WO2011091857A1 - Fonctionnement d'un réseau d'alimentation en énergie électrique - Google Patents

Fonctionnement d'un réseau d'alimentation en énergie électrique Download PDF

Info

Publication number
WO2011091857A1
WO2011091857A1 PCT/EP2010/051177 EP2010051177W WO2011091857A1 WO 2011091857 A1 WO2011091857 A1 WO 2011091857A1 EP 2010051177 W EP2010051177 W EP 2010051177W WO 2011091857 A1 WO2011091857 A1 WO 2011091857A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
llf
lla
automation system
electrical
Prior art date
Application number
PCT/EP2010/051177
Other languages
German (de)
English (en)
Inventor
Gerhard Lang
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2010/051177 priority Critical patent/WO2011091857A1/fr
Publication of WO2011091857A1 publication Critical patent/WO2011091857A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to a method for operating an electrical power supply system having a power car ⁇ matmaschinesstrom and having a plurality of Energyerzeu ⁇ transmission devices and a plurality of energy consumers.
  • the invention also relates to a corresponding energy automation system.
  • Such regenerative energy generators can be, for example, wind power plants, biogas plants, electric power plants or solar power plants.
  • Further embodiments of electrical small producers provide, for example, CHP or electrical Kleinag ⁇ aggregates (such as stationary car engines with connected electric generator) is.
  • each energy generating device provides by means of its control unit an environmental load characteristic which indicates a momentary CO 2 output per unit of electrical energy of the respective energy generating device.
  • each energy generating device by means of its control unit, provides an instantaneous performance parameter which indicates the maximum electrical power which is currently provided by the energy generating device.
  • the energy automation ⁇ s istsstrom applies depending on the part of the energy consumers currently requested electric power by using the respective environmental impact parameters and the respective instantaneous performance characteristics of the individual energy generating means is a selection of the plurality of energy generating means, and uses the selected energy generating means to meet the current demand for electric power.
  • the invention is based on the recognition that for Errei ⁇ chen an environmentally friendly as possible the operation of a power supply network power automation systems are required that provide mechanisms to employ in each case those energy generating means to meet the current demand for electric power their electrical energy having the lowest ejection of carbon dioxide CO 2 provide.
  • all energy generating ⁇ devices are equipped with a control unit, on the ⁇ hand, an indication of the maximum at the time of the corresponding power generation device deducted
  • a so-called Regenbelastungskenn- ⁇ size provides that a momentary C0 2 ⁇ output of elekt ⁇ cal power generating device per unit of electrical energy, for example in kg (C0 2 ) per kWh electrical
  • the energy automation system can make a choice in an oversupply of electrical power through the plurality of power generation facilities on the feed side, which power generating device may feed electrical energy into the power grid.
  • the control of the electrical energy supply network by the energy automation system can be carried out in an advantageous manner according to ecological criteria, in particular with regard to the lowest possible CO 2 emissions of the energy production facilities.
  • the Energyautomatisie ⁇ optimization unit to cover the current demand for electric power selects those power generating devices having the lowest environmental pollution parameters and the instantaneous performance characteristics in sum Any artwork least as large as those of the energy consumers nachge ⁇ asked electrical power.
  • the energy automation system always selects those power generation devices to meet the current demand for electric power, which produce the lowest C0 2 emissions compared to the other power generation devices. This ensures that the demand for electrical energy always meets the most environmentally friendly mix of energy production facilities. Through a consistent use of such regulations of energy supply networks, C0 2 emissions can be significantly reduced. In addition, incentives for operators of energy generation facilities created to provide the electrical energy with mög ⁇ lichst low C02 emissions are available.
  • the control of the selected electrical energy generating means can concrete example ⁇ example take place in that the Energyautomatmaschinesanla ⁇ ge an activated transmitted administratungssignal via the first communication means to the control units of the selected energy generating means which causes the respective control unit is adapted according to an advantageous embodiment of the method according to the invention, those of the corresponding
  • a power generation device can also be prompted, for example, not 100% of their ma deliver ximal possible feed power to the electrical energy supply network ⁇ but only feed a certain proportion of the available electrical power.
  • the required electrical power can be adjusted, for example, by connecting or disconnecting individual wind turbines.
  • a further advantageous embodiment of the invention shown KISSING method provides in this context that the energy automation system combines several power generation facilities with low compared to other power generation facilities environmental impact parameters to one or more groups and the grouped energy Power generating devices each controls a common activation signal.
