WO2011086209A1 - Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo - Google Patents

Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo Download PDF

Info

Publication number
WO2011086209A1
WO2011086209A1 PCT/ES2010/070853 ES2010070853W WO2011086209A1 WO 2011086209 A1 WO2011086209 A1 WO 2011086209A1 ES 2010070853 W ES2010070853 W ES 2010070853W WO 2011086209 A1 WO2011086209 A1 WO 2011086209A1
Authority
WO
WIPO (PCT)
Prior art keywords
ntc
electrode
electrodes
modified
ntcs
Prior art date
Application number
PCT/ES2010/070853
Other languages
English (en)
French (fr)
Inventor
Eva Baldrich Rubio
Fco. Javier MUÑOZ PASCUAL
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011086209A1 publication Critical patent/WO2011086209A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00206Processes for functionalising a surface, e.g. provide the surface with specific mechanical, chemical or biological properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles

Definitions

  • the present invention pertains to the field of microelectronic devices and electrode specific coatings of said microelectronic devices.
  • a first object of the present invention is a microelectronic device in which at least one electrode has been modified with a removable coating by magnetic entrapment.
  • a second object of the invention consists in a process for performing removable coatings on electrodes of microelectronic devices by magnetic entrapment.
  • NTC carbon nanotubes
  • NTC modified electrodes The simplest strategy for the production of NTC modified electrodes is to deposit a small volume of a dispersion of NTC (usually prepared in organic solvents) on the electrode surface, followed by evaporation of the solvent.
  • NTC usually prepared in organic solvents
  • a number of alternative strategies have been described to date, based among others on electrodeposition, electrophoresis, stamping, spin-coating, entrapment, chemical / covalent conjugation and self-assembling of alternate layers (Layer-by-layer formation) of the NTC.
  • the NTCs are incorporated into the electrode surface in combination with biopolymers, mineral oils, conductive polymers and / or nanoparticles, shaping a variety of composite materials that significantly improve the electrochemical performance of the electrode.
  • NTC carbon nanotubes
  • NTC dispersed in organic solvents has in some cases detrimental effects on the integrity of the electrodes, for example the dissolution of the pastes / inks with which the screen-printed electrodes (SPE) are produced and the reduction of the average life time of the same.
  • the process object of the invention describes an extremely fast and simple method for the reversible production of modified electronic or microelectronic devices with carbon nanotube (NTC) coatings by magnetic entrapment in aqueous medium.
  • NTC carbon nanotube
  • NTC Carbon nanotubes
  • NTC carbon nanotubes
  • NTCs that have undergone a treatment (physical / chemical) that makes them hydrophilic / water soluble (for example, but not exclusively, generation of surface carboxyl groups by acid treatment), or NTCs that have been chemically modified to 5 incorporate hydrophilic / water-soluble groups (for example, but not exclusively, chemical incorporation of ethylene glycol groups).
  • the NTCs are adsorbed nonspecifically on the surface of magnetic microparticles (PM).
  • PM magnetic microparticles
  • PM can be PM of 1 to several microns in diameter, regardless of their origin, composition or manufacturing process, as long as they are soluble in aqueous medium.
  • PM may be protein coated PM, but PM with other surfaces / coatings could also be used (for example, but not exclusively, positively or negatively charged PM, polymer coated PM, metal coated PM, or PM exhibiting surface reactive chemical groups).
  • the process may include, in addition to or as an alternative to the nonspecific adsorption of the NTCs, their chemical conjugation, or the stabilization of the PM / NTC complexes by any other means.
  • PM and / or NTC modified with reactive groups can be used (for example, but not exclusively, PM or NTC that exhibit succinimido groups, biotin molecules, etc., on the surface, so that they react with NH 2 - groups, molecules of streptavidite, etc., present or incorporated on the surface of NTC or PM), or chemically conjugate PM and NTC in the presence of suitable reagents.
  • the device to be modified must incorporate, for example below or in its vicinity, a magnet or a magnetic field generator of any type. This should ensure that the PM / NTC complexes are deposited directly 0 on the sensor surface, working electrode, etc.
  • the invention encompasses devices of any size, geometry, shape or material. It can be flat geometry devices, such as, but not exclusively, screen-printed electrodes and / or microelectrodes manufactured using silicon technology.
  • the process object of the invention is capable of being applicable to different devices, such as electrodes of carbon paste, graphite, NTC or similar, which may include in its composition other compounds (polymers, adhesives, conductive materials, etc) or nanomaterials (nanoparticles / nanowires / ect. of any material), and that can integrate a magnet or the like.
  • the magnet is reversibly incorporated. That is, after the deposition of the PM / NTC and / or the taking of measures can be withdrawn.
  • the procedure consists of mixing the selected volumes of both components.
  • the relative amounts and / or proportions of both components may be varied and will depend on the application.
  • the mixture is deposited (immediately or after incubation) on at least one of the electrodes of the device (for example, but not exclusively, a working electrode) that wants to be modified with NTC and that is being subjected to the effect of a magnet or a magnetic field generator located on the underside of the electrode.
  • the volume or amount of PM / NTC deposited may be varied and will depend on the size, geometry and characteristics of the device to be modified, as well as the intended application. Thanks to the effect of the magnetic field, PM / NTCs are deposited on the surface of the device and in contact with it. This sediment can be subjected to a subsequent wash with the desired aqueous / saline solutions.
  • the surface modified by the described procedure must not be dried.
  • the modified device can be used for the taking of any type of electrochemical measurements including, but not exclusively, amperometric, voltammetric, impedimetric and / or conductimetric.
