WO2011083593A1 - Non-contact temperature sensor - Google Patents

Non-contact temperature sensor Download PDF

Info

Publication number
WO2011083593A1
WO2011083593A1 PCT/JP2010/063098 JP2010063098W WO2011083593A1 WO 2011083593 A1 WO2011083593 A1 WO 2011083593A1 JP 2010063098 W JP2010063098 W JP 2010063098W WO 2011083593 A1 WO2011083593 A1 WO 2011083593A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
temperature
sensing element
temperature sensing
temperature sensor
Prior art date
Application number
PCT/JP2010/063098
Other languages
French (fr)
Japanese (ja)
Inventor
道雄 竹内
正之 木下
Original Assignee
立山科学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立山科学工業株式会社 filed Critical 立山科学工業株式会社
Priority to CN201080057068.3A priority Critical patent/CN102667430B/en
Priority to KR1020127014213A priority patent/KR101709943B1/en
Publication of WO2011083593A1 publication Critical patent/WO2011083593A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • G01J5/0843Manually adjustable

Definitions

  • the present invention relates to a non-contact temperature sensor that includes a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation, and detects temperature by detecting infrared rays.
  • the contact portion In a temperature sensor that measures the temperature of an object to be measured by a contact method, the contact portion generally tends to wear, and the heat capacity of the thermal element itself that contacts the object to be measured causes a measurement error. Furthermore, it is difficult to attach a temperature sensor when the object to be measured is rotating. Therefore, the demand for easy-to-use non-contact temperature sensors is increasing.
  • infrared rays radiated from the object to be measured are absorbed by an infrared absorber and converted into energy, and temperature rise of the infrared absorber itself is detected by a temperature sensitive element and converted into an electrical signal.
  • the method is used.
  • a non-contact temperature sensor has been proposed in which a temperature sensing element for infrared detection and a temperature sensing element for temperature compensation are combined to improve temperature measurement accuracy.
  • an infrared detection temperature sensing element and a temperature compensation temperature sensing element are individually adhered and fixed to two resin films.
  • an infrared detector that is stretched over a frame having a predetermined thermal conductivity and accommodated inside the housing.
  • the infrared sensing temperature sensing element is disposed in the opening region of the light guide provided in the housing, and the temperature compensating temperature sensing element is shielded from infrared rays by the shielding surface of the housing. Placed in position.
  • an infrared detection temperature-sensitive element and a temperature compensation heat-sensitive element are attached to a resin film, and the resin film is accommodated inside the housing.
  • the infrared sensing temperature sensing element is disposed in the opening region of the light guide provided in the housing, and the temperature compensating temperature sensing element is shielded by being surrounded by the wall surface of the housing. It is arranged in the space.
  • a shielding member for adjusting the opening area of the light guide is provided as means for adjusting the amount of infrared light incident from the light guide.
  • the shielding member is a variable protrusion such as a screw protruding inward from the inner wall surface of the light guide.
  • Patent Document 3 discloses a lower case portion that supports a film attachment portion to which a resin film is attached, a top plate portion that closes an opening portion of the lower case portion, and an infrared incident hole that opens a part of the top plate portion.
  • a first heat-sensitive element that is attached to an incident hole corresponding part exposed from the incident hole on the resin film, and that is covered with the top plate part on the resin film;
  • a second thermosensitive element for temperature compensation that senses the amount of heat inside the case, and the output can be adjusted by adjusting the relative position between the incident hole and the first thermosensitive element.
  • a non-contact temperature sensor is disclosed.
  • a shield plate is provided in a space between a cover that covers the opening of the current collector housing portion and the detection surface of the current collector, and the shield plate is slid using a slide knob formed on the outside of the cover.
  • a current collecting element sensor that adjusts the light condensing area is disclosed.
  • the shielding plate extends inward from the periphery of the opening to each side so as to close the rectangular opening of the current collecting element housing, and continuously changes the area of the infrared condensing area.
  • Patent Document 5 discloses an illuminance sensor in which a light-shielding plate is disposed at a position facing a light-receiving surface of a sensor element, and the light-receiving sensitivity is adjusted by changing the distance between them or the area of the light-shielding plate.
  • Patent Document 6 discloses a luminaire having a light-shielding unit that changes the relative position between an illuminance sensor and a small opening through which light enters the illuminance sensor and enables adjustment of the detection range of the illuminance sensor.
  • the light shielding means there is described a configuration in which a moving piece having a second small opening having a size equal to or smaller than the small opening is provided so that the opening position can be moved between the illuminance sensor and the small opening.
  • Patent Document 7 is an infrared sensor in which an infrared light receiving portion is configured with a predetermined cross-linking structure, and an infrared reflection film that shields infrared light is formed on the surface of a lid that receives infrared light emitted from an object to be detected. It is disclosed.
  • the infrared detector disclosed in Patent Document 1 has a problem that an error occurs in temperature detection due to variations in the external dimensions of the housing, and the yield during sensor manufacture is poor. Since this casing is mass-produced by casting a metal material, it can be manufactured inexpensively and efficiently, but some variation occurs in the external dimensions. The influence of this variation is not negligible even if it is a relatively small variation within the same lot.For example, if the opening area of the light guide part of the housing and the opening height dimension vary, the amount of incident infrared rays It fluctuates and a large error occurs in the detected temperature.
  • the infrared temperature sensor of Patent Document 2 can correct the detection temperature error as described above by adjusting the amount of protrusion of a variable protrusion such as a screw.
  • a variable protrusion such as a screw.
  • the opening area changes, so the contour shape of the detection range that can receive infrared rays and the detection target area change, and the infrared detection range varies depending on the product. was there.
  • the current collecting element sensor of Patent Document 4 positively changes the contour shape and opening area of the opening by simply adjusting the extension amount of the shielding plate extending inward from the periphery of the opening. Therefore, there is a problem that the detection viewing angle and the opening area are changed by adjustment and cannot be kept constant. When such an adjustment structure is used for a temperature sensor, the viewing angle is different for each sensor, and the detection target range is greatly different.
  • the illuminance sensor of Patent Document 5 adjusts the distance between the sensor element and the light shielding plate facing each other, so that the contour of the field of view seen from the detection element does not change, but the angle of the light shielding range inside the viewing angle is the light shielding plate Since the area closes to the element becomes larger and the light shielding range becomes wider, the area of the light detection area within the field of view is not constant, and the target area detected by the sensor element varies greatly with each adjustment. In addition, the most necessary field center area is usually shielded from light and cannot be applied to sensitivity correction of the non-contact temperature sensor.
  • the light shielding means in the luminaire of Patent Document 6 is equivalent to an infrared ray as in the non-contact temperature sensor of Patent Document 3, although the outline shape of the second small opening of the moving piece changes equivalently when viewed from the illuminance sensor.
  • the direction of the detection field is not constant, and the detection target range changes.
  • Patent Document 7 discloses that an infrared reflection film that shields the incidence of infrared rays is formed on the surface of a lid that receives infrared rays radiated from an object to be detected. The incident range cannot be adjusted.
  • the present invention has been made in view of the above-described background art, and is a non-contact temperature sensor that can easily correct a temperature detection error after assembling and can keep a detection visual target range and a detection viewing angle constant.
  • the purpose is to provide.
  • the present invention is a non-contact temperature sensor provided with a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation, and a top plate portion forming a shielding surface for shielding infrared rays, and a part of the top plate portion being opened.
  • the infrared detecting temperature sensing element and the temperature compensating temperature sensing element are mounted on a casing provided with a light guide portion for guiding infrared rays therein, and a conductor pattern on the back side, and the top side of the top plate
  • a temperature adjusting element provided such that the position thereof can be adjusted, and the temperature detecting element for infrared detection is disposed at a position facing an opening region of the light guide portion of the casing, and the temperature sensing element for temperature compensation Is arranged at a position facing the shielding surface, and the sensitivity
  • the infrared shielding part of the node member is located in an inner area in the opening area of the light guide part except for an end part in the moving direction of the sensitivity adjusting member, and an arbitrary constant area portion of the opening area
  • the infrared shielding part is positioned so that its longitudinal direction is perpendicular to the moving direction of the infrared shielding part and crosses the opening region of the light guiding part, and shields infrared rays.
  • the light guide part of the casing is formed in an oval shape, and the infrared shielding part is provided so as to be movable in a range excluding arc-shaped parts at both ends of the opening region.
  • the circuit board on which the temperature sensing element for infrared detection and the temperature sensing element for temperature compensation are mounted is a flexible printed circuit board.
  • the infrared detecting temperature sensing element and the temperature compensating temperature sensing element are thermistors having the same characteristics.
  • a spacer is disposed between the flexible printed circuit board and the top plate portion of the casing, and the sensitivity adjustment member is disposed between the flexible printed circuit board, the top plate portion, and the light guide portion. Secures a slidable space.
  • the surface of the infrared shielding part is subjected to a surface treatment with a mirror surface treatment for infrared reflection or a coating agent for electromagnetic wave reflection in the infrared region.
  • the sensitivity adjustment member is provided with a movable adjustment knob operable from the outside of the housing.
  • the sensitivity can be easily corrected by adjusting the sensitivity adjusting member in the operation confirmation test.
  • the temperature detection accuracy can be suppressed within a certain range. Since the opening area of the light guide part is constant, its contour shape and opening area are kept constant, and the detection viewing angle capable of receiving infrared rays can be made constant to correct the temperature detection sensitivity. Sensitivity variations can be corrected without changing the detection target range. Accordingly, even when a temperature sensor is attached to the attachment target product, the detection target range by the temperature sensor can be maintained constant, and more stable quality can be maintained.
  • the structure of the non-contact temperature sensor of the present invention does not increase the outer shape because a thin sensitivity adjusting member is added to the structure of the conventional non-contact temperature sensor.
  • the effect of sensitivity correction by the infrared shielding part can be further enhanced by performing infrared reflection processing on the infrared shielding part of the sensitivity adjusting member to prevent the sensitivity adjusting member from absorbing infrared rays.
  • a structure in which a sensitivity adjustment member is provided with a movable adjustment knob and protrudes to the outside of the housing can be easily realized without complicating the structure of the housing.
  • the non-contact temperature sensor 10 of this embodiment receives an infrared ray radiated from an object to be measured, and uses the infrared detection temperature sensing element 20a and the temperature compensation temperature sensing element 20b to convert the energy of the infrared signal into an electrical signal. It is a sensor module that converts to As shown in FIG. 1, the non-contact temperature sensor 10 includes a flexible printed circuit board 12, a housing 14 that houses the flexible printed circuit board 12, and lead wires that take out electrical signals from the flexible printed circuit board 12 to the outside of the housing 14. 16 and a slide-type sensitivity adjusting member 18. Furthermore, the flexible printed circuit board 12 is provided with an infrared detection temperature sensing element 20a and a temperature compensation temperature sensing element 20b (not shown).
  • the flexible printed circuit board 12 is made of a resin film that functions as an infrared absorber that absorbs infrared rays emitted from the object to be measured.
  • the outer shape of the resin film is substantially rectangular, and a conductor pattern for electric wiring (not shown) is formed on the surface.
  • the thickness of the resin film is preferably a thin film having a small heat capacity in order to improve the thermal response to changes in the amount of absorbed infrared rays.
  • the thickness is about 20 ⁇ m. The one is selected.
  • a heat-resistant material such as polyimide is used as the material of the resin film, which is suitable for soldering and mounting a surface-mounting type infrared detecting temperature sensing element 20a and a temperature compensating temperature sensing element 20b described later. Furthermore, in order to improve the infrared absorption ability of the resin film, a polymer material in which carbon black or an inorganic pigment is dispersed may be used.
  • the infrared detecting temperature sensing element 20a and the temperature compensating temperature sensing element 20b are elements whose own circuit impedance changes according to the environmental temperature, and use a pair having the same characteristics.
  • an NTC thermistor having a negative temperature characteristic which is a thermistor whose electric resistance value changes in accordance with a change in its own temperature, is used.
  • Each of the temperature sensitive elements 20a and 20b is a surface-mount type element having a short terminal length, and when mounted on the flexible printed circuit board 12, the temperature sensitive portions of the temperature sensitive elements 20a and 20b and the flexible printed circuit board 12 are used. It is set so that the thermal coupling with is dense.
  • the housing 14 is composed of a case portion 22 and a lid portion 24.
  • the case portion 22 includes a substantially rectangular bottom plate portion 26, a rear wall portion 30 erected upward from one short side of the bottom plate portion 26, and a pair of left and right long sides of the bottom plate portion 26. And a pair of side wall portions 32 erected upward.