  • a further embodiment of the method according to the invention also provides that individual energy consumers or groups of energy consumers are connected to a ballast device, which is connected on the one hand to the electrical energy supply network and on the other hand via a second communication device with the energy automation system. Between the individual Vorschalteinrichtun- gene and the energy automation system data are transmitted via the second communication device, which are suitable to be used to control the electrical energy supply network.
  • such a ballast may be an intelligent electric energy meter, often referred to as a "smart meter".
  • the data transmitted from the power automation system to the Vorschalt raiseden energy consumer data ⁇ parameters an indication of the individual environmental load of the currently selected energy generating means or the sum of the pollution parameters of the currently selected energy generating means include.
  • the power supply unit of each energy consumer can obtain the information about the total CO 2 associated with the currently available electrical energy.
  • the respective ballast device displays the information about the individual environmental load characteristics or the sum of the environmental load characteristics and / or provides a data processing device in communication with the respective ballast.
  • the end user of electrical energy for example the resident of an electrical energy-related housing, who operates the electrical energy consumers can obtain information about the CO 2 emissions associated with the currently available electrical energy so that he can adapt his user behavior accordingly and, for example, devices that produce larger amounts of electrical energy energy need only turn on when electrical energy is provided Ener ⁇ with low environmental impact parameters, so for example, if strategies for corresponding Energyer ⁇ generation facilities greater amounts of renewable Primdocer- available.
  • a further advantageous embodiment of the invention shown SEN method provides in conjunction with the ballast, that the respective ballast comprises one or more adjustment values associated with the individual or Grup ⁇ pen of energy consumers which are connected through the ballast to the electrical energy supply network ,
  • the setting values give a maxi ⁇ male pollution characteristic
  • the respective advantages switch means respectively connecting only those energy consumers to purchase electric power to the electrical power supply network, the maximum environmental load parameter is greater than the sum of the environmental stress ⁇ characteristics of the currently selected Energyer Wegungsein- directions.
  • ballast device provides that the respective ballast provides a consumption prediction value which indicates a prognosis of a course of the electrical power expected by the energy consumers connected to the ballast in an upcoming period.
  • the energy automation plant determines on the basis of the individual
  • Forecasting devices provide the course of expected in the upcoming period of electrical power and selects for the forthcoming period of energy production facilities to cover the expected electrical demand, wherein it transmits the control means of the selected for the upcoming period power generating devices control signals that cause the Steuereinrich ⁇ tions to prepare their power generation facility on the imminent energy decrease.
  • the energy automation system to facilitate the planning of the future operation of the electric power supply ⁇ network, by transmitting over the Vorschalt Surpriseen energy automation system forecasts that indicate a probable demand of electric power in a future period, for example within the next hour.
  • Such predictions can be generated, for example, on the basis of average usage profiles , which indicate a typical energy consumption for certain times of the day, which is derived from past energy consumption data.
  • user profiles can be created in this way, which are adapted to the usual Ta ⁇ rhythm of the residents of a detached house and specify, for example, the need for electrical energy for hot water supply, cooking or electrical entertainment facilities at certain times of day.
  • intelligent electrical energy consumers are connected as terminals with the ballast, they can communicate their future energy requirements to the ballast; for example, can deliver "smart” washing machine using a preset program a prediction of the course of up to finishing the cleaning process required electrical power one is exploiting Dende in operation, an "intelligent" freeze can determine the electrical ⁇ cal energy to achieve a specific target temperature needed in the freezer.
  • a further embodiment of the method according to the invention which utilizes the ballast device provides that at least one of the ballasts connected to an ballast device Energy consumers comprises an electrical energy storage, which is controlled by a charge controller for receiving or delivering electrical energy, and the charge controller such cooperates with the Vorschalt Too that depending on the current value of the sum of the environmental ⁇ load characteristics of the selected power generating devices of the energy storage electrical Energy is absorbed or delivered.
  • the charge control always supplies electric power to the electric energy storage device when the environmental pollution parameter is the currently in ⁇ offered electrical energy below a predetermined threshold, during the charge controller causes the electrical energy storage device for supplying electric power when the ballast an environmental load characteristic of the currently offered electrical energy is detected, which is above a predetermined threshold.
