WO2011094912A1 - 垂直轴风力发电机风轮的叶片结构 - Google Patents

垂直轴风力发电机风轮的叶片结构 Download PDF

Info

Publication number
WO2011094912A1
WO2011094912A1 PCT/CN2010/000957 CN2010000957W WO2011094912A1 WO 2011094912 A1 WO2011094912 A1 WO 2011094912A1 CN 2010000957 W CN2010000957 W CN 2010000957W WO 2011094912 A1 WO2011094912 A1 WO 2011094912A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
skeleton
rib
wind turbine
vertical axis
Prior art date
Application number
PCT/CN2010/000957
Other languages
English (en)
French (fr)
Inventor
蒋大龙
盛明凡
许金泉
Original Assignee
国能风力发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能风力发电有限公司 filed Critical 国能风力发电有限公司
Priority to AU2010345240A priority Critical patent/AU2010345240A1/en
Priority to EP10844997A priority patent/EP2535564A1/en
Priority to JP2012551458A priority patent/JP2013519019A/ja
Publication of WO2011094912A1 publication Critical patent/WO2011094912A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/231Geometry three-dimensional prismatic cylindrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of wind turbine technology, and provides a vertical axis wind power generator component, and more particularly, a blade structure of a vertical axis wind turbine wind wheel.
  • a wind power generator is mostly a horizontal shaft type generator, and a main shaft thereof is horizontally disposed, and a wind wheel is disposed on the wind wheel.
  • the wind wheel blades are mostly triangular in shape and small in length, and the thin head is long and thin. The blade is easily deformed and resonated by the wind, and is easily broken by the wind pressure, and has a problem of poor wind resistance, and resonance at the time of rotation may cause a problem of low power generation.
  • the object of the present invention is to improve the deficiencies of the prior art, and to provide a blade structure of a vertical axis wind turbine rotor with light weight, low required rotational force, high strength, high rigidity and easy processing.
  • the object of the invention is achieved in this way:
  • the blade structure of the vertical axis wind turbine rotor provided by the present invention comprises a skeleton constituting a blade shape and a skin fixed on the outer surface of the skeleton, the blade having a shape of a vertical columnar body and a horizontal section of the aircraft wing
  • the cross-sectional shape, that is, the outwardly facing outer surface of the blade is a streamlined arcuate surface, which smoothly transitions between the outer side surface and the opposite inner side surface to form a larger windward end, that is, the head of the blade and a smaller tail.
  • the portions are substantially tapered; and/or each of the horizontal sections is equal in shape in the vertical direction of the blade.
  • the skeleton includes a blade skeleton, a skeleton rib, and a leaf-shaped support rod.
  • the plurality of blade skeletons are the horizontal cross-sectional aircraft wing-shaped frames of the blade cylinders, and are arranged in a vertical direction at a set interval in the vertical direction of the blades;
  • the skeleton rib is a plurality of straight rods, each of which surrounds a plurality of the leaf skeleton frames aligned in a row, each of the skeleton ribs and the frame of all the blade skeletons being in a vertical direction Having a junction solid point forming a sidewall skeleton of the blade to support and/or secure the skin;
  • Both ends of the blade-shaped support bar are supported on a rod body fixed at an opposite position on the frame formed by the blade frame to support the shape of the frame.
  • the skeleton rib comprises four skeleton main ribs and a plurality of skeleton ribs, wherein the skeleton main ribs are distributed as follows: two of the skeleton main ribs are disposed on one side of the outer side surface of the corresponding blade, and the other two skeletons are a main rib is disposed on a side of the inner side surface of the corresponding blade, and on the horizontal section of the blade, four of the main ribs of the skeleton form a quadrilateral, and is disposed around a center of the vertical setting of the blade and makes the The quality of the blade is balanced by the main skeleton of the four skeletons.
  • the main rib of the skeleton is a member whose strength and/or rigidity is larger than the skeletal rib; and/or A joint point of the skeleton main rib and the skeleton auxiliary rib and the blade skeleton meets an intersection of the leaf-shaped support rod and the blade skeleton.
  • the main rib of the skeleton is a hollow rod body having a longitudinal cross section that is larger than the longitudinal direction of the skeletal rib; or the main rib and the skeletal rib of the skeleton are longitudinally penetrating the hollow rod body, and the longitudinal hollow chamber of the main rib of the skeleton is provided with a longitudinal direction a partition wall dividing a large chamber into two smaller chambers, the skeleton secondary rib being a single-chamber hollow rod having a smaller cross section; and/or
  • the blade skeleton is a hollow shaft that is divided into two longitudinal chambers by longitudinal partition walls.
  • the leaf-shaped support rods are disposed in parallel with each other on a frame formed by the blade skeleton.
  • the airfoil support bar further includes a diagonal tie rod, one end of which is fixed at an intersection with a frame-shaped support bar of the outer surface of the blade and the frame, and the other end of which is fixed to the inner side surface of the blade Another leaf-shaped support bar at the intersection with the frame; and/or,
  • the diagonal tie rod is fixed at an intersection of the leaf-shaped support rod and the leaf-shaped skeleton where the main skeleton of the skeleton meets.
  • the blade skeleton, the skeleton ribs and the leaf-shaped support rods are made of an aluminum profile; and/or the skin is made of cloth, aluminum skin, or fiberglass sheet; or may be made of other metal sheets.
  • Each of the blade skeleton, the skeleton rib, and the blade support rod are fixed by welding or gluing.
  • the adhesive used for adhesive fixation can be an amphoteric adhesive.
