WO2011083637A1 - Therapeutic agent for hepatic disorder - Google Patents

Therapeutic agent for hepatic disorder Download PDF

Info

Publication number
WO2011083637A1
WO2011083637A1 PCT/JP2010/071186 JP2010071186W WO2011083637A1 WO 2011083637 A1 WO2011083637 A1 WO 2011083637A1 JP 2010071186 W JP2010071186 W JP 2010071186W WO 2011083637 A1 WO2011083637 A1 WO 2011083637A1
Authority
WO
WIPO (PCT)
Prior art keywords
keap1
nrf2
liver
binding
agent
Prior art date
Application number
PCT/JP2010/071186
Other languages
French (fr)
Japanese (ja)
Inventor
小松雅明
田中啓二
丹羽眞一郎
牧野泰孝
笠間隆志
Original Assignee
財団法人東京都医学総合研究所
リンク・ジェノミクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人東京都医学総合研究所, リンク・ジェノミクス株式会社 filed Critical 財団法人東京都医学総合研究所
Priority to JP2011548929A priority Critical patent/JP5814128B2/en
Publication of WO2011083637A1 publication Critical patent/WO2011083637A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a protein interaction between p62 and Keap1 that controls the formation of ubiquitin-positive inclusion bodies in cells, a therapeutic agent for liver disease and an anticancer agent having a substance that inhibits or suppresses the interaction, and uses the interaction Related to screening methods.
  • the liver is the largest metabolic organ in humans and an essential organ for life support. This organ causes liver enlargement, fatty liver, etc. due to high calorie / high fat eating and drinking, stress, etc., leading to functional deterioration. Moreover, viral hepatitis and alcoholic hepatitis are caused by viral infection and alcohol consumption, etc., and these disorders lead to cirrhosis and liver cancer over a long period of time. However, the present condition is that the effective drug with respect to these liver diseases is not developed. Therefore, development of an effective drug for various liver diseases is desired. Among these, promising therapeutic agents for liver diseases and anticancer agents are provided from our autophagy research.
  • Autophagy is a large-scale intracellular degradation pathway involved in the turnover of cellular components, removal of unwanted organelles, removal of aggregation-prone mutant proteins, and the like.
  • the isolation membrane extends to form a lipid bilayer structure (autophagosome) surrounding the cytoplasmic components.
  • This autophagosome fuses with the lysosome and degrades the cytoplasmic component enclosed by the lysosomal hydrolase.
  • Yeast genetics studies have revealed that many ATG genes play an essential role in autophagy.
  • LC3 localized in the autophagosome has been identified as a human homologue of yeast Atg8 and plays an essential role in the elongation of the isolation membrane.
  • Non-patent Document 1 Komatsu et al. 2007 Cell
  • p62 interacts with a diverse group of molecules responsible for signal transduction. Further, it has a ubiquitin-associated domain at the C-terminus, and is known as a shuttle molecule for ubiquitinated proteins to the proteasome (Non-Patent Document 2: Seibenhener et al. 2004 MCB).
  • Non-Patent Document 2 Seibenhener et al. 2004 MCB.
  • p62 is decomposed
  • Non-Patent Document 5 Ichimura et al. 2008 JBC).
  • p62 knockout mice develop type 2 diabetes, but hepatic damage and neurodegeneration observed in autophagy-deficient mice have not been confirmed (Non-patent Document 6: Rodriguez A 2006 Cell Metab).
  • Non-patent Document 6 Rodriguez A 2006 Cell Metab.
  • p62 accumulates and becomes insoluble, and finally p62-positive inclusion bodies are confirmed.
  • Non-patent Document 7 Komatsu et al. 2005 JCB, Non-patent Document 1). : Komatsu et al. 2007 Cell).
  • the formation process of the inclusion body is composed of three stages: abnormal folding of the mutant protein, formation of soluble oligomer, and insolubilization / accumulation of soluble oligomer. Formation of this inclusion body has been observed in various pathological conditions (neurodegenerative diseases such as alcoholic hepatitis, Parkinson's disease, amyotrophic lateral sclerosis, and ALS).
  • Non-patent Document 1 Komatsu et al. 2007 Cell.
  • the accumulation of ubiquitin / p62-positive inclusions is associated with neurological diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, astrocytoma, alcoholic hepatitis, fatty liver, liver of liver cancer patients.
  • Non-patent document 8 Stumptner et al., 2007 Hpatology
  • Non-patent document 9 Zatloukal K et al. AM J Pathol 2002.
  • GST glutathione S-transferase
  • P NAD
  • NQO1 quinine 1
  • Nrf2 is captured by the ubiquitin ligase Keap1 (Kelch-like ECH-associated protein 1) and degraded by the proteasome by undergoing ubiquitination.
  • ubiquitin ligase Keap1 Kerch-like ECH-associated protein 1
  • a specific cysteine residue of Keap1 is oxidized and loses binding to Nrf2.
  • Nrf2 that has escaped the degradation moves into the nucleus and activates transcription of detoxifying enzymes such as GST and NQO1 (Non-patent Document 10: Ton KI et al. Mol Cell Biol. 2007).
  • Nrf2 In the autophagy-deficient liver, Nrf2 accumulates in the nucleus, and the accumulation is suppressed by the simultaneous deficiency of p62.
  • the main object of the present invention is to identify a control mechanism of p62 inclusion body formation and to provide a novel therapeutic agent for liver disease and anticancer agent or diagnostic agent based on the mechanism.
  • the present inventors have found for the first time that p62 binds to Keap1. It was also clarified that the binding site of p62 in Keap1 uses the same pocket as that of Nrf2. When p62 accumulates due to autophagy deficiency, the binding between Keap1 and p62 increases, and free Nrf2 increases accordingly. The accumulated Nrf2 moves into the nucleus and increases the transcription of the detoxification enzyme group. Further, according to the experiments by the present inventors, when Nrf2 was also simultaneously deficient in the autophagy-deficient liver, formation of intracellular inclusion bodies, accompanying hepatic hypertrophy, and liver damage could be suppressed.
  • the present invention provides the following agents, diagnostic methods, diagnostic kits, diagnostic agents, and screening methods. (1) An inhibitor or inhibitor of binding between Keap1 and p62.
  • a molecule that specifically binds to p62 is i) a substance that specifically binds to the Keap1 interaction region of p62; ii) a substance that specifically binds to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3); or iii ) An antisense nucleic acid or siRNA against the p62-encoding nucleotide sequence, wherein the p62 expression inhibitor is The agent according to (2) or (3) above.
  • the agent according to (2) above, wherein the molecule that specifically binds to p62 is LC3 or an anti-p62 antibody.
  • (6) A method for determining an application patient of the therapeutic agent for liver disease described in (3) above, i) measuring the expression level of p62 or Nrf2 by liver biopsy of the subject, or ii) measuring the activity of Nrf2 by liver biopsy of the subject, Including a method.
  • a screening method for an agent that inhibits or suppresses the interaction between Keap1 and p62 i) measuring the amount of Keap1 binding to p62 in the presence and absence of the test substance, and ii) determining the amount of Keap1 binding to p62 between the presence and absence of the test substance.
  • a method comprising the step of selecting as (10) In the step (9), in the step of measuring the binding amount, any one of a pull-down method, a mass spectrometry method, a method of detecting protein-protein interaction as a fluorescence signal, or imaging using a fluorescent label is used. The method described. (11) The method according to (9) or (10) above, which is used for screening for a substance that inhibits or suppresses ubiquitin-positive inclusion body formation.
  • the step of measuring the amount of binding comprises i) Keap1 interaction region of p62, or ii) amino acid sequence from position 345 to position 359 in the amino acid sequence of mouse p62 (SEQ ID NO: 3): SKEVDPSTGELQSLQ (SEQ ID NO: 5)
  • the above substance is specific to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3).
  • the method according to any one of (9) to (13), wherein the binding is performed.
  • the present invention provides a method for controlling the interaction between p62 and Keap1 that controls the formation of ubiquitin positive inclusion bodies. It is known that deletion of autophagy causes accumulation and insolubilization of intracellular p62 protein, accumulation of p62-ubiquitin positive inclusion bodies, and accompanying liver damage. It is also known that this inclusion body accumulation is eliminated by deletion of p62.
  • the binding site is a region consisting of amino acid residues 345 to 359 in the KIR (Keap1 Interacting Region) sequence (mouse p62 amino acid sequence (SEQ ID NO: 3)).
  • KIR Keap1 Interacting Region
  • Nrf2 a transcription factor of detoxification enzymes in hepatocytes, expression of detoxification enzymes (antioxidant proteins, etc.), intracellular inclusions was found to induce the accumulation of liver and decrease in liver function. Therefore, by controlling (suppressing or promoting) the interaction (or binding) between p62 and Keap1, insolubilization of Keap1, stabilization and activation of Nrf2 which is a transcription factor of detoxification enzymes in hepatocytes, detoxification enzymes It is possible to control the expression of (antioxidant proteins, etc.), accumulation of intracellular inclusions, decrease in liver function, and the like.
  • the present invention has an important significance in that a new role of selective autophagy has been found in a mechanism for controlling transcription of a cytoprotective enzyme gene. Subsequently, the present invention provides a therapeutic agent for liver disease that inhibits or suppresses the interaction between p62 and Keap1. As described above, attenuation of autophagy causes hepatocellular carcinoma and liver damage accompanied by ubiquitin / p62-positive inclusions confirmed in various diseases. Since this is eliminated by suppressing the interaction between p62 and Keap1, a substance that inhibits or suppresses the interaction between p62 and Keap1 is likely to be applicable to a therapeutic agent for liver disease and an anticancer agent.
  • this therapeutic agent and anticancer agent are unlikely to cause autophagy abnormalities.
  • the interaction between Keap1 and p62 leads to stabilization and activation of Nrf2.
  • Nrf2 activation system associated with the binding of p62-Keap1 is considered to hardly function outside the liver, the interaction between p62 and Keap1 Anticancer agents that inhibit or suppress the action are considered to have few side effects.
  • this invention provides the therapeutic agent and anticancer agent of a liver disease which inhibit or suppress the interaction of Keap1 and p62 by suppressing the quantity of p62 in a cell.
  • the present invention can be applied to liver disease therapeutic agents and anticancer agents, diagnostic agents or screening methods thereof based on a novel mechanism of action.
  • the therapeutic agent for liver disease of the present invention has an advantage that there are few side effects.
  • FIG. 6 shows a list of p62 point mutation constructs and the corresponding pull-down assay.
  • a mutant (p62 T352A) that cannot interact with FLAG-tagged p62 and Keap1 was overexpressed in wild-type primary mouse hepatocytes using the adenovirus system. 48 hours after infection, cells were cultured for 4 hours in the absence (lanes 1, 3, and 5) or presence (lanes 2, 4, and 6) of 10 ⁇ M lactacystin. Cell lysates were analyzed by immunoprecipitation with anti-Nrf2 antibody, followed by SDS-PAGE and immunoprecipitation with anti-Nrf2 antibody and anti-ubiquitin antibody. Bands corresponding to Nrf2, ubiquitinated Nrf2, FLAG-p62, endogenous p62, and actin are shown. Results from three independent experiments are shown.
  • FIG. B It is a figure which shows the result of the immunoblot analysis of an Atg7 defect
  • the lower panel is an overlay of Keap1 (green) and p62 (red) images.
  • Each inset in the panel of Atg7 deficient liver is an enlarged view of the area enclosed by a square.
  • the bar is 20 ⁇ m.
  • F / F: Mx1 Atg7 / Nrf2 deficiency
  • RNA was prepared from the liver of the genotype shown in the figure on day 28 after pIpC injection. Values are normalized to the amount of mRNA in Atg7 F / F liver. The experiment was performed three times.
  • Panel (d)-(h): Atg7 F / F (control) (panel (d)) and Atg7 / Nrf2-deficient (Atg7- / Nrf2-) (panel (e)-(h)) is there.
  • the squared regions in panels (e) and (g) are enlarged and shown as panels (f) and (h), respectively.
  • the glycogen region (asterisk) that is easily detected in the control liver is occupied by a large amount of smooth ER and a large number of peroxisomes, some of which are indicated by arrows in panels (f) and (g) Note that is accumulated in the surrounding area.
  • Panels (g) and (h) show typical inclusion bodies observed in Atg7 / Nrf2-deficient liver. Bars: (d) and (e), 5 ⁇ m; (f) and (g), 1 ⁇ m; (h), 0.2 ⁇ m.
  • (A) It is a figure showing the measurement result of the weight of the mouse liver of a different genotype in the 28th day after pIpC injection
  • FIG. 1 shows typical liver histology of mice of the genotype shown in the figure.
  • the liver on day 28 after pIpC injection was treated with H & E staining. Higher-order magnified pictures are shown in the lower panel.
  • CV is the central vein and P is the portal vein. Bar: 100 ⁇ m.
  • Keap1 green
  • p62 red
  • the bar is 10 ⁇ m.
  • (A) shows photographs of livers at each age of Apg7 f / f mice (control) and Apg7 f / f; Alb-Cre mice (liver-specific autophagy-deficient mice).
  • (B) is a figure which shows the result of the immunoblotting of the extract adjusted from the liver of each 12-month-old mouse
  • (C) is a figure which shows the result of quantitative PCR using RNA adjusted from the liver of each 12-month-old mouse
  • the present invention provides an agent that inhibits or suppresses the interaction between p62 and Keap1.
  • a substance that inhibits or suppresses the interaction between p62 and Keap1 may be applicable as a therapeutic agent for liver disease and an anticancer agent.
  • a substance that inhibit or suppress the interaction between p62 and Keap1 For example (1) A substance that specifically binds to a binding site with Keap1 in the three-dimensional structure of p62, (2) a substance that inhibits or suppresses the interaction by binding in the vicinity of the binding site with Keap1 in the three-dimensional structure of p62; (3) a substance that binds to p62 and changes the three-dimensional structure of p62, (4) a substance that inhibits or suppresses interaction by inhibiting the expression of p62, (5) Substances that inhibit or suppress the interaction by decomposing p62 by autophagy are included.
  • a substance that inhibits or suppresses the interaction between p62 and Keap1 I) a molecule that specifically binds to p62, or Ii) p62 expression inhibitor Is included.
  • P62 is known as a ubiquitin-binding protein. Information on the amino acid sequence of p62 or the nucleotide sequence encoding it can be obtained from publicly available sequence databases. Some of these database accession numbers are listed here.
  • NCBI Accession number (species name)]: NCBI: NP_003891.1 (human), NCBI: NM_003900.4 (human), NCBI: NP_035148.1 (mouse), NCBI: NM_011018.2 (mouse) Swiss- Prot: 008623.1 (rat), NCBI: NP_78737.2 (rat), NCBI: NM_175843.3 (rat), Swiss-Prot: Q5RBA5.1 (orangutan).
  • p62 is not limited to human p62, but other species of p62 (eg, other mammalian species (eg, monkeys, cows, pigs, mice, rats, etc.), reptiles, amphibians, Homologs of fish, etc.).
  • other mammalian species eg, monkeys, cows, pigs, mice, rats, etc.
  • reptiles eg., amphibians, Homologs of fish, etc.
  • the amino acid sequence of such a homologue is, for example, 80% or more, 85% or more, 90% or more with respect to the amino acid sequence of human p62 (SEQ ID NO: 1) or the amino acid sequence of mouse p62 (SEQ ID NO: 3), Alternatively, one to several amino acids (for example: 2, 3, 4, 5) in the amino acid sequence having a sequence identity of 95% or more, the amino acid sequence of human p62 (SEQ ID NO: 1) or the amino acid sequence of mouse p62 (SEQ ID NO: 3) , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) deletion, substitution, insertion, or addition of amino acid residues It consists of an amino acid sequence having “Keap1 (Kelch-like ECH-associated protein 1)” interacts with NF-E2-related factor 2 (NF-E2-related factor 2 (Nrf2)) in a redox-sensitive manner, and when this protein diverges in the cytoplasm.
  • Keap1 Kerch-like E
  • Nrf2 is known to migrate to the nucleus. This interaction is known to control the expression of the catalytic subunit of ⁇ -glutamylcysteine synthetase.
  • Information on the amino acid sequence of Keap1 or the nucleotide sequence encoding it can be obtained from publicly available sequence databases. Some of the accession numbers in those databases are listed here. [Database name: Accession number (species name)]: Swiss-Prot: Q14145.2 (human), Swiss-Prot: Q9Z2X8.1 (mouse), GenBank: BAA46339.1 (mouse), GenBank: AB020063.1 ( Mouse), Swiss-Prot: Q684M4.1 (pig).
  • Keap1 is not limited to human Keap1, but other species of keap1 (eg, other mammalian species (eg, monkeys, cows, pigs, mice, rats, etc.), reptiles, amphibians, Homologs of fish, etc.).
  • the amino acid sequence of such a homologue is, for example, an amino acid sequence having a sequence identity of 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of human Keap1, or human Keap1 1 to several amino acid sequences (e.g.
  • a molecule that “specifically binds to p62” means that the molecule has a substantially higher affinity for a particular amino acid sequence of p62 or a fragment thereof than its affinity for other amino acid sequences. It means to combine with.
  • substantially high affinity means high affinity that allows the specific amino acid sequence to be detected separately from other amino acid sequences by a desired measuring device.
  • K a a coupling constant Is at least 10 7 M -1 , Preferably at least 10 8 M -1 , More preferably 10 9 M -1 , Even more preferably, 10 10 M -1 10 11 M -1 10 12 M -1 Or higher, for example, up to 10 13 M -1 Or means a binding affinity that is higher.
  • Examples of “molecules that specifically bind to p62” include the following i) and ii). i) Keap1 interacting region of p62 (Keapl Interacting Region) [SKEVDPSTGELQSLQ (SEQ ID NO: 5), for example, 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of SEQ ID NO: 5.
  • KIP1 KIP1 interacting region
  • the inhibitor or suppressor can typically be used as i) an inhibitor or suppressor of ubiquitin-positive inclusion body formation, ii) a therapeutic agent for liver disease, or iii) an anticancer agent.
  • the “molecule that specifically binds to p62” is LC3.
  • the “molecule that specifically binds to p62” is an antibody that specifically binds to p62 (anti-p62 antibody).
  • the “p62 expression inhibitor” refers to a substance that inhibits transcription of p62 gene into mRNA and / or translation of p62 gene (mRNA) into protein. Examples of “p62 expression inhibitor” include the following iii) and iv).
  • the p62 expression inhibitor is an antisense nucleic acid or siRNA against the nucleotide sequence encoding p62, Iv) A nucleic acid having a ribozyme activity that specifically cleaves the transcription product (mRNA) of the p62 gene.
  • nucleic acid means RNA or DNA.
  • the “nucleic acid” herein may contain not only purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles.
  • Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, eg, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted to.
  • a nucleic acid having an action of inhibiting the expression of p62 gene by RNAi effect can be used as an active ingredient.
  • RNAi refers to a phenomenon in which, when a double-stranded RNA having the same or similar sequence as a target gene sequence is introduced into a cell, expression of the introduced foreign gene and target endogenous gene are both inhibited.
  • RNA used here include double-stranded RNA that causes RNA interference of 19 to 30 bases in length, such as dsRNA (double strand RNA), siRNA (small interfering RNA), or shRNA (short hairpin RNA). .
  • dsRNA double strand RNA
  • siRNA small interfering RNA
  • shRNA short hairpin RNA
  • RNA can be locally delivered to a desired site by a delivery system such as a liposome, and can be locally expressed using a vector capable of generating the double-stranded RNA.
  • Methods for preparing and using such double-stranded RNA are known from many literatures (Japanese translations of PCT publication No. 2002-516062; US Publication No.
  • the length of the double-stranded RNA exhibiting the RNAi effect used in the present invention is usually 19 to 30 bases, preferably 20 to 27 bases, more preferably 21 to 25 bases, and most preferably 21 to 23 bases.
  • “antisense nucleic acid” or “antisense polynucleotide” has a polynucleotide complementary to at least a part of a DNA region of interest, and the polynucleotide is at least one of the region. It means a nucleic acid capable of hybridizing with a part.
  • the antisense nucleic acid or antisense polynucleotide of the present invention is RNA, DNA, or a modified nucleic acid (RNA, DNA).
  • modified nucleic acids include, but are not limited to, nucleic acid sulfur derivatives and thiophosphate derivatives, and those that are resistant to degradation of polynucleotide amides and oligonucleotide amides.
  • the antisense nucleic acid used is linked downstream of an appropriate promoter, and preferably a sequence containing a transcription termination signal is linked on the 3 'side. The nucleic acid thus prepared can be transformed into a desired animal by using a known method.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous gene or a part thereof possessed by the animal to be transformed, but it is not completely complementary as long as the gene expression can be effectively suppressed. May be.
  • Antisense nucleic acid effective for inhibiting gene translation is about 70% or more, preferably about 80% or more, more preferably about 90% or more, most preferably about 95% or more complement to the target gene transcript. Have sex.
  • the length of the antisense nucleic acid is at least about 10 bases (for example, about 10 to 40 bases), preferably about 15 bases or more, More preferably, it is about 100 bases or more, More preferably, it is about 500 bases or more.
  • Antisense nucleic acids can be designed with reference to known literature (for example, Hirashima and Inoue, Shinsei Kagaku Koza 2 Lecture and Expression of Nucleic Acid IV Gene, edited by the Japanese Biochemical Society, Tokyo Chemical Dojin, 1993, p.319) -347), J. et al. Kawakami et al. , Pharm Tech Japan. Vol. 8, p. 247, 1992; Vol.
  • ribozyme activity refers to a nucleic acid that specifically cleaves mRNA, which is a transcription product of a target gene.
  • Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and M1 RNA contained in RNaseP, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type ( Protein Nucleic Acid Enzyme, 1990, 35, p. 2191).
  • ribozymes see, for example, FEBS Lett, 1988, 228, p. 228; FEBS Lett, 1988, 239, p. 285; protein nucleic acid enzyme, 1990, 35, p. 2191; Nucl Acids Res, 1989, 17, p. 7059 and the like can be referred to.
  • hairpin ribozymes see, for example, Nature, 1986, 323, p. 349; Nucl Acids Res, 1991, 19,. 6751; Hiroshi Kikuchi, Chemistry and Biology, 1992, 30, p. 112 and the like can be referred to.
  • a method for treating liver disease and / or cancer comprising a step of administering a substance that inhibits or suppresses the interaction between p62 and Keap1 to a patient in need thereof. Provided. 2.
  • an inhibitor or inhibitor of binding between Keap1 and p62 is provided.
  • This agent typically contains a substance that inhibits or suppresses the interaction between p62 and Keap1 described above.
  • this agent I) a molecule that specifically binds to p62, or Ii) p62 expression inhibitor Containing.
  • the above agent of the present invention can be used as a preparation for treating liver disease or cancer.
  • Such a preparation can be produced by mixing a substance that inhibits or suppresses the interaction between p62 and Keap1 with a commonly used preparation carrier.
  • the pharmaceutical carrier may be used in appropriate combination depending on the dosage form.
  • excipients such as lactose; lubricants such as magnesium stearate; disintegrants such as carboxymethylcellulose; binders such as hydroxypropylmethylcellulose Surfactants such as macrogol; foaming agents such as sodium hydrogen carbonate; solubilizing agents such as cyclodextrin; sour agents such as citric acid; stabilizers such as sodium edetate; pH adjusters such as phosphate Is mentioned.
  • excipients such as lactose; lubricants such as magnesium stearate; disintegrants such as carboxymethylcellulose; binders such as hydroxypropylmethylcellulose Surfactants such as macrogol; foaming agents such as sodium hydrogen carbonate; solubilizing agents such as cyclodextrin; sour agents such as citric acid; stabilizers such as sodium edetate; pH adjusters such as phosphate Is mentioned.
  • a solid preparation for internal use for oral administration a liquid for internal use, and an injection, external preparation, suppository
  • Oral solid preparations for oral administration include tablets, pills, capsules, powders, granules and the like.
  • Capsules include hard capsules and soft capsules.
  • Tablets include sublingual tablets, buccal adhesive tablets, buccal quick disintegrating tablets and the like.
  • one or more active substances are left as they are, or excipients (lactose, mannitol, glucose, microcrystalline cellulose, starch, etc.), binders (hydroxypropylcellulose, polyvinylpyrrolidone, Mixed with magnesium metasilicate aluminate, etc.), disintegrating agents (such as calcium calcium glycolate), lubricants (such as magnesium stearate), stabilizers, solubilizing agents (such as glutamic acid, aspartic acid), etc. Used by formulating. If necessary, it may be coated with a coating agent (sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, etc.), or may be coated with two or more layers.
  • excipients lactose, mannitol, glucose, microcrystalline cellulose, starch, etc.
  • binders hydroxypropylcellulose, polyvinylpyrrolidone, Mixed with magnesium metasilicate aluminate, etc.
  • disintegrating agents such
  • Oral liquids for oral administration include pharmaceutically acceptable solutions, suspensions / emulsions, syrups, elixirs and the like.
  • a solution one or more active substances are dissolved, suspended or emulsified in a commonly used diluent (purified water, ethanol or a mixture thereof).
  • this liquid agent may contain a wetting agent, a suspending agent, an emulsifier, a sweetening agent, a flavoring agent, a fragrance, a preservative, a buffering agent and the like.
  • External dosage forms for parenteral administration include, for example, ointments, gels, creams, poultices, patches, liniments, sprays, inhalants, sprays, eye drops, and nasal drops Etc. are included. These contain one or more active substances and are produced and prepared by known methods or commonly used formulations. Included as injections for parenteral administration are solutions, suspensions, emulsions and solid injections used by dissolving or suspending in a solvent at the time of use. An injection is used by dissolving, suspending or emulsifying one or more active substances in a solvent.
  • the solvent for example, distilled water for injection, physiological saline, vegetable oil, propylene glycol, polyethylene glycol, alcohols such as ethanol, and combinations thereof are used. Further, this injection may contain a stabilizer, a solubilizing agent (such as glutamic acid, aspartic acid, polysorbate 80 (registered trademark)), a suspending agent, an emulsifier, a soothing agent, a buffering agent, a preservative and the like. . These are sterilized in the final process or manufactured and prepared by aseptic manipulation. In addition, a sterile solid preparation, for example, a lyophilized product, can be produced and used by dissolving it in sterilized or sterile distilled water for injection or other solvent before use.
  • a solubilizing agent such as glutamic acid, aspartic acid, polysorbate 80 (registered trademark)
  • a suspending agent such as glutamic acid, aspartic acid, polysorbate 80 (registered trademark)
  • the present invention provides a method for screening an agent that inhibits or suppresses the interaction between Keap1 and p62.
  • This method is typically I) measuring the binding amount of Keap1 and p62 in the presence and absence of the test substance, and ii) comparing the amount of binding between Keap1 and p62 in the presence and absence of the test substance, and the amount of binding in the presence of the test substance is greater than that in the absence of the test substance.
  • a substance that inhibits or suppresses the interaction between p62 and Keap1 can be applied to a liver disease therapeutic agent and an anticancer agent.
  • a novel drug for the treatment of liver disease can be screened.
  • the interaction can be detected by a pull-down method (eg, FIG. 3), a method using a mass spectrometer, a method for detecting protein-protein interaction as a fluorescent signal, or an imaging using a fluorescent label.
  • the step of measuring the amount of binding between Keap1 and p62 in the presence and absence of a test substance comprises the KIR sequence of p62 (eg, SKEVDPSTGELQSLQ (SEQ ID NO: 5), for example, an amino acid sequence having sequence identity of 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of SEQ ID NO: 5, or the amino acid sequence of SEQ ID NO: 5 This includes measuring the amount of Keap1 binding to 1 to several (eg, amino acid sequences having 1, 2, 3, or more amino acid residue deletions, substitutions, insertions or additions).
  • the “substance that inhibits or suppresses the interaction between Keap1 and p62” is aspartic acid at position 349 in the amino acid sequence of mouse p62 (SEQ ID NO: 3), It specifically binds to proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354.
  • the screening method of the present invention Iii) administering a substance that inhibits or suppresses the interaction between Keap1 and p62 to a liver disease model animal and measuring the activity of Nrf2, and Iv) When the activity of Nrf2 decreases, the above-mentioned substance is selected as a therapeutic agent for liver disease Is included.
  • the substance obtained by the screening method of the present invention include LC3, anti-p62 antibody and the like, but are not limited thereto, low molecular weight compounds (natural or synthetic), proteins or peptides, polysaccharides, lipids , Nucleic acids and the like may be included.
  • a substance that inhibits or suppresses the interaction between p62 and Keap1, or a substance that decreases the amount of intracellular p62 can be applied to a therapeutic agent for liver disease and an anticancer agent. These substances inactivate (decompose) Nrf2 by reducing the amount of p62 that binds to Keap1 and increasing the binding between Keap1 and Nrf2.
  • a novel drug You can find Detection of the interaction between Keap1 and p62 was performed by transiently cultivating a plasmid in which Nrf2 transcriptional activity reporter ARE (antioxidant-respondive element) was connected to luciferase gene to cultured cells (Huh-1, JHH5, Hepa-1, HEK293T, etc.). By luciferase assay using a cell line introduced into or stably maintained (see FIGS.
  • Nrf2 transcriptional activity reporter assay using lactamase and fluorescence resonance energy transfer (FRET)
  • FRET fluorescence resonance energy transfer
  • the measurement of the binding amount of Keap1 and p62 in the presence and absence of a test substance is carried out using a pull-down method, mass spectrometry, protein-protein interaction as a fluorescence signal. This is performed using either a detection method or imaging using a fluorescent label.
  • a substance that inhibits or suppresses the interaction between p62 and Keap1 or a substance that reduces the amount of intracellular p62 may be applicable to a therapeutic agent for liver disease and an anticancer agent. These substances reduce the amount of intracellular ubiquitin positive inclusions in the liver lacking mouse autophagy.
  • a substance that inhibits or suppresses the interaction of Keap1 or a substance that decreases the amount of intracellular p62 is administered to mice, and the amount of ubiquitin positive inclusion bodies, the activity of Nrf2, and the level of liver damage are measured. Drug candidates can be screened. Detection of ubiquitin positive inclusion bodies can be performed by immunostaining mouse liver tissue (FIG. 9). In the Nrf2 activity measurement, the expression of the detoxification enzyme gene group which is a downstream factor of Nrf2 can be confirmed by real time PCR (FIG. 8). Liver damage level measurement includes liver weight measurement (FIG. 13a), hepatocyte hypertrophy and lobular structure collapse detection by HE staining of liver tissue (FIG.
  • liver function test (AST, ALT, ALP) (FIG. 14) Can be done by.
  • the substance obtained by the screening method of the present invention can be used as i) an inhibitor or suppressor of ubiquitin-positive inclusion body formation, ii) a therapeutic agent for liver disease, or iii) an anticancer agent. 4). Diagnostic method, diagnostic agent, and diagnostic kit for liver disease
  • the present invention provides a method for diagnosing liver disease.
  • a method for determining or diagnosing a patient to which the therapeutic agent for liver disease of the present invention is applied is provided.
  • This method is typically I) measuring the expression level of p62 or Nrf2 by subject's liver biopsy, or Ii) measuring the activity of Nrf2 by subject's liver biopsy, including. If it is found that the expression level of p62 in a liver biopsy of a subject with liver disease is excessive as compared with that of a normal subject, it is highly likely that the liver disease of the subject is caused by overexpression of p62. In such a case, the therapeutic agent for liver disease according to the present invention is applied to a patient who needs to treat the disease in order to inhibit or suppress the interaction between p62 and Keap1 or to inhibit the expression of p62. By doing so, it is considered that an advantageous effect can be obtained. Therefore, it is useful to determine or diagnose the patient to whom such treatment is applied.
  • the liver disease of the subject is due to abnormal activation of Nrf2.
  • the therapeutic agent for liver disease of the present invention is applied to a patient in need of treatment of the disease, the interaction between p62 and Keap1 is inhibited or suppressed, or the expression of p62 is inhibited.
  • the amount of p62 competing with the interaction between Nrf2 and Keap1 can be reduced, so that the amount of free Nrf2 is reduced and the activation of Nrf2 is suppressed.
  • Measurement of the expression level of p62 by liver biopsy of a subject can be performed by methods well known to those skilled in the art, such as imaging with a fluorescent label, immunoblotting, and mass spectrometry.
  • Measurement of the activity of Nrf2 by liver biopsy of a subject includes quantitative measurement of luciferase assay using a target promoter of Nrf2, measurement of the amount of Nrf2 in cell nuclei by immunoblotting, and enzymes induced by Nrf2 (such as Nqol and Gstm).
  • RNA sample can be performed by methods well known to those skilled in the art, such as expression analysis by PCR, immunoblotting or fluorescence imaging, and enzyme activity measurement.
  • measurement of Nrf2 activity and / or detection of ubiquitin positive inclusion bodies is included.
  • a further embodiment of the method for determining a patient to which the therapeutic agent for liver disease of the present invention is applied includes measuring the concentration of AST, ALT, ALP, and / or ⁇ -GTP in the blood of the subject.
  • ⁇ -GTP ( ⁇ -glutamyl transpeptidase) is an enzyme related to the detoxification of the liver, and when the cells of the liver and bile duct break down, ⁇ -GTP flows into the blood. It is said to be a “deviation enzyme” and is generally used as an indicator that the cells of the liver and bile ducts have been broken.
  • a diagnostic kit or diagnostic agent used in the diagnostic method of the present invention is provided. These diagnostic kits or diagnostic agents typically include an anti-p62 antibody or an anti-Nrf2 antibody. Further, these diagnostic kits or diagnostic agents may contain a labeling agent for labeling the antibody (for example, a fluorescent label) or a fluorescently labeled antibody.
  • the diagnostic kit may further include instructions for use.
  • the instructions for use may describe the method for using the antibody, the labeling agent, etc. included in the kit, the experimental procedure including immunoblotting, and the like.
  • the relationship between the amino acid sequence or nucleotide sequence appearing in this specification and the sequence number is as follows. [SEQ ID NO: 1] This sequence represents the amino acid sequence of human p62. [SEQ ID NO: 2] This sequence represents a nucleotide sequence encoding the amino acid sequence of human p62 (SEQ ID NO: 1). [SEQ ID NO: 3] This sequence represents the amino acid sequence of mouse p62.
  • [SEQ ID NO: 4] This sequence represents a nucleotide sequence encoding the amino acid sequence of mouse p62 (SEQ ID NO: 3).
  • [SEQ ID NO: 5] This sequence represents a partial sequence (KIR sequence) consisting of consecutive amino acid residues from the 345th position to the 359th position of the amino acid sequence of mouse p62 (SEQ ID NO: 3).
  • Example 1 In Example 1, the interaction between p62 and Keap1 and the region of Keap1 that binds to p62 were examined. Hek293T cells in which each mutant protein of mouse Keap1 and Keap1 in which Flag-tag was linked to the N terminus were expressed were lysed with lysis buffer to obtain a cell extract. Next, immunoprecipitation was performed using an anti-Flag antibody, and Keap1 to which Flag-tag was added or its deletion mutant and its interaction complex were recovered.
  • the recovered protein complex and cell extract are developed in a gel by SDS-PAGE (polyacrylamide gel electrophoresis) and immunized with anti-Flag antibody, anti-p62 antibody, anti-Nrf2 antibody, and anti-actin antibody. Blotting (IB) was performed. The results are shown in FIG. 1 shows the functional domain region of Keap1 and the names and schematic diagrams of Keap1 and each mutant with FLAG-tag attached, and I.I. B. And I. using cell extract. B. It is a photograph of. At the top of the schematic diagram, the domain region of Keap1 and its name are shown.
  • NTR N-terminal region
  • BTB Broadcomplex, Tramtrac, and Brick-a-Brac
  • IVR intervening region
  • DSG the double glyceine repeat crea- te
  • Example 2 In Example 2, the direct interaction between p62 and Keap1 and the region of p62 that binds to Keap1 were examined.
  • FIG. 2 is a photograph of mouse p62 with a functional domain region of p62 and MBP-tag, names and schematics of each mouse, and stained with SDS-PAGE and CBB.
  • the top part of the schematic diagram shows the domain region of p62 and its name.
  • PB1 Phox and Bemlp
  • Zinc Zinc finger
  • LRS LC3-recognition sequence
  • UBA ubiquitin-associated domain
  • the binding region of p62 to Keap1 is a region of 345-359 amino acids. I found out. Further, this region is highly conserved among species as shown in FIG. 2b, and this amino acid sequence region was named a KIR (Keap1 interacting region) (Keap1 interaction region) sequence.
  • Example 3 amino acids in the p62-KIR sequence important for Keap1 binding were examined.
  • a pull-down assay similar to that in Example 2 was performed using a protein in which each amino acid in the -KIR sequence of MBP-p62M80 was substituted with alanine and GST-Keap1-DC. The results are shown in FIG.
  • the amino acid substitution site for each sample number is shown in the upper left of the figure, the lower part shows a photograph of the gel after staining with SDS-PAGE and CBB, and the right side of the photograph shows the name of the protein indicated by the band.
  • Example 4 In Example 4, it was examined that p62 and Nrf2 were bound in the same pocket of Keap1. Protein crystallization three-dimensional structure analysis predicted amino acids important for binding of Keap1-DC to p62 or Nrf2. The Keap1-DC mutant and Keap1-DC proteins in which these amino acids were each replaced with alanine were FLAG-tagged and expressed in Hek293T cells.
  • Example 1 immunoprecipitation and I.V. B. Went. The results are shown in FIG. The left side of FIG. 4 shows each sample number and the amino acid substitution site for that number.
  • I. Immunoprecipitation of anti-FLAG antibody B. are shown in IP: FLAG.
  • I. B. These photographs are represented by Crude, which shows confirmation of the expression of Keap1, p62, and actin (loading control) in each cell.
  • the antibody used is shown on the right side of the photo. As shown in FIG.
  • Example 5 shows that p62 competitively inhibits Keap1-Nrf2 binding.
  • Hek293T cells expressing p62 and p62-T352A in which Flag-tag was linked to the N terminus were lysed with lysis buffer to obtain a cell extract. Next, immunoprecipitation was performed using an anti-Nrf2 antibody, and Nrf2 and its interaction complex were recovered.
  • Nrf2 lane 1 the detection level of ubiquitinated Nrf2 and Nrf2 itself is low, but is significantly higher when a proteasome inhibitor is added (lane 2). Become. This can be explained by the fact that Nrf2 usually binds to keap1 and is ubiquitinated and degraded by the proteasome. When p62 was overexpressed in this state, the amount of Nrf2 protein significantly increased. On the other hand, ubiquitinated Nrf2 decreased (IP: Nrf2 lanes 3 and 4).
  • Nrf2 is increased because p62 binds to Keap1 and the binding between Nrf2 and Keap1 decreases and Nrf2 is not ubiquitinated and degraded.
  • IP Nrf2 lanes 5 and 6
  • IP Nrf2 lanes 1 and 2
  • Nrf2, Keap1, and p62 wild-type or p62 mutants were introduced into Hepa1 cells derived from mouse hepatocellular carcinoma together with pNQO1-ARE reporter plasmid and pRL-TK (internal control of lipofection), and 36 hours later The luciferase activity was measured. The results are shown in FIG. The presence or absence of Nrf2, Keap1, p62-WT, p62-mutants introduction is indicated by +-, and the relative luciferase activity is shown with no expression vector introduced (column 1) as a standard.
  • Nrf2 When Nrf2 is overexpressed (column 2), the activity increases significantly, and in the case of double transfection of Nrf2 and Keap1 (column 3), Nrf2 is captured by Keap1 and degraded to the same level as column 1 Decreased.
  • p62 In the triple transfection of Nrf2, Keap1, and p62-WT, p62 binds to Keap1 and free Nrf2 increases, so the luciferase activity increased, but Nrf2, Keap1, p62-mutant triple transfection ( In column 5-10), p62 cannot bind to Keap1, so the activity was not different from column 4.
  • Example 7 shows that in mice lacking autophagy specifically in the liver, Keap1 accumulates and insolubilizes with p62, and insolubilization of Keap1 is dependent on p62. The results are shown in FIG. F / F: Mx1 is a conditional knockout mouse for the Atg7 gene.
  • each fraction is developed by SDS-PAGE and immunoblotted with anti-p62 antibody, anti-Keap1 antibody, anti-LC3 antibody, anti-Nqo1 antibody, and anti-actin antibody (loading control).
  • the left side of the figure shows the type of antibody used, the upper part shows the number of days after administration, or the genotype of the mouse.
  • Total shown in the lower part of the figure is the whole cell extract, Sol.
  • Is the soluble fraction, Insol. Indicates an insoluble fraction. 8-12 hours after autophagy is lost by PIPC administration, p62 is excessively expressed, but Keap1 expression is hardly changed. Insoluble p62 accumulates with overexpression of p62, and at the same time, insoluble Keap1 accumulates.
  • RNA is extracted from the mouse liver 12 hours after PIPC administration to each genotype mouse.
  • cDNA was synthesized from total RNA 1 microg, and LightCycler 480 Probes Masterin (Rochet Cycle Probe Master (Phc).
  • the signal was normalized with ⁇ -glucuronidase (GUS).
  • the results are shown in FIG.
  • the upper part of FIG. 8 shows the gene name, the left part shows the ratio of the amount of mRNA when F / F is 1, and the lower part shows each genotype.
  • both Nqo1 and Gstm1 have dramatically increased expression levels in autophagy-deficient mice (F / F: Mx1).
  • Nrf2 downstream gene is increased by autophagy deficiency.
  • mice lacking p62 p62 and F / F: Mx1: p62
  • F / F wild type mice
  • activation of Nqo1 and Gstm1 due to autophagy deficiency depends on p62. It was shown that [Example 9] In Example 9, it is shown in mouse hepatocytes that Keap1 is sequestered in inclusion bodies in a p62-dependent manner.
  • the liver obtained from a mouse 28 hours after PIPC administration was cut into the genotype mouse shown in Example 7, and the intracellular localization of p62 and Keap1 by double immunostaining using anti-p62 antibody and anti-Keap1 antibody Was observed with fluorescence.
  • the results are shown in FIG.
  • the upper row in FIG. 9 is p62, the middle row is Keap1, the lower row is a combination of p62 and Keap1 localization (Marge), and the respective genotypes are written in the upper left part of the nuclear staining diagram.
  • F / F An enlarged view of the area surrounded by the white square frame at the upper right part of Mx1 is shown in the lower left.
  • Keap1 Due to autophagy deficiency, Keap1 is insolubilized depending on the expression of p62, and the expression of downstream factors of Nrf2 is also increased. Therefore, in addition to the F / F and F / F: Mx1 shown in Example 7 used so far, Nrf2-deficient mice (Nrf2 ⁇ / ⁇ , F / F: Mx1: Nrf2 ⁇ / ⁇ ) were prepared. The insolubilization of Keap1 was examined by the same method as in Example 7. The expression of Nrf2 due to Nrf2 deletion and the expression of Nrf2 downstream genes (Nqo1 and Gstm1) were also confirmed at the same time. The results are shown in FIG.
  • Example 11 shows that the accumulation of p62, Keap1 positive inclusion bodies due to autophagy deficiency is dependent on Nrf2.
  • Example 12 shows that overexpression of Nrf2 downstream gene due to autophagy deficiency is dependent on Nrf2.
  • Nrf2 downstream gene (Nqo1, Gstm1, Cyp2a5) seen in autophagy deficiency (F / F: Mx1) is caused when Nrf2 is deficient (F / F: Mx1: Nrf2 ⁇ / -) Dramatically decreased.
  • F / F: Mx1 Nrf2 ⁇ / -
  • Example 13 In order to examine whether the liver damage due to autophagy deficiency is a result of lack of Nrf2-Keap1 pathway due to abnormal accumulation of p62, the genotype mouse of Example 10 was used to measure the weight of the mouse liver 28 days after pIpC administration. Furthermore, hepatocyte hypertrophy of each gene-deficient mouse was measured by HE staining. The results are shown in FIGS. 13a and 13b, respectively.
  • Example 14 In autophagy-deficient mice (F / F: Mx1), the weight of the liver is greatly increased and hepatic hypertrophy, whereas autophagy / Nrf2 double-deficient mice do not show an increase. Therefore, Nrf2-Kap1pathway due to abnormal accumulation of p62. It was found that the lack caused liver enlargement. [Example 14] In Example 14, in order to examine whether liver damage due to autophagy deficiency is a result of lack of Nrf2-Keap1 pathway due to abnormal accumulation of p62, as an indicator of liver damage, aspartate aminotransferase (AST), alanine aminotransferase (ALT), enzyme activity of alkaline phosphatase (ALP) was measured.
  • AST aspartate aminotransferase
  • ALT alanine aminotransferase
  • ALP enzyme activity of alkaline phosphatase
  • Example 16 shows the presence of the Nrf2 activity system in p62 accumulation in a cell line stably retaining the ARE-Luciferase gene of hepatoma-derived cells (Hepa-1), and for screening for p62-Keap1 binding inhibitors. Indicates that it can be used. The result of the experiment is shown in FIG.
  • Example 17 shows the molecular state of tumors, Keap1 and Nrf2 downstream factors in the liver of autophagy-deficient mice or autophagy-deficient p62 knockout mice. The results are shown in FIG. Upper left figure shows Apg7 at 4, 7, 9, 12, 14, 16 months f / f Mouse (control) and Apg7 f / f; It is a photograph of the liver of an Alb-Cre mouse (liver-specific autophagy-deficient mouse).
  • Apg7 f / f In Alb-Cre mice, small tumors (arrows) were confirmed after 7 months of age, and the number and size of tumors increased with age. Bottom left figure is 12 months old Apg7 f / f (Control) Mouse liver, p62 knockout liver, Apg7 f / f; Liver non-tumor part, liver tumor part and Apg7 of Alb-Cre mice f / f; It is the result of the Western blot analysis which used Alb-Cre; p62 knockout liver extract.
  • the present invention is useful as a therapeutic agent for liver diseases and an anticancer agent, a diagnostic agent or a screening method thereof based on a novel mechanism of action.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Provided is a method for controlling the interaction between Keap1 and p62 which control the formation of an ubiquitin-positive inclusion body.