  • Figure 1 It shows a graph of the current generated in unmodified electrodes (bare SPE) or modified with 5 ⁇ of PM and increasing amounts of NTC (0-7.5 ⁇ NTC, 1 mg / ml). Cyclic voltammetry in 250 ⁇ of ferrocyanide (dark bars) or in PBS (background current, light bars).
  • Figure 2 Shows a graph of the current generated in the unmodified electrodes (bare SPE) or modified with 5 ⁇ of NTC and increasing amounts of PM (1 -10 ⁇ ). Cyclic voltammetry in 250 ⁇ of ferrocyanide (dark bars) or in PBS (background current, light bars).
  • Figure 3 It shows cyclic voltamograms obtained for increasing concentrations of dopamine (DA), dissolved in PBS, on an unmodified electrode.
  • Figure 4 It shows cyclic voltamograms obtained for increasing concentrations of DA, dissolved in PBS, on an electrode modified with 10 ⁇ of PM and 5 ⁇ of NTC deposited by magnetic entrapment.
  • Figure 5 Shows a graph with the peak current values obtained for increasing concentrations of DA in modified electrodes and without Modify.
  • Figure 6. Shows a graph of a difference pulse voltammetry (DPV) obtained in dopamine (DA) and uric acid (AU) measured on an unmodified electrode.
  • Figure 7. Shows a graph of a difference pulse voltammetry (DPV) obtained in dopamine (DA) and uric acid (AU) measured on a modified electrode with PM / NTC.
  • Single wall NTC (SWNTC) modified with carboxyl groups (-COOH) on their surface were used.
  • the NTCs were resuspended in Phosphate Buffered Saline (PBS) at a final concentration of 1 mg / ml and dispersed by sonication for at least 30 minutes at room temperature. The suspension was then stirred using a vortex for 2 minutes.
  • PBS Phosphate Buffered Saline
  • These NTCs are soluble in aqueous medium up to 1 mg / ml; they have an average individual diameter of 1.4 nm ⁇ 0.1 nm and form beams of 4-5 nm 0.5-1.5 microns.
  • the NTCs were sonicated for 15 minutes, followed by vortexing for another 1 minute.
  • the PM were 2.8 microns in diameter and were coated with protein.
  • the MPs were received at an approximate concentration of E 3-3.5 x 10 8 particles per milliliter (equivalent to 3-3.5 x 10 5 MP, approximately 5 mg, per microliter).
  • the MPs were agitated using a vortex for one minute, to completely resuspend them before use, and the necessary volume was transferred to an Eppendorf tube.
  • the PM were concentrated with the help of a magnet or a first magnetic field generator, the supernatant was removed, PM were washed 3 times with PBS (10mM Phosphate Buffer Saline, pH 7.4) and resuspended in PBS at the chosen concentration.
  • Electrodes consisting of flat screen-printed electrodes composed of a working electrode (1.6 mm in diameter) and a gold auxiliary electrode, and an Ag / AgCI reference electrode, all of them printed on a ceramic substrate, were used. Prior to use, the electrodes were electrochemically activated by cyclic voltammetry between 0 and 1.4 V in 1 MH 2 S0 4 until a stable signal was obtained. Subsequent characterization was carried out by cyclic voltammetry in 0.1 M K3 [Fe (CN) 6].
  • a 1 mm diameter cylindrical magnet was fixed under the working electrode as a second magnetic field generator.
  • the second magnetic field generator is removed from the back of the working electrode to release the previously produced coating on the working electrode; leaving the device in its original state.
  • EXAMPLE 1 Efficiency of electrodes modified by magnetic entrapment of increasing amounts of NTC.
  • the entrapment of MP without NTC generates partial passivation of the electrode, increase in the background current in PBS and decrease in the current recorded in ferrocyanide.
  • entrapment of increasing amounts of NTC results in an additional increase in the background current in PBS, whose value is directly related to the amount of NTCs captured, and induces the appearance of a pre-peak between -0.1 and 0 V.
  • entrapment of increasing amounts of NTC correlates with a linear increase in the signal recorded in ferricyanide for amounts between 1 and 5 ⁇ g of NTC.
  • the reagents, electrodes and experimental procedure are similar to those described in example 1.
  • EXAMPLE 3 Detection of dopamine (DA) using electrodes modified by magnetic entrapment of PM / NTC.
  • the third example includes the detection of an electroactive molecule of clinical interest, dopamine (DA), using electrodes modified with PM / NTC by magnetic entrapment.
  • DA is a neurotransmitter released by the hypothalamus and the malfunction of its activity has been linked to several neurodegenerative disorders, including anorexia and bulimia, Parkinson's and Alzheimer's diseases, and schizophrenia.
  • the reagents, electrodes and experimental procedure are similar to those described in example 1. In this case the surface was modified with 3 x 10 6 PM resuspended in 5 ⁇ g of NTC.
  • DA is not very reversible, because the oxidized product adsorbs on the electrode surface.
  • the recorded bottom currents are higher, in line with the increase in the electrode surface due to the deposition of the NTC.
  • the separation between peaks is 0.10 V for the modified electrode, compared to 0.15 V for the unmodified electrode.
  • the oxidation peak current increases with the concentration of DA.
  • the reversibility of the reaction improves on the electrodes modified with NTC, and so does the detectability of DA.
  • the recorded signals are, for all tested DA concentrations, 2.6 to 5 times higher in the modified electrodes than the signals generated in the unmodified electrodes.
  • Figure 5 shows the average data, calculated from the results of three independent electrodes.
  • the detection limit calculated as the average of at least five targets plus three times the standard deviation thereof, improves from 1.69 ⁇ 69 in the unmodified electrodes to 0.71 ⁇ when electrodes with PM / NTC are used.
  • the sensitivity of the test measured as the slope of the linear part of the graph, also improves on surface modified with PIW NTC (30 vs 9 nAmp / ⁇ DA).
  • EXAMPLE 4 Simultaneous detection of dopamine and uric acid using electrodes modified by magnetic entrapment of PM / NTC.
  • AD uric acid
  • AU uric acid
  • the AU oxidizes in most electrodes to potentials so close to those of the DA that the peaks generated by both compounds are hardly distinguishable.
  • NTC uric acid
  • the incorporation of NTC to the electrode usually improves the resolution of the peaks generated by the DA and the AU.
  • DUV Differential Pulse Voltammetry