  • a wind turbine of a vertical axis wind power generator comprising the blade structure of the above feature, comprising a plurality of said blades and a hub, each of said blades being fixed in two or more support bars along a vertical direction of its columnar body One end of the support rod is connected to the hub; or
  • each of the blades being fixed to one end of two or more support rods along a vertical direction of the columnar body, the other end of the support rod being coupled to the hub; relative to the wind wheel a vertical axis, each of the vanes of the streamlined outer side surface is along a set radius Or circumferentially disposed in a circle; or, relative to a vertical axis of the wind wheel, the outer side surface of each of the streamlines of the blades is disposed in a direction that is set at a set angle with a circumferential tangential direction of the set radius circle; or,
  • each of the blades being fixed to one end of two or more support rods along a vertical direction of the columnar body, the other end of the support rod being coupled to the hub;
  • the blades are 4-24.
  • the blade of the vertical axis wind turbine wind wheel provided by the invention is derived from an aircraft wing, through a skeleton and a skin structure constituting a vertical column body, in particular, a blade skeleton, a blade support rod and a skeleton main pair in the skeleton
  • the special structural arrangement of the ribs and the use of the lightweight material make the blade provided by the invention and the vertical axis wind turbine rotor supported by the blade have the advantages of light weight, high strength, high rigidity, simple combined processing, high forming precision and wind resistance. The advantage of strong ability and high efficiency.
  • FIG. 1 is a schematic perspective view showing a blade of a vertical axis wind turbine rotor provided by the present invention
  • Figure 2 is a schematic cross-sectional view showing the skeleton side of the blade of Figure 1 in the blade width direction;
  • Figure 3 is a schematic sectional view showing the main rib of the skeleton of the blade of Figure 1;
  • Figure 4 is a schematic view showing the sectional structure of the skeleton ribs of the blade of Figure 1 disposed between the main ribs of the skeleton;
  • Figure 5 is a schematic cross-sectional view showing the blade skeleton of the blade of Figure 1;
  • Figure 6 is a top plan view showing a structure of a vertical axis wind turbine rotor equipped with the blades described in Figure 1;
  • Fig. 7 is a front view showing the structure of the wind turbine shown in Fig. 6.
  • the blade of a vertical axis wind turbine rotor provided by the present invention comprises a skeleton constituting a blade shape and a skin fixed to the outside of the skeleton (not shown).
  • the shape of the blade is a vertical columnar body whose horizontal section is the sectional shape of the aircraft wing, that is, with respect to the rotating shaft 03 of the wind wheel (see Figs. 6, 7), and the outwardly facing outer surface of the blade 01 is a streamlined arc.
  • the smooth transition between the outer side surface and the opposite inner side surface forms a larger windward end, that is, the head of the blade and a smaller tail.
  • the spacing between the outer side surface and the inner side surface of the columnar body is substantially gradually reduced from the head to the tail with respect to the vertical axis of the rotor shaft 03; each of the levels in the vertical direction of the blade
  • the cross section is the same size and shape.
  • the blade provided by the invention is subjected to a large wind force, but it is also required to have a small rotational resistance, that is, its own weight is light, but it should also have sufficient strength and rigidity. Therefore, the skeleton of the blade can be designed like this:
  • the skeleton includes a blade skeleton 1, a skeleton main rib 3, a skeleton auxiliary rib 2, 7 and a leaf-shaped support rod.
  • the blade skeleton 1 is a plurality of frames of an aircraft wing shape constituting the horizontal section of the blade column body, and aligned in a vertical direction of the blade at a set pitch;
  • the skeleton main rib 3 and the skeletal auxiliary ribs 2, 7 are a plurality of vertically disposed rod members, for example, straight rods, and each of the skeleton main ribs 3 and the skeletal sub-ribs 2, 7 of the vanes are disposed around the frame of all the blade frames 1.
  • Each of the skeleton main ribs and the skeleton auxiliary ribs and the frame of all the blade skeletons have a joint fixing point in a vertical direction, and fixed each skeleton main rib and skeleton rib disposed around the blade skeleton 1 at a set interval Forming a side wall of the blade 01 to support the skin;
  • the leaf-shaped support bar supports are disposed between opposite sides of the frame formed by the blade frame 1, for example,
  • the leaf-shaped support rod is disposed in a plane in which the frame is located, and both ends thereof are fixed to the blade skeleton 1, that is, the two ends of the blade-shaped support rod are respectively fixed to the frame of the opposite outer surface and the inner side surface of the corresponding blade of the blade skeleton Above, the shape of the frame supporting the blade skeleton is maintained.
  • the leaf-shaped support rods may be of two types, one being a plurality of straight-shaped leaf-shaped support rods 4 disposed in parallel with each other between frames formed by the blade skeleton.
  • the skeleton main rib 3 and the skeleton auxiliary rib 2 are joined and fixed to the intersection of the leaf-shaped support rods 4 provided on the blade skeleton 1.
  • Still another type is a diagonal tie rod 6 having one end fixed to one end of one of the leaf-shaped support straight rods 4 on the outer side surface, and the other end of which is fixed to one end of the other leaf-type support rod 4 on the inner side surface; and further
  • the diagonal tie rod may be fixed at an intersection of the main rib 3 of the skeleton and the support rod 4 of the blade.
