WO2011087174A1 - Heat conduction pad and manufacturing method thereof - Google Patents

Heat conduction pad and manufacturing method thereof Download PDF

Info

Publication number
WO2011087174A1
WO2011087174A1 PCT/KR2010/000335 KR2010000335W WO2011087174A1 WO 2011087174 A1 WO2011087174 A1 WO 2011087174A1 KR 2010000335 W KR2010000335 W KR 2010000335W WO 2011087174 A1 WO2011087174 A1 WO 2011087174A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pad
thermal conductive
manufacturing
slurry
dispersion
Prior art date
Application number
PCT/KR2010/000335
Other languages
French (fr)
Korean (ko)
Inventor
문홍웅
Original Assignee
수퍼나노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수퍼나노텍(주) filed Critical 수퍼나노텍(주)
Publication of WO2011087174A1 publication Critical patent/WO2011087174A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a thermally conductive pad and a method for manufacturing the same, and more particularly, to a thermally conductive pad and a thermally conductive pad including a carbon nanotube (CNT) and a ceramic solid having various shapes and sizes.
  • CNT carbon nanotube
  • thermal conductive pads have been used to improve conductivity by filling alumina in a polymer matrix. This is applicable to low heat generation device, but there is a limit to apply to the high heat generation device, a problem that the specific gravity is increased according to the filling rate of alumina.
  • An object of the present invention for solving the above problems is to uniformly distribute inside the polymer matrix through uniform dispersion of carbon nanotubes having excellent thermal conductivity, thereby providing a thermal conductive pad and a thermal conductive pad manufacturing method having a high thermal conductivity. For that purpose.
  • the thermal conductive pad according to the first embodiment of the present invention for solving the conventional problems and to achieve the above object is a polymer matrix; 70 to 90 wt% of a ceramic solid contained in the polymer matrix and having a thermal conductivity of 20 to 40 W / mK; And 1 to 5 wt% carbon nanotubes contained in the polymer matrix and uniformly dispersed between the ceramic solids.
  • the ceramic solid is characterized by consisting of 96 to 98wt% alumina and 1 to 5wt% silica.
  • the particle shape of the alumina is made of spherical and amorphous, when the particles are spherical has a size of 5 ⁇ 40 ⁇ m, when the amorphous having a size of 4 ⁇ 20 ⁇ m do.
  • Method for producing a thermally conductive pad comprises the steps of preparing a dispersion of carbon nanotubes (CNT); A second step of preparing a first slurry by stirring a 1-5 wt% pigment to a silicon-based first polymer solution and then adding a carbon nanotube dispersion dispersed in the first step; A third step of preparing a second slurry by adding 0.1-0.5 wt% of a Pt catalyst and the first slurry to a silicon-based second polymer solution and then adding 70-90 wt% of a ceramic solid; Injecting the second slurry into a mixer and then applying vacuum to stir; Step 5 is applied to the comma coater head by applying a hydraulic pressure through the ram press (lam press) in the step 4 and cast (casting) to the fluorine-treated PET release film through a comma coater Wow; A six step of thermally curing the second slurry cast on the polyethylene terephthalate (PET) release film
  • the method for manufacturing a thermally conductive pad according to the present invention is characterized in that the ceramic solid is composed of 96-98 wt% alumina and 1-5 wt% silica.
  • the particle shape of the alumina is spherical and amorphous, and when the particle is spherical, it has a size of 5 to 40 ⁇ m, and when it is amorphous, it has a size of 4 to 20 ⁇ m. It is done.
  • the method for manufacturing a thermally conductive pad according to the present invention is characterized in that, in the fourth step, a vacuum of 76 cmHg is added to prevent bubbles in the second slurry during stirring.
  • the method for manufacturing a thermally conductive pad according to the present invention is characterized in that the comma coater adjusts the molding thickness through a gap adjusting device.
  • the thermal conductive pad according to the second embodiment of the present invention is characterized by being manufactured by the thermal conductive pad manufacturing method.
  • the thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention have the effect of having high thermal conductivity by uniformly distributing the carbon nanotubes inside the polymer matrix through uniform dispersion of the carbon nanotubes having excellent thermal conductivity.
  • thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention has the effect of reducing the cost of dispersion through the direct dispersion of carbon nanotubes.
  • FIG. 1 is a view showing a thermal conductive pad according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a thermal conductive pad according to an embodiment of the present invention.
  • FIG. 1 is a view showing a thermal conductive pad according to an embodiment of the present invention.
  • the thermal conductive pad 100 includes a polymer matrix 400, a ceramic solid 300 having a thermal conductivity of 20 to 40 W / mK, and a ceramic solid of 300 to 90 wt%. 1 to 5 wt% of carbon nanotubes 200 uniformly dispersed between the ceramic solids 300.
  • the ceramic solid 300 is composed of 96 ⁇ 98wt% alumina and 1 ⁇ 5wt% silica.
  • the alumina particles are spherical and amorphous.
  • the particles have a size of 5 ⁇ 40 ⁇ m in spherical form, 4 ⁇ 20 ⁇ m in the case of amorphous.
