WO2011092137A2 - Miniaturisiertes elektrisches bauelement mit einem mems und einem asic und herstellungsverfahren - Google Patents

Miniaturisiertes elektrisches bauelement mit einem mems und einem asic und herstellungsverfahren Download PDF

Info

Publication number
WO2011092137A2
WO2011092137A2 PCT/EP2011/050902 EP2011050902W WO2011092137A2 WO 2011092137 A2 WO2011092137 A2 WO 2011092137A2 EP 2011050902 W EP2011050902 W EP 2011050902W WO 2011092137 A2 WO2011092137 A2 WO 2011092137A2
Authority
WO
WIPO (PCT)
Prior art keywords
chip
mems
asic
asic chip
mems chip
Prior art date
Application number
PCT/EP2011/050902
Other languages
English (en)
French (fr)
Other versions
WO2011092137A3 (de
Inventor
Gregor Feiertag
Hans Krüger
Wolfgang Pahl
Anton Leidl
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to JP2012550407A priority Critical patent/JP5763682B2/ja
Priority to GB1211029.2A priority patent/GB2493246B/en
Priority to US13/520,923 priority patent/US9056760B2/en
Publication of WO2011092137A2 publication Critical patent/WO2011092137A2/de
Publication of WO2011092137A3 publication Critical patent/WO2011092137A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0061Packages or encapsulation suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00309Processes for packaging MEMS devices suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/1329Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16146Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • H01L2224/27438Lamination of a preform, e.g. foil, sheet or layer the preform being at least partly pre-patterned
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • H01L2224/29013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8185Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/143Digital devices
    • H01L2924/1433Application-specific integrated circuit [ASIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the invention relates to miniaturized MEMS sensor Bauele ⁇ elements with a MEMS chip and an ASIC chip.
  • MEMS Micro-Electro-Mechanical Systems, German: Mikroelectromechani- cal Systems
  • MEMS Micro-Electro-Mechanical Systems, German: Mikroelectromechani- cal Systems
  • ASICs Application Specific Integrated Circuits, German: to ⁇ application-specific integrated circuits
  • Circuits for evaluating the sensor signals provided by the MEMS Comprises a MEMS microphone in ⁇ play, two capacitor electrodes, whose spacing with the pressure fluctuations of a received acoustic
  • the ASIC may include analog or digital circuits, which converts the time-varying capacitance of the MEMS capacitor into electronically processed signals. In this way, a MEMS microphone is obtained.
  • US Pat. No. 6,781,231 B2 discloses a MEMS microphone in which the MEMS chip is mounted on a substrate and encapsulated with a cap-like cover.
  • US Pat. No. 6,522,762 B1 discloses a MEMS microphone in which a MEMS chip and an ASIC chip are mounted side by side on one side of a carrier substrate. From the patent document US 6,088,463 a MEMS microphone be ⁇ known in which a silicon comprehensive MEMS chip and an ASIC chip on opposite sides of a carrier substrate ( "intermediate layer”) is mounted.
  • a MEMS package is known in which a MEMS chip and an ASIC chip are mounted side by side or one above the other and covered with a metallic layer All the above-mentioned electrical components require a carrier substrate on which they must be mounted.
  • An object of the present invention is to provide an electronic ⁇ African MEMS sensor device with a small size, which is inexpensive to manufacture and has an improved signal resolution. Another task is to specify a manufacturing process.
  • the present invention provides a MEMS sensor device comprising a MEMS chip with an electrical contact and an ASIC chip with an electrical contact.
  • the Component further comprises an internal interconnection of MEMS chip and ASIC chip and an external electrical connection.
  • the electrical component further comprises a via through the MEMS chip or through the ASIC chip.
  • the MEMS chip and the ASIC chip are arranged one above the other.
  • the internal interconnection comprises a direct connection of the electrical contact of the MEMS chip with the electrical contact of the ASIC chip.
  • the internal interconnection or at least one of the electrical contacts of the chips is connected via the through-connection to the external electrical connection.
  • the plated-through hole is connected to an external electrical terminal of the component which is arranged on the side of the ASIC chip remote from the MEMS chip or on the side of the MEMS chip remote from the ASIC chip.
  • a gap is arranged and in this a frame, in lateral
  • the MEMS chip comprises at least one sensor electrode, which may comprise a movable electrode and a fixed electrode.
  • a sensor opening is arranged directly in the ASIC chip or leads through the ASIC chip, or leads from the side into the gap arranged in the space between the MEMS chip and the ASIC chip.
  • the sensor opening serves for the admission of the measured variable to be evaluated (eg sound energy, pressure, gas, moisture) from the environment into the interior of the component.
  • Through-contacts in silicon chips can be, for example, so-called TSVs (Through-Silicon Vias).
  • Such an electrical MEMS sensor component has
  • the MEMS chip and the ASIC chip are superimposed are arranged, a small size.
  • the area requirement of the component is essentially no greater than the area requirement of the larger of the MEMS chip or the ASIC chip.
  • a multiplicity of identical MEMS chips can be produced on a first wafer, while a multiplicity of identical ASIC chips can be produced on a second wafer.
  • the plurality of MEMS chips may be connected to the plurality of ASIC chips as who to that in each case a MEMS chip is connected to one ASIC chip ⁇ .
  • the fact that the MEMS chip and the ASIC chip are arranged one above the other and are connected directly to one another via through-contacts by the MEMS chip or by the ASIC chip means that the electrical lines are as short as possible
  • the MEMS chip has a bottom surface.
  • the ASIC chip has an upper side and a lower side.
  • the top of the ASIC chip faces the bottom of the MEMS chip.
  • the via runs through the ASIC chip.
  • the external electrical connection is arranged on the underside of the ASIC chip.
  • Component structures of the MEMS chip and circuits of the ASIC chip can be arranged both on the upper side of the chips or on the underside of the chips. However, component structures of the MEMS chip and circuits of the ASIC chip can also be arranged in the interior of the respective chips. Corresponding plated-through holes ensure that electrical connections between electrical circuit components or component structures run along short paths.
  • the electrical component comprising a MEMS chip and an ASIC chip is not dependent on being stored on a spe- to be arranged for this purpose provided carrier substrate or component carrier.
  • the electrical component includes an external contact by which it can be integrated into any external circuit environment.
  • the MEMS chip eg by providing an acoustic return volume
  • the ASIC chip eg by integrated further circuits
  • the substrate of the MEMS chip or the substrate of the ASIC chip comprises silicon.
  • Silicon is a highly pure and monocrystalline producible element whose production and processing is dominated by the extensive experience of semiconductor technology. From the
  • an anisotropic conductive adhesive may be used. Then, with this glue, the large area on one of each other
  • facing sides of the chips or structured e.g. may be applied in the form of an adhesive frame, both a
  • a gap is disposed between the chips.
  • the gap can by an annular frame, for. B. by the adhesive frame or another sealing ring, hermetically or acoustically sealed. Then the annular and eg plastic, glass, ceramic or
  • Metal existing frame together with the upper and the lower chip include a cavity between the upper and the lower chip and form an annular closure.
  • Component structures of the MEMS chip or circuit elements of the ASIC chip can be arranged in the cavity.
  • a seal of the electrical MEMS sensor device can also be made after the connection of the two chips.
  • the annular closure can, for example, by
  • the seal may also be accomplished by laminating a film over the top of the chips or by applying a film
  • the frame can be a structured polymer frame.
  • the frame may be placed on the MEMS chip or on the ASIC chip or parts on both chips prior to pairing the chips, and sealing a gap between the chips after connecting the chips to the outside.
  • the polymer frame can already be provided on one or both wafers.
  • the frame may comprise the same material as the electrical interconnections of the chips.
  • the frame may comprise a soldering, a so-called solid-liquid interdiffusion soldering, an electrically conductive adhesive or two metal subframes distributed on the two chips, which are bonded together under pressure and temperature.
  • Component structures of the MEMS chip can be encapsulated against external influences. Then they are, for example ge ⁇ genüber impurities on the manufacture, z. B. the
  • An encapsulation of the device or a seal of the gap between the MEMS chip and the ASIC chip to the outside may comprise a foil which covers the top and side surfaces of the upper chip and, for. B. closed all around
  • Such a film may, for. B. already partially crosslinked, epoxy resin or a B-stage material include. Such a film may additionally be partially or completely covered with a metallization layer.
  • a dielectric layer can be applied, for.
  • a dielectric layer can be applied, for.
  • spraying of varnish or vapor deposition of oxides As by spraying of varnish or vapor deposition of oxides,
  • Nitrides or polymers e.g. Parylene.
  • the device is on the top of a mounting plate having an electrical connection points, arranged.
  • the external electrical connection of the component is connected to the electrical connection of the mounting plate ⁇ .
  • This mounting plate may be any mounting plate of an external circuit environment. The mounting plate is not mandatory for the functionality of the electrical component.
  • the MEMS chip or the ASIC chip may have contact pads on the bottom, e.g. B. for contacting with a mounting plate include.
  • the MEMS chip comprises a cavity, an electrode provided with a movable membrane which closes the cavity on one side, and a preferably arranged parallel to the membrane counter electrode, which is arranged on the side facing away from the cavity of the membrane.
  • the movable membrane forms with the
  • the ASIC chip includes a circuit for determining the capacitance or the
  • Such an electrical component may represent a MEMS microphone.
  • the movable membrane responds to the time varying air pressure of a received
  • the ASIC chip may comprise a circuit which is connected to the two electrodes of the capacitive element, for. B. via a high-impedance resistor and a charge pump, which stored in kapazi ⁇ tive element electrical charge substantially keeps constant and thus generates a BIAS voltage.
  • Another circuit of the ASIC chip may be the time-varying voltage dropping across the capacitive element
  • the digital signal can be set at ⁇ play as the external electrical connection of the electrical component of an external circuit environment.
  • the counter electrode of the MEMS chip can be arranged between the ASIC chip and the membrane. It is also possible that the membrane between the ASIC chip and the membrane.
  • Counter electrode is arranged.
  • the membrane is connected to the environment via the sensor opening.
  • the MEMS chip has device structures for determining air pressure, moisture or the composition of a gas.
  • the device structures are in contact with the atmosphere surrounding the device.
  • An electrical component for determining the air pressure may, for example, comprise a closed cavity with a defined internal pressure.
  • the closed cavity surrounds a wall which is elastically deformable at least in one section. If the air pressure of the atmosphere surrounding the electrical component changes, the elastic wall reacts internally and externally to the overpressure or underpressure of the cavity due to the different force ratios due to an elastic deformation.
  • Such elastic deformation of the elastic wall can be achieved, for example, by means of a resistance structure mounted on the elastic wall