  • the bottom plate portion 26 is sufficiently long in length and substantially equal in width to the outer shape of the flexible printed circuit board 12.
  • a horizontal upper end surface 30 a is formed on the upper portion of the rear wall portion 30.
  • Horizontal upper end surfaces 32 a and 32 b having slight steps are also formed on the upper portions of the pair of side walls 32, and the height of the upper end surface 32 a on the side away from the rear wall portion 30 is the height of the rear wall portion 30. Is set lower than the upper end face 30a by the thickness of the flexible printed circuit board 12 and a spacer 44 described later. Further, the height of the upper end surface 32 b on the rear wall portion 30 side is set to the same height as the upper end surface 30 a of the rear wall portion 30.
  • the lid portion 24 includes a flat, substantially rectangular top plate portion 34, a front wall portion 36 erected downward from one short side of the top plate portion 34, and the top plate portion 26. It has the side wall part 38 erected downward from the pair of left and right long sides, and the light guide part 40 erected upward from the central part of the top plate part 34.
  • the upper surface of the top plate portion 34 is a shielding surface 34a that shields infrared rays emitted from the object to be measured.
  • the top plate portion 34 near the base of the light guide portion 40 is provided with a rectangular slide hole 34b from which a movable adjustment knob 18c of the sensitivity adjustment member 18 described later protrudes.
  • the inner space surrounded by the top plate portion 34, the front wall portion 36, and the side wall portion 38 is wide enough to accommodate the entire case portion 22 so as to cover it from above.
  • the light guide 40 is erected from the periphery of the opening region 42 formed in the shape of a long hole near the center of the top plate 34, is formed in a cylindrical body having an oval through hole, and the top plate 34. It is integrally formed from.
  • the inner wall surface of the light guide unit 40 is provided with a coating that absorbs electromagnetic waves in the infrared region.
  • the shielding surface 34 a that is the outer surface of the top plate portion 34 may be subjected to a coating process for reflecting electromagnetic waves in the infrared region.
  • spacers 44 having a thickness substantially equal to the thickness of the sensitivity adjusting member 18 described later are attached to four locations on the inner surface of the top plate portion 34.
  • the position where the spacer 44 is affixed is a position where the spacer part 44 comes into contact with the pair of left and right upper end surfaces 32 a of the case part 22 when the case part 22 is stored in the lid part 24.
  • the sensitivity adjusting member 18 is formed in a quadrangular shape by a holding portion 18a that is a rectangular three-sided thin plate and a thin plate-like infrared shielding portion 18b provided between the distal end portions of the holding portion 18a.
  • An L-shaped movable adjustment knob 18c is provided at the central portion of the holding portion 18a facing the infrared shielding portion 18b.
  • the surface of the infrared shielding part 18b is subjected to a mirror surface treatment for reflecting infrared rays or a coating treatment for reflecting electromagnetic waves in the infrared region.
  • lead wire 16 is connected to the conductor pattern of the flexible printed circuit board 12 on which the temperature sensitive elements 20a and 20b are mounted by soldering or the like, and is drawn out of the housing 14. It has a sufficient length.
  • the number of lead wires 16 is three, the potential at one end of the infrared sensing temperature sensing element 20a, the potential at one end of the temperature compensation temperature sensing element 20, and the infrared sensing temperature sensing element 20a.
  • the temperature compensation temperature sensing element 20b A ground potential to which the other end of each is connected is output.
  • the flexible printed circuit board 12 has the two mounted temperature sensing elements 20 a and 20 b facing downward, and the lead wire 16 faces the rear wall 30 of the case portion 22.
  • the end portions of the pair of long sides are sandwiched and stretched between the pair of upper end surfaces 32 a of the case portion 22.
  • Spacers 44 are affixed to both ends of the flexible printed circuit board 12. Therefore, as shown in FIG. 3, the inner portion of the flexible printed circuit board 12 is disposed below the inner surface of the top plate portion 34 by the thickness of the spacer 44, and within the space of the thickness of the spacer 44, A sensitivity adjusting member 18 is accommodated.
  • the infrared detecting thermal element 20 a is disposed at the center of the opening region 42 where the infrared rays enter through the light guide unit 40,
  • the temperature compensating temperature sensing element 20b is disposed below the top plate portion 34 where infrared rays are shielded.
  • the movable adjustment knob 18 c of the sensitivity adjustment member 18 protrudes upward from the slide hole 34 b of the upper plate portion 34.
  • the case portion 22 and the lid portion 24 of the housing 14 are fixed by screws or the like (not shown), with the upper end surface 30a of the rear wall portion 30 and the upper end surface 32b of the side wall portion 32 abutting against the inner surface of the upper plate portion 34. Yes.
  • Three through holes 30b are provided in the vicinity of the upper end surface 30a of the rear wall portion 30, and the lead wires 16 connected to the flexible printed circuit board 12 are drawn out of the housing 14 through the through holes 30b. It is.
  • the assembled non-contact temperature sensor 10 has the infrared shielding portion 18 b of the sensitivity adjusting member 18 exposed from the opening region 42 in the light guide portion 40.
  • the variable adjustment knob 18c By sliding the variable adjustment knob 18c to the left and right in the drawing within the slide hole 34b, the position of the infrared shielding portion 18b can be varied in the range of X1 to X2.
  • the sensitivity adjustment member 18 moves smoothly without damaging the flexible printed circuit board 12 because an appropriate space is secured between the flexible printed circuit board 12 and the top plate portion 34 due to the presence of the spacer 44. be able to.
  • the spacer 44 is effective when the holding portion 18a and the infrared shielding portion 18b of the sensitivity adjusting member 18 are thick, but the spacer 44 may not be provided if the thickness of each portion is thin and there is no problem with sliding. .
  • the temperature detection circuit 46 that is an operation circuit of the non-contact temperature sensor 10 will be described with reference to FIG.
  • a series circuit of the infrared detection temperature sensing element 20a of the non-contact temperature sensor 10 and the reference resistor 49 is connected to both ends of the DC power supply 48, and the voltage across the infrared detection temperature sensing element 20a is expressed as a voltage.
  • the signal Va is taken out.
  • a series circuit of the temperature compensation temperature sensing element 20b of the non-contact temperature sensor 10 and the reference resistor 50 is connected to both ends of the DC power supply 48, and the voltage across the temperature compensation temperature sensing element 20b is taken out as a voltage signal Vb.
  • the reference resistors 49 and 50 have the same resistance value, have a small temperature dependency, and use highly accurate resistors.
  • the analog voltage signals Va and Vb are converted into digital voltage signals Va (d) and Vb (d) by the analog / digital converter 52 and sent to the microcomputer 54.
  • the microcomputer 54 performs predetermined arithmetic processing using the characteristic table data indicating the relationship between the voltage signal and the temperature stored in the storage device 56 and the voltage signals Va (d) and Vb (d), and performs two voltages. Temperature information of the object to be measured is obtained based on the signal difference.
  • the operation of the non-contact temperature sensor 10 and the temperature detection system 46 will be described.
  • the temperature of the flexible printed circuit board 12 is uniform, so that the resistance values of the two temperature sensitive elements 20a and 20b are equal and the circuit is balanced, so the voltage signals Va and Vb are equal.
  • the difference (Vb ⁇ Va) becomes zero.
  • the resistance values of the two temperature sensitive elements 20a and 20b change equally even if the infrared rays are not incident on the non-contact temperature sensor 10 when the temperature of the usage environment or the surrounding atmosphere changes. However, since the resistance values of the two temperature sensitive elements 20a and 20b increase or decrease equally, the equilibrium state is maintained, the difference (Vb ⁇ Va) is maintained at zero, and temperature compensation is performed appropriately.
  • the infrared sensor temperature sensing element 20a When infrared light emitted from the object to be measured enters from the light guide 40 and is absorbed by a portion facing the opening region 42 of the flexible printed circuit board 12, the infrared sensor temperature sensing element 20a is generated by the thermal energy of the portion. Changes its temperature, and its own resistance value changes. As a result, the above-described equilibrium state is lost and a difference (Vb ⁇ Va) between the two voltage signals is generated. Based on the difference between the voltage signals Va (d) and Vb (d) and the voltage signal Vb (d) which is temperature compensation information, the microcomputer performs conversion using the characteristic table data recorded in advance in the storage device 56. The surface temperature of the object to be measured is calculated.
  • a temperature detection result obtained by detecting a known temperature of an object to be measured having a constant emissivity, such as a black body furnace, using the non-contact temperature sensor 10 and processing by the temperature detection circuit 46 is a predetermined value. It is determined whether or not the standard is satisfied. When the standard is not satisfied, the movable adjustment knob 18c is operated to change the position of the infrared shielding portion 18b, and the voltage signal Va that is the output of the infrared detecting temperature sensing element 20a is changed and adjusted.
  • the infrared shielding portion 18b is within the inner region excluding the arc-shaped portion that is the end in the moving direction of the infrared shielding portion 18b within the range of X1 to X2 of the opening region 42.
  • the position of can be varied. Since the portion of the flexible printed circuit board 12 facing the infrared shielding portion 18b whose position has been adjusted cannot absorb infrared rays, the relationship between the position of the infrared shielding portion 18b and the detected temperature is, for example, as shown in the graph of FIG. It is expressed as follows.
  • the infrared shielding part 18b When the infrared shielding part 18b is arranged near the central part Xo, which is the position of the infrared detecting temperature sensitive element 20a, the amount of heat transmitted from the flexible printed circuit board 12 to the infrared detecting temperature sensitive element 20a is suppressed, and the resistance value changes. As a result, the sensitivity of the temperature sensing element 20a for infrared detection can be equivalently lowered. If the position of the infrared shielding part 18b is separated from the infrared sensing temperature sensing element 20a, the sensitivity of the infrared sensing temperature sensing element 20a can be equivalently increased.
  • the sensitivity is adjusted by moving the position of the infrared shielding portion 18b little by little, stopping when the temperature detection result calculated by the temperature detection system 46 satisfies a predetermined standard, and applying an adhesive to the slide hole 34b portion, etc. Then, the infrared shielding part 18b is fixed. In this way, the sensitivity of each product of the non-contact temperature sensor 10 can be adjusted so as to be within a certain range.
  • the non-contact temperature sensor 10 detects the temperature by adjusting the position of the infrared shielding part 18b of the sensitivity adjustment member 18 in the operation check test after assembling the members in the production process. Sensitivity can be easily corrected, the influence of variations in the external dimensions of each member can be canceled, and the temperature detection accuracy of each product can be set within a certain range. Furthermore, since this correction method does not change the contour shape, the opening area, and the viewing direction of the opening region 42 in the light guide section 40, the detection viewing angle and the opening area of the opening region can be kept constant.
  • the infrared shielding part 18b is positioned substantially perpendicular to the moving direction, and is located so as to cross the opening region 42 in the light guide part 40 so as to shield infrared rays. Therefore, the position of the infrared shielding part 18b is X1 to X2. When changing in the range, the voltage signal Va changes gently, and the position adjustment of the infrared shielding part 18b is easy.
  • the sensitivity correction effect by the infrared shielding portion 18b can be further enhanced.
  • the structure of the non-contact temperature sensor 10 is that the thin sensitivity adjustment member 18 is added to the structure of the conventional non-contact temperature sensor, so that the outer shape does not increase.
  • the structure in which the sensitivity adjusting member 18 is provided with the movable adjustment knob 18c and protrudes from the slide hole 34b to the outside of the housing 14 can be easily realized without complicating the structure of the housing 14.
  • the non-contact temperature sensor of this invention is not limited to the said embodiment,
  • region in a light guide part may be an elongate hole, a rectangle, a square, etc. with both ends semicircular. .
  • the shape of the infrared shielding portion of the sensitivity adjusting member if the degree of change of the voltage signal Va when the arbitrary constant area portion of the opening region is shielded and the position thereof is changed is appropriate, It can be set freely according to the form of the object to be measured.
  • the spacer may be replaced by a spacer means such as a protrusion integrally formed on the inner surface of the lid portion or a protrusion provided on the surface of the flexible circuit board.
  • a circuit element such as a reference resistor connected to the two temperature sensitive elements to form a bridge circuit may be mounted on the flexible printed circuit board of the non-contact temperature sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Disclosed is a non-contact temperature sensor which comprises a casing (14) having a top panel portion (34) constituting a shielding surface (34a) that shields infrared rays and a light guiding portion (40) that is formed by opening a part of the top panel portion (34) and that guides infrared rays into the casing. The non-contact temperature sensor further comprises a flexible printed circuit board (12) having a thermo-sensitive element (20a) for infrared detection and a thermo-sensitive element (20b) for temperature compensation and a sensitivity adjusting member (18) having an infrared shielding portion (18b) and capable of adjusting the position of the infrared shielding portion (18b) with respect to that of the thermo-sensitive element (20a) for infrared detection. The infrared shielding portion (18b) is positioned so as to face the thermo-sensitive element (20a) for infrared detection within an inner region of an open region (42) of the light guiding portion (40) except for an end portion in the moving directions of the sensitivity adjusting member (18). The sensitivity of the thermo-sensitive element (20a) for infrared detection can be adjusted by adjusting the position of the infrared shielding portion (18b) while the viewing angle of the thermo-sensitive element (20a) for infrared detection and the open area of the open region (42) are fixed.

