WO2011088706A1 - 一种高带宽多模光纤 - Google Patents

一种高带宽多模光纤 Download PDF

Info

Publication number
WO2011088706A1
WO2011088706A1 PCT/CN2010/079313 CN2010079313W WO2011088706A1 WO 2011088706 A1 WO2011088706 A1 WO 2011088706A1 CN 2010079313 W CN2010079313 W CN 2010079313W WO 2011088706 A1 WO2011088706 A1 WO 2011088706A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
inner cladding
index difference
relative refractive
Prior art date
Application number
PCT/CN2010/079313
Other languages
English (en)
French (fr)
Inventor
张方海
韩庆荣
拉吉·马泰
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Publication of WO2011088706A1 publication Critical patent/WO2011088706A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core

Definitions

  • the present invention relates to a high-bandwidth multimode optical fiber for use in an access network and a miniaturized optical device, which has excellent bending resistance and high bandwidth, and belongs to the field of optical communication technology.
  • Multimode fiber especially high-bandwidth multimode fiber (such as OM3), has been widely used in medium and short-haul fiber-optic network systems (such as data centers and campus networks) due to its relatively low system construction cost.
  • the bending-resistant multimode fiber needs to have the following characteristics: 1. Additional bending attenuation (especially macrobend additional attenuation) is small. 2. Fiber life is not affected by small curved half diameter. 3, with higher bandwidth, can meet the needs of 10Gb / s, or even 40Gb / s Ethernet.
  • Mandrel a preform containing a core layer and a partial cladding
  • Radius the distance between the outer boundary of the layer and the center point
  • Refractive index profile Fiber or fiber preform (including mandrel) The relationship between the refractive index of the glass and its radius; Relative refractive index difference: And n Q are respectively the refractive index of each corresponding portion and pure silica glass at a wavelength of 850 nm; unless otherwise specified, the maximum refractive index of each corresponding portion;
  • Casing a quartz glass tube that meets certain geometric and doping requirements
  • the technical problem to be solved by the present invention is to provide a multimode optical fiber having a reasonable structural design, small bending additional attenuation, and high bandwidth in view of the above-mentioned deficiencies of the prior art.
  • the core layer and the cladding layer are characterized in that the core layer radius R1 is 15 to 35 micrometers, the refractive index profile of the core layer is parabolic ((X is 1.9 to 2.2), and the maximum relative refractive index difference A l%max is greater than 0.8%,
  • the outer layer of the core layer is in order from the inside to the outside: inner cladding layer and/or depressed inner cladding layer, rising ring and depressed outer cladding layer, the inner cladding layer has a single side thickness W2 of 0 to 8 micrometers, and the inner cladding has a relative refractive index difference of 8% 2%.
  • the thickness of the inner side of the depressed inner cladding W3 is 0 ⁇ 20 microns, and the relative refractive index difference A 3% of the depressed inner cladding is -0.15% ⁇ -0.8%; the inner cladding thickness W2 and the depressed inner cladding
  • the unilateral thickness W3 is not 0 at the same time; the rising ring unilateral thickness W4 is 0.2 ⁇ 15 ⁇ m, the rising ring relative refractive index difference ⁇ 4% is -0.01% ⁇ 0.8%; the sag outer cladding unilateral thickness W5 is 1 ⁇ 50 microns
  • the relative refractive index difference A 5% of the depressed outer cladding layer is -0.15% ⁇ -0.8%; the relative refractive index difference of each layer simultaneously satisfies the following relationship: A l%max>A 2% > ⁇ 3%, ⁇ 4%> ⁇ 3 %, ⁇ 4%> ⁇ 5%, ⁇ 4% ⁇ 2%.
  • the outer cladding layer is coated on the outer cladding layer, the outer layer thickness W6 of the outer cladding layer is 0 to 50 micrometers, and the relative refractive index difference A 6% of the outer cladding layer is -0.1% to 0.1%, ⁇ 6%> ⁇ 5% .
  • the inner cladding layer and the depressed inner cladding layer are included in the cladding layer outside the core layer, the inner cladding layer has a single side thickness W2 of 0.5 to 4 micrometers, and the inner cladding layer has a relative refractive index difference of 8% to 2% of -0.01% to 0.01%;
  • the singular inner layer thickness W3 of the depressed inner cladding is 5 to 15 micrometers, and the relative refractive index difference A 3% of the depressed inner cladding layer is -0.2% to -0.6%.
  • the inner cladding layer or the depressed inner cladding layer is included in the cladding layer outside the core layer.
  • the relative refractive index difference ⁇ 5% of the depressed outer layer is constant in the radial direction; or is gradual, the gradation includes increasing the gradient from the inside to the outside or decreasing the gradation from the inside to the outside; or changing in a curve.
  • each layer is composed of ytterbium-doped (Ge) or fluorine-doped (F) or ytterbium-fluoride co-doped quartz glass.
  • Chlorine (C1) is introduced by the reaction of silicon tetrachloride (SiCl 4 ), germanium tetrachloride (GeCl 4 ) and oxygen (0 2 ) to form C1, and the fluctuation of its content has little effect on the performance of the fiber, and Under stable process conditions, the fluctuation of its content is not large, and it can be omitted and required.
  • a pure quartz glass liner is fixed on a plasma enhanced chemical vapor deposition (PCVD) lathe for doping deposition, and a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • a fluorine-containing gas is introduced into the reaction gases silicon tetrachloride (SiCl 4 ) and oxygen (0 2 ).
  • Introducing fluorine (F) doping introducing cerium tetrachloride (GeCl 4 ) to introduce germanium (Ge) doping, ionizing the reaction gas in the liner into a plasma by microwave, and finally depositing it in the form of glass.
  • each cladding layer and the core layer are sequentially deposited by changing the flow rate of the doping gas in the mixed gas; after the deposition is completed, the deposition tube is melted into a solid by an electric heating furnace Mandrel; then partially hydrolyze the mandrel with hydrofluoric acid (HF), then use the synthetic pure quartz glass or fluorine-doped quartz glass as the casing to make the optical fiber preform by RIT process, or outsourced with OVD or VAD