  • An inventive electrical component can also be designed as a gas sensor.
  • Each of the two chips or both chips or the entire electrical component may comprise an outer metallization for protection, electromagnetic shielding or hermetic encapsulation.
  • Such metallization protects, for example, against mechanical damage or against RF radiation.
  • the metallization can be applied by lamination of a foil and by sputtering or by electroplating.
  • the shield metallization is typically defined as being connected to a suitable potential (e.g., ground) of the device or external terminal.
  • volume be enlarged.
  • the chips z. B. glued in egg ⁇ ner grid-like arrangement on a film and filled areas between the chips with a molding compound.
  • the thus prepared new wafer is then provided with vias and a wiring plane. This "enlarged"
  • Wafer is then used in one of the above processes. With such an enlargement of chips, a new wafer can be produced in the first step, as it were, by means of individual chips arranged in the utility.
  • a new wafer can be produced in the first step, as it were, by means of individual chips arranged in the utility.
  • Steps can vias or openings, z. B. sound openings, are arranged in the field of molding compound. Through holes or openings may alternatively already produced when Molden and z. B. be recessed by the Anord ⁇ tion of pins in the mold. The increased dimensions facilitate the arrangement of such openings, vias or additional wiring on or on the respective chip.
  • the new multiple benefits are achieved by laminating the ASIC chips into an organic circuit board, which in turn contains vias and wiring structures.
  • the material of the MEMS chip and the ASIC chip may be chosen such that mechanical stresses between the chips, which stress the mechanical connection between the chips or the electrical interconnection between the chips, are reduced.
  • the substrate of the MEMS chip and the substrate of the ASIC chip comprise the same material.
  • the electrical component is designed as a microphone.
  • the MEMS chip includes a counter electrode and a membrane.
  • the ASIC chip or in the frame is a
  • the MEMS chip and the ASIC chip may have the same lateral dimensions.
  • the external electrical connection is arranged on the side of the ASIC chip facing away from the MEMS chip.
  • the MEMS chip, the ASIC chip and preferably also the frame then terminate flush with each other in the lateral direction on the microphone.
  • Frame can further sound entry openings, z. B. each with about 30 ⁇ diameter can be arranged. A large number of smaller openings allows a good sound entry with improved protection against dirt particles.
  • a method for producing an electrical component comprises the following steps:
  • the ASIC chip or the MEMS chip is provided in a multiple-use on a wafer and connected to isolated second chips.
  • the mass-compatible production mit- The wafer makes it possible to produce electrical components according to the invention efficiently, simply and inexpensively.
  • the ASIC chip and the MEMS chip are each provided in multiple use on a respective wafer.
  • the wafers are assembled in such a way that one ASIC chip is connected and interconnected with one MEMS chip each.
  • the separation of the electrical components can after joining and interconnect z. B. by laser or by sawing done.
  • an opening e.g. Legs
  • Sound inlet etched by the ASIC chip. It is also possible to etch a corresponding plurality of smaller openings instead of a large opening. The etching of smaller openings can have procedural advantages.
  • One or more sensor openings in the frame can during
  • the frame consists of two subframes which are distributed on the mutually facing surfaces of both chips, a sensor opening can also be provided only in one of the two subframes.
  • An ASIC chip may include a charge pump to allow higher voltages than the supply voltage.
  • the voltage with which the capacitive element ei ⁇ nes MEMS microphone is charged is about ten volts significantly above normal operating voltages and can be generated in the ASIC.
  • Through-contacts through the MEMS chip or through the ASIC chip enable the arrangement and interconnection of component structures or integrated circuits at arbitrary and at the same time at different locations of the chips.
  • the degree of freedom in designing the electrical component is so significantly increased.
  • FIG. 1 shows an electrical component with a MEMS chip and an ASIC chip
  • FIG. 2 shows an electrical component with a counterelectrode and a membrane as component structure
  • FIG. 3 shows the layout of an electrical component with egg ⁇ nem frame enclosing electrical contacts
  • Figure 4 is an electrical component which is arranged on a mounting plate ⁇
  • FIG. 5 shows an electrical component whose MEMS chip comprises a cover or an elastic wall
  • FIG. 6 shows a wafer on which electrical components, ASIC chips or MEMS chips are arranged
  • Figure 7 is an electrical component with the upper chip ⁇ be opaque film
  • FIG. 8 shows a component with an opening arranged in the ASIC chip.
  • FIG. 1 shows an electrical MEMS sensor component EB with a MEMS chip MC and an ASIC chip AC.
  • the MEMS chip MC has a top OSM and a bottom USM.
  • As a ⁇ page in this and the following examples is always referred to the page in the exhibit the external electrical connections EEA of the device, which is on the
  • the ASIC Chip AC also has a top side OSA and a bottom side USA.
  • the MEMS chip MC is arranged on the ASIC chip such that the underside USM of the MEMS chip MC faces the upper side OSA of the ASIC chip AC.
  • the MEMS chip MC comprises electrical contacts EK, which are arranged on its underside.
  • the ASIC chip comprises electrical contacts EK, which are arranged on its upper side OSA.
  • Contacts on the underside of the MEMS chip are connected to the electrical contacts on the upper side of the ASIC chip and represent at least part of the integrated interconnections IV of the electrical component EB.
  • the component structures of the ASIC can lie here as well as in the other exemplary embodiments on the side with the external electrical connection contacts EEA or, preferably, on the side facing the MEMS chip.
  • AC vias DK are arranged, which one or more of the electrical
  • the device EB may include one or more electrical external terminals. Via this one or more electrical connections, the component EB can be connected to an external circuit environment (not shown here).
  • the electrical contacts EK of the MEMS chip MC and of the ASIC chip AC are interconnected in the shortest possible way. As a result, the susceptibility of the electrical
  • FIG. 2 shows an embodiment of the electrical component which has a counter electrode RP, also called backplate, and a membrane M as
  • Component structures BS includes. This embodiment further comprises plated-through holes DK through the MEMS chip, so that the component structures BS of the MEMS chip, which are arranged on its upper side, via an internal interconnection and via through-holes through the ASIC chip with electrical external terminals EEA of the device are interconnected at the bottom of the ASIC chip. Between the MEMS chip MC and the ASIC chip AC, a gap is arranged whose height substantially determines the distance between the MEMS component and the ASIC chip. An annular ge ⁇ R connected frame encloses the gap between the chips.
  • the MEMS chip comprises, as component structures BS, a movable membrane M and a backplate as counter electrode RP, which together form a capacitive element KE of a microphone.
  • Figure 3 shows a cross section parallel to the top of the ASIC chip by an electrical component, in which a frame R electrical contacts EK, which are part of the internal interconnection of the electrical component, annular encloses.
  • the term "annular” is not related to the geometric shape of the frame, rather the term “annular” refers to a closed curve.
  • FIG. 4 illustrates an electrical component which is arranged on a mounting plate MP and provided with electrical
  • a cavity H is arranged inside the MEMS chip.
  • the cavity H are delimiting on one side
  • Component structures eg. B. a membrane M is arranged.
  • the cavity of the microphone is covered with a back cover RA, such as a PI film.
  • the back cover can also be a plate, z. As ceramic, silicon, metal or glass.
  • An incompletely closed frame is disposed between the upper chip and the lower chip. On the right is a cross-section through the frame. Left missing from a section of ⁇ the frame, so that there is a sensor opening, z. B. a sound inlet opening is formed. Sound can thus reach between the electrical connections between the chips inside the device or in the space between the two chips.
  • an electrical construction ⁇ element with lateral sensor opening eg., As
  • FIG. 5 shows an electrical component in which a gap S is arranged between the MEMS chip MC and the ASIC chip AC.
  • a via DK leads not only through the MEMS chip but also through the back cover RA of the MEMS chip MC.
  • This may be elastically deformable and comprise electrical resistance elements whose electrical resistance depends on the deformation of the rear cover RA. These resistive elements may be applied to the top of the lid or implanted in the top of the lid.
  • the feedthrough DK leads through the cover and can thus interconnect the resistance elements with the internal interconnection.
  • FIG. 6 shows a wafer W, on whose upper side a large number of electrical components, ASIC chips AC or MEMS chips MC are arranged next to one another.
  • ASIC chips, or MEMS chips can be mounted on the wafer or fabricated together in parallel and integrated into the wafer.
  • the individual chips can be produced in large numbers at the same time.
  • a wafer with ASIC chips can, after its production, be connected to a wafer with manufactured MEMS chips MC such that exactly one ASIC chip is connected and interconnected with exactly one MEMS chip each.
  • the individual chips can be before or after their
  • Connection with the other chip are separated. It is advantageous to first connect the wafers with the other chips and then to separate the finished electrical components.
  • Figure 7 shows an embodiment in which the upper chip MC encapsulation by a film F and a
  • Metallization layer MS includes.
  • the film covers the top and side surfaces of the top chip. It terminates tightly with a portion of the top or side surfaces of the bottom chip. She can through Be made laminating.
  • the cavity in the MEMS chip MEMS chip may lamination with the backside
  • the encapsulation seals a gap between the chips hermetically or at least acoustically to the outside. Such a seal can be done after the connection of the two chips.
  • the sensor opening O is provided through the ASIC wafer. However, it is also possible to provide the sensor opening in the encapsulation through the film F and the metallization layer MS and
  • a frame R may be provided, which is the distance between the two chips and thus u. a. also determines the volume trapped between the two chips.
  • FIG. 8 shows an embodiment of the electrical component as a microphone, wherein the MEMS chip MC is arranged above the ASIC chip AC. Between the chips MC, AC, a gap is arranged. In the gap is a frame R, the interior of the device in the lateral direction at least acoustically
  • Device structures of the MEMS chip include a perforated backplate and a membrane.
  • An opening 0 leads through the ASIC chip and represents a sound entry opening.
  • Digital and / or analog circuits are arranged on the upper side of the ASIC chip and connected to the component structures of the MEMS chip.
  • the MEMS chip, the ASIC chip and possibly also the frame arranged therebetween are arranged flush in the lateral direction.
  • Such "smooth" sidewalls are eg obtained in that a plurality of MEMS chips and a plurality of ASIC chips are each produced in multiple use and then interconnected and interconnected before the individual components, eg. B. by sawing, isolated.
  • This version can additionally with a shielding metal layer and, if necessary, arranged underneath
  • Insulation layer are provided.
  • An electrical component is not limited to one of the beschrie ⁇ surrounded embodiments. Variations, which z. B. still further chips or other component structures or electrical contacts or any combinations thereof include, also inventive(sbei ⁇ games represent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