Description

非接触温度センサNon-contact temperature sensor
 この発明は、赤外線検知用感温素子と温度補償用感温素子を備え、赤外線を検知して温度を測定する非接触温度センサに関する。 The present invention relates to a non-contact temperature sensor that includes a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation, and detects temperature by detecting infrared rays.
 被測定物の温度を接触式で測定する温度センサは、一般に接触部分が摩耗しやすく、被測定物に接触する感熱素子自体の熱容量が、測定誤差を生じさせるものであった。さらに、被測定物が回転動作などしている場合には、温度センサを取り付けることが困難であった。そこで、使い勝手のよい非接触式の温度センサの需要が高まっている。 In a temperature sensor that measures the temperature of an object to be measured by a contact method, the contact portion generally tends to wear, and the heat capacity of the thermal element itself that contacts the object to be measured causes a measurement error. Furthermore, it is difficult to attach a temperature sensor when the object to be measured is rotating. Therefore, the demand for easy-to-use non-contact temperature sensors is increasing.
 非接触で温度を検出する方法として、被測定物が放射する赤外線を赤外線吸収体で吸収してエネルギーに変換し、赤外線吸収体自体の温度上昇を感温素子で検出し、電気信号に変換する方式が用いられている。近年、赤外線検知用感温素子と温度補償用感温素子を組み合わせ、温度測定の精度を向上させた非接触温度センサが提案されている。 As a method of non-contact temperature detection, infrared rays radiated from the object to be measured are absorbed by an infrared absorber and converted into energy, and temperature rise of the infrared absorber itself is detected by a temperature sensitive element and converted into an electrical signal. The method is used. In recent years, a non-contact temperature sensor has been proposed in which a temperature sensing element for infrared detection and a temperature sensing element for temperature compensation are combined to improve temperature measurement accuracy.
 この種の非接触温度センサとして、例えば、特許文献1に開示されているように、赤外線検知用感温素子と温度補償用感熱素子が2枚の樹脂フィルムに個々に密着固定され、その樹脂フィルムが所定の熱伝導性を有した枠体に張り渡されて筺体内部に収容された赤外線検出器がある。これら2つの感温素子のうち、赤外線検知用感温素子は、筺体に設けられた導光部の開口領域に配置され、温度補償用感温素子は、筺体の遮蔽面によって赤外線が遮蔽される位置に配置されている。 As this type of non-contact temperature sensor, for example, as disclosed in Patent Document 1, an infrared detection temperature sensing element and a temperature compensation temperature sensing element are individually adhered and fixed to two resin films. There is an infrared detector that is stretched over a frame having a predetermined thermal conductivity and accommodated inside the housing. Of these two temperature sensing elements, the infrared sensing temperature sensing element is disposed in the opening region of the light guide provided in the housing, and the temperature compensating temperature sensing element is shielded from infrared rays by the shielding surface of the housing. Placed in position.
 また、特許文献2に開示されているように、赤外線検知用感温素子と温度補償用感熱素子が樹脂フィルムに取り付けられ、その樹脂フィルムが筺体内部に収容されている。これら2つの感温素子のうち、赤外線検知用感温素子は、筺体に設けられた導光部の開口領域に配置され、温度補償用感温素子は、筺体の壁面に囲まれて遮蔽された空間部に配置されている。さらに、導光部から入射する赤外線量を調整する手段として、導光部の開口部面積を調整する遮蔽部材が設けられている。遮蔽部材は、導光部の内壁面から内側に突出するネジのような可変突起部である。 Further, as disclosed in Patent Document 2, an infrared detection temperature-sensitive element and a temperature compensation heat-sensitive element are attached to a resin film, and the resin film is accommodated inside the housing. Of these two temperature sensing elements, the infrared sensing temperature sensing element is disposed in the opening region of the light guide provided in the housing, and the temperature compensating temperature sensing element is shielded by being surrounded by the wall surface of the housing. It is arranged in the space. Further, a shielding member for adjusting the opening area of the light guide is provided as means for adjusting the amount of infrared light incident from the light guide. The shielding member is a variable protrusion such as a screw protruding inward from the inner wall surface of the light guide.
 特許文献3は、樹脂フィルムが取り付けられたフィルム取り付け部を支持する下ケース部と、下ケース部の開口部を塞ぐ天板部と該天板部の一部を開口した赤外線の入射孔とを有する上ケース部と、樹脂フィルム上の前記入射孔から露出する入射孔対応部分に取り付けられ赤外線の熱量を感知する第1の感熱素子と、樹脂フィルム上の前記天板部で塞がれた部分に取り付けられケース内部の熱量を感知する温度補償用の第2の感熱素子とを備え、前記入射孔と第1の感熱素子との相対位置を調整することにより、出力の調整を行うことができるようにした非接触温度センサを開示している。前記入射孔と第1の感熱素子との相対位置を調整する構造としては、上ケース部をずらして入射孔の相対的位置を移動させる方法と、樹脂フィルムをずらして第1の感熱素子の相対的位置を移動させる方法とが記載されている。 Patent Document 3 discloses a lower case portion that supports a film attachment portion to which a resin film is attached, a top plate portion that closes an opening portion of the lower case portion, and an infrared incident hole that opens a part of the top plate portion. A first heat-sensitive element that is attached to an incident hole corresponding part exposed from the incident hole on the resin film, and that is covered with the top plate part on the resin film; And a second thermosensitive element for temperature compensation that senses the amount of heat inside the case, and the output can be adjusted by adjusting the relative position between the incident hole and the first thermosensitive element. A non-contact temperature sensor is disclosed. As a structure for adjusting the relative position between the incident hole and the first thermal element, there are a method of moving the relative position of the incident hole by shifting the upper case part, and a relative adjustment of the first thermal element by shifting the resin film. And a method of moving the target position.
 特許文献4は、集電素子収納部の開口部を覆うカバーと集電素子の検知面との間の空間に遮蔽板を設け、カバーの外側に形成されたスライドツマミを用いて遮蔽板をスライドさせ集光エリアを調節する集電素子センサを開示している。遮蔽板は、集電素子収納部の四角形の開口部を塞ぐように、開口部周縁から各辺に各々内向きに延び出し、赤外線の集光エリアの面積を連続的に可変するものである。 In Patent Document 4, a shield plate is provided in a space between a cover that covers the opening of the current collector housing portion and the detection surface of the current collector, and the shield plate is slid using a slide knob formed on the outside of the cover. A current collecting element sensor that adjusts the light condensing area is disclosed. The shielding plate extends inward from the periphery of the opening to each side so as to close the rectangular opening of the current collecting element housing, and continuously changes the area of the infrared condensing area.
 特許文献5は、センサ素子の受光面と対向する位置に遮光板を配置し、互いの離間距離又は遮光板の面積を変えることによって受光感度を調整する照度センサを開示している。 Patent Document 5 discloses an illuminance sensor in which a light-shielding plate is disposed at a position facing a light-receiving surface of a sensor element, and the light-receiving sensitivity is adjusted by changing the distance between them or the area of the light-shielding plate.
 特許文献6は、照度センサと当該照度センサに向けて光が入射する小開口との相対位置を変化させ、照度センサの検知範囲の調整を可能にする遮光手段を有する照明器具を開示している。この遮光手段の例として、小開口以下の大きさの第2の小開口を有する移動片を、照度センサと小開口との間で開口位置を移動可能に設けた構成が記載されている。 Patent Document 6 discloses a luminaire having a light-shielding unit that changes the relative position between an illuminance sensor and a small opening through which light enters the illuminance sensor and enables adjustment of the detection range of the illuminance sensor. . As an example of the light shielding means, there is described a configuration in which a moving piece having a second small opening having a size equal to or smaller than the small opening is provided so that the opening position can be moved between the illuminance sensor and the small opening.
 特許文献7は、赤外線の受光部分が所定の架橋構造で構成された赤外線センサであり、被検出対象物から放射される赤外線を受ける蓋の表面に赤外線の入射を遮蔽する赤外線反射膜が成膜されていることを開示するものである。 Patent Document 7 is an infrared sensor in which an infrared light receiving portion is configured with a predetermined cross-linking structure, and an infrared reflection film that shields infrared light is formed on the surface of a lid that receives infrared light emitted from an object to be detected. It is disclosed.
特開平7-260579号公報Japanese Patent Laid-Open No. 7-260579 特開2002-156284号公報JP 2002-156284 A 特開2006-118993号公報JP 2006-118993 A 特開平8-327447号公報JP-A-8-327447 特開平9-15044号公報Japanese Patent Laid-Open No. 9-15044 特開2001-243828号公報JP 2001-243828 A 特開平10-318829号公報Japanese Patent Laid-Open No. 10-318829
 特許文献1の赤外線検出器は、筺体の外形寸法のばらつき等によって温度検出に誤差が生じ、センサ製造時の歩留まりが悪いという問題があった。この筺体は、金属材料を鋳造して大量生産されるので安価に効率よく製作できる半面、外形寸法にある程度のばらつきが生じる。このばらつきの影響は、同一ロット内の比較的小さなばらつきであっても無視できるものではなく、例えば、筺体の導光部の開口部面積や開口部高さ寸法がばらつくと、赤外線の入射量が変動して検出温度に大きな誤差が生じる。さらに、筺体の外形寸法のばらつき以外に、感温素子の外形寸法、樹脂フィルムの厚み、導体パターンの断面積などのばらつきも、検出温度に誤差を生じさせる要因になる。この結果、誤差の大きい製品は、不良品として廃棄せざるを得なかった。 The infrared detector disclosed in Patent Document 1 has a problem that an error occurs in temperature detection due to variations in the external dimensions of the housing, and the yield during sensor manufacture is poor. Since this casing is mass-produced by casting a metal material, it can be manufactured inexpensively and efficiently, but some variation occurs in the external dimensions. The influence of this variation is not negligible even if it is a relatively small variation within the same lot.For example, if the opening area of the light guide part of the housing and the opening height dimension vary, the amount of incident infrared rays It fluctuates and a large error occurs in the detected temperature. In addition to variations in the outer dimensions of the housing, variations in the outer dimensions of the temperature sensitive element, the thickness of the resin film, the cross-sectional area of the conductor pattern, and the like cause errors in the detected temperature. As a result, a product with a large error has to be discarded as a defective product.
 特許文献2の赤外線温度センサは、ネジのような可変突起部の突出量を調節することによって、上記のような検出温度の誤差を製品個々に補正することができる。しかし、可変突起部の突出量を調節すると開口部面積が変化するので、赤外線を受光可能な検知範囲の輪郭形状や検知対象面積が変化し、製品によって赤外線の検出可能範囲が異なってしまうという問題があった。 The infrared temperature sensor of Patent Document 2 can correct the detection temperature error as described above by adjusting the amount of protrusion of a variable protrusion such as a screw. However, when the amount of protrusion of the variable protrusion is adjusted, the opening area changes, so the contour shape of the detection range that can receive infrared rays and the detection target area change, and the infrared detection range varies depending on the product. was there.
