is in the above range.
  • “average particle diameter” is a value measured based on the cutting method of JIS-H0542. Further, the measurement site is the forged billet and each part of the wheel, both near the center.
  • the Charpy impact value of the forged billet 10 is preferably 30 J / cm 2 or more, more preferably 35 J / cm 2 or more, and further preferably 40 J / cm 2 or more.
  • the Charpy impact value is a value measured according to JIS-Z2242.
  • Such Charpy impact value is one of the materials for judging whether the impact resistance is superior or inferior, and shows the possibility of absorbing impact energy.
  • the tensile strength of the forged billet 10 is preferably 400 MPa or more.
  • the tensile strength is a value measured according to JIS-Z2241.
  • the 0.2% proof stress of the forged billet 10 is preferably 150 MPa or more, and more preferably 300 MPa or more.
  • the proof stress is a value measured according to JIS-Z2241.
  • the elongation of the forged billet 10 is preferably 8% or more, and more preferably 20% or more.
  • the elongation is a value measured according to JIS-Z2241.
  • the elongation is the rate at which the material stretches in the tensile test of the material. When the starting point distance of the test piece is L 0 and the breaking point distance is L 1 , the elongation is expressed by the following formula.
  • [(L 1 ⁇ L 0 ) / L 0 ] ⁇ 100 This shows the elongation rate until breakage, and shows the range in which the shape of the wheel is maintained.
  • the Brinell hardness of the forged billet 10 is preferably 65HB or more.
  • the Brinell hardness is a value measured according to JIS-Z2243.
  • the forged billet 10 preferably has forged lines.
  • the forging line means a state of a flow of metal crystal particles generated in a forged product in a metal structure and having a crystal grain size of at least 12 ⁇ m.
  • the flow of the metal structure becomes clearer when the crystal grain size of the metal crystal particles becomes finer than 9 ⁇ m by pressure compression.
  • the forged stream lines extend radially from the center of the cylinder.
  • the forged product obtained has a forged line even if forging is performed based on a known method.
  • the forged product has a uniform mechanical strength.
  • the forged product (finished product or semi-finished product) using the forged billet 10 has a forged line even if it is a portion that is not compression-forged in the subsequent forging process, so the mechanical strength is reliable. To improve.
  • the light metal alloy is made of duralumin.
  • duralumin In the forged billet 10, mechanical strength is further improved by using duralumin as the forged billet.
  • Specific examples of duralumin include Al—Zn—Mg (7000), Al—Cu—Mg (2000) such as A2014 and A2017, and the like.
  • Al—Cu—Mg (2000) is preferable from the viewpoint of versatility.
  • FIG. 2 is a cross-sectional view showing a forged billet according to the first embodiment and a cast billet before pressure compression. As shown in FIG. 2, the forged billet 10 is obtained by compressing and compressing the cast billet 4 in the axial direction (one direction).
  • the casting billet 4 is obtained by heating and melting a light metal alloy at, for example, 700 ° C. or more and casting in an inert gas atmosphere.
  • the inert gas examples include nitrogen and argon. That is, by removing oxygen, it is possible to prevent the molten raw material (hereinafter referred to as “molten raw material”) from being oxidized.
  • the casting method is not particularly limited, and examples thereof include a sand casting method, a gypsum casting method, a precision casting method, a die casting method, a centrifugal casting method, and a continuous casting method.
  • the casting method is preferably a continuous casting method. In this case, the forged billet 10 having a more uniform crystal grain size of the metal crystal particles can be obtained.
  • the molten raw material is poured into a casting machine at a speed of, for example, 65 to 90 mm / min.
  • the casting speed is less than 65 mm / min, the crystal grain size of the metal crystal particles tends to be non-uniform compared to the case where the speed is within the above range, and the casting speed is 90 mm / min.
  • it exceeds there exists a possibility that it may be damaged at the time of casting billet manufacture compared with the case where speed exists in the said range.
  • the molten raw material poured into the casting machine is homogenized, for example, by being heated at 450 ° C. or higher for 6 hours or longer. And it cools after that and the cylindrical cast billet 4 is obtained.
  • the cooling is preferably rapid cooling. In this case, there is an advantage that crystal grains become fine.
  • the resulting cast billet 4 preferably has a length / diameter ratio of 2.0 to 2.5. In this case, when the cylindrical cast billet 4 is pressed in the axial direction, it is possible to suppress the occurrence of a buckling phenomenon in which the cast billet 4 is bent suddenly.
  • the forged billet 10 is obtained by compressing the cast billet 4 in the axial direction, the crystal grain size of the metal crystal particles is refined at the stage of the forged billet 10. For this reason, the wheel which became a product using this as a starting material also maintains the crystal grain size, and at least the crystal grain size of the metal crystal particles becomes finer.
  • the strength and impact resistance (Charpy impact value) of the material increase when the metal structure is refined by pressure compression.
  • ⁇ 0 + kd ⁇ 1/2
  • represents yield stress or deformation stress
  • d represents the average crystal grain size of the metal structure
  • ⁇ 0 and k represent constants determined by the material.
  • the metal structure is refined by pressurizing and compressing the cast billet made of duralumin, for example, forging using the refined forged billet 10,
  • the metal structure of the forged billet 10 has already been refined even in a portion that is only partially stretched. As a whole, the crystal grain size of the metal structure becomes fine. For this reason, according to the said forge billet, it becomes possible to manufacture the forge product with which mechanical strength is excellent and mechanical strength is uniform.
  • examples of the method for compressing and compressing the cast billet 4 include free forging, die forging, swing forging, extrusion forging, rotary forging, closed forging, and section forging.
  • die forging includes press forging and hammer forging.
  • partial forging can be used in which a casting billet is rotated by a certain angle and a part of pressure is repeatedly applied.
  • pressure compression is based on closed forging, swing forging, hammer forging, section forging, or free forging.
  • FIGS. 3A and 3B are cross-sectional views showing a state where the cast billet before pressure compression is a forged billet according to the first embodiment by closed forging.
  • the metal structure in closed forging, when the casting billet 4 is compressed in the axial direction, the metal structure can be prevented from spreading in the lateral direction. That is, by adding the lateral restraining force P, the forged billet 10 can be prevented from becoming a drum shape swelled in the middle part, and the crystal grain size of the metal crystal particles can be made finer.
  • the processing conditions at this time may be any of hot forging, warm forging, cold forging, and isothermal forging.
  • the processing conditions are preferably hot forging.
  • the pressure compression is preferably performed under a temperature condition of 300 to 550 ° C. and a pressure condition of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN.
  • the pressure of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN is 1000 to 9000 tons when converted to the thrust scale of the forging machine (press machine).
  • the cast billet 4 is pressurized and compressed, and then cooled to obtain a cylindrical forged billet 10.
  • the cooling is preferably rapid cooling.
  • the forging billet 10 according to the first embodiment preferably has a forging ratio satisfying the following formula in the pressure compression.
  • H1 means the length in the direction in which the cast billet 4 is compressed and compressed, that is, the height in the axial direction of the cast billet 4
  • H2 is the length in the direction in which the forged billet 10 is compressed and compressed. That is, it means the height of the forged billet 10 in the axial direction (see FIG. 2).
  • H1 means the length of the cast billet 4 in the direction before being compressed and compressed
  • H2 is the final forged billet 10 that has been compressed and compressed a plurality of times. It means the length in the direction of pressure compression at the end.
  • the particle diameter of the metal crystal particles is extremely refined as the H1 / H2 (forging ratio) by pressure compression increases from 3.5.
  • the H1 / H2 (forging ratio) is preferably 4.0 or more, more preferably 4 to 12 because it is surely refined, and 4 to 6 from the viewpoint of practicality. More preferably. Since the forged billet 10 is an intermediate product, it is expected that the forging ratio further increases when the forged product is forged using the forged billet 10.
  • FIGS. 4A to 4D are cross-sectional views showing an example in which a cast billet is compressed and compressed a plurality of times to obtain a forged billet according to the present invention.
  • a mold 51 having a cylindrical hole 51a that covers at least half the height of the casting billet 4 and preferably covers the entire height. Closed forging is performed using Next, as shown in FIG.
  • closed forging is performed using a mold 52 in which a cylindrical hole 52a covering the half or more of the pre-forged billet 12a is formed in the same manner.
  • closed forging is performed using a mold 53 in which a cylindrical hole 53a that covers more than half of the pre-forged billet 12b is formed in the same manner as shown in FIG.
  • Closed forging is performed using a mold 54 in which a cylindrical hole 54a that covers more than half of the billet 12c is formed.
  • Such forged billet 10 is suitably used for vehicle wheel manufacturing. Besides, it is suitably used for flying parts, transportation equipment parts, industrial equipment parts, equipment for building materials including sashes, and members for these uses. Specifically, aircraft It is suitably used for manufacturing wheels of industrial wheels, flying objects such as airplanes and helicopters, transportation equipment parts such as trucks, industrial equipment parts such as machine tools and electrical appliances.
  • the manufacturing process from the forged billet to the wheel includes a forging process, a heat treatment process, and a finishing process.
  • the forging process is a process of forming a semi-finished product from a forged billet by extrusion forging (forward extrusion forging method, backward extrusion forging method).
  • the semi-finished product means a pre-wheel.
  • the Charpy impact value of the semi-finished product is preferably 30 J / cm 2 or more, more preferably 35 J / cm 2 or more, and further preferably 40 J / cm 2 or more.
  • the pre-outer rim part and the pre-inner rim part are formed by an extrusion forging method, so that recrystallization of metal crystal particles is generated from the hump part to the well part and the inner flange part. Almost uniform crystal grain size can be formed.
  • the forward extrusion forging process is a process in which a forward extrusion forging process is performed on the forged billet 10 to form a prewheel (hereinafter referred to as “first prewheel” for convenience) 3b.
  • first prewheel for convenience
  • FIG. 5A in the forward extrusion forging process, first, the forging billet 10 is placed between the upper die 16 and the lower die 17 provided with the knockout portion 17a.
  • the knockout part 17a is for pushing up and taking out the first pre-wheel 3b after forward extrusion forging.
  • the upper die 16 is lowered, and a portion of the forged billet 10 is pushed into the gap between the knockout portion 17 a and the lower die 17. Thereby, the pre-rim part 5 and the pre-disc part 14 are formed. And the 1st prewheel 3b is obtained by raising knockout part 17a.
  • FIGS. 6A and 6B are cross-sectional views illustrating the backward extrusion forging process in the wheel manufacturing method according to the present embodiment.
  • the backward extrusion forging process is a process in which the backward extrusion forging process is performed on the first pre-wheel 3b and the pre-rim portion 5 is extended.
  • the knockout part 19a is for pushing up and taking out the pre-wheel (hereinafter referred to as “second pre-wheel” for convenience) 3c after backward extrusion forging.
  • the upper mold 18 is lowered, and a part of the first pre-wheel 3 b is pushed into the gap between the upper mold 18 and the lower mold 19.
  • the pre-disc portion 14 having a design surface including irregularities such as spokes is formed, and at the same time, the pre-rim portion 5 is extended to form the pre-inner rim portion 8b.
  • the pre-inner rim portion 8b is formed by extruding the surplus material of the pre-disc portion 14 so as to be extended.
  • the 2nd prewheel 3c is obtained by raising knockout part 19a.
  • the traveling direction of the upper mold 18 and the extending direction of the pre-rim portion 5 are opposite directions, the resistance due to friction is large. For this reason, since the further pressurization force is required, it is preferable to extend the pre-rim part 5 linearly with a predetermined inclination angle. Then, a part of recrystallization can be prevented.
  • the outer rim portion 7 is formed by flaring the pre-outer rim portion 7b.
  • an extra wall is provided in advance in the pre-inner rim portion 8b in consideration of the draft angle of the mold, What is necessary is just to excise this surplus wall and to form a reinforcement structure.
  • flaring of the pre-outer rim portion 7b is not necessary since the outer rim portion can be formed at a predetermined spread angle during extrusion forging if the mold 19 is a split die.
  • the second pre-wheel 3c is placed between the upper mold 25 and the lower mold 26 provided with the knockout portion 26a.
  • the knockout part 26a is for pushing up and taking out the pre-wheel after the flaring process (hereinafter referred to as "third pre-wheel” for convenience) 3d.
  • the upper mold 25 is lowered, the pre-outer rim portion 7b of the second pre-wheel 3c is pressed, and flaring (expanded) outward.
  • the pre-inner rim portion 8b is expanded around the inner flange portion 8a. Thereby, the 3rd pre wheel 3d is obtained.
  • the heat treatment step is a step of heat treating the third pre-wheel 3d.
  • the heat treatment is performed under heat treatment conditions such as T3, T4, T6, T73 based on JIS-H0001. Specifically, solution treatment is performed at 450 to 510 ° C. for 3 to 5 hours, and quenching (water cooling) is performed for 3 to 7 minutes. At room temperature, 96 hours or more, or 150 to 200 ° C. for 7 to 9 hours. Artificial aging treatment is performed.
  • the pre-wheels 3b to 3d are obtained by the forging process described above. Since the pre-wheels 3b to 3d are obtained by forging the forged billet 10, they have sufficient mechanical strength. Moreover, since sufficient mechanical strength is provided, weight reduction can be achieved, maintaining mechanical strength by reducing the diameter etc. of the prewheel 3a itself.
  • the obtained third pre-wheel 3d is subjected to a finishing process on the pre-inner rim portion 8b erected on the periphery.
  • the finishing process include machining such as spinning, drilling, cutting, and milling. That is, the third pre-wheel 3d is machined to remove a forging margin by a milling machine including a lathe or a machining center.
  • the forging margin means a thick portion for avoiding contact between dies, and includes burrs and the like.
  • the spinning process is a process of forming the inner rim part 8 by narrowing down the pre-inner rim part 8b of the third pre-wheel 3d, and the drilling process is performed by drilling a hole in the third pre-wheel 3d at the machining center.
  • This is a process for forming the portion 11 and the pattern
  • the cutting process is a process for forming the outer rim part 7 by cutting the periphery of the pre-wheel 3a with a lathe.
  • the milling process is performed by cutting out substantially the entire wheel 3. It is a process that performs molding.
  • a spinning process is performed. That is, in the spinning process, the outer rim portion 7 and the outer flange portion 7a extended in the surface direction of the third pre-wheel 3d by narrowing a part while spinning the pre-inner rim portion 8b, The inner rim portion 8 and the inner flange portion 8a that are erected in the vertical direction around the periphery of the pre-wheel 3a are formed. At this time, a finishing margin may be formed at the same time.
  • FIG. 8 is sectional drawing which shows the 1st spinning process in the manufacturing method of the wheel which concerns on this embodiment
  • (b) And (c) is sectional drawing which shows a 2nd spinning process.
  • the spinning process includes a first spinning process and a second spinning process.
  • the third pre-wheel 3d uses a forged billet having a high forging ratio, and has a high toughness because the tensile strength, Charpy impact value, elongation, and the like are significantly improved. For this reason, in the manufacturing method of the wheel concerning this embodiment, in order to avoid imposing a considerable burden on a rolling roller by plastic deformation by spinning processing, the 1st spinning processing and the 2nd spinning processing are provided.
  • the first spinning device 31 includes an inner mold 31a and an outer mold 31b that can sandwich the third pre-wheel 3d, and a pre-inner rim portion 8b. And a plurality of rolling rollers 35 for narrowing down.
  • the third pre-wheel 3d is securely fixed by being sandwiched between the inner mold 31a and the outer mold 31b, and these rotate together.
  • the pre-inner rim portion 8 b is rolled and becomes a rough shape of the inner rim portion 8.
  • the second spinning device 32 includes an inner mold 32a and an outer mold 32b that can support the third pre-wheel 3d, and a pre-inner rim portion 8b.
  • a plurality of rolling rollers (not shown) for further narrowing down are provided.
  • the third pre-wheel 3d is attached to the outer mold 32b, and the tip of the pre-inner rim portion 8b of the third pre-wheel 3d is supported by the inner mold 32a. That is, a gap 38a is provided between the third pre-wheel 3d and the inner mold 32a, and a gap 38b is provided between the pre-inner rim portion 8b and the inner mold 32a.