Es wird ein miniaturisiertes elektrisches Bauelement mit einem MEMS-Chip und einem ASIC-Chip angegeben. Der MEMS-Chip und der ASIC-Chip sind übereinander angeordnet; eine interne Verschaltung aus MEMS-Chip und ASIC-Chip ist über Durchkontaktierungen durch den MEMS-Chip oder durch den ASIC-Chip mit externen elektrischen Anschlüssen des elektrischen Bauelements verschaltet.

Description

Beschreibung
Miniaturisiertes elektrisches Bauelement mit einem MEMS und einem ASIC und Herstellungsverfahren
Die Erfindung betrifft miniaturisierte MEMS-Sensor Bauele¬ mente mit einem MEMS-Chip und einem ASIC-Chip.
MEMS (Micro-Electro-Mechanical Systems, deutsch: Mikroelekt- romechanische Systeme) finden vielfach als Sensoren Anwendung. Es ist z. B. möglich, MEMS als Feuchtigkeitssensoren, Inertialsensoren - wie z. B. Beschleunigungssensoren -, Drucksensoren oder Mikrofonsensoren zu verwenden. ASICs (Application Specific Integrated Circuits, deutsch: an¬ wendungsspezifische integrierte Schaltungen) beinhalten im Allgemeinen, wenn sie mit MEMS-Sensoren verschaltet sind, die Schaltkreise, z. B. Logikschaltkreise oder analoge
Schaltungen, zur Auswertung der vom MEMS zur Verfügung gestellten Sensorsignale. Umfasst ein MEMS-Mikrofon bei¬ spielsweise zwei Kondensatorelektroden, deren Abstand sich mit den Druckschwankungen einer empfangenen akustischen
Schallwelle ändert, so kann der ASIC analoge oder digitale Schaltungen umfassen, welche die zeitlich variable Kapazität des MEMS-Kondensators in elektronisch weiterverarbeitbare Signale umwandelt. Auf diese Weise wird ein MEMS-Mikrofon erhalten .
Aus der Patentschrift US 6,781,231 B2 ist ein MEMS-Mikrofon bekannt, bei dem der MEMS-Chip auf einem Substrat montiert und mit einer kappenartigen Abdeckung gekapselt ist. Aus der Patentschrift US 6,522,762 Bl ist ein MEMS-Mikrofon bekannt, bei dem ein MEMS-Chip und ein ASIC-Chip nebeneinander auf einer Seite eines Trägersubstrats montiert sind. Aus der Patentschrift US 6,088,463 ist ein MEMS-Mikrofon be¬ kannt, bei dem ein Silizium umfassender MEMS-Chip und ein ASIC-Chip auf gegenüberliegenden Seiten eines Trägersubstrats („intermediate Layer") montiert sind. Aus der veröffentlichten Patentanmeldung US 2009/0001553 AI ist ein MEMS-Package bekannt, bei dem ein MEMS-Chip und ein ASIC-Chip nebeneinander oder übereinander montiert und mit einer metallischen Schicht überdeckt sind. Alle oben genannten elektrischen Bauelemente benötigen ein Trägersubstrat, auf dem sie montiert sein müssen.
Der Markt für elektronische Bauelemente und insbesondere für MEMS-Bauelemente, die z. B. in mobilen elektronischen Geräten Verwendung finden können, verlangt nach immer stärker
miniaturisierten Bauelementen, um immer mehr Funktionen in die mobilen Geräte (z. B. mobile Kommunikationsgeräte) integrieren zu können. Eine Aufgabe der vorliegenden Erfindung ist es, ein elektro¬ nisches MEMS-Sensor-Bauelement mit einer geringen Baugröße anzugeben, das günstig herzustellen ist und eine verbesserte Signalauflösung aufweist. Eine weitere Aufgabe besteht in der Angabe eines Herstellungsverfahrens.
Die vorliegende Erfindung gibt ein MEMS-Sensor-Bauelement an, welches einen MEMS-Chip mit einem elektrischen Kontakt und einen ASIC-Chip mit einem elektrischen Kontakt umfasst. Das Bauelement umfasst weiterhin eine interne Verschaltung von MEMS-Chip und ASIC-Chip sowie einen externen elektrischen Anschluss. Das elektrische Bauelement umfasst ferner eine Durchkontaktierung durch den MEMS-Chip oder durch den ASIC- Chip. Dabei sind der MEMS-Chip und der ASIC-Chip übereinander angeordnet. Die interne Verschaltung umfasst eine direkte Verschaltung des elektrischen Kontakts des MEMS-Chips mit dem elektrischen Kontakt des ASIC-Chips. Die interne Verschaltung oder zumindest einer der elektrischen Kontakte der Chips ist über die Durchkontaktierung mit dem externen elektrischen Anschluss verschaltet.
Die Durchkontaktierung ist mit einem externen elektrischen Anschluss des Bauelements verschaltet, der auf der dem MEMS- Chip abgewandten Seite des ASIC-Chips oder auf der dem ASIC- Chip abgewandten Seite des MEMS-Chips angeordnet ist.
Zwischen dem MEMS-Chip und dem ASIC-Chip ist ein Spalt angeordnet und in diesem ein Rahmen, der in lateraler
Richtung das Innere des MEMS-Sensor-Bauelements abdichtet. Der MEMS-Chip umfasst mindestens eine Sensorelektrode, die eine bewegliche Elektrode und eine Festelektrode umfassen kann. Eine Sensoröffnung ist direkt im ASIC-Chip angeordnet bzw. führt durch den ASIC Chip hindurch, oder führt von der Seite her in den im Raum zwischen MEMS-Chip und ASIC-Chip angeordneten Spalt. Die Sensoröffnung dient dem Zutritt der auszuwertenden Messgröße (z. B. Schallenergie, Druck, Gas, Feuchte) aus der Umgebung ins Innere des Bauelements.
Durchkontaktierungen in Siliziumchips können beispielsweise so genannte TSVs (Through-Silicon Vias) sein.
Ein solches elektrisches MEMS Sensor-Bauelement weist
dadurch, dass der MEMS-Chip und der ASIC-Chip übereinander angeordnet sind, eine geringe Baugröße auf. Insbesondere der Flächenbedarf des Bauelements ist im Wesentlichen nicht größer als der Flächenbedarf des größeren des MEMS-Chips oder des ASIC-Chips.
Eine Vielzahl gleicher MEMS-Chips kann auf einem ersten Wafer produziert werden, während eine Vielzahl an gleichen ASIC- Chips auf einem zweiten Wafer produziert werden kann. Nach der Herstellung der jeweiligen Wafer können die Vielzahl an MEMS-Chips mit der Vielzahl an ASIC-Chips so verbunden wer¬ den, dass jeweils ein MEMS-Chip mit jeweils einem ASIC-Chip verbunden wird. Eine solche Fertigung im Mehrfachnutzen ermöglicht eine einfache und kostengünstige Herstellung der elektrischen Bauelemente.
Möglich ist es jedoch auch, dass nur eine Sorte ausgewählt aus ASIC-Chips und MEMS-Chips auf einem gemeinsamen Wafer also im Mehrfachnutzen vorliegt und dann mit vereinzelten Chips der jeweils anderen Sorte verbunden wird.
Dadurch, dass der MEMS-Chip und der ASIC-Chip übereinander angeordnet sind und über Durchkontaktierungen durch den MEMS- Chip oder durch den ASIC-Chip direkt miteinander verschaltet sind, sind die elektrischen Leitungen möglichst kurz
ausgeführt. Dies ist vorteilhaft, da ein vom MEMS-Chip detektiertes Signal, welches über die interne Verschaltung an den ASIC-Chip geleitet wird, im Allgemeinen umso mehr und umso größere Störungen aufweist, je länger die elektrische Verbindung vom MEMS-Chip zum ASIC-Chip ist. Kurze elektrische Leitungen ermöglichen also ein weniger mit Störungen
kontaminiertes Signal. Verglichen mit bekannten elektrischen Bauelementen gibt die vorliegende Erfindung also deutlich verbesserte Bauelemente an . In einer Ausführungsform weist der MEMS-Chip eine Unterseite auf. Der ASIC-Chip weist eine Oberseite und eine Unterseite auf. Die Oberseite des ASICChips ist der Unterseite des MEMS- Chips zugewandt. Die Durchkontaktierung verläuft durch den ASIC-Chip. Der externe elektrische Anschluss ist auf der Unterseite des ASIC-Chips angeordnet.
Es ist auch möglich, den externen elektrischen Anschluss auf der Unterseite des MEMS-Chips vorzusehen und den ASIC-Chip auf der Oberseite des MEMS-Chips anzuordnen.
Zur Verbindung des externen elektrischen Anschlusses mit den Bauelementstrukturen des MEMS-Chips oder den
Bauelementstrukturen des ASIC-Chips ist eine
Durchkontaktierung durch denjenigen der beiden Chips
vorgesehen, der die externen elektrischen Anschlüsse trägt.
Bauelementstrukturen des MEMS-Chips und Schaltkreise des ASIC-Chips können sowohl auf der Oberseite der Chips oder auf der Unterseite der Chips angeordnet sein. Bauelement- strukturen des MEMS-Chips und Schaltkreise des ASIC-Chips können aber auch im Innern der jeweiligen Chips angeordnet sein. Durch entsprechende Durchkontaktierungen ist sichergestellt, dass elektrische Verbindungen zwischen elektrischen Schaltungskomponenten oder Bauelementstrukturen entlang kurzer Wege verlaufen.
Das einen MEMS-Chip und einen ASIC-Chip umfassende elektrische Bauelement ist nicht darauf angewiesen, auf einem spe- ziell dafür vorgesehenen Trägersubstrat oder Bauelementträger angeordnet zu werden. Das elektrische Bauelement umfasst einen externen Kontakt, durch den es in eine beliebige externe Schaltungsumgebung integrierbar ist.
Insbesondere ist kein Trägersubstrat nötig, welches die
Funktion des MEMS-Chips (z. B. durch Bereitstellung eines akustischen Rückvolumens ) oder des ASIC-Chips (z. B. durch integrierte weitere Schaltkreise) unterstützt.
In einer Ausführungsform umfasst das Substrat des MEMS-Chips oder das Substrat des ASIC-Chips Silizium. Silizium ist ein hochrein und einkristallin herstellbares Element, dessen Herstellung und Verarbeitung durch den umfangreichen Erfahrungs- schätz der Halbleitertechnologie beherrscht wird. Aus der
Halbleitertechnologie bekannte Verfahren ermöglichen deshalb eine zuverlässige Prozessierung beziehungsweise Herstellung des MEMS-Chips und / oder des ASIC-Chips. In einer Ausführungsform ist der elektrische Kontakt des
MEMS-Chips mit dem elektrischen Kontakt des ASIC-Chips verlö¬ tet. Alternativ kommt eine Verklebung mittels eines elekt¬ risch leitenden Kunststoffs, eine Verschaltung über Bond-Verbindungen oder ein Zusammenschweißen der Chips in Frage.
Bei der Verwendung von elektrisch leitendem Kleber kann ein anisotrop leitender Kleber verwendet werden. Dann kann mit diesem Kleber, der großflächig auf eine der einander
zugewandten Seiten der Chips oder strukturiert z.B. in Form eines Kleberahmen aufgebracht sein kann, sowohl eine
Abdichtung des Spalts zwischen MEMS-Chip und ASIC-Chip nach außen als auch eine elektrische Kontaktierung zwischen den Chips realisiert sein. In einer Ausführungsform ist zwischen den Chips ein Spalt angeordnet. Der Spalt kann durch einen ringförmigen Rahmen, z. B. durch den Kleberahmen oder einen anderen Dichtungsring, hermetisch oder akustisch abgedichtet sein. Dann kann der ringförmige und z.B. aus Kunststoff, Glas, Keramik oder
Metall bestehende Rahmen zusammen mit dem oberen und dem unteren Chip einen Hohlraum zwischen dem oberen und dem unteren Chip einschließen und einen ringförmigen Verschluss bilden. In dem Hohlraum können Bauelementstrukturen des MEMS- Chips oder Schaltungselemente des ASIC-Chips angeordnet sein.
Eine Abdichtung des elektrischen MEMS-Sensor-Bauelements kann auch nach dem Verbinden der beiden Chips hergestellt werden. Der ringförmige Verschluss kann beispielsweise durch
Laminieren einer Folie über den kleineren der Chips oder durch Auftragen eines Polymermaterials ebenda erfolgen. Die beiden Chips können in Flip-Chip-Bauweise miteinander
verbunden und verschaltet sein.
Die Abdichtung kann auch durch Laminieren einer Folie über den oberen der Chips oder durch Auftragen eines
Polymermaterials ebenda erfolgen, z. B. dann, wenn beide Chips die gleichen lateralen Abmessungen aufweisen.
Der Rahmen kann ein strukturierter Polymerrahmen sein. Der Rahmen kann vor dem paarweisen Vereinigen der Chips auf dem MEMS-Chip oder auf dem ASIC-Chip oder zu Teilen auf beiden Chips angeordnet werden und einen Spalt zwischen den Chips nach dem Verbinden der Chips nach außen abdichten. Wird auf Waferlevel gearbeitet, kann der Polymerrahmen auch bereits auf einem oder beiden Wafern vorgesehen werden. Der Rahmen kann das gleiche Material wie die elektrischen Verschaltungen der Chips umfassen. Insbesondere kann der Rahmen eine Verlötung, eine sogenannte Solid-Liquid- Interdiffusions-Lötung, einen elektrisch leitenden Kleber oder zwei auf die beiden Chips verteilte Metall-Teilrahmen, die unter Druck- und Temperatureinwirkung zusammengebondet sind, umfassen.