  • the main rib of the skeleton is a rod having a large strength and/or rigidity
  • the skeletal rib is a rod having a strong degree and/or a small rigidity
  • the distribution of the main ribs of the skeleton is preferably as follows: four skeleton main ribs 3 are disposed on one side of the outer side surface of the blade, and the other two are disposed on one side of the inner surface of the blade. When viewed from the horizontal section of the blade, the four main ribs 3 form a quadrilateral The mass of the blade is placed around the vertical center of the blade and the mass of the blade is balanced by the four main skeleton bars.
  • the skeleton main reinforcement 1 and the skeleton secondary reinforcement may be made of the same light aluminum profile, or may be made of different materials, and the main skeleton of the skeleton is a hollow rod body having a larger cross section than the skeleton auxiliary reinforcement (see Figs. 2, 3, and 4).
  • a longitudinal partition wall may be provided in the longitudinal hollow chamber of the main rib of the skeleton, and a large chamber is divided into two smaller chambers (as shown in Fig. 3).
  • the blade skeleton may also be a hollow shaft that is divided into two longitudinal chambers by longitudinal partition walls (see Figure 5).
  • the longitudinal chamber of the hollow rod is divided by the partition wall, and the rod structure can effectively reduce the weight of the blade while improving its rigidity and strength.
  • the blade skeleton, the skeleton main rib, the skeleton secondary rib, and the blade-shaped support rod are preferably made of a lightweight aluminum profile.
  • the individual rods in the skeleton are fixed by welding or gluing, and the adhesive used for the adhesive fixing may be an amphoteric adhesive.
  • Such a skeleton main rib and a blade skeleton structure can well ensure the rigidity and strength of the blade, and the weight of the blade is very light. This makes it possible to make the starting wind of the wind wheel constituted by the blade small, and the wind power generator can generate electricity when the wind power is small. After the test, the wind wheel formed by the blade can rotate and generate electricity under the secondary air.
  • the above structure of the skeleton can make the blade have high strength and rigidity, and the ultimate wind force can be up to 50 m/s, and can work normally under the wind of typhoon at 35 m / sec. Therefore, the wind power generator using the wind turbine blade provided by the present invention can continue to generate electricity safely under the high wind conditions in which the general fan is to be stopped.
  • the blade of the wind wheel has changed the blade shape of the prior art, and is not easily deformed, broken, and has a long service life. Therefore, the wind wheel is used in the wind field, and the operation is stopped due to weather or failure, and the power grid can be Long-term and stable access to wind energy. This provides a reliable guarantee for the vigorous development of wind power generation, and is of great significance to the national economy and the people's livelihood, the protection of the environment, and sustainable economic development. Further, the blade has the advantages of simple combined processing and high molding precision.
  • the wind wheel of the vertical-axis wind power generator constituted by the above-mentioned blades includes a plurality of the blades 01 and the hub 22, and each of the blades 01 is fixed in two or more along the vertical direction of the columnar body thereof.
  • One end of the support rod 02, the other end of the support rod 02 is connected to the hub 22; the wind wheel is disposed on the rotor shaft 03 through the hub 22.
  • a generator set is provided between the rotor hub and the rotating shaft.
  • the outer surface of the streamlined shape of the blade 01 is disposed along the circumferential direction of the set radius circle, where the circle of the set radius is the radius of the wind wheel, It can be set according to factors such as wind turbine design power generation, component strength, stiffness, and the like.
  • the blade is connected to the hub of the wind wheel through a support rod 02;
  • the blade may be disposed in the wind wheel in a manner that the outer surface of the streamline of the blade is sandwiched with a tangential direction along a circumference of the set radius circle with respect to a vertical axis of the rotor shaft. Set the direction of the angle. For example, set along a spiral.
  • the blade is also connected to the hub of the rotor by a support rod.
  • the blades in the wind wheel are 4 - 24 . If the number of blades is too small, the utilization of the wind field is too low, so that the power of the wind turbine is small. If the number of blades is too large, the centrifugal force is too large, and an accident that causes the blades to fall off is likely to occur.
  • the vanes are disposed at or near the outer edge of the rotor, and the vanes are coupled to the rotor hub or the rotating member of the generator via the support rods 02. Therefore, the blade is no longer a thin and long shape, and a large distance from the hub of the wind wheel to its outer edge may be a support rod connecting the blades, and the portion of the wind wheel for receiving the wind and rotating is only the outer portion.
  • the vertical columnar blade of the rim Since such a blade has an outer surface of the aircraft wing type, the airflow can be well utilized by the blade, and the rotation efficiency is high.
  • the support rod connecting the blade to the rotor hub can be made into a shape and structure having high strength and rigidity but a small wind resistance, for example, the rod section can be an elliptical section. In this way, the problem of poor wind resistance and low power efficiency of the existing wind turbine blades can be fundamentally changed.
  • Industrial Applicability The blade structure of the vertical axis wind turbine rotor of the present invention is applied to the field of wind power generation, and is light in weight, good in strength and rigidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