  • the inner mold 32a is an assembled mold.
  • the inner flange portion is pressed by pressing the pre-inner rim portion 8b with the rolling roller 35 from the oblique direction (for example, 45 ° direction). 8a is molded. At this time, it is preferable that the gaps 38a and 38b are maintained.
  • the forging billet 10 having a refined crystal grain size is used for spinning, if the forging billet 10 having high mechanical strength is used, the pressing force of the rolling roller 35 is increased, and the metal crystal particles Although there is a drawback that recrystallization is likely to occur, recrystallization of the metal crystal particles in the inner rim portion 8 can be suppressed by providing a gap and pressing with a rolling roller 35 from an oblique direction.
  • the number of rolling rollers 35 is not particularly limited. If there are a plurality of them, one of them may be pressed from the oblique direction.
  • the pattern of the disk portion 6 is formed by drilling, and the periphery of the prewheel 3a is cut by cutting.
  • a wheel 3 is obtained.
  • the pattern formation of the disk part may be performed by forming a spoke part or the like by forging in advance, and cutting the remaining forging margin of the web thickness by machining to form a hole, or forging the disk part into a disk shape.
  • a pattern such as spokes may be formed by drilling by machining.
  • the lightened wheel 3 is excellent in design by forming irregularities and voids. If necessary, chemical surface treatment, plating, shots, painting, and the like may be performed.
  • FIG. 9A is a front view showing a wheel obtained by the wheel manufacturing method according to this embodiment
  • FIG. 9B is a cross-sectional view taken along the line II ′ of FIG.
  • the wheel 3 (multi-piece) includes a disk portion 6, and an outer rim portion 7 and an inner rim portion 8 provided on the periphery of the disk portion 6. That is, the wheel 3 includes a disk portion 6, an outer rim portion 7 connected to the periphery of the disk portion 6 and extending in the surface direction of the disk portion 6, and a surface of the disk portion 6 connected to the periphery of the disk portion 6. And an inner rim portion 8 erected in the vertical direction.
  • the disk portion 6 includes a disk-shaped hub portion 6a and a spoke portion 11 extending from the hub portion 6a in a radial Y shape. That is, in the wheel 3, the outer rim portion 7 and the inner rim portion 8 are connected to the tip of the spoke portion 11.
  • the hub portion 6a is preferably a gently curved surface. In this case, since the flow of the raw material at the time of pressing becomes uniform, the training ratio is more equalized.
  • the hub portion 6a has a disk shape having a curved surface whose surface is gently curved, and is provided with a bolt insertion hole 6b for inserting a bolt when the wheel 3 is fixed to the axle with a bolt.
  • an empty portion 9 is provided between the adjacent spoke portions 11.
  • the inner rim portion 8 has an inner flange portion 8a formed at the tip
  • the outer rim portion 7 has an outer flange portion 7a formed at the tip.
  • the forging ratio of the wheel 3 to the cast billet 4 (hereinafter referred to as “total forging ratio” for convenience) is preferably 4.0 or more, and 5.5 or more when the light metal alloy is a magnesium alloy. Is preferred.
  • the total forging ratio is obtained by multiplying the forging ratio of the forged billet 10 with respect to the above-described casting billet 4 by the forging ratio of the wheel 3 with respect to the forged billet 10. That is, the total training ratio is a value represented by “the height H1 of the cast billet 4” ⁇ “the height H3 of the wheel 3”.
  • the height H3 of the wheel 3 is shown in FIG.
  • the wheel height H3 is calculated as the average of the heights of the respective parts of the wheel in the forged direction.
  • the wheel 3 since the starting material is the forged billet 10 described above, when the average particle size of the metal crystal particles of the forged billet 10 is 30 ⁇ m or less, the wheel 3 is selected from the group consisting of the inner rim portion 8 and the inner flange portion 8 a.
  • the average particle size of the metal crystal particles based on the cutting method based on JIS-H0542 in at least one portion is 30 ⁇ m or less.
  • the average particle size is more preferably 5 to 20 ⁇ m, still more preferably 5 to 15 ⁇ m.
  • the average particle size excluding the recrystallized portion of the metal crystal particles of the inner rim portion 8 based on the cutting method based on JIS-H0542 is preferably 20 ⁇ m or less. In these cases, the wheel 3 is unlikely to be damaged when an unexpected situation occurs when the vehicle travels and an impact stress is applied to the rim portion.
  • the Charpy impact value of the disk portion 6 (the bubb portion 6a and the spoke portion 11), the outer flange portion 7a, the inner rim portion 8 and the inner flange portion 8a is preferably 30 J / cm 2 or more, and 35 J / cm. more preferably 2 or more, further preferably 40 J / cm 2 or more.
  • the tensile strength of the wheel 3 is preferably 400 MPa or more.
  • the proof stress of the wheel 3 is preferably 250 to 400 MPa.
  • the elongation of the spoke part 11, the outer flange part 7a, the inner rim part 8 and the inner flange part 8a of the wheel 3 is preferably 15 to 20%.
  • the Brinell hardness of the wheel 3 is preferably 65 HB or more.
  • the wheel 3 Since the wheel 3 is manufactured by forging using the forged billet 10 described above as a starting material, the wheel 3 has excellent mechanical strength and uniform mechanical strength. In addition, since the disk part 6, the outer rim part 7, and the inner rim part 8 are united (one piece), the wheel 3 has better mechanical strength and more uniform mechanical strength. Become. Moreover, since sufficient mechanical strength is provided, weight reduction can be achieved, maintaining mechanical strength by making each part volume of the wheel 3 small.
  • the wheel 3 and the conventional A6000 series wheel made of an A6000 series aluminum alloy have the same mechanical strength
  • the wheel 3 is at least 10% lighter than the A6000 series wheel made of an A6000 series aluminum alloy. be able to.
  • the average thickness of the well portion and the inner rim portion is 1.8 to 2.5 mm
  • the average thickness of the hub portion is 35 to 66 mm
  • the wheel 3 and an A6000 series wheel made of an A6000 series aluminum alloy Have the same mechanical strength, the wheel 3 can be reduced in weight by at least 15% or more than an A6000-based wheel made of an A6000-based aluminum alloy.
  • FIG. 10 is a figure showing an example of a wheel obtained by a manufacturing method of a wheel concerning this embodiment, and an A6000 system wheel which has the same mechanical strength as the wheel.
  • T-057 drawn with a solid line represents the wheel 3
  • 19 "RG-R drawn with a two-dot chain line represents an A6000 series wheel.
  • the weight-reduced wheel is JIS In the rotating bending fatigue test based on D 4103, when the specified value was 100,000 times with a load of 3454 N ⁇ m, the weight-reduced wheel achieved 9.3 million times.
  • the wheel 3 is suitably used for, for example, a vehicle or an aircraft wheel.
  • the automobile when used for a vehicle, the automobile can be reduced in weight, so that the environmental load caused by gasoline or the like can be reduced during driving, and the cost can be reduced.
  • FIG. 11 is a perspective view showing a second embodiment of the forged billet according to the present invention.
  • a forged billet 10a according to the second embodiment shown in FIG. 11 is different from the forged billet 10 according to the first embodiment in that the forged billet 10a includes a polygonal column, that is, a hexagonal columnar main body 1 here.
  • the wheel and the wheel manufacturing method are the same as described above.
  • the forged billet 10a When the forged billet 10a has a hexagonal column shape, the forged billet can be accurately positioned when the forged billet is processed, so that the flow of the metal crystal particles can be made constant.
  • FIGS. 12A to 12D are a top view and a side view showing the manufacturing process of the forged billet according to the second embodiment.
  • the forged billet 10a is obtained by first casting a light metal alloy into a cylindrical cast billet 4, and this cast billet 4 is axially closed by closed forging using a hexagonal column mold.
  • a pre-forged billet 12 shown in FIG. Next, as shown in FIG. 12C, the obtained pre-forged billet 12 is erected with the side face down. Then, the pre-forged billet 12 is again pressed and compressed from the direction P2, which is different from the axis, that is, the vertical direction, by closed forging using a hexagonal column mold to obtain a forged billet 10a shown in FIG.
  • the pre-forged billet 12 has a hexagonal column shape, it is easy to position the pre-forged billet 12 with one side face down. That is, it is easy to press and compress in a direction different from the direction in which the pressure is compressed.
  • the forged billet 10a as a starting material pressurizes and compresses the cast billet 4 in one direction to form the pre-forged billet 12, and the pre-forged billet 12 Since it is obtained with a history of further pressing and compressing in a direction different from the direction in which the metal is pressed and compressed, the proportion of the structure having a small crystal grain size in the entire metal crystal particles of the forged billet 10a made of duralumin increases. That is, the forged billet obtained by pressure-compressing the cast billet has a smaller crystal grain size due to the flow of the metal structure.
  • the metal structure moves in different directions because it is compressed and compressed a plurality of times in different directions, and the crystal grain size becomes smaller. For this reason, it is possible to manufacture a wheel having better mechanical strength and more uniform mechanical strength.
  • the metal crystal particles in the middle portion are refined (hereinafter referred to as “fine regions”), and the upper and lower ends are made fine in metal crystal particles.
  • Region (hereinafter referred to as “NG region”) occurs.
  • NG region a forge line is generated in the finely divided region in the middle part.
  • FIGS. 13A to 13E are schematic views for explaining the effect when the cast billet is compressed and compressed in one direction and further compressed and compressed in different directions.
  • the middle portion becomes the fine region A and the upper and lower ends become the NG region B.
  • the middle part becomes the fine region A, and the fine region A in FIG. Remain. That is, the corners in the four directions become the NG region B.
  • the side face is set up downward and compressed again from above, as shown in FIG. 13 (c)
  • the middle part becomes the fine region A, and (a) in FIG.
  • the fine area A of b) remains.
  • the corners in the eight directions become the NG region B. Further, when the side of this is stood down and pressed and compressed again from above, as shown in FIG. 13 (d), the side of this is stood down and pressed again from above. When compressed, the result is as shown in FIG. That is, the NG region B can be reduced stepwise by repeating the pressure compression from different directions. Thus, after compressing and compressing the cast billet in one direction and then compressing and compressing in a different direction, the proportion of the fine region A increases, and by repeating this, the proportion of the fine region A increases stepwise. To go. By utilizing this phenomenon, the effective use area of the forged billet can be increased, and the yield of the material can be greatly improved. Actually, 95% becomes the fine region A and 5% becomes the NG region by at least five pressurizations and compressions.
  • FIGS. 14A to 14F are a top view and a side view showing a manufacturing process of the forged billet according to the third embodiment.
  • the forged billet 10b according to the third embodiment is different from the forged billet 10a according to the second embodiment in that the pre-forged billet passes through a hexagonal columnar lens shape or a truncated cone shape.
  • the wheel and the wheel manufacturing method are the same as described above.
  • the forged billet 10b is a cylindrical pre-forged billet 13a by first compressing and compressing a cylindrical cast billet 4 in the axial direction by flat-pressing closed forging. .
  • the pre-forged billet 13a is pressure-compressed in the axial direction by closed forging using a hexagonal column lens-shaped die to obtain a pre-forged billet 13b.
  • the pre-forged billet 13b has a hexagonal prism lens shape in which the upper and lower bases of the hexagonal column are convex and the center is flat. That is, the end surface orthogonal to the central axis of the hexagonal column is formed as a bulging curved surface with a flat center.
  • wound by forging can be suppressed by giving roundness to the corner
  • the obtained pre-forged billet 13b is erected with the side face down. Then, the pre-forged billet 13b is pressure-compressed from a direction different from the axis, that is, the vertical direction, by closed forging using a hexagonal column lens-shaped die again to obtain a pre-forged billet 13c. At this time, since the pre-forged billet 13b has a hexagonal columnar lens shape, the pre-forged billet 13b can be easily positioned with one side face down. That is, it is easy to press and compress in a direction different from the direction in which the pressure is compressed.
  • the obtained pre-forged billet 13c is erected with the side face down. Then, the pre-forged billet 13c is pressure-compressed from a direction different from the axis, that is, the vertical direction by closed forging using a truncated cone-shaped die to obtain a pre-forged billet 13d.
  • the pre-forged billet 13d has a truncated cone shape in which the peripheral surface (side surface) is tapered.
  • the obtained pre-forged billet 13d is inverted and placed on the lower mold 20 so that the bottom surface with the larger area faces down.
  • the pre-forged billet 13d is locked to the middle of the inner peripheral surface of the lower mold 20. That is, an air gap is generated below the bottom surface.
  • the pre forge billet 13e by which the outer part was deform
  • the pre-forged billet 13e has a truncated cone shape whose peripheral surface (side surface) is tapered.
  • production of the flaw at the time of forging is suppressed by eliminating the angle
  • the obtained pre-forged billet 13e is pressure-compressed in the axial direction by flat-pressing closed forging to obtain a cylindrical forged billet 10b.
  • the pre-forged billet 13e may be used as it is as the forged billet.
  • the crystal grains in the entire metal crystal particles of the forged billet 10b since it is obtained with a history of sequentially pressing and compressing in different directions, the crystal grains in the entire metal crystal particles of the forged billet 10b.
  • the proportion of the tissue having a small diameter increases (see the principle of FIG. 13).
  • the outer portion Q of the pre-forged billet 13d is deformed by compressing and compressing so that the pre-forged billet 13d has a truncated cone shape, and then inverting and compressing again. That is, the material flow of the outer portion Q can be positively performed.
  • the forged billet 10b to be obtained is duralumin, the crystal grain size of the central part and the crystal grain size of the other part are approximately the same, and it becomes possible to refine the crystal grain size uniformly throughout. .
  • the fatigue strength test of the forge billet which passed through the pre forge billet was done, and when repeated tension compression was performed with the test frequency of 20 Hz, it did not reach a fracture
  • the step of compressing and compressing the cast billet in one direction and the step of compressing and compressing the cast billet in a direction different from the direction of pressing and compressing are performed in the same process using swing forging. This is different from the forged billet 10a according to the second embodiment in that it is performed.
  • the wheel and the wheel manufacturing method are the same as described above.
  • FIG. 15 is a schematic view illustrating a manufacturing process of a forged billet according to the fourth embodiment.
  • the forged billet 10 c according to the fourth embodiment is manufactured using swing forging. Note that swing forging is performed by pressure molding locally, and upsetting forging has an advantage that forging can be performed with a pressurizing force of 1/5 to 1/10 that of a general press.
  • the upper die 41 to be pressed is a cylindrical body having a conical surface on the pressing surface.
  • the lower mold 42 constitutes a bottomed hole 42a having a predetermined diameter.
  • the casting billet 4 having a diameter smaller than the hole diameter is disposed in the hole portion 42a, the apex surface of the upper mold 41 is pressed against the center of the upper surface of the casting billet 4, and the drive shaft extends above the center of the upper mold 41. Applying pressure and causing precession.
  • the swinging motion repeats the operation of sequentially pressing the conical surface of the upper mold 41 against the upper surface of the casting billet 4 while performing a circular motion.
  • the upper surface of the cast billet 4 is pushed out while being pressed in the direction in which the mold advances, and is also pushed out to the side surface side of the cast billet 4.
  • the height of the cast billet is lowered and the diameter is increased.
  • the forged billet 10c is obtained by extruding the material of the cast billet 4 in different directions in the same process.
  • the lower die 42 serves as closed forging. Further, the forging ratio of the forging billet is determined by appropriately setting the hole diameter of the lower die 42.
  • the cast billet is manufactured by pressing and compressing in the axial direction, but the pressing and compressing is not limited to the axial direction.
  • the horizontal direction may be used. That is, H1 / H2 (forging ratio) indicates the length in the direction in which the cast billet is pressed (lateral direction), and H2 indicates the length in the direction in which the forged billet is pressed (lateral direction). It will be.
  • the pre-disc portion 14, the pre-outer rim portion 7b, and the pre-inner rim portion 8b are formed by extrusion forging, which is forging, and then pre-formed by machining or the like.
  • the disk part 14 is the disk part 6
  • the pre-outer rim part 7b is the outer rim part 7
  • the pre-inner rim part 8b is the inner rim part 8
  • the disk part 6 and the outer rim part 7 are directly formed by extrusion forging.