Bauelementstrukturen des MEMS-Chips können gegenüber äußeren Einflüssen abgekapselt sein. Dann sind sie beispielsweise ge¬ genüber Verunreinigungen bei der Herstellung, z. B. der
Verlötung oder Verschaltung oder Verbindung auf einer Leiterplatte / Montageplatte oder bei der Vereinigung mit dem ASIC- Chip geschützt.
Eine Verkapselung des Bauelements oder eine Abdichtung des Spalts zwischen MEMS-Chip und ASIC-Chip nach außen kann eine Folie umfassen, die die Oberseite sowie seitliche Flächen des oberen Chips bedeckt und, z. B. ringsum geschlossen
anliegend, dicht mit der Oberseite oder den seitlichen
Flächen des unteren Chips abschließt. Eine solche Folie kann ein, z. B. bereits teilweise vernetztes, Epoxydharz oder ein B-Stage Material umfassen. Eine solche Folie kann zusätzlich teilweise oder vollständig mit einer Metallisierungsschicht bedeckt sein.
Anstelle dieser Folie oder ergänzend zur elektrischen
Isolation vor Aufbringen der genannten Metallisierung kann eine dielektrische Schicht aufgebracht werden, z. B. durch Sprühen von Lack oder Gasphasenabscheidung von Oxiden,
Nitriden oder Polymeren wie z.B. Parylene.
In einer Ausführungsform ist das Bauelement auf der Oberseite einer Montageplatte, die einen elektrischen Anschluss auf- weist, angeordnet. Der externe elektrische Anschluss des Bauelements ist mit dem elektrischen Anschluss der Montage¬ platte verschaltet. Diese Montageplatte kann eine beliebige Montageplatte einer externen Schaltungsumgebung sein. Die Montageplatte ist für die Funktionsfähigkeit des elektrischen Bauelements nicht zwingend erforderlich.
Der MEMS-Chip oder der ASIC-Chip kann Kontaktpads auf der Unterseite, z. B. für eine Kontaktierung mit einer Montage- platte, umfassen.
In einer Ausführungsform umfasst der MEMS-Chip einen Hohlraum, eine mit einer Elektrode versehene bewegliche Membran, die den Hohlraum an einer Seite verschließt, sowie eine vorzugsweise parallel zur Membran angeordnete Gegenelektrode, die auf der vom Hohlraum abgewandten Seite der Membran angeordnet ist. Die bewegliche Membran bildet mit der
Gegenelektrode ein kapazitives Element. Der ASIC-Chip umfasst eine Schaltung zur Bestimmung der Kapazität oder zur
Feststellung von Kapazitätsänderungen des kapazitiven
Elements. Ein solches elektrisches Bauelement kann ein MEMS- Mikrofon darstellen. Die bewegliche Membran reagiert auf den zeitlich variierenden Luftdruck einer empfangenen
Schallwelle. Dadurch, dass der Abstand zwischen der
Gegenelektrode und der Membran sich mit der Frequenz der eintreffenden Schallwellen ändert, kodiert die
abstandsabhängige Kapazität des kapazitiven Elements den per Schall übertragenen Ton. Der ASIC-Chip kann eine Schaltung umfassen, welche an den beiden Elektroden des kapazitiven Elements, z. B. über einen hochohmigen Widerstand und eine Ladungspumpe, die im kapazi¬ tiven Element gespeicherte elektrische Ladung im Wesentlichen konstant hält und somit eine BIAS Spannung erzeugt. Eine weitere Schaltung des ASIC-Chips kann die am kapazitiven Element abfallende zeitlich veränderliche Spannung
detektieren und mittels eines Analog-Digital-Wandlers in ein digitales Signal umwandeln. Das digitale Signal kann bei¬ spielsweise am externen elektrischen Anschluss des elektrischen Bauelements für eine externe Schaltungsumgebung zur Verfügung gestellt werden.
Die Gegenelektrode des MEMS-Chips kann dabei zwischen dem ASIC-Chip und der Membran angeordnet sein. Es auch möglich, dass die Membran zwischen dem ASIC-Chip und der
Gegenelektrode angeordnet ist.
Die Membran ist über die Sensoröffnung mit der Umgebung verbunden .
In einer Ausführungsform weist der MEMS-Chip Bauelementstrukturen zur Bestimmung von Luftdruck, Feuchtigkeit oder der Zusammensetzung eines Gases auf. Die Bauelementstrukturen stehen in Kontakt mit der das Bauelement umgebenden Atmosphäre. Ein elektrisches Bauelement zur Bestimmung des Luftdrucks kann beispielsweise einen geschlossen Hohlraum mit einem definierten Innendruck umfassen. Den geschlossen Hohlraum umgibt eine Wand, die zumindest in einem Abschnitt elastisch verformbar ist. Ändert sich der Luftdruck der das elektrische Bauelement umgebenden Atmosphäre, so reagiert die elastische Wand aufgrund der unterschiedlichen Kraftverhältnisse innen und außen auf den Über- oder Unterdruck des Hohlraums durch eine elastische Verformung. Eine solche elastische Verformung der elastischen Wand kann beispielsweise mittels einer auf der elastischen Wand angebrachten Widerstandsstruktur
beziehungsweise einer Änderung deren elektrischen Widerstands detektiert werden. So sind mit dem Bauelement Änderungen des Luftdrucks messbar, die einem Höhenunterschied - auf Meeres¬ höhe - von etwa einem Dezimeter entsprechen. Ein erfindungsgemäßes elektrisches Bauelement kann auch als Gassensor ausgestaltet sein.
Jeder der beiden Chips oder beide Chips oder das gesamte elektrische Bauelement kann eine äußere Metallisierung zum Schutz, zur elektromagnetischen Abschirmung oder zur hermetischen Verkapselung umfassen. Eine solche Metallisierung schützt beispielsweise vor mechanischen Beschädigungen oder vor HF-Einstrahlungen. Die Metallisierung kann durch das Auflaminieren einer Folie und durch Sputtern oder galvanisch aufgebracht werden.
Es kann erforderlich sein, diese Schirmmetallisierung
elektrisch vom Chipkörper zu isolieren. Dennoch wird die Schirmmetallisierung in aller Regel definiert mit einem geeigneten Potential (z.B. Masse) der Anordnung oder einem externen Anschluss verbunden.
In einem Ausführungsbeispiel kann der kleinere der beiden Chips durch einen Mold-Prozess in seiner geometrischen Bau- form, z. B. in seinen lateralen Abmessungen oder in seinem
Volumen, vergrößert sein. Dazu werden die Chips z. B. in ei¬ ner rasterförmigen Anordnung auf eine Folie geklebt und Bereiche zwischen den Chips mit einer Moldmasse aufgefüllt. Der so hergestellte neue Wafer wird dann mit Durchkontaktierungen und einer Verdrahtungsebene versehen. Dieser „vergrößerte"
Wafer wird dann in einem der oben angegebenen Prozessabläufe verwendet . Bei einer derartigen Vergrößerung von Chips kann im ersten Schritt quasi durch Molden aus einzelnen im Nutzen angeordneten Chips ein neuer Wafer erzeugt werden. In folgenden
Schritten können Durchkontaktierungen oder Öffnungen, z. B. Schallöffnungen, auch im Bereich der Moldmasse angeordnet werden. Durchkontaktierungen oder Öffnungen können alternativ auch bereits beim Molden erzeugt und z. B. durch die Anord¬ nung von Stiften in der Moldform ausgespart werden. Die vergrößerten Abmessungen erleichtern dabei die Anordnung solcher Öffnungen, Durchkontaktierungen oder zusätzlicher Verdrahtungen auf oder an dem jeweiligen Chip.
In einer ähnlichen Ausführung wird der neue Mehrfachnutzen erzielt, indem die ASIC-Chips in eine organische Leiterplatte einlaminiert werden, die wiederum Durchkontaktierungen und Verdrahtungsstrukturen enthält.
Möglich ist es auch, für ein einziges Bauelements mehrere MEMS-Chips auf einem ASIC-Chip oder mehrere ASIC-Chips auf einem MEMS-Chip zu montieren.
Das Material von MEMS-Chip und ASIC-Chip kann so gewählt sein, dass mechanische Verspannungen zwischen den Chips, welche die mechanische Verbindung zwischen den Chips oder die elektrische Verschaltung zwischen den Chips belasten, vermindert sind. Insbesondere kann es vorgesehen sein, dass das Substrat des MEMS-Chips und das Substrat des ASIC-Chips das gleiche Material umfassen. In einer Ausführungsform ist das elektrische Bauelement als Mikrofon ausgebildet. Zwischen dem MEMS-Chip und dem ASIC- Chip verbleibt ein Spalt. Im Spalt ist ein das Innere des Bauelements akustisch abdichtender ringförmig geschlossener Rahmen angeordnet. Der MEMS-Chip umfasst eine Gegenelektrode und eine Membran. Im ASIC-Chip oder im Rahmen ist eine
Schalleintrittsöffnung angeordnet. Der MEMS-Chip und der ASIC-Chip können dieselben lateralen Abmessungen aufweisen. Auf der dem MEMS-Chip abgewandten Seite des ASIC-Chips ist der externe elektrische Anschluss angeordnet. Der MEMS-Chip, der ASIC-Chip und vorzugsweise auch der Rahmen schließen dann in lateraler Richtung am Mikrofon bündig miteinander ab. Neben der einen Schalleintrittsöffnung im ASIC-Chip oder im
Rahmen können weitere Schalleintrittsöffnungen, z. B. jeweils mit ca. 30 μιη Durchmesser, angeordnet sein. Ein Vielzahl kleinerer Öffnungen ermöglicht einen guten Schalleintritt bei verbessertem Schutz gegen Schmutzpartikel.
Ein Verfahren zur Herstellung eines elektrischen Bauelements umfasst folgende Schritte:
- Bereitstellen eines ASIC-Chips mit einem elektrischen Kontakt und eines MEMS-Chips mit einem elektrischen Kontakt, - Herstellen einer Durchkontaktierung durch den MEMS-Chip oder durch den ASIC-Chip,
- Anordnen des ASIC-Chips und des MEMS-Chips übereinander,
- Verbinden von ASIC-Chip und MEMS-Chip,
- Verschalten der elektrischen Kontakte des ASIC-Chips und des MEMS-Chips
- Vorsehen einer Sensoröffnung im ASIC-Chip oder zwischen ASIC-Chip und MEMS-Chip.
In einer Ausführungsform des Verfahrens wird der ASIC-Chip oder der MEMS-Chip in einem Mehrfachnutzen auf einem Wafer zur Verfügung gestellt und mit vereinzelten zweiten Chips verbunden. Insbesondere die massentaugliche Herstellung mit- tels Wafer ermöglicht es, erfindungsgemäße elektrische Bau¬ elemente effizient, einfach und kostengünstig herzustellen.
In einer Ausführungsform werden der ASIC-Chip und der MEMS- Chip jeweils in Mehrfachnutzen auf je einem Wafer zur Verfügung gestellt. Die Wafer werden so zusammengefügt, dass je ein ASIC-Chip mit je einem MEMS-Chip verbunden und verschaltet wird. Die Vereinzelung der elektrischen Bauelemente kann nach dem Zusammenfügen und verschalten z. B. mittels Laser oder mittels Sägeverfahren erfolgen.
In einer Ausführungsform wird eine Öffnung, z. B. eine
Schalleintrittsöffnung, durch den ASIC-Chip geätzt. Es ist auch möglich, statt einer großen Öffnung eine entsprechende Vielzahl an kleineren Öffnungen zu ätzen. Das Ätzen kleinerer Öffnungen kann dabei verfahrenstechnische Vorteile aufweisen. Eine oder mehrere Sensoröffnungen im Rahmen können beim
Herstellen des Rahmens direkt oder hinterher durch
Strukturierung erzeugt werden. Besteht der Rahmen aus zwei Teilrahmen, die auf den einander zugewandten Oberflächen beider Chips verteilt sind, kann eine Sensoröffnung auch nur in einem der beiden Teilrahmen vorgesehen werden.
Zusätzlich können Verspannungen im MEMS-Chip, im ASIC-Chip oder zwischen den Chips durch die Verwendung flexibler Befestigungen und / oder Verschaltungen reduziert sein. Dazu kommen insbesondere Polymer-Bumps mit spiraligen Kupferleitun¬ gen, ACA-Verbindungen (Anistropic Conductive Adhesive-Verbin- dungen) beziehungsweise flexible ICA-Verbindungen (Isotropie Conductive Adhesive-Verbindungen) in Frage.
Ist ein Chip des elektrischen Bauelements mit einer Montage¬ platte verbunden, so können auf der der Montageplatte zuge- wandten Seite des entsprechenden Chips des Bauelements eben¬ falls Maßnahmen zur Verminderung von mechanischen Stressbelastungen getroffen sein. Insbesondere kann auf der einer Montageplatte zugewandten Seite des Bauelements eine hoch flexible Polymerlage mit an die Montageplatte angepasstem CTE (CTE = coefficient of thermal expansion = thermischer Ausdehnungskoeffizient) oder niedrigem Elastizitätsmodul im rele¬ vanten Temperaturbereich aufgebracht sein. Als Verbindung und Verschaltung zwischen den Chips oder zwischen dem Bauelement und einer Montageplatte kommen LGA (land grid array) bezie¬ hungsweise BGA (ball grid array) Verbindungen in Frage. Diese können flexibel gestaltet sein.