Description

肝疾患治療薬Liver disease treatment
 本発明は、細胞内のユビキチン陽性封入体の形成を制御するp62とKeap1のタンパク質相互作用、前記相互作用を阻害又は抑制する物質を有する肝疾患治療薬および抗がん剤、前記相互作用を用いたスクリーニング方法などに関する。 The present invention relates to a protein interaction between p62 and Keap1 that controls the formation of ubiquitin-positive inclusion bodies in cells, a therapeutic agent for liver disease and an anticancer agent having a substance that inhibits or suppresses the interaction, and uses the interaction Related to screening methods.
 肝臓はヒトにおける最大の代謝器官であり、生命維持に必須の臓器である。この臓器は、高カロリー・高脂肪の飲食、ストレスなどにより肝肥大、脂肪肝などを引き起こし、機能低下を招く。またウイルス感染やアルコール摂取などにより、ウイルス性肝炎、アルコール性肝炎を引き起こし、これらの障害が長期にわたると肝硬変や肝がんに至る。
 しかしながら、これらの肝疾患に対する有効な薬剤が開発されていないのが現状である。そのため、様々な肝疾患に対して有効な薬剤の開発が望まれている。その中で、本発明者らのオートファジーの研究から有望な肝疾患治療薬および抗がん剤を提供する。
 オートファジーは細胞成分の代謝回転、無用なオルガネラの除去、凝集易発性の変異タンパク質の除去などに関与する細胞内大規模分解経路である。オートファジーはまず、隔離膜が伸長し、細胞質構成成分を取り囲んだ脂質二重膜構造体(オートファゴソーム)を形成する。このオートファゴソームがリソソームと融合し、リソソームの加水分解酵素により囲い込まれた細胞質成分を分解する。酵母遺伝学の研究により、数多くのATG遺伝子がオートファジーに必須の役割を担っていることが知られるようになった。オートファゴソームに局在するLC3は酵母Atg8のヒトホモログとして同定され、隔離膜の伸長に必須の役割を担っている。そのLC3との結合因子としてp62が取得された(非特許文献1:Komatsu et al.2007 Cell)。
 p62はシグナル伝達を担う多彩な分子群と相互作用する。またC末端にユビキチン会合ドメインを有しており、ユビキチン化タンパク質のプロテアソームへのシャトル分子として知られている(非特許文献2:Seibenhener et al.2004 MCB)。またp62はLC3との相互作用を介してオートファジー・リソソーム系で分解されることから、オートファジーに対する選択的基質とされている(非特許文献3:Bjokoy et al.2005 JCB,非特許文献4:Pankiv et al.2007 JBC,非特許文献5:Ichimura et al.2008 JBC)。実際にp62のノックアウトマウスにおいて正常なオートファゴソーム形成およびリソソームによるタンパク質分解が確認されている。またp62ノックアウトマウスは2型糖尿病を発症するが、オートファジー欠損マウスにおいて観察される肝障害や神経変性は確認されていない(非特許文献6:Rodriguez A 2006 Cell Metab)。
 肝臓もしくは脳特異的Atg7欠損マウスの肝臓もしくは脳において、p62が蓄積、不溶化し、最終的にp62陽性の封入体(inclusion bodies)が確認される。またAtg7欠失肝臓、脳において、ユビキチン化タンパク質とp62は比例的に蓄積し、ほぼ全ての封入体がユビキチン・p62陽性である(非特許文献7:Komatsu et al.2005 JCB,非特許文献1:Komatsu et al.2007 Cell)。封入体の形成過程は、変異タンパク質の折りたたみ異常、可溶性オリゴマー形成、そして可溶性オリゴマーの不溶化・封入体として蓄積の3段階よりなる。この封入体の形成は、様々な病態(アルコール性肝炎やパーキンソン病、筋萎縮性側索硬化症、ALSなどの神経変性疾患)において観察されており、オートファジー欠損マウスでは、細胞内封入体形成を伴った肝細胞肥大、肝肥大を引き起こし、肝障害を発症する。Atg7とp62を同時に欠損させると、封入体の形成はほぼ完全に抑制され、またオートファジー不全で確認される肝肥大・肝障害を強く抑制した。このことは過度なp62の蓄積が肝障害の主原因であることを示している(非特許文献1:Komatsu et al.2007 Cell)。重要なことに、ユビキチン・p62陽性封入体の蓄積は、アルツハイマー病、筋萎縮性側索硬化症,星状細胞腫などの神経性疾患や、アルコール性肝炎、脂肪肝、肝がん患者の肝臓組織においても同定されている(非特許文献8:Stumptner et al.,2007 Hpatology,非特許文献9:Zatloukal K et al.AM J Pathol 2002)。
 さらにオートファジー欠損肝臓においは、グルタチオンSトランスフェラーゼ(GST),NAD(P)H Dehydrogenase,NQO1(quinine 1)など一連の解毒酵素群の転写が著しく誘導されている。これらの解毒酵素群の転写のほとんどは転写因子Nrf2(NF−E2−related factor 2)によって制御されることが知られている。通常、Nrf2はユビキチンリガーゼKeap1(Kelch−like ECH−associated protein 1)に捕獲され、ユビキチン化を受けることによりプロテアソームによって分解されている。一方酸化ストレスないし親電子性物質に暴露されると、Keap1の特定のシステイン残基が酸化されNrf2との結合を失う。その結果、分解を免れたNrf2は核内に移動し、GSTやNQO1などの解毒酵素群の転写を活性化することが明らかにされている(非特許文献10:Tong KI et al.Mol Cell Biol 2007)。またオートファジー欠損肝臓では、Nrf2が核内に蓄積し、その蓄積はp62の同時欠損で抑制される。これらの結果は,p62依存的なNrf2制御機構の存在を示唆する。
The liver is the largest metabolic organ in humans and an essential organ for life support. This organ causes liver enlargement, fatty liver, etc. due to high calorie / high fat eating and drinking, stress, etc., leading to functional deterioration. Moreover, viral hepatitis and alcoholic hepatitis are caused by viral infection and alcohol consumption, etc., and these disorders lead to cirrhosis and liver cancer over a long period of time.
However, the present condition is that the effective drug with respect to these liver diseases is not developed. Therefore, development of an effective drug for various liver diseases is desired. Among these, promising therapeutic agents for liver diseases and anticancer agents are provided from our autophagy research.
Autophagy is a large-scale intracellular degradation pathway involved in the turnover of cellular components, removal of unwanted organelles, removal of aggregation-prone mutant proteins, and the like. In autophagy, first, the isolation membrane extends to form a lipid bilayer structure (autophagosome) surrounding the cytoplasmic components. This autophagosome fuses with the lysosome and degrades the cytoplasmic component enclosed by the lysosomal hydrolase. Yeast genetics studies have revealed that many ATG genes play an essential role in autophagy. LC3 localized in the autophagosome has been identified as a human homologue of yeast Atg8 and plays an essential role in the elongation of the isolation membrane. P62 was obtained as a binding factor with LC3 (Non-patent Document 1: Komatsu et al. 2007 Cell).
p62 interacts with a diverse group of molecules responsible for signal transduction. Further, it has a ubiquitin-associated domain at the C-terminus, and is known as a shuttle molecule for ubiquitinated proteins to the proteasome (Non-Patent Document 2: Seibenhener et al. 2004 MCB). Moreover, since p62 is decomposed | disassembled by an autophagy lysosome system through interaction with LC3, it is made into the selective substrate with respect to an autophagy (nonpatent literature 3: Bjokoy et al.2005 JCB, nonpatent literature 4). : Pankiv et al. 2007 JBC, Non-Patent Document 5: Ichimura et al. 2008 JBC). In fact, normal autophagosome formation and lysosomal proteolysis have been confirmed in p62 knockout mice. In addition, p62 knockout mice develop type 2 diabetes, but hepatic damage and neurodegeneration observed in autophagy-deficient mice have not been confirmed (Non-patent Document 6: Rodriguez A 2006 Cell Metab).
In the liver or brain of the liver or brain-specific Atg7-deficient mouse, p62 accumulates and becomes insoluble, and finally p62-positive inclusion bodies are confirmed. In Atg7-deficient liver and brain, ubiquitinated protein and p62 accumulate proportionally, and almost all inclusion bodies are ubiquitin / p62 positive (Non-patent Document 7: Komatsu et al. 2005 JCB, Non-patent Document 1). : Komatsu et al. 2007 Cell). The formation process of the inclusion body is composed of three stages: abnormal folding of the mutant protein, formation of soluble oligomer, and insolubilization / accumulation of soluble oligomer. Formation of this inclusion body has been observed in various pathological conditions (neurodegenerative diseases such as alcoholic hepatitis, Parkinson's disease, amyotrophic lateral sclerosis, and ALS). In autophagy-deficient mice, intracellular inclusion formation Causes hepatocyte hypertrophy and hepatic hypertrophy accompanied by liver damage. When Atg7 and p62 were deleted at the same time, inclusion body formation was almost completely suppressed, and hepatic hypertrophy and liver damage confirmed by autophagy failure were strongly suppressed. This indicates that excessive p62 accumulation is the main cause of liver damage (Non-patent Document 1: Komatsu et al. 2007 Cell). Importantly, the accumulation of ubiquitin / p62-positive inclusions is associated with neurological diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, astrocytoma, alcoholic hepatitis, fatty liver, liver of liver cancer patients. It has also been identified in tissues (Non-patent document 8: Stumptner et al., 2007 Hpatology, Non-patent document 9: Zatloukal K et al. AM J Pathol 2002).
Furthermore, in the autophagy-deficient liver, transcription of a series of detoxification enzymes such as glutathione S-transferase (GST), NAD (P) H Dehydrogenase, NQO1 (quinine 1) is remarkably induced. It is known that most of the transcription of these detoxifying enzymes is controlled by the transcription factor Nrf2 (NF-E2-related factor 2). Normally, Nrf2 is captured by the ubiquitin ligase Keap1 (Kelch-like ECH-associated protein 1) and degraded by the proteasome by undergoing ubiquitination. On the other hand, when exposed to oxidative stress or an electrophilic substance, a specific cysteine residue of Keap1 is oxidized and loses binding to Nrf2. As a result, it has been clarified that Nrf2 that has escaped the degradation moves into the nucleus and activates transcription of detoxifying enzymes such as GST and NQO1 (Non-patent Document 10: Ton KI et al. Mol Cell Biol. 2007). In the autophagy-deficient liver, Nrf2 accumulates in the nucleus, and the accumulation is suppressed by the simultaneous deficiency of p62. These results suggest the existence of a p62-dependent Nrf2 control mechanism.
 上記の各知見により、過度のユビキチン陽性封入体形成が肝疾患(肝細胞がんや肝障害など)を引き起こし、またp62が封入体の形成に深く関与することが示唆されている。
そこで本発明は、p62の封入体形成の制御メカニズムを同定し、そのメカニズムに基づく新規な肝疾患治療薬および抗がん剤、あるいは診断薬を提供することを主な目的とする。
Each of the above findings suggests that excessive ubiquitin-positive inclusion body formation causes liver diseases (such as hepatocellular carcinoma and liver injury), and that p62 is deeply involved in inclusion body formation.
Therefore, the main object of the present invention is to identify a control mechanism of p62 inclusion body formation and to provide a novel therapeutic agent for liver disease and anticancer agent or diagnostic agent based on the mechanism.
 本発明者らは、p62がKeap1と結合することを初めて見出した。またKeap1におけるp62の結合部位は、Nrf2の結合と同じポケットを使用していることも明らかにした。オートファジー欠損によってp62が蓄積すると、Keap1とp62の結合が増加し、それに伴いフリーのNrf2が増加する。そして蓄積したNrf2が核内へ移行し、解毒酵素群の転写を上昇させている。
 また、本発明者らの実験によれば、オートファジー欠損の肝臓でNrf2も同時欠損させると、細胞内封入体の形成やそれに伴う肝肥大、肝障害を抑圧できた。これはKeap1とp62の結合増加が、直接Nrf2の活性化、そして肝肥大や肝障害、そして肝臓がんを導くことを示す。したがって、p62とKeap1の結合を阻害することでユビキチン−p62陽性封入体の形成を防ぎ、肝肥大、肝障害、肝臓がん治療あるいは、ユビキチン−p62陽性封入体形成が確認されている星状細胞腫の治療に繋がることが示唆される。
 したがって、本発明は、以下の剤、診断方法、診断キット、診断剤、およびスクリーニング方法を提供する。
(1)Keap1とp62との結合の阻害または抑制剤。
(2)上記(1)に記載の剤であって、
 i)p62に特異的に結合する分子、または
 ii)p62の発現阻害物質
を含有する剤。
(3)i)ユビキチン陽性封入体形成の阻害又は抑制剤、
 ii)肝疾患の治療剤、または
 iii)抗がん剤
として使用される、上記(1)または(2)に記載の剤。
(4)上記p62に特異的に結合する分子が、
 i)p62のKeap1相互作用領域に特異的に結合する物質、
 ii)マウスp62のアミノ酸配列(配列番号3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、もしくは354位のグルタミン酸に特異的に結合する物質、または
 iii)上記p62の発現阻害物質が、p62をコードするヌクレオチド配列に対するアンチセンス核酸もしくはsiRNA
である、上記(2)または(3)に記載の剤。
(5)上記p62に特異的に結合する分子が、LC3または抗p62抗体である、上記(2)に記載の剤。
(6)上記(3)に記載の肝疾患の治療剤の適用患者を判定する方法であって、
 i)被験者の肝生検によるp62もしくはNrf2の発現量を測定する工程、または
 ii)被験者の肝生検によるNrf2の活性を測定する工程、
を含む、方法。
(7)被験者の血液中のAST,ALT,ALP,またはγ−GTPの酵素活性を測定することをさらに含む、上記(6)に記載の方法。
(8)上記(6)に記載の方法に使用する診断キットまたは診断剤であって、
 抗p62抗体または抗Nrf2抗体を含み、
 上記キットはさらに使用説明書
を含む、キットまたは剤。
(9)Keap1とp62との相互作用を阻害または抑制する物質(agent)のスクリーニング方法であって、
 i)試験物質の存在下および非存在下でKeap1とp62との結合量を測定する工程、および
 ii)上記試験物質の存在下と非存在下との間でKeap1とp62との上記結合量を比較し、上記試験物質の存在下での上記結合量が上記試験物質の非存在下での上記結合量よりも低い場合に、当該試験物質をKeap1とp62との相互作用を阻害または抑制する物質として選択する工程
を含む、方法。
(10)上記結合量を測定する工程において、プルダウン法、質量分析法、タンパク質間相互作用を蛍光シグナルとして検出する方法、または蛍光標識を用いたイメージングのいずれかが用いられる、上記(9)に記載の方法。
(11)ユビキチン陽性封入体形成を阻害または抑制する物質のスクリーニングのために使用する、上記(9)または(10)に記載の方法。
(12)肝疾患の治療剤のスクリーニングのために使用する、上記(9)~(11)のいずれかに記載の方法。
(13)上記結合量を測定する工程が、
 i)p62のKeap1相互作用領域、または
 ii)マウスp62のアミノ酸配列(配列番号:3)中の345番から359番目のアミノ酸配列:SKEVDPSTGELQSLQ(配列番号:5)
に対するKeap1の結合量を測定することを含む、上記(9)~(12)のいずれかに記載の方法。
(14)上記物質が、マウスp62のアミノ酸配列(配列番号:3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、または354位のグルタミン酸に特異的に結合する、上記(9)~(13)のいずれかに記載の方法。
 本発明は、ユビキチン陽性封入体形成を制御するp62とKeap1の相互作用の制御方法を提供する。
 オートファジーが欠失することにより、細胞内のp62タンパク質の蓄積と不溶化、p62−ユビキチン陽性封入体が蓄積、それに伴った肝障害が起こることが知られている。またこの封入体の蓄積がp62の欠失により解消されることが知られている。
 本発明者らは今回、p62とKeap1が直接結合すること、その結合部位はKIR(Keap1 Interacting Region)配列(マウスp62のアミノ酸配列(配列番号3)における345番目から359番目アミノ酸残基からなる領域に相当する)で、その中でも特に5つのアミノ酸(349番目アスパラギン酸、350番目プロリン、352番目トレオニン、353番目グリシン、354番目グルタミン酸)が結合に重要であることを見出した。
 またp62とKeap1の相互作用は、Keap1の不溶化、肝細胞における解毒酵素群の転写因子であるNrf2の安定化と活性化を導き、解毒酵素群(抗酸化タンパク質等)の発現、細胞内封入体の蓄積、肝機能の低下を誘発することを新規に見出した。
 したがって、p62とKeap1との相互作用(または結合)を制御(抑制または促進)することにより、Keap1の不溶化、肝細胞における解毒酵素群の転写因子であるNrf2の安定化と活性化、解毒酵素群(抗酸化タンパク質等)の発現、細胞内封入体の蓄積、肝機能の低下等を制御できる。
 本発明は細胞保護酵素遺伝子の転写を制御するメカニズムにおける、選択的オートファジーの新たな役割を見出した点において、重要な意義を有する。
 続いて、本発明はp62とKeap1の相互作用を阻害又は抑制する肝疾患の治療薬を提供する。
 上述の通り、オートファジーの減弱が、様々な疾患で確認されるユビキチン・p62陽性封入体を伴った肝細胞がんや肝障害を引き起こす。これはp62とKeap1の相互作用を抑制することで解消されるため、p62とKeap1の相互作用を阻害又は抑制する物質は、肝疾患治療薬および抗がん剤に適用できる可能性が高い。
 Keap1と結合するp62の部位は、p62の他のタンパク質と相互作用する部位とは異なることから、この治療薬および抗がん剤によりオートファジーの異常が起きる可能性は低い。またKeap1とp62の相互作用がNrf2の安定化、活性化を導くが、p62−Keap1の結合に伴うNrf2活性化システムは肝臓以外ではほとんど機能していないと考えられることから、p62とKeap1の相互作用を阻害又は抑制する抗がん剤は、副作用が少ないと考える。
 さらに、本発明は細胞内のp62の量を抑制することでKeap1とp62の相互作用を阻害又は抑制する肝疾患の治療薬および抗がん剤を提供する。
 上述の通り、オートファジーの減弱が、p62の蓄積を促し、肝細胞がんなどの肝疾患を引き起こす。この病変はp62を欠損させることで大きく改善される。またp62はLC3と結合しオートファジーにより分解される。p62とLC3が結合できない変異体を細胞に導入するのみで、ユビキチン陽性封入体が形成される。これらのことより、p62の発現そのものを抑制する物質や、p62を積極的分解に誘導できる物質は、肝疾患の治療薬に適用できる可能性が高い。
The present inventors have found for the first time that p62 binds to Keap1. It was also clarified that the binding site of p62 in Keap1 uses the same pocket as that of Nrf2. When p62 accumulates due to autophagy deficiency, the binding between Keap1 and p62 increases, and free Nrf2 increases accordingly. The accumulated Nrf2 moves into the nucleus and increases the transcription of the detoxification enzyme group.
Further, according to the experiments by the present inventors, when Nrf2 was also simultaneously deficient in the autophagy-deficient liver, formation of intracellular inclusion bodies, accompanying hepatic hypertrophy, and liver damage could be suppressed. This indicates that increased binding between Keap1 and p62 directly leads to activation of Nrf2, and liver hypertrophy, liver damage, and liver cancer. Therefore, the formation of ubiquitin-p62 positive inclusion bodies is prevented by inhibiting the binding between p62 and Keap1, and astrocytes that have been confirmed to be treated for hepatic hypertrophy, liver damage, liver cancer, or ubiquitin-p62 positive inclusion bodies. It is suggested that it leads to treatment of tumor.
Therefore, the present invention provides the following agents, diagnostic methods, diagnostic kits, diagnostic agents, and screening methods.
(1) An inhibitor or inhibitor of binding between Keap1 and p62.
(2) The agent according to (1) above,
i) a molecule that specifically binds to p62, or ii) an agent containing a substance that inhibits expression of p62.
(3) i) Inhibitor or suppressor of ubiquitin positive inclusion body formation,
The agent as described in said (1) or (2) used as a therapeutic agent of ii) liver disease, or iii) an anticancer agent.
(4) A molecule that specifically binds to p62 is
i) a substance that specifically binds to the Keap1 interaction region of p62;
ii) a substance that specifically binds to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3); or iii ) An antisense nucleic acid or siRNA against the p62-encoding nucleotide sequence, wherein the p62 expression inhibitor is
The agent according to (2) or (3) above.
(5) The agent according to (2) above, wherein the molecule that specifically binds to p62 is LC3 or an anti-p62 antibody.
(6) A method for determining an application patient of the therapeutic agent for liver disease described in (3) above,
i) measuring the expression level of p62 or Nrf2 by liver biopsy of the subject, or ii) measuring the activity of Nrf2 by liver biopsy of the subject,
Including a method.
(7) The method according to (6), further comprising measuring the enzyme activity of AST, ALT, ALP, or γ-GTP in the blood of the subject.
(8) A diagnostic kit or diagnostic agent used in the method according to (6) above,
An anti-p62 antibody or an anti-Nrf2 antibody,
The kit or kit further comprises instructions for use.
(9) A screening method for an agent that inhibits or suppresses the interaction between Keap1 and p62,
i) measuring the amount of Keap1 binding to p62 in the presence and absence of the test substance, and ii) determining the amount of Keap1 binding to p62 between the presence and absence of the test substance. In comparison, when the amount of binding in the presence of the test substance is lower than the amount of binding in the absence of the test substance, the test substance inhibits or suppresses the interaction between Keap1 and p62 A method comprising the step of selecting as
(10) In the step (9), in the step of measuring the binding amount, any one of a pull-down method, a mass spectrometry method, a method of detecting protein-protein interaction as a fluorescence signal, or imaging using a fluorescent label is used. The method described.
(11) The method according to (9) or (10) above, which is used for screening for a substance that inhibits or suppresses ubiquitin-positive inclusion body formation.
(12) The method according to any one of (9) to (11) above, which is used for screening a therapeutic agent for liver disease.
(13) The step of measuring the amount of binding comprises
i) Keap1 interaction region of p62, or ii) amino acid sequence from position 345 to position 359 in the amino acid sequence of mouse p62 (SEQ ID NO: 3): SKEVDPSTGELQSLQ (SEQ ID NO: 5)
The method according to any one of the above (9) to (12), which comprises measuring the amount of Keap1 bound to.
(14) The above substance is specific to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3). The method according to any one of (9) to (13), wherein the binding is performed.
The present invention provides a method for controlling the interaction between p62 and Keap1 that controls the formation of ubiquitin positive inclusion bodies.
It is known that deletion of autophagy causes accumulation and insolubilization of intracellular p62 protein, accumulation of p62-ubiquitin positive inclusion bodies, and accompanying liver damage. It is also known that this inclusion body accumulation is eliminated by deletion of p62.
The present inventors have now directly bound p62 and Keap1, and the binding site is a region consisting of amino acid residues 345 to 359 in the KIR (Keap1 Interacting Region) sequence (mouse p62 amino acid sequence (SEQ ID NO: 3)). In particular, it was found that five amino acids (349th aspartic acid, 350th proline, 352th threonine, 353rd glycine, 354th glutamic acid) are particularly important for binding.
The interaction between p62 and Keap1 leads to insolubilization of Keap1, stabilization and activation of Nrf2, a transcription factor of detoxification enzymes in hepatocytes, expression of detoxification enzymes (antioxidant proteins, etc.), intracellular inclusions Was found to induce the accumulation of liver and decrease in liver function.
Therefore, by controlling (suppressing or promoting) the interaction (or binding) between p62 and Keap1, insolubilization of Keap1, stabilization and activation of Nrf2 which is a transcription factor of detoxification enzymes in hepatocytes, detoxification enzymes It is possible to control the expression of (antioxidant proteins, etc.), accumulation of intracellular inclusions, decrease in liver function, and the like.
The present invention has an important significance in that a new role of selective autophagy has been found in a mechanism for controlling transcription of a cytoprotective enzyme gene.
Subsequently, the present invention provides a therapeutic agent for liver disease that inhibits or suppresses the interaction between p62 and Keap1.
As described above, attenuation of autophagy causes hepatocellular carcinoma and liver damage accompanied by ubiquitin / p62-positive inclusions confirmed in various diseases. Since this is eliminated by suppressing the interaction between p62 and Keap1, a substance that inhibits or suppresses the interaction between p62 and Keap1 is likely to be applicable to a therapeutic agent for liver disease and an anticancer agent.
Since the site of p62 that binds to Keap1 is different from the site that interacts with other proteins of p62, this therapeutic agent and anticancer agent are unlikely to cause autophagy abnormalities. The interaction between Keap1 and p62 leads to stabilization and activation of Nrf2. However, since the Nrf2 activation system associated with the binding of p62-Keap1 is considered to hardly function outside the liver, the interaction between p62 and Keap1 Anticancer agents that inhibit or suppress the action are considered to have few side effects.
Furthermore, this invention provides the therapeutic agent and anticancer agent of a liver disease which inhibit or suppress the interaction of Keap1 and p62 by suppressing the quantity of p62 in a cell.
As described above, attenuation of autophagy promotes the accumulation of p62 and causes liver diseases such as hepatocellular carcinoma. This lesion is greatly improved by deleting p62. P62 binds to LC3 and is decomposed by autophagy. A ubiquitin positive inclusion body is formed only by introducing into a cell a mutant that cannot bind p62 and LC3. From these things, the substance which suppresses the expression itself of p62, and the substance which can induce | guide | derive p62 to active decomposition | disassembly are highly likely to be applicable to the therapeutic agent of a liver disease.
 本発明は、新規な作用機序に基づく肝疾患治療薬および抗がん剤、診断薬またはそのスクリーニング方法などに応用できる。本発明の肝疾患治療剤は、副作用が少ないという利点を有する。 The present invention can be applied to liver disease therapeutic agents and anticancer agents, diagnostic agents or screening methods thereof based on a novel mechanism of action. The therapeutic agent for liver disease of the present invention has an advantage that there are few side effects.