  • an electrical energy storage device it may for example be fixedly arranged rechargeable batteries comparatively ⁇ as high-capacity or, for example held ready in an electric vehicle, electric energy storage han ⁇ spindles.
  • the above object is achieved by an energy automation system for operating an electric power supply network comprising a plurality of power generation devices and a plurality of power consumers, in which
  • the energy automation system communicates via a first communica tion device ⁇ with the respective energy generating means associated control units, and for implementing a method according to one of claims 1 to 5 is set up.
  • a further advantageous embodiment of the invention shown SEN energy automation system is provided in that individual power consumers or groups of consumers of energy by means of a ballast the other hand, are on the one hand to the electrical energy supply network and via a second communication device with the energy automation system in connection and the energy automation ⁇ s istsstrom for performing a method according to one of claims 6 to 11 is arranged.
  • Figure 1 is a schematic representation of a controlled by an energy automation system electrical power supply network
  • Figure 2 is a schematic representation of a comprehensive more electrical energy consumers ⁇ specific residential building with a common ballast.
  • FIG. 1 shows an electric power supply network 10 with a plurality of electrical energy generating means IIa - llf and a plurality of electrical Energyverbrau ⁇ cher 12a - 12c.
  • Power plants used IIa, IIb, wind turbines 11c, lld, a solar power plant ⁇ lle and an electrical energy store are concretely shown llf in the embodiment of Figure 1 as Ener ⁇ gieer Wegungs sunnyen fossil fuels.
  • the power generation facilities IIa shown - IIf are merely examples of possible implementations of power generation facilities, power automation system described below cansver Probe ⁇ also goes for a power grid with another Composition of electrical energy generating devices can be used in any number.
  • an electrical energy consumer only an example of an office building 12a, a family house 12b and an electric vehicle 12c are shown in Figure 1.
  • the individual energy consumers can each have one or more electrical energy consuming devices.
  • an electrical energy supply network can also be present, of course, any number and any other energy consumers than the here ge Service ⁇ th energy consumers 12a to 12c.
  • the structure of a real power supply system is typically at least to the effect from ⁇ differ from that shown in Figure 1 structure of the power supply network 10 shown as an example, that no clear spatial separation between energy generating means on the one hand and energy consumers on the other hand given, but is rather present a thorough mixing of energy producers and energy consumers, wherein individual components, such as the Elektroenergiespei ⁇ cher llf and the electric vehicle 12c, also a Doppelfunkti ⁇ on (ie on the one hand energy generating device and on the other hand energy consumers) can take.
  • individual components such as the Elektroenergyspei ⁇ cher llf and the electric vehicle 12c, also a Doppelfunkti ⁇ on (ie on the one hand energy generating device and on the other hand energy consumers) can take.
  • the spatial distribution according to energy production input was shown. on the one hand and energy consumers on the other.
  • an energy automation system 16 is provided, which is connected via a first communication device 17 to the individual energy generating devices IIa-IIf.
  • the energy automation system 16 is connected via a further communica ⁇ tion means 19 with control gear 20, via which the energy consumers 12a - 12c are on the one hand electrically connected to the busbar 14 of the electrical Energy fixturessnet ⁇ ZES 10 and on the other hand, for data processing with the power automation system 16 in connection.
  • ballasts 20 may, for example, so-called “smart meters”, ie intelligent electronic Tough ⁇ ler, act, make the appropriate communication interfaces are available.
  • the communication devices 17 and 19 may be arbitrary forms of wired or wireless communication links or communication networks, merely by way of example are representative power line communication networks, telecommunication networks, mobile networks and IP networks (such as the Internet) called.
  • the communication devices may TION part of a sta- or network control system in which data messages from ⁇ play, according to the standard IEC 61850, which refers to the communication stations in switching of power supply networks, to be transmitted.
  • control of the electrical power supply system 10 will be explained by means of the Energyautoma ⁇ t Deutschensstrom 16 by way of example.
  • the individual energy generating devices IIa-IIf provide, on the one hand, an instantaneous performance parameter and, on the other hand, an environmental load parameter via their control devices 18.
  • the instantaneous power characteristic indicates that power which the respective energy generating device IIa-IIf could currently feed into the network at maximum.
  • the instantaneous Leis ⁇ tung indicator thus, for example, depending on the EXISTING ⁇ densein certain primary energy sources for renewable energy generating devices: For example, the instantaneous power characteristic of the wind turbines 11c and lld of the current wind supply and the number of each per plant properties under operating wind turbines dependent, while the instantaneous power characteristic of the solar power plant lle depends on the current solar irradiation.