垂直轴风力发电机风轮的叶片结构 技术领域 本发明属于风力发电机技术领域, 提供一种垂直轴风力发电机构件, 尤其是一种垂直轴风力发电机风轮的叶片结构。 背景技术 现有技术中, 风力发电机多为水平轴式发电机, 其主轴水平设置, 其 上设置风轮, 风轮叶片多为大小头三角形式, 小头细长, 这种又细又长的 叶片, 受风力容易变形和产生共振, 且受风压很容易折断, 存在抗风能力 差的问题, 旋转时的共振, 可造成发电功率偏低的问题。 由于这类风轮叶 片的上述问题, 加上现在的风力发电机有向大型化、 大功率方向发展, 随 着风轮直径的增大, 叶片的损坏率更高, 使用寿命更短, 给风力发电的发 展带来较大的负面影响。
随着风力发电技术的发展, 垂直轴风力发电机越来越显示出其效率 高、 功率大和便于安装、 使用寿命长等优点。 但是, 一般的垂直轴风力发 电机都只是将发电机主轴由水平设置变为垂直设置,但其上的叶片往往还 是沿用现有的水平轴发电机的风轮的叶片, 叶片仍然长细, 从与发电机的 转动件的连接端到风轮的外端都是叶片部分。 因此, 上述水平轴风力发电 机风轮的许多问题没有得到彻底解决。 发明内容 本发明的目的在于改进现有技术的不足, 提供一种重量轻、 所需旋转 力小、 强度、 刚度大、 易加工的垂直轴风力发电机风轮的叶片结构。 本发明的目的是这样实现的:
本发明提供的垂直轴风力发电机风轮的叶片结构, 包括构成叶片形状 的骨架和固定在该骨架外面的蒙皮, 该叶片的形状为一垂直的柱状体, 其 水平截面为飞机机翼的断面形状, 即叶片朝外的外侧表面为流线形状弧 面, 该外侧表面与相对的内侧表面之间圓滑过渡, 形成较大的迎风端即叶 片的头部和较小的尾部。 部基本上是逐渐减小的; 和 /或, 在叶片的垂直方向上各所述水平截面大 小形状相等。
所述骨架包括有叶片骨架、 骨架筋和叶型支撑杆,
所述叶片骨架为若干个, 其为叶片柱状体的所述水平截面飞机机翼形 状的框架, 在叶片的垂直方向以设定间距对正排布;
所述骨架筋为若干直杆件, 各个骨架筋环绕在对正排布的若干所述叶 片骨架框架的周围,每根所述骨架筋与所有所述叶片骨架的所述框架在一 垂直方向上有一交汇固联点, 形成叶片的侧壁骨架来支撑和 /或固联所述 蒙皮;
所述叶型支撑杆的两端支撑固定在所述叶片骨架形成的所述框架上 相对位置的杆体上, 以支撑保持该框架的形状。
所述骨架筋包含四根骨架主筋和若干根骨架副筋, 所述骨架主筋是这 样分布的: 其中两根所述骨架主筋设置在对应叶片的所述外侧表面一侧, 另外两根所述骨架主筋设置在对应叶片的所述内侧表面一侧,在所述叶片 的水平截面上, 四根所述骨架主筋构成一四边形, 并设在所述叶片的垂直 设置下质量中心的周围且使得所述叶片的质量由该四根骨架主筋平衡。
所述骨架主筋为其强度和 /或刚度较所述骨架副筋大的杆件; 和 /或, 所述骨架主筋和骨架副筋与所述叶片骨架的连接点与所述叶型支撑 杆和所述叶片骨架的交点交汇。
所述骨架主筋为截面较所述骨架副筋大纵向贯通的空心杆体; 或者, 所述骨架主筋和骨架副筋均为纵向贯通空心杆体, 所述骨架主筋的杆 纵向空心腔室中设有纵向间隔壁, 将一个大腔室分割为两个较小的腔室, 所述骨架副筋为截面较小的单腔空心杆体; 和 /或,
所述叶片骨架为空心杆体, 该杆纵向空腔通过纵向间隔壁分割成两个 纵向腔室。
所述叶型支撑杆相互平行地设置在所述叶片骨架形成的框架上。
所述叶型支撑杆中还包括有斜拉杆, 其一端固定在相对于叶片所述外 侧表面的一叶型支撑杆与所述框架的交点上,其另一端固定在相对于叶片 所述内侧表面的另一根叶型支撑杆与所述框架的交点上; 和 /或,
所述斜拉杆是固定在有所述骨架主筋交汇的所述叶型支撑杆和所述 叶型骨架的交点上。
所述叶片骨架、 骨架筋和叶型支撑杆由铝型材制作; 和 /或, 所述蒙 皮由布、 铝皮、 玻璃纤维片材制作; 也可以由其它金属薄板制作。 各个所 述叶片骨架、 骨架筋和叶型支撑杆之间通过焊接或胶粘固联。 胶粘固联使 用的胶粘剂可以是两性胶粘剂。