Abstract

Se describe un procedimiento para producir recubrimientos en uno de los electrodos, denominado electrodo de trabajo, de dispositivos electrónicos destinados a la realización de medidas electroquímicas amplificadas, y que una vez realizada la medida el recubrimiento pueda ser desprendido devolviendo el dispositivo electrónico a su estado anterior a la realización de recubrimiento; pudiendo ser reutilizado para realizar otras medidas, usando el mismo u otro recubrimiento.

Description

PROCEDIMIENTO DE RECUBRIMIENTO DE ELECTRODOS DE UN DISPOSITIVO ELECTRÓNICO POR ATRAPAMIENTO MAGNÉTICO, ELECTRODO ASI OBTENIDO, DISPOSITIVO QUE INCORPORA DICHO
ELECTRODO Y USO DE DICHO DISPOSITIVO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención pertenece al campo de los dispositivos microelectrónicos y los recubrimientos específicos para electrodos de dichos dispositivos microelectrónicos.
Un primer objeto de la presente invención es un dispositivo microelectrónico en que al menos un electrodo ha sido modificado con un recubrimiento desprendible mediante atrapamiento magnético.
Un segundo objeto de la invención consiste en un procedimiento para poder realizar recubrimientos desprendibles sobre electrodos de dispositivos microelectrónicos mediante atrapamiento magnético.
ANTECEDENTES DE LA INVENCIÓN
Desde su descubrimiento, los nanotubos de carbono (NTC) se han convertido en uno de los nanomateriales más prometedores y tanto el procedimiento de producción como su purificación, modificación y/o funcionalización han sido extensamente sometidos a protección industrial. Aparte de otras muchas aplicaciones potenciales, los NTC han sido explotados en un importante número de aplicaciones electroanalíticas y sensoras. Esto es principalmente debido al hecho de que la incorporación de NTC a los diferentes tipos de electrodos permite tomar ventaja de la alta resistencia mecánica de este nanocomponente, que también muestra gran estabilidad química y conductividad electrónica. Los electrodos modificados con NTC presentan además superficies activas de mayor rugosidad y superficie, niveles más bajos de adsorción inespecífica de biocomponentes, niveles importantes de actividad electrocatalítica hacia una gran variedad de moléculas, y mayor eficiencia de transferencia de electrones que electrodos similares no modificados.
La estrategia más simple para la producción de electrodos modificados con NTC consiste en depositar un pequeño volumen de una dispersión de NTC (por lo general preparada en disolventes orgánicos) sobre la superficie del electrodo, seguido de la evaporación del disolvente. Sin embargo, un cierto número de estrategias alternativas han sido descritas hasta la fecha, basadas entre otras en la electrodeposición, electroforesis, estampado, spin-coating, atrapamiento, conjugación química/covalente y autoensamblado de capas alternas (Layer-by- layer formation) de los NTC. En parte de los trabajos existentes, los NTC se incorporan a la superficie del electrodo en combinación con biopolímeros, aceites minerales, polímeros conductores y/o nanopartículas, dando forma a una variedad de materiales compuestos que mejoran de forma importante el rendimiento electroquímico del electrodo.
Sin embargo, estos procedimientos generalmente implican estrategias de producción de al menos horas y rara vez son compatibles con la regeneración fácil del electrodo mediante eliminación de los NTC. Un solo informe (patente y artículo 2004-2005) describe el uso combinado de NTC y nanopartículas magnéticas. En él se describe la adsorción inespecíficas de nanopartículas magnéticas (5-100 nm) sobre la superficie de los NTC, suspensión en una matriz (polimérica, cerámica, metálica, un gel), alineamiento mediante un campo magnético, y solidificación del compuesto por secado/eliminación de la matriz. El material resultante es entonces cortado en láminas, sin especificarse ninguna aplicación potencial.
La incorporación de nanotubos de carbono (NTC) a la superficie de electrodos contribuye a aumentar su rugosidad y superficie, reduce el nivel de adsorción inespecífica de biocomponentes, proporciona actividad electrocatalítica frente a una variedad de moléculas, y mejora la transferencia de electrones. Hasta la fecha, este tipo de modificación se basa en la deposición irreversible de los NTC sobre la superficie mediante estrategias poco compatibles con la reutilización del electrodo, a menudo utilizando disolventes orgánicos potencialmente dañinos para el operador y el medio ambiente. Además, como los NTC son un material altamente poroso, los electrodos modificados con NTC pueden sufrir niveles de adsorción inespecífica y/o electrodeposición de biomoléculas demasiado altos para garantizar ausencia de contaminación cruzada entre muestras en estudio y la especificidad y reproducibilidad del protocolo de medida. La deposición de NTC dispersos en disolventes orgánicos tiene en algunos casos efectos perjudiciales en la integridad de los electrodos, por ejemplo la disolución de las pastas/tintas con las que se producen los electrodos serigrafiados (SPE) y la reducción del tiempo de vida media de los mismos. DESCRIPCIÓN DE LA INVENCIÓN
El procedimiento objeto de la invención describe un método extremadamente rápido y sencillo para la producción reversible de dispositivos electrónicos o microelectrónicos modificados con recubrimientos de nanotubos de carbono (NTC) mediante atrapamiento magnético en medio acuoso.
Dicho procedimiento explota la fuerte tendencia que muestran los NTC a adsorberse inespecíficamente sobre la superficie de partículas magnéticas (PM), por ejemplo PM que han sido previamente recubiertas con proteína. Los ensamblados de PM/NTC son subsiguientemente capturados sobre la superficie de un dispositivo electrónico o microelectrónico mediante captura magnética, un procedimiento que resulta extremadamente rápido y sencillo. Los dispositivos modificados de esta forma presentan comportamiento electrocatalítico frente a una variedad de analitos, mejores límites de detección y señales significativamente más altas que los electrodos sin modificar. Tras la toma de medidas, y en ausencia de atracción magnética, los PM/NTC pueden ser eliminados fácilmente mediante lavado y la superficie del dispositivo puede ser reutilizada indefinidamente.
Los nanotubos de carbono (NTC) han sido explotados para un número importante de aplicaciones electroanalíticas y sensoras. Su incorporación a la superficie de electrodos contribuye a aumentar su rugosidad y superficie, reduce el nivel de adsorción inespecífica de biocomponentes, proporciona actividad electrocatalítica frente a una variedad de moléculas, y mejora la transferencia de electrones. Hasta la fecha, este tipo de modificación se basa en la deposición irreversible de los NTC sobre la superficie mediante estrategias que son poco compatibles con la reutilización del electrodo. No obstante, los NTC son un material altamente poroso y los electrodos modificados con NTC son susceptibles de promover niveles importantes de adsorción inespecífica y/o electrodeposición de biomoléculas y/o biomoléculas, lo que podría inducir contaminación cruzada entre muestras en estudio y afectar la especificidad y reproducibilidad del protocolo de medida. Este inconveniente ha sido a menudo eludido mediante la combinación de los NTC con polímeros cargados eléctricamente capaces de repeler las moléculas de carga negativa / positiva.
Por otra parte usando NTC carboxilados (con grupos carboxilo en superficie) dispersos en medio acuoso, se observa una fuerte tendencia de los mismos a adsorberse inespecíficamente sobre a superficies recubiertas de proteína. En esta invención se hace uso de esta capacidad para producir PM recubiertas de NTC y la subsiguiente captura magnética de estos complejos de PM/NTC para la producción de electrodos modificados con NTC. El protocolo de producción resulta extremadamente rápido, fácil de llevar a cabo, y no requiere la utilización de disolventes orgánicos evitando efectos perjudiciales en la integridad de los electrodos. Esto minimiza la exposición a los disolventes y a su vez resulta beneficioso para el medio ambiente a nivel de gestión de residuos. El procedimiento descrito en esta invención se basa en la utilización de nanotubos de carbono (NTC), independientemente de su origen, método de producción, composición o características, siempre y cuando sean solubles en medio acuoso. Puede tratarse de NTC que hayan sido sometidos a un tratamiento (físico/químico) que los haga hidrofílicos/hidrosolubles (por ejemplo, pero no exclusivamente, generación de grupos carboxilo en superficie mediante tratamiento ácido), o de NTC que hayan sido modificados químicamente para 5 incorporar grupos hidrofílicos/hidrosolubles (por ejemplo, pero no exclusivamente, incorporación química de grupos etilenglicol).
En este procedimiento, los NTC son adsorbidos inespecíficamente sobre la superficie de micropartículas magnéticas (PM). Puede tratarse de PM de 1 a o varias mieras de diámetro, independientemente de su procedencia, composición o proceso de fabricación, siempre y cuando sean solubles en medio acuoso. Dichas PM pueden ser PM recubiertas de proteína, pero PM con otras superficies/recubrimientos podrían ser también utilizadas (por ejemplo, pero no exclusivamente, PM cargadas positiva o negativamente, PM recubiertas de5 polímero, PM recubiertas de una capa metálica, o PM que exhiban en superficie grupos químicos reactivos).
El procedimiento puede incluir, además de o como alternativa a la adsorción inespecífica de los NTC, su conjugación química, o la estabilización de o los complejos de PM/NTC por cualquier otro medio. Para ello se puede utilizar PM y/o NTC modificados con grupos reactivos (por ejemplo, pero no exclusivamente, PM o NTC que exhiban en superficie grupos succinimido, moléculas de biotina, etc., para que éstos reaccionen con grupos NH2-, moléculas de estreptavidita, etc., presentes o incorporados en la superficie de NTC o PM), o conjugar 5 químicamente PM y NTC en presencia de reactivos adecuados.
El dispositivo a modificar debe incorporar, por ejemplo debajo o en su proximidad, un imán o un generador de campo magnético de cualquier tipo. Este debe garantizar que los complejos de PM/NTC son depositados directamente 0 sobre la superficie sensora, electrodo de trabajo, etc. La invención engloba dispositivos de cualquier tamaño, geometría, forma o material. Puede tratarse de dispositivos de geometría plana, como por ejemplo, pero no exclusivamente, electrodos serigrafiados y/o microelectrodos fabricados mediante tecnología de silicio. Sin embargo el procedimiento objeto de la invención es susceptible de ser aplicable a dispositivos diferentes, como los electrodos de pasta de carbono, grafito, NTC o similar, que pueden incluir en su composición otros compuestos (polímeros, materiales adhesivos, materiales conductores, etc) o nanomateriales (nanopartículas/nanohilos/ect. de cualquier material), y que puedan integrar un imán o similar.
En el supuesto de querer reutilizar los dispositivos tras la toma de medidas mediante eliminación de los complejos de PM/NTC, el imán se incorpora de forma reversible. Es decir, tras la deposición de los PM/NTC y/o la toma de medidas puede ser retirado.
Para la producción de los complejos de PM/NTC y la modificación de los dispositivos, el procedimiento consiste en la mezcla de los volúmenes seleccionados de ambos componentes. Las cantidades y/o proporciones relativas de ambos componentes pueden ser variadas y dependerán de la aplicación. La mezcla se deposita (inmediatamente o después de incubación) sobre al menos uno de los electrodos del dispositivo (por ejemplo, pero no exclusivamente, un electrodo de trabajo) que quiere ser modificado con NTC y que está siendo sometido al efecto de un imán o un generador de campo magnético ubicado en el envés del electrodo. El volumen o cantidad de PM/NTC depositado podrá ser variado y dependerá del tamaño, geometría y características del dispositivo a modificar, así como de la aplicación prevista. Gracias al efecto del campo magnético, los PM/NTC son depositados sobre la superficie del dispositivo y en contacto con la misma. Este sedimento puede someterse a un lavado posterior con las soluciones acuosas/salinas deseadas.
Para garantizar la reutilización de los dispositivos mediante eliminación de los PM/NTC la superficie modificada mediante el procedimiento descrito no debe de someterse a secado. El dispositivo modificado puede utilizarse para la toma de cualquier tipo de medidas electroquímicas incluyendo, pero no exclusivamente, amperométricas, voltamétricas, impedimétricas y/o conductimétricas.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Figura 1 . Muestra un gráfica de la corriente generada en electrodos sin modificar (bare SPE) o modificados con 5μΙ de PM y cantidades crecientes de NTC (0-7.5 μΙ NTC, 1 mg/ml). Voltametría cíclica en 250 μΜ de ferrocianuro (barras oscuras) o en PBS (corriente de fondo, barras claras).
Figura 2. Muestra un gráfica de la corriente generada en los electrodos sin modificar (bare SPE) o modificados con 5μΙ de NTC y cantidades crecientes de PM (1 -10 μΙ). Voltametría cíclica en 250 μΜ de ferrocianuro (barras oscuras) o en PBS (corriente de fondo, barras claras).
Figura 3. Muestra unos voltamogramas cíclicos obtenidos para concentraciones crecientes de dopamina (DA), disuelta en PBS, sobre un electrodo sin modificar.
Figura 4. Muestra unos voltamogramas cíclicos obtenidos para concentraciones crecientes de DA, disuelta en PBS, sobre un electrodo modificado con 10 μΙ de PM y 5μΙ de NTC depositados mediante atrapamiento magnético.
Figura 5. Muestra una gráfica con los valores de corriente de pico obtenidos para concentraciones crecientes de DA en electrodos modificados y sin modificar.
Figura 6. Muestra una gráfica de una voltametría de pulso diferencia (DPV) obtenida en dopamina (DA) y en ácido úrico (AU) medidos en un electrodo sin modificar. Figura 7. Muestra un gráfica de una voltametría de pulso diferencia (DPV) obtenida en dopamina (DA) y en ácido úrico (AU) medidos en un electrodo modificado con PM/NTC.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras se describe a continuación un modo de realización preferente del procedimiento objeto de esta invención.
Se usaron NTC de pared simple (SWNTC) modificados con grupos carboxilo (-COOH) en su superficie. Los NTC fueron resuspendidos en Solución Salina Amortiguada por Fosfatos (PBS) a una concentración final de 1 mg/ml y se dispersaron por sonicación durante al menos 30 minutos a temperatura ambiente. Seguidamente se agitó la suspensión usando un vórtex durante 2 minutos. Estos NTC son solubles en medio acuoso hasta 1 mg/ml; presentan un diámetro individual promedio de 1 ,4 nm ± 0,1 nm y forman haces de 4-5 nm 0.5- 1.5 mieras. Al principio de cada día de trabajo, y con el fin de garantizar su funcionamiento óptimo, se sonicaban los NTC durante 15 minutos, seguido de agitación al vórtex durante 1 minuto más. Las PM tenían 2.8 mieras de diámetro y estaban recubiertas de proteína.
Las MP se recibían a una concentración aproximada de E 3-3.5 x 108 partículas por mililitro (equivalente a 3-3,5 x 105 MP, aproximadamente 5 mg, por microlitro). Las MP se agitaban usando un vórtex durante un minuto, para resuspenderlas totalmente antes de su utilización, y el volumen necesario era transferido a un tubo Eppendorf. A continuación las PM eran concentradas con la ayuda de un imán o un primer generador de campo magnético, el sobrenadante era eliminado, las PM se lavaban 3 veces con PBS (10mM Phosphate Buffer Saline, pH 7.4) y se resuspendían en PBS a la concentración elegida.
Se usaron dispositivos electrónicos constituidos por electrodos serigrafiados planos integrados por un electrodo de trabajo (1.6 mm de diámetro) y un electrodo auxiliar de oro, y un electrodo de referencia de Ag/AgCI, todos ellos impresos sobre un sustrato cerámico. Previo a su utilización, los electrodos se activaron electroquímicamente mediante voltametría cíclica entre 0 y 1.4 V en 1 M H2S04 hasta que se obtuvo una señal estable. La caracterización posterior se llevó a cabo por voltametría cíclica en 0.1 M K3[Fe(CN)6].
Para llevar a cabo el atrapamiento magnético, debajo del electrodo de trabajo se fijó un imán cilindrico de 1 mm de diámetro a modo de segundo generador de campo magnético.
Una vez realizada la detección o medida haciendo uso del dispositivo electrónico con el electrodo recubierto, se retira el segundo generador de campo magnético del envés del electrodo de trabajo para desprender el recubrimiento producido anteriormente sobre el electrodo de trabajo; quedando el dispositivo en su estado original.
EJEMPLO 1. Eficiencia de electrodos modificados por atrapamiento magnético de cantidades crecientes de NTC.
Se recubrió un electrodo, el electrodo de trabajo, con una cantidad fija de PM (1 ,5 x 106 MP), previamente incubadas con cantidades crecientes de NTC (1- 10 μg) resultando una mezcla en suspensión. Dicha mezcla se depositó sobre el electrodo de trabajo, bajo el que se había colocado el segundo generador de campo magnético. El precipitado formado por MP y NTC sobre el electrodo de trabajo, visible a simple vista, se lavó con PBS sin ser alterado. La eficiencia del electrodo modificado se estudió entonces mediante voltametría cíclica (de -0.1 a +0.45 V, a velocidad de escaneo 100 mV) en PBS (control negativo / corriente de fondo) y en ferrocianuro de potasio 250 μΜ.
Como se resume en la Figura 1 , el atrapamiento de MP sin NTC genera pasivacion parcial del electrodo, aumento de la corriente de fondo en PBS y disminución de la corriente registrada en ferrocianuro. Por otra parte, el atrapamiento de cantidades crecientes de NTC resulta en aumento adicional de la corriente de fondo en PBS, cuyo valor está directamente relacionado con la cantidad de NTC capturados, e induce la aparición de un pre-pico entre -0,1 y 0 V. En presencia de ferricianuro, el atrapamiento de cantidades crecientes de NTC se correlaciona con un aumento lineal en la señal registrada en ferricianuro para cantidades entre 1 y 5 μg de NTC.
EJEMPLO 2. Eficiencia de electrodos modificados por atrapamiento magnético mediante cantidades crecientes de PM.
Se recubrió un electrodo, el electrodo de trabajo, con una cantidad fija de NTC (5 μg) mediante atrapamiento magnético usando un número variable de MP (0 - 3 x 106 MP). Los reactivos, electrodos y procedimiento experimental son similares a los descritos en el ejemplo 1.
Como se observa en la Figura 2, los números de PM más bajos ensayados generaron depósitos de pequeño tamaño en la superficie del electrodo. En estos casos la mayoría de los NTC añadidos no eran atrapados y eran eliminados durante los lavados. Para los electrodos utilizados, era necesario emplear un mínimo de 2 μΙ de MP para el atrapamiento de NTC para que los electrodos modificados generaran señales consistentemente más altas que las registradas en los electrodos sin modificar. El incremento en la cantidad de MP utilizadas se correlaciona con una mayor cantidad de NTC atrapados. Esto se traduce en disminución de la cantidad de NTC eliminados durante las fases de lavado e incremento simultáneo de la corriente de fondo registrada en PBS y de la corriente de pico en ferricianuro. A partir de 10 μΙ de MP, sin embargo, se detecta saturación de la señal. Esto se corresponde con el recubrimiento total de la superficie del electrodo con PM/NTC. En estas condiciones, la voltametría en ferricianuro genera un pico un 407% más alto que el pico generado en un electrodo sin modificar.
EJEMPLO 3. Detección de dopamina (DA) usando electrodos modificados por atrapamiento magnético de PM/NTC.
El tercer ejemplo incluye la detección de una molécula electroactiva de interés clínico, la dopamina (DA), usando electrodos modificados con PM/NTC por atrapamiento magnético. La DA es un neurotransmisor liberado por el hipotálamo y el mal funcionamiento de su actividad ha sido relacionado con varios trastornos neurodegenerativos, incluidos la anorexia y la bulimia, las enfermedades de Parkinson y de Alzheimer, y la esquizofrenia. Los reactivos, electrodos y procedimiento experimental son similares a los descritos en el ejemplo 1 . En este caso se modificó la superficie con 3 x 106 PM resuspendidas en 5μg de NTC. La DA fue disuelta en PBS a diferentes concentraciones finales y fue analizada por voltametría cíclica usando en paralelo electrodos sin modificar, tal y como se observa en la Figura 3, y electrodos modificados con PM/NTC, tal y como se observa en la Figura 4. En los electrodos sin modificar la DA genera un pico de oxidación a 0,2 V (vs. Ag/AgCI) y un pico de reducción mucho menor a -0.05 V (vs. Ag/AgCI). Como otros autores han observado anteriormente, la oxidación de
DA es poco reversible, porque el producto oxidado se adsorbe en la superficie del electrodo. En el caso del electrodo modificado con PM/NTC, las corrientes de fondo registradas son más altas, en consonancia con el aumento de la superficie del electrodo debido a la deposición de los NTC. La separación entre picos es de 0, 10 V para el electrodo modificado, frente a 0,15 V en el electrodo sin modificar.
Esta significativa mejora denota la fuerte actividad catalítica de la superficie modificada hacia la DA. El incremento de la corriente de pico, por otra parte, puede atribuirse a un efecto combinado del aumento de superficie en el electrodo modificado, la acumulación de DA cargada positivamente sobre la superficie del electrodo, que gracias a los NTC está cargada negativamente, y la actividad electrocatalítica del electrodo modificado.
Para los dos tipos de electrodos (modificados y sin modificar), la corriente del pico de oxidación aumenta con la concentración de DA. Sin embargo, la reversibilidad de la reacción mejora en los electrodos modificados con NTC, y también lo hace la detectabilidad de DA. Por ejemplo, las señales registradas son, para todas las concentraciones ensayadas de DA, de 2,6 a 5 veces mayores en los electrodos modificados que las señales generadas en los electrodos sin modificar. La Figura 5 muestra el promedio de datos, calculado a partir de los resultados de tres electrodos independientes. El límite de detección, calculado como la media de al menos cinco blancos más tres veces la desviación estándar de los mismos, mejora de 1 ,69 μΜ en los electrodos sin modificar a 0,71 μΜ cuando se utilizan electrodos con PM/NTC. La sensibilidad del ensayo, medida como la pendiente de la parte lineal de la gráfica, también mejora en superficie modificada con PIW NTC (30 vs 9 nAmp/μΜ DA).
EJEMPLO 4. Detección simultánea de dopamina y ácido úrico usando electrodos modificados por atrapamiento magnético de PM/NTC.
La principal limitación de la detección de la DA es la interferencia de componentes como el ácido úrico (AU), presentes en muestras reales a concentraciones más altas que la DA. El AU se oxida en la mayoría de los electrodos a potenciales tan cercanos a los de la DA que los picos generados por ambos compuestos son difícilmente distinguibles. La incorporación de NTC al electrodo acostumbra a mejorar la resolución de los picos generados por la DA y el AU. En este ejemplo comparamos la detección por Voltametría de Pulso Diferencial (DPV) de DA y AU, por separado o mezclados a una concentración de 200 μΜ cada uno, el los electrodos sin modificar o modificados con PM/NTC ya descritos en el ejemplo 3. Como se ilustra en las Figuras 6 y 7, DA y AU analizados por separado generan picos de oxidación mayores en los electrodos modificados con PM/NTC que en los electrodos sin modificar (9,77 vs 3,91 μΑ para la DA y 6,53 vs 1 ,11 μΑ para el AU, en electrodos modificados / sin modificar respectivamente). Este efecto es más evidente para el AU, que genera un pico mucho más claro y casi 6 veces mayor en el electrodo modificado. El potencial de pico del AU se desplaza negativamente 64 mV en los electrodos modificados, lo cual confirma la actividad catalítica de los mismos.
La detección simultánea de DA y AU en los electrodos sin modificar evidencia un importante nivel de electrocatálisis de la DA por el AU, tal y como se observa en la figura 6. Esto se traduce en aumento de la altura del pico de la DA cuando se mide en presencia de AU a concentración equimolar, respecto a la corriente generada por una concentración similar de DA sola. Al mismo tiempo, el pico del AU disminuye en altura en presencia de DA y se vuelve casi indetectable. Por el contrario, en los electrodos modificados con PM/NTC los dos picos están claramente separados y no hay casi diferencias en la altura de los picos que se puedan atribuir a la catálisis de la DA por el AU tal y como se observa en la Figura