Ein ASIC-Chip kann eine Ladungspumpe umfassen, um höhere Spannungen als die der Versorgungsspannung zu ermöglichen.
Insbesondere die Spannung, mit der das kapazitive Element ei¬ nes MEMS-Mikrofons aufgeladen ist, liegt mit etwa zehn Volt deutlich über üblichen Betriebsspannungen und kann im ASIC erzeugt werden.
Durchkontaktierungen durch den MEMS-Chip oder durch den ASIC- Chip ermöglichen das Anordnen und Verschalten von Bauelementstrukturen oder integrierten Schaltungen an beliebigen und gleichzeitig an unterschiedlichen Stellen der Chips. Der Freiheitsgrad beim Entwerfen des elektrischen Bauelements ist so deutlich erhöht.
Im Folgenden wird das elektrische Bauelement anhand von Aus¬ führungsbeispielen und zugehörigen schematischen Figuren nä- her erläutert. Es zeigen:
Figur 1 ein elektrisches Bauelement mit einem MEMS-Chip und einem ASIC-Chip,
Figur 2 ein elektrisches Bauelement mit einer Gegenelektrode und einer Membran als Bauelementstruktur,
Figur 3 den Grundriss eines elektrischen Bauelements mit ei¬ nem Rahmen, der elektrische Kontakte umschließt,
Figur 4 ein elektrisches Bauelement, das auf einer Montage¬ platte angeordnet ist,
Figur 5 ein elektrisches Bauelement, dessen MEMS-Chip einen Deckel oder eine elastische Wand umfasst,
Figur 6 einen Wafer, auf dem elektrische Bauelemente, ASIC- Chips oder MEMS-Chips angeordnet sind,
Figur 7 ein elektrisches Bauelement mit den oberen Chip be¬ deckender Folie,
Figur 8 ein Bauelement mit einer im ASIC-Chip angeordneten Öffnung .
Figur 1 zeigt ein elektrisches MEMS-Sensor-Bauelement EB mit einem MEMS-Chip MC und einem ASIC-Chip AC . Der MEMS-Chip MC hat eine Oberseite OSM und eine Unterseite USM. Als Unter¬ seite wird in diesem und den folgenden Ausführungsbeispielen immer die Seite bezeichnet, in die die externen elektrischen Anschlüsse EEA des Bauelements weisen, die sich an der
Unterseite des in der Figur unteren Chips befinden. Der ASIC- Chip AC hat ebenfalls eine Oberseite OSA und eine Unterseite USA . Der MEMS-Chip MC ist so auf dem ASIC-Chip angeordnet, dass die Unterseite USM des MEMS-Chips MC der Oberseite OSA des ASIC-Chips AC zugewandt ist. Der MEMS-Chip MC umfasst elektrische Kontakte EK, die an seiner Unterseite angeordnet sind. Der ASIC-Chip umfasst elektrische Kontakte EK, die an seiner Oberseite OSA angeordnet sind. Die elektrischen
Kontakte an der Unterseite des MEMS-Chips sind mit den elektrischen Kontakten an der Oberseite des ASIC-Chips verschaltet und stellen zumindest einen Teil der integrierten Verschaltungen IV des elektrischen Bauelements EB dar.
Die Bauelementestrukturen des ASIC können hier wie auch in den übrigen Ausführungsbeispielen auf der Seite mit den externen elektrischen Anschlusskontakten EEA oder - bevorzugt - auf der dem MEMS-Chip zugewandten Seite liegen.
Im Inneren des ASIC-Chips AC sind Durchkontaktierungen DK angeordnet, welche einen oder mehrere der elektrischen
Kontakte oder die interne Verschaltung mit externen
elektrischen Anschlüssen EEA, die an der Unterseite des ASIC- Chips angeordnet sind, verschalten. Das Bauelement EB kann einen oder mehrere elektrische externe Anschlüsse umfassen. Über diesen einen oder diese mehrere elektrische Anschlüsse kann das Bauelement EB mit einer externen Schaltungsumgebung (hier nicht gezeigt) verschaltet sein.
Die elektrischen Kontakte EK des MEMS-Chips MC und des ASIC- Chips AC sind auf dem kürzest möglichen Weg miteinander ver- schaltet. Dadurch ist die Störanfälligkeit des elektrischen
Bauelements reduziert. Außerdem wird durch die angegebene An¬ ordnung und Verschaltung von MEMS-Chip MC und ASIC-Chip AC ein kompaktes elektrisches Bauelement mit einer geringen Bau¬ größe erhalten.
Figur 2 zeigt eine Ausgestaltung des elektrischen Bauele- ments, welches eine Gegenelektrode RP, im Englischen auch Backplate genannt, und eine Membran M als
Bauelementstrukturen BS umfasst. Diese Ausführungsform umfasst ferner Durchkontaktierungen DK durch den MEMS-Chip, so dass die Bauelementstrukturen BS des MEMS-Chips, welche an seiner Oberseite angeordnet sind, über eine interne Verschal- tung und über Durchkontaktierungen durch den ASIC-Chip mit elektrischen externen Anschlüssen EEA des Bauelements an der Unterseite des ASIC-Chips verschaltet sind. Zwischen dem MEMS-Chip MC und dem ASIC-Chip AC ist ein Spalt angeordnet, dessen Höhe im Wesentlichen den Abstand zwischen MEMS-Bauelement und ASIC-Chip bestimmt. Ein ringförmig ge¬ schlossener Rahmen R umschließt den Spalt zwischen den Chips. Stellen beispielsweise die Gegenelektrode RP und die Membran M die beiden Elektroden des kapazitiven Elements eines MEMS- Mikrofons dar, so ist durch den Rahmen R ein hermetisch abgedichtetes Rückvolumen im Inneren des MEMS-Chips und zwi¬ schen dem MEMS-Chip und dem ASIC-Chip gebildet. Der MEMS-Chip umfasst als Bauelementstrukturen BS eine bewegliche Membran M und eine Backplate als Gegenelektrode RP, die zusammen ein kapazitives Element KE eines Mikrofons bilden . Figur 3 zeigt einen Querschnitt parallel zur Oberseite des ASIC-Chips durch ein elektrisches Bauelement, bei dem ein Rahmen R elektrische Kontakte EK, welche Teil der inneren Verschaltung des elektrischen Bauelements sind, ringförmig umschließt. Der Begriff „ringförmig" ist dabei nicht auf die geometrische Form des Rahmens bezogen. Vielmehr bezieht sich der Begriff „ringförmig" auf eine geschlossene Kurve. Figur 4 illustriert ein elektrisches Bauelement, welches auf einer Montageplatte MP angeordnet und mit elektrischen
Kontakten auf der Oberfläche der Montageplatte verschaltet ist. Eine solche Anordnung stellt eine Möglichkeit dar, um das elektrische Bauelement mit einer externen Verschaltung zu verschalten.
Im Innern des MEMS-Chips ist ein Hohlraum H angeordnet. Den Hohlraum H auf einer Seite begrenzend sind
Bauelementstrukturen, z. B. eine Membran M angeordnet. Auf der anderen Seite ist der Hohlraum des Mikrofons mit einer rückseitigen Abdeckung RA abgedeckt, beispielsweise einer PI- Folie. Die rückseitige Abdeckung kann aber auch eine Platte sein, z. B. aus Keramik, Silizium, Metall oder Glas. Ein nicht vollständig geschlossener Rahmen ist zwischen dem oberen Chip und dem unteren Chip angeordnet. Rechts ist ein Querschnitt durch den Rahmen gezeigt. Links fehlt ein Ab¬ schnitts des Rahmens, so dass dort eine Sensoröffnung, z. B. eine Schalleintrittsöffnung ausgebildet ist. Schall kann somit zwischen den elektrischen Verbindungen zwischen den Chips ins Innere des Bauelements bzw. in den Raum zwischen den beiden Chips gelangen. Somit ist ein elektrisches Bau¬ element mit seitlicher Sensoröffnung (z. B. als
Schalleintritt) gebildet.
Figur 5 zeigt ein elektrisches Bauelement, bei dem zwischen dem MEMS-Chip MC und dem ASIC-Chip AC ein Spalt S angeordnet ist . Eine Durchkontaktierung DK führt nicht nur durch den MEMS— Chip sondern auch durch die rückseitige Abdeckung RA des MEMS-Chips MC. Diese kann elastisch verformbar sein und elektrische Widerstandselemente umfassen, deren elektrischer Widerstand von der Verformung der rückseitigen Abdeckung RA abhängt. Diese Widerstandselemente können auf der Oberseite des Deckel aufgebracht oder in die Oberseite des Deckels implantiert sein. Die Durchkontaktierung DK führt durch den Deckel und kann somit die Widerstandselemente mit der internen Verschaltung verschalten.
Figur 6 zeigt einen Wafer W, auf dessen Oberseite eine Viel¬ zahl elektrischer Bauelemente, ASIC-Chips AC oder MEMS-Chips MC nebeneinander angeordnet sind. Die elektrischen
Bauelemente, ASIC-Chips oder MEMS-Chips können auf dem Wafer montiert oder gemeinsam parallel hergestellt und im Wafer integriert sein. Die einzelnen Chips lassen sich in hoher Zahl gleichzeitig herstellen. Ein Wafer mit ASIC-Chips kann nach dessen Herstellung mit einem Wafer mit hergestellten MEMS-Chips MC so verbunden werden, dass je genau ein ASIC- Chip mit je genau einem MEMS-Chip verbunden und verschaltet ist. Die einzelnen Chips können vor oder nach ihrer
Verbindung mit dem jeweils anderen Chip vereinzelt werden. Vorteilhaft ist es, zuerst die Wafer mit den anderen Chips zu verbinden und anschließend die fertig gestellten elektrischen Bauelemente zu vereinzeln.
Figur 7 zeigt eine Ausführungsform, bei der der obere Chip MC eine Verkapselung durch eine Folie F und eine
Metallisierungsschicht MS umfasst. Die Folie bedeckt die Oberseite sowie seitlichen Flächen des oberen Chips. Sie schließt dicht mit einem Bereich der Oberseite oder der seitlichen Flächen des unteren Chips ab. Sie kann durch Auflaminieren hergestellt sein. Der Hohlraum im MEMS-Chip MEMS-Chip kann vor dem Laminieren durch die rückseitige
Abdeckung verschlossen sein, um ein Eindringen der
Laminierfolie in den Hohlrum H während des Auflaminierens zu verhindern. Die Verkapselung dichtet einen zwischen den Chips angeordneten Spalt hermetisch oder zumindest akustisch nach außen ab. Eine solche Abdichtung kann nach der Verbindung der beiden Chips erfolgen. In der dargestellten Ausführungsform ist die Sensoröffnung 0 durch den ASIC Wafer hindurch vorgesehen. Möglich ist jedoch auch, die Sensoröffnung in der Verkapselung durch die Folie F und die Metallisierungsschicht MS vorzusehen und
insbesondere nachträglich herzustellen. Zwischen den beiden Chips kann ein Rahmen R vorgesehen sein, der den Abstand zwischen den beiden Chips und somit u. a. auch das zwischen den beiden Chips eingeschlossene Volumen bestimmt.
Figur 8 zeigt eine Ausgestaltung des elektrischen Bauelements als Mikrofon, wobei der MEMS-Chips MC oberhalb des ASIC-Chips AC angeordnet ist. Zwischen den Chips MC, AC ist ein Spalt angeordnet. Im Spalt ist ein Rahmen R, der das Innere des Bauelements in lateraler Richtung zumindest akustisch
abdichtet, angeordnet. Bauelementstrukturen des MEMS-Chips umfassen eine perforierte Gegenelektrode (Backplate) und eine Membran. Eine Öffnung 0 führt durch den ASIC-Chip und stellt eine Schalleintrittsöffnung dar. Auf der Oberseite des ASIC- Chips sind digitale und/oder analoge Schaltkreise angeordnet und mit den Bauelementstrukturen des MEMS-Chips verschaltet.
Der MEMS-Chip, der ASIC-Chip und gegebenenfalls auch der dazwischen angeordnete Rahmen sind in lateraler Richtung bündig angeordnet. Solche „glatten" Seitenwände werden z. B. dadurch erhalten, dass eine Vielzahl an MEMS-Chips und eine Vielzahl an ASIC-Chips jeweils im Mehrfachnutzen hergestellt und anschließend miteinander verbunden und verschaltet werden, bevor die einzelnen Bauelemente, z. B. durch Sägen, vereinzelt werden.
Auch diese Ausführung kann zusätzlich mit einer schirmenden Metallschicht und ggfs. darunter angeordneter
Isolationsschicht versehen werden.
Ein elektrisches Bauelement ist nicht auf eine der beschrie¬ benen Ausführungsbeispiele beschränkt. Variationen, welche z. B. noch weitere Chips oder andere Bauelementstrukturen oder elektrische Kontakte oder beliebige Kombinationen daraus umfassen, stellen ebenso erfindungsgemäße Ausführungsbei¬ spiele dar.
Bezugs zeichenliste
AC ASIC-Chip
BS Bauelementstrukturen
RA Rückseitige Abdeckung
DK Durchkontaktierung
EB MEMS Sensor Bauelement
EEA externer elektrischer Anschluss
EK elektrischer Kontakt
IC integrierte Schaltungen
IV interne Verschaltung
KE kapazitives Element
M Membran
MC MEMS-Chip
MP Montageplatte
0 Öffnung
OSM, OSA Oberseite von MEMS-Chip und ASIC-Chip
R Rahmen
RP Gegenelektrode (Backplate)
S Spalt
H Hohlraum
afer