  • the deposition process produces an optical fiber preform by depositing an outer layer outside the mandrel; the optical fiber preform is placed in a drawing tower and drawn into an optical fiber, and two layers of ultraviolet-curable polyacrylic acid resin are applied on the surface of the optical fiber.
  • the fluorine-containing gas is any one or more of C 2 F 6 , CF 4 , SiF 4 and SF 6 .
  • the optical fiber of the invention has a bandwidth of 2000 MHz-km or more and even 10000 MHz-km or more at a wavelength of 850 nm; the numerical aperture of the optical fiber is 0.185 ⁇ 0.230; at a wavelength of 850 nm, the bending additional loss caused by a winding radius of 10 mm is less than O. ldB, even reaching O.OldB; bending additional loss caused by one turn around 7.5 mm bend radius is less than 0.2 dB, even up to 0.02 dB; bending additional loss caused by one turn around 5 mm bend radius is less than 0.5 dB, even reaching 0.05 dB.
  • the present invention employs one or two depressed cladding layers to improve the bending resistance of the optical fiber.
  • a rising loop is introduced in the cladding of the multimode optical fiber, and the effective refractive index and the rising loop of some higher order modes in the core layer are When the effective refractive indices of some modes are substantially equal, the energy of these higher order modes of the fiber core layer is transferred from the core layer or coupled to some modes of the rising ring, thereby leaking out of the outer cladding.
  • this resonant coupling can effectively reduce the high-order modes of the core layer, thereby effectively increasing the bandwidth of the bend-insensitive multimode fiber.
  • the invention has the following advantages: 1. Designing several multi-clad multimode optical fibers, each of which has at least one depressed cladding layer, which significantly reduces the additional attenuation of the optical macrobend and improves the bending resistance of the optical fiber; Fibers have risers that allow some of the higher order modes of the fiber core to transfer or couple energy from the core to some modes of the riser ring. Going, and then leaking out from the outer layer, after a certain fiber transmission distance, this resonant coupling can effectively reduce the high-order mode of the core layer, thereby effectively increasing the bandwidth of the bend-insensitive multimode fiber; in addition, the riser ring design can also reduce the fiber Microbending loss; 3.
  • the manufacturing method of the invention is simple and effective, and is suitable for mass production.
  • Figure 1 is a schematic cross-sectional view showing a refractive index of an optical fiber according to an embodiment
  • FIG. 2 is a schematic cross-sectional view showing a refractive index of an optical fiber according to another embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional view showing the refractive index of a fiber according to a third embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional view showing the refractive index of a fiber according to a fourth embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view showing the refractive index of a fiber according to a fifth embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view showing the refractive index of a fiber according to a sixth embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view showing the refractive index of a fiber according to a seventh embodiment of the present invention.
  • Figure 8 is a schematic cross-sectional view showing the refractive index of an optical fiber according to an eighth embodiment of the present invention. detailed description
  • the macrobend additional loss is measured according to the FOTP-62 (IEC- 60793-1 - 47) method.
  • the fiber under test is wound around a certain diameter (for example: 10mm, 15mm, 20mm, 30mm, etc.), and then the circle is placed. On, test the change of optical power before and after the circle, as the additional loss of the macrobend of the fiber.
  • Encircled Flux light injection conditions were used. Encircled Flux light injection conditions can be obtained by: welding a 2 m long ordinary 50 micron core multimode fiber at the front end of the fiber under test, and winding a 25 mm diameter ring in the middle of the fiber. When the injected light is injected into the fiber, the fiber to be tested is an Encircled Flux light injection.
  • the full injection bandwidth is measured according to the FOTP-204 method, and the test uses a full injection condition.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a set of preforms and wires are prepared, using a double-layer coating of multimode fibers and a drawing speed of 600 m/min, an optical fiber.
  • the structure and main performance parameters are shown in Table 1. Table 1
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the refractive index profiles of the optical fibers of the fourth to eighth embodiments of the present invention are shown in Figs. 4 to 8, wherein the fourth embodiment differs from the third embodiment mainly in the relative refractive index difference ⁇ 5 of the depressed outer cladding. % changes in a curve along the radial direction, The curve is a circular arc shape; the main difference between the fifth embodiment and the third embodiment is that the relative refractive index difference ⁇ 5% of the depressed outer cladding is linearly decreasing from the inside to the outside in the radial direction; the sixth embodiment and The main difference of the third embodiment is that the relative outer refractive index difference ⁇ 5% of the depressed outer cladding gradually increases linearly from the inner side to the outer side.
  • the main feature of the seventh embodiment is that the cladding layer is composed of an inner cladding layer, a rising ring, a depressed outer cladding layer and an outer cladding layer, and has no depressed inner cladding layer.
  • the main feature of the eighth embodiment is that the cladding is composed of a depressed inner cladding, a rising ring, a depressed outer cladding, and an outer cladding, and has no inner cladding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Lasers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Glass Compositions (AREA)