  • the inner rim portion 8 may be used.
  • FIG. 16 is a schematic view showing a manufacturing process from a forged billet to a wheel according to another embodiment. As shown in FIG. 16, also in the manufacturing process from the forge billet to a wheel which concerns on other embodiment, a forge forming process, a heat treatment process, and a finishing process are provided. In addition, what is necessary is just to perform a heat treatment process and a finishing process similarly to the manufacturing method of the wheel 3 which concerns on this embodiment mentioned above.
  • the forging process includes a first press molding 21, a second press molding 22, and a third press molding 23.
  • Specific methods of the first press molding 21, the second press molding 22, and the third press molding 23 include free forging, die forging, swing forging, extrusion forging, rotary forging, and closed forging.
  • die forging includes press forging and hammer forging.
  • partial forging can be used in which the forging billet 10 is rotated by a certain angle and the operation of pressurizing a part thereof is repeated.
  • the first press molding 21, the second press molding 22, and the third press molding 23 are all preferably closed forging. In this case, it is possible to manufacture the wheel 3 having a more uniform mechanical strength.
  • the processing conditions at this time may be any of hot forging, warm forging, cold forging, and isothermal forging. These forging processes are preferably performed at a temperature of 300 ° C. or higher, preferably 300 to 550 ° C. and a pressure of 9.8 ⁇ 10 3 kN to 88.2 ⁇ 10 3 kN.
  • the forged billet 10 is forged and then cooled to obtain the prewheel 3a.
  • the wheel is obtained by performing a heat treatment process of heat treatment and an aging treatment and a finishing process such as turning machining in the same manner as the wheel manufacturing method according to the present embodiment.
  • the forge molding at the time of manufacturing a wheel is provided with three times of the 1st press molding 21, the 2nd press molding 22, and the 3rd press molding 23, even if the frequency
  • a pre-wheel is illustrated as a semi-finished product, but the present invention is not limited to this, and includes an intermediate product.
  • the wheel 3 is an example of a finished product.
  • the shape of the spoke portion 11 is Y-shaped, but is not limited thereto. It may be fan-shaped, X-shaped, or dish-shaped.
  • a pre-rim portion 5 standing on the periphery of the wheel 3 is provided and processed into an outer rim portion 7 and an inner rim portion 8. That is, in the wheel, a disc unit 6 and a pre-rim unit 5 integrated with each other are used, but a two-piece wheel or a three-piece wheel other than a one-piece wheel may be used.
  • the disk portion, the outer rim portion or the inner rim portion is individually forged using the forged billet 10 and integrated by a coupling means. Examples of the coupling means include bolts and nuts, screwing, friction welding, rivet tightening, or hack bolts equipped with caulking members.
  • a forged billet 10 made of duralumin is used to forge the disk portion, outer rim portion or inner rim portion, and the other portions that are not forged are aluminum alloys other than duralumin.
  • A6000 series may be cast or forged, and these may be integrated by a coupling means.
  • the pre-inner rim portion is manufactured separately, so that the pressure in the forging means can be reduced.
  • the average height after forging becomes small. For this reason, there is also an advantage that the training ratio can be increased.
  • a disk part is formed by itself using a forged billet 10 made of duralumin, and an outer rim part and an inner rim part are formed by using a forged billet 10 made of duralumin or a cast billet made of A6000 series, and the same as above.
  • the cast billet is compressed and compressed into a hexagonal column-shaped pre-forged billet, and then compressed and compressed from the lateral direction to obtain the final hexagonal column-shaped forged billet.
  • a cast billet that has been compressed into a hexagonal column may be used as the final forged billet.
  • the forged billet and the pre-forged billet may have a polygonal column shape with many corners such as a hexagonal column shape, an octagonal column shape, or a dodecagon column shape.
  • the cast billet is pressure-compressed to form a pre-forged billet, which is further compressed in a vertical direction different from the direction in which the pre-forged billet is compressed.
  • the number of compressions is not limited to two, and may be performed three or more times.
  • the flat forged pre-forged billet is pressure-compressed twice from different vertical directions, but may be performed three or more times, and the hexagonal frustum-shaped pre-forged The billet may be inverted and compressed under pressure a plurality of times.
  • the hexagonal columnar pre-forged billet may be a polygonal columnar lens shape including a cylindrical lens shape
  • the truncated cone-shaped pre-forged billet may be a polygonal frustum shape including a hexagonal frustum shape.
  • the pressing surface is formed as a convex curved surface or a concave curved surface, and the material is moved from the center to the circumferential direction by repeating this alternately several times or circumferentially.
  • the crystal grain size may be refined by moving from the center to the center.
  • Example 1 Duralumin was prepared as a light metal alloy. This was melted to obtain a molten raw material. In an argon gas atmosphere, cast into a casting machine by a continuous casting method, heated, and then cooled to form a cylindrical cast billet (standard number: A2017 (A2000 series)) having a diameter of 204 mm, a height of 219 mm, and a weight of 20 kg. Obtained.
  • the obtained cast billet was subjected to pressure compression by the closed hexagonal forging process shown in FIG. That is, as shown in FIG. 14 (a), a cast billet is placed on a press machine, and 34.3 ⁇ 10 3 kN under the temperature conditions of a mold temperature of 364 ° C. to 391 ° C. and a workpiece temperature of 459 ° C. to 485 ° C. The hot flat forging was performed with the pressure of.
  • FIGS. 14B, 14 ⁇ / b> C, and 14 ⁇ / b> D the workpiece was forged and formed into a hexagonal prism lens shape having bulges on the upper and lower surfaces. At this time, the mold temperature was 383 ° C.
  • the workpiece was forged into a truncated cone shape, and the material of the outer portion of the workpiece was actively deformed to make the crystal grain size of the entire workpiece uniform.
  • the mold temperature was 370 ° C. to 395 ° C.
  • the workpiece temperature was 410 ° C. to 462 ° C.
  • the pressing force during this period was 39.2 ⁇ 10 3 kN.
  • a cylindrical forged billet with a height of 54 mm was obtained.
  • the forging ratio of the forged billet was 4.
  • the die temperature 387 ° C. to 399 ° C., the workpiece temperature 422 ° C. to 498 ° C., and the applied pressure 49 ⁇ 10 3 are applied to the forged billet obtained.
  • a forward extrusion forging process is performed under a temperature and pressure condition of kN.
  • the workpiece is inverted and placed on the mold, and the mold temperature is 388 ° C. to 399 ° C.
  • Back extrusion forging was performed under the conditions of °C, workpiece temperature of 392 ° C to 470 ° C, and applied pressure of 78.4 x 10 3 kN.
  • the resulting pre-wheel is heat-treated under T6 conditions, and a wheel having a shape shown in FIG. 9A (flange diameter 19 inches) is obtained by machining to remove a forging margin using a lathe or a milling machine including a machining center. It was.
  • Example 2 instead of the aluminum alloy A2017 in Example 1, A2014 was used.
  • the forging process of the forged billet was performed as follows with the same size of the cast billet.
  • FIG. 14 (a) an A2014 cast billet was placed on a press machine, and under a temperature condition of a mold temperature of 351 ° C. to 382 ° C. and a workpiece temperature of 401 ° C. to 478 ° C., 19.6 ⁇ 10 3 kN Hot flat forging was performed under pressure.
  • FIGS. 14B, 14 ⁇ / b> C, and 14 ⁇ / b> D the workpiece was forged and formed into a hexagonal prism lens shape having bulges on the upper and lower surfaces.
  • the mold temperature was 351 ° C. to 399 ° C.
  • the workpiece temperature was 407 ° C. to 473 ° C.
  • the applied pressure was 29.4 ⁇ 10 3 kN.
  • flat pressing forging was performed in a cylindrical shape in the step (d) of FIG.
  • a forged billet was formed at a mold temperature of 358 ° C. to 398 ° C. and a pressing force of 29.4 ⁇ 10 3 kN.
  • the height was 54 mm.
  • a forging process shown in FIG. 16 was used for forging the forged billet into the pre-wheel, and spinning was performed by the method shown in FIG. 8 to complete the wheel (flange diameter 19 inches).