Claims

Patentansprüche
1. MEMS-Sensor-Bauelement (EB) , umfassend
- einen MEMS-Chip (MC) mit einem elektrischen Kontakt (EK) , - einen ASIC-Chip (AC)mit einem elektrischen Kontakt (EK) ,
- eine internen Verschaltung (IV) von MEMS-Chip (MC) und ASIC-Chip (AC) , und
- eine Durchkontaktierung (DK) durch den MEMS-Chip (MC) oder durch den ASIC-Chip (AC) ,
wobei
- der MEMS-Chip (MC) und der ASIC-Chip (AC) übereinander angeordnet sind,
- die interne Verschaltung (IV) eine direkte Verschaltung des elektrischen Kontakts (EK) des MEMS-Chips (MC) mit dem elektrischen Kontakt (EK) des ASIC-Chips (AC) umfasst, - die interne Verschaltung (IV) oder zumindest einer der
elektrischen Kontakte (EK) der Chips (MC, AC) über die
Durchkontaktierung (DK) mit einem externen elektrischen
Anschluss (EEA) des Bauelements verschaltet ist, der auf der dem MEMS-Chip (MC) abgewandten Seite des ASIC-Chips (AC) oder auf der dem ASIC-Chip (AC) abgewandten Seite des MEMS-Chip (MC) angeordnet ist,
- zwischen dem MEMS-Chip (MC) und dem ASIC-Chip (AC) ein Spalt (S) angeordnet ist,
- im Spalt (S) ein in lateraler Richtung das Innere des MEMS- Sensor-Bauelements akustisch abdichtender Rahmen (R)
angeordnet ist,
- der MEMS-Chip (MC) eine Sensorelektrode umfasst, und
- im ASIC-Chip (AC) oder seitlich zwischen MEMS-Chip und ASIC-Chip eine Sensoröffnung (0) angeordnet ist.
2. Bauelement nach dem vorherigen Anspruch, bei dem - der MEMS-Chip (MC) eine Unterseite (USM) aufweist und der ASIC-Chip (AC) eine Oberseite (OSA) und eine Unterseite (USA) aufweist,
- die Oberseite (OSA) des ASIC- Chips (AC) der Unterseite (USM) des MEMS-Chips (MC) zugewandt ist,
- die Durchkontaktierung (DK) durch den ASIC-Chip (AC) verläuft und
- der externe elektrische Anschluss (EEA) auf der Unterseite (USA) des ASIC-Chips angeordnet ist.
3. Bauelement nach Anspruch 1, bei dem
- der ASIC-Chip (AC) eine Unterseite (USA) aufweist und der MEMS-Chip (MC) eine Oberseite (OSM) und eine Unterseite (USM) aufweist,
- die Oberseite (OSM) des MEMS- Chips (MC) der Unterseite (USA) des ASIC-Chips (AC) zugewandt ist,
- die Durchkontaktierung (DK) durch den MEMS-Chip (MC) verläuft und
- der externe elektrische Anschluss (EEA) auf der Unterseite (USM) des MEMS-Chips angeordnet ist.
4. Bauelement nach einem der vorhergehenden Ansprüche, wobei das Substrat des MEMS-Chips (MC) oder des ASIC-Chips (AC) Silizium umfasst.
5. Bauelement nach einem der vorhergehenden Ansprüche, wobei der elektrische Kontakt (EK) des MEMS-Chips (MC) mit dem elektrischen Kontakt (EK) des ASIC-Chips (AC) verlötet, durch einen elektrisch leitenden Klebstoff verklebt, über eine Bondverbindung verschaltet oder zusammengeschweißt ist.
6. Bauelement nach einem der vorhergehenden Ansprüche, wobei - das Bauelement (EB) auf der Oberseite einer Montageplatte (MP) mit einem elektrischen Anschluss angeordnet ist und
- der externe elektrische Anschluss (EEA) mit dem
elektrischen Anschluss der Montageplatte (MP) verschaltet ist .
7. Bauelement nach einem der vorhergehenden Ansprüche, wobei
- der MEMS-Chip (MC) einen Hohlraum (H) , eine bewegliche Membran (M) , eine Gegenelektrode (RP) und eine Öffnung (0) zum Hohlraum (H) umfasst,
- die bewegliche Membran (M) parallel zur Gegenelektrode (RP) angeordnet ist und mit dieser ein kapazitives Element (KE) bildet und
- der ASIC-Chip (AC) eine Schaltung zur Bestimmung der
Kapazität oder zur Bestimmung von Kapazitätsänderungen des kapazitiven Elements (KE) umfasst.
8. Bauelement nach einem der Ansprüche 1-5,
- bei dem der MEMS-Chip (MC) Bauelementstrukturen (BS) zur Bestimmung von Luftdruck, Feuchtigkeit oder
Gaszusammensetzung aufweist und
- bei dem die Bauelementstrukturen (BS) in Kontakt mit der das Bauelement (BE) umgebenden Atmosphäre stehen.
9. Bauelement nach einem der vorhergehenden Ansprüche, wobei zumindest zwei aus MEMS-Chip (MC) , ASIC-Chip (AC) und Rahmen in lateraler Richtung bündig abschließen.
10. Bauelement nach einem der vorhergehenden Ansprüche, wobei der MEMS-Chip als Mikrofon ausgebildet ist
- der MEMS-Chip (MC) eine eine Festelektrode als
Gegenelektrode (RP) und eine Membran (M) umfasst.
11. Verfahren zur Herstellung eines MEMS-Sensor-Bauelements (BE) , umfassend die Schritte
- Bereitstellen eines ASIC-Chips (AC) mit einem elektrischen Kontakt (EK) und eines MEMS-Chips (MC) mit einem elektrischen
Kontakt (EK) ,
- Herstellen einer Durchkontaktierung (DK) durch den MEMS- Chip (MC) oder durch den ASIC-Chip (AC) ,
- Anordnen des ASIC-Chips (AC) und des MEMS-Chips (MC) übereinander,
- Verbinden von ASIC-Chip (AC) und MEMS-Chip (MC) ,
- Verschalten der elektrischen Kontakte (EK) des ASIC-Chips (AC) und des MEMS-Chips (MC)
-wobei eine Sensoröffnung im ASIC-Chip (AC) oder zwischen ASIC-Chip (AC) und MEMS-Chips (MC) nach außen vorgesehen wird .
12. Verfahren nach dem vorhergehenden Anspruch, wobei der ASIC-Chip (AC) oder der MEMS-Chip (MC) in einem
Mehrfachnutzen auf einem Wafer (W) zur Verfügung gestellt werden .
13. Verfahren nach dem vorhergehenden Anspruch, wobei der ASIC-Chip (AC) und der MEMS-Chip (MC) jeweils in
Mehrfachnutzen auf je einem Wafer (W) zur Verfügung gestellt werden und die Wafer (W) so zusammengefügt werden, dass je ein ASIC-Chip (AC) mit je einem MEMS-Chip (MC) verbunden und verschaltet wird.
14. Verfahren nach dem vorhergehenden Anspruch, wobei zwischen ASIC-Chip (AC) und MEMS-Chips (MC) ein Rahmen (R) angeordnet wird, der mit je einer Oberfläche von ASIC-Chip (AC) und MEMS-Chip (MC) abschließt, so dass zwischen ASIC- Chip (AC) , MEMS-Chips (MC) und Rahmen (R) je ein bis auf die Sensoröffnung abgedichteter Hohlraum eingeschlossen wird.
PCT/EP2011/050902 2010-01-29 2011-01-24 Miniaturisiertes elektrisches bauelement mit einem mems und einem asic und herstellungsverfahren WO2011092137A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012550407A JP5763682B2 (ja) 2010-01-29 2011-01-24 Mems及びasicを備える小型化した電気的デバイス及びその製造方法
GB1211029.2A GB2493246B (en) 2010-01-29 2011-01-24 Miniaturized electrical component comprising an MEMS and an ASIC and production method
US13/520,923 US9056760B2 (en) 2010-01-29 2011-01-24 Miniaturized electrical component comprising an MEMS and an ASIC and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010006132.8 2010-01-29
DE102010006132A DE102010006132B4 (de) 2010-01-29 2010-01-29 Miniaturisiertes elektrisches Bauelement mit einem Stapel aus einem MEMS und einem ASIC