 特許文献3の非接触温度センサは、上ケース部の入射孔と第1の感熱素子との相対位置を調整すると、第1の感熱素子から見たとき、導光部の開口部の輪郭形状は変わらない。しかし、対象となる空間の方向がずれてしまい、赤外線の検知視野を一定とすることができるものではない。従って、上記のような調整が行われると、この温度センサを、その取付対象製品に取り付けた状態で、特定の対象部位または範囲を検知範囲とする場合に、温度センサの視野の向きがそのセンサ毎に変わることにより、センサ毎に検知対象範囲が変わってしまい、必要とする検知範囲からずれてしまう場合が生ずるものである。さらに、入射孔と第1の感熱素子との相対位置が変化すると、入射孔と第2の感熱素子との相対位置も同様に変化するので、特に小形の非接触温度センサの場合、温度補償特性が大きく変化する可能性があり、温度補償特性を再調整しなければならない。 When the non-contact temperature sensor of Patent Document 3 adjusts the relative position between the incident hole of the upper case part and the first thermosensitive element, the contour shape of the opening of the light guide unit when viewed from the first thermosensitive element is does not change. However, the direction of the target space is shifted, and the infrared detection visual field cannot be made constant. Therefore, when the adjustment as described above is performed, when the temperature sensor is attached to the product to be attached and the specific target part or range is set as the detection range, the direction of the visual field of the temperature sensor is the sensor. By changing every time, the detection target range changes for every sensor, and the case where it deviates from the required detection range may arise. Further, when the relative position between the incident hole and the first thermal element changes, the relative position between the incident hole and the second thermal element also changes in the same manner. Therefore, particularly in the case of a small non-contact temperature sensor, temperature compensation characteristics May change significantly and the temperature compensation characteristics must be readjusted.
 特許文献4の集電素子センサは、単に開口部周縁から内向きに延び出す遮蔽板の延び出し量を調整することにより、開口部の輪郭形状及び開口面積を積極的に変化させるものである。従って、検知視野角及び開口面積は、調整により変化してしまい一定に保たれないという問題がある。このような調整構造を温度センサに用いると、そのセンサ毎に視野角が異なり、検知対象範囲が大きく異なるものとなってしまう。 The current collecting element sensor of Patent Document 4 positively changes the contour shape and opening area of the opening by simply adjusting the extension amount of the shielding plate extending inward from the periphery of the opening. Therefore, there is a problem that the detection viewing angle and the opening area are changed by adjustment and cannot be kept constant. When such an adjustment structure is used for a temperature sensor, the viewing angle is different for each sensor, and the detection target range is greatly different.
 特許文献5の照度センサは、互いに対向するセンサ素子及び遮光板の離間距離を調整するので、検出素子から見た視野の輪郭は変化しないが、視野角の内側の遮光範囲の角度は、遮光板が素子に近いほど大きくなり遮光範囲も広くなるため、視野内の光検出領域の面積が一定とはならず、センサ素子が検出する対象領域が調整毎に大きく異なってしまうものである。しかも、通常最も必要な視野中心の領域が遮光されるもので、非接触温度センサの感度補正に適用できるものではない。 The illuminance sensor of Patent Document 5 adjusts the distance between the sensor element and the light shielding plate facing each other, so that the contour of the field of view seen from the detection element does not change, but the angle of the light shielding range inside the viewing angle is the light shielding plate Since the area closes to the element becomes larger and the light shielding range becomes wider, the area of the light detection area within the field of view is not constant, and the target area detected by the sensor element varies greatly with each adjustment. In addition, the most necessary field center area is usually shielded from light and cannot be applied to sensitivity correction of the non-contact temperature sensor.
 特許文献6の照明器具における遮光手段は、照度センサから見たとき、移動片の第2の小開口の輪郭形状が等価的に変化するが、特許文献3の非接触温度センサと同様に、赤外線の検知視野の方向が一定にはならず、検知対象範囲が変わってしまうものである。 The light shielding means in the luminaire of Patent Document 6 is equivalent to an infrared ray as in the non-contact temperature sensor of Patent Document 3, although the outline shape of the second small opening of the moving piece changes equivalently when viewed from the illuminance sensor. The direction of the detection field is not constant, and the detection target range changes.
 特許文献7の赤外線センサは、被検出対象物から放射される赤外線を受ける蓋の表面に、赤外線の入射を遮蔽する赤外線反射膜が成膜されていることを開示するが、赤外線の入射量や入射範囲を調整することができるものではない。 The infrared sensor disclosed in Patent Document 7 discloses that an infrared reflection film that shields the incidence of infrared rays is formed on the surface of a lid that receives infrared rays radiated from an object to be detected. The incident range cannot be adjusted.
 この発明は、上記背景技術に鑑みて成されたもので、組み立てた後に温度検出誤差を容易に補正することができ、検知視対象範囲及び検知視野角を一定に保つことができる非接触温度センサを提供することを目的とする。 The present invention has been made in view of the above-described background art, and is a non-contact temperature sensor that can easily correct a temperature detection error after assembling and can keep a detection visual target range and a detection viewing angle constant. The purpose is to provide.
 この発明は、赤外線検知用感温素子および温度補償用感温素子を備えた非接触温度センサであって、赤外線を遮蔽する遮蔽面を成す天板部と、前記天板部の一部を開口して内部に赤外線を導く導光部とが設けられた筐体と、裏面側の導体パターンに前記赤外線検知用感温素子および前記温度補償用感温素子が実装され、表面側を前記天板部に対向させて前記筺体内に収容された回路基板と、前記回路基板と前記導光部との間に位置した赤外線遮蔽部を有し、前記赤外線検知用感温素子に対する前記赤外線遮蔽部の位置を調節可能に設けけられた感度調節部材とを備え、前記赤外線検知用感温素子は、前記筺体の前記導光部の開口領域に対面した位置に配置され、前記温度補償用感温素子は、前記遮蔽面に対面した位置に配置され、前記感度調節部材の前記赤外線遮蔽部は、前記導光部の前記開口領域における、前記感度調節部材の移動方向の端部を除く内側領域内に対面して位置し、前記開口領域の任意の一定面積部分を遮蔽し、前記赤外線検知用感温素子に対する前記赤外線遮蔽部の位置を調節することにより、前記赤外線検知用感温素子の視野角が一定、且つ前記開口領域の開口面積が一定の状態で、前記赤外線検知用感温素子の感度を調整可能に設けられた非接触温度センサである。 The present invention is a non-contact temperature sensor provided with a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation, and a top plate portion forming a shielding surface for shielding infrared rays, and a part of the top plate portion being opened. The infrared detecting temperature sensing element and the temperature compensating temperature sensing element are mounted on a casing provided with a light guide portion for guiding infrared rays therein, and a conductor pattern on the back side, and the top side of the top plate A circuit board accommodated in the housing facing the part, and an infrared shielding part positioned between the circuit board and the light guide part, and the infrared shielding part with respect to the infrared detecting temperature sensing element. A temperature adjusting element provided such that the position thereof can be adjusted, and the temperature detecting element for infrared detection is disposed at a position facing an opening region of the light guide portion of the casing, and the temperature sensing element for temperature compensation Is arranged at a position facing the shielding surface, and the sensitivity The infrared shielding part of the node member is located in an inner area in the opening area of the light guide part except for an end part in the moving direction of the sensitivity adjusting member, and an arbitrary constant area portion of the opening area By adjusting the position of the infrared shielding portion relative to the infrared detecting temperature sensitive element, the viewing angle of the infrared detecting temperature sensitive element is constant, and the opening area of the opening region is constant, It is a non-contact temperature sensor provided so that the sensitivity of the temperature sensing element for infrared detection can be adjusted.
 前記赤外線遮蔽部は、その長手方向が自身の移動方向に対して垂直に位置するとともに、前記導光部の開口領域を横切るように位置して赤外線を遮蔽するものである。 The infrared shielding part is positioned so that its longitudinal direction is perpendicular to the moving direction of the infrared shielding part and crosses the opening region of the light guiding part, and shields infrared rays.
 前記筐体の前記導光部は、長円形状に形成され、前記赤外線遮蔽部は、前記開口領域の両端の円弧状部を除く範囲で移動可能に設けられている。前記赤外線検知用感温素子および前記温度補償用感温素子が実装された前記回路基板は、フレキシブルプリント回路基板である。前記赤外線検知用感温素子および前記温度補償用感温素子は、同一の特性を持つサーミスタである。 The light guide part of the casing is formed in an oval shape, and the infrared shielding part is provided so as to be movable in a range excluding arc-shaped parts at both ends of the opening region. The circuit board on which the temperature sensing element for infrared detection and the temperature sensing element for temperature compensation are mounted is a flexible printed circuit board. The infrared detecting temperature sensing element and the temperature compensating temperature sensing element are thermistors having the same characteristics.
 前記フレキシブルプリント回路基板と前記筺体の前記天板部との間にスペーサが配置され、前記スペーサは、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間に、前記感度調節部材がスライド可能な空間を確保したものである。 A spacer is disposed between the flexible printed circuit board and the top plate portion of the casing, and the sensitivity adjustment member is disposed between the flexible printed circuit board, the top plate portion, and the light guide portion. Secures a slidable space.
 前記赤外線遮蔽部の表面に、赤外線反射用の鏡面処理、又は赤外線領域の電磁波反射用のコーティング剤等による表面処理が施されている。さらに、前記感度調節部材に、前記筺体の外部から操作可能な可動調整用つまみが設けられているものである。 The surface of the infrared shielding part is subjected to a surface treatment with a mirror surface treatment for infrared reflection or a coating agent for electromagnetic wave reflection in the infrared region. Further, the sensitivity adjustment member is provided with a movable adjustment knob operable from the outside of the housing.