Keap1の欠失変異構築物(左パネル)の模式図とそれに対応する免疫沈降アッセイ(右パネル)の結果を示す図である。It is a figure which shows the result of the immunoprecipitation assay (right panel) corresponding to the schematic diagram of the deletion mutant construct (left panel) of Keap1. (a)p62の欠失変異構築物(左パネル)とそれに対応するインプット(右上パネル)およびプルダウンアッセイ(右下パネル)を示す図である。(b)種々の種におけるp62のホモログのKeap1−interacting regions(KIR;赤線部)およびLC3認識配列(LRS;緑線部)のアラインメントを示す。黒およびグレーを付した部分は、それぞれ、完全保存および部分的保存の同一のアミノ酸残基を示す。(A) p62 deletion mutant construct (left panel) and corresponding input (upper right panel) and pull-down assay (lower right panel). (B) Alignment of Keap1-interacting regions (KIR; red line part) and LC3 recognition sequence (LRS; green line part) of the homologue of p62 in various species. Parts marked with black and gray indicate identical amino acid residues in full and partial conservation, respectively. p62の点変異構築物のリストおよびそれに対応するプルダウンアッセイを示す図である。GST−Keap1−DC、MBP−p62M80およびその点変異、ならびにMBP−p62M83が示されている。FIG. 6 shows a list of p62 point mutation constructs and the corresponding pull-down assay. GST-Keap1-DC, MBP-p62M80 and its point mutations, and MBP-p62M83 are shown. 免疫沈降アッセイの結果を示す図である。各FLAGタグを付けたKeap1およびリストされている点変異をHek293T細胞において発現した。細胞溶解物を抗FLAG抗体により免疫沈降し、得られた免疫沈降物をSDS−PAGEに供し、抗FLAG抗体および抗p62抗体で免疫ブロットにより分析した。FLAG−Keap1、内因性のp62、Nrf2、およびアクチンが示されている。3つの独立した実験からの結果を示す。It is a figure which shows the result of an immunoprecipitation assay. Each FLAG-tagged Keap1 and the listed point mutations were expressed in Hek293T cells. Cell lysates were immunoprecipitated with anti-FLAG antibody, and the resulting immunoprecipitates were subjected to SDS-PAGE and analyzed by immunoblotting with anti-FLAG antibody and anti-p62 antibody. FLAG-Keap1, endogenous p62, Nrf2, and actin are shown. Results from three independent experiments are shown. 免疫沈降アッセイの結果を示す図である。FLAGタグの付いたp62およびKeap1との相互作用ができない変異体(p62 T352A)を、アデノウイルスシステムを用いて野生型初代マウス肝細胞において過剰発現させた。感染の48時間後に、細胞を10μMラクタシスチンの非存在下(レーン1,3,および5)または存在下(レーン2,4,および6)で4時間培養した。細胞溶解物を、抗Nrf2抗体で免疫沈降した後、SDS−PAGEに供し、抗Nrf2抗体および抗ユビキチン抗体で免疫沈降することにより分析した。Nrf2、ユビキチン化Nrf2、FLAG−p62、内因性p62、およびアクチンに対応するバンドが示されている。3つの独立した実験からの結果を示す。It is a figure which shows the result of an immunoprecipitation assay. A mutant (p62 T352A) that cannot interact with FLAG-tagged p62 and Keap1 was overexpressed in wild-type primary mouse hepatocytes using the adenovirus system. 48 hours after infection, cells were cultured for 4 hours in the absence ( lanes 1, 3, and 5) or presence ( lanes 2, 4, and 6) of 10 μM lactacystin. Cell lysates were analyzed by immunoprecipitation with anti-Nrf2 antibody, followed by SDS-PAGE and immunoprecipitation with anti-Nrf2 antibody and anti-ubiquitin antibody. Bands corresponding to Nrf2, ubiquitinated Nrf2, FLAG-p62, endogenous p62, and actin are shown. Results from three independent experiments are shown. Keap1に対するp62の競合的活性をルシフェラーゼアッセイによって測定した結果を示す図である。Nrf2、Keap1、およびp62野生型またはその変異体についての発現プラスミドを、pNqo1−AREレポータープラスミドおよび内部コントロールとしてのpRL−TKっともにHepa1細胞へトランスフェクトした。トランスフェクションの36時間後に、製造業者の指示書に従ってルシフェラーゼ活性を測定した。アッセイは3連で2回行った。It is a figure which shows the result of having measured the competitive activity of p62 with respect to Keap1 by the luciferase assay. Expression plasmids for Nrf2, Keap1, and p62 wild type or mutants thereof were transfected into Hepa1 cells together with the pNqol-ARE reporter plasmid and pRL-TK as an internal control. Luciferase activity was measured 36 hours after transfection according to the manufacturer's instructions. The assay was performed twice in triplicate. (a)Atg7欠損肝細胞におけるKeap1の不溶化を示す図である。(b)Atg7欠損(F/F:Mx1)およびAtg7/p62欠損(F/F:Mx1:p62−/−)肝臓の免疫ブロット分析の結果を示す図である。(A) It is a figure which shows insolubilization of Keap1 in an Atg7 deficient hepatocyte. (B) It is a figure which shows the result of the immunoblot analysis of an Atg7 defect | deletion (F / F: Mx1) and an Atg7 / p62 defect | deletion (F / F: Mx1: p62 <-/-> ) liver. マウス肝臓におけるNqo1およびGstm1の定量的リアルタイムPCR分析の結果を示す図である。It is a figure which shows the result of the quantitative real-time PCR analysis of Nqo1 and Gstm1 in a mouse liver. p62およびKeap1の細胞内局在の免疫蛍光分析の結果を示す図である。pIpC注入後28日での図に示された遺伝子型のマウス由来の肝臓切片を抗p62抗体(上段パネル)および抗Keap1抗体(中段パネル)で免疫染色した。下段パネルはKeap1(グリーン)およびp62(レッド)の画像を重ね合わせたものである。Atg7欠損肝臓のパネルの中の各差し込み図は、四角で囲んだ領域の拡大図である。バーは20μmである。It is a figure which shows the result of the immunofluorescence analysis of the intracellular localization of p62 and Keap1. Liver sections from mice of the genotype shown in the figure 28 days after pIpC injection were immunostained with anti-p62 antibody (upper panel) and anti-Keap1 antibody (middle panel). The lower panel is an overlay of Keap1 (green) and p62 (red) images. Each inset in the panel of Atg7 deficient liver is an enlarged view of the area enclosed by a square. The bar is 20 μm. Atg7欠損(F/F:Mx1)およびAtg7/Nrf2欠損(F/F:Mx1:Nrf2−/−)肝臓の免疫ブロッティングの結果を示す図である。It is a figure which shows the result of the immunoblotting of an Atg7 deficiency (F / F: Mx1) and an Atg7 / Nrf2 deficiency (F / F: Mx1: Nrf2 − / − ) liver. p62およびKeap1の細胞内局在の免疫蛍光分析の結果を示す図である。It is a figure which shows the result of the immunofluorescence analysis of the intracellular localization of p62 and Keap1. マウス肝臓中のNqo1、Gstm1、およびCy2a5の定量的リアルタイムPCR分析の結果を示す図である。トータルRNAを、pIpC注入後28日目に図に示された遺伝子型の肝臓から調製した。値は、Atg7F/F肝臓におけるmRNA量に対して正規化したものである。実験は3回行った。パネル(d)−(h):Atg7F/F(コントロール)(パネル(d))およびAtg7/Nrf2欠損(Atg7−/Nrf2−)(パネル(e)−(h))肝臓の電子顕微鏡写真である。パネル(e)および(g)中の四角で囲んだ領域は拡大され、それぞれパネル(f)および(h)として示されている。コントロールの肝臓で容易に検出されるグリコーゲン領域(アスタリスク)は、大量の平滑ERで占められ、多数のペルオキシソーム(そのいくつかはパネル(f)およびパネル(g)中、矢印で示されている)が周囲領域に蓄積していることに注意。パネル(g)および(h)はAtg7/Nrf2欠損肝臓において観察される典型的な封入体を示す。バー:(d)および(e),5μm;(f)および(g),1μm;(h),0.2μm。It is a figure which shows the result of the quantitative real-time PCR analysis of Nqo1, Gstm1, and Cy2a5 in a mouse liver. Total RNA was prepared from the liver of the genotype shown in the figure on day 28 after pIpC injection. Values are normalized to the amount of mRNA in Atg7 F / F liver. The experiment was performed three times. Panel (d)-(h): Atg7 F / F (control) (panel (d)) and Atg7 / Nrf2-deficient (Atg7- / Nrf2-) (panel (e)-(h)) is there. The squared regions in panels (e) and (g) are enlarged and shown as panels (f) and (h), respectively. The glycogen region (asterisk) that is easily detected in the control liver is occupied by a large amount of smooth ER and a large number of peroxisomes, some of which are indicated by arrows in panels (f) and (g) Note that is accumulated in the surrounding area. Panels (g) and (h) show typical inclusion bodies observed in Atg7 / Nrf2-deficient liver. Bars: (d) and (e), 5 μm; (f) and (g), 1 μm; (h), 0.2 μm. (a)pIpC注入後28日目における異なる遺伝子型のマウス肝臓の重量の測定結果を表す図である。データは、各グループについて5匹のマウスの平均値±SDを表す。***P<0.001(Student’s Tテスト)。(b)図に示された遺伝子型のマウスの典型的な肝組織学を示す。pIpC注入後28日目の肝臓を、H&E染色で処理した。高次の拡大写真は、下側のパネルに示されている。CVは中心静脈、Pは門脈である。バー:100μm。(A) It is a figure showing the measurement result of the weight of the mouse liver of a different genotype in the 28th day after pIpC injection | pouring. Data represent the mean ± SD of 5 mice for each group. *** P <0.001 (Student's T test). (B) shows typical liver histology of mice of the genotype shown in the figure. The liver on day 28 after pIpC injection was treated with H & E staining. Higher-order magnified pictures are shown in the lower panel. CV is the central vein and P is the portal vein. Bar: 100 μm. 図13で使用したマウスの肝機能テストの結果を示す図である。It is a figure which shows the result of the liver function test of the mouse | mouth used in FIG. ヒト肝細胞癌の二重免疫蛍光顕微鏡画像を示す図である。典型的な封入体を含有する肝細胞癌の3つの症例(組織学的段階を示した)について、抗Keap1抗体および抗p62抗体で免疫染色した。Keap1(グリーン)およびp62(レッド)の画像を重ね合わせたものを右側のパネルに示した。バーは10μmである。It is a figure which shows the double immunofluorescence microscope image of human hepatocellular carcinoma. Three cases of hepatocellular carcinoma containing typical inclusion bodies (indicating histological stage) were immunostained with anti-Kap1 and anti-p62 antibodies. An overlay of Keap1 (green) and p62 (red) images is shown in the right panel. The bar is 10 μm. Nrf2の標的プロモーターであるAREにLuciferase遺伝子を繋げたプラスミドを安定に保持する細胞株にアデノウイルス感染系を用いてp62−WT、p62−T352A(Keap1と結合できない変異体)、Keap1、GFP(コントロール)を過剰発現させて、ルシフェラーゼ活性を測定したアッセイの結果を示す図である。A cell line that stably holds a Luciferase gene linked to ARE, which is the target promoter of Nrf2, is p62-WT, p62-T352A (mutant that cannot bind to Keap1), Keap1, GFP (control) using an adenovirus infection system. ) Is overexpressed and the results of an assay in which luciferase activity was measured are shown. オートファジー欠損マウスの長期飼育により形成された腫瘍におけるKeap1の不溶化およびNrf2の活性化は、p62依存的であることを示す図である。(A)はApg7f/fマウス(コントロール)およびApg7f/f;Alb−Creマウス(肝特異的オートファジー欠損マウス)の各月齢における肝臓の写真を示す。(B)は各12月齢マウスの肝臓から調節した抽出液の免疫ブロッティングの結果を示す図である。(C)は各12月齢マウスの肝臓から調整したRNAを用いた定量的PCRの結果を示す図である。It is a figure which shows that the insolubilization of Keap1 and the activation of Nrf2 in the tumor formed by the long-term breeding of the autophagy-deficient mouse are p62 dependent. (A) shows photographs of livers at each age of Apg7 f / f mice (control) and Apg7 f / f; Alb-Cre mice (liver-specific autophagy-deficient mice). (B) is a figure which shows the result of the immunoblotting of the extract adjusted from the liver of each 12-month-old mouse | mouth. (C) is a figure which shows the result of quantitative PCR using RNA adjusted from the liver of each 12-month-old mouse | mouth.
1.p62とKeap1との相互作用を阻害または抑制する物質
 本発明は、1つの実施形態において、p62とKeap1との相互作用を阻害または抑制する物質(agent)を提供する。p62とKeap1との相互作用を阻害又は抑制する物質は、肝疾患治療薬および抗がん剤として適用できる可能性がある。
 「p62とKeap1との相互作用を阻害又は抑制する物質」としては、
 例えば
 (1)p62の立体構造中の、Keap1との結合部位に対して特異的に結合する物質、
 (2)p62の立体構造中の、Keap1との結合部位の近傍に結合することにより、前記相互作用を阻害または抑制する物質、
 (3)p62と結合して、p62の立体構造を変化させる物質、
 (4)p62の発現を阻害することにより、相互作用を阻害又は抑制する物質、
 (5)p62をオートファジーで分解することにより、相互作用を阻害又は抑制する物質、等が含まれる。
 典型的には、「p62とKeap1との相互作用を阻害又は抑制する物質」としては、
 i)p62に特異的に結合する分子、または
 ii)p62の発現阻害物質
が含まれる。
 「p62」は、ユビキチン結合タンパク質として知られている。p62のアミノ酸配列またはそれをコードするヌクレオチド配列の情報は、一般に利用可能な配列データベースから入手することができる。それらのデータベースのアクセッション番号のいくつかをここに記載する。[データベース名称:アクセッション番号(種名)]:NCBI:NP_003891.1(ヒト)、NCBI:NM_003900.4(ヒト)、NCBI:NP_035148.1(マウス)、NCBI:NM_011018.2(マウス)Swiss−Prot:008623.1(ラット)、NCBI:NP_787037.2(ラット)、NCBI:NM_175843.3(ラット)、Swiss−Prot:Q5RBA5.1(オランウータン)。本明細書中で「p62」という場合、ヒトp62に限定されず、p62の他の種(例えば、他の哺乳動物種(例えば、サル、ウシ、ブタ、マウス、ラットなど)、は虫類、両生類、魚類など。)のホモログも含まれるものとする。そのようなホモログのアミノ酸配列は、例えば、ヒトp62のアミノ酸配列(配列番号1)もしくはマウスp62のアミノ酸配列(配列番号3)に対して、例えば、80%以上、85%以上、90%以上、もしくは95%以上の配列同一性を有するアミノ酸配列、またはヒトp62のアミノ酸配列(配列番号1)もしくはマウスp62のアミノ酸配列(配列番号3)において1~数個(例:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、もしくはそれ以上)のアミノ酸残基の欠失、置換、挿入、もしくは付加を有するアミノ酸配列からなる。
 「Keap1(Kelch−like ECH−associated protein 1)」は、NF−E2関連因子2(NF−E2−related factor 2(Nrf2))とレドックス感受性な様式で相互作用し、細胞質でこのタンパク質が乖離するとNrf2は核へ移行することが知られている。この相互作用は、γグルタミルシステインシンセターゼの触媒サブユニットの発現を制御することが知られている。Keap1のアミノ酸配列またはそれをコードするヌクレオチド配列の情報は、一般に利用可能な配列データベースから入手することができる。それらのデータベースにおけるアクセッション番号のいくつかをここに記載する。[データベース名称:アクセッション番号(種名)]:Swiss−Prot:Q14145.2(ヒト)、Swiss−Prot:Q9Z2X8.1(マウス)、GenBank:BAA34639.1(マウス)、GenBank:AB020063.1(マウス)、Swiss−Prot:Q684M4.1(ブタ)。本明細書中で「Keap1」という場合、ヒトKeap1に限定されず、keap1の他の種(例えば、他の哺乳動物種(例:サル、ウシ、ブタ、マウス、ラットなど)、は虫類、両生類、魚類など。)のホモログも含まれるものとする。そのようなホモログのアミノ酸配列は、例えば、ヒトKeap1のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、もしくは95%以上の配列同一性を有するアミノ酸配列、またはヒトKeap1のアミノ酸配列において1~数個(例:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、もしくはそれ以上)のアミノ酸残基の欠失、置換、挿入、もしくは付加を有するアミノ酸配列からなる。
 本明細書中、「p62に特異的に結合する」分子とは、その分子が他のアミノ酸配列に対するその親和性よりも、p62またはその断片の特定のアミノ酸配列に対して実質的に高い親和性で結合することを意味する。ここで、「実質的に高い親和性」とは、所望の測定装置によって、その特定のアミノ酸配列を他のアミノ酸配列から区別して検出することが可能な程度に高い親和性を意味し、典型的には、結合定数(K)が少なくとも10−1、好ましくは、少なくとも10−1、より好ましくは、10−1、さらにより好ましくは、1010−1、1011−1、1012−1またはそれより高い、例えば、最高で1013−1またはそれより高いものであるような結合親和性を意味する。
 「p62に特異的に結合する分子」の例には、下記のi)およびii)が含まれる。
 i)p62のKeap1相互作用領域(Keap1 Interacting Region)〔SKEVDPSTGELQSLQ(配列番号:5)、配列番号5のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、もしくは95%以上の配列同一性を有するアミノ酸配列、または配列番号5のアミノ酸配列中に1~数個(例:1、2、3個、もしくはそれ以上)のアミノ酸残基の欠失、置換、挿入、もしくは付加を有するアミノ酸配列〕に特異的に結合する物質、
 ii)マウスp62のアミノ酸配列(配列番号:3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、もしくは354位のグルタミン酸に特異的に結合する物質。
 本明細書中、「Keap1相互作用領域(Keap1 Interacting Region:KIP)」とは、マウスp62のアミノ酸配列中の345位~359位のアミノ酸残基からなる部分アミノ酸配列の領域、またはマウス以外の哺乳動物種(例:ヒト、サル、ウシ、ラット等)もしくはその他の種(例:は虫類、両生類、魚類等)のp62のアミノ酸配列中の上記部分アミノ酸配列の領域に対応する高度に保存されたアミノ酸配列の領域であって、Keap1と特異的に結合するp62上の領域を指すものとする(図2bを参照)。
 p62はKeap1と相互作用し、p62の過剰状態の際は、Keap1と結合したp62が増加し、p62−Keap1複合体は不溶化状態となっている。Keap1は通常p62と同じ領域でNrf2と結合しており、Nrf2をユビキチン−プロテアソーム分解経路へと誘導する。しかしp62が高発現すると、p62とKeap1が結合・不溶化することでフリーのNrf2量が増大する。蓄積したNrf2は核内に移行し、下流因子の発現が誘導され、p62・ユビキチン陽性封入体が形成される。過剰な封入体形成は肝細胞がん、肝障害などの肝疾患を引き起こす。
 したがって、上記阻害または抑制剤は、典型的には、i)ユビキチン陽性封入体形成の阻害又は抑制剤、ii)肝疾患の治療剤、またはiii)抗がん剤として使用され得る。
 細胞内のp62の量は、LC3との相互作用に対してオートファジーで規定されているので,この結合を増強させる物質の投与は細胞内でのp62の量を減少させ、肝細胞がんや肝障害を抑える。
 したがって、本発明のさらなる実施形態では、上記「p62に特異的に結合する分子」がLC3である。
 また、さらに別の実施形態では、上記「p62に特異的に結合する分子」は、p62に特異的に結合する抗体(抗p62抗体)である。
 本明細書中、「p62の発現阻害物質」とは、p62遺伝子のmRNAへの転写および/またはp62遺伝子(mRNA)のタンパク質への翻訳を阻害する物質のことを指す。
 「p62の発現阻害物質」の例には、下記のiii)およびiv)が含まれる。
 iii)前記p62の発現阻害物質が、p62をコードするヌクレオチド配列に対するアンチセンス核酸もしくはsiRNA、
 iv)p62遺伝子の転写産物(mRNA)を特異的に切断するリボザイム活性を有する核酸。
 本明細書中、「核酸」とはRNAまたはDNAを意味する。ここでいう「核酸」は、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいてもよい。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであって良い。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた、糖部分が修飾されていて良く、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されているか、あるいはエーテル、アミンなどの官能基に変換されていてよい。
 本発明の肝疾患の治療剤またはがん治療剤においては、p62遺伝子の発現をRNAi効果により阻害する作用を有する核酸を有効成分として用いることができる。RNAiとは、標的遺伝子配列と同一もしくは類似した配列を有する二重鎖RNAを細胞内に導入すると、導入した外来遺伝子および標的内在性遺伝子の発現がいずれも阻害される現象のことをいう。ここで用いられるRNAとしては、例えば、19~30塩基長のRNA干渉を生ずる二重鎖RNA、例えば、dsRNA(double strand RNA)、siRNA(small interfering RNA)又はshRNA(short hairpin RNA)が挙げられる。このようなRNAは、リポソームなどの送達システムにより所望の部位に局所送達させることも可能であり、また上記二重鎖RNAが生成されるようなベクターを用いてこれを局所発現させることができる。このような二重鎖RNA(dsRNA、siRNAまたはshRNA)の調製方法、使用方法などは、多くの文献から公知である(特表2002−516062号;米国公開許第2002/086356A号;Nature Genetics,24(2),Feb.,180−183;Genesis,26(4),April,240−244;Nature,Spe.21,407:6802,319−20;Genes & Dev.,Vol.16,(8),Apr.16,948−958;Proc.Natl.Acad.Sci.USA.,99(8),16 Apr.,5515−5520;Science,296(5567),19 Apr.,550−553;Proc Natl.Acad.Sci.USA,Apr.30,99:9,6047−6052;Nature Biotechnology,Vol.20(5),May,497−500;Nature Biotechnology,Vol.20(5),May,500−508;Nucleic Acids Res.,May 15など)。
 本発明で用いられるRNAi効果を奏する二重鎖RNAの長さは、通常、19~30塩基、好ましくは20~27塩基、より好ましくは21~25塩基、最も好ましくは21~23塩基である。
 本明細書中、「アンチセンス核酸」、または「アンチセンスポリヌクレオチド」とは、ある対象となるDNA領域の少なくとも一部に相補的なポリヌクレオチドを有し、そのポリヌクレオチドが当該領域の少なくとも一部とハイブリダイズすることができる核酸のことをいう。本発明のアンチセンス核酸またはアンチセンスポリヌクレオチドは、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。それらは二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、さらにDNA:RNAハイブリッドであってもよい。修飾された核酸の具体例としては、核酸の硫黄誘導体やチオホスフェート誘導体、さらにはポリヌクレオチドアミドやオリゴヌクレオチドアミドの分解に抵抗性を有するものなどが挙げられるが、それらに限定されるものではない。
 使用されるアンチセンス核酸は、適当なプロモーターの下流に連結され、好ましくは3’側に転写終結シグナルを含む配列が連結される。このようにして調製された核酸は、公知の方法を用いることで、所望の動物へ形質転換できる。アンチセンス核酸の配列は、形質転換される動物が持つ内在性遺伝子またはその一部と相補的な配列であることが好ましいが、遺伝子の発現を有効に抑制できる限りにおいて、完全に相補的でなくてもよい。
 遺伝子の翻訳阻害に効果的なアンチセンス核酸は、標的遺伝子の転写産物に対して約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相補性を有する。
 アンチセンス核酸を用いて標的遺伝子の発現を効果的に抑制するには、アンチセンス核酸の長さは少なくとも約10塩基以上(例えば、10~40個程度)、好ましくは約15塩基以上であり、より好ましくは約100塩基以上であり、さらに好ましくは約500塩基以上である。アンチセンス核酸は公知の文献を参照して設計することができる(例えば、平島および井上、新生化学実験講座2核酸IV遺伝子の複製と発現、日本生化学会編、東京化学同人、1993、p.319−347)、J.Kawakami et al.,Pharm Tech Japan.Vol.8,p.247,1992;Vol.8,p.395,1992;S.T.Crooke et al.,ed.,Antisense Research and Applications,CRC Press,1993など参照)。
 本明細書中、「リボザイム活性」とは、ターゲットとする遺伝子の転写産物であるmRNAを部位特異的に切断する核酸のことをいう。リボザイムには、グループIイントロン型やRNasePに含まれるM1 RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(タンパク質核酸酵素、1990、35、p.2191)。ハンマーヘッド型リボザイムについては、例えば、FEBS Lett,1988,228,p.228;FEBS Lett,1988,239,p.285;タンパク質核酸酵素,1990,35,p.2191;Nucl Acids Res,1989,17,p.7059などを参照することができる。また、ヘアピン型リボザイムについては、例えば、Nature,1986,323,p.349;Nucl Acids Res,1991,19,.6751;菊池洋,化学と生物,1992,30,p.112などを参照することができる。このようなリボザイムを用いてp62遺伝子の転写産物を特異的に切断することで、該遺伝子の発現を阻害することができる。
 これらの物質によりp62の発現が抑制された場合、Keap1とNrf2の結合が回復し、Nrf2が不活性化することで、肝細胞がんや肝障害を抑えることができる。
 したがって、本発明のさらなる実施形態では、p62とKeap1との相互作用を阻害または抑制する物質を、それを必要とする患者に投与する工程を包含する、肝疾患および/またはがんの治療方法が提供される。
2.p62とKeap1との相互作用を阻害または抑制する物質を含有する剤
 本発明のさらなる(further)実施形態では、Keap1とp62との結合の阻害または抑制剤が提供される。この剤(composition)は、典型的には、上記のp62とKeap1との相互作用を阻害又は抑制する物質を含有する。具体的には、この剤は、
 i)p62に特異的に結合する分子、または
 ii)p62の発現阻害物質
を含有する。
 本発明の上記剤は、肝疾患またはがんの治療用製剤として使用され得る。このような製剤(pharmaceutical composition)は、上記のp62とKeap1との相互作用を阻害又は抑制する物質を、慣用されている製剤担体とを混合することにより製造することができる。
 製剤担体は、投与形態に応じて、適宜、組み合わせて用いればよく、例えば、乳糖等の賦形剤;ステアリン酸マグネシウム等の滑沢剤;カルボキシメチルセルロース等の崩壊剤;ヒドロキシプロピルメチルセルロース等の結合剤;マクロゴール等の界面活性剤;炭酸水素ナトリウム等の発泡剤;シクロデキストリン等の溶解補助剤;クエン酸等の酸味剤;エデト酸ナトリウム等の安定化剤;リン酸塩等のpH調整剤などが挙げられる。
 それを必要とする患者に投与する際には、経口投与のための内服用固形剤、内服用液剤および、非経口投与のための注射剤、外用剤、坐剤、点眼剤、吸入剤等として用いることもできる。
 経口投与のための内服用固形剤には、錠剤、丸剤、カプセル剤、散剤、顆粒剤等が含まれる。カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。また錠剤には舌下錠、口腔内貼付錠、口腔内速崩壊錠などが含まれる。
 このような内服用固形剤においては、ひとつまたはそれ以上の活性物質はそのままか、または賦形剤(ラクトース、マンニトール、グルコース、微結晶セルロース、デンプン等)、結合剤(ヒドロキシプロピルセルロース、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等)、崩壊剤(繊維素グリコール酸カルシウム等)、滑沢剤(ステアリン酸マグネシウム等)、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸等)等と混合され、常法に従って製剤化して用いられる。また、必要によりコーティング剤(白糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)で被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカプセルも包含される。
 経口投与のための内服用液剤は、薬剤的に許容される水剤、懸濁剤・乳剤、シロップ剤、エリキシル剤等を含む。このような液剤においては、ひとつまたはそれ以上の活性物質が、一般的に用いられる希釈剤(精製水、エタノールまたはそれらの混液等)に溶解、懸濁または乳化される。さらにこの液剤は、湿潤剤、懸濁化剤、乳化剤、甘味剤、風味剤、芳香剤、保存剤、緩衝剤等を含有していてもよい。
 非経口投与のための外用剤の剤形には、例えば、軟膏剤、ゲル剤、クリーム剤、湿布剤、貼付剤、リニメント剤、噴霧剤、吸入剤、スプレー剤、点眼剤、および点鼻剤等が含まれる。これらはひとつまたはそれ以上の活性物質を含み、公知の方法または通常使用されている処方により製造、調製される。
 非経口投与のための注射剤としては、溶液、懸濁液、乳濁液および用時溶剤に溶解または懸濁して用いる固形の注射剤を包含する。注射剤は、ひとつまたはそれ以上の活性物質を溶剤に溶解、懸濁または乳化させて用いられる。溶剤として、例えば注射用蒸留水、生理食塩水、植物油、プロピレングリコール、ポリエチレングリコール、エタノールのようなアルコール類等およびそれらの組み合わせが用いられる。さらにこの注射剤は、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸、ポリソルベート80(登録商標)等)、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤等を含んでいてもよい。これらは最終工程において滅菌するか無菌操作法によって製造、調製される。また無菌の固形剤、例えば凍結乾燥品を製造し、その使用前に無菌化または無菌の注射用蒸留水または他の溶剤に溶解して使用することもできる。
3.本発明のスクリーニング方法
 本発明は、さらに別の実施形態において、Keap1とp62との相互作用を阻害または抑制する物質(agent)のスクリーニング方法を提供する。この方法は、典型的には、
 i)試験物質の存在下および非存在下でKeap1とp62との結合量を測定する工程、および
 ii)前記試験物質の存在下と非存在下との間でKeap1とp62との前記結合量を比較し、前記試験物質の存在下での前記結合量が前記試験物質の非存在下での前記結合量よりも低い場合に、当該試験物質をKeap1とp62との相互作用を阻害または抑制する物質として選択する工程、を包含する。
 p62とKeap1の相互作用を阻害又は抑制する物質は、肝疾患治療薬および抗がん剤に適用し得る。p62とKeap1のタンパク質間相互作用を阻害又は抑制する物質を探索することにより、肝疾患の治療のための新規薬剤をスクリーニングすることができる。
 相互作用の検出は、プルダウン法(例:図3)、質量分析計を用いた方法、タンパク質間相互作用を蛍光シグナルとして検出する方法、蛍光標識を用いたイメージング等の方法により行うことができる。
 本発明のスクリーニング方法のより具体的な実施形態では、「試験物質の存在下および非存在下でKeap1とp62との結合量を測定する工程」が、p62のKIR配列(例:SKEVDPSTGELQSLQ(配列番号:5)、配列番号5のアミノ酸配列に対して、例えば、80%以上、85%以上、90%以上、もしくは95%以上の配列同一性を有するアミノ酸配列、または配列番号5のアミノ酸配列中に1~数個(例:1、2、3個、もしくはそれ以上)のアミノ酸残基の欠失、置換、挿入、もしくは付加を有するアミノ酸配列)に対するKeap1の結合量を測定することを含む。
 本発明のスクリーニング方法のより具体的な実施形態では、「Keap1とp62との相互作用を阻害または抑制する物質」が、マウスp62のアミノ酸配列(配列番号:3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、または354位のグルタミン酸に特異的に結合する。
 本発明のスクリーニング方法のより具体的な実施形態では、さらに、
 iii)Keap1とp62との相互作用を阻害または抑制する物質を肝疾患モデル動物に投与して、Nrf2の活性を測定する工程、および
 iv)Nrf2の活性が減少した場合に、上記物質を肝疾患の治療剤候補として選択する工程
を包含する。
 このような本発明のスクリーニング方法により得られる物質の例としては、LC3、抗p62抗体などが挙げられるが、これらに限定されず、低分子化合物(天然または合成)、タンパク質またはペプチド、多糖、脂質、核酸などが含まれ得る。
 p62とKeap1の相互作用を阻害又は抑制する物質、あるいは細胞内のp62の量を減少させる物質は肝疾患治療薬および抗がん剤に適用し得る。これらの物質はKeap1と結合するp62の量を低下させ、Keap1とNrf2との結合を増大させることでNrf2を不活性化(分解)させる。p62とKeap1の相互作用を阻害又は抑制する物質、あるいは細胞内のp62の量を減少させる物質を肝疾患モデル動物(例:マウス)に投与して、Nrf2の活性を測定することで、新規薬剤を見出し得る。
 Keap1とp62との相互作用の検出は、培養細胞(Huh−1,JHH5,Hepa−1,HEK293Tなど)へNrf2転写活性レポーターARE(antioxidant−responsive element)をルシフェラーゼ遺伝子につなげたプラスミドを一過的に導入した、あるいは安定に保持する細胞株を用いたルシフェラーゼアッセイ(図6および図16を参照)によって、Nrf2転写活性レポーターとβ−ラクタマーゼ遺伝子を繋げたARE−blaを組み込んだ培養細胞によるβ−ラクタマーゼと蛍光共鳴エネルギー転移(FRET)を用いたNrf2転写活性レポーターアッセイによって、p62を過剰発現させた肝細胞を用いて、Nrf2の下流因子の発現をreal time PCRによって、免疫ブロット(Immunoblot(以下I.B.))によって、またはRT−PCR等によって確認することができる。
 本発明のスクリーニング方法のより具体的な実施形態では、試験物質の存在下および非存在下でKeap1とp62との結合量の測定は、プルダウン法、質量分析法、タンパク質間相互作用を蛍光シグナルとして検出する方法、または蛍光標識を用いたイメージングのいずれかを用いて行われる。
 p62とKeap1の相互作用を阻害又は抑制する物質、あるいは細胞内のp62の量を減少させる物質は肝疾患治療薬および抗がん剤に適用できる可能性がある。これらの物質は、マウスのオートファジーを欠失させた肝臓における細胞内のユビキチン陽性封入体の量を減少させる。Keap1の相互作用を阻害又は抑制する物質、あるいは細胞内のp62の量を減少させる物質をマウスに投与して、ユビキチン陽性封入体の量、Nrf2の活性、肝障害のレベルを測定することで新規薬剤候補をスクリーニングすることができる。
 ユビキチン陽性封入体の検出は、マウス肝臓組織の免疫染色を行うことができる(図9)。
 Nrf2の活性測定は、Nrf2の下流因子である解毒酵素遺伝子群の発現をreal time PCRにより確認することができる(図8)。
 肝障害のレベル測定は、肝臓の重量測定(図13a),肝臓組織のHE染色による肝細胞肥大と小葉構造の崩壊検出(図13b),肝機能テスト(AST,ALT,ALP)(図14)によって行うことができる。
 本発明のスクリーニング方法により得られた物質は、i)ユビキチン陽性封入体形成の阻害又は抑制剤、ii)肝疾患の治療剤、またはiii)抗がん剤として使用され得る。
4.肝疾患の診断方法、診断剤、及び診断用キット
 本発明は、さらなる実施形態において、肝疾患の診断方法を提供する。特に、上記の本発明の肝疾患の治療剤の適用患者を判定または診断する方法を提供する。この方法は、典型的には、
 i)被験者の肝生検によるp62もしくはNrf2の発現量を測定する工程、または
 ii)被験者の肝生検によるNrf2の活性を測定する工程、
を含む。
 肝疾患の被験者の肝生検によるp62の発現量が正常者と比較して過剰であることが判明すれば、該被験者の肝疾患がp62の過剰発現に起因している可能性が高い。そのような場合、上記の本発明の肝疾患の治療剤を、p62とKeap1との相互作用を阻害もしくは抑制し、またはp62の発現を阻害するために該疾患の治療を必要とする患者に適用することで有利な効果が得られると考えられる。したがって、このような治療の適用患者を判定または診断することは有用である。
 また、肝疾患の被験者の肝生検によるNrf2の活性が正常者と比較して高いことが判明すれば、該被験者の肝疾患がNrf2の異常活性化に起因している可能性が高い。そのような場合、上記の本発明の肝疾患の治療剤を該疾患の治療を必要とする患者に適用すれば、p62とKeap1との相互作用を阻害もしくは抑制し、またはp62の発現を阻害することによって、Nrf2とKeap1との相互作用と競合するp62の量を減少させることができるため、遊離のNrf2の量が減少し、Nrf2の活性化が抑制される。そのため、本発明の肝疾患の治療剤を該疾患の治療を必要とする患者に適用することで有利な効果が得られると考えられる。したがって、このような治療の適用患者を判定または診断することは有用である。
 被験者の肝生検によるp62の発現量の測定は、蛍光標識によるイメージング、免疫ブロット法、質量分析法等の当業者に周知の方法によって行うことができる。
 被験者の肝生検によるNrf2の活性の測定は、Nrf2の標的プロモーターを用いたルシフェラーゼアッセイ、免疫ブロットによる細胞核内のNrf2量測定、Nrf2によって転写誘導される酵素(Nqo1やGstmなど)の、定量的PCR、免疫ブロットや蛍光イメージングによる発現解析および酵素活性測定等の当業者に周知の方法によって行うことができる。
 本発明の肝疾患の治療剤の適用患者を判定する方法のさらなる実施形態では、Nrf2の活性測定、および/またはユビキチン陽性封入体の検出を行うことを含む。
 本発明の肝疾患の治療剤の適用患者を判定する方法のさらなる実施形態では、被験者の血液中のAST,ALT,ALP,および/またはγ−GTPの濃度を測定することを含む。なお、γ−GTP(γグルタミルトランスペプチダーゼ)は、肝臓の解毒作用に関係する酵素であり、肝臓や胆管の細胞が壊れると血液中にγ−GTPが血液の中に流れ出てくることから、「逸脱酵素」といわれ、肝臓や胆管の細胞が壊れたことの指標として一般に利用されている。
 本発明のさらなる実施形態では、本発明の診断方法に用いられる診断用キットまたは診断剤が提供される。これらの診断用キットまたは診断剤は、典型的には、抗p62抗体または抗Nrf2抗体を含む。さらに、これらの診断用キットまたは診断剤は、抗体を標識するための標識剤(例えば、蛍光標識)または蛍光標識された抗体を含んでいてもよい。診断用キットはさらに、使用説明書を含んでいてもよい。使用説明書には、キットに含まれる抗体、標識剤等の使用方法、免疫ブロッティングを含む実験の手順等が記載されていてもよい。
 なお、本明細書中に現れるアミノ酸配列またはヌクレオチド配列と配列番号との関係は以下のとおりである
[配列番号1]
 この配列は、ヒトp62のアミノ酸配列を表す。
[配列番号2]
 この配列は、ヒトp62のアミノ酸配列(配列番号1)をコードするヌクレオチド配列を表す。
[配列番号3]
 この配列は、マウスp62のアミノ酸配列を表す。
[配列番号4]
 この配列は、マウスp62のアミノ酸配列(配列番号3)をコードするヌクレオチド配列を表す。
[配列番号5]