Publications (2)

Publication Number Publication Date
WO2011092137A2 true WO2011092137A2 (de) 2011-08-04
WO2011092137A3 WO2011092137A3 (de) 2011-12-22

Family

ID=44315927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/050902 WO2011092137A2 (de) 2010-01-29 2011-01-24 Miniaturisiertes elektrisches bauelement mit einem mems und einem asic und herstellungsverfahren

Country Status (5)

Country Link
US (1) US9056760B2 (de)
JP (1) JP5763682B2 (de)
DE (1) DE102010006132B4 (de)
GB (1) GB2493246B (de)
WO (1) WO2011092137A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542850B2 (en) 2007-09-12 2013-09-24 Epcos Pte Ltd Miniature microphone assembly with hydrophobic surface coating
US8674498B2 (en) 2007-12-07 2014-03-18 Epcos Ag MEMS package and method for the production thereof
US9056760B2 (en) 2010-01-29 2015-06-16 Epcos Ag Miniaturized electrical component comprising an MEMS and an ASIC and production method
JP2015523836A (ja) * 2012-08-01 2015-08-13 ノールズ エレクトロニクス,リミテッド ライアビリティ カンパニー マイクアセンブリ
CN110017942A (zh) * 2019-05-22 2019-07-16 龙微科技无锡有限公司 一种用于燃油压力传感器的封装方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011075260B4 (de) * 2011-05-04 2012-12-06 Robert Bosch Gmbh MEMS-Mikrofon
DE102012206732A1 (de) * 2012-04-24 2013-10-24 Robert Bosch Gmbh Verfahren zum Herstellen eines hybrid integrierten Bauteils
US20140090485A1 (en) * 2012-10-02 2014-04-03 Robert Bosch Gmbh MEMS Pressure Sensor Assembly
US20140150560A1 (en) * 2012-11-30 2014-06-05 Robert Bosch Gmbh MEMS Pressure Sensor Assembly with Electromagnetic Shield
DE102013104407B4 (de) 2013-04-30 2020-06-18 Tdk Corporation Auf Waferlevel herstellbares Bauelement und Verfahren zur Herstellung
FR3005204A1 (fr) * 2013-04-30 2014-10-31 St Microelectronics Rousset Dispositif capacitif commutable integre
ITTO20130350A1 (it) * 2013-04-30 2014-10-31 St Microelectronics Srl Assemblaggio a livello di fetta di un dispositivo sensore mems e relativo dispositivo sensore mems
WO2014209358A1 (en) 2013-06-28 2014-12-31 Intel IP Corporation Microelectromechanical system (mems) on application specific integrated circuit (asic)
WO2015042700A1 (en) 2013-09-24 2015-04-02 Motion Engine Inc. Mems components and method of wafer-level manufacturing thereof
WO2015013827A1 (en) 2013-08-02 2015-02-05 Motion Engine Inc. Mems motion sensor for sub-resonance angular rate sensing
US10125012B2 (en) * 2013-08-27 2018-11-13 Infineon Technologies Ag MEMS device
WO2015103688A1 (en) * 2014-01-09 2015-07-16 Motion Engine Inc. Integrated mems system
DE102014200512B4 (de) * 2014-01-14 2017-06-08 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
DE102014200507A1 (de) * 2014-01-14 2015-07-16 Robert Bosch Gmbh Mikromechanische Drucksensorvorrichtung und entsprechendes Herstellungsverfahren
US20170030788A1 (en) 2014-04-10 2017-02-02 Motion Engine Inc. Mems pressure sensor
DE102014106220B4 (de) * 2014-05-05 2020-06-18 Tdk Corporation Sensorbauelement mit zwei Sensorfunktionen
US9617144B2 (en) 2014-05-09 2017-04-11 Invensense, Inc. Integrated package containing MEMS acoustic sensor and environmental sensor and methodology for fabricating same
WO2015184531A1 (en) 2014-06-02 2015-12-10 Motion Engine Inc. Multi-mass mems motion sensor
US10455308B2 (en) * 2014-09-17 2019-10-22 Intel Corporation Die with integrated microphone device using through-silicon vias (TSVs)
US20160090293A1 (en) * 2014-09-25 2016-03-31 Invensense, Inc. Microelectromechanical systems (mems) audio sensor-based proximity sensor
DE102014221364A1 (de) 2014-10-21 2016-04-21 Robert Bosch Gmbh Mikroelektronische Bauelementanordnung mit einer Mehrzahl von Substraten und entsprechendes Herstellungsverfahren
DE102014221546A1 (de) 2014-10-23 2016-04-28 Robert Bosch Gmbh Mikroelektronische Bauelementanordnung mit einer Mehrzahl von Substraten und entsprechendes Herstellungsverfahren
CA3004760A1 (en) 2014-12-09 2016-06-16 Motion Engine Inc. 3d mems magnetometer and associated methods
DE102014118214B4 (de) 2014-12-09 2024-02-22 Snaptrack, Inc. Einfach herstellbares elektrisches Bauelement und Verfahren zur Herstellung eines elektrischen Bauelements
CA3220839A1 (en) 2015-01-15 2016-07-21 Motion Engine Inc. 3d mems device with hermetic cavity
WO2016145535A1 (en) * 2015-03-18 2016-09-22 Motion Engine Inc. Multiple degree of freedom mems sensor chip and method for fabricating the same
KR101684526B1 (ko) 2015-08-28 2016-12-08 현대자동차 주식회사 마이크로폰 및 그 제조 방법
GB2546830B (en) * 2016-01-29 2018-11-14 Cirrus Logic Int Semiconductor Ltd Integrated MEMS transducers
US10453766B2 (en) * 2016-11-14 2019-10-22 Obsidian Sensors, Inc. Integrated packaging devices and methods with backside interconnections
US10167188B2 (en) 2017-01-30 2019-01-01 Apple Inc. Integrated particle filter for MEMS device
US10149032B2 (en) 2017-01-30 2018-12-04 Apple Inc. Integrated particle and light filter for MEMS device
US10689248B2 (en) * 2017-03-16 2020-06-23 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
DE102017129442A1 (de) 2017-12-11 2019-06-13 Infineon Technologies Ag Druckmessanordnung
US20190194014A1 (en) * 2017-12-21 2019-06-27 Continental Automotive Systems, Inc. Pressure sensor structure configured for wafer-level calibration
DE102018216282A1 (de) * 2018-09-25 2020-03-26 Robert Bosch Gmbh Verfahren zur Herstellung eines MEMS-Sensors
EP3629597B1 (de) 2018-09-26 2021-07-07 ams AG Mems-mikrofonanordnung und verfahren zur herstellung einer mems-mikrofonanordnung
CN109524369A (zh) * 2018-10-16 2019-03-26 江苏万邦微电子有限公司 一种基于抗辐照加固的芯片封装体
US11460363B2 (en) 2019-03-29 2022-10-04 Honeywell International Inc. Pressure sensors and methods of manufacturing a pressure sensor
CN110662149A (zh) * 2019-09-06 2020-01-07 歌尔股份有限公司 Mems麦克风
DE102021213183A1 (de) 2021-11-23 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Schall- oder Druckwandlervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088463A (en) 1998-10-30 2000-07-11 Microtronic A/S Solid state silicon-based condenser microphone
US6522762B1 (en) 1999-09-07 2003-02-18 Microtronic A/S Silicon-based sensor system
US6781231B2 (en) 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
US20090001553A1 (en) 2005-11-10 2009-01-01 Epcos Ag Mems Package and Method for the Production Thereof