  • Reference numeral 310 not mentioned above is a large size ceramic solid, and 320 is a small size ceramic solid. At this time, the ceramic solid 300 having a different size is alumina.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a thermal conductive pad according to an embodiment of the present invention.
  • the method for manufacturing a thermally conductive pad includes preparing a dispersion of carbon nanotubes (CNT) (S110) and 1-5 wt% of a pigment in a silicon-based first polymer solution. After stirring, the carbon nanotube dispersion dispersed in the first step (S110) is added to prepare a first slurry (S120), and 0.1 to 0.5 wt% of a Pt catalyst and the first slurry to a silicon-based second polymer solution.
  • CNT carbon nanotubes
  • the carbon nanotube dispersion of the first step (S110) is 10 ⁇ 40 ⁇ / sq by mixing 1 ⁇ 5wt% of carbon nanotubes and 3 ⁇ 6wt% sodium dodecyl sulfate (SDS, Sodium Dodecyl Sulfate) in water 1,000 Ultrasonic dispersion is used to prepare a water-soluble dispersion, and the dispersion method in the form of a paste using a dispersing agent of 1 to 5wt% carbon nanotubes in a liquid silicone binder.
  • SDS sodium dodecyl Sulfate
  • liquid silicone binder can be selectively applied to the type of liquid silicone in order to control the workability and product properties when forming the polymer matrix.
  • the pigment agitation of the second step (S120) is dispersed by 40 to 60 minutes at a speed of 1500rpm ⁇ 3000rpm using a high speed stirrer to adjust the color of the thermal conductive pad. This adjusts the color of the thermal pad's end product to gray, making it insensitive to dust and other contamination.
  • the ceramic solid is preferably composed of 96 ⁇ 98wt% alumina and 1 ⁇ 5wt% silica, wherein the alumina has a size of 5 ⁇ 40 ⁇ m when the particles are spherical, 4 ⁇ 20 ⁇ m when amorphous Has the size of.
  • step 3 the ceramic solid is added in order of the smallest particle size, and alumina and silica are added.
  • the stirring speed of the planetary mixer is 10-20 rpm at 10-20 minutes each. Add 5 to 10 minutes of vacuum at 76cmHg to the mixing time of the mixture and stir.
  • the ceramic solid input and stirring of the three steps (S130) is a first kneading to knead the vacuum off after the first mixing (third (ceramic solid with a small particle size)) of the total amount of the ceramic solids in the stirring process and pre-mixing; After mixing 1/2 of the total amount of ceramic solids (ceramic solid with medium particle size), mix and mix the second kneading and the ceramic solids 1/6 of the total amount of ceramic solids. After mixing, a third kneading process is performed in which vacuum is kneaded off. Through this process, carbon nanotubes, silica, and ceramic particles in the polymer matrix are uniformly filled. This is to express uniform thermal conductivity and optimal thermal conductivity in the final product formation.
  • step 3 to 4 (S130, S140) is carried out at room temperature for 10 to 15 minutes through a planetary mixer (Planetary Mixer), the second slurry is maintained at a temperature of 20 ⁇ 30 °C, the second In order to prevent bubble generation in the slurry, a vacuum of 76 cmHg is added and stirred.
  • a planetary mixer Plantary Mixer
  • high-speed defoaming is performed at 40 to 60 minutes in a vacuum state at a stirring speed of 10 to 20 rpm of a planetary mixer, and 10 to 20 minutes at a stirring speed of 1 to 5 rpm. Proceed to slow defoaming. This is to prevent attenuation of thermal conductivity due to bubbles when bubbles exist in the second slurry.
  • the reactor of the planetary mixer is mounted on a ram press, and the second slurry is discharged at a hydraulic pressure of 10 to 30 psi to be loaded on a comma coater head.
  • the comma coater can adjust the molding thickness through the gap (gap) adjusting device.
  • the air dry chamber of step 6 is composed of five drying (drying) section, forming the four heating (heating) section (130 ⁇ 175 °C) one cooling (cooling) section It includes.
  • the thermal conductive pad according to the second embodiment of the present invention is manufactured by the thermal conductive pad manufacturing method.
  • the thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention have a carbon nanotube inside the polymer matrix 400 through uniform dispersion of the carbon nanotubes 200 having excellent thermal conductivity. By uniformly distributing (200), there is an effect of having high thermal conductivity.
  • thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention have an effect of reducing the cost of dispersion through direct dispersion of the carbon nanotubes 200.
  • thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention by selectively applying the type of the liquid silicone binder used in the paste dispersion workability and physical properties of the product when forming the polymer matrix 400 Has the effect of adjusting.
  • the thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention have the effect of having high thermal conductivity by uniformly distributing the carbon nanotubes inside the polymer matrix through the uniform dispersion of the carbon nanotubes having excellent thermal conductivity. Decentralization can reduce the cost of distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a heat conduction pad and a manufacturing method thereof. The invention comprises: ceramic solids which have 20-40W/mK of heat conductivity; and carbon nano tubes which are uniformly dispersed between the ceramic solids, thereby showing high heat conductivity through the uniform dispersion of the carbon nano tubes with an excellent heat conductive characteristic.