 この配列は、マウスp62のアミノ酸配列(配列番号3)の第345位~第359位までの連続するアミノ酸残基からなる部分配列(KIR配列)を表す。
 以下、実施例を用いて本発明をより具体的に説明するが、本発明の範囲がこれらの実施例に限定されないことはいうまでもない。
1.Substances that inhibit or suppress the interaction between p62 and Keap1
In one embodiment, the present invention provides an agent that inhibits or suppresses the interaction between p62 and Keap1. A substance that inhibits or suppresses the interaction between p62 and Keap1 may be applicable as a therapeutic agent for liver disease and an anticancer agent.
“As substances that inhibit or suppress the interaction between p62 and Keap1”
For example
(1) A substance that specifically binds to a binding site with Keap1 in the three-dimensional structure of p62,
(2) a substance that inhibits or suppresses the interaction by binding in the vicinity of the binding site with Keap1 in the three-dimensional structure of p62;
(3) a substance that binds to p62 and changes the three-dimensional structure of p62,
(4) a substance that inhibits or suppresses interaction by inhibiting the expression of p62,
(5) Substances that inhibit or suppress the interaction by decomposing p62 by autophagy are included.
Typically, “a substance that inhibits or suppresses the interaction between p62 and Keap1”
I) a molecule that specifically binds to p62, or
Ii) p62 expression inhibitor
Is included.
“P62” is known as a ubiquitin-binding protein. Information on the amino acid sequence of p62 or the nucleotide sequence encoding it can be obtained from publicly available sequence databases. Some of these database accession numbers are listed here. [Database name: Accession number (species name)]: NCBI: NP_003891.1 (human), NCBI: NM_003900.4 (human), NCBI: NP_035148.1 (mouse), NCBI: NM_011018.2 (mouse) Swiss- Prot: 008623.1 (rat), NCBI: NP_78737.2 (rat), NCBI: NM_175843.3 (rat), Swiss-Prot: Q5RBA5.1 (orangutan). Reference herein to “p62” is not limited to human p62, but other species of p62 (eg, other mammalian species (eg, monkeys, cows, pigs, mice, rats, etc.), reptiles, amphibians, Homologs of fish, etc.). The amino acid sequence of such a homologue is, for example, 80% or more, 85% or more, 90% or more with respect to the amino acid sequence of human p62 (SEQ ID NO: 1) or the amino acid sequence of mouse p62 (SEQ ID NO: 3), Alternatively, one to several amino acids (for example: 2, 3, 4, 5) in the amino acid sequence having a sequence identity of 95% or more, the amino acid sequence of human p62 (SEQ ID NO: 1) or the amino acid sequence of mouse p62 (SEQ ID NO: 3) , 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) deletion, substitution, insertion, or addition of amino acid residues It consists of an amino acid sequence having
“Keap1 (Kelch-like ECH-associated protein 1)” interacts with NF-E2-related factor 2 (NF-E2-related factor 2 (Nrf2)) in a redox-sensitive manner, and when this protein diverges in the cytoplasm. Nrf2 is known to migrate to the nucleus. This interaction is known to control the expression of the catalytic subunit of γ-glutamylcysteine synthetase. Information on the amino acid sequence of Keap1 or the nucleotide sequence encoding it can be obtained from publicly available sequence databases. Some of the accession numbers in those databases are listed here. [Database name: Accession number (species name)]: Swiss-Prot: Q14145.2 (human), Swiss-Prot: Q9Z2X8.1 (mouse), GenBank: BAA46339.1 (mouse), GenBank: AB020063.1 ( Mouse), Swiss-Prot: Q684M4.1 (pig). As used herein, the term “Keap1” is not limited to human Keap1, but other species of keap1 (eg, other mammalian species (eg, monkeys, cows, pigs, mice, rats, etc.), reptiles, amphibians, Homologs of fish, etc.). The amino acid sequence of such a homologue is, for example, an amino acid sequence having a sequence identity of 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of human Keap1, or human Keap1 1 to several amino acid sequences (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, Or an amino acid sequence having deletion, substitution, insertion, or addition of amino acid residues.
As used herein, a molecule that “specifically binds to p62” means that the molecule has a substantially higher affinity for a particular amino acid sequence of p62 or a fragment thereof than its affinity for other amino acid sequences. It means to combine with. Here, “substantially high affinity” means high affinity that allows the specific amino acid sequence to be detected separately from other amino acid sequences by a desired measuring device. Includes a coupling constant (Ka) Is at least 107M-1, Preferably at least 108M-1, More preferably 109M-1, Even more preferably, 1010M-11011M-11012M-1Or higher, for example, up to 1013M-1Or means a binding affinity that is higher.
Examples of “molecules that specifically bind to p62” include the following i) and ii).
i) Keap1 interacting region of p62 (Keapl Interacting Region) [SKEVDPSTGELQSLQ (SEQ ID NO: 5), for example, 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of SEQ ID NO: 5. Deletion, substitution, insertion or addition of one to several amino acid residues (eg, 1, 2, 3 or more) in the amino acid sequence having the sequence identity of A substance that specifically binds to an amino acid sequence having
Ii) A substance that specifically binds to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3).
In this specification, “Keap1 interacting region (KIP1)” is a partial amino acid sequence region consisting of amino acid residues at positions 345 to 359 in the amino acid sequence of mouse p62, or a mammal other than mouse. Highly conserved amino acids corresponding to the above partial amino acid sequence region in the amino acid sequence of p62 of animal species (eg, human, monkey, cow, rat, etc.) or other species (eg, reptiles, amphibians, fish, etc.) It shall be the region of the sequence that refers to the region on p62 that specifically binds to Keap1 (see FIG. 2b).
P62 interacts with Keap1, and when p62 is in an excess state, p62 bound to Keap1 increases and the p62-Kap1 complex is insolubilized. Keap1 is normally bound to Nrf2 in the same region as p62, and induces Nrf2 into the ubiquitin-proteasome degradation pathway. However, when p62 is highly expressed, the amount of free Nrf2 is increased by binding and insolubilization of p62 and Keap1. The accumulated Nrf2 moves into the nucleus, the expression of downstream factors is induced, and a p62 / ubiquitin positive inclusion body is formed. Excessive inclusion body formation causes liver diseases such as hepatocellular carcinoma and liver damage.
Therefore, the inhibitor or suppressor can typically be used as i) an inhibitor or suppressor of ubiquitin-positive inclusion body formation, ii) a therapeutic agent for liver disease, or iii) an anticancer agent.
Since the amount of intracellular p62 is regulated by autophagy for the interaction with LC3, administration of a substance that enhances this binding decreases the amount of intracellular p62, which causes hepatocellular carcinoma and Reduce liver damage.
Therefore, in a further embodiment of the present invention, the “molecule that specifically binds to p62” is LC3.
In still another embodiment, the “molecule that specifically binds to p62” is an antibody that specifically binds to p62 (anti-p62 antibody).
In the present specification, the “p62 expression inhibitor” refers to a substance that inhibits transcription of p62 gene into mRNA and / or translation of p62 gene (mRNA) into protein.
Examples of “p62 expression inhibitor” include the following iii) and iv).
Iii) the p62 expression inhibitor is an antisense nucleic acid or siRNA against the nucleotide sequence encoding p62,
Iv) A nucleic acid having a ribozyme activity that specifically cleaves the transcription product (mRNA) of the p62 gene.
In this specification, “nucleic acid” means RNA or DNA. The “nucleic acid” herein may contain not only purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, eg, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted to.
In the therapeutic agent for liver disease or cancer therapeutic agent of the present invention, a nucleic acid having an action of inhibiting the expression of p62 gene by RNAi effect can be used as an active ingredient. RNAi refers to a phenomenon in which, when a double-stranded RNA having the same or similar sequence as a target gene sequence is introduced into a cell, expression of the introduced foreign gene and target endogenous gene are both inhibited. Examples of RNA used here include double-stranded RNA that causes RNA interference of 19 to 30 bases in length, such as dsRNA (double strand RNA), siRNA (small interfering RNA), or shRNA (short hairpin RNA). . Such RNA can be locally delivered to a desired site by a delivery system such as a liposome, and can be locally expressed using a vector capable of generating the double-stranded RNA. Methods for preparing and using such double-stranded RNA (dsRNA, siRNA or shRNA) are known from many literatures (Japanese translations of PCT publication No. 2002-516062; US Publication No. 2002 / 086356A; Nature Genetics, 24 (2), Feb., 180-183; Genesis, 26 (4), April, 240-244; Nature, Spe.21, 407: 6802, 319-20; Genes & Dev., Vol.16, (8 ), Apr. 16, 948-958; Proc. Natl. Acad. Sci. USA., 99 (8), 16 Apr., 5515-5520; Science, 296 (5567), 19 Apr., 550-553; Natl.Acad.Sci.USA, Ap .30, 99: 9, 6047-6052; Nature Biotechnology, Vol. 20 (5), May, 497-500; Nature Biotechnology, Vol. 20 (5), May, 500-508; Nucleic Acids Res., May 15 Such).
The length of the double-stranded RNA exhibiting the RNAi effect used in the present invention is usually 19 to 30 bases, preferably 20 to 27 bases, more preferably 21 to 25 bases, and most preferably 21 to 23 bases.
In this specification, “antisense nucleic acid” or “antisense polynucleotide” has a polynucleotide complementary to at least a part of a DNA region of interest, and the polynucleotide is at least one of the region. It means a nucleic acid capable of hybridizing with a part. The antisense nucleic acid or antisense polynucleotide of the present invention is RNA, DNA, or a modified nucleic acid (RNA, DNA). They may be double stranded DNA, single stranded DNA, double stranded RNA, single stranded RNA, or even a DNA: RNA hybrid. Specific examples of modified nucleic acids include, but are not limited to, nucleic acid sulfur derivatives and thiophosphate derivatives, and those that are resistant to degradation of polynucleotide amides and oligonucleotide amides. .
The antisense nucleic acid used is linked downstream of an appropriate promoter, and preferably a sequence containing a transcription termination signal is linked on the 3 'side. The nucleic acid thus prepared can be transformed into a desired animal by using a known method. The sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous gene or a part thereof possessed by the animal to be transformed, but it is not completely complementary as long as the gene expression can be effectively suppressed. May be.
Antisense nucleic acid effective for inhibiting gene translation is about 70% or more, preferably about 80% or more, more preferably about 90% or more, most preferably about 95% or more complement to the target gene transcript. Have sex.
In order to effectively suppress the expression of a target gene using an antisense nucleic acid, the length of the antisense nucleic acid is at least about 10 bases (for example, about 10 to 40 bases), preferably about 15 bases or more, More preferably, it is about 100 bases or more, More preferably, it is about 500 bases or more. Antisense nucleic acids can be designed with reference to known literature (for example, Hirashima and Inoue, Shinsei Kagaku Koza 2 Lecture and Expression of Nucleic Acid IV Gene, edited by the Japanese Biochemical Society, Tokyo Chemical Dojin, 1993, p.319) -347), J. et al. Kawakami et al. , Pharm Tech Japan. Vol. 8, p. 247, 1992; Vol. 8, p. 395, 1992; T.A. Crooke et al. , Ed. , See Antisense Research and Applications, CRC Press, 1993, etc.).
In this specification, “ribozyme activity” refers to a nucleic acid that specifically cleaves mRNA, which is a transcription product of a target gene. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and M1 RNA contained in RNaseP, but some have an active domain of about 40 nucleotides called hammerhead type or hairpin type ( Protein Nucleic Acid Enzyme, 1990, 35, p. 2191). For hammerhead ribozymes, see, for example, FEBS Lett, 1988, 228, p. 228; FEBS Lett, 1988, 239, p. 285; protein nucleic acid enzyme, 1990, 35, p. 2191; Nucl Acids Res, 1989, 17, p. 7059 and the like can be referred to. For hairpin ribozymes, see, for example, Nature, 1986, 323, p. 349; Nucl Acids Res, 1991, 19,. 6751; Hiroshi Kikuchi, Chemistry and Biology, 1992, 30, p. 112 and the like can be referred to. By specifically cleaving the transcript of the p62 gene using such a ribozyme, the expression of the gene can be inhibited.
When the expression of p62 is suppressed by these substances, the binding between Keap1 and Nrf2 is restored, and Nrf2 is inactivated, so that hepatocellular carcinoma and liver damage can be suppressed.
Therefore, in a further embodiment of the present invention, there is provided a method for treating liver disease and / or cancer, comprising a step of administering a substance that inhibits or suppresses the interaction between p62 and Keap1 to a patient in need thereof. Provided.
2.Agents containing substances that inhibit or suppress the interaction between p62 and Keap1
In a further embodiment of the present invention, an inhibitor or inhibitor of binding between Keap1 and p62 is provided. This agent typically contains a substance that inhibits or suppresses the interaction between p62 and Keap1 described above. Specifically, this agent
I) a molecule that specifically binds to p62, or
Ii) p62 expression inhibitor
Containing.
The above agent of the present invention can be used as a preparation for treating liver disease or cancer. Such a preparation (pharmaceutical composition) can be produced by mixing a substance that inhibits or suppresses the interaction between p62 and Keap1 with a commonly used preparation carrier.
The pharmaceutical carrier may be used in appropriate combination depending on the dosage form. For example, excipients such as lactose; lubricants such as magnesium stearate; disintegrants such as carboxymethylcellulose; binders such as hydroxypropylmethylcellulose Surfactants such as macrogol; foaming agents such as sodium hydrogen carbonate; solubilizing agents such as cyclodextrin; sour agents such as citric acid; stabilizers such as sodium edetate; pH adjusters such as phosphate Is mentioned.
When administered to a patient in need thereof, as a solid preparation for internal use for oral administration, a liquid for internal use, and an injection, external preparation, suppository, eye drops, inhalant, etc. for parenteral administration It can also be used.
Oral solid preparations for oral administration include tablets, pills, capsules, powders, granules and the like. Capsules include hard capsules and soft capsules. Tablets include sublingual tablets, buccal adhesive tablets, buccal quick disintegrating tablets and the like.
In such solid preparations for internal use, one or more active substances are left as they are, or excipients (lactose, mannitol, glucose, microcrystalline cellulose, starch, etc.), binders (hydroxypropylcellulose, polyvinylpyrrolidone, Mixed with magnesium metasilicate aluminate, etc.), disintegrating agents (such as calcium calcium glycolate), lubricants (such as magnesium stearate), stabilizers, solubilizing agents (such as glutamic acid, aspartic acid), etc. Used by formulating. If necessary, it may be coated with a coating agent (sucrose, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, etc.), or may be coated with two or more layers. Also included are capsules of absorbable substances such as gelatin.
Oral liquids for oral administration include pharmaceutically acceptable solutions, suspensions / emulsions, syrups, elixirs and the like. In such a solution, one or more active substances are dissolved, suspended or emulsified in a commonly used diluent (purified water, ethanol or a mixture thereof). Furthermore, this liquid agent may contain a wetting agent, a suspending agent, an emulsifier, a sweetening agent, a flavoring agent, a fragrance, a preservative, a buffering agent and the like.
External dosage forms for parenteral administration include, for example, ointments, gels, creams, poultices, patches, liniments, sprays, inhalants, sprays, eye drops, and nasal drops Etc. are included. These contain one or more active substances and are produced and prepared by known methods or commonly used formulations.
Included as injections for parenteral administration are solutions, suspensions, emulsions and solid injections used by dissolving or suspending in a solvent at the time of use. An injection is used by dissolving, suspending or emulsifying one or more active substances in a solvent. As the solvent, for example, distilled water for injection, physiological saline, vegetable oil, propylene glycol, polyethylene glycol, alcohols such as ethanol, and combinations thereof are used. Further, this injection may contain a stabilizer, a solubilizing agent (such as glutamic acid, aspartic acid, polysorbate 80 (registered trademark)), a suspending agent, an emulsifier, a soothing agent, a buffering agent, a preservative and the like. . These are sterilized in the final process or manufactured and prepared by aseptic manipulation. In addition, a sterile solid preparation, for example, a lyophilized product, can be produced and used by dissolving it in sterilized or sterile distilled water for injection or other solvent before use.
3.Screening method of the present invention
In yet another embodiment, the present invention provides a method for screening an agent that inhibits or suppresses the interaction between Keap1 and p62. This method is typically
I) measuring the binding amount of Keap1 and p62 in the presence and absence of the test substance, and
ii) comparing the amount of binding between Keap1 and p62 in the presence and absence of the test substance, and the amount of binding in the presence of the test substance is greater than that in the absence of the test substance. And a step of selecting the test substance as a substance that inhibits or suppresses the interaction between Keap1 and p62 when the amount is lower than the binding amount.
A substance that inhibits or suppresses the interaction between p62 and Keap1 can be applied to a liver disease therapeutic agent and an anticancer agent. By searching for a substance that inhibits or suppresses the protein-protein interaction between p62 and Keap1, a novel drug for the treatment of liver disease can be screened.
The interaction can be detected by a pull-down method (eg, FIG. 3), a method using a mass spectrometer, a method for detecting protein-protein interaction as a fluorescent signal, or an imaging using a fluorescent label.
In a more specific embodiment of the screening method of the present invention, “the step of measuring the amount of binding between Keap1 and p62 in the presence and absence of a test substance” comprises the KIR sequence of p62 (eg, SKEVDPSTGELQSLQ (SEQ ID NO: 5), for example, an amino acid sequence having sequence identity of 80% or more, 85% or more, 90% or more, or 95% or more with respect to the amino acid sequence of SEQ ID NO: 5, or the amino acid sequence of SEQ ID NO: 5 This includes measuring the amount of Keap1 binding to 1 to several (eg, amino acid sequences having 1, 2, 3, or more amino acid residue deletions, substitutions, insertions or additions).
In a more specific embodiment of the screening method of the present invention, the “substance that inhibits or suppresses the interaction between Keap1 and p62” is aspartic acid at position 349 in the amino acid sequence of mouse p62 (SEQ ID NO: 3), It specifically binds to proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354.
In a more specific embodiment of the screening method of the present invention,
Iii) administering a substance that inhibits or suppresses the interaction between Keap1 and p62 to a liver disease model animal and measuring the activity of Nrf2, and
Iv) When the activity of Nrf2 decreases, the above-mentioned substance is selected as a therapeutic agent for liver disease
Is included.
Examples of the substance obtained by the screening method of the present invention include LC3, anti-p62 antibody and the like, but are not limited thereto, low molecular weight compounds (natural or synthetic), proteins or peptides, polysaccharides, lipids , Nucleic acids and the like may be included.
A substance that inhibits or suppresses the interaction between p62 and Keap1, or a substance that decreases the amount of intracellular p62 can be applied to a therapeutic agent for liver disease and an anticancer agent. These substances inactivate (decompose) Nrf2 by reducing the amount of p62 that binds to Keap1 and increasing the binding between Keap1 and Nrf2. By administering a substance that inhibits or suppresses the interaction between p62 and Keap1 or a substance that decreases the amount of intracellular p62 to a liver disease model animal (eg, mouse) and measures the activity of Nrf2, a novel drug You can find