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859542B2 (en) 2001-05-31 2005-02-22 Sonion Lyngby A/S Method of providing a hydrophobic layer and a condenser microphone having such a layer
US7142682B2 (en) 2002-12-20 2006-11-28 Sonion Mems A/S Silicon-based transducer for use in hearing instruments and listening devices
EP1690437B1 (de) 2003-11-24 2011-01-12 Epcos Pte Ltd Mikrophon mit einem integralen mehrpegel-quantisierer und einbit-umsetzungsmitteln
ATE410820T1 (de) 2004-01-12 2008-10-15 Sonion As Verstärkerschaltung für kapazitive umformer
EP1599067B1 (de) 2004-05-21 2013-05-01 Epcos Pte Ltd Detektion und Kontrolle des Membrankollaps in einem Kondensatormikrofon
EP1742506B1 (de) 2005-07-06 2013-05-22 Epcos Pte Ltd Mikrofonanordnung mit P-typ Vorverstärkerseingangsstufe
JP5174673B2 (ja) 2005-10-14 2013-04-03 エスティーマイクロエレクトロニクス エス.アール.エル. 基板レベル・アセンブリを具えた電子装置及びその製造処理方法
US20070158826A1 (en) 2005-12-27 2007-07-12 Yamaha Corporation Semiconductor device
DE602007005405D1 (de) 2006-01-26 2010-05-06 Sonion Mems As Elastomerschild für Miniaturmikrofone
US8170249B2 (en) 2006-06-19 2012-05-01 Sonion Nederland B.V. Hearing aid having two receivers each amplifying a different frequency range
EP1906704B1 (de) 2006-09-26 2012-03-21 Epcos Pte Ltd Kalibriertes mikroelektromechanisches Mikrofon
US8295528B2 (en) 2006-11-23 2012-10-23 Epcos Ag Board mounting of microphone transducer
US8094846B2 (en) 2006-12-18 2012-01-10 Epcos Pte Ltd. Deep sub-micron MOS preamplifier with thick-oxide input stage transistor
DE102007028292B4 (de) 2007-06-20 2019-06-19 Snaptrack, Inc. Bauelement mit spannungsreduzierter Befestigung
US8097483B2 (en) 2007-10-15 2012-01-17 Epcos Ag Manufacturing a MEMS element having cantilever and cavity on a substrate
TWI348872B (en) * 2007-10-17 2011-09-11 Ind Tech Res Inst Electro-acoustic sensing device
US7847387B2 (en) * 2007-11-16 2010-12-07 Infineon Technologies Ag Electrical device and method
DE102007058951B4 (de) 2007-12-07 2020-03-26 Snaptrack, Inc. MEMS Package
JP5562253B2 (ja) 2008-01-14 2014-07-30 カルコム、テクノロジーズ、インコーポレイテッド ポータブルワイヤレスデバイスの改良又はその関連
US20090194829A1 (en) * 2008-01-31 2009-08-06 Shine Chung MEMS Packaging Including Integrated Circuit Dies
EP2094028B8 (de) 2008-02-22 2017-03-29 TDK Corporation Miniaturmikrofonanordnung mit Lötdichtungsring
JP5410504B2 (ja) 2008-04-15 2014-02-05 エプコス ピーティーイー リミテッド 組み込み型自己テスト回路を内蔵するマイクロフォン装置
DE112009001037B8 (de) 2008-05-05 2014-03-13 Epcos Pte Ltd Kondensatormikrophonbaugruppe, dc spannungsversorgung und verfahren zur erzeugung einer dc vorspannung
DE102008025202B4 (de) 2008-05-27 2014-11-06 Epcos Ag Hermetisch geschlossenes Gehäuse für elektronische Bauelemente und Herstellungsverfahren
DE102008028299B3 (de) 2008-06-13 2009-07-30 Epcos Ag Systemträger für elektronische Komponente und Verfahren für dessen Herstellung
DE102008028757B4 (de) 2008-06-17 2017-03-16 Epcos Ag Verfahren zur Herstellung einer Halbleiterchipanordnung
DE102008032319B4 (de) 2008-07-09 2012-06-06 Epcos Ag Verfahren zur Herstellung eines MST Bauteils
TW201004857A (en) 2008-07-23 2010-02-01 Ind Tech Res Inst A packaging structure and method for integration of microelectronics and MEMS devices by 3D stacking
US7915080B2 (en) * 2008-12-19 2011-03-29 Texas Instruments Incorporated Bonding IC die to TSV wafers
DE102009004721B3 (de) 2009-01-15 2010-09-02 Epcos Ag Schaltung mit einem spannungsabhängigen Bauelement und Verfahren zum Betrieb der Schaltung
DE102009007837A1 (de) 2009-02-06 2010-08-19 Epcos Ag Sensormodul und Verfahren zum Herstellen von Sensormodulen
DE102009014068B4 (de) 2009-03-20 2011-01-13 Epcos Ag Kompaktes, hochintegriertes elektrisches Modul mit Verschaltung aus BAW-Filter und Symmetrierschaltung und Herstellungsverfahren
DE102009017945B4 (de) 2009-04-17 2015-11-05 Qualcomm Technologies, Inc. (N.D.Ges.D. Staates Delaware) Verfahren zur Impedanzanpassung
DE102009019446B4 (de) 2009-04-29 2014-11-13 Epcos Ag MEMS Mikrofon
EP2252077B1 (de) 2009-05-11 2012-07-11 STMicroelectronics Srl Anordnung eines kapazitiven mikroelektromechanischen Akustikwandlers und Verpackung dafür
WO2011066861A1 (en) 2009-12-03 2011-06-09 Epcos Ag Power amplifier circuit and front end circuit
DE102010006132B4 (de) 2010-01-29 2013-05-08 Epcos Ag Miniaturisiertes elektrisches Bauelement mit einem Stapel aus einem MEMS und einem ASIC
DE102010006438A1 (de) 2010-02-01 2011-08-04 Epcos Ag, 81669 Schaltbares kapazitives Element mit verbessertem Gütefaktor und Verfahren zur Herstellung
DE102010008044B4 (de) 2010-02-16 2016-11-24 Epcos Ag MEMS-Mikrofon und Verfahren zur Herstellung
WO2011107160A1 (en) 2010-03-05 2011-09-09 Epcos Ag Bandgap reference circuit and method for producing the circuit
US8797100B2 (en) 2010-03-05 2014-08-05 Epcos Ag Circuit unit, bias circuit with circuit unit and differential amplifier circuit with first and second circuit unit
DE102010012042A1 (de) 2010-03-19 2011-09-22 Epcos Ag Bauelement mit einem Chip in einem Hohlraum und einer spannungsreduzierten Befestigung
DE102010022204B4 (de) 2010-05-20 2016-03-31 Epcos Ag Elektrisches Bauelement mit flacher Bauform und Herstellungsverfahren
US8611566B2 (en) 2011-03-01 2013-12-17 Epcos Ag MEMS-microphone
US9181087B2 (en) 2011-03-02 2015-11-10 Epcos Ag Flat back plate
US8713789B2 (en) 2011-04-26 2014-05-06 Epcos Ag Method of manufacturing a microphone
DE102011102266B4 (de) 2011-05-23 2013-04-11 Epcos Ag Anordnung mit einem MEMS-Bauelement mit einer PFPE Schicht und Verfahren zur Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088463A (en) 1998-10-30 2000-07-11 Microtronic A/S Solid state silicon-based condenser microphone
US6522762B1 (en) 1999-09-07 2003-02-18 Microtronic A/S Silicon-based sensor system
US6781231B2 (en) 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
US20090001553A1 (en) 2005-11-10 2009-01-01 Epcos Ag Mems Package and Method for the Production Thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8542850B2 (en) 2007-09-12 2013-09-24 Epcos Pte Ltd Miniature microphone assembly with hydrophobic surface coating
US8674498B2 (en) 2007-12-07 2014-03-18 Epcos Ag MEMS package and method for the production thereof
US9056760B2 (en) 2010-01-29 2015-06-16 Epcos Ag Miniaturized electrical component comprising an MEMS and an ASIC and production method
JP2015523836A (ja) * 2012-08-01 2015-08-13 ノールズ エレクトロニクス,リミテッド ライアビリティ カンパニー マイクアセンブリ
CN110017942A (zh) * 2019-05-22 2019-07-16 龙微科技无锡有限公司 一种用于燃油压力传感器的封装方法

Also Published As

Publication number Publication date
JP5763682B2 (ja) 2015-08-12
DE102010006132A1 (de) 2011-08-04
US9056760B2 (en) 2015-06-16
JP2013517953A (ja) 2013-05-20
GB2493246A (en) 2013-01-30
WO2011092137A3 (de) 2011-12-22
DE102010006132B4 (de) 2013-05-08
GB201211029D0 (en) 2012-08-01
GB2493246B (en) 2014-02-12
US20130119492A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
DE102010006132B4 (de) Miniaturisiertes elektrisches Bauelement mit einem Stapel aus einem MEMS und einem ASIC
DE102005053767B4 (de) MEMS-Mikrofon, Verfahren zur Herstellung und Verfahren zum Einbau
DE102004005668B4 (de) Elektrisches Bauelement und Herstellungsverfahren
DE102007027127B4 (de) Sensor für eine physikalische Grösse
DE102005053765B4 (de) MEMS-Package und Verfahren zur Herstellung
DE102005054177B4 (de) Verfahren zum Herstellen einer Vielzahl von gehäusten Sensormodulen
DE102012206875B4 (de) Verfahren zum Herstellen eines hybrid integrierten Bauteils und entsprechendes hybrid integriertes Bauteil
DE102016106311B4 (de) Kavitätspackage mit kompositsubstrat
DE102014117209B4 (de) Ein halbleiterbauelement und ein verfahren zum bilden eines halbleiterbauelements
DE102011102266B4 (de) Anordnung mit einem MEMS-Bauelement mit einer PFPE Schicht und Verfahren zur Herstellung
DE102013108353A1 (de) Vorrichtung mit einer eingebetteten MEMS-Vorrichtung und Verfahrenzur Herstellung einer eingebetteten MEMS-Vorrichtung
DE102011086722A1 (de) Mikromechanische Funktionsvorrichtung, insbesondere Lautsprechervorrichtung, und entsprechendes Herstellungsverfahren
DE102009019446A1 (de) MEMS Mikrofon
EP3140245B1 (de) Sensorbauelement mit zwei sensorfunktionen
DE102014216742B4 (de) Stapel aus einem MEMS-Chip und einem Schaltungs-Chip
DE102011086765A1 (de) Chip mit mikro-elektromechanischer Struktur und Verfahren zum Herstellen eines Chips mit mikro-elektromechanischer Struktur
WO2011144570A1 (de) Elektrisches bauelement mit flacher bauform und herstellungsverfahren
DE102013217349A1 (de) Mikromechanische Sensoranordnung und entsprechendes Herstellungsverfahren
DE102013222733A1 (de) Mikromechanische Sensorvorrichtung
DE102006022379A1 (de) Mikromechanischer Druckwandler und Verfahren zu seiner Herstellung
DE102014105335A1 (de) Mikrofonmodul und Verfahren zu dessen Herstellung
DE102011084393A1 (de) Mikromechanische Funktionsvorrichtung, insbesondere Lautsprechervorrichtung, und entsprechendes Herstellungsverfahren
DE102009016487B4 (de) Mikrofonchip
DE10394239B4 (de) Verfahren zum Verpacken integrierter Schaltungen und integriertes Schaltungsgehäuse
DE102014118214B4 (de) Einfach herstellbares elektrisches Bauelement und Verfahren zur Herstellung eines elektrischen Bauelements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1211029

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110124

WWE Wipo information: entry into national phase

Ref document number: 1211029.2

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 13520923

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012550407

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11701248

Country of ref document: EP

Kind code of ref document: A2