  • the instantaneous power characteristic of the electric accumulator 11f in turn depends on its state of charge, while the instantaneous power characteristics of the fossil power plants IIa and IIb essentially depend on their current operating states.
  • the environmental impact parameter indicates the amount of discharged coal lenstoffdioxids CO 2 per unit electric power, wherein ⁇ play, in kilograms per kilowatt-hour, on.
  • the environmental pollution parameter should be determined according to a ganzheitli ⁇ chen consideration of the entire life cycle of the respective electrical power generating means, and therefore proportionally take into account the C0 2 emission, which is connected with manufacturing, transportation, operation and disposal of the respective energy generating means and the required primary energy sources.
  • such considerations are already being made today for individual end products in the form of so-called life cycle assessments or product environmental declarations and are therefore largely available or can be provided with comparatively little effort.
  • Decisive for carrying out the method described is that the environmental impact characteristics of all energy generating means are determined according to a common method of calculation in order cherbine the comparability of environmental stress ⁇ characteristics of the individual energy generating means Si.
  • the energy automation system 16 accesses performance characteristic on the instantaneous and the environmental load characteristic of each power generation device IIa - llf and searches in response to the ⁇ consumer by the electrical energy 12a - 12c generated demand for electric power on the basis of the instantaneous performance characteristics and environmental pollution parameter those energy generating means, which to meet demand.
  • An environmentally friendly as possible operation of the electrical power supply system 10 and the thereto ⁇ closed energy generating means IIa - llf to achieve the energy automation system 16 selects exactly those energy generating means to meet the demand, the environmental impact characteristics are currently very low compared with the environmental impact characteristics of the other power generating facilities.
  • the energy automation system 16 can determine also whether lle, additional Energyerzeu ⁇ disposal facilities are to be activated to meet the demand in addition to a selected energy generating means, for example, the solar power plant.
  • a selected energy generating means for example, the solar power plant.
  • each IIa - llf sends the Energyautomatisie ⁇ optimization unit 16 via the first communication means 17, an activation signal to the respective control means 18 of the selected energy generating means, thereby DIE se energy generating means for discharging electrical
  • control devices 18 for example, control switching devices, which the respective Power generating device IIa - llf with the electrical power grid 10 couple.
  • switching means may be sumrichter example, electric circuit breakers, Leis ⁇ tung semiconductor switch or continuously adjustable nozzle-.
  • the energy automation system 16 may additionally specify a desired value for the selected one of the respective energy generating means to the electrical power supply system 10 to be fed electrical power, the control means 18 of the respective energy generating means IIa - llf caused to either the maximum possible electrical Leis ⁇ tung or to feed only part of it into the electrical energy supply network 10.
  • the control means 18 of the respective energy generating means IIa - llf caused to either the maximum possible electrical Leis ⁇ tung or to feed only part of it into the electrical energy supply network 10.
  • operating states of controllable power plants or the number of switched-on wind turbines in a wind power plant can be adapted accordingly.
  • such adaptation may, in turn, have an impact on the environmental load parameter (for example reducing CO 2 emissions when reducing the operating power of a power plant), as a result of which the choice of power supply equipment may change correspondingly dynamically.
  • the described ⁇ energy automation system 16 such Energyer Wegungs- devices that have low environmental impact characteristics, and thus contributes to the most environmentally friendly operation of the
  • the energy automation system 16 uses the respective environmental load characteristics to group such energy production devices into groups which have particularly low environmental load characteristics.
  • the two wind power plants 11c and 11d and the solar power plant 1le can be combined to form a group of energy generating facilities as a "virtual power plant". summarized and ge ⁇ controlled via a common activation signal.
  • variations in the power output of the individual electrical energy generators of this group caused by primary energy fluctuations can be compensated, and altogether larger amounts of electrical energy can be fed into the electrical energy supply network 10 with reduced control effort.
  • the individual energy consumers 21 a - 21 c are connected to controllable electrical terminals 22 a, 22 b and 22 c of the electrical ballast 20.
  • the controllable electrical connections 22a-22c are connected together via an electrical supply line 23 to the electrical energy supply network 10 (see FIG. 1).
  • the ballast 20 is also connected to a control module 24 on the one hand via a communication link 25 to the power automation system 16 (see Figure 1) and on the other hand via an in-house communication device 26 (for example, designed as a LAN Ethernet communication network) at least with a data processing ⁇ device 27 (eg Laptop).