Detection of the interaction between Keap1 and p62 was performed by transiently cultivating a plasmid in which Nrf2 transcriptional activity reporter ARE (antioxidant-respondive element) was connected to luciferase gene to cultured cells (Huh-1, JHH5, Hepa-1, HEK293T, etc.). By luciferase assay using a cell line introduced into or stably maintained (see FIGS. 6 and 16) by β- by a cultured cell incorporating an ARE-bla linking the Nrf2 transcriptional activity reporter and the β-lactamase gene. By Nrf2 transcriptional activity reporter assay using lactamase and fluorescence resonance energy transfer (FRET), the expression of downstream factors of Nrf2 was immunized by real time PCR using hepatocytes overexpressing p62. It can be confirmed by blotting (Immunoblot (hereinafter referred to as IB)) or by RT-PCR or the like.
In a more specific embodiment of the screening method of the present invention, the measurement of the binding amount of Keap1 and p62 in the presence and absence of a test substance is carried out using a pull-down method, mass spectrometry, protein-protein interaction as a fluorescence signal. This is performed using either a detection method or imaging using a fluorescent label.
A substance that inhibits or suppresses the interaction between p62 and Keap1 or a substance that reduces the amount of intracellular p62 may be applicable to a therapeutic agent for liver disease and an anticancer agent. These substances reduce the amount of intracellular ubiquitin positive inclusions in the liver lacking mouse autophagy. A substance that inhibits or suppresses the interaction of Keap1 or a substance that decreases the amount of intracellular p62 is administered to mice, and the amount of ubiquitin positive inclusion bodies, the activity of Nrf2, and the level of liver damage are measured. Drug candidates can be screened.
Detection of ubiquitin positive inclusion bodies can be performed by immunostaining mouse liver tissue (FIG. 9).
In the Nrf2 activity measurement, the expression of the detoxification enzyme gene group which is a downstream factor of Nrf2 can be confirmed by real time PCR (FIG. 8).
Liver damage level measurement includes liver weight measurement (FIG. 13a), hepatocyte hypertrophy and lobular structure collapse detection by HE staining of liver tissue (FIG. 13b), liver function test (AST, ALT, ALP) (FIG. 14) Can be done by.
The substance obtained by the screening method of the present invention can be used as i) an inhibitor or suppressor of ubiquitin-positive inclusion body formation, ii) a therapeutic agent for liver disease, or iii) an anticancer agent.
4).Diagnostic method, diagnostic agent, and diagnostic kit for liver disease
In a further embodiment, the present invention provides a method for diagnosing liver disease. In particular, a method for determining or diagnosing a patient to which the therapeutic agent for liver disease of the present invention is applied is provided. This method is typically
I) measuring the expression level of p62 or Nrf2 by subject's liver biopsy, or
Ii) measuring the activity of Nrf2 by subject's liver biopsy,
including.
If it is found that the expression level of p62 in a liver biopsy of a subject with liver disease is excessive as compared with that of a normal subject, it is highly likely that the liver disease of the subject is caused by overexpression of p62. In such a case, the therapeutic agent for liver disease according to the present invention is applied to a patient who needs to treat the disease in order to inhibit or suppress the interaction between p62 and Keap1 or to inhibit the expression of p62. By doing so, it is considered that an advantageous effect can be obtained. Therefore, it is useful to determine or diagnose the patient to whom such treatment is applied.
In addition, if it is found that the activity of Nrf2 by liver biopsy of a subject with liver disease is higher than that of a normal subject, it is highly possible that the liver disease of the subject is due to abnormal activation of Nrf2. In such a case, if the therapeutic agent for liver disease of the present invention is applied to a patient in need of treatment of the disease, the interaction between p62 and Keap1 is inhibited or suppressed, or the expression of p62 is inhibited. As a result, the amount of p62 competing with the interaction between Nrf2 and Keap1 can be reduced, so that the amount of free Nrf2 is reduced and the activation of Nrf2 is suppressed. Therefore, it is considered that an advantageous effect can be obtained by applying the therapeutic agent for liver disease of the present invention to a patient in need of treatment for the disease. Therefore, it is useful to determine or diagnose the patient to whom such treatment is applied.
Measurement of the expression level of p62 by liver biopsy of a subject can be performed by methods well known to those skilled in the art, such as imaging with a fluorescent label, immunoblotting, and mass spectrometry.
Measurement of the activity of Nrf2 by liver biopsy of a subject includes quantitative measurement of luciferase assay using a target promoter of Nrf2, measurement of the amount of Nrf2 in cell nuclei by immunoblotting, and enzymes induced by Nrf2 (such as Nqol and Gstm). It can be performed by methods well known to those skilled in the art, such as expression analysis by PCR, immunoblotting or fluorescence imaging, and enzyme activity measurement.
In a further embodiment of the method for determining a patient to which the therapeutic agent for liver disease of the present invention is applied, measurement of Nrf2 activity and / or detection of ubiquitin positive inclusion bodies is included.
A further embodiment of the method for determining a patient to which the therapeutic agent for liver disease of the present invention is applied includes measuring the concentration of AST, ALT, ALP, and / or γ-GTP in the blood of the subject. Γ-GTP (γ-glutamyl transpeptidase) is an enzyme related to the detoxification of the liver, and when the cells of the liver and bile duct break down, γ-GTP flows into the blood. It is said to be a “deviation enzyme” and is generally used as an indicator that the cells of the liver and bile ducts have been broken.
In a further embodiment of the present invention, a diagnostic kit or diagnostic agent used in the diagnostic method of the present invention is provided. These diagnostic kits or diagnostic agents typically include an anti-p62 antibody or an anti-Nrf2 antibody. Further, these diagnostic kits or diagnostic agents may contain a labeling agent for labeling the antibody (for example, a fluorescent label) or a fluorescently labeled antibody. The diagnostic kit may further include instructions for use. The instructions for use may describe the method for using the antibody, the labeling agent, etc. included in the kit, the experimental procedure including immunoblotting, and the like.
The relationship between the amino acid sequence or nucleotide sequence appearing in this specification and the sequence number is as follows.
[SEQ ID NO: 1]
This sequence represents the amino acid sequence of human p62.
[SEQ ID NO: 2]
This sequence represents a nucleotide sequence encoding the amino acid sequence of human p62 (SEQ ID NO: 1).
[SEQ ID NO: 3]
This sequence represents the amino acid sequence of mouse p62.
[SEQ ID NO: 4]
This sequence represents a nucleotide sequence encoding the amino acid sequence of mouse p62 (SEQ ID NO: 3).
[SEQ ID NO: 5]
This sequence represents a partial sequence (KIR sequence) consisting of consecutive amino acid residues from the 345th position to the 359th position of the amino acid sequence of mouse p62 (SEQ ID NO: 3).
Hereinafter, the present invention will be described more specifically with reference to examples. However, it goes without saying that the scope of the present invention is not limited to these examples.
[実施例1]
 実施例1では、p62とKeap1の相互作用およびp62に結合するKeap1の領域を調べた。
 Flag−tagをN末に繋げたマウスKeap1とKeap1の各変異タンパク質を発現させたHek293T細胞を、lysis bufferにより溶解し、細胞抽出液を得た。次に抗Flag抗体を用いて免疫沈降を行い、Flag−tagを付加したKeap1あるいはそのdeletion mutant、およびその相互作用複合体を回収した。回収したタンパク質複合体と細胞抽出液をSDS−PAGE(ポリアクリルアミドゲル電気泳動)によりゲル内に展開し、抗Flag抗体、抗p62抗体、抗Nrf2抗体、抗actin抗体の各抗体を用いて、免疫ブロッティング(I.B.)を行った。
 結果を図1に示す。図1はKeap1の機能ドメイン領域およびFLAG−tagをつけたKeap1およびその各mutantの名称および模式図、抗FLAG抗体を用いて免疫沈降を行った場合におけるI.B.の写真、および細胞抽出液を用いたI.B.の写真である。
 模式図最上部にはKeap1のドメイン領域とその名称を示している。NTR(N−terminal region),BTB(Broadcomplex,Tramtrac,and Bric−a−Brac),IVR(intervening region),DSG(the double glycine repea rokelch repeat)and CTR(the C−terminal region)。FLAG−tagを付加したタンパクの模式図とその左に名称を記す。抗FLAG抗体の免疫沈降によるI.B.の写真をIP:FLAGで示す。また細胞抽出液によるI.B.の写真をCrudeで表し、これは各細胞でのKeap1,p62,actin(loading control)の発現の確認を行う。I.B.の写真の左横には使用した抗体を示す。
 図1に示すように、Flag−Keap1を発現させた細胞で免疫沈降を行った場合(レーン2)、内在性p62が検出されたことから、keap1とp62は複合体を形成することが分かった。Keap1の各mutantを発現させた細胞で免疫沈降を行った場合(レーン3−9)では、レーン9でp62が検出され、レーン6とレーン8では検出されないことから、p62と複合体を形成する為に必要なKeap1の部位はDC領域(DGR+CTR)であることが分かった。
[実施例2]
 実施例2では、p62とKeap1の直接の相互作用と、Keap1に結合するp62の領域を調べた。
 まず、大腸菌に実施例1で示したp62と結合する領域Keap1−DCとのGST(Glutathione S−transferase)融合タンパク質、GSTタグのついたマウスKeap1−DC(GST−Keap1−DC)とマウスp62あるいは各p62 mutantのMBP(Maltose Binding Protein)融合タンパク質を産生させ、glutathione−Sepharose 4B resinとamylose resinをそれぞれ用いたアフィニティークロマトグラフィーにより精製した。これらの精製タンパク質をTNE buffer中で混和させ、amylose resinで沈殿させる。Amylose resin結合タンパク質を氷冷TNEで5回washし、SDS−PAGEとCBB(Coomassie brilliant blue)染色を行った。
 結果を図2に示す。図2はp62の機能ドメイン領域およびMBP−tagをつけたマウスp62とその各mutantの名称および模式図、SDS−PAGE、CBB染色後の写真である。
 模式図最上部にはp62のドメイン領域とその名称を示している。PB1(Phox and Bemlp),Zinc(Zinc finger),LRS(LC3−recognition sequence)and UBA(ubiquitin−associated domain)。MBP−tagを付加したタンパクの模式図とその左に名称を記す。MBP immobilized AM resinは各タンパク質の発現を表し、MBP−Pull down assayでは各p62−MBP融合タンパクへのGST−Keap1−DCの結合を示す。
 図2aに示すように、MBP immobilized AM resinの図で各タンパク質の精製が全て確認された中で、MBP−Pull down assayを行うと、p62とKeap1の結合が確認されたことから、p62とKeap1は直接結合することが示された。またレーン5,6,7,8,11,12,14(14については図3を参照)でp62の結合が確認されたことから、Keap1へのp62の結合領域は345−359アミノ酸の領域であることが分かった。また、この領域は、図2bに示すように種間で高度に保存されており、このアミノ酸配列の領域をKIR(Keap1 interacting region)(Keap1相互作用領域)配列と名づけた。
[実施例3]
 実施例3では、Keap1の結合に重要なp62−KIR配列中のアミノ酸を調べた。
 MBP−p62M80の−KIR配列の各アミノ酸をそれぞれアラニンに置換したタンパク質と、GST−Keap1−DCを用いて実施例2と同様のプルダウンアッセイを行った。
 結果を図3に示す。図の左上には各サンプル番号に対するアミノ酸の置換部位を示し、下部ではSDS−PAGE,CBB染色後のゲルの写真、写真の右側にはバンドが示すタンパク質の名称を示す。
 レーン6、7、9、10、11でGST−Keap1−DCのバンドがほとんど見られず、結合が劇的に低下していることから、p62とKeap1との結合にはp62のD349,P350,T352,G353,E354の5アミノ酸が重要であることが分かった。
[実施例4]
 実施例4では、p62とNrf2はKeap1の同じポケットで結合していることを調べた。
 タンパク質結晶化立体構造解析により、Keap1−DCのp62あるいはNrf2との結合に重要なアミノ酸を予想した。これらのアミノ酸をそれぞれアラニンに置き換えたKeap1−DC mutantおよびKeap1−DCタンパク質にFLAGタグを付けHek293T細胞に発現させた。これらの細胞をlysis bufferにより溶解し、細胞抽出液を得た。次に実施例1と同様に免疫沈降およびI.B.を行った。
 結果を図4に示す。図4の左には、各サンプル番号とその番号に対するアミノ酸置換部位を示す。抗FLAG抗体の免疫沈降によるI.B.の写真をIP:FLAGで示す。また細胞抽出液によるI.B.の写真をCrudeで表し、これは各細胞でのKeap1,p62,actin(loading control)の発現の確認を示す。I.B.の写真の右横には使用した抗体を示す。
 図4で示すように、R483A(レーン8)以外のKeap1−DC mutantにおいてp62との結合が劇的に低下しており、またR483Aを含めた全てのmutantにおいてNrf2との結合も劇的に低下していることから、p62とNrf2は、Keap1の同じポケットを使用して拮抗的に結合していることが示された。
[実施例5]
 実施例5では、Keap1−Nrf2の結合をp62が拮抗的に阻害することを示す。
 Flag−tagをN末に繋げたp62とp62−T352Aを発現させたHek293T細胞を、lysis bufferにより溶解し、細胞抽出液を得た。次に抗Nrf2抗体を用いて免疫沈降を行い、Nrf2およびその相互作用複合体を回収した。次にSDS−PAGE(ポリアクリルアミドゲル電気泳動)により、回収したタンパク質複合体と細胞抽出液をゲル内に展開し、抗ubiquitin抗体、抗Nrf2抗体、抗p62抗体、抗actin抗体の各抗体を用いて、I.B.を行った。
 結果を図5に示す。抗Nrf2抗体を用いて免疫沈降を行った場合におけるI.B.の写真をIP:Nrf2で示す。また細胞抽出液を用いたI.B.の写真をCrudeで示す。写真上部にはFLAG−p62あるいはFLAG−p62−T352Aの過剰発現,Lactacystin(プロテアソーム阻害剤)の存在の有無を+−で示す。また図の左右に、I.B.に使用した抗体名、検出されたタンパク名を示す。
 p62を過剰発現させていない細胞のNrf2免疫沈降(IP:Nrf2のレーン1)では、ユビキチン化されたNrf2,Nrf2そのものの検出レベルが低いが、プロテアソーム阻害剤を加える(レーン2)と顕著に高くなる。通常Nrf2はkeap1と結合しユビキチン化されプロテアソームにより分解されていることから説明できる。この状態でp62を過剰発現させると、Nrf2タンパク量が顕著に上昇した。一方、ユビキチン化されたNrf2が低下した(IP:Nrf2のレーン3、4)。これはp62がKeap1と結合することにより、Nrf2とKeap1の結合が低下し、Nrf2がユビキチン化および分解されないことから、Nrf2が増加することを示す。またKeap1と結合能が顕著に低下しているp62−T352Aを入れると(IP:Nrf2のレーン5、6)p62を発現させない時と同様の状態(IP:Nrf2のレーン1、2)を示すことから、Keap1とNrf2の結合をp62が拮抗的に阻害していることを示す。
[実施例6]
 実施例6では、Keap1とp62の結合がNrf2下流因子の発現活性を増大させることを示す。
 Nrf2,Keap1,そしてp62 wild−typeあるいはp62 mutantsを発現するプラスミドをpNQO1−ARE reporter plasmidとpRL−TK(リポフェクションの内部コントロール)と共にマウス肝細胞癌由来のHepa1細胞に導入して、36時時間後に、ルシフェラーゼ活性を測定した。
 結果を図6に示す。Nrf2,Keap1,p62−WT,p62−mutants導入の有無を+−で示し、発現ベクターを導入していない(カラム1)をスタンダードとして相対的なルシフェラーゼの活性を示す。
 Nrf2を過剰発現させると(カラム2)、活性が大幅に上昇し、Nrf2とKeap1の2重トランスフェクション(カラム3)ではNrf2がKeap1に捕まえられプロテアソームにより分解される為カラム1と同程度まで活性が低下した。Nrf2,Keap1,p62−WTの3重トランスフェクションでは、p62がKeap1と結合することでフリーのNrf2が増加する為、ルシフェラーゼ活性が上昇したが、Nrf2,Keap1,p62−mutantの3重トランスフェクション(カラム5−10)では、p62はKeap1と結合できない為、活性はカラム4と変わらなかった。またp62−WT単独のトランスフェクションでも活性の上昇が見られ、p62−mutantでは見られないことから、内在性のKeap1に結合することで内在性Nrf2が活性化したものと考えられる。以上の結果より、p62の過剰発現によりKeap1と結合するp62が増加し、Nrf2の活性が上昇することを示唆している。
 また、カラム4とカラム5−10でルシフェラーゼ活性に大きな差が見られることから、カラム4での高活性状態において、p62とKeap1の阻害剤を加えると確実に活性が低下すると予想される。また他の肝臓がん由来細胞等では、もともとp62の発現量が高くNrf2の転写活性も高い細胞も存在することから、これらの細胞にpNQO1−ARE reporter plasmidを安定に持たせた安定株を作成し、ルシフェラーゼアッセイを行うことで、p62とkeap1の結合をモニターでき、また阻害剤が探索可能となることが示唆された。
[実施例7]
 実施例7では、肝臓特異的にオートファジーを欠損させたマウスにおいて、p62と共にKeap1が蓄積・不溶化し、Keap1の不溶化はp62に依存していることを示す。
 結果を図7に示す。F/F:Mx1はAtg7遺伝子のコンディショナルノックアウトマウスで、マウスの腹腔内にピペラシリン(PIPC)を投与すると肝臓特異的にAtg7遺伝子が欠損し、オートファジーが機能しなくなるマウスである。またp62−/−はp62が欠損したマウスで、F/F:Mx1:p62−/−はp62が欠損したF/F:Mx1マウス,F/FはWTマウスを指す。図7aでは、PIPCを投与後、肝臓をスクロースバッファー(0.25M sucrose,10mM HEPES pH7.4,1mM DTT)に回収し、ホモジナイズする。破砕液を0.5% TritonX−100可溶性と不溶性に分画する。各分画をSDS−PAGEで展開し、抗p62抗体、抗Keap1抗体、抗LC3抗体、抗Nqo1抗体、および抗actin抗体(loading control)で免疫ブロットを行う。
 図の左側には使用した抗体の種類、上部には投与後の日数、あるいはマウスの遺伝子型を示す。図の下部に示した、Totalは全細胞抽出液、Sol.は可溶性分画、Insol.は不溶性分画を示す。PIPC投与によりオートファジーが欠損されてから8−12時間後には、p62が過剰に発現されるようになるが、Keap1の発現はほとんど変化しない。またp62の過剰発現に伴い不溶性のp62が蓄積し、同時に不溶性Keap1も蓄積する。また各遺伝子型マウスのPIPC投与後12時間では、F/F:Mx1ではp62の過剰発現、および不溶性のp62とKeap1の増加がみられるが、F/F:Mx1:p62−/−では見られない(図7b)。これらの結果からオートファジーが欠損したマウスの肝臓においてp62の過剰発現、および不溶性のp62,Keap1の蓄積がみられる。また不溶性keap1の蓄積はp62依存的であることが示された。
[実施例8]
 実施例8では、実施例7で用いた遺伝子型マウスの肝臓でのNrf2の下流因子の発現状態をRT−PCRにより調べた。
 各遺伝子型マウスにPIPC投与後12時間後のマウス肝臓から、Total RNAを抽出する。Transcriptor First Strand cDNA Synthesis Kit(Roche Applied Science)を使用し、total RNA 1microgからcDNAを合成し、そしてLightCycler 480 Probes Masterin(Roche Applied Science)を使いLightCyclerで定量的PCRを行った。シグナルはβ−glucuronidase(GUS)で標準化を行った。結果を図8に示す。
 図8の上部には、遺伝子名、左部にはF/Fを1とした時のmRNA量の比率、下部には各遺伝子型を記す。
 示されたように、オートファジー欠損マウス(F/F:Mx1)ではNqo1,Gstm1共に、発現量が劇的に上昇している。このことからオートファジー欠損によりNrf2下流遺伝子の発現が上昇することが示された。一方p62を欠損させたマウス(p62およびF/F:Mx1:p62)では野生型マウス(F/F)とほとんど変わらないことから、オートファジー欠損によるNqo1,Gstm1の活性化はp62に依存していることが示された。
[実施例9]
 実施例9では、Keap1はp62依存的に封入体へ隔離されることをマウスの肝細胞で示す。
 実施例7で示された遺伝子型マウスにPIPC投与後28時間のマウスから得た肝臓を切断し、抗p62抗体、および抗Keap1抗体を用いた2重免疫染色によりp62とKeap1の細胞内局在を蛍光観察した。結果を図9に示す。
 図9の上段はp62,中段はKeap1、下段はp62とKeap1の局在を合わせたもの(Marge)とし、核染色図の左上部にはそれぞれの遺伝子型を記す。F/F:Mx1右上部の白四角枠で囲った領域の拡大図を左下に示す。
 示されたように、オートファジー欠損マウス(F/F:Mx)では白で示したp62とKeap1は凝集し封入体を形成しており、共局在観察では黄色で示されたようにp62とKeap1の局在がほぼ一致していることから、p62とKeap1が同じ封入体を形成しているものと考えられる。またオートファジー欠損マウスでp62を欠失させると(F/F:Mx:p62−/−)、p62とKeap1を含む封入体形成が見られなくなることから、Keap1陽性封入体形成はp62の発現に依存していることが示された。
 これまでの結果より、オートファジー欠損により、過剰発現したp62がKeap1と結合することで、Keap1を不溶化、封入体を形成させ、またNrf2の下流因子の発現が上昇することが分かった。オートファジー欠損させたマウスの肝臓では、p62の発現上昇と不溶化に伴いKeap1も不溶化し、Keap1にトラップされないNrf2が増え、抗酸化タンパク質の発現を増加すると考えられる。
[実施例10]
 実施例10では、オートファジー欠損によるKeap1の不溶化はNrf2に依存していることを示す。
 オートファジー欠損によりp62の発現依存的にKeap1が不溶化し、Nrf2の下流因子の発現も上昇する。そこでこれまで用いた実施例7で示したF/F、F/F:Mx1に加えて、Nrf2欠損マウス(Nrf2−/−,F/F:Mx1:Nrf2−/−)を作成し、実施例7と同様の方法でKeap1の不溶化の検討を行った。
 Nrf2欠失によるNrf2の発現、さらにNrf2下流遺伝子(Nqo1とGstm1)の発現も同時に確認している。結果を図10に示す。
 結果が示すように、オートファジー欠損マウス(F/F:Mx1)で見られたp62の過剰発現および不溶タンパクの蓄積は、Nrf2を2重で欠損させると劇的に低下した。またNrf2は通常Keap1と結合することで分解されていることから、p62の蓄積はKeap1を捕らえて不溶化し、Keap1−Nrf2のpathwayの欠如を導いていることが分かった。
[実施例11]
 実施例11では、オートファジー欠損によるp62,Keap1陽性封入体の蓄積はNrf2に依存していることを示す。
 実施例10の遺伝子型マウスを使用し、実施例9と同様の方法で免疫染色を行った。結果を図11に示す。
 結果が示すように、オートファジー欠損(F/F:Mx1)で見られたKeap1陽性、p62陽性封入体の形成は、Nrf2を欠損させると(F/F:Mx1:Nrf2−/−)劇的に減少した。これはp62陽性Keap1陽性の封入体形成はNrf2に依存していることを示す。
[実施例12]
 実施例12では、オートファジー欠損によるNrf2下流遺伝子の過剰発現はNrf2に依存していることを示す。
 実施例10の遺伝子型マウスを使用し、実施例9と同様の方法でNrf2下流遺伝子(Nqo1,Gstm1,Cyp2a5)のRT−PCR解析を行った。結果を、図12に示す。
 結果が示すように、オートファジー欠損(F/F:Mx1)で見られたNrf2下流遺伝子(Nqo1,Gstm1,Cyp2a5)の過剰発現は、Nrf2を欠損させると(F/F:Mx1:Nrf2−/−)劇的に減少した。これはオートファジー欠損によるNrf2下流遺伝子の過剰発現はNrf2に依存していることを示す。
 実施例10、11、12より、p62の異常蓄積によるKeap1が不溶化は、p62陽性Keap1陽性封入体を形成し、Nrf2−Keap1 pathwayを欠如させることが示された。
 p62の過剰発現ではKeap1と結合するNrf2の割合が減少することで、Nrf2が蓄積し、Nrf2の下流遺伝子の転写量が増大することが示唆される。
[実施例13]
 オートファジー欠損による肝障害はp62の異常蓄積によるNrf2−Keap1pathway欠如の結果であるかどうかを調べる為に、実施例10の遺伝子型マウスを使用し、pIpC投与後28日のマウス肝臓の重量を測定し、さらにHE染色により、各遺伝子欠損マウスの肝細胞肥大を測定した。結果を、図13aおよび図13bにそれぞれ示す。
 オートファジー欠損マウス(F/F:Mx1)では肝臓の重量が大きく増加し肝肥大を示すのに対し、オートファジー/Nrf2ダブル欠損マウスでは上昇を示さないことから、p62の異常蓄積によるNrf2−Keap1pathway欠如により肝肥大を引き起こすことが分かった。
[実施例14]
 実施例14では、オートファジー欠損による肝障害はp62の異常蓄積によるNrf2−Keap1 pathway欠如の結果であるかどうかを調べる為に、肝障害の指標として、マウス血中asparate aminotransferase(AST),alanine aminotransferase(ALT),alkaline phosphatase(ALP)の酵素活性を測定した。結果を図14に示す。
 オートファジー欠損マウス(F/F:Mx1)ではAST,ALT,ALP全て野生型マウス(F/F)に比べて劇的な上昇を示すのに対し、オートファジー/Nrf2ダブル欠損マウス(F/F:Mx1:Nrf2)では上昇を示さない(野生型と同レベルである)ことから、p62の異常蓄積によるNrf2−Keap1pathway欠如により肝障害を引き起こすことが分かった。
[実施例15]
 実施例15では、ヒトの肝細胞がん腫においてp62,Keap1陽性封入体が観察されることを示す。抗p62抗体と抗Keap1抗体を使ったヒトの肝細胞がん組織アレイ(BioChain Institute,Incから購入)の免疫組織化学染色を行った。結果を、図15に示す。
 ヒト肝細胞がん腫25サンプルのうち6サンプルについてp62陽性の封入体が確認された。さらに重要なことにp62陽性封入体が見られるサンプルにおいてKeap1陽性封入体も確認された。さらにp62,Keap1 2重染色による蛍光顕微鏡では、p62とKeap1の共局在が観察された。これらの結果、ヒトの肝細胞がん腫でもNrf2−Keap1 pathwayの異常調節が示唆された。
[実施例16]
 実施例16では、肝がん由来細胞(Hepa−1)のARE−Luciferase遺伝子を安定に保持するcell lineにおいて、p62蓄積におけるNrf2活性システムの存在を示すと共に、p62−Keap1結合阻害剤のスクリーニングに使用できることを示す。実験の結果を図16に示す。
 Nrf2の標的プロモーターであるAREにLuciferase遺伝子を繋げたプラスミドを安定に保持する細胞株を作成し、この株にアデノウイルス感染系を用いてp62−WT,p62−T352A(Keap1と結合できないmutant),Keap1,GFP(control)を過剰発現させて、ルシフェラーゼ活性を測定した。Hepa−1はもともとNrf2の活性が高いので、Keap1を過剰発現させるとルシフェラーゼ活性が低下することが示された。Keap1の過剰発現状態で、p62−WTあるいはp62−T352Aを過剰発現させると、感染度を高くするとp62−WTではルシフェラーゼ活性が上昇し、p62−T352Aでは上昇を示さなかった。またp62−WT単独の発現ではルシフェラーゼ活性が劇的な上昇を示すが、p62−T352A単独の過剰発現では少し低下することがわかった。これはp62−WTが過剰発現されると、p62と結合するKeap1の割合が多くなりNrf2が活性化状態になり、またp62−T352Aの過剰発現ではドミナントネガティブ効果により若干活性が低下することを示す。
 このデータは、この細胞株でもp62蓄積におけるNrf2活性システムの存在を示しており、またp62−Keap1の結合阻害剤を加えるとルシフェラーゼ活性低下を示すと予想されることから、p62−Keap1結合阻害剤のスクリーニングに適している。
[実施例17]
 実施例17では、オートファジー欠損マウスまたはオートファジー欠損p62ノックアウトマウスの肝臓における、腫瘍やKeap1やNrf2下流因子の分子状態を示す。結果を図17に示す。
 左上図は、4、7、9、12、14、16ヶ月齢のApg7f/fマウス(コントロール)およびApg7f/f;Alb−Creマウス(肝特異的オートファジー欠損マウス)の肝臓の写真である。Apg7f/f;Alb−Creマウスでは、7ヶ月齢以降に小さな腫瘍(矢印)が確認され、加齢と共に腫瘍の数および大きさが増大した。左下図は12月齢のApg7f/f(コントロール)マウス肝臓、p62ノックアウト肝臓、Apg7f/f;Alb−Creマウスの肝臓非腫瘍部、肝臓腫瘍部およびApg7f/f;Alb−Cre;p62ノックアウト肝臓抽出液を用いたウエスタンブロット解析の結果である。Apg7f/f;Alb−Creマウスの肝臓非腫瘍部、肝臓腫瘍部ともにp62が過剰に蓄積・不溶化し、p62結合タンパク質Keap1の不溶化も顕著であった。p62およびKeap1の不溶化に伴い、Nrf2の標的遺伝子産物であるNqo1のタンパク質量もApg7f/f;Alb−Creマウスの肝臓非腫瘍部、肝臓腫瘍部で増加していた。上記Keap1の不溶化およびNqo1の発現上昇は、Apg7f/f;Alb−Cre;p62ノックアウト肝臓において抑制されていた。右下は12月齢のApg7f/f(コントロール)マウス肝臓、p62ノックアウト肝臓、Apg7f/f;Alb−Creマウスの肝臓非腫瘍部、肝臓腫瘍部およびApg7f/f;Alb−Cre;p62ノックアウト肝臓から調整したRNAを用いた定量的PCR解析の結果である。Apg7f/f;Alb−Creマウスの肝臓非腫瘍部、肝臓腫瘍部ともに、Nrf2の標的遺伝子であるNqo1やGstm1の遺伝子発現が増加していた。これらの発現上昇は、Apg7f/f;Alb−Cre;p62ノックアウト肝臓において抑制されていた。
 これらの結果より、オートファジー欠損マウスの長期飼育により形成された腫瘍におけるKeap1の不溶化およびNrf2の活性化は、p62依存的であることが明らかとなった。このことから、in vivo自然発症肝臓がんにおいても、p62−Keap1のpathwayが機能していることが示唆される。
[Example 1]
In Example 1, the interaction between p62 and Keap1 and the region of Keap1 that binds to p62 were examined.
Hek293T cells in which each mutant protein of mouse Keap1 and Keap1 in which Flag-tag was linked to the N terminus were expressed were lysed with lysis buffer to obtain a cell extract. Next, immunoprecipitation was performed using an anti-Flag antibody, and Keap1 to which Flag-tag was added or its deletion mutant and its interaction complex were recovered. The recovered protein complex and cell extract are developed in a gel by SDS-PAGE (polyacrylamide gel electrophoresis) and immunized with anti-Flag antibody, anti-p62 antibody, anti-Nrf2 antibody, and anti-actin antibody. Blotting (IB) was performed.
The results are shown in FIG. 1 shows the functional domain region of Keap1 and the names and schematic diagrams of Keap1 and each mutant with FLAG-tag attached, and I.I. B. And I. using cell extract. B. It is a photograph of.
At the top of the schematic diagram, the domain region of Keap1 and its name are shown. NTR (N-terminal region), BTB (Broadcomplex, Tramtrac, and Brick-a-Brac), IVR (intervening region), DSG (the double glyceine repeat crea- te). A schematic diagram of a protein to which FLAG-tag has been added and the name are shown on the left. I. Immunoprecipitation of anti-FLAG antibody B. Are shown in IP: FLAG. In addition, I. B. This photograph is represented by Crude, which confirms the expression of Keap1, p62, and actin (loading control) in each cell. I. B. The antibody used is shown on the left side of the photo.
As shown in FIG. 1, when immunoprecipitation was performed on cells expressing Flag-Kap1 (lane 2), endogenous p62 was detected, and it was found that keap1 and p62 form a complex. . When immunoprecipitation was performed with cells expressing each mutant of Keap1 (lanes 3-9), p62 was detected in lane 9 and not detected in lanes 6 and 8, thus forming a complex with p62. It was found that the Keap1 site necessary for this purpose was the DC region (DGR + CTR).
[Example 2]
In Example 2, the direct interaction between p62 and Keap1 and the region of p62 that binds to Keap1 were examined.
First, GST (Glutathione S-transfer) fusion protein with the region Keap1-DC that binds to p62 shown in Example 1 in E. coli, GST-tagged mouse Keap1-DC (GST-Keap1-DC) and mouse p62 or Each p62 mutant MBP (Maltose Binding Protein) fusion protein was produced and purified by affinity chromatography using glutathione-Sepharose 4B resin and amylose resin, respectively. These purified proteins are mixed in TNE buffer and precipitated with amylose resin. The Amyrose resin binding protein was washed 5 times with ice-cold TNE, and stained with SDS-PAGE and CBB (Coomassie brilliant blue).