 この発明の非接触温度センサによれば、生産工程で各部材を組み立てた後、動作確認試験の中で感度調節部材を調節することにより、容易に感度の補正を行うことができ、製品個々の温度検出精度を一定の範囲内に抑えることができる。導光部の開口領域が一定の位置で、その輪郭形状及び開口面積を一定に保ち、且つ赤外線を受光可能な検知視野角を一定にして、温度検出の感度を補正することができるので、温度検出の対象範囲を変えることなく感度のばらつきを補正することができる。従って、取付対象製品に温度センサを取り付けた場合も、温度センサによる検知対象範囲を一定に維持することができ、より安定した品質を維持することができるものである。 According to the non-contact temperature sensor of the present invention, after assembling each member in the production process, the sensitivity can be easily corrected by adjusting the sensitivity adjusting member in the operation confirmation test. The temperature detection accuracy can be suppressed within a certain range. Since the opening area of the light guide part is constant, its contour shape and opening area are kept constant, and the detection viewing angle capable of receiving infrared rays can be made constant to correct the temperature detection sensitivity. Sensitivity variations can be corrected without changing the detection target range. Accordingly, even when a temperature sensor is attached to the attachment target product, the detection target range by the temperature sensor can be maintained constant, and more stable quality can be maintained.
 さらに、フレキシブルプリント回路基板と天板部との間にスペーサを設けることによって、感度調節部材が円滑にスライドするための適正な空間を容易に確保することができる。この発明の非接触温度センサの構造は、従来の非接触温度センサの構造に、薄型の感度調節部材が追加されただけなので、外形が大きくなることはない。 Furthermore, by providing a spacer between the flexible printed circuit board and the top plate part, it is possible to easily secure an appropriate space for the sensitivity adjusting member to slide smoothly. The structure of the non-contact temperature sensor of the present invention does not increase the outer shape because a thin sensitivity adjusting member is added to the structure of the conventional non-contact temperature sensor.
 感度調節部材の赤外線遮蔽部に赤外線反射の処理を施し、感度調節部材が赤外線を吸収するのを防止することにより、赤外線遮蔽部による感度補正の効果をより高めることができる。感度調節部材に可動調整用つまみ設け、筺体の外部に突出させるという構造も、筺体の構造を複雑にすることなく容易に実現することができる。 The effect of sensitivity correction by the infrared shielding part can be further enhanced by performing infrared reflection processing on the infrared shielding part of the sensitivity adjusting member to prevent the sensitivity adjusting member from absorbing infrared rays. A structure in which a sensitivity adjustment member is provided with a movable adjustment knob and protrudes to the outside of the housing can be easily realized without complicating the structure of the housing.
この発明の一実施形態である非接触温度センサを示す部分断面斜視図である。It is a partial section perspective view showing the non-contact temperature sensor which is one embodiment of this invention. この実施形態の感度調節部材を示す斜視図である。It is a perspective view which shows the sensitivity adjustment member of this embodiment. この実施形態の長手方向の縦断面図である。It is a longitudinal cross-sectional view of the longitudinal direction of this embodiment. この実施形態の非接触温度センサの平面図である。It is a top view of the non-contact temperature sensor of this embodiment. この実施形態を使用した温度検出システムの構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the temperature detection system which uses this embodiment. この実施形態の赤外線遮蔽部の位置と検出温度の関係を表すグラフである。It is a graph showing the relationship between the position of the infrared shielding part of this embodiment, and detection temperature.
 以下、この発明の一実施形態について、図面に基づいて説明する。この実施形態の非接触温度センサ10は、被測定物から放射された赤外線を受光し、その赤外線が有するエネルギーを、赤外線検知用感温素子20aと温度補償用感温素子20bを用いて電気信号に変換するセンサモジュールである。非接触温度センサ10は、図1に示すように、フレキシブルプリント回路基板12と、フレキシブルプリント回路基板12を収容する筺体14と、フレキシブルプリント回路基板12から筺体14の外部に電気信号を取り出すリード線16と、スライド式の感度調節部材18を備える。さらに、フレキシブルプリント回路基板12には、図示しない赤外線検知用感温素子20aと、温度補償用感温素子20bが取り付けられている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The non-contact temperature sensor 10 of this embodiment receives an infrared ray radiated from an object to be measured, and uses the infrared detection temperature sensing element 20a and the temperature compensation temperature sensing element 20b to convert the energy of the infrared signal into an electrical signal. It is a sensor module that converts to As shown in FIG. 1, the non-contact temperature sensor 10 includes a flexible printed circuit board 12, a housing 14 that houses the flexible printed circuit board 12, and lead wires that take out electrical signals from the flexible printed circuit board 12 to the outside of the housing 14. 16 and a slide-type sensitivity adjusting member 18. Furthermore, the flexible printed circuit board 12 is provided with an infrared detection temperature sensing element 20a and a temperature compensation temperature sensing element 20b (not shown).
 フレキシブルプリント回路基板12は、被測定物が放射した赤外線を吸収する赤外線吸収体の働きをする樹脂フィルムから成る。樹脂フィルムの外形は略長方形で、表面には図示しない電気配線用の導体パターンが形成されている。樹脂フィルムの厚みは、赤外線の吸収量の変化に対する熱応答性を良好にするため、熱容量の小さい薄いものが好ましく、ここでは、組み立て工程における取り扱いの容易性等も考慮して、厚さ20μm程度のものが選択されている。樹脂フィルムの素材は、ポリイミドの様な耐熱材料が用いられており、後述する面実装型の赤外線検知用感温素子20aと温度補償用感温素子20bをハンダ付け実装するのに好適である。さらに、この樹脂フィルムの赤外線の吸収能力を向上させるため、カーボンブラックまたは無機顔料を分散させた高分子材料を用いてもよい。 The flexible printed circuit board 12 is made of a resin film that functions as an infrared absorber that absorbs infrared rays emitted from the object to be measured. The outer shape of the resin film is substantially rectangular, and a conductor pattern for electric wiring (not shown) is formed on the surface. The thickness of the resin film is preferably a thin film having a small heat capacity in order to improve the thermal response to changes in the amount of absorbed infrared rays. Here, considering the ease of handling in the assembly process, the thickness is about 20 μm. The one is selected. A heat-resistant material such as polyimide is used as the material of the resin film, which is suitable for soldering and mounting a surface-mounting type infrared detecting temperature sensing element 20a and a temperature compensating temperature sensing element 20b described later. Furthermore, in order to improve the infrared absorption ability of the resin film, a polymer material in which carbon black or an inorganic pigment is dispersed may be used.
 赤外線検知用感温素子20a及び温度補償用感温素子20bは、環境温度に応じて自己の回路インピーダンスが変化する素子であって、同一の特性のものを一対にして使用する。ここでは、自身の温度の変化に応じて電気抵抗値が変化するサーミスタであって、負の温度特性を備えたNTCサーミスタが使用されている。各感温素子20a,20bは、端子長さの短い面実装型の素子が使用され、フレキシブルプリント回路基板12に実装した状態で、感温素子20a,20bの感温部分とフレキシブルプリント回路基板12との熱結合が密になるように設定されている。 The infrared detecting temperature sensing element 20a and the temperature compensating temperature sensing element 20b are elements whose own circuit impedance changes according to the environmental temperature, and use a pair having the same characteristics. Here, an NTC thermistor having a negative temperature characteristic, which is a thermistor whose electric resistance value changes in accordance with a change in its own temperature, is used. Each of the temperature sensitive elements 20a and 20b is a surface-mount type element having a short terminal length, and when mounted on the flexible printed circuit board 12, the temperature sensitive portions of the temperature sensitive elements 20a and 20b and the flexible printed circuit board 12 are used. It is set so that the thermal coupling with is dense.
 筺体14は、ケース部分22と蓋部分24で構成されている。ケース部分22は、図1に示すように、略長方形の底板部26と、底板部26の一方の短辺から上向きに立設された後壁部30と、底板部26の左右一対の長辺から上向きに立設された一対の側壁部32とを有している。底板部26は、フレキシブルプリント回路基板12の外形に対して、長さ寸法が十分に長く、幅寸法はほぼ等しい。後壁部30の上部には、水平な上端面30aが形成されている。一対の側壁32の上部にも、僅かに段差が設けられた水平な上端面32a,32bが形成されており、後壁部30から離れた側の上端面32aの高さは、後壁部30の上端面30aよりも、フレキシブルプリント回路基板12及び後述するスペーサ44の厚みの分だけ低く設定されている。また、後壁部30側の上端面32bの高さは、後壁部30の上端面30aと同じ高さに設定されている。 The housing 14 is composed of a case portion 22 and a lid portion 24. As shown in FIG. 1, the case portion 22 includes a substantially rectangular bottom plate portion 26, a rear wall portion 30 erected upward from one short side of the bottom plate portion 26, and a pair of left and right long sides of the bottom plate portion 26. And a pair of side wall portions 32 erected upward. The bottom plate portion 26 is sufficiently long in length and substantially equal in width to the outer shape of the flexible printed circuit board 12. A horizontal upper end surface 30 a is formed on the upper portion of the rear wall portion 30. Horizontal upper end surfaces 32 a and 32 b having slight steps are also formed on the upper portions of the pair of side walls 32, and the height of the upper end surface 32 a on the side away from the rear wall portion 30 is the height of the rear wall portion 30. Is set lower than the upper end face 30a by the thickness of the flexible printed circuit board 12 and a spacer 44 described later. Further, the height of the upper end surface 32 b on the rear wall portion 30 side is set to the same height as the upper end surface 30 a of the rear wall portion 30.
 蓋部分24は、図1に示すように、平坦な略長方形の天板部34と、天板部34の一方の短辺から下向きに立設された前壁部36と、天板部26の左右一対の長辺から下向きに立設された側壁部38と、天板部34の中央部分から上向きに立設された導光部40を有している。天板部34の上側の面が、被測定物が放射した赤外線を遮蔽する遮蔽面34aである。導光部40の根元付近の天板部34には、後述する感度調節部材18の可動調整用つまみ18cが突出する、矩形のスライド孔34bが設けられている。天板部34、前壁部36及び側壁部38で囲まれる内側の空間は、ケース部分22全体を、上方から覆うように収納することができる広さになっている。導光部40は、天板部34の中央付近に長穴状に形成された開口領域42の周縁から立設され、長円形状の貫通孔を有する筒状体に形成され、天板部34から一体に形成されている。導光部40の内壁面には、赤外線領域の電磁波を吸収するコーティングが施されている。天板部34の外表面である遮蔽面34aには、赤外線領域の電磁波反射用のコーティング処理が施されていてもよい。 As shown in FIG. 1, the lid portion 24 includes a flat, substantially rectangular top plate portion 34, a front wall portion 36 erected downward from one short side of the top plate portion 34, and the top plate portion 26. It has the side wall part 38 erected downward from the pair of left and right long sides, and the light guide part 40 erected upward from the central part of the top plate part 34. The upper surface of the top plate portion 34 is a shielding surface 34a that shields infrared rays emitted from the object to be measured. The top plate portion 34 near the base of the light guide portion 40 is provided with a rectangular slide hole 34b from which a movable adjustment knob 18c of the sensitivity adjustment member 18 described later protrudes. The inner space surrounded by the top plate portion 34, the front wall portion 36, and the side wall portion 38 is wide enough to accommodate the entire case portion 22 so as to cover it from above. The light guide 40 is erected from the periphery of the opening region 42 formed in the shape of a long hole near the center of the top plate 34, is formed in a cylindrical body having an oval through hole, and the top plate 34. It is integrally formed from. The inner wall surface of the light guide unit 40 is provided with a coating that absorbs electromagnetic waves in the infrared region. The shielding surface 34 a that is the outer surface of the top plate portion 34 may be subjected to a coating process for reflecting electromagnetic waves in the infrared region.