  • Example 3 Instead of the aluminum alloy A2014 in Example 2, A7N01 (cast billet) was used.
  • An A701 cast billet was placed on a press machine, and under a temperature condition of a mold temperature of 353 ° C. to 398 ° C. and a workpiece temperature of 404 ° C. to 444 ° C., 19.6 ⁇ 10 3 kN. Hot flat forging was performed under pressure.
  • FIGS. 14B, 14 ⁇ / b> C, and 14 ⁇ / b> D the workpiece was forged and formed into a hexagonal prism lens shape having bulges on the upper and lower surfaces.
  • the mold temperature was 351 ° C.
  • Example 3 flat pressing forging was performed in a cylindrical shape in the step (d) of FIG.
  • a forged billet was formed at a mold temperature of 354 ° C. to 389 ° C., a workpiece temperature of 407 ° C. to 439 ° C., and a pressing force of 29.4 ⁇ 10 3 kN.
  • the height was 54 mm.
  • the process of forging a forged billet into a pre-wheel and the spinning process were performed in the same manner as in Example 2 to complete the wheel (flange diameter 19 inches).
  • Example 1 A wheel was obtained in the same manner as in Example 1 except that a cast billet of A6151 (A6000 series) was used instead of using the forged billet of A2017.
  • Example 4 Duralumin was prepared as a light metal alloy. This was melted to obtain a molten raw material. In an argon gas atmosphere, the casting was poured into a casting machine by a continuous casting method, heated, and then cooled to obtain a casting billet (standard number: A2017 (A2000 series)). For the obtained billet (height 232.8 mm), the forging ratio was obtained by closed forging under the temperature conditions of the heating furnace set temperature of 525 ° C, the mold temperature of 380 ° C to 400 ° C, and the workpiece temperature of 480 ° C to 510 ° C. Was compressed so as to be 2 to obtain a cylindrical forged billet having a diameter of 52.1 mm and a height of 116.4 mm.
  • Example 5 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 349.2 mm was used and pressure compression was performed so that the forging ratio was 3. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 6 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 465.6 mm was used and pressure compression was performed so that the forging ratio was 4. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 7 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 582 mm was used and pressure compression was performed so that the forging ratio was 5. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 8 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 698.4 mm was used and pressure compression was performed so that the forging ratio was 6. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 9 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 814.8 mm was used and pressure compression was performed so that the forging ratio was 7. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 10 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 931.2 mm was used and pressure compression was performed so that the forging ratio was 8. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 11 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 1047.6 mm was used and pressure compression was performed so that the forging ratio was 9. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 12 A forged billet was obtained in the same manner as in Example 4 except that a cast billet having a height of 1164 mm was used and pressure compression was performed so that the forging ratio was 10. In addition, the size of the obtained forge billet is diameter 52.1mm and height 116.4mm.
  • Example 2 The cylindrical cast billet obtained in Example 4 was used as it was.
  • the obtained cast billet has a diameter of 52.1 mm and a height of 116.4 mm.
  • the forged billet of the present invention a wheel having excellent mechanical strength and uniform mechanical strength can be produced.
  • the obtained wheel is suitably used for applications such as vehicles and aircraft wheels.
  • the weight of the automobile can be reduced, so that the environmental load caused by gasoline or the like can be reduced, and the cost can be reduced.
  • the forged wheel using the forged billet of the present invention has a very high Charpy impact value and elongation when a crack occurs in the rim or disc part for some reason during traveling in a vehicle or the like. Therefore, it is possible to provide a safer wheel that does not lead to a major accident because, for example, the tire pressure gradually decreases and the operator notices abnormalities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

【課題】機械的強さに優れる鍛造ビレット及び鍛造ビレットの製造方法並びに軽量であり且つ機械的強さに優れるプレホイール及びホイールの製造方法を提供すること。 【解決手段】本発明は、軽金属合金を鋳造して鋳造ビレット4とし、該鋳造ビレット4を加圧圧縮して該鋳造ビレット4の金属組織を微細化した鍛造ビレット10であって、軽金属合金がジュラルミンである鍛造ビレット10である。

Description

鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法
 本発明は、鍛造ビレット、鍛造ビレットの製造方法、鍛造ビレットを用いた完成品或いは半製品、及び鍛造ビレットを用いたホイールの製造方法に関する。
 一般に、自動車用タイヤには、支持体としての金属性のホイールが備わっている。
 近年、かかるホイールにおいては、極力、軽量でデザイン性の高いものが望まれており特に乗用車ではホイールの口径が大きくなる傾向にある。走行時の振動の軽減と操縦性能を向上させるためである。
 このようなホイールとしては、例えば、鋳造で製造したアルミニウム合金製の丸棒を切断して得たビレットに対して、金型で鍛造プレスすることによりホイールを製造する方法(例えば、特許文献1参照)や、鋳造したマグネシウム合金を歪加工し、再結晶化したマグネシウム合金からなる車両用ホイール(例えば、特許文献2参照)、ホイールリムフランジの内径部にリム径中心方向へ張出し部分を形成した車両用ホイール(例えば、特許文献3参照)等が知られている。
 また、航空機用のホイールとして、アルミニウム合金を鍛造して成形されたものが知られている(例えば、非特許文献1参照)。
 これらのホイールは、いずれも鋳造されたビレット(以下「鋳造ビレット」という。)から鍛造成形することによって、得られるものである。
特開2007-210017号公報 特開2007-308780号公報 特開2008-137562号公報
マイクル・C・Y・ニウ著、土井憲一・巻島守訳、「航空機構造設計」(有)名古屋航空技術発行、2000年2月21日、p.484-495
 しかしながら、上記特許文献1~3及び非特許文献1に記載のホイールは、いずれも、鋳造ビレットが鍛造により複雑な形状に成形されるので、全体的にではなく、部分的にしか引き延ばされない結果、金属組織的にみて、衝撃性や靭性(以下「機械的強さ」という。)が弱い部分が偏在することになる。すなわち、得られるホイールは、機械的強さが十分に優れるとはいえない。
 例えば、従来のホイールは、十分な機械的強さを担保するために、ホイールの厚みを大きくする必要があるので、ホイール自体の重量が大きくなるという欠点がある。
 本発明は、上記事情に鑑みてなされたものであり、種々の用途に利用可能な機械的強さに優れる鍛造ビレット及び鍛造ビレットの製造方法並びに鍛造ビレットを用いることにより軽量であり且つ機械的強さに優れる完成品或いは半製品及びホイールの製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決するため鋭意検討したところ、軽金属合金としてジュラルミンを用い、鋳造ビレットを鍛造成形して製品化するのではなく、一旦、鋳造ビレットを所定の大きさに加圧圧縮し、JIS-Z2242に準じて測定したシャルピー衝撃値を30J/cm以上とすることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、(1)軽金属合金を鋳造して鋳造ビレットとし、該鋳造ビレットを加圧圧縮して該鋳造ビレットの金属組織を微細化した鍛造ビレットであって、軽金属合金がジュラルミンである鍛造ビレットに存する。
 本発明は、(2)加圧圧縮により、粒界析出物の全体積のうちの50~80%が微細化され、応力腐食割れが抑制される上記(1)記載の鍛造ビレットに存する。
 本発明は、(3)JIS-Z2241に準じて測定した引張り強さが400MPa以上である上記(1)又は(2)に記載の鍛造ビレットに存する。
 本発明は、(4)JIS-Z2241に準じて測定した0.2%耐力が300MPa以上である上記(1)~(3)のいずれか一つに記載の鍛造ビレットに存する。
 本発明は、(5)JIS-Z2241に準じて測定した伸びが20%以上であり、JIS-Z2242に準じて測定したシャルピー衝撃値が30J/cm以上である上記(1)~(4)のいずれか一つに記載の鍛造ビレットに存する。
 本発明は、(6)上記(1)~(5)のいずれか一つ記載の鍛造ビレットの製造方法であって、下記式を満たす鍛造ビレットの製造方法に存する。
 H1/H2≧4.0
(式中、H1は、鋳造ビレットの加圧圧縮される方向の長さを示し、H2は、鍛造ビレットの加圧圧縮された方向の長さを示す。)
 本発明は、(7)加圧圧縮が、閉塞鍛造、揺動鍛造、ハンマー鍛造、セクション鍛造又は自由鍛造により施される上記(6)記載の鍛造ビレットの製造方法に存する。
 本発明は、(8)鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して得られる上記(6)又は(7)に記載の鍛造ビレットの製造方法に存する。
 本発明は、(9)鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮し、外側部分を変形させるために更に加圧圧縮して得られる上記(6)又は(7)に記載の鍛造ビレットの製造方法に存する。
 本発明は、(10)鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して円錐台状とし、更に、外側部分を変形させるために加圧圧縮する上記(6)又は(7)に記載の鍛造ビレットの製造方法に存する。
 本発明は、(11)鋳造ビレットを一方向に加圧圧縮する工程と、加圧圧縮する方向とは異なる方向に加圧圧縮する工程とを、揺動鍛造を用いて同一工程で行う上記(8)記載の鍛造ビレットの製造方法に存する。
 本発明は、(12)飛翔体部品用、運送用機器部品用、産業用機器部品用、建築資材用、光学用機器部品用又はこれら用途の部材製造用である上記(6)~(11)のいずれか一つに記載の鍛造ビレットの製造方法に存する。
 本発明は、(13)上記(1)~(5)のいずれか一つ記載の鍛造ビレットを成形して得られる完成品或いは半製品に存する。
 ここで、半製品とは、鍛造ビレットを鍛造成形して機械加工し完成品に至る工程において、機械加工の前段階の製品を意味する。また、半製品が流通する場合、中間製品と称されることもある。
 本発明は、(14)上記(6)~(12)のいずれか一つに記載の鍛造ビレットの製造方法により得られる鍛造ビレットを成形して得られる完成品或いは半製品に存する。
 本発明は、(15)上記(6)~(11)のいずれか一つに記載の鍛造ビレットの製造方法により得られる鍛造ビレットを用いたホイールの製造方法であって、ハブ部とスポーク部とからなるディスク部、アウターフランジ部、インナーリム部及びインナーフランジ部のシャルピー衝撃値が30J/cm以上であるホイールの製造方法に存する。
 本発明は、(16)ホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも10%以上軽量化されている上記(15)記載のホイールの製造方法に存する。
 本発明は、(17)ウエル部及びインナーリム部の平均肉厚が1.8~2.5mmであり、ハブ部の平均肉厚が35~66mmであり、ホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも15%以上軽量化されている上記(15)記載のホイールの製造方法に存する。
 本発明は、(18)鍛造ビレットに対し、押出し鍛造加工により、プレディスク部、プレアウターリム部及びプレインナーリム部を成形し、その後、プレディスク部をディスク部とし、プレアウターリム部をアウターリム部とし、プレインナーリム部をインナーリム部とする上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 ここで、押出し鍛造加工は、閉塞鍛造に含まれる。押出し鍛造加工には、前方押出し鍛造及び後方押出し鍛造がある。押出し加工による製品は、一定の形状で連続的に成形され、鍛造ビレットを用いることにより、金属組織の結晶粒径の微細化が図られる。
 本発明は、(19)鍛造ビレットを鍛造成形した後、旋盤又はマシニングセンターを含むフライス盤による鍛造しろを除去する機械加工によって、アウターリム部及びインナーリム部を成形する上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(20)鍛造ビレットを鍛造成形して半製品とし、ホイール形状とするための大部分の工程を旋盤、マシニングセンター、を含むフライス盤、ボーリング加工による削り出し機械加工を施してなる上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(21)鍛造ビレットに対し、押出し鍛造加工によりプレインナーリム部を形成し、該プレインナーリム部と金型との間に空隙を設けた状態で斜方向から圧延ローラーで押圧するスピニング加工により、インナーリム部を成形する上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(22)鍛造ビレットを用いてディスク部、アウターリム部又はインナーリム部を個別に鍛造成形し、これらを結合手段により一体化した上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 本発明は、(23)鍛造ビレットを用いてディスク部、アウターリム部又はインナーリム部を鍛造成形し、該鍛造成形しないその他の部分をジュラルミン以外のアルミニウム合金で鋳造又は鍛造成形し、これらを結合手段により一体化した上記(15)~(17)のいずれか一つに記載のホイールの製造方法に存する。