Description

열전도패드 및 그 제조방법Thermal conductive pad and manufacturing method thereof
본 발명은 열전도패드 및 그 제조방법에 관한 것으로, 보다 상세하게는 탄소나노튜브(CNT)와, 다양한 형태 및 사이즈(Size)를 가진 세라믹 고체를 포함하는 열전도패드 및 열전도패드 제조방법에 관한 것이다.The present invention relates to a thermally conductive pad and a method for manufacturing the same, and more particularly, to a thermally conductive pad and a thermally conductive pad including a carbon nanotube (CNT) and a ceramic solid having various shapes and sizes.
전자 및 반도체 기술의 발달로 전자소자의 성능이 발달됨에 따라 전자제품의 소형화 고성능화가 비약적으로 진행되어 왔다. 이에 따라 전자소자에서 발생되는 열의 외부로의 방출을 통해 전자소자의 성능 및 수명을 확보하는 것이 중요한 이슈가 되고 있다. 전자소자에서 발생되는 열은 케이스를 통해 외부로 원활히 방출되는 것이 가장 이상적인 방법이다. As the performance of electronic devices is developed due to the development of electronic and semiconductor technologies, miniaturization and high performance of electronic products have been rapidly progressed. Accordingly, it is becoming an important issue to secure the performance and life of the electronic device through the release of heat generated from the electronic device to the outside. The heat generated from the electronic device is ideally discharged to the outside through the case.
그러나, 전자소자와 케이스 사이에는 공간이 존재함으로써 복사를 통한 열 전달이 이루어진다. 복사를 통한 열의 전달은 전도를 통한 열 전달보다 효율이 떨어지므로 고열전도도를 가지는 매질이 필요하다.However, there is a space between the electronic device and the case, so that heat transfer through radiation occurs. Since heat transfer through radiation is less efficient than heat transfer through conduction, a medium having high thermal conductivity is required.
종래의 열전도패드는 고분자 매트릭스에 알루미나를 충진하여 전도율을 향상시키는 방법을 사용하여 왔다. 이는 저발열 소자에는 적용가능하나 고발열 소자에 적용하는 데는 한계가 있고, 알루미나의 충진율에 따라서 비중이 높아지는 문제가 발생되었다. Conventional thermal conductive pads have been used to improve conductivity by filling alumina in a polymer matrix. This is applicable to low heat generation device, but there is a limit to apply to the high heat generation device, a problem that the specific gravity is increased according to the filling rate of alumina.
상기한 종래 문제점을 해결하기 위한 본 발명의 목적은 열전도특성이 우수한 탄소나노튜브의 균일한 분산을 통하여 고분자 매트릭스 내부에 균일하게 분포시키며, 이를 통하여 고열전도도를 가지는 열전도패드 및 열전도패드 제조방법을 제공함을 그 목적으로 한다.An object of the present invention for solving the above problems is to uniformly distribute inside the polymer matrix through uniform dispersion of carbon nanotubes having excellent thermal conductivity, thereby providing a thermal conductive pad and a thermal conductive pad manufacturing method having a high thermal conductivity. For that purpose.
상기한 종래 문제점을 해결하고 상기 목적을 달성하기 위한 본 발명의 제1실시예에 따른 열전도패드는 고분자 매트릭스와; 상기 고분자 매트릭스 내부에 포함되며 열전도도가 20~40W/mK인 70~90wt%의 세라믹 고체; 및 상기 고분자 매트릭스 내부에 포함되며 상기 세라믹 고체 사이에 균일하게 분산되는 1~5wt%의 탄소나노튜브;를 포함하는 것을 특징으로 한다.The thermal conductive pad according to the first embodiment of the present invention for solving the conventional problems and to achieve the above object is a polymer matrix; 70 to 90 wt% of a ceramic solid contained in the polymer matrix and having a thermal conductivity of 20 to 40 W / mK; And 1 to 5 wt% carbon nanotubes contained in the polymer matrix and uniformly dispersed between the ceramic solids.
본 발명에 따른 열전도패드에 있어서, 상기 세라믹 고체는 96~98wt%의 알루미나 및 1~5wt%의 실리카로 이루어지는 것을 특징으로 한다.In the thermal conductive pad according to the present invention, the ceramic solid is characterized by consisting of 96 to 98wt% alumina and 1 to 5wt% silica.
본 발명에 따른 열전도패드에 있어서, 상기 알루미나의 입자 형상은 구형 및 무정형으로 이루어지고, 입자가 구형일 경우 5~40㎛의 크기를 가지며, 무정형일 경우 4~20㎛의 크기를 가지는 것을 특징으로 한다.In the thermal conductive pad according to the present invention, the particle shape of the alumina is made of spherical and amorphous, when the particles are spherical has a size of 5 ~ 40㎛, when the amorphous having a size of 4 ~ 20㎛ do.
본 발명에 따른 열전도패드의 제조방법은 탄소나노튜브(CNT)의 분산액을 제조하는 1단계와; 실리콘계 제1고분자용액에 1~5wt%의 안료(pigment)를 교반 후 상기 1단계에서 분산된 탄소나노튜브 분산액을 투입하여 제1슬러리를 제조하는 2단계와; 실리콘계 제2고분자용액에 0.1~0.5 wt%의 Pt촉매와, 상기 제1슬러리를 투입 교반한 후 70~90wt%의 세라믹 고체를 투입하여 제2슬러리를 제조하는 3단계와; 상기 제2슬러리를 믹서(mixer)기에 투입 후 진공을 가하여 교반하는 4단계와; 상기 4단계에서 교반된 제2슬러리를 램 프레스(lam press)를 통해 유압을 가하여 콤마코터(comma coater) 헤드에 로딩한 후 콤마코터를 통해 불소 처리된 PET이형 필름에 캐스팅(casting)하는 5단계와; 상기 피이티(PET: polyethylene terephthalate)이형 필름에 캐스팅된 제2슬러리를 에어 드라이 챔버(air dry chamber)에 통과시켜 열경화 하는 6단계; 및 상기 열경화 처리 후 형성된 고분자 매트릭스 상부에 오염 또는 훼손을 방지하는 엠보싱 처리된 이형 필름을 추가로 합지하는 7단계;로 이루어지는 것을 특징으로 한다.Method for producing a thermally conductive pad according to the present invention comprises the steps of preparing a dispersion of carbon nanotubes (CNT); A second step of preparing a first slurry by stirring a 1-5 wt% pigment to a silicon-based first polymer solution and then adding a carbon nanotube dispersion dispersed in the first step; A third step of preparing a second slurry by adding 0.1-0.5 wt% of a Pt catalyst and the first slurry to a silicon-based second polymer solution and then adding 70-90 wt% of a ceramic solid; Injecting the second slurry into a mixer and then applying vacuum to stir; Step 5 is applied to the comma coater head by applying a hydraulic pressure through the ram press (lam press) in the step 4 and cast (casting) to the fluorine-treated PET release film through a comma coater Wow; A six step of thermally curing the second slurry cast on the polyethylene terephthalate (PET) release film through an air dry chamber; And 7 step of additionally laminating the embossed release film to prevent contamination or damage on the polymer matrix formed after the thermosetting treatment.