 蓋部分24には、天板部34の内側の面に、後述する感度調節部材18の厚みとほぼ等しい厚みのスペーサ44が4箇所に貼り付けられている。スペーサ44が貼り付けられている位置は、蓋部分24にケース部分22を収めたとき、ケース部分22の左右一対の上端面32aに当接する位置である。 In the lid portion 24, spacers 44 having a thickness substantially equal to the thickness of the sensitivity adjusting member 18 described later are attached to four locations on the inner surface of the top plate portion 34. The position where the spacer 44 is affixed is a position where the spacer part 44 comes into contact with the pair of left and right upper end surfaces 32 a of the case part 22 when the case part 22 is stored in the lid part 24.
 感度調節部材18は、四角形の3辺状の薄板である保持部18aと、保持部18aの先端部の間に設けられた薄板状の赤外線遮蔽部18bとにより四角形状に形成されている。赤外線遮蔽部18bと対向する保持部18aの中央部分には、途中で上向きに屈曲して延設されたL字形の可動調整用つまみ18cを備えている。赤外線遮蔽部18bの表面は、赤外線反射用の鏡面処理、又は赤外線領域の電磁波を反射するコーティング処理が施されている。 The sensitivity adjusting member 18 is formed in a quadrangular shape by a holding portion 18a that is a rectangular three-sided thin plate and a thin plate-like infrared shielding portion 18b provided between the distal end portions of the holding portion 18a. An L-shaped movable adjustment knob 18c is provided at the central portion of the holding portion 18a facing the infrared shielding portion 18b. The surface of the infrared shielding part 18b is subjected to a mirror surface treatment for reflecting infrared rays or a coating treatment for reflecting electromagnetic waves in the infrared region.
 リード線16は、フレキシブルプリント回路基板12の導体パターンであって各感温素子20a,20bが実装された面の導体パターンに、はんだ付け等によって一端が接続され、筺体14の外部に引き出すための十分な長さを有している。ここでは、リード線16は3本で、赤外線検知用感温素子20aの一端の電位、温度補償用感温素子20の一端の電位、及び赤外線検知用感温素子20a温度補償用感温素子20bの各他端が接続されたグランド電位を出力する。 One end of the lead wire 16 is connected to the conductor pattern of the flexible printed circuit board 12 on which the temperature sensitive elements 20a and 20b are mounted by soldering or the like, and is drawn out of the housing 14. It has a sufficient length. Here, the number of lead wires 16 is three, the potential at one end of the infrared sensing temperature sensing element 20a, the potential at one end of the temperature compensation temperature sensing element 20, and the infrared sensing temperature sensing element 20a. The temperature compensation temperature sensing element 20b. A ground potential to which the other end of each is connected is output.
 次に、組み立てられた状態の非接触温度センサ10の内部構造について、図1、図3及び図4に基づいて説明する。フレキシブルプリント回路基板12は、図1、図3に示すように、実装された2つの感温素子20a,20bを下方に向け、リード線16がケース部分22の後壁部30の側に向けて配置され、一対の長辺側の端部が、ケース部分22の一対の上端面32a間に挟持されて張り渡されている。フレキシブルプリント回路基板12の両端縁には、スペーサ44が貼り付けられている。従って、フレキシブルプリント回路基板12の内側の部分は、図3に示すように、天板部34の内側の面から、スペーサ44の厚み分だけ下方に配置され、スペーサ44の厚みの空間内に、感度調節部材18が収容されている。 Next, the internal structure of the non-contact temperature sensor 10 in the assembled state will be described based on FIG. 1, FIG. 3, and FIG. As shown in FIGS. 1 and 3, the flexible printed circuit board 12 has the two mounted temperature sensing elements 20 a and 20 b facing downward, and the lead wire 16 faces the rear wall 30 of the case portion 22. The end portions of the pair of long sides are sandwiched and stretched between the pair of upper end surfaces 32 a of the case portion 22. Spacers 44 are affixed to both ends of the flexible printed circuit board 12. Therefore, as shown in FIG. 3, the inner portion of the flexible printed circuit board 12 is disposed below the inner surface of the top plate portion 34 by the thickness of the spacer 44, and within the space of the thickness of the spacer 44, A sensitivity adjusting member 18 is accommodated.
 フレキシブルプリント回路基板12及び感度調節部材18が、筺体14内に収容された状態で、赤外線検知用感熱素子20aは、導光部40を通って赤外線が入射する開口領域42の中央に配置され、温度補償用感温素子20bは、赤外線が遮光される天板部34の下方に配置されている。感度調節部材18の可動調整用つまみ18cは、上板部34のスライド孔34bから上方に突出している。 In the state where the flexible printed circuit board 12 and the sensitivity adjusting member 18 are accommodated in the housing 14, the infrared detecting thermal element 20 a is disposed at the center of the opening region 42 where the infrared rays enter through the light guide unit 40, The temperature compensating temperature sensing element 20b is disposed below the top plate portion 34 where infrared rays are shielded. The movable adjustment knob 18 c of the sensitivity adjustment member 18 protrudes upward from the slide hole 34 b of the upper plate portion 34.
 筺体14のケース部分22と蓋部分24は、上板部34の内側の面に、後壁部30の上端面30a及び側壁部32の上端面32bが当接し、図示しないネジ等によって固定されている。後壁部30の上端面30a近傍には、3つの透孔30bが設けられており、フレキシブルプリント回路基板12に接続されたリード線16は、この透孔30bを通って筺体14の外側に引き出されている。 The case portion 22 and the lid portion 24 of the housing 14 are fixed by screws or the like (not shown), with the upper end surface 30a of the rear wall portion 30 and the upper end surface 32b of the side wall portion 32 abutting against the inner surface of the upper plate portion 34. Yes. Three through holes 30b are provided in the vicinity of the upper end surface 30a of the rear wall portion 30, and the lead wires 16 connected to the flexible printed circuit board 12 are drawn out of the housing 14 through the through holes 30b. It is.
 組み立てられた非接触温度センサ10は、図4に示すように、導光部40内の開口領域42から、感度調節用部材18の赤外線遮蔽部18bが露出している。可変調整つまみ18cを、スライド孔34b内で図面上の左右にスライドさせることによって、赤外線遮蔽部18bの位置を、X1~X2の範囲で可変することができる。感度調節部材18の移動は、スペーサ44の存在によってフレキシブルプリント回路基板12と天板部34の間に適正な空間が確保されているので、フレキシブルプリント回路基板12を傷つけることなく円滑に摺動することができる。スペーサ44は、感度調節部材18の保持部18aと赤外線遮蔽部18bの厚みが厚い場合に有効であるが、当該各部の厚みが薄く、スライドに支障がなければ、スペーサ44を設けなくてもよい。 As shown in FIG. 4, the assembled non-contact temperature sensor 10 has the infrared shielding portion 18 b of the sensitivity adjusting member 18 exposed from the opening region 42 in the light guide portion 40. By sliding the variable adjustment knob 18c to the left and right in the drawing within the slide hole 34b, the position of the infrared shielding portion 18b can be varied in the range of X1 to X2. The sensitivity adjustment member 18 moves smoothly without damaging the flexible printed circuit board 12 because an appropriate space is secured between the flexible printed circuit board 12 and the top plate portion 34 due to the presence of the spacer 44. be able to. The spacer 44 is effective when the holding portion 18a and the infrared shielding portion 18b of the sensitivity adjusting member 18 are thick, but the spacer 44 may not be provided if the thickness of each portion is thin and there is no problem with sliding. .
 次に、非接触温度センサ10の動作回路である温度検出回路46について、図5に基づいて説明する。非接触温度検出回路46は、直流電源48の両端に、非接触温度センサ10の赤外線検知感温素子20a及び基準抵抗49の直列回路が接続され、赤外線検知感温素子20aの両端電圧を、電圧信号Vaとして取り出す。同様に、直流電源48の両端に、非接触温度センサ10の温度補償用感温素子20b及び基準抵抗50の直列回路が接続され、温度補償用感温素子20bの両端電圧を電圧信号Vbとして取り出す。この基準抵抗49,50は互いに抵抗値が等しく、温度依存性が小さく高精度の抵抗が用いられる。 Next, the temperature detection circuit 46 that is an operation circuit of the non-contact temperature sensor 10 will be described with reference to FIG. In the non-contact temperature detection circuit 46, a series circuit of the infrared detection temperature sensing element 20a of the non-contact temperature sensor 10 and the reference resistor 49 is connected to both ends of the DC power supply 48, and the voltage across the infrared detection temperature sensing element 20a is expressed as a voltage. The signal Va is taken out. Similarly, a series circuit of the temperature compensation temperature sensing element 20b of the non-contact temperature sensor 10 and the reference resistor 50 is connected to both ends of the DC power supply 48, and the voltage across the temperature compensation temperature sensing element 20b is taken out as a voltage signal Vb. . The reference resistors 49 and 50 have the same resistance value, have a small temperature dependency, and use highly accurate resistors.
 アナログの電圧信号Va,Vbは、アナログ/デジタル変換器52によってデジタルの電圧信号Va(d),Vb(d)に変換され、マイクロコンピュータ54に送られる。マイクロコンピュータ54は、記憶装置56に格納されている電圧信号と温度との関係を示す特性テーブルデータと、電圧信号Va(d),Vb(d)を用いて所定の演算処理行い、2つの電圧信号の差分に基づいて被測定物の温度情報を求める。 The analog voltage signals Va and Vb are converted into digital voltage signals Va (d) and Vb (d) by the analog / digital converter 52 and sent to the microcomputer 54. The microcomputer 54 performs predetermined arithmetic processing using the characteristic table data indicating the relationship between the voltage signal and the temperature stored in the storage device 56 and the voltage signals Va (d) and Vb (d), and performs two voltages. Temperature information of the object to be measured is obtained based on the signal difference.
 次に、非接触温度センサ10と温度検出システム46の動作について説明する。導光部40から赤外線が入射しないときは、フレキシブルプリント回路基板12の温度が一様なので、2つの感温素子20a,20bの抵抗値が等しく、回路が平衡するので電圧信号Va,Vbが等しくなり、差分(Vb-Va)はゼロになる。 Next, the operation of the non-contact temperature sensor 10 and the temperature detection system 46 will be described. When infrared light is not incident from the light guide 40, the temperature of the flexible printed circuit board 12 is uniform, so that the resistance values of the two temperature sensitive elements 20a and 20b are equal and the circuit is balanced, so the voltage signals Va and Vb are equal. Thus, the difference (Vb−Va) becomes zero.