 本発明の鍛造ビレットにおいては、ジュラルミンからなる鋳造ビレットを加圧圧縮することにより、金属組織の結晶粒径が微細化される。したがって、例えば、微細化された鍛造ビレットを用いて鍛造成形し、複雑な形状の鍛造製品(例えば、ホイール)とする場合、部分的にしか引き延ばされない箇所であっても、鍛造ビレットの金属組織が既に微細化されているので、得られる鍛造製品は、全体的に金属組織の結晶粒径が微細なものとなる。このため、上記鍛造ビレットによれば、機械的強さが優れ、機械的強さが均一な鍛造製品或いは鍛造加工後に機械加工等を行う鍛造製品(完成品或いは半製品)を製造することが可能となる。
 また、一般に、ジュラルミンは銅を多く含むため耐食性が劣るが、上記鍛造ビレットにおいては、原因と考えられる結晶粒界及び粒界析出物の占める割合を縮小するので耐食性を向上させることが可能となる。一般に、2000系のジュラルミンは銅を多く含むため、金属表面に水溶液等が接触する場合、電位差により局部的に陽極部と陰極部とが発生して局部電池を構成し陽極部に相当する部位が腐食しやすい。主な原因は金属組織の結晶粒界及び析出物に沿って水溶液等の電解質が浸透し残留応力も加わって局部電池の生成が容易になり腐食が進行し割れが発生する。これに対し、本発明の鍛造ビレットにおいては、結晶粒径を微細化することで結晶粒界と析出物の占める割合を50%~80%縮小するので応力腐食割れ性を大きく改善することができる。結晶粒径を微細化することでファイバー組織を細分化することになり応力腐食割れの進行を抑制する効果も期待される。
 上記鍛造ビレットにおいては、鍛造ビレットとしてジュラルミンを用いることにより、機械的強さがより向上する。そして、鍛造ビレットが上述した物性を備えることにより、鍛造ビレットを用いたあらゆる鍛造製品は、十分な機械的強さを発揮することができる。
 本発明の鍛造ビレットの製造方法においては、鍛錬比(H1/H2)が4.0以上であることが好ましい。かかる鍛錬比とすることにより、急激に鍛造ビレットの結晶粒径を更に微粒子化できるので、機械的強さを更に向上させることができる。
 上記鍛造ビレットの製造方法においては、ジュラルミンからなる鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮してなるものである場合、金属結晶粒子全体における結晶粒径の小さい組織の占める割合が大きくなる。これにより、機械的強さがより優れ、しかも、機械的強さが均一な鍛造製品を製造することができる。なお、鋳造ビレットがジュラルミンであるので、外側部分を変形させるために更に加圧圧縮することにより、鍛造ビレットの外側部分の素材流動を積極的に行うことができる。これにより、得られる鍛造ビレットは、ジュラルミンであっても、中央部分の金属結晶粒子の粒径とその他の部分の金属結晶粒子の粒径とが同程度となり、均質な微細化が可能となる。その結果、投入した鋳造ビレットのほぼ全域を鍛造ビレットとする場合の材料歩留まりを大きく向上させることができると共に、プレ鍛造ビレットを経由した鍛造製品は、全体が均質な機械的強さを示し耐衝撃性の高いものとなる。
 本発明の完成品或いは半製品は、上述した鍛造ビレットを用いて成形されるので、十分な機械的強さを有する。なお、完成品或いは半製品が鍛造ビレットを用いて鍛造成形されたものであると、鍛造ビレット自体の機械的強さよりも鍛錬比が向上するので一層強くなる。
 また、十分な機械的強さを備えるので、完成品或いは半製品の厚み又は体積を小さくすること等により、機械的強さを維持しつつ、軽量化を図ることができる。
 本発明のホイールの製造方法は、上述した鍛造ビレットを用い、且つディスク部、アウターフランジ部、インナーリム部及びインナーフランジ部のシャルピー衝撃値が30J/cm以上であるので、十分な機械的強さを有する。
 また、十分な機械的強さを備えるので、ホイールの厚み又は体積を小さくすること等により、機械的強さを維持しつつ、軽量化を図ることができる。
 例えば、本発明のホイールの製造方法により得られるホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも10%以上軽量化することができる。
 また、ウエル部及びインナーリム部の平均肉厚が1.8~2.5mmであり、ハブ部の平均肉厚が35~66mmであり、ホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも15%以上軽量化することができる。
 更に、上記ホイールは、靱性がきわめて高いことから、車両走行時に何らかの理由で軽合金製ホイールのリム部(インナーリム部、アウターリム部)又はディスク部に亀裂が生じた場合であっても、亀裂が一気に大きくならない。この場合、タイヤ空気圧が徐々に減少して操縦者が異常に気付くことになるので大きな事故にはつながらない。したがって、かかるホイールを用いることにより、安全性を担保できる。
 上記ホイールの製造方法においては、押出し鍛造方式によって、プレアウターリム部及びプレインナーリム部を成形したものである場合、ハンプ部からウエル部及びインナーフランジ部に至る間に2次再結晶の生成が無くほぼ均等な結晶粒径を形成することができる。
 特に、プレインナーリム部にスピニング加工を施す場合、プレインナーリム部と金型との間に空隙を設けた状態で、斜方向から圧延ローラーで押圧し、インナーリム部を成形することが好ましい。結晶粒径を微細化した鍛造ビレットを用いて、スピニング加工を施す場合、機械的強さが高くなっている鍛造ビレットを用いると圧延ローラーの加圧力が高くなり2次再結晶が生じやすくなる欠点があるのに対し、上述した場合においては、空隙を設けて斜方向から圧延ローラーで押圧するので、インナーリム部の2次再結晶化を抑制することができる。
図1は、本発明に係る鍛造ビレットの第1実施形態を示す斜視図である。 図2は、第1実施形態に係る鍛造ビレットと、加圧圧縮前における鋳造ビレットを示す断面図である。 図3の(a)及び(b)は、加圧圧縮前における鋳造ビレットを閉塞鍛造により第1実施形態に係る鍛造ビレットとしたときの状態を示す断面図である。 図4の(a)~(d)は、鋳造ビレットを複数回加圧圧縮し本発明に係る鍛造ビレットとする例を示す断面図である。 図5の(a)及び(b)は、本実施形態に係るホイールの製造方法における前方押出し鍛造加工を示す断面図である。 図6の(a)及び(b)は、本実施形態に係るホイールの製造方法における後方押出し鍛造加工を示す断面図である。 図7の(a)及び(b)は、本実施形態に係るホイールの製造方法におけるフレアリング加工を示す断面図である。 図8の(a)は、本実施形態に係るホイールの製造方法における第1スピニング処理を示す断面図であり、(b)及び(c)は第2スピニング処理を示す断面図である。 図9の(a)は、本実施形態に係るホイールの製造方法により得られたホイールを示す正面図であり、(b)は、(a)のI-I’断面図である。 図10の(a)及び(b)は、本実施形態に係るホイールの製造方法により得られたホイールと、該ホイールと同じ機械的強さを有するA6000系ホイールとの一例を示す図である。 図11は、本発明に係る鍛造ビレットの第2実施形態を示す斜視図である。 図12の(a)~(d)は、第2実施形態に係る鍛造ビレットの製造過程を示す上面図及び側面図である。 図13の(a)~(e)は、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に更に加圧圧縮した場合の効果を説明するための概略図である。 図14の(a)~(f)は、第3実施形態に係る鍛造ビレットの製造過程を示す上面図及び側面図である。 図15は、第4実施形態に係る鍛造ビレットの製造過程を示す概略図である。 図16は、他の実施形態に係る鍛造ビレットからホイールへの製造過程を示す概略図である。
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
[第1実施形態]
 図1は、本発明に係る鍛造ビレットの第1実施形態を示す斜視図である。
 図1に示す第1実施形態に係る鍛造ビレット10は、円柱状の本体部1からなる。
 鍛造ビレット10の金属結晶粒子の平均粒径は30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがより一層好ましい。
 平均粒径が30μmを超えると、平均粒径が上記範囲内にある場合と比較して、機械的強さが不十分となる場合がある。なお、本明細書において、「平均粒径」は、JIS-H0542の切断法に基づいて測定した値である。また、測定部位は、鍛造ビレット、ホイールの各部分、いずれも中央付近とする。
 鍛造ビレット10のシャルピー衝撃値は30J/cm以上であることが好ましく、35J/cm以上であることがより好ましく、40J/cm以上であることが更に好ましい。なお、シャルピー衝撃値は、JIS-Z2242に準じて測定した値である。かかるシャルピー衝撃値は、耐衝撃性に対する優劣の判断材料の一つであり衝撃エネルギーの吸収可能性を示す。
 シャルピー衝撃値を30J/cm以上とすることにより、鍛造ビレット10を用いた鍛造製品(完成品或いは半製品)は、十分な機械的強さを発揮することができる。
 鍛造ビレット10の引張り強さは、400MPa以上であることが好ましい。なお、引張り強さは、JIS-Z2241に準じて測定した値である。
 鍛造ビレット10の0.2%耐力は、150MPa以上であることが好ましく、300MPa以上であることがより好ましい。なお、耐力は、JIS-Z2241に準じて測定した値である。
 鍛造ビレット10の伸度は、8%以上であることが好ましく、20%以上であることがより好ましい。なお、伸度は、JIS-Z2241に準じて測定した値である。また、伸度は材料の引張試験で材料の伸びる割合であり、試験片の始めの標点距離をLとし、破断後の標点距離をLとすると、伸度は、下記式で示される。
δ=[(L-L)/L]×100
これは破断するまでの伸び率を示すものであり、ホイールの形状が維持される範囲を示している。
 鍛造ビレット10のブリネル硬度は、65HB以上であることが好ましい。なお、ブリネル硬度は、JIS-Z2243に準じて測定した値である。
 鍛造ビレット10は、鍛流線を有していることが好ましい。
 ここで、鍛流線とは、金属組織において鍛造製品に生じる、結晶粒径が少なくとも12μmより小さい金属結晶粒子の流れの状態を意味する。なお、かかる鍛流線は、加圧圧縮により金属結晶粒子の結晶粒径が9μmより微細になると金属組織の流れがより明確になる。
 鍛造ビレット10においては、円柱の中心部から放射状に鍛流線が延びていることが好ましい。
 鍛造ビレット10は、鍛流線を有すると、公知の方法に基づいて鍛造成形が施されても、得られる鍛造製品は鍛流線を有するものとなる。これにより、鍛造製品は、機械的強さが均一なものとなる。なお、上記鍛造ビレット10を用いた鍛造製品(完成品或いは半製品)は、その後の鍛造工程で圧縮鍛造されない部分であっても、鍛流線を有することになるので、機械的強さが確実に向上する。
 軽金属合金は、ジュラルミンからなる。鍛造ビレット10においては、鍛造ビレットとしてジュラルミンを用いることにより、機械的強さがより向上する。
 ジュラルミンの具体例としては、Al-Zn-Mg系(7000系)、A2014、A2017等のAl-Cu-Mg系(2000系)等が挙げられる。
 これらの中でも汎用性の観点から、Al-Cu-Mg系(2000系)が好ましい。
 次に、鍛造ビレット10の製造方法について説明する。
 図2は、第1実施形態に係る鍛造ビレットと、加圧圧縮前における鋳造ビレットを示す断面図である。
 図2に示すように、鍛造ビレット10は、鋳造ビレット4を軸方向(一方向)に加圧圧縮することにより得られる。
 上記鋳造ビレット4は、軽金属合金を、例えば、700℃以上で加熱溶融し、不活性ガス雰囲気下、鋳造することにより得られる。
 不活性ガスとしては、窒素、アルゴン等が挙げられる。すなわち、酸素を取り除くことにより、溶融した原料(以下「溶融原料」という。)が酸化するのを防止できる。
 鋳造の方法は、特に限定されないが、砂型鋳造法、石膏鋳造法、精密鋳造法、金型鋳造法、遠心鋳造法、連続鋳造法等が挙げられる。
 これらの中でも、鋳造法は、連続鋳造法を用いることが好ましい。この場合、金属結晶粒子の結晶粒径がより均一な鍛造ビレット10が得られるようになる。
 鋳造においては、溶融原料を例えば65~90mm/minの速度で鋳造機に流し込む。
 流し込む速さが65mm/min未満であると、速さが上記範囲内にある場合と比較して、金属結晶粒子の結晶粒径が不均一となる傾向にあり、流し込む速さが90mm/minを超えると、速さが上記範囲内にある場合と比較して、鋳造ビレット製造時に破損する虞がある。
 鋳造機に流し込まれた溶融原料は、例えば、450℃以上で6時間以上加熱されることにより、均質化される。
 そして、その後、冷却されることにより、円柱状の鋳造ビレット4が得られる。
 ここで、上記冷却は、急冷することが好ましい。この場合、結晶粒が細かくなるメリットがある。なお、得られた円柱状の鋳造ビレット4は必要に応じて、軸方向に対して垂直方向に切断してもよい。
 得られる鋳造ビレット4のサイズは、長さ/直径の比が2.0~2.5であることが好ましい。この場合、円柱状の鋳造ビレット4を軸方向に押圧した際に、鋳造ビレット4が急に曲がるという座屈現象が生じるのを抑制できる。
 鍛造ビレット10は、鋳造ビレット4を軸方向に圧縮して得られるので、鍛造ビレット10の段階で、金属結晶粒子の結晶粒径が微細化される。このため、これを出発材料として製品となったホイールも、結晶粒径を維持し、少なくとも金属結晶粒子の結晶粒径がより微細なものとなる。
 ちなみに、下記式に示すホール・ペッチの関係を鑑みると、加圧圧縮により金属組織を微細化すると材料の強度及び耐衝撃性(シャルピー衝撃値)が大きくなる。
 σ=σ+kd-1/2
式中、σは、降伏応力又は変形応力を示し、dは、金属組織の平均結晶粒径を示し、σ及びkは、材料によって決まる定数を示す。
 第1実施形態に発明の鍛造ビレットにおいては、ジュラルミンからなる鋳造ビレットを加圧圧縮することにより、金属組織が微細化されるので、例えば、微細化された鍛造ビレット10を用いて鍛造成形し、複雑な形状の鍛造製品(例えば、ホイール)とする場合、部分的にしか引き延ばされない箇所であっても、鍛造ビレット10の金属組織が既に微細化されているので、得られる鍛造製品は、全体的に金属組織の結晶粒径が微細なものとなる。このため、上記鍛造ビレットによれば、機械的強さが優れ、機械的強さが均一な鍛造製品を製造することが可能となる。
 ここで、鋳造ビレット4を加圧圧縮する方法としては、自由鍛造、型鍛造、揺動鍛造、押出し鍛造、回転鍛造、閉塞鍛造、セクション鍛造等が挙げられる。なお、型鍛造にはプレス鍛造、ハンマー鍛造が含まれる。また、鋳造ビレットを一定角度回転させ一部を加圧する操作を繰り返す部分鍛造も利用できる。
 これらの中でも、加圧圧縮は、閉塞鍛造、揺動鍛造、ハンマー鍛造、セクション鍛造又は自由鍛造によるものであることが好ましい。
 図3の(a)及び(b)は、加圧圧縮前における鋳造ビレットを閉塞鍛造により第1実施形態に係る鍛造ビレットとしたときの状態を示す断面図である。
 図3の(a)及び(b)に示すように、閉塞鍛造においては、鋳造ビレット4が軸方向に加圧圧縮される際、金属組織が横方向に広がるのを抑制できる。すなわち、横方向の拘束力Pも加わることにより、鍛造ビレット10が中腹部で膨らんだ太鼓形状になるのを抑制し、金属結晶粒子の結晶粒径も微細化できる。
 このときの加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。
 これらの中でも、加工条件は、熱間鍛造であることが好ましい。具体的には、上記加圧圧縮は、300~550℃の温度、9.8×10kN~88.2×10kNの圧力条件下で行うことが好ましい。なお、9.8×10kN~88.2×10kNの圧力は、鍛造機(プレス機)の推力規模に換算すると、1000~9000トンとなる。
 こうして、鋳造ビレット4が加圧圧縮され、その後、冷却されることにより、円柱状の鍛造ビレット10が得られる。なお、上記冷却は、急冷することが好ましい。
 第1実施形態に係る鍛造ビレット10は、上記加圧圧縮において、鍛錬比が下記式を満たすことが好ましい。
 H1/H2≧4.0
 式中、H1は、鋳造ビレット4の加圧圧縮される方向の長さ、すなわち、鋳造ビレット4の軸方向の高さを意味し、H2は、鍛造ビレット10の加圧圧縮された方向の長さ、すなわち、鍛造ビレット10の軸方向の高さを意味する(図2参照)。なお、加圧圧縮を複数回施した場合、H1は、鋳造ビレット4の加圧圧縮される前の方向の長さを意味し、H2は、複数回加圧圧縮された最終の鍛造ビレット10の最後に加圧圧縮された方向の長さを意味する。
 軽金属合金がジュラルミンである場合、加圧圧縮によるH1/H2(鍛錬比)が3.5から大きくなるに従って、金属結晶粒子の粒径が極端に微細化される。
 また、上記H1/H2(鍛錬比)は、確実に微細化されることから、4.0以上であることが好ましく、4~12であることがより好ましく、実用性の観点から、4~6であることが更に好ましい。なお、鍛造ビレット10が中間品であることから、該鍛造ビレット10を用いて鍛造製品を鍛造成形するとき更に鍛錬比が上昇することが見込まれる。
 ここで、高い鍛錬比の鍛造ビレットとする場合は、複数回加圧圧縮することが好ましい。1段階で高い鍛錬比の鍛造ビレットにしようとすると、座屈が生じるおそれがある。
 図4の(a)~(d)は、鋳造ビレットを複数回加圧圧縮し本発明に係る鍛造ビレットとする例を示す断面図である。
 まず、図4の(a)に示すように、鋳造ビレット4を閉塞鍛造する際には、鋳造ビレット4の高さの半分以上好ましくは高さ全体を覆う筒状穴51aを形成した金型51を用いて閉塞鍛造を行う。次いで、図4の(b)に示すように、同様にしてプレ鍛造ビレット12aの半分以上を覆う筒状穴52aを形成した金型52を用いて閉塞鍛造を行い、図4の(c)に示すように、同様にしてプレ鍛造ビレット12bの半分以上を覆う筒状穴53aを形成した金型53を用いて閉塞鍛造を行い、図4の(d)に示すように、同様にしてプレ鍛造ビレット12cの半分以上を覆う筒状穴54aを形成した金型54を用いて閉塞鍛造を行う。こうして、鍛造ビレット10が得られる。
 かかる鍛造ビレット10は、車両のホイール製造用に好適に用いられる。その他にも、飛翔体部品用、運送用機器部品用、産業用機器部品用、サッシュ類を含む建築資材用の機器又はこれら用途の部材製造用等に好適に用いられ、具体的には、航空機用車輪のホイール製造用、飛行機、ヘリコプター等の飛翔体、トラック等の運送用機器部品、工作機械、電化製品等の産業用機器部品等に好適に用いられる。
 次に、鍛造ビレット10を用いたホイール3の製造方法について説明する。
 鍛造ビレットからホイールへの製造過程においては、鍛造成形工程と、熱処理工程と、仕上工程とを備える。
 鍛造成形工程は、押出し鍛造加工(前方押出し鍛造方式、後方押出し鍛造方式)により鍛造ビレットから半製品を成形する工程である。なお、本実施形態において、半製品はプレホイールを意味する。また、半製品のシャルピー衝撃値は30J/cm以上であることが好ましく、35J/cm以上であることがより好ましく、40J/cm以上であることがさらに好ましい。
 上記ホイールの製造方法においては、押出し鍛造方式によって、プレアウターリム部及びプレインナーリム部を成形するので合、ハンプ部からウエル部及びインナーフランジ部に至る間に金属結晶粒子の再結晶の生成が無くほぼ均等な結晶粒径を形成することができる。
 図5の(a)及び(b)は、本実施形態に係るホイールの製造方法における前方押出し鍛造加工を示す断面図である。かかる前方押出し鍛造加工は、鍛造ビレット10に対し、前方押出し鍛造加工を施し、プレホイール(以下便宜的に「第1プレホイール」という。)3bを形成する加工である。
 図5の(a)に示すように、前方押出し鍛造加工においては、まず、鍛造ビレット10を上金型16と、ノックアウト部17aが設けられた下金型17との間に載置する。ここで、ノックアウト部17aは、前方押出し鍛造加工後の第1プレホイール3bを押し上げて取り出すためのものである。
 図5の(b)に示すように、上金型16を降下させ、ノックアウト部17a及び下金型17の空隙に、鍛造ビレット10の一部を押し込む。これにより、プレリム部5及びプレディスク部14が形成される。
 そして、ノックアウト部17aを上昇させることにより、第1プレホイール3bが得られる。