The results are shown in FIG. FIG. 2 is a photograph of mouse p62 with a functional domain region of p62 and MBP-tag, names and schematics of each mouse, and stained with SDS-PAGE and CBB.
The top part of the schematic diagram shows the domain region of p62 and its name. PB1 (Phox and Bemlp), Zinc (Zinc finger), LRS (LC3-recognition sequence) and UBA (ubiquitin-associated domain). A schematic diagram of the protein to which MBP-tag has been added and the name are shown on the left. MBP immobilized AM resin represents the expression of each protein, and MBP-Pull down assay indicates the binding of GST-Keap1-DC to each p62-MBP fusion protein.
As shown in FIG. 2a, when the purification of each protein was confirmed by the MBP immobilized AM resin diagram, when MBP-Pull down assay was performed, the binding between p62 and Keap1 was confirmed. Was shown to bind directly. In addition, since p62 binding was confirmed in lanes 5, 6, 7, 8, 11, 12, 14 (see FIG. 3 for 14), the binding region of p62 to Keap1 is a region of 345-359 amino acids. I found out. Further, this region is highly conserved among species as shown in FIG. 2b, and this amino acid sequence region was named a KIR (Keap1 interacting region) (Keap1 interaction region) sequence.
[Example 3]
In Example 3, amino acids in the p62-KIR sequence important for Keap1 binding were examined.
A pull-down assay similar to that in Example 2 was performed using a protein in which each amino acid in the -KIR sequence of MBP-p62M80 was substituted with alanine and GST-Keap1-DC.
The results are shown in FIG. The amino acid substitution site for each sample number is shown in the upper left of the figure, the lower part shows a photograph of the gel after staining with SDS-PAGE and CBB, and the right side of the photograph shows the name of the protein indicated by the band.
Since the bands of GST-Keap1-DC are hardly seen in lanes 6, 7, 9, 10, and 11 and the binding is drastically reduced, the binding of p62 to Keap1 is accompanied by D349, P350, It was found that 5 amino acids of T352, G353, and E354 are important.
[Example 4]
In Example 4, it was examined that p62 and Nrf2 were bound in the same pocket of Keap1.
Protein crystallization three-dimensional structure analysis predicted amino acids important for binding of Keap1-DC to p62 or Nrf2. The Keap1-DC mutant and Keap1-DC proteins in which these amino acids were each replaced with alanine were FLAG-tagged and expressed in Hek293T cells. These cells were lysed with a lysis buffer to obtain a cell extract. Next, as in Example 1, immunoprecipitation and I.V. B. Went.
The results are shown in FIG. The left side of FIG. 4 shows each sample number and the amino acid substitution site for that number. I. Immunoprecipitation of anti-FLAG antibody B. Are shown in IP: FLAG. In addition, I. B. These photographs are represented by Crude, which shows confirmation of the expression of Keap1, p62, and actin (loading control) in each cell. I. B. The antibody used is shown on the right side of the photo.
As shown in FIG. 4, binding to p62 is dramatically decreased in Keap1-DC mutants other than R483A (lane 8), and binding to Nrf2 is also dramatically decreased in all mutants including R483A. Thus, it was shown that p62 and Nrf2 are antagonistically bound using the same pocket of Keap1.
[Example 5]
Example 5 shows that p62 competitively inhibits Keap1-Nrf2 binding.
Hek293T cells expressing p62 and p62-T352A in which Flag-tag was linked to the N terminus were lysed with lysis buffer to obtain a cell extract. Next, immunoprecipitation was performed using an anti-Nrf2 antibody, and Nrf2 and its interaction complex were recovered. Next, the recovered protein complex and cell extract are developed in a gel by SDS-PAGE (polyacrylamide gel electrophoresis), and each of the anti-ubiquitin antibody, anti-Nrf2 antibody, anti-p62 antibody, and anti-actin antibody is used. I. B. Went.
The results are shown in FIG. In the case of immunoprecipitation using an anti-Nrf2 antibody, I.V. B. Is shown by IP: Nrf2. In addition, I. B. These photos are shown in Crude. In the upper part of the photograph, FLAG-p62 or FLAG-p62-T352A is overexpressed and the presence or absence of Lactacytin (proteasome inhibitor) is indicated by +-. Also, on the left and right of the figure, B. Shows the name of the antibody used and the name of the detected protein.
In the Nrf2 immunoprecipitation of cells not overexpressing p62 (IP: Nrf2 lane 1), the detection level of ubiquitinated Nrf2 and Nrf2 itself is low, but is significantly higher when a proteasome inhibitor is added (lane 2). Become. This can be explained by the fact that Nrf2 usually binds to keap1 and is ubiquitinated and degraded by the proteasome. When p62 was overexpressed in this state, the amount of Nrf2 protein significantly increased. On the other hand, ubiquitinated Nrf2 decreased (IP: Nrf2 lanes 3 and 4). This indicates that Nrf2 is increased because p62 binds to Keap1 and the binding between Nrf2 and Keap1 decreases and Nrf2 is not ubiquitinated and degraded. In addition, when p62-T352A whose binding ability to Keap1 is significantly reduced is added (IP: Nrf2 lanes 5 and 6), it shows the same state as when p62 is not expressed (IP: Nrf2 lanes 1 and 2). From these results, it is shown that p62 antagonistically inhibits the binding between Keap1 and Nrf2.
[Example 6]
Example 6 shows that binding of Keap1 and p62 increases the expression activity of Nrf2 downstream factor.
A plasmid expressing Nrf2, Keap1, and p62 wild-type or p62 mutants was introduced into Hepa1 cells derived from mouse hepatocellular carcinoma together with pNQO1-ARE reporter plasmid and pRL-TK (internal control of lipofection), and 36 hours later The luciferase activity was measured.
The results are shown in FIG. The presence or absence of Nrf2, Keap1, p62-WT, p62-mutants introduction is indicated by +-, and the relative luciferase activity is shown with no expression vector introduced (column 1) as a standard.
When Nrf2 is overexpressed (column 2), the activity increases significantly, and in the case of double transfection of Nrf2 and Keap1 (column 3), Nrf2 is captured by Keap1 and degraded to the same level as column 1 Decreased. In the triple transfection of Nrf2, Keap1, and p62-WT, p62 binds to Keap1 and free Nrf2 increases, so the luciferase activity increased, but Nrf2, Keap1, p62-mutant triple transfection ( In column 5-10), p62 cannot bind to Keap1, so the activity was not different from column 4. Moreover, since an increase in activity was observed even with transfection of p62-WT alone and not with p62-mutant, it is considered that endogenous Nrf2 was activated by binding to endogenous Keap1. The above results suggest that p62 binding to Keap1 increases due to overexpression of p62, and the activity of Nrf2 increases.
In addition, since there is a large difference in luciferase activity between column 4 and column 5-10, it is expected that the activity is surely reduced when inhibitors of p62 and Keap1 are added in the high activity state in column 4. In addition, since other liver cancer-derived cells originally have high expression levels of p62 and high transcription activity of Nrf2, stable strains in which these cells are stably provided with pNQO1-ARE reporter plasmid are prepared. It was suggested that by performing a luciferase assay, the binding between p62 and keap1 can be monitored, and inhibitors can be searched.
[Example 7]
Example 7 shows that in mice lacking autophagy specifically in the liver, Keap1 accumulates and insolubilizes with p62, and insolubilization of Keap1 is dependent on p62.
The results are shown in FIG. F / F: Mx1 is a conditional knockout mouse for the Atg7 gene. When piperacillin (PIPC) is administered into the abdominal cavity of a mouse, the Atg7 gene is deficient specifically in the liver and autophagy does not function. P62 − / − is a mouse deficient in p62, F / F: Mx1: p62 − / − is a F / F: Mx1 mouse deficient in p62, and F / F is a WT mouse. In FIG. 7a, after administration of PIPC, the liver is collected in sucrose buffer (0.25M sucrose, 10 mM HEPES pH 7.4, 1 mM DTT) and homogenized. The lysate is fractionated into 0.5% Triton X-100 soluble and insoluble. Each fraction is developed by SDS-PAGE and immunoblotted with anti-p62 antibody, anti-Keap1 antibody, anti-LC3 antibody, anti-Nqo1 antibody, and anti-actin antibody (loading control).
The left side of the figure shows the type of antibody used, the upper part shows the number of days after administration, or the genotype of the mouse. Total shown in the lower part of the figure is the whole cell extract, Sol. Is the soluble fraction, Insol. Indicates an insoluble fraction. 8-12 hours after autophagy is lost by PIPC administration, p62 is excessively expressed, but Keap1 expression is hardly changed. Insoluble p62 accumulates with overexpression of p62, and at the same time, insoluble Keap1 accumulates. In addition, 12 hours after PIPC administration of each genotype mouse, overexpression of p62 and increase of insoluble p62 and Keap1 were observed in F / F: Mx1, but it was observed in F / F: Mx1: p62 − / −. No (Figure 7b). From these results, overexpression of p62 and accumulation of insoluble p62 and Keap1 are observed in the liver of mice lacking autophagy. In addition, the accumulation of insoluble keap1 was shown to be p62-dependent.
[Example 8]
In Example 8, the expression state of the downstream factor of Nrf2 in the liver of the genotype mouse used in Example 7 was examined by RT-PCR.
Total RNA is extracted from the mouse liver 12 hours after PIPC administration to each genotype mouse. Using Transscriptor First Strand cDNA Synthesis Kit (Roche Applied Science), cDNA was synthesized from total RNA 1 microg, and LightCycler 480 Probes Masterin (Rochet Cycle Probe Master (Phc). The signal was normalized with β-glucuronidase (GUS). The results are shown in FIG.
The upper part of FIG. 8 shows the gene name, the left part shows the ratio of the amount of mRNA when F / F is 1, and the lower part shows each genotype.
As shown, both Nqo1 and Gstm1 have dramatically increased expression levels in autophagy-deficient mice (F / F: Mx1). From this, it was shown that expression of Nrf2 downstream gene is increased by autophagy deficiency. On the other hand, since mice lacking p62 (p62 and F / F: Mx1: p62) are almost the same as wild type mice (F / F), activation of Nqo1 and Gstm1 due to autophagy deficiency depends on p62. It was shown that
[Example 9]
In Example 9, it is shown in mouse hepatocytes that Keap1 is sequestered in inclusion bodies in a p62-dependent manner.
The liver obtained from a mouse 28 hours after PIPC administration was cut into the genotype mouse shown in Example 7, and the intracellular localization of p62 and Keap1 by double immunostaining using anti-p62 antibody and anti-Keap1 antibody Was observed with fluorescence. The results are shown in FIG.
The upper row in FIG. 9 is p62, the middle row is Keap1, the lower row is a combination of p62 and Keap1 localization (Marge), and the respective genotypes are written in the upper left part of the nuclear staining diagram. F / F: An enlarged view of the area surrounded by the white square frame at the upper right part of Mx1 is shown in the lower left.
As shown, in autophagy-deficient mice (F / F: Mx), p62 and Keap1 shown in white aggregate to form inclusion bodies, and in colocalization observation, p62 and Since the localization of Keap1 is almost the same, it is considered that p62 and Keap1 form the same inclusion body. In addition, when p62 is deleted in autophagy-deficient mice (F / F: Mx: p62 − / −), inclusion body formation including p62 and Keap1 is not observed, and Keap1 positive inclusion body formation contributes to p62 expression. It was shown that it depends.
From the results thus far, it was found that, due to autophagy deficiency, overexpressed p62 binds to Keap1, so that Keap1 is insolubilized and inclusion bodies are formed, and the expression of downstream factors of Nrf2 is increased. In the liver of autophagy-deficient mice, Keap1 is insolubilized as p62 is increased and insolubilized, and Nrf2 that is not trapped by Keap1 increases, which is thought to increase the expression of antioxidant proteins.
[Example 10]
Example 10 shows that Keap1 insolubilization due to autophagy deficiency depends on Nrf2.
Due to autophagy deficiency, Keap1 is insolubilized depending on the expression of p62, and the expression of downstream factors of Nrf2 is also increased. Therefore, in addition to the F / F and F / F: Mx1 shown in Example 7 used so far, Nrf2-deficient mice (Nrf2 − / −, F / F: Mx1: Nrf2 − / −) were prepared. The insolubilization of Keap1 was examined by the same method as in Example 7.
The expression of Nrf2 due to Nrf2 deletion and the expression of Nrf2 downstream genes (Nqo1 and Gstm1) were also confirmed at the same time. The results are shown in FIG.
As the results indicate, the overexpression of p62 and the accumulation of insoluble protein observed in autophagy-deficient mice (F / F: Mx1) were dramatically reduced when Nrf2 was deficient in duplicate. Moreover, since Nrf2 was normally decomposed | disassembled by couple | bonding with Keap1, it turned out that accumulation | storage of p62 capture | acquires and insolubilizes Keap1, leading to the lack of Pathway of Keap1-Nrf2.
[Example 11]
Example 11 shows that the accumulation of p62, Keap1 positive inclusion bodies due to autophagy deficiency is dependent on Nrf2.
Using the genotype mouse of Example 10, immunostaining was performed in the same manner as in Example 9. The results are shown in FIG.
As the results show, the formation of Keap1-positive and p62-positive inclusions seen with autophagy deficiency (F / F: Mx1) is dramatic when Nrf2 is lost (F / F: Mx1: Nrf2 − / −) Decreased. This indicates that p62-positive Keap1-positive inclusion body formation is dependent on Nrf2.
[Example 12]
Example 12 shows that overexpression of Nrf2 downstream gene due to autophagy deficiency is dependent on Nrf2.
Using the genotype mouse of Example 10, RT-PCR analysis of the Nrf2 downstream gene (Nqo1, Gstm1, Cyp2a5) was performed in the same manner as in Example 9. The results are shown in FIG.
As the results show, overexpression of the Nrf2 downstream gene (Nqo1, Gstm1, Cyp2a5) seen in autophagy deficiency (F / F: Mx1) is caused when Nrf2 is deficient (F / F: Mx1: Nrf2− / -) Dramatically decreased. This indicates that overexpression of the Nrf2 downstream gene due to autophagy deficiency is dependent on Nrf2.
From Examples 10, 11, and 12, it was shown that Keap1 insolubilization due to abnormal accumulation of p62 formed p62 positive Keap1 positive inclusion bodies and lacked Nrf2-Keap1 pathway.
When p62 is overexpressed, the ratio of Nrf2 binding to Keap1 decreases, suggesting that Nrf2 accumulates and that the amount of transcription of the downstream gene of Nrf2 increases.
[Example 13]
In order to examine whether the liver damage due to autophagy deficiency is a result of lack of Nrf2-Keap1 pathway due to abnormal accumulation of p62, the genotype mouse of Example 10 was used to measure the weight of the mouse liver 28 days after pIpC administration. Furthermore, hepatocyte hypertrophy of each gene-deficient mouse was measured by HE staining. The results are shown in FIGS. 13a and 13b, respectively.
In autophagy-deficient mice (F / F: Mx1), the weight of the liver is greatly increased and hepatic hypertrophy, whereas autophagy / Nrf2 double-deficient mice do not show an increase. Therefore, Nrf2-Kap1pathway due to abnormal accumulation of p62. It was found that the lack caused liver enlargement.
[Example 14]
In Example 14, in order to examine whether liver damage due to autophagy deficiency is a result of lack of Nrf2-Keap1 pathway due to abnormal accumulation of p62, as an indicator of liver damage, aspartate aminotransferase (AST), alanine aminotransferase (ALT), enzyme activity of alkaline phosphatase (ALP) was measured. The results are shown in FIG.
Autophagy-deficient mice (F / F: Mx1) show dramatic increases compared to wild-type mice (F / F) in all AST, ALT, and ALP, whereas autophagy / Nrf2 double-deficient mice (F / F) : Mx1: Nrf2) showed no increase (at the same level as the wild type), and it was found that lack of Nrf2-Kap1pathway due to abnormal accumulation of p62 caused liver damage.
[Example 15]
Example 15 shows that p62, Keap1 positive inclusion bodies are observed in human hepatocellular carcinoma. Immunohistochemical staining of human hepatocellular carcinoma tissue array (purchased from BioChain Institute, Inc.) using anti-p62 antibody and anti-Kap1 antibody was performed. The results are shown in FIG.
P62-positive inclusion bodies were confirmed in 6 out of 25 human hepatocellular carcinoma samples. More importantly, Keap1 positive inclusion bodies were also confirmed in samples in which p62 positive inclusion bodies were observed. Furthermore, co-localization of p62 and Keap1 was observed with a fluorescence microscope by p62, Keap1 double staining. These results suggest that abnormal regulation of Nrf2-Keap1 pathway is also observed in human hepatocellular carcinoma.
[Example 16]
Example 16 shows the presence of the Nrf2 activity system in p62 accumulation in a cell line stably retaining the ARE-Luciferase gene of hepatoma-derived cells (Hepa-1), and for screening for p62-Keap1 binding inhibitors. Indicates that it can be used. The result of the experiment is shown in FIG.
A cell line that stably holds a plasmid in which the Luciferase gene is linked to ARE, which is the target promoter of Nrf2, is prepared, and p62-WT, p62-T352A (mutant that cannot bind to Keap1) using this adenovirus infection system, Keap1, GFP (control) was overexpressed and luciferase activity was measured. Since Hepa-1 originally has a high activity of Nrf2, it was shown that luciferase activity decreases when Keap1 is overexpressed. When p62-WT or p62-T352A was overexpressed in an overexpressed state of Keap1, luciferase activity increased in p62-WT and no increase was observed in p62-T352A when the infectivity was increased. In addition, the expression of p62-WT alone showed a dramatic increase in luciferase activity, but it was found that the overexpression of p62-T352A alone slightly decreased. This shows that when p62-WT is overexpressed, the ratio of Keap1 binding to p62 increases and Nrf2 becomes activated, and overexpression of p62-T352A slightly decreases the activity due to the dominant negative effect. .
This data indicates the presence of the Nrf2 activity system in p62 accumulation in this cell line and is expected to show reduced luciferase activity when a p62-Keap1 binding inhibitor is added, so p62-Keap1 binding inhibitor Suitable for screening.
[Example 17]
Example 17 shows the molecular state of tumors, Keap1 and Nrf2 downstream factors in the liver of autophagy-deficient mice or autophagy-deficient p62 knockout mice. The results are shown in FIG.
Upper left figure shows Apg7 at 4, 7, 9, 12, 14, 16 months f / f Mouse (control) and Apg7 f / f; It is a photograph of the liver of an Alb-Cre mouse (liver-specific autophagy-deficient mouse). Apg7 f / f; In Alb-Cre mice, small tumors (arrows) were confirmed after 7 months of age, and the number and size of tumors increased with age. Bottom left figure is 12 months old Apg7 f / f (Control) Mouse liver, p62 knockout liver, Apg7 f / f; Liver non-tumor part, liver tumor part and Apg7 of Alb-Cre mice f / f; It is the result of the Western blot analysis which used Alb-Cre; p62 knockout liver extract. Apg7 f / f; P62 was excessively accumulated and insolubilized in the liver non-tumor part and liver tumor part of Alb-Cre mice, and insolubilization of p62-binding protein Keap1 was also remarkable. Along with the insolubilization of p62 and Keap1, the protein amount of Nqo1, the target gene product of Nrf2, was also increased to Apg7. f / f; It increased in the liver non-tumor part and liver tumor part of the Alb-Cre mouse. The insolubilization of Keap1 and the increase in Nqo1 expression were caused by f / f; Alb-Cre; was suppressed in p62 knockout liver. Bottom right is 12 months old Apg7 f / f (Control) Mouse liver, p62 knockout liver, Apg7 f / f; Liver non-tumor part, liver tumor part and Apg7 of Alb-Cre mice f / f; It is the result of quantitative PCR analysis using RNA adjusted from Alb-Cre; p62 knockout liver. Apg7 f / f; In both the liver non-tumor part and liver tumor part of Alb-Cre mice, gene expression of Nqo1 and Gstm1, which are target genes of Nrf2, was increased. These increases in expression are due to Apg7 f / f; Alb-Cre; was suppressed in p62 knockout liver.
These results revealed that Keap1 insolubilization and Nrf2 activation in tumors formed by long-term rearing of autophagy-deficient mice were p62-dependent. This suggests that the pathway of p62-Keap1 is functioning also in in vivo spontaneous liver cancer.
 本発明は、新規な作用機序に基づく肝疾患治療薬および抗がん剤、診断薬またはそのスクリーニング方法などとして有用である。
The present invention is useful as a therapeutic agent for liver diseases and an anticancer agent, a diagnostic agent or a screening method thereof based on a novel mechanism of action.