 2つの感温素子20a,20bは、使用環境や周辺雰囲気の温度が変化すると、非接触温度センサ10に赤外線が入射しなくとも、抵抗値が互いに等しく変化する。しかし、2つの感温素子20a,20bの抵抗値が等しく増減するので、平衡状態は維持され差分(Vb-Va)はゼロを維持し、温度補償が適正に行われる。 The resistance values of the two temperature sensitive elements 20a and 20b change equally even if the infrared rays are not incident on the non-contact temperature sensor 10 when the temperature of the usage environment or the surrounding atmosphere changes. However, since the resistance values of the two temperature sensitive elements 20a and 20b increase or decrease equally, the equilibrium state is maintained, the difference (Vb−Va) is maintained at zero, and temperature compensation is performed appropriately.
 被測定物が放射した赤外線が導光部40から入射し、フレキシブルプリント回路基板12の開口領域42と対面する部分に赤外線が吸収されると、その部分の熱エネルギーにより赤外線検知用感温素子20aの温度が変化し、自身の抵抗値が変化する。これにより、上記の平衡状態が崩れ、2つの電圧信号の差分(Vb-Va)が生じる。マイクロコンピュータは、電圧信号Va(d),Vb(d)の差分と、温度補償情報である電圧信号Vb(d)に基づき、記憶装置56にあらかじめ記録されている特性テーブルデーダによって換算を行い、被測定物の表面温度を算出する。 When infrared light emitted from the object to be measured enters from the light guide 40 and is absorbed by a portion facing the opening region 42 of the flexible printed circuit board 12, the infrared sensor temperature sensing element 20a is generated by the thermal energy of the portion. Changes its temperature, and its own resistance value changes. As a result, the above-described equilibrium state is lost and a difference (Vb−Va) between the two voltage signals is generated. Based on the difference between the voltage signals Va (d) and Vb (d) and the voltage signal Vb (d) which is temperature compensation information, the microcomputer performs conversion using the characteristic table data recorded in advance in the storage device 56. The surface temperature of the object to be measured is calculated.
 次に、この非接触温度センサ10の生産工程または出荷試験工程での、感度のばらつき補正について説明する。先ず、例えば黒体炉など一定の放射率を持つ被測定物の既知の温度を、非接触温度センサ10を用いて検出し、温度検出回路46で処理して得られた温度検出結果が、所定の規格を満たしているか否かを判定する。規格を満たしていないときは、可動調節用つまみ18cを操作して赤外線遮蔽部18bの位置を可変し、赤外線検知用感温素子20aの出力である電圧信号Vaを変化させて調整する。 Next, sensitivity variation correction in the production process or the shipping test process of the non-contact temperature sensor 10 will be described. First, a temperature detection result obtained by detecting a known temperature of an object to be measured having a constant emissivity, such as a black body furnace, using the non-contact temperature sensor 10 and processing by the temperature detection circuit 46 is a predetermined value. It is determined whether or not the standard is satisfied. When the standard is not satisfied, the movable adjustment knob 18c is operated to change the position of the infrared shielding portion 18b, and the voltage signal Va that is the output of the infrared detecting temperature sensing element 20a is changed and adjusted.
 この実施形態では、赤外線遮蔽部18bは、図4に示すように、開口領域42のX1~X2の範囲で、赤外線遮蔽部18bの移動方向の端部である円弧状部を除く内側領域内での位置を可変することができる。位置を調整された赤外線遮蔽部18bと対面するフレキシブルプリント回路基板12の部分は、赤外線を吸収することができないので、赤外線遮蔽部18bの位置と検出温度の関係は、例えば、図6のグラフのように表される。赤外線遮蔽部18bを赤外線検知用感温素子20aの位置である中央部Xo近くに配置すると、フレキシブルプリント回路基板12から赤外線検知用感温素子20aに伝わる熱量が抑えられてその抵抗値の変化が小さくなり、赤外線検知用感温素子20aの感度を等価的に低くすることができる。赤外線遮蔽部18bの位置を赤外線検知用感温素子20aから離すと、赤外線検知用感温素子20aの感度を等価的に高くすることができる。感度の調整方法は、赤外線遮蔽部18bの位置を少しずつ移動させ、温度検出システム46で算出した温度検出結果が所定の規格を満たしたところで停止させ、スライド孔34b部分に接着剤を塗布する等して、赤外線遮蔽部18bを固定する。このような方法で、非接触温度センサ10の製品個々の感度を一定の範囲内に収まるように調整することができる。 In this embodiment, as shown in FIG. 4, the infrared shielding portion 18b is within the inner region excluding the arc-shaped portion that is the end in the moving direction of the infrared shielding portion 18b within the range of X1 to X2 of the opening region 42. The position of can be varied. Since the portion of the flexible printed circuit board 12 facing the infrared shielding portion 18b whose position has been adjusted cannot absorb infrared rays, the relationship between the position of the infrared shielding portion 18b and the detected temperature is, for example, as shown in the graph of FIG. It is expressed as follows. When the infrared shielding part 18b is arranged near the central part Xo, which is the position of the infrared detecting temperature sensitive element 20a, the amount of heat transmitted from the flexible printed circuit board 12 to the infrared detecting temperature sensitive element 20a is suppressed, and the resistance value changes. As a result, the sensitivity of the temperature sensing element 20a for infrared detection can be equivalently lowered. If the position of the infrared shielding part 18b is separated from the infrared sensing temperature sensing element 20a, the sensitivity of the infrared sensing temperature sensing element 20a can be equivalently increased. The sensitivity is adjusted by moving the position of the infrared shielding portion 18b little by little, stopping when the temperature detection result calculated by the temperature detection system 46 satisfies a predetermined standard, and applying an adhesive to the slide hole 34b portion, etc. Then, the infrared shielding part 18b is fixed. In this way, the sensitivity of each product of the non-contact temperature sensor 10 can be adjusted so as to be within a certain range.
 以上説明したように、非接触温度センサ10は、生産工程で各部材を組み立てた後、動作確認試験の中で、感度調節部材18の赤外線遮蔽部18bの位置を調節することによって、温度検出の感度を容易に補正することができ、各部材の外形寸法等のばらつきの影響をキャンセルし、製品個々の温度検出精度を一定範囲内に設定することができる。さらに、この補正方法は、導光部40内の開口領域42の輪郭形状と開口面積及び視野方向が変化しないので、検出の視野角及び前記開口領域の開口面積を一定に保つことができる。赤外線遮蔽部18bは、その移動方向に対してほぼ垂直方向に位置するとともに、導光部40内の開口領域42を横切るように位置して赤外線を遮蔽する構造のため、位置をX1~X2の範囲で変化させたとき、電圧信号Vaがなだらかに変化し、赤外線遮蔽部18bの位置調整が容易である。 As described above, the non-contact temperature sensor 10 detects the temperature by adjusting the position of the infrared shielding part 18b of the sensitivity adjustment member 18 in the operation check test after assembling the members in the production process. Sensitivity can be easily corrected, the influence of variations in the external dimensions of each member can be canceled, and the temperature detection accuracy of each product can be set within a certain range. Furthermore, since this correction method does not change the contour shape, the opening area, and the viewing direction of the opening region 42 in the light guide section 40, the detection viewing angle and the opening area of the opening region can be kept constant. The infrared shielding part 18b is positioned substantially perpendicular to the moving direction, and is located so as to cross the opening region 42 in the light guide part 40 so as to shield infrared rays. Therefore, the position of the infrared shielding part 18b is X1 to X2. When changing in the range, the voltage signal Va changes gently, and the position adjustment of the infrared shielding part 18b is easy.
 さらに、感度調節部材18の赤外線遮蔽部18bに赤外線反射の表面処理を施すことによって、赤外線遮蔽部18bによる感度補正の効果をより高めることができる。 Furthermore, by performing an infrared reflection surface treatment on the infrared shielding portion 18b of the sensitivity adjusting member 18, the sensitivity correction effect by the infrared shielding portion 18b can be further enhanced.
 非接触温度センサ10の構造は、従来の非接触温度センサの構造に、薄型の感度調節部材18が追加されただけなので、外形が大きくなることはない。感度調節部材18に可動調整用つまみ18cを設けスライド孔34bから筺体14の外部に突出させる、という構造についても、筺体14の構造を複雑にすることなく容易に実現することができる。フレキシブルプリント回路基板12と蓋部分24の天板部34との間にスペーサ44を設けることによって、感度調節部材18が円滑にスライドするための適正な空間を容易に確保することができる。 The structure of the non-contact temperature sensor 10 is that the thin sensitivity adjustment member 18 is added to the structure of the conventional non-contact temperature sensor, so that the outer shape does not increase. The structure in which the sensitivity adjusting member 18 is provided with the movable adjustment knob 18c and protrudes from the slide hole 34b to the outside of the housing 14 can be easily realized without complicating the structure of the housing 14. By providing the spacer 44 between the flexible printed circuit board 12 and the top plate portion 34 of the lid portion 24, it is possible to easily ensure an appropriate space for the sensitivity adjusting member 18 to slide smoothly.
 なお、この発明の非接触温度センサは、上記実施形態に限定されるものではなく、導光部内の開口領域の形状は、両端が半円状の長穴、長方形、正方形などであってもよい。感度調節用部材の赤外線遮蔽部の形状についても、開口領域の任意の一定面積部分を遮蔽し、その位置を変化させたときの電圧信号Vaの変化の具合が適正であれば、センサの用途や被測定物の形態に応じて、自由に設定することができる。スペーサは、蓋部分の内側の面に一体に形成された突起や、フレキシブル回路基板の表面に設けた突起等によるスペーサ手段で代用してもよい。2つの感温素子と接続されてブリッジ回路を構成する基準抵抗などの回路素子は、非接触温度センサのフレキシブルプリント回路基板上に実装してもよい。 In addition, the non-contact temperature sensor of this invention is not limited to the said embodiment, The shape of the opening area | region in a light guide part may be an elongate hole, a rectangle, a square, etc. with both ends semicircular. . As for the shape of the infrared shielding portion of the sensitivity adjusting member, if the degree of change of the voltage signal Va when the arbitrary constant area portion of the opening region is shielded and the position thereof is changed is appropriate, It can be set freely according to the form of the object to be measured. The spacer may be replaced by a spacer means such as a protrusion integrally formed on the inner surface of the lid portion or a protrusion provided on the surface of the flexible circuit board. A circuit element such as a reference resistor connected to the two temperature sensitive elements to form a bridge circuit may be mounted on the flexible printed circuit board of the non-contact temperature sensor.
10 非接触温度センサ
12 フレキシブルプリント回路基板
14 筺体
16 リード線
18 感度調節部材
18a 保持部材
18b 赤外線遮蔽部
18c 可変調整用つまみ
20a 赤外線検知用感温素子
20b 温度補償用感温素子
22 ケース部分
24 蓋部分
34 天板部
34a 遮蔽面
40 導光部
42 開口領域
44 スペーサ
46 温度検出システム
49,50 基準抵抗
 