본 발명에 따른 열전도패드의 제조방법에 있어서, 상기 1단계의 탄소나노튜브 분산액 제조는 물 1,000에 탄소나노튜브 1~5wt%와 황산도데실나트륨(SDS, Sodium Dodecyl Sulfate)3~6wt%를 혼합하여 10~40Ω/sq의 초음파 분산을 실시하여 수용성 분산액을 제조, 또는 액상 실리콘 바인더에 탄소나노튜브 1~5wt%를 분산제를 이용하여 페이스트(paste) 형상으로 분산하는 것을 특징으로 한다.In the method of manufacturing a thermally conductive pad according to the present invention, in the preparation of the carbon nanotube dispersion in the first step, 1 to 5 wt% of carbon nanotubes and 3 to 6 wt% of sodium dodecyl sulfate (SDS) are mixed in 1,000 water. Ultrasonic dispersion of 10 to 40 Ω / sq to prepare an aqueous dispersion, or to disperse 1 to 5 wt% of carbon nanotubes in a liquid silicone binder in a paste (paste) shape using a dispersant.
본 발명에 따른 열전도패드의 제조방법은 상기 세라믹 고체는 96~98wt%의 알루미나 및 1~5wt% 실리카로 이루어지는 것을 특징으로 한다.The method for manufacturing a thermally conductive pad according to the present invention is characterized in that the ceramic solid is composed of 96-98 wt% alumina and 1-5 wt% silica.
본 발명에 따른 열전도패드의 제조방법은 상기 알루미나의 입자 형상은 구형 및 무정형으로 이루어지고, 입자가 구형일 경우 5~40㎛의 크기를 가지며, 무정형일 경우 4~20㎛의 크기를 가지는 것을 특징으로 한다.In the method of manufacturing a thermally conductive pad according to the present invention, the particle shape of the alumina is spherical and amorphous, and when the particle is spherical, it has a size of 5 to 40 μm, and when it is amorphous, it has a size of 4 to 20 μm. It is done.
본 발명에 따른 열전도패드의 제조방법은 상기 4단계는 교반 시 제2슬러리내에 기포 발생을 방지하기 위하여 76cmHg의 진공을 가하는 것을 특징으로 한다.The method for manufacturing a thermally conductive pad according to the present invention is characterized in that, in the fourth step, a vacuum of 76 cmHg is added to prevent bubbles in the second slurry during stirring.
본 발명에 따른 열전도패드의 제조방법은 상기 콤마코터는 갭(gap) 조절장치를 통하여 성형두께를 조정하는 것을 특징으로 한다.The method for manufacturing a thermally conductive pad according to the present invention is characterized in that the comma coater adjusts the molding thickness through a gap adjusting device.
본 발명의 제2실시예에 따른 열전도패드는 상기 열전도패드 제조방법으로 제조되는 것을 특징으로 한다.The thermal conductive pad according to the second embodiment of the present invention is characterized by being manufactured by the thermal conductive pad manufacturing method.
상기한 바와 같이, 본 발명에 따른 열전도패드 및 열전도패드 제조방법은 열전도특성이 우수한 탄소나노튜브의 균일한 분산을 통하여 고분자 매트릭스 내부에 탄소나노튜브를 균일하게 분포시킴으로써 고열전도도를 가지는 효과가 있다.As described above, the thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention have the effect of having high thermal conductivity by uniformly distributing the carbon nanotubes inside the polymer matrix through uniform dispersion of the carbon nanotubes having excellent thermal conductivity.
또한, 본 발명에 따른 열전도패드 및 열전도패드 제조방법은 탄소나노튜브의 직접 분산을 통해 분산에 소요되는 비용을 절감할 수 있는 효과가 있다.In addition, the thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention has the effect of reducing the cost of dispersion through the direct dispersion of carbon nanotubes.
도 1은 본 발명의 실시예에 따른 열전도패드를 나타낸 도면이다.1 is a view showing a thermal conductive pad according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 열전도패드 제조방법을 나타낸 순서도이다.2 is a flowchart illustrating a method of manufacturing a thermal conductive pad according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 구체적인 실시 예를 상세하게 설명하면 다음과 같다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 열전도패드를 나타낸 도면이다.1 is a view showing a thermal conductive pad according to an embodiment of the present invention.
도 1에 도시한 바와 같이 본 발명의 제1 실시예에 따른 열전도패드(100)는 고분자 매트릭스(400)와, 열전도도가 20~40W/mK인 70~90wt%의 세라믹 고체(300) 및 상기 세라믹 고체(300) 사이에 균일하게 분산되는 1~5wt%의 탄소나노튜브(200)를 포함한다.As shown in FIG. 1, the thermal conductive pad 100 according to the first embodiment of the present invention includes a polymer matrix 400, a ceramic solid 300 having a thermal conductivity of 20 to 40 W / mK, and a ceramic solid of 300 to 90 wt%. 1 to 5 wt% of carbon nanotubes 200 uniformly dispersed between the ceramic solids 300.
여기서, 상기 세라믹 고체(300)는 96~98wt%의 알루미나 및 1~5wt%의 실리카로 이루어진다.Here, the ceramic solid 300 is composed of 96 ~ 98wt% alumina and 1 ~ 5wt% silica.
이때, 상기 알루미나는 입자가 구형 및 무정형으로 이루어진다. 상기 입자는 구형일 경우 5~40㎛의 크기를 가지며, 무정형일 경우 4~20㎛의 크기를 가진다.In this case, the alumina particles are spherical and amorphous. The particles have a size of 5 ~ 40㎛ in spherical form, 4 ~ 20㎛ in the case of amorphous.
상기에서 언급되지 않은 도면번호 310은 큰 사이즈의 세라믹 고체이고, 320은 작은 사이즈의 세라믹 고체이다. 이때, 사이즈가 다른 세라믹 고체(300)는 알루미나이다.Reference numeral 310 not mentioned above is a large size ceramic solid, and 320 is a small size ceramic solid. At this time, the ceramic solid 300 having a different size is alumina.