  • the ballast device 20 receives the individual environmental load characteristics of the currently selected energy supply devices or the sum of the environmental load characteristics of the currently selected energy supply devices via the communication ⁇ connection 25 and thus has information about which C02 emissions currently with the offered electric ⁇ cal Energy is connected.
  • This information can be provided, for example on the data processing device 27 for information to end users of electric power, so for example, the residents of the family house 12b for display, so that it can adjust accordingly be Nationalver keep ⁇ .
  • the information can also be displayed on a display of the Vorschaltein- device 20 itself.
  • the ballast 20 can also be programmed so that it uses the information about the sum of the environmental load characteristics of the currently selected energy generating devices an automatic control of the individual electrical energy consumers 21a - 21c within the family house 12b makes.
  • threshold values can be parameterized in the ballast 20, and the ballast 20 can control the output of electrical energy to the individual electrical energy consumers 21a-21c via the controllable terminals 22a-22c in such a way that they only occur when the threshold value for the sum of all Environmental load characteristics the electrical end consumers 21a - 21c supplied with electrical energy and otherwise reduces the power supply or completely shuts off.
  • individual values can be configured for individual electric power consumers or groups of consumers of electrical energy, respectively.
  • the electrical energy consumers 21a - 21c are so - called intelligent energy consumers who have their own control devices with which the Energy consumption of the respective electrical Energyverbrau ⁇ cher can be controlled, instead of the control of the respective controllable terminal 22a - 22c, a control signal from the control component 24 of the Vorschalteinrich- device 20 to the respective smart energy consumers are sent to their control to influence the respective energy consumption to induce.
  • the electrical energy consumer 21c is an electric energy store in the form of a battery arrangement which has a charging control.
  • the load control of the energy accumulator 21c so with the ballast 20 together act to parameters depending on the current sum of all the environmental pollution loads causes the selected energy generating means at a relatively low sum value the electrical ⁇ 's energy storage for receiving electrical energy while at a ⁇ worth energy causes relatively high sums of the electric energy storage device for delivery of electrical energy to other energy consumers of either
  • Detached house 12 b to provide electrical energy or feed the electrical energy back into the power grid 10. This measure can also contribute to a more environmentally friendly operation of the electrical energy supply network 10, since at times low CO 2
  • ballast device 20 can also be used to support the planning of the future operation of the energy automation system 16, in that the ballasts 20 of the energy automation system 16 transmit forecasts of a future demand for electrical energy for the electrical energy consumers connected to the respective ballast 20.
  • Such a prognosis can be derived, for example, from typical user profiles that have been determined from past utilization histories of the electrical energy.
  • intelligent energy consumers can also report information on the future electrical energy required to Vorschalteinrich ⁇ tung 20, which summarized these passes on the power car ⁇ mat Deutschensstrom 16th
  • the energy automation system 16 can more accurately plan the use of the electric power generation devices available to it and in this way better avoid over or undercapacities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner un réseau d'alimentation en énergie électrique (10) comportant une installation d'automatisation énergétique (16) et comportant une pluralité de dispositifs de production d'énergie (11a-11f) et une pluralité de consommateurs d'énergie (12a-12c). L'invention vise à permettre un fonctionnement du réseau d'alimentation en énergie (10) le plus respectueux possible de l'environnement. A cette fin, l'installation d'automatisation énergétique (16) est connectée par l'intermédiaire d'un dispositif de communication (17) à des unités de commande (18) associées à chacun des dispositifs de production d'énergie (11a-11f), chaque dispositif de production d'énergie (11a-11f) fournit au moyen de son unité de commande (18) une caractéristique d'impact sur l'environnement et une caractéristique de puissance momentanée qui indique la puissance électrique maximale momentanément fournie par le dispositif de production d'énergie (11a-11f), l'installation d'automatisation énergétique (16) effectue une sélection dans la pluralité de dispositifs de production d'énergie (11a-11f) en fonction de la puissance électrique momentanément demandée par les consommateurs d'énergie (12a-12c), au moyen des différentes caractéristiques d'impact sur l'environnement et des différentes caractéristiques de puissance momentanée des différents dispositifs de production d'énergie (11a-11f), et les dispositifs de production d'énergie (11a-11f) sélectionnés sont utilisés pour couvrir la demande momentanée en puissance électrique.
PCT/EP2010/051177 2010-02-01 2010-02-01 Fonctionnement d'un réseau d'alimentation en énergie électrique WO2011091857A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051177 WO2011091857A1 (fr) 2010-02-01 2010-02-01 Fonctionnement d'un réseau d'alimentation en énergie électrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051177 WO2011091857A1 (fr) 2010-02-01 2010-02-01 Fonctionnement d'un réseau d'alimentation en énergie électrique