一种包括上述特征的所述叶片结构的垂直轴风力发电机的风轮, 其包 括若干所述叶片和轮毂,每个所述叶片沿其柱状体的垂直方向固联两根或 多根支撑杆的一端, 该支撑杆的另一端和所述轮毂连接; 或者,
包括若干所述叶片和轮毂, 每个所述叶片沿其柱状体的垂直方向固联 两根或多根支撑杆的一端, 该支撑杆的另一端和所述轮毂连接; 相对于所 述风轮的垂直轴线,各个所述叶片其流线形的所述外側表面在沿设定半径 圓的圓周方向设置; 或者, 相对于所述风轮的垂直轴线, 各个所述叶片流 线形的所述外侧表面在与沿设定半径圓的圓周切线方向夹一设定角度的 方向设置; 或者,
包括若干所述叶片和轮毂, 每个所述叶片沿其柱状体的垂直方向固联 两根或多根支撑杆的一端, 该支撑杆的另一端和所述轮毂连接; 所述风轮 中的叶片为 4-24个。
本发明提供的垂直轴风力发电机风轮的叶片, 该基本形状来源於飞机 机翼,通过组成垂直柱状体的骨架和蒙皮结构,尤其是骨架中的叶片骨架、 叶片支撑杆和骨架主副筋的特殊的结构设置和使用轻型材料制作,使得本 发明提供的叶片和由该叶片支撑的垂直轴风力发电机风轮具有重量轻、强 度、 刚度高, 组合加工简单, 成型精度高、 抗风能力强、 效率高的优点。 附图概述 图 1 为本发明提供的垂直轴风力发电机风轮的叶片的立体结构示意 图;
图 2为图 1中的叶片的骨架副筋构成叶片宽度方向尾侧的断面结构示 意图;
图 3为图 1中的叶片的骨架主筋的断面结构示意图;
图 4为图 1中的叶片的设置在骨架主筋之间的骨架副筋的断面结构的 示意图;
图 5为图 1中的叶片的叶片骨架的断面结构示意图,
图 6为安装有图 1中所述的叶片的垂直轴风力发电机风轮的一种结构 的俯视结构示意图;
图 7为图 6所示的风轮的主视结构示意图。 本发明的最佳实施方式 如图 1所示, 本发明提供的垂直轴风力发电机风轮的叶片, 包括构成 叶片形状的骨架和固定在该骨架外面的蒙皮(图中未示出) , 该叶片的形 状为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮 的转轴 03 (参见图 6、 7 ) , 叶片 01朝外的外侧表面为流线形状弧面, 该 外侧表面与相对的内侧表面之间的圓滑过渡,形成较大的迎风端即叶片的 头部和较小的尾部。
相对于所述风轮转轴 03 的垂直轴线, 其柱状体的外侧表面和内侧表 面之间的间距从所述头部到尾部基本上是逐渐减小的;在叶片的垂直方向 上各所述水平截面大小形状相同。
本发明提供的叶片, 其要承受较大风力, 但还要求其转动阻力要小, 即其自身重量要轻, 但还应具有足够的强度、 刚度。 因此, 本叶片的骨架 可以这样设计:
如图 1所示, 所述骨架包括有叶片骨架 1、 骨架主筋 3、 骨架副筋 2、 7和叶型支撑杆,
叶片骨架 1为若干个, 其为构成叶片柱状体的所述水平截面的飞机机 翼形状的框架, 在叶片的垂直方向以设定间距对正排布;
骨架主筋 3和骨架副筋 2、 7为若干垂直设置的杆件, 例如为直杆, 所述叶片的每根骨架主筋 3和骨架副筋 2、 7都绕所有叶片骨架 1的所述 框架设置,每根所述骨架主筋和骨架副筋与所有所述叶片骨架的所述框架 在一垂直方向上有一交汇固联点,按设定间距固定叶片骨架 1周围设置的 各个骨架主筋和骨架副筋形成叶片 01的骨架侧壁支撑所述蒙皮;
叶型支撑杆支撑设在叶片骨架 1形成的框架的相对的侧边之间,例如, 叶型支撑杆设置在该框架所在的平面内, 其两端与叶片骨架 1固联, 即叶 型支撑杆的两端分别固定在叶片骨架的对应叶片相对的所述外侧表面和 内侧表面的框架上, 以支撑保持叶片骨架的框架的形状不变。
叶型支撑杆可以是包括两种, 一种是相互平行地设置在所述叶片骨架 形成的框架之间的若干直杆的叶型支撑杆 4。
所述骨架主筋 3和骨架副筋 2与所述叶片骨架 1上设置的所述叶型支 撑杆 4的交点交汇固定。
还有一类是斜拉杆 6 , 其一端固定在所述外侧表面一根叶型支撑直杆 4的一端, 其另一端固定在所述内侧表面另一根叶型支撑杆 4的一端; 且 进一步地,斜拉杆可以是固定在所述骨架主筋 3和叶型支撑杆 4的交汇固 定点上。
所述骨架主筋为其强度和 /或刚度较大的杆件, 所述骨架副筋为强.度 和 /或刚度较小的杆件。
骨架主筋的分布优选如下方案: 四根骨架主筋 3两根设置在叶片外侧 表面一侧, 另外两根设置在叶片内侧表面一侧, 在叶片的水平截面上看, 四根骨架主筋 3构成一四边形,在叶片的垂直设置质量中心的周围且使得 叶片的质量由该四根骨架主筋平衡。
骨架主筋 1和骨架副筋可以是同样轻型铝型材制作, 也可以是不同材 质制作,骨架主筋为截面较所述骨架副筋大的空心杆体(参见图 2、 3、 4 )。
为了提高骨架主筋的刚度和强度, 所述骨架主筋的杆纵向空心腔室中 可以设有纵向间隔壁, 将一个大腔室分割为两个较小的腔室 (如图 3 所 示) 。
所述叶片骨架也可以为空心杆体, 该杆纵向空腔通过纵向间隔壁分割 成两个纵向腔室 (参见图 5所示) 。 将空心杆件的纵向腔室通过间壁分割开, 这样的杆件结构可以在提高 其刚性和强度的同时, 有效减轻叶片的重量。
所述叶片骨架、 骨架主筋、 骨架副筋和叶型支撑杆优选轻型铝制型材 制作。 骨架中 '的各个杆件之间通过焊接或胶粘固联, 胶粘固联使用的胶粘 剂可以是两性胶粘剂。
这样的骨架主筋和叶片骨架结构, 可以很好地保证叶片的刚度和强 度, 而叶片的重量则很轻。 这就可以使得由该叶片构成的风轮的启动风力 很小, 该风力发电机可以在风力很小时就能发电。 经试验可以, 本叶片构 成的风轮可以在二级风下转动发电。 而骨架的上述结构, 又可以使得本叶 片的强度、 刚度很大, 其承受的极限风力可达 50m/s, 能够在 35米 /秒即 将近台风的风力下正常工作。 因此, 使用本发明提供的风轮叶片的风力发 电机, 在一般风机都要停车的大风情况下可以继续安全发电。 这一点对于 风力发电向电网供电是非常有意义的。加上本风轮的叶片一改现有技术存 在诸多问题的叶片形状, 不易变形、 折断, 寿命长, 所以, 风场中使用本 风轮, 因气候或故障停止工作的情况很少, 电网可以持久稳定地获得风能 电量。 这对于大力发展风力发电提供了可靠的保障, 对国计民生、 保护环 境、可持续的经济发展都有重要意义。再有,本叶片还具有组合加工简单, 成型精度高的优点。
如图 6所示, 由上述叶片构成的垂直轴风力发电机的风轮, 包括若干 所述叶片 01和轮毂 22, 每个所述叶片 01 沿其柱状体的垂直方向固联两 根或多根支撑杆 02的一端, 该支撑杆 02的另一端和所述轮毂 22连接; 风轮通过轮毂 22设置在风轮转轴 03上。在风轮轮毂和转轴之间设置发电 机组。 相对于风轮转轴 03的垂直轴线, 叶片 01流线形的所述外侧表面在 沿设定半径圓的圓周方向设置, 这里的设定半径的圓即为风轮的半径, 其 可以是根据风力发电机设计发电功率、 构件的强度、 刚度等因素设定的。 该叶片与所述风轮的轮毂之间通过支撑杆 02连接;
所述叶片在风轮中的设置方式还可以是, 相对于所述风轮转轴的垂直 轴线,所述叶片流线形的所述外侧表面在与沿设定半径圆的圓周切线方向 夹一设定角度的方向设置。 例如沿螺旋线设置。 该叶片与所述风轮的轮毂 之间也是通过支撑杆连接。
所述风轮中的叶片为 4 - 24个。 如果叶片数目太少, 则对风场的利用 率太低,使得风力发电机的功率小。如果叶片数目太多, 则其离心力过大, 容易出现使叶片脱落飞出的事故。
这种叶片设置在风轮的外缘或接近外缘处, 叶片与风轮轮毂或者发电 机的转动部件之间是通过支撑杆 02连接的。 因此, 叶片不再是又细又长 的形状, 在风轮的轮毂到其外缘很大的一段距离可以是连接叶片的支撑 杆, 而风轮上用于接受风力而转动的部分仅是外缘的垂直柱状的叶片。 这 样的叶片由于其具有飞机机翼式的外侧表面,气流流过可以很好地被叶片 利用, 转动效率很高的。 而将叶片与风轮轮毂连接的支撑杆, 其可以做成 强度和刚度都较高但风阻很小的的形状和结构,例如杆截面可以为椭圓形 截面。 这样, 就可以从根本上改变现有风轮叶片抗风能力差和功率效率较 低的问题。 工业实用性 本发明的垂直轴风力发电机风轮的叶片结构, 应用于风力发电领域, 重量轻, 强度和刚度均较好。

Claims

权利 要求
1.一种垂直轴风力发电机风轮的叶片结构, 其特征在于, 包括构成叶 片形状的骨架和固定在该骨架外面的蒙皮,该叶片的形状为一垂直的柱状 体, 其水平截面为飞机机翼的断面形状, 即叶片朝外的外侧表面为流线形 状弧面, 该外侧表面与相对的内侧表面之间圓滑过渡, 形成较大的迎风端 即叶片的头部和较小的尾部。
2.根据权利要求 1所述的垂直轴风力发电机风轮的叶片结构,其特征 在于,所述叶片柱状体的外侧表面和内侧表面之间的间距从所述头部到尾 部基本上是逐渐减小的; 和 /或, 在叶片的垂直方向上各所述水平截面大 小形状相等。
3.根据权利要求 1或 2所述的垂直轴风力发电机风轮的叶片结构,其 特征在于, 所述骨架包括有叶片骨架、 骨架筋和叶型支撑杆,
所述叶片骨架为若干个,其为叶片柱状体的所述水平截面飞机机翼形 状的框架, 在叶片的垂直方向以设定间距对正排布;
所述骨架筋为若干直杆件,各个骨架筋环绕在对正排布的若干所述叶 片骨架框架的周围,每根所述骨架筋与所有所述叶片骨架的所述框架在一 垂直方向上有一交汇固联点, 形成叶片的侧壁骨架来支撑和 /或固联所述 蒙皮;
所述叶型支撑杆的两端支撑固定在所述叶片骨架形成的所述框架上 相对位置的杆体上, 以支撑保持该框架的形状。
4.根据权利要求 3所述的垂直轴风力发电机风轮的叶片结构,其特征 在于, 所述骨架筋包含四根骨架主筋和若干根骨架副筋, 所述骨架主筋是 这样分布的: 其中两根所述骨架主筋设置在对应叶片的所述外侧表面一 侧, 另外两根所述骨架主筋设置在对应叶片的所述内侧表面一侧, 在所述 叶片的水平截面上, 四根所述骨架主筋构成一四边形, 并设在所述叶片的 垂直设置下质量中心的周围且使得所述叶片的质量由该四根骨架主筋平 衡。
5.根据权利要求 4所述的垂直轴风力发电机风轮的叶片结构,其特征 在于; 所述骨架主筋为其强度和 /或刚度较所述骨架副筋大的杆件; 和 / 或,
所述骨架主筋、骨架副筋与所述叶片骨架的连接点交汇于所述叶型支 撑杆和所述叶片骨架的连接点。
6.根据权利要求 4或 5所述的垂直轴风力发电机风轮的叶片结构,其 特征在于, 所述骨架主筋为截面较所述骨架副筋大纵向贯通的空心杆体; 或者,
所述骨架主筋和骨架副筋均为纵向贯通空心杆体,所述骨架主筋的杆 纵向空心腔室中设有纵向间隔壁, 将一个大腔室分割为两个较小的腔室, 所述骨架副筋为截面较小的单腔空心杆体; 和 /或,
所述叶片骨架为空心杆体,该杆纵向空腔通过纵向间隔壁分割成两个 纵向腔室。
7.根据权利要求 3或 4所述的垂直轴风力发电机风轮的叶片结构,其 特征在于, 所述叶型支撑杆相互平行地设置在所述叶片骨架形成的框架 上。
8.根据权利要求 4所述的垂直轴风力发电机风轮的叶片结构,其特征 在于, 所述叶型支撑杆中还包括有斜拉杆, 其一端固定在相对于叶片所述 外侧表面的一叶型支撑杆与所述框架的交点上,其另一端固定在相对于叶 片所述内侧表面的另一根叶型支撑杆与所述框架的交点上; 和 /或,
所述斜拉杆是固定在有所述骨架主筋交汇的所述叶型支撑杆和所述 叶型骨架的交点上。
9. 根据权利要求 1所述的垂直轴风力发电机风轮的叶片结构, 其特 征在于, 所述叶片骨架、 骨架筋和叶型支撑杆由铝型材制作; 和 /或, 所 述蒙皮由布、 铝皮、 玻璃纤维片材制作; 和 /或,
各个所述叶片骨架、 骨架筋和叶型支撑杆之间通过焊接或胶粘固联。
10. 一种包括权利要求 1-9 所述叶片结构的垂直轴风力发电机的风 轮, 其特征在于, 包括若干所述叶片和轮毂, 每个所述叶片沿其柱状体的 垂直方向固联两根或多根支撑杆的一端,该支撑杆的另一端和所述轮毂连 接; 或者,
包括若干所述叶片和轮毂,每个所述叶片沿其柱状体的垂直方向固联 两根或多根支撑杆的一端, 该支撑杆的另一端和所述轮毂连接; 相对于所 述风轮的垂直轴线,各个所述叶片其流线形的所述外侧表面在沿设定半径 圆的圓周方向设置; 或者, 相对于所述风轮的垂直轴线, 各个所述叶片流 线形的所述外侧表面在与沿设定半径圓的圓周切线方向夹一设定角度的 方向设置; 或者,
包括若干所述叶片和轮毂,每个所述叶片沿其柱状体的垂直方向固联 两根或多根支撑杆的一端, 该支撑杆的另一端和所述轮毂连接; 所述风轮 中的叶片为 4 - 24个。
PCT/CN2010/000957 2010-02-08 2010-06-28 垂直轴风力发电机风轮的叶片结构 WO2011094912A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010345240A AU2010345240A1 (en) 2010-02-08 2010-06-28 Wind-wheel blade for vertical axis wind power generator axis
EP10844997A EP2535564A1 (en) 2010-02-08 2010-06-28 Wind-wheel blade for vertical axis wind power generator axis
JP2012551458A JP2013519019A (ja) 2010-02-08 2010-06-28 垂直軸風力発電機の風輪用羽根の構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201019114068.1 2010-02-08
CN2010191140681A CN102146880B (zh) 2010-02-08 2010-02-08 垂直轴风力发电机风轮的叶片结构

Publications (1)

Publication Number Publication Date
WO2011094912A1 true WO2011094912A1 (zh) 2011-08-11

Family

ID=44354866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000957 WO2011094912A1 (zh) 2010-02-08 2010-06-28 垂直轴风力发电机风轮的叶片结构

Country Status (4)

Country Link
EP (1) EP2535564A1 (zh)
CN (1) CN102146880B (zh)
AU (1) AU2010345240A1 (zh)
WO (1) WO2011094912A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823181A4 (en) * 2012-03-06 2015-06-24 Axis Energy Group Pty Ltd CROSS-STONE TURBINE WITH VERTICAL STRAIGHT AND HELICOPTED LEAVES