Description

一种高带宽多模光纤 技术领域
本发明涉及一种用于接入网和小型化光器件中的高带宽多模光纤,该光纤同时具有 优异的抗弯曲性能和高的带宽, 属于光通信技术领域。
背景技术
多模光纤, 特别是高带宽的多模光纤 (比如 OM3 ) 由于***建设成本相对较低, 在中短距离光纤网络***(比如数据中心和校园网等) 中得到了广泛的应用。 在室内及 狭窄环境下的布线, 特别是在应用中过长的光纤通常缠绕在越来越小型化的存储盒中, 此时光纤很可能会经受很小的弯曲半径。因此需要设计开发具有弯曲不敏感性能的多模 光纤, 以满足室内光纤网络铺设和器件小型化的要求。 与传统多模光纤相比, 抗弯曲多 模光纤需具有以下特点: 1、 弯曲附加衰减 (特别是宏弯附加衰减) 要小。 2、 小弯曲半 径下光纤寿命不受影响。 3、 具有较高带宽, 可以满足 10Gb/s, 甚至是 40Gb/s以太网的 需要。
降低光纤弯曲附加衰减的一个有效方法是采用下陷包层的设计, 美国专利 US20080166094A1 , US20090169163A1和 US20090154888A1就是采用的此类设计。 其 设计原理为: 当光纤受到小的弯曲时, 从芯子泄露出去的光会较大比例的限制在内包层 并返回到芯子中,从而有效降低了光纤宏弯附加损耗。但此类设计会有一个显著的问题, 就是较多的高阶模能量会被限制在光纤芯层的边界位置,对多模带宽产生较大的负面影 响。
本发明一些术语的定义
为方便介绍本发明内容, 定义部分术语:
芯棒: 含有芯层和部分包层的预制件;
半径: 该层外边界与中心点之间的距离;
折射率剖面: 光纤或光纤预制棒 (包括芯棒) 玻璃折射率与其半径之间的关系; 相对折射率差:
Figure imgf000003_0001
和 nQ分别为各对应部分和纯二氧化硅玻璃在 850nm波长的折射率; 除非另做说 明, 为各对应部分的最大折射率;
套管: 符合一定几何和掺杂要求的石英玻璃管;
RIT工艺: 将芯棒***套管中组成光纤预制棒;
幂指数律折射率剖面: 满足下面幂指数函数的折射率剖面, 其中, ^为光纤轴心的 折射率; r为离开光纤轴心的距离; a为光纤芯半径; a为分布指数; Δ为芯 /包相对折射 率差; n2 (r) = n [l - 2A(-)a ] r<a
a 发明内容
本发明所要解决的技术问题在于针对上述现有技术存在的不足而提供一种结构设 计合理、 弯曲附加衰减小、 带宽高的多模光纤。
本发明多模光纤的技术方案为:
包括有芯层和包层, 其特征在于芯层半径 R1为 15〜35微米, 芯层折射率剖面呈抛 物线 ((X为 1.9〜2.2), 最大相对折射率差 A l%max大于 0.8%, 芯层外的包层从内到外 依次为: 内包层和 /或下陷内包层、 上升环、 下陷外包层, 内包层单边厚度 W2为 0〜8 微米, 内包层相对折射率差 八2%为-0.1%〜0.1%; 下陷内包层单边厚度 W3为 0〜20微 米, 下陷内包层相对折射率差 A 3%为 -0.15%〜- 0.8%; 内包层单边厚度 W2和下陷内包 层单边厚度 W3不同时为 0; 上升环单边厚度 W4为 0.2〜15微米, 上升环相对折射率 差 Δ 4%为 -0.01%〜0.8%; 下陷外包层单边厚度 W5为 1〜50微米, 下陷外包层相对折射 率差 A 5%为 -0.15%〜- 0.8%; 各层相对折射率差同时满足如下关系: A l%max〉A 2% > Δ 3%, Δ 4%> Δ 3%, Δ 4%> Δ 5%, Α 4% Α 2%。