DESCRIPTION OF SYMBOLS 10 Non-contact temperature sensor 12 Flexible printed circuit board 14 Housing 16 Lead wire 18 Sensitivity adjustment member 18a Holding member 18b Infrared shielding part 18c Variable adjustment knob 20a Infrared detection temperature sensing element 20b Temperature compensation temperature sensing element 22 Case part 24 Lid Part 34 Top plate part 34a Shielding surface 40 Light guide part 42 Opening region 44 Spacer 46 Temperature detection system 49, 50 Reference resistance

Claims (8)

  1.  赤外線検知用感温素子および温度補償用感温素子を備えた非接触温度センサであって、
     赤外線を遮蔽する遮蔽面を成す天板部と、前記天板部の一部を開口して内部に赤外線を導く導光部とが設けられた筐体と、
     裏面側の導体パターンに前記赤外線検知用感温素子および前記温度補償用感温素子が実装され、表面側を前記天板部に対向させて前記筺体内に収容された回路基板と、
     前記回路基板と前記導光部との間に位置した赤外線遮蔽部を有し、前記赤外線検知用感温素子に対する前記赤外線遮蔽部の位置を調節可能に設けけられた感度調節部材とを備え、
     前記赤外線検知用感温素子は、前記筺体の前記導光部の開口領域に対面した位置に配置され、前記温度補償用感温素子は、前記遮蔽面に対面した位置に配置され、
     前記感度調節部材の前記赤外線遮蔽部は、前記導光部の前記開口領域における、前記感度調節部材の移動方向の端部を除く内側領域内に対面して位置し、前記開口領域の任意の一定面積部分を遮蔽し、
     前記赤外線検知用感温素子に対する前記赤外線遮蔽部の位置を調節することにより、前記赤外線検知用感温素子の視野角が一定、且つ前記開口領域の開口面積が一定の状態で、前記赤外線検知用感温素子の感度を調整可能に設けられた非接触温度センサ。
    A non-contact temperature sensor having a temperature sensing element for infrared detection and a temperature sensing element for temperature compensation,
    A casing provided with a top plate portion that forms a shielding surface that shields infrared rays, and a light guide portion that opens a part of the top plate portion and guides infrared rays therein;
    The circuit board housed in the housing with the infrared sensing temperature sensing element and the temperature compensation temperature sensing element mounted on a conductor pattern on the back side, with the front side facing the top plate part,
    A sensitivity adjusting member provided with an infrared shielding part positioned between the circuit board and the light guide part, and provided so as to be capable of adjusting the position of the infrared shielding part with respect to the temperature sensing element for infrared detection;
    The infrared detecting temperature sensing element is disposed at a position facing the opening region of the light guide portion of the housing, and the temperature compensating temperature sensing element is disposed at a position facing the shielding surface,
    The infrared shielding portion of the sensitivity adjustment member is located facing an inner region of the opening region of the light guide portion except for an end portion in the moving direction of the sensitivity adjustment member, and is arbitrarily fixed in the opening region. Shielding the area,
    By adjusting the position of the infrared shielding part with respect to the infrared detection temperature sensing element, the infrared detection temperature sensing element has a constant viewing angle and an opening area of the opening region is constant. A non-contact temperature sensor that can adjust the sensitivity of the temperature sensing element.
  2.  前記赤外線遮蔽部は、その長手方向が自身の移動方向に対して垂直に位置するとともに、前記導光部の前記開口領域を横切るように位置して赤外線を遮蔽する請求項1記載の非接触温度センサ。 2. The non-contact temperature according to claim 1, wherein the infrared shielding part is positioned so that a longitudinal direction thereof is perpendicular to a moving direction of the infrared shielding part and traverses the opening region of the light guide part, and shields infrared rays. Sensor.
  3.  前記筐体の前記導光部は、長円形状に形成され、前記赤外線遮蔽部は、前記開口領域の両端の円弧状部を除く範囲で移動可能に設けられている請求項2記載の非接触温度センサ。 The non-contact according to claim 2, wherein the light guide part of the housing is formed in an oval shape, and the infrared shielding part is provided so as to be movable in a range excluding arc-shaped parts at both ends of the opening region. Temperature sensor.
  4.  前記赤外線検知用感温素子および前記温度補償用感温素子が実装された前記回路基板は、フレキシブルプリント回路基板である請求項1記載の非接触温度センサ。 The non-contact temperature sensor according to claim 1, wherein the circuit board on which the infrared sensing temperature sensing element and the temperature compensation temperature sensing element are mounted is a flexible printed circuit board.
  5.  前記赤外線検知用感温素子および前記温度補償用感温素子は、同一の特性を持つサーミスタである請求項4記載の非接触温度センサ。 The non-contact temperature sensor according to claim 4, wherein the infrared detecting temperature sensing element and the temperature compensating temperature sensing element are thermistors having the same characteristics.
  6.  前記フレキシブルプリント回路基板と前記筺体の前記天板部との間にスペーサが配置され、前記スペーサは、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間に、前記感度調節部材がスライド可能な空間を確保する請求項4記載の非接触温度センサ。 A spacer is disposed between the flexible printed circuit board and the top plate portion of the casing, and the sensitivity adjustment member is disposed between the flexible printed circuit board, the top plate portion, and the light guide portion. The non-contact temperature sensor according to claim 4, wherein a space is slidable.
  7.  前記赤外線遮蔽部の表面に、赤外線領域の電磁波を反射する表面処理が施された請求項1記載の非接触温度センサ。 The non-contact temperature sensor according to claim 1, wherein the surface of the infrared shielding part is subjected to a surface treatment for reflecting electromagnetic waves in the infrared region.
  8.  前記感度調節部材に、前記筺体の外部から操作可能な可動調整用つまみが設けられた請求項1記載の非接触温度センサ。
     
    The non-contact temperature sensor according to claim 1, wherein the sensitivity adjustment member is provided with a movable adjustment knob operable from the outside of the housing.
PCT/JP2010/063098 2010-01-08 2010-08-03 Non-contact temperature sensor WO2011083593A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080057068.3A CN102667430B (en) 2010-01-08 2010-08-03 Non-contact temperature sensor
KR1020127014213A KR101709943B1 (en) 2010-01-08 2010-08-03 Non-contact temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002490A JP4567806B1 (en) 2010-01-08 2010-01-08 Non-contact temperature sensor
JP2010-002490 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011083593A1 true WO2011083593A1 (en) 2011-07-14

Family

ID=43098834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063098 WO2011083593A1 (en) 2010-01-08 2010-08-03 Non-contact temperature sensor

Country Status (4)

Country Link
JP (1) JP4567806B1 (en)
KR (1) KR101709943B1 (en)
CN (1) CN102667430B (en)
WO (1) WO2011083593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065091A1 (en) * 2011-11-04 2013-05-10 株式会社芝浦電子 Infrared temperature sensor and fuser using same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514071B2 (en) * 2010-10-29 2014-06-04 Tdk株式会社 Temperature sensor
US11439143B2 (en) * 2012-07-10 2022-09-13 Lifeline Scientific, Inc. Temperature sensing in organ preservation apparatus
US20140264023A1 (en) * 2013-03-13 2014-09-18 Kelsey-Hayes Company Lobed aperture radiant sensor
KR20150103944A (en) * 2014-03-04 2015-09-14 (주)파트론 Electronic device having contactless temperature sensor and contactless temperature sensor module
KR101650344B1 (en) * 2014-04-29 2016-08-24 세일리코 주식회사 Non-contact temperature profiler, monitoring system for temperature and vibration using the same and method thereof
JP6354465B2 (en) * 2014-09-01 2018-07-11 三菱マテリアル株式会社 Infrared sensor and method for adjusting sensitivity of infrared sensor
JP2016223809A (en) * 2015-05-27 2016-12-28 浜松ホトニクス株式会社 Shield plate and measurement device
JP2016223811A (en) * 2015-05-27 2016-12-28 浜松ホトニクス株式会社 Shield plate and measurement device
US10845247B2 (en) * 2016-06-13 2020-11-24 SHIBAURA ELECTRONICS Co., LTD Infrared temperature sensor
US10533898B2 (en) 2016-12-20 2020-01-14 Shibaura Electronics Co., Ltd. Infrared temperature sensor
JP6991716B2 (en) 2017-01-20 2022-01-12 キヤノン株式会社 Sensor unit and image forming device
WO2018225141A1 (en) * 2017-06-06 2018-12-13 株式会社芝浦電子 Infrared temperature sensor and production method therefor
CN113507082B (en) * 2021-07-14 2022-05-13 四川大学 Single-phase passive anti-icing and de-icing resistance type control equipment for strain tower

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327447A (en) * 1995-05-30 1996-12-13 Matsushita Electric Works Ltd Current collecting element sensor
JPH0915044A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Illuminance sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2001243828A (en) * 2000-02-29 2001-09-07 Matsushita Electric Works Ltd Illumination fixture
JP2002156284A (en) * 2000-11-20 2002-05-31 Ishizuka Electronics Corp Infrared temperature sensor
JP2006118992A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor
JP2006118993A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor, and output regulation method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327668B2 (en) 1994-03-24 2002-09-24 石塚電子株式会社 Infrared detector
US5962854A (en) * 1996-06-12 1999-10-05 Ishizuka Electronics Corporation Infrared sensor and infrared detector
JP2008145133A (en) * 2006-12-06 2008-06-26 Horiba Ltd Radiation thermometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327447A (en) * 1995-05-30 1996-12-13 Matsushita Electric Works Ltd Current collecting element sensor
JPH0915044A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Illuminance sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2001243828A (en) * 2000-02-29 2001-09-07 Matsushita Electric Works Ltd Illumination fixture
JP2002156284A (en) * 2000-11-20 2002-05-31 Ishizuka Electronics Corp Infrared temperature sensor
JP2006118992A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor
JP2006118993A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor, and output regulation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065091A1 (en) * 2011-11-04 2013-05-10 株式会社芝浦電子 Infrared temperature sensor and fuser using same

Also Published As

Publication number Publication date
CN102667430A (en) 2012-09-12
KR101709943B1 (en) 2017-02-24
JP4567806B1 (en) 2010-10-20
JP2011141216A (en) 2011-07-21
CN102667430B (en) 2014-11-26
KR20120120152A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2011083593A1 (en) Non-contact temperature sensor
JP5640529B2 (en) Infrared sensor and circuit board having the same
JP5832007B2 (en) Infrared sensor and manufacturing method thereof
JP2011013213A (en) Infrared sensor
US9568371B2 (en) Infrared sensor
KR101729370B1 (en) Infrared sensor
EP2813826B1 (en) Infrared sensor and infrared sensor device
JP5754626B2 (en) Infrared sensor
JP2011216323A (en) Induction heating cooker
JP5741830B2 (en) Infrared sensor device
JPH11223555A (en) Non-contacting temperature sensor and detection circuit therefor
WO2017145670A1 (en) Infrared sensor device
JP5569268B2 (en) Battery temperature sensor device
CN211651857U (en) Infrared radiation measuring device
JP5573599B2 (en) Infrared sensor and induction heating cooker equipped with the same
JP5747628B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057068.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014213

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10842108

Country of ref document: EP

Kind code of ref document: A1