Publications (1)

Publication Number Publication Date
WO2011091857A1 true WO2011091857A1 (fr) 2011-08-04

Family

ID=42674632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051177 WO2011091857A1 (fr) 2010-02-01 2010-02-01 Fonctionnement d'un réseau d'alimentation en énergie électrique

Country Status (1)

Country Link
WO (1) WO2011091857A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038174A1 (fr) * 2011-09-14 2013-03-21 Bae Systems Plc Algorithme de distribution de puissance
DE102013206271A1 (de) * 2013-04-10 2014-10-16 Hermos Systems Gmbh Verfahren zur Steuerung dezentraler Stromversorgungseinheiten
DE102014009954A1 (de) * 2014-07-07 2016-01-07 LichtBlick SE System und Verfahren zum Bestimmen der Leistung mehrerer elektrischer Produzenten und Verbraucher, die in einem Netzwerk als virtuelles Kraftwerk betrieben werden
DE102014009953A1 (de) * 2014-07-07 2016-01-07 LichtBlick SE System und Verfahren zum Bestimmen der Eignung mehrerer elektrischer Produzenten und Verbraucher, die in einem Netzwerk als virtuelles Kraftwerk betrieben werden, für die Erbringung von Regelleistung
US9742197B2 (en) 2011-09-14 2017-08-22 Bae Systems Plc Power distribution algorithm
DE102017106465A1 (de) 2017-03-27 2018-09-27 LichtBlick SE Hybride Nutzung von Energiespeichern
CN112986884A (zh) * 2021-04-15 2021-06-18 国网山东省电力公司昌邑市供电公司 用户计量倍率档案校验方法及***
DE102013106151B4 (de) 2012-06-28 2022-05-25 Sma Solar Technology Ag Kaskadierung und Energiespeicher