按上述方案, 在下陷外包层外包覆外包层, 外包层单边厚度 W6为 0〜50微米, 外 包层相对折射率差 A 6%为 -0.1%〜0.1 %, Δ 6%> Δ 5%。
按上述方案, 在芯层外的包层中包括有内包层和下陷内包层, 内包层单边厚度 W2 为 0.5〜4微米, 内包层相对折射率差 八2%为-0.01%〜0.01%; 下陷内包层单边厚度 W3 为 5〜15微米, 下陷内包层相对折射率差 A 3%为 -0.2%〜- 0.6%。
按上述方案, 在芯层外的包层中包括有内包层或下陷内包层。
按上述方案, 下陷外包层相对折射率差 Δ 5%沿径向为恒定的; 或者为渐变的, 渐 变包括从内向外递增渐变或从内向外递减渐变; 或者呈曲线变化。 按上述方案, 各层是由掺锗 (Ge) 或掺氟 (F) 或锗氟共掺的石英玻璃组成。
按上述方案, 所述的掺锗(Ge)和氟(F)石英玻璃的材料组分为 Si02-Ge02-F-Cl; 所述的掺氟 (F) 石英玻璃的材料组分为 Si02-F-Cl。
氯 (C1) 是由四氯化硅 (SiCl4)、 四氯化锗 (GeCl4) 与氧气 (02) 发生反应生成 C1所引入的, 其含量的波动对光纤的性能影响不大, 且在稳定的工艺条件下其含量的 波动也不大, 可不作要求和控制。
本发明多模光纤制造方法的技术方案为:
将纯石英玻璃衬管固定在等离子体增强化学气相沉积 (PCVD) 车床上进行掺杂沉 积, 在反应气体四氯化硅 (SiCl4) 和氧气 (02) 中, 通入含氟的气体, 引进氟 (F) 掺 杂, 通入四氯化锗 (GeCl4) 以引入锗 (Ge) 掺杂, 通过微波使衬管内的反应气体离子 化变成等离子体, 并最终以玻璃的形式沉积在衬管内壁; 根据所述光纤波导结构的掺杂 要求, 通过改变混合气体中掺杂气体的流量, 依次沉积各包层和芯层; 沉积完成后, 用 电加热炉将沉积管熔縮成实心芯棒; 然后采用氢氟酸(HF)根据需要对芯棒进行部分腐 蚀, 然后以合成的纯石英玻璃或掺氟石英玻璃为套管采用 RIT工艺制得光纤预制棒, 或 采用 OVD或 VAD外包沉积工艺在芯棒外沉积外包层制得光纤预制棒;将光纤预制棒置 于拉丝塔拉成光纤, 在光纤表面涂覆内外两层紫外固化的聚丙稀酸树脂即成。
按上述方案, 所述的含氟气体为 C2F6、 CF4、 SiF4和 SF6的任意一种或多种。
本发明光纤在 850nm波长具有 2000MHz-km以上,甚至 10000MHz-km以上的带宽; 光纤的数值孔径为 0.185〜0.230; 在 850nm波长处, 以 10毫米弯曲半径绕 1圈导致的弯 曲附加损耗小于 O.ldB, 甚至达到 O.OldB; 以 7.5毫米弯曲半径绕 1圈导致的弯曲附加 损耗小于 0.2dB, 甚至达到 0.02dB; 以 5毫米弯曲半径绕 1圈导致的弯曲附加损耗小于 0.5dB, 甚至达到 0.05dB。
本发明采用了一个或两个下陷包层, 以提高光纤的抗弯曲性能, 同时, 在多模光纤 的包层中引入了上升环, 当芯层中某些高阶模的有效折射率与上升环中一些模式的有效 折射率大体相等时,光纤芯层的这些高阶模的能量就会从芯层转移或耦合到上升环的一 些模式中去, 进而从外包层泄漏出去。 经过一定的光纤传输距离, 这种谐振耦合能有效 减少芯层的高阶模, 从而有效提高弯曲不敏感多模光纤的带宽。
本发明的有益效果在于: 1、 设计出几种多包层多模光纤, 每种光纤至少有一个下 陷包层, 显著降低了光纤宏弯附加衰减, 提高了光纤的抗弯曲性能; 2、 每种光纤都有 上升环, 使得光纤芯层的某些高阶模的能量从芯层转移或耦合到上升环的一些模式中 去, 进而从外包层泄漏出去, 经过一定的光纤传输距离, 这种谐振耦合能有效减少芯层 的高阶模, 从而有效提高弯曲不敏感多模光纤的带宽; 另外, 上升环设计还可以降低光 纤的微弯损耗; 3、 本发明制造方法简便有效, 适用于大规模生产。 附图说明
图 1是本发明一个实施例的光纤折射率剖面示意图。
图 2是本发明另一个实施例的光纤折射率剖面示意图。
图 3是本发明第三个实施例的光纤折射率剖面示意图。
图 4是本发明第四个实施例的光纤折射率剖面示意图。
图 5是本发明第五个实施例的光纤折射率剖面示意图。
图 6是本发明第六个实施例的光纤折射率剖面示意图。
图 7是本发明第七个实施例的光纤折射率剖面示意图。
图 8是本发明第八个实施例的光纤折射率剖面示意图。 具体实施方式
下面将给出详细的实施例并结合附图, 对本发明作进一步的说明。
对实施例中宏弯附加损耗和满注入带宽的测试说明如下:
宏弯附加损耗是根据 FOTP— 62 (IEC— 60793— 1一 47) 方法测得的, 被测光纤按一 定直径 (比如: 10mm, 15mm, 20mm, 30mm等等) 绕一圈, 然后将圆圈放开, 测试 打圈前后光功率的变化, 以此作为光纤的宏弯附加损耗。 测试时, 采用环形通量 (Encircled Flux) 光注入条件。 环形通量 (Encircled Flux) 光注入条件可以通过以下方 法获得: 在被测光纤前端熔接一段 2米长的普通 50微米芯径多模光纤, 并在该光纤中 间绕一个 25毫米直径的圈,当满注入光注入该光纤时,被测光纤即为环形通量 (Encircled Flux) 光注入。
满注入带宽是根据 FOTP— 204方法测得的, 测试采用满注入条件。
实施例一:
按照技术方案的设计(如附图 1所示), 和本发明所述制造方法, 制备了一组预制棒 并拉丝,采用多模光纤的双层涂覆和 600米 /分钟的拉丝速度,光纤的结构和主要性能参 数见表 1。 表 1
Figure imgf000007_0001
实施例二:
按照附图 2的设计, 和本发明所述制造方法, 制备了一组预制棒并拉丝, 采用多模 光纤的双层涂覆和 600米 /分钟的拉丝速度, 光纤的结构和主要性能参数见表 2。 表 2
Figure imgf000008_0001
实施例三:
按照附图 3 的设计, 和本发明所述制造方法, 制备了一组预制棒并拉丝, 采用多模 光纤的双层涂覆和 600米 /分钟的拉丝速度, 光纤的结构和主要性能参数见表 3。 表 3
Figure imgf000009_0001
本发明第四〜第八个实施例的光纤折射率剖面如图 4〜8所示, 其中第四个实施例与 第三个实施例的主要不同之处在于下陷外包层相对折射率差 Δ 5%沿径向呈曲线变化, 曲线为圆弧形;第五个实施例与第三个实施例的主要不同之处在于下陷外包层相对折射 率差 Δ 5%沿径向从内向外呈线性递减渐变; 第六个实施例与第三个实施例的主要不同 之处在于下陷外包层相对折射率差 Δ 5%沿径向从内向外呈线性递增渐变。 第七个实施 例的主要特征是包层由内包层、 上升环、 下陷外包层和外包层构成, 无下陷内包层。 第 八个实施例的主要特征是包层由下陷内包层、 上升环、 下陷外包层和外包层构成, 无内 包层。

Claims

权 利 要 求 书
1、 一种高带宽多模光纤, 包括有芯层和包层, 其特征在于: 芯层半径 R1为 15~35 微米, 芯层折射率剖面呈抛物线, 最大相对折射率差 A l%max大于 0.8%, 芯层外的 包层从内到外依次为: 内包层和 /或下陷内包层、 上升环、 下陷外包层, 内包层单边厚 度 W2为 0~8微米, 内包层相对折射率差 A 2%为 -0.1%~0.1%; 下陷内包层单边厚度 W3为 0~20微米, 下陷内包层相对折射率差 A 3%为 -0.15%~-0.8%; 内包层单边厚度 W2和下陷内包层单边厚度 W3不同时为 0; 上升环单边厚度 W4为 0.2~15微米, 上升 环相对折射率差 Δ 4%为 -0.01%~0.8%; 下陷外包层单边厚度 W5为 1~50微米, 下陷外 包层相对折射率差 Δ 5%为 -0.15%~-0.8%; 各层相对折射率差同时满足如下关系: Δ l max> Δ 2 > Δ 3%, A 4%〉A 3%, A 4%〉A 5%, A 4% A 2%。
2、 按权利要求 1所述的高带宽多模光纤, 其特征在于: 在下陷外包层外包覆外包 层,外包层单边厚度 W6为 0~50微米,外包层相对折射率差八6%为-0.1%~0.1%, Δ 6 〉 Α 5%。
3、 按权利要求 1或 2所述的高带宽多模光纤, 其特征在于: 在芯层外的包层中包 括有内包层和下陷内包层, 内包层单边厚度 W2为 0.5~4微米, 内包层相对折射率差 △ 2%为 -0.01%~0.01%; 下陷内包层单边厚度 W3为 5~15微米, 下陷内包层相对折射 率差八3%为-0.2%~-0.6%。
4、 按权利要求 2所述的高带宽多模光纤, 其特征在于: 在芯层外的包层中包括有 内包层或下陷内包层。
5、 按权利要求 1或 2所述的高带宽多模光纤, 其特征在于: 下陷外包层相对折射 率差 Δ 5%沿径向为恒定的; 或者为渐变的, 渐变包括从内向外递增渐变或从内向外递 减渐变; 或者呈曲线变化。
6、 按权利要求 1或 2所述的高带宽多模光纤, 其特征在于: 在 850nm波长具有 2000MHz-km以上的带宽; 光纤的数值孔径为 0.185 0.230。
7、 按权利要求 1或 2所述的高带宽多模光纤, 其特征在于: 在 850nm波长处, 以 10毫米弯曲半径绕 1圈导致的弯曲附加损耗小于 O.ldB;以 7.5毫米弯曲半径绕 1圈导 致的弯曲附加损耗小于 0.2dB ; 以 5 毫米弯曲半径绕 1 圈导致的弯曲附加损耗小于 0.5dB。
PCT/CN2010/079313 2010-01-20 2010-12-01 一种高带宽多模光纤 WO2011088706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010029031.1 2010-01-20
CN2010100290311A CN101738681B (zh) 2010-01-20 2010-01-20 一种高带宽多模光纤

Publications (1)

Publication Number Publication Date
WO2011088706A1 true WO2011088706A1 (zh) 2011-07-28

Family

ID=42462388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079313 WO2011088706A1 (zh) 2010-01-20 2010-12-01 一种高带宽多模光纤

Country Status (2)

Country Link
CN (1) CN101738681B (zh)
WO (1) WO2011088706A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738681B (zh) * 2010-01-20 2011-08-31 长飞光纤光缆有限公司 一种高带宽多模光纤
CN102043197A (zh) * 2011-01-26 2011-05-04 长飞光纤光缆有限公司 一种抗弯曲多模光纤
FR2971061B1 (fr) * 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
CN102193142B (zh) * 2011-06-28 2013-06-26 长飞光纤光缆有限公司 一种抗弯曲大芯径高数值孔径多模光纤
US8842957B2 (en) * 2011-06-30 2014-09-23 Corning Incorporated Multimode optical fiber and system incorporating such
US20130039626A1 (en) * 2011-08-11 2013-02-14 Scott Robertson Bickham Multimode optical fiber and optical backplane using multimode optical fiber
CN102539015B (zh) * 2012-02-15 2013-11-20 长飞光纤光缆有限公司 一种分布式温度传感光纤
CN102778722B (zh) * 2012-05-28 2014-09-17 长芯盛(武汉)科技有限公司 渐变折射率抗弯曲多模光纤
CN102692675A (zh) * 2012-05-28 2012-09-26 长飞光纤光缆有限公司 一种渐变折射率抗弯曲多模光纤
CN103543491B (zh) * 2013-11-08 2015-08-19 烽火通信科技股份有限公司 超低损耗高带宽耐辐照多模光纤及其制造方法
CN105319643A (zh) * 2014-06-30 2016-02-10 住友电气工业株式会社 多模光纤
CN104216044B (zh) * 2014-09-17 2017-10-24 长飞光纤光缆股份有限公司 一种低衰耗弯曲不敏感单模光纤
CN104391351B (zh) * 2014-11-25 2017-07-21 长飞光纤光缆股份有限公司 一种抗弯曲多模光纤
CN104793285B (zh) * 2015-04-29 2018-01-02 武汉邮电科学研究院 低损耗少模光纤
CN104880766B (zh) * 2015-06-25 2018-01-12 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN104898201B (zh) * 2015-06-25 2017-12-08 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN105759344B (zh) * 2016-03-23 2018-11-30 长飞光纤光缆股份有限公司 一种抗弯曲多模光纤
CN106468803A (zh) * 2016-08-30 2017-03-01 武汉长盈通光电技术有限公司 一种弯曲不敏感单模光纤
CN106324752B (zh) * 2016-11-08 2019-01-22 长飞光纤光缆股份有限公司 一种高带宽抗辐射多模光纤
CN107479129A (zh) * 2017-08-11 2017-12-15 长飞光纤光缆股份有限公司 一种高带宽多模光纤
CN107390316A (zh) * 2017-08-11 2017-11-24 长飞光纤光缆股份有限公司 具有高带宽性能的多模光纤
CN110346864B (zh) * 2019-06-04 2020-10-27 烽火通信科技股份有限公司 一种多芯少模光纤及其制造方法
CN112987169A (zh) * 2019-12-02 2021-06-18 ***通信有限公司研究院 一种光纤
CN116626805B (zh) * 2023-07-24 2023-10-13 中天科技光纤有限公司 超低损耗光纤及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131729A1 (en) * 1983-06-15 1985-01-23 Sumitomo Electric Industries Limited Fiber for optical transmission
CN1252498C (zh) * 2003-07-15 2006-04-19 长飞光纤光缆有限公司 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
US7085462B2 (en) * 2001-12-05 2006-08-01 The Furukawa Electric Co., Ltd. Optical fiber, optical fiber module and optical amplifier
US20090154888A1 (en) * 2007-12-13 2009-06-18 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
CN101526643A (zh) * 2008-03-06 2009-09-09 汪业衡 宽带非零色散单模光纤
CN101622561A (zh) * 2007-01-08 2010-01-06 康宁股份有限公司 抗弯曲多模光纤
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN101738681A (zh) * 2010-01-20 2010-06-16 长飞光纤光缆有限公司 一种高带宽多模光纤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131729A1 (en) * 1983-06-15 1985-01-23 Sumitomo Electric Industries Limited Fiber for optical transmission
US7085462B2 (en) * 2001-12-05 2006-08-01 The Furukawa Electric Co., Ltd. Optical fiber, optical fiber module and optical amplifier
CN1252498C (zh) * 2003-07-15 2006-04-19 长飞光纤光缆有限公司 与正色散和正色散斜率单模光纤匹配使用的色散补偿传输光纤及用途
CN101622561A (zh) * 2007-01-08 2010-01-06 康宁股份有限公司 抗弯曲多模光纤
US20090154888A1 (en) * 2007-12-13 2009-06-18 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
CN101526643A (zh) * 2008-03-06 2009-09-09 汪业衡 宽带非零色散单模光纤
CN101634728A (zh) * 2009-08-18 2010-01-27 长飞光纤光缆有限公司 一种抗弯曲多模光纤及其制造方法
CN101738681A (zh) * 2010-01-20 2010-06-16 长飞光纤光缆有限公司 一种高带宽多模光纤