 図6の(a)及び(b)は、本実施形態に係るホイールの製造方法における後方押出し鍛造加工を示す断面図である。かかる後方押出し鍛造加工は、第1プレホイール3bに対し、後方押出し鍛造加工を施し、プレリム部5を延展させる加工である。
 図6の(a)に示すように、後方押出し鍛造加工においては、まず、第1プレホイール3bを上金型18と、ノックアウト部19aが設けられた下金型19との間に載置する。ここで、ノックアウト部19aは、後方押出し鍛造加工後のプレホイール(以下便宜的に「第2プレホイール」という。)3cを押し上げて取り出すためのものである。
 図6の(b)に示すように、上金型18を降下させ、上金型18及び下金型19の空隙に、第1プレホイール3bの一部を押し込む。これにより、スポーク等の凹凸を含むデザイン面等を有するプレディスク部14が形成されると同時に、プレリム部5が延展されプレインナーリム部8bが形成される。なお、プレインナーリム部8bは、プレディスク部14の余剰の素材が押出されて延展形成される。
 そして、ノックアウト部19aを上昇させることにより、第2プレホイール3cが得られる。
 ここで、後方押出し鍛造においては、上金型18の進行方向とプレリム部5の延展する方向が逆方向となるため摩擦による抵抗が大きい。このため、更なる加圧力を要するからプレリム部5は所定の傾斜角度で直線的に延展させることが好ましい。そうすると、一部の再結晶化を防止できる。
 図7の(a)及び(b)は、本実施形態に係るホイールの製造方法におけるフレアリング加工を示す断面図である。かかるフレアリング加工においては、プレアウターリム部7bをフレアリングして、アウターリム部7を形成する。なお、フレアリング加工において、プレインナーリム部8bの調整も行うことが好ましい。更にインナーリムフランジ部8aにリムフランジの内径側に突出する補強構造を形成する場合は、金型の抜き勾配を考慮して予めプレインナーリム部8bに余肉を設けておき、機械加工工程で該余肉を切除して補強構造を形成すればよい。また、プレアウターリム部7bのフレアリングは金型19が割型であれば押出し鍛造加工の際に所定の開拡角度でアウターリム部を形成することができるからフレアリングは不要となる。
 図7の(a)に示すように、フレアリング加工においては、まず、第2プレホイール3cを上金型25と、ノックアウト部26aが設けられた下金型26との間に載置する。ここで、ノックアウト部26aは、フレアリング加工後のプレホイール(以下便宜的に「第3プレホイール」という。)3dを押し上げて取り出すためのものである。
 図7の(b)に示すように、上金型25を降下させ、第2プレホイール3cのプレアウターリム部7bを押圧し、外方へフレアリング(拡開)させる。このとき、プレインナーリム部8bはインナーフランジ部8a周辺が拡開される。
 これにより、第3プレホイール3dが得られる。
 熱処理工程は、第3プレホイール3dを熱処理する工程である。熱処理は、軽金属合金がジュラルミンである場合、JIS-H0001に基づくT3、T4、T6、T73等の熱処理条件で行われる。具体的には、450~510℃で3~5時間溶体化処理がされ、3~7分間焼入れ(水冷)を行って、室温の場合は96時間以上、又は150~200℃で7~9時間人工時効処理がなされる。
 本実施形態に係るホイールの製造方法においては、上述した鍛造成形工程によりプレホイール3b~3dが得られる。
 かかるプレホイール3b~3dは、鍛造ビレット10を鍛造成形して得られるので、十分な機械的強さを有する。
 また、十分な機械的強さを備えるので、プレホイール3a自体の径等を小さくすることにより、機械的強さを維持しつつ、軽量化を図ることができる。
 次に、得られた第3プレホイール3dは、周縁に立設されたプレインナーリム部8bに対して仕上工程が施される。
 仕上工程としては、スピニング加工、穴開け加工、切削加工、ミーリング加工等の機械加工が挙げられる。すなわち、第3プレホイール3dに対して、旋盤又はマシニングセンターを含むフライス盤による鍛造しろを除去する機械加工が施される。
 ここで、鍛造しろとは、金型同士の接触を回避するための肉厚部分を意味し、バリ等も含まれる。
 スピニング加工は、第3プレホイール3dのプレインナーリム部8bを絞り込むことによって、インナーリム部8の成形する加工であり、穴開け加工は、マシニングセンターで、第3プレホイール3dに穴を開け、スポーク部11や模様を形成する加工であり、切削加工は、旋盤で、プレホイール3aの周囲を削り、アウターリム部7を形成する加工であり、ミーリング加工は、ホイール3の略全体を削り出して成型を行う加工である。
 仕上工程としては、まず、スピニング加工が施される。すなわち、スピニング加工においては、プレインナーリム部8bに対して、スピンさせながら、一部を絞り込むことにより、第3プレホイール3dの面方向に延設されたアウターリム部7及びアウターフランジ部7aと、プレホイール3aの周縁に垂直方向に立設されたインナーリム部8及びインナーフランジ部8aと、が形成される。このとき、仕上げしろを同時に形成してもよい。
 図8の(a)は、本実施形態に係るホイールの製造方法における第1スピニング処理を示す断面図であり、(b)及び(c)は第2スピニング処理を示す断面図である。
 図8の(a)、(b)及び(c)に示すように、本実施形態に係るホイールの製造方法においては、スピニング加工が第1スピニング処理と第2スピニング処理とを備える。
 第3プレホイール3dは、鍛錬比の高い鍛造ビレットを用いており、引張強さ、シャルピー衝撃値、伸び等が格段に向上しているため靱性が高い。このため、本実施形態に係るホイールの製造方法においては、スピニング加工による塑性変形により圧延ローラーにかなりの負担を強いることを避けるため、第1スピニング処理と第2スピニング処理とを備えている。
 図8の(a)に示すように、第1スピニング処理において、第1スピニング装置31は、第3プレホイール3dを挟持可能な内側金型31a及び外側金型31bと、プレインナーリム部8bを絞り込む複数の圧延ローラー35とを備える。
 かかる第1スピニング処理においては、第3プレホイール3dが内側金型31a及び外側金型31bに挟持されることにより、確実に固定され、これらが一体となって回転する。このとき、複数の圧延ローラー35をプレインナーリム部8bに押し付けることにより、プレインナーリム部8bが圧延され、大まかなインナーリム部8の形状となる。
 図8の(b)に示すように、第2スピニング処理において、第2スピニング装置32は、第3プレホイール3dを支持可能な内側金型32a及び外側金型32bと、プレインナーリム部8bを更に絞り込む複数の圧延ローラー(図示しない)とを備える。
 かかる第2スピニング処理においては、第3プレホイール3dが外側金型32bに取り付けられ、第3プレホイール3dのプレインナーリム部8bの先端が内側金型32aに支持された状態となっている。すなわち、第3プレホイール3dと内側金型32aとの間には空隙38aが設けられ、プレインナーリム部8bと内側金型32aとの間には空隙38bが設けられている。なお、第2スピニング処理において、内側金型32aは、組み立て型の金型を用いている。
 そして、図8の(b)の状態で、図8の(c)に示すように、斜方向(例えば、45°の方向)から圧延ローラー35でプレインナーリム部8bを押圧してインナーフランジ部8aを成形する。このとき、空隙38a、38bは維持されていることが好ましい。
 ホイール3の製造方法においては、空隙38a,38bが設けられているので、圧延ローラーで押圧されても下方から突き上げる応力がかからない利点がある。これに加えて、上述したように、斜方向から圧延ローラー35で押圧するので、インナーリム部8における金属結晶粒子の2次再結晶化を確実に抑制することができる。すなわち、結晶粒径を微細化した鍛造ビレット10を用いて、スピニング加工を施す場合、機械的強さが高くなっている鍛造ビレット10を用いると圧延ローラー35の加圧力が高くなり金属結晶粒子の再結晶が生じやすくなる欠点があるが、空隙を設けて斜方向から圧延ローラー35で押圧することにより、インナーリム部8における金属結晶粒子の再結晶化を抑制することができる。なお、圧延ローラー35の数は、特に限定されない。また、複数ある場合は、そのうちの一つが斜方向から押圧するものであればよい。
 次に、アウターリム部7とインナーリム部8とが形成されたプレホイール3aに対して、穴開け加工によりディスク部6の模様を形成し、切削加工によりプレホイール3aの周囲を削ることにより、ホイール3が得られる。なお、ディスク部の模様形成は、予め鍛造加工によりスポーク部等を形成し、残されたウエブ厚みの鍛造しろを機械加工により切除して穴を形成してもよく、ディスク部を円盤状に鍛造成形したのち機械加工により穴開け加工を施してスポーク等の模様を形成してもよい。
 本実施形態に係るホイール3の製造方法によれば、凹凸や空部等を形成することにより、デザイン性に優れる軽量化されたホイール3となる。なお、必要に応じて、化学的表面処理、鍍金、ショット、塗装等を施してもよい。
 次に、本実施形態に係るホイールの製造方法により得られたホイール3について説明する。
 図9の(a)は、本実施形態に係るホイールの製造方法により得られたホイールを示す正面図であり、(b)は、(a)のI-I’断面図である。
 ホイール3(マルチピース)は、ディスク部6と、ディスク部6の周縁に設けられるアウターリム部7及びインナーリム部8と、を備える。すなわち、ホイール3は、ディスク部6と、該ディスク部6の周縁に連結しディスク部6の面方向に延設されたアウターリム部7と、ディスク部6の周縁に連結しディスク部6の面とは垂直方向に立設されたインナーリム部8と、を備える。
 ディスク部6は、円盤状のハブ部6aと、該ハブ部6aから放射Y字状に延びるスポーク部11と、を備える。すなわち、上記ホイール3においては、スポーク部11の先端にアウターリム部7とインナーリム部8とが連結されていることになる。なお、ハブ部6aは、緩やかに湾曲した曲面となっていることが好ましい。この場合、押圧時の原材料の流れが一様となるので、鍛錬比がより均等化される。
 ハブ部6aは、表面が緩やかに湾曲した曲面を有する円盤状になっており、ホイール3をボルトで車軸に固定する際のボルトを挿入するためのボルト挿通穴6bが設けられている。
 また、隣合うスポーク部11同士の間は、空部9が設けられている。
 インナーリム部8は、先端にインナーフランジ部8aが形成されており、アウターリム部7は、先端にアウターフランジ部7aが形成されている。
 鋳造ビレット4に対するホイール3の鍛錬比(以下便宜的に「全鍛錬比」という。)は、4.0以上であることが好ましく、軽金属合金がマグネシウム合金である場合、5.5以上であることが好ましい。
 ここで、全鍛錬比とは、上述した鋳造ビレット4に対する鍛造ビレット10の鍛錬比に、鍛造ビレット10に対するホイール3の鍛錬比を乗じたものである。すなわち、全鍛錬比は、「鋳造ビレット4の高さH1」÷「ホイール3の高さH3」で表される値である。なお、ホイール3の高さH3は、図9の(b)に示す。なお、ホイールの高さH3は、鍛造成形された方向のホイールの各部の高さの平均で算出される。
 ホイール3においては、出発材料が上述した鍛造ビレット10であるので、鍛造ビレット10の金属結晶粒子の平均粒径が30以下μmである場合、インナーリム部8及びインナーフランジ部8aからなる群より選ばれる少なくとも一つの部分のJIS-H0542に準拠した切断法に基づく金属結晶粒子の平均粒径が30以下μmとなる。なお、かかる平均粒径は、5~20μmとすることがより好ましく、5~15μmとすることが更に好ましい。
 また、JIS-H0542に準拠した切断法に基づくインナーリム部8の金属結晶粒子の再結晶部分を除く平均粒径が20μm以下であることが好ましい。
 これらの場合、ホイール3は、車両走行時に不測の事態が発生し、リム部に衝撃的な応力が負荷されたときに損傷が生じ難い。
 ホイール3において、ディスク部6(バブ部6a及びスポーク部11)、アウターフランジ部7a、インナーリム部8及びインナーフランジ部8aのシャルピー衝撃値は30J/cm以上であることが好ましく、35J/cm以上であることがより好ましく、40J/cm以上であることがさらに好ましい。
 ホイール3の引張り強さは、400MPa以上であることが好ましい。
 ホイール3の耐力は、250~400MPaであることが好ましい。
 ホイール3のスポーク部11、アウターフランジ部7a、インナーリム部8及びインナーフランジ部8aの伸度は、15~20%であることが好ましい。
 ホイール3のブリネル硬度は、65HB以上であることが好ましい。
 ホイール3は、上述した鍛造ビレット10を出発材料として鍛造成形して製造するので、機械的強さが優れ、且つ機械的強さが均一なものとなる。なお、ディスク部6、アウターリム部7及びインナーリム部8は、一体となっている(ワンピース)ので、ホイール3は、機械的強さがより優れ、且つ機械的強さがより均一なものとなる。
 また、十分な機械的強さを備えるので、ホイール3の各部体積を小さくすることにより、機械的強さを維持しつつ、軽量化を図ることができる。
 例えば、ホイール3と、従来のA6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイール3が、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも10%以上軽量化することができる。
 また、ウエル部及びインナーリム部の平均肉厚が1.8~2.5mmであり、ハブ部の平均肉厚が35~66mmであり、ホイール3と、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、ホイール3が、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも15%以上軽量化することができる。
 図10の(a)及び(b)は、本実施形態に係るホイールの製造方法により得られたホイールと、該ホイールと同じ機械的強さを有するA6000系ホイールとの一例を示す図である。なお、図10中、実線で描かれたT-057は、ホイール3を示し、2点鎖線で描かれた19”RG-Rは、A6000系ホイールを示す。
 図10に示すように、ホイール3のウエル部、インナーリム部、ハブ部の平均肉厚を薄くすることにより、A6000系ホイールよりも約20%軽量化している。
 また、驚くべきことに上記軽量化されたホイールはJIS
D 4103に基づく回転曲げ疲労試験において、負荷荷重3454N・mで規定値が10万回のところ、軽量化したホイールは930万回を達成した。
 ホイール3は、例えば、車両用、航空機用車輪等の用途に好適に用いられる。特に、車両用に用いると、自動車を軽量化できるので、走行時、ガソリン等による環境負荷を低減でき、低コスト化も可能である。
[第2実施形態]
 図11は、本発明に係る鍛造ビレットの第2実施形態を示す斜視図である。
 図11に示す第2実施形態に係る鍛造ビレット10aは、多角柱、すなわち、ここでは六角柱状の本体部1からなる点で第1実施形態に係る鍛造ビレット10と相違する。なお、ホイール及びホイールの製造方法等は上述したことと同様である。
 鍛造ビレット10aは、六角柱状であると、鍛造ビレットを加工する際に、的確に位置決めをすることができるので、金属結晶粒子の流れを一定にすることができる。
 図12の(a)~(d)は、第2実施形態に係る鍛造ビレットの製造過程を示す上面図及び側面図である。
 図12の(a)に示すように、鍛造ビレット10aは、まず、軽金属合金を鋳造して円柱状の鋳造ビレット4とし、この鋳造ビレット4を六角柱の型を用いた閉塞鍛造により、軸方向P1に加圧圧縮して図12の(b)に示すプレ鍛造ビレット12とする。
 次いで、図12の(c)に示すように、得られたプレ鍛造ビレット12を、側面を下にして立てる。そして、再びプレ鍛造ビレット12を六角柱の型を用いた閉塞鍛造により、軸とは異なる方向P2、すなわち垂直方向から加圧圧縮して図12の(d)に示す鍛造ビレット10aとする。なお、このときプレ鍛造ビレット12は、六角柱状であるので、プレ鍛造ビレット12の一側面を下にして位置決めし易い。すなわち、加圧圧縮した方向とは異なる方向に加圧圧縮しやすい。
 このように、第2実施形態に係る鍛造ビレット10aの製造においては、出発材料である鍛造ビレット10aが、鋳造ビレット4を一方向に加圧圧縮してプレ鍛造ビレット12とし、該プレ鍛造ビレット12を加圧圧縮した方向とは異なる方向に更に加圧圧縮する履歴で得られるものであるので、ジュラルミンからなる鍛造ビレット10aの金属結晶粒子全体における結晶粒径の小さい組織の占める割合が大きくなる。すなわち、鋳造ビレットに対して加圧圧縮を施して得た鍛造ビレットは、金属組織が流れることにより、結晶粒径が小さくなる。これに加え、上記鍛造ビレット10aにおいては、異なる方向に複数回加圧圧縮するので、金属組織が異なる方向にも動くことになり、結晶粒径がより小さくなる。このため、機械的強さがより優れ、しかも、機械的強さがより均一なホイールを製造することができる。
 ここで、一方向に加圧圧縮した場合、中腹部分(いわゆる中央部分)の金属結晶粒子が微細化された領域(以下「微細領域」という。)と、上下両端部は金属結晶粒子の微粒子化がされにくい領域(以下「NG領域」という。)とが生じる。なお、中腹部分の微粒子化された領域には、鍛流線が生じる。
 これに対し、上述したように、プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮することにより、NG領域の一部が更に微細化されるので、全体としてNG領域を減らすことができる。
 図13の(a)~(e)は、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に更に加圧圧縮した場合の効果を説明するための概略図である。
 まず、図13の(a)に示すように、鋳造ビレット4を加圧圧縮すると、中腹部分が微細領域Aとなり、上下両端がNG領域Bとなる。
 そして、これの側面を下にして立てて、再び上方から加圧圧縮すると、図13の(b)に示すように、中腹部分が微細領域Aとなり、図13の(a)の微細領域Aは残る。すなわち、四方向の角の部分がNG領域Bとなる。
 更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図13の(c)に示すように、中腹部分が微細領域Aとなり、図13の(a)及び図13の(b)の微細領域Aは残る。すなわち、八方向の角の部分がNG領域Bとなる。
 更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図13の(d)に示すようになり、また更に、これの側面を下にして立てて、再び上方から加圧圧縮すると、図13の(e)に示すようになる。すなわち、異なる方向からの加圧圧縮を繰り返すことにより、NG領域Bを段階的に少なくすることができる。
 このように、鋳造ビレットを一方向に加圧圧縮した後、異なる方向に加圧圧縮すると、微細領域Aの占める割合が増加し、これを繰り返すことにより段階的に微細領域Aの占める割合が増えていく。この現象を利用して鍛造ビレットの有効利用領域を増やし、材料の歩留まりを大きく向上させることができる。実際では、少なくとも5回の加圧圧縮で95%が微細領域Aとなり、5%がNG領域となる。
[第3実施形態]
 図14の(a)~(f)は、第3実施形態に係る鍛造ビレットの製造過程を示す上面図及び側面図である。
 第3実施形態に係る鍛造ビレット10bは、プレ鍛造ビレットが六角柱レンズ状や円錐台状を経由している点で第2実施形態に係る鍛造ビレット10aと相違する。なお、ホイール及びホイールの製造方法等は上述したことと同様である。
 図14の(a)に示すように、上記鍛造ビレット10bは、まず、円柱状の鋳造ビレット4を平押しの閉塞鍛造により、軸方向に加圧圧縮して円柱状のプレ鍛造ビレット13aとする。
 次に、図14の(b)に示すように、プレ鍛造ビレット13aを六角柱レンズ状の型を用いた閉塞鍛造により、軸方向に加圧圧縮してプレ鍛造ビレット13bとする。かかるプレ鍛造ビレット13bは、六角柱の上底及び下底が凸状であり、且つ中央が平坦となった六角柱レンズ状となっている。すなわち、六角柱の中心軸に直交する端面が、中央が平坦となった膨出曲面で形成されている。プレ鍛造ビレット13cを六角柱レンズ状とすることにより、座屈による鍛造欠陥を防止でき、その結果、歩留まりを向上させることができる。また、プレ鍛造ビレット13cの角に丸みを付与することにより、鍛造での皺(しわ)傷の発生を抑制できる。膨出面と六角柱側面の交わる稜線部分にも小さなR付けを行うことが好ましい。さらに、六角柱部分の側面の厚さが角の部分では薄く、角と角の間では徐々に厚くなっている。これにより、曲面の曲率半径を一定にして六角面に被せた場合、角の部分が接触したとき角と角との間に隙間が生じることを防止できる。