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404314A (en) * 1993-09-22 1995-04-04 Honeywell Inc. Real time environmental load allocation
DE102005001143A1 (de) * 2005-01-11 2006-07-20 Bernhard Beck Verfahren und Vorrichtung zur verbraucherindividuellen Lieferung an elektrischer Energie
EP1998422A1 (fr) * 2007-05-30 2008-12-03 Sanyo Electric Co., Ltd. Dispositif d'interconnexion de grille, système d'interconnexion de grille et système de commande d'alimentation
EP2056420A1 (fr) * 2006-08-25 2009-05-06 Toyota Jidosha Kabushiki Kaisha Système d'alimentation
US20090198384A1 (en) * 2008-02-05 2009-08-06 Ls Industrial Systems Co., Ltd. Electronic smart meter enabling demand response and method for demand response

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404314A (en) * 1993-09-22 1995-04-04 Honeywell Inc. Real time environmental load allocation
DE102005001143A1 (de) * 2005-01-11 2006-07-20 Bernhard Beck Verfahren und Vorrichtung zur verbraucherindividuellen Lieferung an elektrischer Energie
EP2056420A1 (fr) * 2006-08-25 2009-05-06 Toyota Jidosha Kabushiki Kaisha Système d'alimentation
EP1998422A1 (fr) * 2007-05-30 2008-12-03 Sanyo Electric Co., Ltd. Dispositif d'interconnexion de grille, système d'interconnexion de grille et système de commande d'alimentation
US20090198384A1 (en) * 2008-02-05 2009-08-06 Ls Industrial Systems Co., Ltd. Electronic smart meter enabling demand response and method for demand response

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038174A1 (fr) * 2011-09-14 2013-03-21 Bae Systems Plc Algorithme de distribution de puissance
US9742197B2 (en) 2011-09-14 2017-08-22 Bae Systems Plc Power distribution algorithm
DE102013106151B4 (de) 2012-06-28 2022-05-25 Sma Solar Technology Ag Kaskadierung und Energiespeicher
DE102013206271A1 (de) * 2013-04-10 2014-10-16 Hermos Systems Gmbh Verfahren zur Steuerung dezentraler Stromversorgungseinheiten
DE102014009954A1 (de) * 2014-07-07 2016-01-07 LichtBlick SE System und Verfahren zum Bestimmen der Leistung mehrerer elektrischer Produzenten und Verbraucher, die in einem Netzwerk als virtuelles Kraftwerk betrieben werden
DE102014009953A1 (de) * 2014-07-07 2016-01-07 LichtBlick SE System und Verfahren zum Bestimmen der Eignung mehrerer elektrischer Produzenten und Verbraucher, die in einem Netzwerk als virtuelles Kraftwerk betrieben werden, für die Erbringung von Regelleistung
WO2016005047A1 (fr) * 2014-07-07 2016-01-14 LichtBlick SE Système et procédé pour déterminer la puissance de plusieurs producteurs et consommateurs électriques fonctionnant dans un réseau en tant que centrale électrique virtuelle
EP3167528B1 (fr) 2014-07-07 2018-01-24 Lichtblick SE Système et procédé pour déterminer l'aptitude de plusieurs producteurs et consommateurs électriques fonctionnant dans un réseau en tant que centrale électrique virtuelle, afin de fournir une puissance de regulation
DE102017106465A1 (de) 2017-03-27 2018-09-27 LichtBlick SE Hybride Nutzung von Energiespeichern
CN112986884A (zh) * 2021-04-15 2021-06-18 国网山东省电力公司昌邑市供电公司 用户计量倍率档案校验方法及***
CN112986884B (zh) * 2021-04-15 2021-08-13 国网山东省电力公司昌邑市供电公司 用户计量倍率档案校验方法及***

Similar Documents

Publication Publication Date Title
WO2011091857A1 (fr) Fonctionnement d'un réseau d'alimentation en énergie électrique
DE102008057563B4 (de) Verfahren und Vorrichtung zum netzkonformen Betreiben einer Mehrzahl von dezentralen mit Verbrauchern/Erzeugern von elektrischer Energie versehenen und an ein elektrisches Niederspannungsnetz angeschlossenen Einheit
EP2904679B1 (fr) Procédé de contrôle du fonctionnement des générateurs d'énergie électrique et dispositif de commande pour la mise en oeuvre de ce procédé
DE102008063954B3 (de) Verfahren zum Regeln mindestens einer dezentralen Energieversorgungsanlage nach zumindest ökologischen Zielvorgaben, die insbesondere die Minimierung von CO2-Emissionen umfassen, sowie nach dem Verfahren geregelte dezentrale Energieversorgungsanlage
EP2579415B1 (fr) Réseau d'alimentation en énergie et procédé de commande pour la répartition d'énergie électrique générée de manière régénérative
EP2151032B1 (fr) Procédé d'exploitation d'un système comportant au moins un dispositif répartiteur d'énergie
DE102019202448A1 (de) Ladeeinrichtung zum Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, System und Verfahren zum Steuern einer Ladeeinrichtung
WO2012048736A1 (fr) Commande d'un réseau de distribution d'énergie électrique
EP3469680A1 (fr) Procédé, produit programme informatique, dispositif et système de 'service de cluster énergétique' pour gérer des objectifs de régulation, notamment de compensation de charge, lors de la commande de l'approvisionnement, de la conversion, du stockage, de l'alimentation, de la distribution et/ou de la consommation d'énergie dans un réseau d'énergie
DE102012203121A1 (de) Energiemanagementsystem
EP3251076A1 (fr) Procédé d'amélioration de la charge d'un réseau à basse tension
EP3107175B1 (fr) Régulation de réseau pour des dépassements de valeurs limites dans un réseau de tension moyenne ou faible
EP3382841B1 (fr) Utilisation hybride d'accumulateurs d'énergie
DE102019130337A1 (de) Lastverwaltungssystem und Verfahren zur Regelung eines solchen Lastverwaltungssystems
WO2017178324A1 (fr) Véhicule électrique à récupération d'énergie et apte à fournir une puissance de régulation
EP2875560B1 (fr) Procédé de réglage du rapport entre l'énergie électrique injectée et prélevée dans un réseau d'alimentation en énergie électrique
DE102010014146A1 (de) Verfahren und Vorrichtung zur Spannungsversorgung
EP2820735A1 (fr) Appareil électrique et procédé pour le pilotage d'un générateur d'énergie électrique
EP3107177A1 (fr) Regulation de reseau pour des depassements de valeurs limites dans un reseau de tension moyenne ou faible
EP2889981A2 (fr) Procédé de commande d'une distribution d'énergie
WO2020069782A1 (fr) Commande d'une zone de réseau local pour réaliser une communauté énergétique locale avec programme
EP2400620A2 (fr) Système de stockage pour énergies renouvelables
DE102022130661A1 (de) Laden eines Elektrofahrzeugs an einem lokalen Energienetz
DE102022214277A1 (de) Hybrides Energiespeichersystem
DE102020114566A1 (de) Anordnung zum Anschluss einer Energieversorgungsanlage an ein Mittelspannungsnetz zum Austausch elektrischer Energie und Verfahren zum Betrieb einer Anordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10704781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10704781

Country of ref document: EP

Kind code of ref document: A1