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588224A (zh) * 2012-03-16 2012-07-18 西南交通大学 风力发电机空心扇叶
CN104265044A (zh) * 2014-10-21 2015-01-07 国家电网公司 一种太阳能和风能蓄电电线杆
GB2543278B (en) 2015-10-12 2017-10-11 Act Blade Ltd Wind turbine blade with at least one slidable supporting element
CN105240208A (zh) * 2015-10-29 2016-01-13 无锡阳工机械制造有限公司 一种垂直轴风力发电机叶片框架结构
CN107965468A (zh) * 2017-07-10 2018-04-27 常州信息职业技术学院 一种扇叶叶片结构
CN112065656A (zh) * 2020-08-24 2020-12-11 河南恒聚新能源设备有限公司 导向叶片及垂直轴涡轮风力发电装置
CN112065658B (zh) * 2020-08-24 2022-07-08 河南恒聚新能源设备有限公司 动叶片及垂直轴涡轮风力发电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184566A1 (en) * 1999-05-31 2002-03-06 Manuel Torres Martinez Aerogenerator blade
WO2006039953A1 (de) * 2004-10-08 2006-04-20 Eew Maschinenbau Gmbh Rotorblatt für eine windenergieanlage
CN201155425Y (zh) * 2007-09-17 2008-11-26 操辉 垂直轴柔性风轮
US20090220339A1 (en) * 2008-02-29 2009-09-03 Hopewell Wind Power Limited Wind deflector for wind turbine and wind turbine incorporating same
CN201377382Y (zh) * 2009-04-21 2010-01-06 沈阳瑞祥风能设备有限公司 一种风力发电机的风轮叶片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819217A4 (en) * 1995-03-29 1998-07-01 Owen Garth Williamson WIND TURBINE WITH VERTICAL AX
CN100441860C (zh) * 2006-02-24 2008-12-10 北京双帆科技有限公司 一种垂直轴风力发电机用叶片及其制作工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184566A1 (en) * 1999-05-31 2002-03-06 Manuel Torres Martinez Aerogenerator blade
WO2006039953A1 (de) * 2004-10-08 2006-04-20 Eew Maschinenbau Gmbh Rotorblatt für eine windenergieanlage
CN201155425Y (zh) * 2007-09-17 2008-11-26 操辉 垂直轴柔性风轮
US20090220339A1 (en) * 2008-02-29 2009-09-03 Hopewell Wind Power Limited Wind deflector for wind turbine and wind turbine incorporating same
CN201377382Y (zh) * 2009-04-21 2010-01-06 沈阳瑞祥风能设备有限公司 一种风力发电机的风轮叶片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823181A4 (en) * 2012-03-06 2015-06-24 Axis Energy Group Pty Ltd CROSS-STONE TURBINE WITH VERTICAL STRAIGHT AND HELICOPTED LEAVES
US10024168B2 (en) 2012-03-06 2018-07-17 Axis Energy Group Pty Ltd Cross flow turbine with straight vertical and helical slanted blades

Also Published As

Publication number Publication date
CN102146880A (zh) 2011-08-10
CN102146880B (zh) 2013-04-24
EP2535564A1 (en) 2012-12-19
AU2010345240A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2011094912A1 (zh) 垂直轴风力发电机风轮的叶片结构
US8328516B2 (en) Systems and methods of assembling a rotor blade extension for use in a wind turbine
US8550786B2 (en) Vertical axis wind turbine with self-starting capabilities
JP2004108330A (ja) 風力発電用の風車
US20100166556A1 (en) Partial arc shroud for wind turbine blades
US7866951B2 (en) Wind turbine blades with cross webs
EP3805554B1 (en) Vertical axis wind turbine, and wind power generating device and lighting facility comprising same
US10253753B2 (en) Rotor blade for wind turbine
CN102767469B (zh) 用于风力涡轮机转子叶片的小翼
CN102146887B (zh) 高效大功率垂直轴风力发电机
JP2013519022A (ja) 高効率・ハイパワー垂直軸風力発電機
CN201152232Y (zh) 一种垂直旋转连体风叶
CN104033332A (zh) 一种垂直轴风力发电装置
CN101839219A (zh) 垂直轴风力发电机翼形叶片及翼形垂直轴风力发电机
US7854595B2 (en) Wind turbine blade tip shapes
CN109356787B (zh) 低风速自启动垂直轴升阻复合型风力发电机风轮结构
WO2011162498A2 (ko) 양기둥 난기류용 풍력발전장치
KR101042906B1 (ko) 풍력발전기용 로터
CN218934606U (zh) 一种具有主副阻力型叶片的垂直轴风力机风叶组
US20130064677A1 (en) Rotor blade assembly for wind turbine
JP2004137910A (ja) 水平軸型風力発電機用風車
WO2011094915A1 (zh) 垂直轴风力发电机中风轮的支撑杆结构
CN201714567U (zh) 垂直轴风力发电机中风轮的支撑杆结构
WO2009030113A1 (fr) Pale à axe vertical
JP2013519019A (ja) 垂直軸風力発電機の風輪用羽根の構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010844997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012551458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010345240

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010345240

Country of ref document: AU

Date of ref document: 20100628

Kind code of ref document: A