 次に、図14の(c)に示すように、得られたプレ鍛造ビレット13bを、側面を下にして立てる。そして、再びプレ鍛造ビレット13bを六角柱レンズ状の型を用いた閉塞鍛造により、軸とは異なる方向、すなわち垂直方向から加圧圧縮してプレ鍛造ビレット13cとする。なお、このときプレ鍛造ビレット13bは、六角柱レンズ状であるので、プレ鍛造ビレット13bの一側面を下にして位置決めし易い。すなわち、加圧圧縮した方向とは異なる方向に加圧圧縮しやすい。
 次に、図14の(d)に示すように、得られたプレ鍛造ビレット13cを、側面を下にして立てる。そして、プレ鍛造ビレット13cを円錐台状の型を用いた閉塞鍛造により、軸とは異なる方向、すなわち垂直方向から加圧圧縮してプレ鍛造ビレット13dとする。かかるプレ鍛造ビレット13dは、周囲面(側面)がテーパー状となった円錐台状となる。
 次に、図14の(e)に示すように、得られたプレ鍛造ビレット13dを、面積が広いほうの底面が下になるように反転させて下金型20に配置する。このとき、プレ鍛造ビレット13dは、下金型20の内周面中腹に係止される。すなわち、底面の下方に空隙が生じる。そして、円錐台状の型を用いた閉塞鍛造により、軸と同じ方向から加圧圧縮することにより、外側部分が変形されたプレ鍛造ビレット13eとする。かかるプレ鍛造ビレット13eは、周囲面(側面)がテーパー状となった円錐台状となっている。なお、テーパー面の角をなくすことにより、鍛造時の皺の発生が抑制される。
 次に、図14の(f)に示すように、得られたプレ鍛造ビレット13eを平押しの閉塞鍛造により、軸方向に加圧圧縮して円柱状の鍛造ビレット10bとする。なお、円柱状の鍛造ビレット10bとせずに、プレ鍛造ビレット13eをそのまま鍛造ビレットとして用いてもよい。
 このように、第3実施形態に係る鍛造ビレット10bの製造においては、上述したことと同様に、異なる方向に順次加圧圧縮する履歴で得られるので、鍛造ビレット10bの金属結晶粒子全体における結晶粒径の小さい組織の占める割合が大きくなる(図13の原理を参照)。
 また、プレ鍛造ビレット13dが円錐台状となるように加圧圧縮し、その後、反転させて再び加圧圧縮することにより、プレ鍛造ビレット13dの外側部分Qが変形する。すなわち、外側部分Qの素材流動を積極的に行うことができる。これにより、得られる鍛造ビレット10bは、ジュラルミンであっても、中央部分の結晶粒径とその他の部分の結晶粒径とが同程度となり、全体的に均質な結晶粒径微細化が可能となる。なお、プレ鍛造ビレットを経由した鍛造ビレットの疲労強さ試験を行い、繰り返し引張圧縮を試験周波数20Hzで行ったところ1×10サイクルで破断に至らなかった。
[第4実施形態]
 第4実施形態に係る鍛造ビレットは、鋳造ビレットを一方向に加圧圧縮する工程と、加圧圧縮した方向とは異なる方向に加圧圧縮する工程とを、揺動鍛造を用いて同一工程で行う点で第2実施形態に係る鍛造ビレット10aと相違する。なお、ホイール及びホイールの製造方法等は上述したことと同様である。
 図15は、第4実施形態に係る鍛造ビレットの製造過程を示す概略図である。
 図15に示すように、第4実施形態に係る鍛造ビレット10cは、揺動鍛造を用いて製造される。なお、揺動鍛造は、局部的に加圧成型を行うものであり、据込み鍛造では一般プレス機の1/5~1/10の加圧力で鍛造成型できるという利点がある。
 揺動鍛造において、加圧する上金型41は加圧面に円錐面を備えた円柱体である。一方、下金型42は所定の直径を有する有底の穴部42aを構成する。該穴部42aに穴径より小さい直径の鋳造ビレット4を配置し、該鋳造ビレット4の上面中心に上金型41の円錐面頂点を押当て、上金型41の中心上方に伸びる駆動軸に加圧力を加えると共に才差運動を行わせる。揺動運動は円動作を行いながら上金型41円錐面を順次鋳造ビレット4の上面に押し当てる動作を繰り返す。この動作により鋳造ビレット4の上面は金型の進む方向へ押圧されながら押出されると共に鋳造ビレット4の側面側へも押出され、この動作を繰り返すことで鋳造ビレットの高さは低くなり径は大きくなる。こうして、同一工程で異なる方向へ鋳造ビレット4の材料を押出すことにより、鍛造ビレット10cが得られる。なお、このとき、下金型42は閉塞鍛造としての役割を果たす。また、下金型42の孔径を適宜設定して鍛造ビレットの鍛錬比が定められる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、第1実施形態に係る鍛造ビレットにおいては、鋳造ビレットを軸方向に加圧圧縮して製造しているが、加圧圧縮は、軸方向に限定されるものではない。例えば、横方向であってもよい。すなわち、H1/H2(鍛錬比)は、H1が鋳造ビレットの加圧される方向(横方向)の長さを示し、H2が鍛造ビレットの加圧された方向(横方向)の長さを示すことになる。
 本実施形態に係るホイール3の製造方法においては、鍛造成形である押出し鍛造加工により、プレディスク部14、プレアウターリム部7b及びプレインナーリム部8bを成形し、その後、機械加工等によって、プレディスク部14をディスク部6とし、プレアウターリム部7bをアウターリム部7とし、プレインナーリム部8bをインナーリム部8としているが、押出し鍛造加工により、直接、ディスク部6、アウターリム部7、インナーリム部8としてもよい。
 本実施形態に係るホイール3の製造方法においては、鍛造成形として押出し鍛造加工を行っているが、プレス加工であってもよい。
 図16は、他の実施形態に係る鍛造ビレットからホイールへの製造過程を示す概略図である。
 図16に示すように、他の実施形態に係る鍛造ビレットからホイールへの製造過程においても、鍛造成形工程と、熱処理工程と、仕上工程とを備える。なお、熱処理工程と仕上工程とは、上述した本実施形態に係るホイール3の製造方法と同様に行えばよい。
 鍛造成形工程は、第1プレス成形21、第2プレス成形22、第3プレス成形23を備える。
 第1プレス成形21、第2プレス成形22及び第3プレス成形23の具体的な方法としては、自由鍛造、型鍛造、揺動鍛造、押出し鍛造、回転鍛造、閉塞鍛造が挙げられる。なお、型鍛造にはプレス鍛造、ハンマー鍛造が含まれる。また、鍛造ビレット10を一定角度回転させ一部を加圧する操作を繰り返す部分鍛造も利用できる。
 これらの中でも、第1プレス成形21、第2プレス成形22及び第3プレス成形23は、いずれも閉塞鍛造であることが好ましい。この場合、機械的強さがより均一なホイール3を製造することが可能となる。
 また、このときの加工条件は、熱間鍛造、温間鍛造、冷間鍛造、等温鍛造のいずれであってもよい。これらの鍛造成形は、300℃以上の温度、好ましくは300~550℃の温度、9.8×10kN~88.2×10kNの圧力で施すことが好ましい。
 上述したような鍛造を施すことにより、鍛造ビレット10が鍛造成形され、その後、冷却されることにより、プレホイール3aが得られる。
 加工後は、本実施形態に係るホイールの製造方法と同様に、熱処理と時効処理の熱処理工程と、旋削機械加工等の仕上工程を施すことにより、ホイールが得られる。
 なお、ホイールを製造する際の鍛造成形は、第1プレス成形21、第2プレス成形22及び第3プレス成形23の3回を備えているが、鍛造成形の回数は、1回であってもよく、複数回であってもよい。
 本実施形態に係るホイール3の製造方法においては、半製品としてプレホイールを例示しているが、これに限定されず、中間製品も含まれる。なお、ホイール3は、完成品の例示である。
 本実施形態に係るホイール3において、スポーク部11の形状はY字状となっているが、これに限定されるものではない。扇状、X字状、ディッシュ状であってもよい。
 上記ホイールにおいては、ホイール3の周縁に立設されたプレリム部5を設け、これをアウターリム部7、インナーリム部8に加工している。すなわち、上記ホイールにおいては、ディスク部6とプレリム部5とが一体化したものを用いているが、1ピースホイール以外の2ピースホイール又は3ピースホイールであってもよい。
 2ピースホイール又は3ピースホイールの場合は、鍛造ビレット10を用いてディスク部、アウターリム部又はインナーリム部を個別に鍛造成形し、これらを結合手段により一体化することになる。
 結合手段としては、例えば、ボルトとナット、螺着、摩擦圧接、リベット締め又はカシメ部材を備えたハックボルト等が挙げられる。
 なお、2ピースホイール又は3ピースホイールの場合は、ジュラルミンからなる鍛造ビレット10を用いてディスク部、アウターリム部又はインナーリム部を鍛造成形し、該鍛造成形しないその他の部分をジュラルミン以外のアルミニウム合金(例えば、A6000系)で鋳造又は鍛造成形し、これらを結合手段により一体化してもよい。
 2ピースホイール、3ピースホイールの場合、例えば、プレインナーリム部を別途製造することになるので鍛造手段における圧力を軽減することができる。また、この場合は、ディスク部のみかディスク部及びアウターリム部を鍛造成形することになるので鍛造後の平均高さが小さくなる。このため、鍛錬比を大きくできるという利点もある。
 具体的には、以下の製造方法が挙げられる。
(a)ジュラルミンからなる鍛造ビレット10を用いてディスク部を単体で成形し、ジュラルミンからなる鍛造ビレット10又はA6000系からなる鋳造ビレットを用いてアウターリム部とインナーリム部を一体に形成したリム部を単体で成形して、これらのそれぞれに円環状の取着座を設けておき複数のボルトとナットで結合する。
(b)ジュラルミンからなる鍛造ビレット10を用いてディスク部を単体で成形し、ジュラルミンからなる鍛造ビレット10又はA6000系からなる鋳造ビレットを用いてアウターリム部とインナーリム部を成形し、上記と同じ要領で一体化する。
(c)ジュラルミンからなる鍛造ビレット10を用いてディスク部を作るときアウターリム部を一体に成形し、ジュラルミンからなる鍛造ビレット10又はA6000系からなる鋳造ビレットを用いてインナーリム部を成形し、これらを複数のボルトとナットで結合する。
(d)ジュラルミンからなる鍛造ビレット10を用いてディスク部を作るときインナーリム部を一体に成形し、ジュラルミンからなる鍛造ビレット10又はA6000系からなる鋳造ビレットを用いてアウターリム部を成形し、これらを複数のボルトとナットで結合する。
(e)ジュラルミンからなる鍛造ビレット10を用いてディスク部を作るときアウターリム部とインナーリム部とをプレリム部として一体に成形する。
 第2実施形態に係る鍛造ビレットにおいては、鋳造ビレットを加圧圧縮して、六角柱状のプレ鍛造ビレットとした後、横方向から加圧圧縮して、最終の六角柱状の鍛造ビレットとしているが、鋳造ビレットを加圧圧縮して、六角柱状にしたものを最終の鍛造ビレットとして用いてもよい。
 また、鍛造ビレット及びプレ鍛造ビレットは、六角柱状、八角柱状、十二角柱状等の角の多い多角柱状としてもよい。
 第2実施形態に係る鍛造ビレットにおいて、鋳造ビレットを加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる垂直方向に更に加圧圧縮しているが、加圧圧縮の回数は、2回に限定されず、3回以上行ってもよい。
 同様に、第3実施形態に係る鍛造ビレットにおいて、平押し鍛造したプレ鍛造ビレットを異なる垂直方向から2回加圧圧縮しているが、3回以上行ってもよく、六角錐台状のプレ鍛造ビレットを反転させて加圧圧縮することも複数回行ってもよい。
 また、六角柱レンズ状のプレ鍛造ビレットは、円柱レンズ状を含む多角柱レンズ状であってもよく、円錐台状のプレ鍛造ビレットは、六角錐台状を含む多角錐台状であってもよい。すなわち、形状には限定されず、鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮し、外側部分を変形させるために更に加圧圧縮して得られればよい。
 さらに、円柱状鋳造ビレットを一方向に加圧するときに加圧面が凸状の曲面又は凹状の曲面で形成され、これを交互に複数回繰り返すことで材料を中央から円周方向へ、又は円周部から中央へ移動させることで結晶粒径を微細化してもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 まず、本発明に係るホイールの物性について調査した。
(実施例1)
 軽金属合金としてジュラルミンを準備した。これを溶融して溶融原料とした。アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、直径204mm、高さ219mm、重量20kgの円柱状の鋳造ビレット(規格番号:A2017(A2000系))を得た。
 得られた鋳造ビレットに対して、閉塞鍛造により図14に示す六角・円錐工程による加圧圧縮を施した。すなわち、図14の(a)に示すようにプレス機に鋳造ビレットを載置し、金型温度364℃~391℃、ワーク温度459℃~485℃の温度条件下、34.3×10kNの圧力で熱間平押し鍛造を施した。
 次いで、図14の(b)、(c)及び(d)に示すように上下面に膨らみを有する六角柱レンズ状にワークを鍛造成形した。このときの金型温度は383℃~399℃、ワーク温度は417℃~464℃であった。
 更に、図14の(e)及び(f)に示すようにワークを円錐台状に鍛造成形しワークの外側部分の材料を積極的に変形させワーク全体の結晶粒径を均一化させた。この工程の金型温度は370℃~395℃、ワーク温度は410℃~462℃であり、この間の加圧力は39.2×10kNであった。ファンで冷却することにより、高さ54mmの円柱状の鍛造ビレットを得た。なお、鍛造ビレットの鍛錬比は4であった。
 次に、得られた鍛造ビレットに対し、図5の(a)及び(b)に示す方法に基づき、金型温度387℃~399℃、ワーク温度422℃~498℃、加圧力49×10kNの温度加圧条件下、前方押出し鍛造加工を施し、更に、図6の(a)及び(b)に示す工程ではワークを反転させて金型に載置し、金型温度388℃~399℃、ワーク温度392℃~470℃、加圧力78.4×10kNの条件下で後方押出し鍛造を行った。
 更に、図7の(a)及び(b)に示す方法に基づき、インナーリム端部を拡開するフレアリング加工を行った。このときの金型温度は386℃~399℃、ワーク温度は448℃~495℃、加圧力は2.94×10kNであった。かくしてワークをプレホイールとして完成させた。
 得られたプレホイールに対し、T6条件で熱処理を施し、旋盤又はマシニングセンターを含むフライス盤による鍛造しろを除去する機械加工によって、図9の(a)に示す形状のホイール(フランジ径19インチ)を得た。
(実施例2)
 実施例1のアルミニウム合金A2017に代えてA2014を用いた。鋳造ビレットのサイズは同じにして鍛造ビレットの鍛造成形工程を次の様に行った。図14の(a)に示すようにプレス機にA2014鋳造ビレットを載置し、金型温度351℃~382℃、ワーク温度401℃~478℃の温度条件下、19.6×10kNの圧力で熱間平押し鍛造を施した。
 次いで、図14の(b)、(c)及び(d)に示すように上下面に膨らみを有する六角柱レンズ状にワークを鍛造成形した。このときの金型温度は351℃~399℃、ワーク温度は407℃~473℃、加圧力29.4×10kNであった。実施例2では図14の(d)の工程で円柱状に平押し鍛造を行った。金型温度358℃~398℃、加圧力29.4×10kNで行い鍛造ビレットとした。高さは54mmであった。鍛造ビレットをプレホイールに鍛造成形する工程は図16に示す鍛造工程を用いて、スピニング加工は図8に示す方法で行いホイール(フランジ径19インチ)を完成させた。
(実施例3)
 実施例2のアルミニウム合金A2014に代えてA7N01(鋳造ビレット)用いた。図14の(a)に示すようにプレス機にA701鋳造ビレットを載置し、金型温度353℃~398℃、ワーク温度404℃~444℃の温度条件下、19.6×10kNの圧力で熱間平押し鍛造を施した。
 次いで、図14の(b)、(c)及び(d)に示すように上下面に膨らみを有する六角柱レンズ状にワークを鍛造成形した。このときの金型温度は351℃~391℃、ワーク温度は402℃~451℃、加圧力29.4×10kNであった。実施例3では図14の(d)の工程で円柱状に平押し鍛造を行った。金型温度354℃~389℃、ワーク温度407℃~439℃、加圧力29.4×10kNで行い鍛造ビレットとした。高さは54mmであった。鍛造ビレットをプレホイールに鍛造成形する工程及びスピニング工程は実施例2と同様に行いホイール(フランジ径19インチ)を完成させた。
(比較例1)
 A2017の鍛造ビレットを用いる代わりに、A6151(A6000系)の鋳造ビレットを用いたこと以外は実施例1と同様にして、ホイールを得た。
[評価1]
 実施例1~3及び比較例1で得られたホイールのスポーク部、インナーリム部、インナーフランジ部、アウターフランジ部、ハブ部に対して、JIS-Z2241に準じて引張り強さを測定した。得られた値を表1に示す。
[評価2]
 実施例1~3及び比較例1で得られたホイールのスポーク部、インナーリム部、インナーフランジ部、アウターフランジ部、ハブ部に対して、JIS-Z2241に準じて0.2%耐力を測定した。得られた値を表1に示す。
[評価3]
 実施例1~3及び比較例1で得られたホイールのスポーク部、インナーリム部、インナーフランジ部、アウターフランジ部、ハブ部に対して、JIS-Z2241に準じて伸びを測定した。得られた値を表1に示す。
 実施例1~3及び比較例1で得られたホイールのスポーク部、インナーリム部、インナーフランジ部、アウターフランジ部、ハブ部に対して、JIS-Z2243に準じてブリネル硬度を測定した。得られた値を表1に示す。
[評価5]
 実施例1~3及び比較例1で得られたホイールのスポーク部、インナーリム部、インナーフランジ部、アウターフランジ部、ハブ部に対して、JIS-Z2242に準じてシャルピー衝撃値を測定した。得られた値を表1に示す。なお、表1中「-」は測定していないことを意味する。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
 表1の結果より、実施例1~3で得られたホイールは、比較例1で得られたホイールと比較して、全体的に引張り強さ及びシャルピー衝撃値が極めて優れるものであった。したがって、本発明のホイールは、機械的強度が優れると共に、軽量化することも可能であることが確認された。
 次に、鍛造ビレットの物性と鍛錬比との関係について調査した。
(実施例4)
 軽金属合金としてジュラルミンを準備した。これを溶融して溶融原料とした。アルゴンガス雰囲気下、連続鋳造法により、鋳造機に流し込み、加熱し、その後、冷却して、鋳造ビレット(規格番号:A2017(A2000系))とした。得られた鋳造ビレット(高さ232.8mm)に対して、加熱炉設定温度525℃、金型温度380℃~400℃、ワーク温度480℃~510℃の温度条件下、閉塞鍛造により、鍛錬比が2となるように加圧圧縮を施し、直径52.1mm、高さ116.4mmの円柱状の鍛造ビレットを得た。
(実施例5)
 高さ349.2mmの鋳造ビレットを用い、鍛錬比が3となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例6)
 高さ465.6mmの鋳造ビレットを用い、鍛錬比が4となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例7)
 高さ582mmの鋳造ビレットを用い、鍛錬比が5となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例8)
 高さ698.4mmの鋳造ビレットを用い、鍛錬比が6となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例9)
 高さ814.8mmの鋳造ビレットを用い、鍛錬比が7となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例10)
 高さ931.2mmの鋳造ビレットを用い、鍛錬比が8となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例11)