Claims (14)

  1. Keap1とp62との結合の阻害または抑制剤。 An inhibitor or inhibitor of binding between Keap1 and p62.
  2. 請求項1に記載の剤であって、
     i)p62に特異的に結合する分子、または
     ii)p62の発現阻害物質
    を含有する剤。
    The agent according to claim 1,
    i) a molecule that specifically binds to p62, or ii) an agent containing a substance that inhibits expression of p62.
  3. i)ユビキチン陽性封入体形成の阻害又は抑制剤、
     ii)肝疾患の治療剤、または
     iii)抗がん剤
    として使用される、請求項1または2に記載の剤。
    i) Inhibitor or inhibitor of ubiquitin positive inclusion body formation,
    The agent according to claim 1 or 2, which is used as a therapeutic agent for ii) liver disease, or iii) an anticancer agent.
  4. 前記p62に特異的に結合する分子が、
     i)p62のKeap1相互作用領域に特異的に結合する物質、
     ii)マウスp62のアミノ酸配列(配列番号3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、もしくは354位のグルタミン酸に特異的に結合する物質、または
     iii)前記p62の発現阻害物質が、p62をコードするヌクレオチド配列に対するアンチセンス核酸もしくはsiRNA
    である、請求項2または3に記載の剤。
    A molecule that specifically binds to p62 is
    i) a substance that specifically binds to the Keap1 interaction region of p62;
    ii) a substance that specifically binds to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3); or iii ) An antisense nucleic acid or siRNA against the nucleotide sequence encoding p62 as the p62 expression inhibitor
    The agent according to claim 2 or 3, wherein
  5. 前記p62に特異的に結合する分子が、LC3または抗p62抗体である、請求項2に記載の剤。 The agent according to claim 2, wherein the molecule that specifically binds to p62 is LC3 or an anti-p62 antibody.
  6. 請求項3に記載の肝疾患の治療剤の適用患者を判定する方法であって、
     i)被験者の肝生検によるp62もしくはNrf2の発現量を測定する工程、または
     ii)被験者の肝生検によるNrf2の活性を測定する工程、
    を含む、方法。
    A method for determining an application patient of the therapeutic agent for liver disease according to claim 3,
    i) measuring the expression level of p62 or Nrf2 by liver biopsy of the subject, or ii) measuring the activity of Nrf2 by liver biopsy of the subject,
    Including a method.
  7. 被験者の血液中のAST,ALT,ALP,またはγ−GTPの酵素活性を測定することをさらに含む、請求項6に記載の方法。 The method according to claim 6, further comprising measuring enzyme activity of AST, ALT, ALP, or γ-GTP in the blood of the subject.
  8. 請求項6に記載の方法に使用する診断キットまたは診断剤であって、
     抗p62抗体または抗Nrf2抗体を含み、
     前記キットはさらに使用説明書
    を含む、キットまたは剤。
    A diagnostic kit or diagnostic agent for use in the method according to claim 6, comprising:
    An anti-p62 antibody or an anti-Nrf2 antibody,
    The kit further includes instructions for use.
  9. Keap1とp62との相互作用を阻害または抑制する物質(agent)のスクリーニング方法であって、
     i)試験物質の存在下および非存在下でKeap1とp62との結合量を測定する工程、および
     ii)前記試験物質の存在下と非存在下との間でKeap1とp62との前記結合量を比較し、前記試験物質の存在下での前記結合量が前記試験物質の非存在下での前記結合量よりも低い場合に、当該試験物質をKeap1とp62との相互作用を阻害または抑制する物質として選択する工程
    を含む、方法。
    A method for screening an agent that inhibits or suppresses the interaction between Keap1 and p62,
    i) measuring the amount of Keap1 binding to p62 in the presence and absence of the test substance; and ii) determining the amount of Keap1 binding to p62 between the presence of the test substance and the absence of the test substance. In comparison, when the binding amount in the presence of the test substance is lower than the binding amount in the absence of the test substance, the test substance inhibits or suppresses the interaction between Keap1 and p62 A method comprising the step of selecting as
  10. 前記結合量を測定する工程において、プルダウン法、質量分析法、タンパク質間相互作用を蛍光シグナルとして検出する方法、または蛍光標識を用いたイメージングのいずれかが用いられる、請求項9に記載の方法。 The method according to claim 9, wherein in the step of measuring the amount of binding, any one of a pull-down method, mass spectrometry, a method of detecting protein-protein interaction as a fluorescence signal, or imaging using a fluorescent label is used.
  11. ユビキチン陽性封入体形成を阻害または抑制する物質のスクリーニングのために使用する、請求項9または10に記載の方法。 The method of Claim 9 or 10 used for the screening of the substance which inhibits or suppresses ubiquitin positive inclusion body formation.
  12. 肝疾患の治療剤のスクリーニングのために使用する、請求項9~11のいずれかに記載の方法。 The method according to any one of claims 9 to 11, which is used for screening for a therapeutic agent for liver disease.
  13. 前記結合量を測定する工程が、
     i)p62のKeap1相互作用領域、または
     ii)マウスp62のアミノ酸配列(配列番号:3)中の345番から359番目のアミノ酸配列:SKEVDPSTGELQSLQ(配列番号:5)
    に対するKeap1の結合量を測定することを含む、請求項9~12のいずれかに記載の方法。
    The step of measuring the amount of binding,
    i) Keap1 interaction region of p62, or ii) amino acid sequence from position 345 to position 359 in the amino acid sequence of mouse p62 (SEQ ID NO: 3): SKEVDPSTGELQSLQ (SEQ ID NO: 5)
    The method according to any one of claims 9 to 12, which comprises measuring the amount of Keap1 bound to.
  14. 前記物質が、マウスp62のアミノ酸配列(配列番号:3)中の349位のアスパラギン酸、350位のプロリン、352位のスレオニン、353位のグリシン、または354位のグルタミン酸に特異的に結合する、請求項9~13のいずれかに記載の方法。 The substance specifically binds to aspartic acid at position 349, proline at position 350, threonine at position 352, glycine at position 353, or glutamic acid at position 354 in the amino acid sequence of mouse p62 (SEQ ID NO: 3). The method according to any one of claims 9 to 13.
PCT/JP2010/071186 2010-01-07 2010-11-19 Therapeutic agent for hepatic disorder WO2011083637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011548929A JP5814128B2 (en) 2010-01-07 2010-11-19 Liver disease treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010001892 2010-01-07
JP2010-001892 2010-01-07