Also Published As

Publication number Publication date
CN101738681B (zh) 2011-08-31
CN101738681A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2011088706A1 (zh) 一种高带宽多模光纤
JP5687355B2 (ja) 曲げ耐性を有しコア径が大きく高開口数のマルチモード光ファイバ
KR101577635B1 (ko) 벤딩에 민감하지 않은 단일모드 광섬유
US9796618B2 (en) Multi-core optical fiber ribbons and methods for making the same
KR101577962B1 (ko) 일종의 벤딩에 민감하지 않은 단일모드 광섬유
US8750664B2 (en) Bend insensitive single mode fiber
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
WO2011020315A1 (zh) 一种抗弯曲多模光纤及其制造方法
WO2011147272A1 (zh) 一种抗弯曲多模光纤
CN102778722B (zh) 渐变折射率抗弯曲多模光纤
CN109839694B (zh) 一种截止波长位移单模光纤
CN108333671B (zh) 抗弯曲多模光纤
CN104291676B (zh) 一种大尺寸弯曲不敏感多模光纤预制棒的制造方法
WO2015007097A1 (zh) 一种弯曲不敏感单模光纤
CN100371747C (zh) 具有波导结构的弯曲不敏感光纤
CN107102400B (zh) 一种高带宽弯曲不敏感多模光纤
US8606065B2 (en) Optical fiber and method for fabricating the same
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
CN110488411B (zh) 一种抗弯曲单模光纤
WO2017036030A1 (zh) 一种细径抗弯曲光纤及其制备方法
WO2012100581A1 (zh) 一种抗弯曲多模光纤
WO2023240879A1 (zh) 一种细径单模光纤
CN107193080B (zh) 高带宽弯曲不敏感多模光纤
CN108983350B (zh) 一种小芯径渐变折射率光纤
CN115542455A (zh) 一种兼容g652d标准的大模场g657a2光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843746

Country of ref document: EP

Kind code of ref document: A1