Claims

R E I V I N D I C A C I O N E S
1 . Procedimiento de recubrimiento de electrodos de un dispositivo electrónico que comprende: a) activar y/o lavar un electrodo de trabajo a recubrir,
b) dispersar unos nanotubos de carbono (NTC) en un medio acuoso a una concentración definida entre 0.1 y 10 mg/ml
c) concentrar unas partículas magnéticas (PM) haciendo uso de un campo magnético generado por un primer generador de campos magnéticos, d) eliminar sobrenadante, e) lavar las partículas magnéticas (PM) con el medio acuoso en que se han dispersado los NTC y repetir c) y d),
f) resuspender el resultado de la fase anterior en un volumen de dispersión de NTC preparado en b) g) fijar un segundo generador de campo magnético en el envés del electrodo de trabajo a recubrir,
h) recubrir el electrodo de trabajo por deposición del resultado de (f) sobre una cara a recubrir del electrodo de trabajo.
2. Procedimiento según reivindicación 1 caracterizado porque incluye retirar el generador de campo magnético causando el desprendimiento del recubrimiento presente sobre el electrodo de trabajo y lavar el electrodo de trabajo.
3. -Procedimiento según reivindicación 1 caracterizado porque los NTC son solubles en medio acuoso.
4. Procedimiento según reivindicación 1 caracterizado porque las PM son solubles en medio acuoso.
5. - Procedimiento según reivindicación 1 caracterizado porque las PM están recubiertas por al menos una proteína.
6. - Procedimiento según reivindicación 1 caracterizado porque el medio acuoso de b) es una solución salina.
7. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado porque los NTC están modificados.
8. Procedimiento según reivindicación 6 caracterizado porque los NTC están funcionalizados.
9. Electrodo obtenible mediante el procedimiento descrito en una cualquiera de las reivindicaciones 1 a 8.
10. Dispositivo electrónico caracterizado porque comprende el electrodo descrito en la reivindicación 9.
1 1 . Uso del dispositivo electrónico descrito en la reivindicación anterior para la realización de detección y medición de analitos.
PCT/ES2010/070853 2009-12-23 2010-12-21 Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo WO2011086209A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200931261 2009-12-23
ES200931261A ES2366516B1 (es) 2009-12-23 2009-12-23 Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo.

Publications (1)

Publication Number Publication Date
WO2011086209A1 true WO2011086209A1 (es) 2011-07-21

Family

ID=44303858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070853 WO2011086209A1 (es) 2009-12-23 2010-12-21 Procedimiento de recubrimiento de electrodos de un dispositivo electrónico por atrapamiento magnético, electrodo así obtenido, dispositivo que incorpora dicho electrodo y uso de dicho dispositivo

Country Status (2)

Country Link
ES (1) ES2366516B1 (es)
WO (1) WO2011086209A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US20070275627A1 (en) * 2006-05-26 2007-11-29 Korea Advanced Institute Of Science And Technology Method for fabricating field emitter electrode using array of carbon nanotubes
WO2008066965A2 (en) * 2006-06-23 2008-06-05 The Regents Of The University Of California Articles comprising large-surface-area bio-compatible materials and methods for making and using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US20070275627A1 (en) * 2006-05-26 2007-11-29 Korea Advanced Institute Of Science And Technology Method for fabricating field emitter electrode using array of carbon nanotubes
WO2008066965A2 (en) * 2006-06-23 2008-06-05 The Regents Of The University Of California Articles comprising large-surface-area bio-compatible materials and methods for making and using them

Also Published As

Publication number Publication date
ES2366516A1 (es) 2011-10-21
ES2366516B1 (es) 2012-09-04

Similar Documents

Publication Publication Date Title
Li et al. DNA biosensor based on chitosan film doped with carbon nanotubes
Dursun et al. Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE
Tang et al. A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform
Fu et al. Electrochemical determination of trace copper (II) with enhanced sensitivity and selectivity by gold nanoparticle/single-wall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters
Baldrich et al. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection
Pala et al. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis
Dong et al. DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis
Karimian et al. Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes
Gholivand et al. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode
Kerman et al. DNA‐directed attachment of carbon nanotubes for enhanced label‐free electrochemical detection of DNA hybridization
Erdem et al. Streptavidin modified carbon nanotube based graphite electrode for label‐free sequence specific dna detection
Prieto-Simón et al. Tailored carbon nanotube immunosensors for the detection of microbial contamination
Fakhari et al. Fabrication of novel redox-active poly (4, 5-dihydro-1, 3-thiazol-2-ylsulfanyl-3-methyl-1, 2-benzenediol)-gold nanoparticles film on MWCNTs modified electrode: application as the electrochemical sensor for the determination of hydrazine
Zhang et al. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization
Zhu et al. Non-enzymatic xanthine sensor of heteropolyacids doped ferrocene and reduced graphene oxide via one-step electrodeposition combined with layer-by-layer self-assembly technology
Afkhami et al. Application of nickel zinc ferrite/graphene nanocomposite as a modifier for fabrication of a sensitive electrochemical sensor for determination of omeprazole in real samples
Wang et al. Electrochemical characterization and DNA sensing application of a sphere-like CeO2–ZrO2 and chitosan nanocomposite formed on a gold electrode by one-step electrodeposition
Hao et al. An electrochemical sensor for sodium dodecyl sulfate detection based on anion exchange using eosin Y/polyethyleneimine modified electrode
Dong et al. Signal amplification for DNA detection based on the HRP-functionalized Fe3O4 nanoparticles
Olivé-Monllau et al. Characterization and optimization of carbon nanotube electrodes produced by magnetic entrapment: Application to paracetamol detection
Wang et al. A novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/Au nanoparticles/multiwalled carbon nanotubes nanocomposite film
Komathi et al. Nanomolar detection of dopamine at multi-walled carbon nanotube grafted silica network/gold nanoparticle functionalised nanocomposite electrodes
Feng et al. Electrochemical studies of bovine serum albumin immobilization onto the poly-o-phenylenediamine and carbon-coated nickel composite film and its interaction with papaverine
Jin et al. Sensitive detection of trifluoperazine using a poly-ABSA/SWNTs film-modified glassy carbon electrode
Luo et al. A sensitive electrochemical sensor manufactured from multi-wall carbon nanotubes-polyethylenimine nanocomposite for malachite green detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842925

Country of ref document: EP

Kind code of ref document: A1