Publications (1)

Publication Number Publication Date
WO2011083637A1 true WO2011083637A1 (en) 2011-07-14

Family

ID=44305376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071186 WO2011083637A1 (en) 2010-01-07 2010-11-19 Therapeutic agent for hepatic disorder

Country Status (2)

Country Link
JP (1) JP5814128B2 (en)
WO (1) WO2011083637A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113124A (en) * 2012-12-12 2014-06-26 Tokyo Metropolitan Institute Of Medical Science Tumor diagnostic agent, pharmaceutical composition, and screening method
JP2014527053A (en) * 2011-08-08 2014-10-09 チュアラボ オンコロジー,インコーポレーテッド Methods and compositions relating to P62 for the treatment and prevention of cancer
WO2015178508A1 (en) * 2014-05-22 2015-11-26 Canbas Co., Ltd. Nrf2-based cancer treatment and detection methods and uses
CN106591228A (en) * 2016-12-21 2017-04-26 中国科学院生物物理研究所 Production method of human multipotent stem cells for simultaneously preventing cell ageing and malignant transformation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN, W. ET AL.: "Direct Interaction between Nrf2 and p21Cip1/WAF1 Upregulates the Nrf2- Mediated Antioxidant Response.", MOL. CELL, vol. 34, June 2009 (2009-06-01), pages 663 - 673 *
COPPLE, I. M. ET AL.: "The Hepatotoxic Metabolite of Acetaminophen Directly Activates the Keap1-Nrf2 Cell Defense System.", HEPATOLOGY, vol. 48, no. 4, 2008, pages 1292 - 1301 *
JAIN, A. ET AL.: "p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription.", J. BIOL. CHEM., vol. 285, no. 29, July 2010 (2010-07-01), pages 22576 - 22591 *
KOMATSU, M. ET AL.: "Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation", AUTOPHAGY-DEFICIENT MICE., CELL, vol. 131, 2007, pages 1149 - 1163 *
KOMATSU, M. ET AL.: "The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keapl.", NAT. CELL BIOL., vol. 12, no. 3, March 2010 (2010-03-01), pages 213 - 223 *
MASAAKI KOMATSU ET AL.: "Kankyo Stress Yudosei Autophagy to Shikkan", JUNTENDO MEDICAL JOURNAL, vol. 55, no. 4, 31 December 2009 (2009-12-31), pages 528 *
MASAAKI KOMATSU: "Sentakuteki Autophagy ni yoru Atarashii Tensha Yokusei Kiko", 32ND ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, 20 November 2009 (2009-11-20) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527053A (en) * 2011-08-08 2014-10-09 チュアラボ オンコロジー,インコーポレーテッド Methods and compositions relating to P62 for the treatment and prevention of cancer
US10716837B2 (en) 2011-08-08 2020-07-21 Curelab Oncology, Inc. Methods and compositions relating to P62 for the treatment and prophylaxis of cancer
JP2014113124A (en) * 2012-12-12 2014-06-26 Tokyo Metropolitan Institute Of Medical Science Tumor diagnostic agent, pharmaceutical composition, and screening method
US9090681B2 (en) 2012-12-12 2015-07-28 Tokyo Metropolitan Institute Of Medical Science Reagent for diagnosing tumor, pharmaceutical composition, and screening method
US9632092B2 (en) 2012-12-12 2017-04-25 Tokyo Metropolitan Institute Of Medical Science Reagent for diagnosing tumor, pharmaceutical composition, and screening method
WO2015178508A1 (en) * 2014-05-22 2015-11-26 Canbas Co., Ltd. Nrf2-based cancer treatment and detection methods and uses
CN106591228A (en) * 2016-12-21 2017-04-26 中国科学院生物物理研究所 Production method of human multipotent stem cells for simultaneously preventing cell ageing and malignant transformation
CN106591228B (en) * 2016-12-21 2019-06-18 中国科学院生物物理研究所 A kind of preparation method of human pluripotent stem cells that are while resisting cell ageing and vicious transformation

Also Published As

Publication number Publication date
JPWO2011083637A1 (en) 2013-05-13
JP5814128B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
Jais et al. PNOCARC neurons promote hyperphagia and obesity upon high-fat-diet feeding
Prasad et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome
Wang et al. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch
Zhao et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis
Mo et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease
Bochkis et al. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress
Paulmann et al. Intracellular serotonin modulates insulin secretion from pancreatic β-cells by protein serotonylation
Huppke et al. Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia
Ding et al. A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene
Jebessa et al. The lipid-droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4
Inoue et al. Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model
Chu et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity
Muhammad et al. Congenital myopathy is caused by mutation of HACD1
Wang et al. Conditional knockout of Fgf13 in murine hearts increases arrhythmia susceptibility and reveals novel ion channel modulatory roles
Fuqua et al. ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle
Li et al. SNX13 reduction mediates heart failure through degradative sorting of apoptosis repressor with caspase recruitment domain
Zhang et al. Tisp40 prevents cardiac ischemia/reperfusion injury through the hexosamine biosynthetic pathway in male mice
Connaughton et al. Mutations of the transcriptional corepressor ZMYM2 cause syndromic urinary tract malformations
Bhonker et al. The GPSM2/LGN GoLoco motifs are essential for hearing
Neumann et al. Histamine can be Formed and Degraded in the Human and Mouse Heart
JP5814128B2 (en) Liver disease treatment
Natoli et al. Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures
Bianchini et al. Inhibition of Ubiquitin Proteasome System Rescues the Defective Sarco (endo) plasmic Reticulum Ca2+-ATPase (SERCA1) Protein Causing Chianina Cattle Pseudomyotonia*♦
Hofherr et al. Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition
Zhu et al. Novel mutations of AXIN2 identified in a Chinese congenital heart disease cohort

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011548929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842152

Country of ref document: EP

Kind code of ref document: A1