도 2는 본 발명의 일 실시예에 따른 열전도패드 제조방법을 나타낸 순서도이다.2 is a flowchart illustrating a method of manufacturing a thermal conductive pad according to an embodiment of the present invention.
도 2에 도시한 바와 같이 본 발명에 따른 열전도패드 제조방법은 탄소나노튜브(CNT)를 분산액을 제조하는 1단계(S110)와, 실리콘계 제1고분자용액에 1~5wt%의 안료(pigment)를 교반 후 상기 1단계(S110)에서 분산된 탄소나노튜브 분산액을 투입하여 제1슬러리를 제조하는 2단계(S120)와, 실리콘계 제2고분자용액에 0.1~0.5 wt%의 Pt촉매와 상기 제1슬러리를 투입 교반한 후 70~90wt%의 세라믹 고체를 투입하여 제2슬러리를 제조하는 3단계(S130)와, 상기 제2슬러리를 믹서(mixer)기에 투입 후 진공을 가하여 교반하는 4단계(S140)와, 상기 4단계(S140)에서 교반된 제2슬러리를 램 프레스(lam press)를 통해 유압을 가하여 콤마코터(comma coater) 헤드에 로딩한 후 콤마코터를 통해 불소 처리된 PET이형 필름에 캐스팅(casting)하는 5단계(S150)와, 상기 PET이형 필름에 캐스팅된 제2슬러리를 에어 드라이 챔버(air dry chamber)에 통과시켜 열경화 하는 6단계(S160) 및 상기 열경화 처리 후 형성된 고분자 매트릭스 상부에 오염 또는 훼손을 방지하는 엠보싱 처리된 이형 필름을 추가로 합지하는 7단계(S170)로 이루어진다.As shown in FIG. 2, the method for manufacturing a thermally conductive pad according to the present invention includes preparing a dispersion of carbon nanotubes (CNT) (S110) and 1-5 wt% of a pigment in a silicon-based first polymer solution. After stirring, the carbon nanotube dispersion dispersed in the first step (S110) is added to prepare a first slurry (S120), and 0.1 to 0.5 wt% of a Pt catalyst and the first slurry to a silicon-based second polymer solution. After adding and stirring 70 to 90wt% of the ceramic solids by adding a third step (S130) for producing a second slurry, and adding the second slurry to a mixer (mixer) and then adding a vacuum to the fourth step (S140) And, in the fourth step (S140) by applying a hydraulic pressure through a ram press (lam press) to the comma coater (comma coater) head and then cast on a fluorine-treated PET release film through a comma coater ( 5 step (S150) and the second slurry cast on the PET release film air 6 step (S160) of heat curing through the air dry chamber (S160) and the further step of laminating the embossed release film to prevent contamination or damage on the polymer matrix formed after the heat curing (S170) Is made of.
여기에서, 상기 1단계(S110)의 탄소나노튜브 분산은 물 1,000에 탄소나노튜브 1~5wt%와 황산도데실나트륨(SDS, Sodium Dodecyl Sulfate)3~6wt%를 혼합하여 10~40Ω/sq의 초음파 분산을 실시하여 수용성 분산액을 제조하는 방법과, 액상 실리콘 바인더에 탄소나노튜브 1~5wt%를 분산제를 이용하여 페이스트(paste) 형상으로 분산방법을 사용한다.Here, the carbon nanotube dispersion of the first step (S110) is 10 ~ 40Ω / sq by mixing 1 ~ 5wt% of carbon nanotubes and 3 ~ 6wt% sodium dodecyl sulfate (SDS, Sodium Dodecyl Sulfate) in water 1,000 Ultrasonic dispersion is used to prepare a water-soluble dispersion, and the dispersion method in the form of a paste using a dispersing agent of 1 to 5wt% carbon nanotubes in a liquid silicone binder.
이때, 상기 액상 실리콘 바인더는 고분자 매트릭스 형성 시 작업성 및 제품의 물성을 조절하기 위하여 액상 실리콘의 종류를 선택적으로 적용하는 것이 가능하다.In this case, the liquid silicone binder can be selectively applied to the type of liquid silicone in order to control the workability and product properties when forming the polymer matrix.
또한, 상기 2단계(S120)의 안료(pigment)교반은 고속교반기를 이용하여 1500rpm~3000rpm의 속도로 40~60분간 분산시켜 열전도패드의 색상을 조정한다. 이는 열전도패드의 최종제품 색상을 회색(gray)으로 조정함으로써 먼지 및 기타 오염에 민감하지 않도록 한다.In addition, the pigment agitation of the second step (S120) is dispersed by 40 to 60 minutes at a speed of 1500rpm ~ 3000rpm using a high speed stirrer to adjust the color of the thermal conductive pad. This adjusts the color of the thermal pad's end product to gray, making it insensitive to dust and other contamination.
그리고, 상기 세라믹 고체는 96~98wt%의 알루미나 및 1~5wt%의 실리카로 이루어지는 것이 바람직하며, 이때, 알루미나는 입자가 구형일 경우 5~40㎛의 크기를 가지고, 무정형일 경우 4~20㎛의 크기를 가진다.In addition, the ceramic solid is preferably composed of 96 ~ 98wt% alumina and 1 ~ 5wt% silica, wherein the alumina has a size of 5 ~ 40㎛ when the particles are spherical, 4 ~ 20㎛ when amorphous Has the size of.
여기서, 상기 3단계(S130)는 세라믹 고체 투입을 입자 사이즈(size)가 작은 순으로 하고, 알루미나 및 실리카를 투입하며, 이때, 플레네터리 믹서기의 교반속도는 10~20rpm으로 각각 10~20분의 믹싱타임(mixing time)에 5~10분씩 76cmHg의 진공을 가하여 교반을 한다.Here, in step 3 (S130), the ceramic solid is added in order of the smallest particle size, and alumina and silica are added. At this time, the stirring speed of the planetary mixer is 10-20 rpm at 10-20 minutes each. Add 5 to 10 minutes of vacuum at 76cmHg to the mixing time of the mixture and stir.
이때, 상기 3단계(S130)의 세라믹 고체 투입 교반은 교반 과정에서 세라믹 고체 총량의 1/3(입자 사이즈가 작은 세라믹 고체)을 투입하여 선 Mixing을 한 후 진공 off로 혼련하는 제1혼련과, 세라믹 고체 총량의 1/2(입자 사이즈가 중간인 세라믹 고체)을 투입하여 Mixing을 한 후 진공 off로 혼련하는 제2혼련 및 세라믹 고체 총량의 1/6(입자 사이즈가 큰 세라믹 고체)을 투입하여 Mixing을 한 후 진공 off로 혼련하는 제3혼련 과정으로 이루어진다. 이러한 과정을 통하여 고분자 매트릭스내의 탄소나노튜브, 실리카 및 세라믹 각 입자가 균일하게 충진되게 되며, 이는 최종 제품 형성 시 균일한 열전도도 및 최적의 열전도도를 발현하기 위함이다.At this time, the ceramic solid input and stirring of the three steps (S130) is a first kneading to knead the vacuum off after the first mixing (third (ceramic solid with a small particle size)) of the total amount of the ceramic solids in the stirring process and pre-mixing; After mixing 1/2 of the total amount of ceramic solids (ceramic solid with medium particle size), mix and mix the second kneading and the ceramic solids 1/6 of the total amount of ceramic solids. After mixing, a third kneading process is performed in which vacuum is kneaded off. Through this process, carbon nanotubes, silica, and ceramic particles in the polymer matrix are uniformly filled. This is to express uniform thermal conductivity and optimal thermal conductivity in the final product formation.
또한, 상기 3~4단계(S130, S140)의 교반은 플레네터리 믹서(Planetary Mixer)기를 통해 상온에서 10~15분간 실시하고, 제2슬러리는 온도를 20~30℃로 유지하며, 제2슬러리내에 기포 발생을 방지하기 위하여 76cmHg의 진공을 가하여 교반한다.In addition, the stirring of the step 3 to 4 (S130, S140) is carried out at room temperature for 10 to 15 minutes through a planetary mixer (Planetary Mixer), the second slurry is maintained at a temperature of 20 ~ 30 ℃, the second In order to prevent bubble generation in the slurry, a vacuum of 76 cmHg is added and stirred.
이때, 제2슬러리 제조를 마친 후 플레네터리 믹서(Planetary Mixer)기의 교반속도 10~20rpm으로 40~60분간 진공상태에서 고속 탈포를 진행하며, 교반속도 1~5rpm으로 10~20분간 진공상태에서 저속 탈포를 진행한다. 이는 제2슬러리 내부에 기포가 존재할 경우 기포에 의한 열전도도의 감쇄를 방지하기 위함이다.At this time, after the second slurry is manufactured, high-speed defoaming is performed at 40 to 60 minutes in a vacuum state at a stirring speed of 10 to 20 rpm of a planetary mixer, and 10 to 20 minutes at a stirring speed of 1 to 5 rpm. Proceed to slow defoaming. This is to prevent attenuation of thermal conductivity due to bubbles when bubbles exist in the second slurry.
그리고, 상기 5단계(S150)는 플레네터리 믹서기의 반응기를 램 프레스에 장착하여 10~30psi유압으로 제2슬러리를 토출하여 콤마코터(comma coater) 헤드에 로딩한다.In the fifth step (S150), the reactor of the planetary mixer is mounted on a ram press, and the second slurry is discharged at a hydraulic pressure of 10 to 30 psi to be loaded on a comma coater head.
이때, 상기 콤마코터는 갭(gap) 조절장치를 통하여 성형두께를 조정하는 것이 가능하다.At this time, the comma coater can adjust the molding thickness through the gap (gap) adjusting device.
또한, 상기 6단계(S160)의 에어 드라이 챔버는 5개의 드라잉(drying) 구간으로 구성되며, 4개의 히팅(heating) 구간과(130~175℃) 1개의 쿨링(cooling) 구간으로 성형하는 단계를 포함한다.In addition, the air dry chamber of step 6 (S160) is composed of five drying (drying) section, forming the four heating (heating) section (130 ~ 175 ℃) one cooling (cooling) section It includes.
본 발명의 제2 실시예에 따른 열전도패드는 상기 열전도패드 제조방법으로 제조된다.The thermal conductive pad according to the second embodiment of the present invention is manufactured by the thermal conductive pad manufacturing method.
상기한 바와 같이, 본 발명의 일 실시예에 따른 열전도패드(100) 및 열전도패드 제조방법은 열전도특성이 우수한 탄소나노튜브(200)의 균일한 분산을 통하여 고분자 매트릭스(400) 내부에 탄소나노튜브(200)를 균일하게 분포시킴으로써 고열전도도를 가지는 효과가 있다.As described above, the thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention have a carbon nanotube inside the polymer matrix 400 through uniform dispersion of the carbon nanotubes 200 having excellent thermal conductivity. By uniformly distributing (200), there is an effect of having high thermal conductivity.
또한, 본 발명의 일 실시예에 따른 열전도패드(100) 및 열전도패드 제조방법은 탄소나노튜브(200)의 직접 분산을 통해 분산에 소요되는 비용을 절감할 수 있는 효과가 있다.In addition, the thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention have an effect of reducing the cost of dispersion through direct dispersion of the carbon nanotubes 200.
그리고, 본 발명의 일 실시예에 따른 열전도패드(100) 및 열전도패드 제조방법은 페이스트 분산에 사용되는 액상 실리콘 바인더의 종류를 선택적으로 적용함으로써 고분자 매트릭스(400)의 형성 시 작업성 및 제품의 물성을 조절할 수 있는 효과를 가진다.And, the thermal conductive pad 100 and the thermal conductive pad manufacturing method according to an embodiment of the present invention by selectively applying the type of the liquid silicone binder used in the paste dispersion workability and physical properties of the product when forming the polymer matrix 400 Has the effect of adjusting.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to preferred embodiments of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined by the equivalents thereof, as well as the following claims.
본 발명에 따른 열전도패드 및 열전도패드 제조방법은 열전도특성이 우수한 탄소나노튜브의 균일한 분산을 통하여 고분자 매트릭스 내부에 탄소나노튜브를 균일하게 분포시킴으로써 고열전도도를 가지는 효과가 있고, 탄소나노튜브의 직접 분산을 통해 분산에 소요되는 비용을 절감할 수 있는 효과가 있다.The thermal conductive pad and the thermal conductive pad manufacturing method according to the present invention have the effect of having high thermal conductivity by uniformly distributing the carbon nanotubes inside the polymer matrix through the uniform dispersion of the carbon nanotubes having excellent thermal conductivity. Decentralization can reduce the cost of distribution.
이러한 면에서, 전자 및 반도체 기술에 따른 전자소자의 소형과 및 고성능화과 동시에 전자소자의 수명을 연장하는 기술발전에 있어서 효과적인 발명이라고 할 수 있습니다. In this respect, it can be said that it is an effective invention in the development of technology that extends the life of electronic devices at the same time as miniaturization and high performance of electronic devices according to electronic and semiconductor technologies.

Claims (10)

  1. 열전도패드에 있어서,In the thermal conductive pad,
    고분자 매트릭스와;A polymer matrix;
    상기 고분자 매트릭스 내부에 포함되며 열전도도가 20~40W/mK인 70~90wt%의 세라믹 고체; 및70 to 90 wt% of a ceramic solid contained in the polymer matrix and having a thermal conductivity of 20 to 40 W / mK; And
    상기 고분자 매트릭스 내부에 포함되며 상기 세라믹 고체 사이에 균일하게 분산되는 1~5wt%의 탄소나노튜브;를 포함하는 것을 특징으로 하는 열전도패드.And 1 to 5 wt% of carbon nanotubes contained in the polymer matrix and uniformly dispersed between the ceramic solids.
  2. 제 1항에 있어서,The method of claim 1,
    상기 세라믹 고체는 96~98wt%의 알루미나 및 1~5wt%의 실리카로 이루어지는 것을 특징으로 하는 열전도패드.The ceramic solid is a thermal conductive pad, characterized in that consisting of 96 ~ 98wt% alumina and 1 ~ 5wt% silica.
  3. 제 2항에 있어서,The method of claim 2,
    상기 알루미나의 입자 형상은 구형 및 무정형으로 이루어지고, 입자가 구형일 경우 5~40㎛의 크기를 가지며, 무정형일 경우 4~20㎛의 크기를 가지는 것을 특징으로 하는 열전도패드.Particle shape of the alumina is made of spherical and amorphous, the particle is a sphere having a size of 5 ~ 40㎛, if the amorphous thermal conductivity pad, characterized in that having a size of 4 ~ 20㎛.
  4. 열전도패드의 제조방법에 있어서,In the manufacturing method of the thermal conductive pad,
    탄소나노튜브(CNT)의 분산액을 제조하는 1단계와;1 step of preparing a dispersion of carbon nanotubes (CNT);
    실리콘계 제1고분자용액에 1~5wt%의 안료(pigment)를 교반 후 상기 1단계에서 분산된 탄소나노튜브 분산액을 투입하여 제1슬러리를 제조하는 2단계와;A second step of preparing a first slurry by stirring a 1-5 wt% pigment to a silicon-based first polymer solution and then adding a carbon nanotube dispersion dispersed in the first step;
    실리콘계 제2고분자용액에 0.1~0.5 wt%의 Pt촉매와, 상기 제1슬러리를 투입 교반한 후 70~90wt%의 세라믹 고체를 투입하여 제2슬러리를 제조하는 3단계와;A third step of preparing a second slurry by adding 0.1-0.5 wt% of a Pt catalyst and the first slurry to a silicon-based second polymer solution and then adding 70-90 wt% of a ceramic solid;
    상기 제2슬러리를 믹서(mixer)기에 투입 후 진공을 가하여 교반하는 4단계와;Injecting the second slurry into a mixer and then applying vacuum to stir;
    상기 4단계에서 교반된 제2슬러리를 램 프레스(lam press)를 통해 유압을 가하여 콤마코터(comma coater) 헤드에 로딩한 후 콤마코터를 통해 불소 처리된 PET이형 필름에 캐스팅(casting)하는 5단계와;Step 5 is a step of applying the hydraulic pressure to the comma coater (comma coater) by applying a hydraulic pressure through the ram press (lam press) in step 4 and casting (casting) to the fluorine-treated PET release film through a comma coater Wow;
    상기 피이티(PET: polyethylene terephthalate)이형 필름에 캐스팅된 제2슬러리를 에어 드라이 챔버(air dry chamber)에 통과시켜 열경화 하는 6단계; 및A six step of thermally curing the second slurry cast on the polyethylene terephthalate (PET) release film through an air dry chamber; And
    상기 열경화 처리 후 형성된 고분자 매트릭스 상부에 오염 또는 훼손을 방지하는 엠보싱 처리된 이형 필름을 추가로 합지하는 7단계;로 이루어지는 것을 특징으로 하는 열전도패드 제조방법.And further laminating an embossed release film to prevent contamination or damage on the polymer matrix formed after the heat curing treatment. 7.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 1단계의 탄소나노튜브 분산액 제조는 물 1,000에 탄소나노튜브 1~5wt%와 황산도데실나트륨(SDS, Sodium Dodecyl Sulfate)3~6wt%를 혼합하여 10~40Ω/sq의 초음파 분산을 실시하여 수용성 분산액을 제조, 또는 액상 실리콘 바인더에 탄소나노튜브 1~5wt%를 분산제를 이용하여 페이스트(paste) 형상으로 분산하는 것을 특징으로 하는 열전도패드 제조방법.In the preparation of the carbon nanotube dispersion of the first step, 1 to 5 wt% of carbon nanotubes and 3 to 6 wt% of sodium dodecyl sulfate (SDS) are mixed with 1,000 water to perform ultrasonic dispersion of 10 to 40Ω / sq. A method of producing a thermally conductive pad, comprising preparing a water-soluble dispersion or dispersing 1-5 wt% of carbon nanotubes in a liquid silicone binder in a paste form using a dispersant.
  6. 제 4항에 있어서,The method of claim 4, wherein
    상기 세라믹 고체는 96~98wt%의 알루미나 및 1~5wt% 실리카로 이루어지는 것을 특징으로 하는 열전도패드 제조방법.The ceramic solid is 96 ~ 98wt% alumina and 1 ~ 5wt% silica, characterized in that the thermal conductive pad manufacturing method.
  7. 제 6항에 있어서,The method of claim 6,
    상기 알루미나의 입자 형상은 구형 및 무정형으로 이루어지고, 입자가 구형일 경우 5~40㎛의 크기를 가지며, 무정형일 경우 4~20㎛의 크기를 가지는 것을 특징으로 하는 열전도패드 제조방법.Particle shape of the alumina is made of spherical and amorphous, when the particles are spherical having a size of 5 ~ 40㎛, amorphous if the thermal conductive pad manufacturing method characterized in that it has a size of 4 ~ 20㎛.
  8. 제 4항에 있어서,The method of claim 4, wherein
    상기 4단계는 교반 시 제2슬러리내에 기포 발생을 방지하기 위하여 76cmHg의 진공을 가하는 것을 특징으로 하는 열전도패드 제조방법.The fourth step is a thermal conductive pad manufacturing method, characterized in that for applying a vacuum of 76cmHg in order to prevent bubbles in the second slurry during stirring.
  9. 제 4항에 있어서,The method of claim 4, wherein
    상기 콤마코터는 갭(gap) 조절장치를 통하여 성형두께를 조정하는 것을 특징으로 하는 열전도패드 제조방법.The comma coater is a thermal pad manufacturing method characterized in that for adjusting the molding thickness through the gap (gap) adjusting device.
  10. 열전도패드에 있어서,In the thermal conductive pad,
    제 4항 내지 10항 중 어느 한 항의 열전도패드 제조방법으로 제조된 열전도패드.A thermal conductive pad prepared by the method of manufacturing a thermal conductive pad according to any one of claims 4 to 10.
PCT/KR2010/000335 2010-01-18 2010-01-19 Heat conduction pad and manufacturing method thereof WO2011087174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100004534A KR101130087B1 (en) 2010-01-18 2010-01-18 Thermal pad and thermal pad manufacturing method
KR10-2010-0004534 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011087174A1 true WO2011087174A1 (en) 2011-07-21

Family

ID=44304432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000335 WO2011087174A1 (en) 2010-01-18 2010-01-19 Heat conduction pad and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101130087B1 (en)
WO (1) WO2011087174A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305132B1 (en) * 2021-03-02 2021-09-24 장주택 Thermal pad with high heat conduction for vertical and horizontal directions and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316502A (en) * 2000-04-28 2001-11-16 Jsr Corp Heat transfer sheet, heating structure, heat radiation structure, electric examination method and apparatus using the same
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
JP2002088171A (en) * 2000-09-13 2002-03-27 Polymatech Co Ltd Heat-conductive sheet and method for producing the same and heat radiation device
JP2006321968A (en) * 2004-11-29 2006-11-30 Showa Denko Kk Composition for heat conductive composite material containing carbon material and its use
KR100723298B1 (en) * 2005-08-23 2007-05-30 (주) 나노텍 Heat sink using prepreg

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529112B1 (en) * 2003-09-26 2005-11-15 삼성에스디아이 주식회사 Display apparatus having porous heat transfer sheet
KR100827377B1 (en) * 2006-04-11 2008-05-07 엘지전자 주식회사 Heat radiating sheet and method for manufacturing the same, and backlight unit with the same
JP5140302B2 (en) * 2007-03-29 2013-02-06 ポリマテック株式会社 Thermally conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316502A (en) * 2000-04-28 2001-11-16 Jsr Corp Heat transfer sheet, heating structure, heat radiation structure, electric examination method and apparatus using the same
JP2002088171A (en) * 2000-09-13 2002-03-27 Polymatech Co Ltd Heat-conductive sheet and method for producing the same and heat radiation device
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
JP2006321968A (en) * 2004-11-29 2006-11-30 Showa Denko Kk Composition for heat conductive composite material containing carbon material and its use
KR100723298B1 (en) * 2005-08-23 2007-05-30 (주) 나노텍 Heat sink using prepreg

Also Published As

Publication number Publication date
KR101130087B1 (en) 2012-03-28
KR20110084795A (en) 2011-07-26

Similar Documents

Publication Publication Date Title
CN113150544B (en) Oriented boron nitride @ polydopamine @ silver hybrid nanosheet flexible thermal interface material and preparation method thereof
CN106519700A (en) High thermal conductivity composite interface material and preparation method thereof
WO2012099334A2 (en) Conductive polymer filler including a carbon nanotube microcapsule encapsulated by a thermoplastic resin layer, and method for forming same
CN105255004B (en) A kind of graphite resin composite material with nucleocapsid and preparation method thereof
CN101851308A (en) In-situ suspension polymerization preparation method of nanocomposite material consisting of polyvinyl chloride and silicon dioxide and product thereof
CN110305437A (en) Graphene/carbon nano-tube compound, conducting function macromolecule, preparation method
WO2013152623A1 (en) Heat dissipating coating, sheets and methods for manufacturing same
JPS61103945A (en) Production of silicone foam
CN105925243A (en) Room-temperature cured-type high thermal conductive flexible silica gel
CN105582696B (en) A kind of solid defoaming agent and preparation method thereof
WO2011087174A1 (en) Heat conduction pad and manufacturing method thereof
CN110204861A (en) A kind of graphene composite material and preparation method of excellent thermal conductivity
CN103543622A (en) Colorful ink powder prepared by adopting miniemulsion polymerization and method thereof
CN108841157A (en) A kind of graphene PC composite material and preparation method of electromagnetic shielding
WO2023197698A1 (en) Heat-conduction-enhanced phase-change nanocapsule composite material, and preparation method therefor and use thereof
CN111171381A (en) Nano α -alumina-loaded thermal reduction graphene, preparation method and high-thermal-conductivity electrical insulation elastomer thermal interface material
CN100349983C (en) Method for producing silicone rubber, aqueous emulsion for silicone rubber and method for producing same
CN103360529B (en) A kind of controllable synthesis method of micron-grade monodisperse polystyrene microspheres
CN110467807A (en) TPU film and its processing method
CN109929321A (en) Offset litho printing ink and its preparation process
CN106317964B (en) A kind of sub-micron composite balls and preparation method thereof and as silicon rubber at the application of porcelain filling
CN108359387A (en) A kind of high viscosity high temperature resistant cement and preparation method thereof
CN107573446B (en) Boron nitride nanosheet and carbopol gel composite heat interfacial material and preparation method
CN111018552A (en) High-uniformity nanometer microporous thermal insulation plate and preparation method thereof
CN106833545A (en) A kind of high heat conduction Composition spacer material and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843240

Country of ref document: EP

Kind code of ref document: A1