 高さ1047.6mmの鋳造ビレットを用い、鍛錬比が9となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(実施例12)
 高さ1164mmの鋳造ビレットを用い、鍛錬比が10となるように加圧圧縮をしたこと以外は、実施例4と同様にして鍛造ビレットを得た。なお、得られた鍛造ビレットのサイズは直径52.1mm、高さ116.4mmである。
(比較例2)
 実施例4で得られた円柱状の鋳造ビレットをそのまま用いた。なお、得られた鋳造ビレットのサイズは直径52.1mm、高さ116.4mmである。
[評価6]
 実施例4~12で得られた鍛造ビレット及び比較例2で得られた鋳造ビレットに対して、JIS-Z2241に準じて引張り強さを測定した。得られた結果を表2に示す。
[評価7]
 実施例4~12で得られた鍛造ビレット及び比較例2で得られた鋳造ビレットに対して、JIS-Z2241に準じて0.2%耐力を測定した。得られた値を表2に示す。
[評価8]
 実施例4~12で得られた鍛造ビレット及び比較例2で得られた鋳造ビレットに対して、JIS-Z2241に準じて伸びを測定した。得られた値を表2に示す。
[評価9]
 実施例4~12で得られた鍛造ビレット及び比較例2で得られた鋳造ビレットに対して、JIS-Z2243に準じてブリネル硬度を測定した。得られた値を表2に示す。
[評価10]
 実施例4~12で得られた鍛造ビレット及び比較例2で得られた鋳造ビレットに対して、JIS-Z2242に準じてシャルピー衝撃値を測定した。得られた値を表2に示す。
〔表2〕
Figure JPOXMLDOC01-appb-I000002
 表2の結果より、鍛錬比が大きくなるにしたがって、シャルピー衝撃値が極めて大きくなることがわかった。
 特に、鍛錬比が4以上であると、シャルピー衝撃値が30J/cm以上となり、十分な機械的強さを発揮できることが確認された。
 本発明の鍛造ビレットによれば、機械的強さが優れ、且つ機械的強さが均一なホイールを製造することができる。得られるホイールは、車両用、航空機用車輪等の用途に好適に用いられる。特に、車両用に用いると、自動車を軽量化できるので、ガソリン等による環境負荷を低減でき、低コスト化も可能となる。更に重要なことは、車両等においては走行時に何らかの理由でリム或いはディスク部に亀裂が生じたときに、本発明の鍛造ビレットを用いた鍛造ホイールはシャルピー衝撃値及び伸びがきわめて高いことから、亀裂が一気に大きくならず、例えばタイヤ空気圧が徐々に減少して操縦者が異常に気づくから大きな事故につながらない等より安全なホイールを提供できる。
 1・・・本体部
 3・・・ホイール
 3a・・・プレホイール
 3b・・・第1プレホイール(プレホイール)
 3c・・・第2プレホイール(プレホイール)
 3d・・・第3プレホイール(プレホイール)
 4・・・鋳造ビレット
 5・・・プレリム部
 6・・・ディスク部
 6a・・・ハブ部
 6b・・・ボルト挿通穴
 7・・・アウターリム部
 7a・・・アウターフランジ部
 7b・・・プレアウターリム部
 8・・・インナーリム部
 8a・・・インナーフランジ部
 8b・・・プレインナーリム部
 9・・・空部
 10,10a,10b,10c・・・鍛造ビレット
 11・・・スポーク部
 12,12a,12b,12c,13a,13b,13c,13d,13e・・・プレ鍛造ビレット
 14・・・プレディスク部
 13a,13b,13c,13d,13e・・・プレ鍛造ビレット
 16,18,25,41・・・上金型
 17,19,20,26,42・・・下金型
 17a,19a,26a・・・ノックアウト部
 21・・・第1プレス成形
 22・・・第2プレス成形
 23・・・第3プレス成形
 31・・・第1スピニング装置
 31a・・・内側金型
 31b・・・外側金型
 35・・・圧延ローラー
 32・・・第2スピニング装置
 32a・・・内側金型
 32b・・・外側金型
 38a,38b・・・空隙
 42a・・・穴部
 51,52,53,54・・・金型
 51a,52a,53a,54a・・・筒状穴
 A・・・微細領域
 B・・・NG領域
 H1,H2,H3・・・高さ
 P・・・拘束力
 P1,P2・・・方向
 Q・・・外側部分

Claims (23)

  1.  軽金属合金を鋳造して鋳造ビレットとし、該鋳造ビレットを加圧圧縮して該鋳造ビレットの金属組織を微細化した鍛造ビレットであって、
     前記軽金属合金がジュラルミンである鍛造ビレット。
  2.  前記加圧圧縮により、粒界析出物の全体積のうちの50~80%が微細化され、応力腐食割れが抑制される請求項1記載の鍛造ビレット。
  3.  JIS-Z2241に準じて測定した引張り強さが400MPa以上である請求項1又は2に記載の鍛造ビレット。
  4.  JIS-Z2241に準じて測定した0.2%耐力が300MPa以上である請求項1~3のいずれか一項に記載の鍛造ビレット。
  5.  JIS-Z2241に準じて測定した伸びが20%以上であり、
     JIS-Z2242に準じて測定したシャルピー衝撃値が30J/cm以上である請求項1~4のいずれか一項に記載の鍛造ビレット。
  6.  請求項1~5のいずれか一項に記載の鍛造ビレットの製造方法であって、
     下記式を満たす鍛造ビレットの製造方法。
     H1/H2≧4.0
    (式中、H1は、鋳造ビレットの加圧圧縮される方向の長さを示し、H2は、鍛造ビレットの加圧圧縮された方向の長さを示す。)
  7.  前記加圧圧縮が、閉塞鍛造、揺動鍛造、ハンマー鍛造、セクション鍛造又は自由鍛造により施される請求項6記載の鍛造ビレットの製造方法。 
  8.  前記鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して得られる請求項6又は7に記載の鍛造ビレットの製造方法。
  9.  前記鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮し、外側部分を変形させるために更に加圧圧縮して得られる請求項6又は7に記載の鍛造ビレットの製造方法。
  10.  前記鋳造ビレットを一方向に加圧圧縮してプレ鍛造ビレットとし、該プレ鍛造ビレットを加圧圧縮した方向とは異なる方向に更に加圧圧縮して円錐台状とし、更に、外側部分を変形させるために加圧圧縮する請求項6又は7に記載の鍛造ビレットの製造方法。
  11.  前記鋳造ビレットを一方向に加圧圧縮する工程と、加圧圧縮した方向とは異なる方向に加圧圧縮する工程とを、揺動鍛造を用いて同一工程で行う請求項8記載の鍛造ビレットの製造方法。
  12.  飛翔体部品用、運送用機器部品用、産業用機器部品用、建築資材用、光学用機器部品用又はこれら用途の部材製造用である請求項6~11のいずれか一項に記載の鍛造ビレットの製造方法。
  13.  請求項1~5のいずれか一項に記載の鍛造ビレットを成形して得られる完成品或いは半製品。
  14.  請求項6~12のいずれか一項に記載の鍛造ビレットの製造方法により得られる鍛造ビレットを成形して得られる完成品或いは半製品。
  15.  請求項6~11のいずれか一項に記載の鍛造ビレットの製造方法により得られる鍛造ビレットを用いたホイールの製造方法であって、
     ハブ部とスポーク部とからなるディスク部、アウターフランジ部、インナーリム部及びインナーフランジ部のシャルピー衝撃値が30J/cm以上であるホイールの製造方法。
  16.  前記ホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、前記ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも10%以上軽量化されている請求項15記載のホイールの製造方法。
  17.  ウエル部及び前記インナーリム部の平均肉厚が1.8~2.5mmであり、
     前記ハブ部の平均肉厚が35~66mmであり、
     前記ホイールと、A6000系アルミニウム合金からなるA6000系ホイールとが同じ機械的強さを有する場合、前記ホイールが、A6000系アルミニウム合金からなるA6000系ホイールよりも少なくとも15%以上軽量化されている請求項15記載のホイールの製造方法。
  18.  前記鍛造ビレットに対し、押出し鍛造加工により、プレディスク部、プレアウターリム部及びプレインナーリム部を成形し、その後、前記プレディスク部を前記ディスク部とし、前記プレアウターリム部を前記アウターリム部とし、前記プレインナーリム部を前記インナーリム部とする請求項15~17のいずれか一項に記載のホイールの製造方法。
  19.  前記鍛造ビレットを鍛造成形した後、旋盤又はマシニングセンターを含むフライス盤による鍛造しろを除去する機械加工によって、前記アウターリム部及び前記インナーリム部を成形する請求項15~17のいずれか一項に記載のホイールの製造方法。
  20.  前記鍛造ビレットを鍛造成形して半製品とし、ホイール形状とするための大部分の工程を旋盤、マシニングセンター、を含むフライス盤、ボーリング加工による削り出し機械加工を施してなる請求項15~17のいずれか一項に記載のホイールの製造方法。
  21.  前記鍛造ビレットに対し、押出し鍛造加工によりプレリム部を形成し、該プレリム部と金型との間に空隙を設けた状態で斜方向から圧延ローラーで押圧するスピニング加工により、前記インナーリム部を成形する請求項15~17のいずれか一項に記載のホイールの製造方法。
  22.  前記鍛造ビレットを用いて前記ディスク部、前記アウターリム部又は前記インナーリム部を個別に鍛造成形し、これらを結合手段により一体化した請求項15~17のいずれか一項に記載のホイールの製造方法。
  23.  前記鍛造ビレットを用いて前記ディスク部、前記アウターリム部又は前記インナーリム部を鍛造成形し、該鍛造成形しないその他の部分をジュラルミン以外のアルミニウム合金で鋳造又は鍛造成形し、これらを結合手段により一体化した請求項15~17のいずれか一項に記載のホイールの製造方法。
PCT/JP2011/000592 2010-02-02 2011-02-02 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法 WO2011096212A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-021309 2010-02-02
JP2010021309 2010-02-02
JP2010-185623 2010-08-20
JP2010185623A JP2013078770A (ja) 2010-02-02 2010-08-20 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法

Publications (1)

Publication Number Publication Date
WO2011096212A1 true WO2011096212A1 (ja) 2011-08-11

Family

ID=44355227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000592 WO2011096212A1 (ja) 2010-02-02 2011-02-02 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法

Country Status (2)

Country Link
JP (1) JP2013078770A (ja)
WO (1) WO2011096212A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027209A1 (en) * 2014-08-18 2016-02-25 Bharat Forge Limited A forging process for manufacture of aluminium alloy wheel disc
CN115156455A (zh) * 2022-08-09 2022-10-11 上海电气上重铸锻有限公司 一种带全截面凸台的圆环形或弧形锻件的锻造成形方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395305B2 (ja) * 2014-10-31 2018-09-26 昭和電工株式会社 アルミニウム合金製ターボコンプレッサホイール用鍛造素形材およびその製造方法
KR101630667B1 (ko) * 2014-12-22 2016-06-15 국방과학연구소 금속의 가공 방법
US10961613B2 (en) 2014-12-22 2021-03-30 Agency For Defense Development Method for controlling microstructure and texture of tantalum
CN111283127B (zh) * 2020-02-17 2022-08-26 北京钢研高纳科技股份有限公司 合金铸锭的锻造方法
JP7040804B2 (ja) * 2020-02-25 2022-03-23 株式会社レイズエンジニアリング 車両用ホイールの製造方法及び車両用ホイール
KR102365295B1 (ko) * 2020-08-13 2022-02-22 국방과학연구소 금속을 반복하여 가공하는 방법
US11478841B2 (en) * 2020-08-13 2022-10-25 Agency For Defense Development Method of repeatedly processing metal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929379A (ja) * 1995-07-24 1997-02-04 Reizu Eng:Kk 回転鍛造装置
JPH09249952A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd アルミ鍛造製品の製造方法
JPH09249951A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd 微細組織を有するアルミ鍛造製品の製造方法
JP2000197943A (ja) * 1998-12-28 2000-07-18 Furukawa Electric Co Ltd:The 鍛造品回転体及びその製造方法
JP2001105066A (ja) * 1999-10-07 2001-04-17 Work:Kk ホイール製造方法
JP2001150089A (ja) * 1999-12-02 2001-06-05 Washi Kosan Kk 軽合金鍛造製ホイールの製造方法とそのホイール
JP2003033860A (ja) * 2001-07-18 2003-02-04 Nissin Kogyo Co Ltd 成形方法及びその装置
JP2003221636A (ja) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd 耐衝撃破壊性に優れたAl−Mg−Si系アルミニウム合金押出形材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929379A (ja) * 1995-07-24 1997-02-04 Reizu Eng:Kk 回転鍛造装置
JPH09249952A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd アルミ鍛造製品の製造方法
JPH09249951A (ja) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd 微細組織を有するアルミ鍛造製品の製造方法
JP2000197943A (ja) * 1998-12-28 2000-07-18 Furukawa Electric Co Ltd:The 鍛造品回転体及びその製造方法
JP2001105066A (ja) * 1999-10-07 2001-04-17 Work:Kk ホイール製造方法
JP2001150089A (ja) * 1999-12-02 2001-06-05 Washi Kosan Kk 軽合金鍛造製ホイールの製造方法とそのホイール
JP2003033860A (ja) * 2001-07-18 2003-02-04 Nissin Kogyo Co Ltd 成形方法及びその装置
JP2003221636A (ja) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd 耐衝撃破壊性に優れたAl−Mg−Si系アルミニウム合金押出形材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027209A1 (en) * 2014-08-18 2016-02-25 Bharat Forge Limited A forging process for manufacture of aluminium alloy wheel disc
CN115156455A (zh) * 2022-08-09 2022-10-11 上海电气上重铸锻有限公司 一种带全截面凸台的圆环形或弧形锻件的锻造成形方法

Also Published As

Publication number Publication date
JP2013078770A (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2011096212A1 (ja) 鍛造ビレット、鍛造ビレットの製造方法及びホイールの製造方法
WO2010026780A1 (ja) 押出しによるホイールの製造方法及びホイール
WO2011096178A1 (ja) 鍛造ビレット、軽金属製ホイール及びそれらの製造方法
CN102601587B (zh) 大型车辆铝合金轮辋的制造工艺
Qiang et al. New extrusion process of Mg alloy automobile wheels
US20110241414A1 (en) Wheel and method of manufacturing the same
US10442241B2 (en) Methods and apparatus to produce high performance axisymmetric components
WO2016192040A1 (en) Aluminum alloy for forming an axisymmetric article
EP3906170B1 (en) Non-pneumatic tire and method of making a non-pneumatic tire
WO2012095940A1 (ja) ホイールとその製造方法
JP2009274135A (ja) 軽合金製鍛造ホイールとその製造方法
CN113146149A (zh) 一种应用7000系铝合金生产特种车辆车轮的方法
JP5750998B2 (ja) 段付円柱状部材の製造方法
JP2000500703A (ja) 軽合金ホイールの製造方法
CN109604974A (zh) 一种高强高韧锻造铝合金车轮的生产工艺
WO2010067465A1 (ja) 鍛造ビレット及びホイール
JP4703961B2 (ja) 金属鍛造製品の製造方法
JP5483292B2 (ja) 金属鍛造製品の製造方法
US6511558B1 (en) Method for producing vehicle wheels
JP4453453B2 (ja) アルミホイールの製造方法
CN114619213A (zh) 一种低应力组合式轻合金轮毂加工方法
JP2005314803A (ja) アルミニウム製品の製造方法
JPS62107832A (ja) アルミニウムホイ−ル用リムの製造方法
WO2013070133A1 (en) Steel ring blank or segment blank and method for manufacturing
CN112338458A (zh) 一种v型推力杆的制造工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP