WO2011082681A1 - 资源映射、码分复用方法及装置 - Google Patents

资源映射、码分复用方法及装置 Download PDF

Info

Publication number
WO2011082681A1
WO2011082681A1 PCT/CN2011/070082 CN2011070082W WO2011082681A1 WO 2011082681 A1 WO2011082681 A1 WO 2011082681A1 CN 2011070082 W CN2011070082 W CN 2011070082W WO 2011082681 A1 WO2011082681 A1 WO 2011082681A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
mapping
different codeword
codeword sequences
mapping scheme
Prior art date
Application number
PCT/CN2011/070082
Other languages
English (en)
French (fr)
Inventor
孙卫军
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2012113733/07A priority Critical patent/RU2502206C1/ru
Priority to ES11731682.8T priority patent/ES2439844T3/es
Priority to EP11731682.8A priority patent/EP2410709B1/en
Priority to AU2011204705A priority patent/AU2011204705B2/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PL20151328T priority patent/PL3672182T3/pl
Priority to EP20151328.0A priority patent/EP3672182B1/en
Priority to BR112012007856-9A priority patent/BR112012007856B1/pt
Priority to EP13182544.0A priority patent/EP2696549B1/en
Priority to CN2011800055494A priority patent/CN102714644A/zh
Publication of WO2011082681A1 publication Critical patent/WO2011082681A1/zh
Priority to US13/291,697 priority patent/US8315149B2/en
Priority to US13/614,726 priority patent/US8625403B2/en
Priority to US13/729,729 priority patent/US8553523B2/en
Priority to US14/095,656 priority patent/US9166720B2/en
Priority to US14/868,346 priority patent/US9496977B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels

Definitions

  • the present invention relates to the field of communications, and in particular, to a resource mapping, code division multiplexing method and apparatus.
  • LTE Long Term Evolution
  • a transmitting end provides a pilot symbol to a receiving end, and a receiving end user equipment can obtain a channel estimation value required for user data demodulation according to the received pilot symbol.
  • resource mapping is needed to determine the correspondence between the spatial layer number of the transmitted pilot symbols, the subcarriers where the pilot symbols are located, and the codewords used by the pilot symbols.
  • codewords in resource mapping there are a variety of design options.
  • each cell adopts the same mapping scheme.
  • the same codeword sequence is used on the subcarriers where the pilot symbols are located.
  • a resource mapping method is provided, where the method includes:
  • a resource mapping device is also provided, the device comprising:
  • a storage module configured to store at least two mapping schemes, where the mapping scheme is a spatial layer number for transmitting pilot symbols, Corresponding relationship between the codeword used by the pilot symbol and the subcarrier where the pilot symbol is located;
  • a selection module configured to select one mapping scheme in at least two mapping schemes stored by the storage module, and map the pilot symbol with the strongest transmit power and the at least one neighbor cell selection corresponding to the selected mapping scheme
  • the pilot symbols corresponding to the scheme having the strongest transmit power are staggered in frequency and/or time;
  • mapping module configured to perform resource mapping according to a mapping scheme selected by the selection module.
  • a code division multiplexing method comprising:
  • the pilot symbols of the respective spatial layers are multiplexed according to the codeword sequence corresponding to each pilot subcarrier on the respective pilot subcarriers.
  • a code division multiplexing device comprising:
  • An obtaining module configured to perform vector switching on the selected orthogonal matrix, to obtain a plurality of different codeword sequences
  • a determining module configured to determine a plurality of different codeword sequences obtained by the acquiring module and each pilot subcarrier Correspondence relationship
  • a multiplexing module configured to multiplex the pilot symbols of each spatial layer according to the codeword sequence corresponding to the respective pilot subcarriers on the respective pilot subcarriers.
  • the resource mapping is implemented by selecting one mapping scheme in each of the at least two mapping schemes by the respective cells, where the pilot symbol with the strongest transmit power corresponding to the selected mapping scheme corresponds to the mapping scheme selected by at least one neighboring cell.
  • the pilot symbols with the strongest transmit power are staggered in frequency and/or time, which can effectively reduce the interference of the pilot signals of the cell boundary users.
  • a plurality of different codeword sequences and determining a correspondence between each pilot subcarrier and a plurality of different codeword sequences can effectively improve the output power imbalance problem of the pilot symbols.
  • FIG. 2 is a schematic structural diagram of a time-frequency resource block according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a resource mapping method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a resource mapping apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of a code division multiplexing method according to Embodiment 4 of the present invention.
  • Embodiment 6 is a schematic diagram of code division multiplexing provided by Embodiment 5 of the present invention.
  • FIG. 7 is a flowchart of a code division multiplexing method according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of a code division multiplexing apparatus according to Embodiment 6 of the present invention.
  • this embodiment provides a resource mapping method, and the method is specifically as follows:
  • the method provided in this embodiment implements resource mapping by selecting a mapping scheme among the preset at least two mapping schemes by each cell, where the pilot symbol with the strongest transmit power corresponding to the selected mapping scheme is at least The pilot symbols with the strongest transmit power corresponding to the mapping scheme selected by one neighboring cell are mutually shifted in frequency and/or time, so that the interference of the pilot symbols of the cell boundary users can be effectively reduced.
  • Embodiment 2
  • This embodiment provides a resource mapping method.
  • the present embodiment uses the time-frequency resource block shown in FIG. 2 as an example, and the sub-carrier in which the pilot symbol is located is referred to as a pilot sub-carrier, which is provided in this embodiment.
  • the resource mapping method is described.
  • one subframe contains 2 slots (slots), and there are 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols in each slot; there are 12x7 in each slot.
  • RE Resource Element, resource particle.
  • the pilot resource allocation method used by the resource block is: Introducing CDM (Code Division Multiplexing) in the time domain, and providing four orthogonal pilot resources, such as the first resource particle in FIG. 2; The introduction of FDM (Frequency Division Multiplexing) in the frequency domain can also provide four orthogonal pilot resources, such as the second resource particle in FIG.
  • CDM Code Division Multiplexing
  • FDM Frequency Division Multiplexing
  • each cell adopts the same mapping scheme, and the mapping scheme shown in Table 1 below is taken as an example:
  • mapping scheme shown in Table 1 for example, when the total number of spatial transport layers RANK is 3, according to the mapping relationship shown in Table 1 above, there will be 2 spatial layers transmitted on the first RE, and 1 The spatial layer is transmitted on the second RE. If the transmission power of each spatial layer is equal, and is 1/3 of the average power of the data RE, IJ:
  • beta represents the power adjustment factor of the pilot
  • P represents the average power of the data RE.
  • the transmit power of the dedicated pilot resource on the first RE is twice the transmit power of the dedicated pilot resource on the second RE.
  • P represents the average power of the data RE.
  • the total number of spatial transmissions (RANK) is 1, 2, 3, 5, and 7, then more spatial layers will be transmitted on the first RE, that is, occupy more power resources, and The corresponding resources of the cell generate large interference.
  • the pilot symbol that consumes more power resources and generates greater interference to the corresponding resources of the neighboring cell is referred to as a pilot symbol having the strongest transmit power, and the pilot symbol of the type is used.
  • the pilot subcarrier in which it is located is referred to as the pilot subcarrier with the strongest transmit power.
  • this embodiment provides a resource mapping method.
  • the two mapping schemes are preset as an example. The process is as follows:
  • 301 Select one mapping scheme in two preset mapping schemes, where the pilot symbol with the strongest transmit power corresponding to the selected mapping scheme has the most corresponding mapping scheme selected by at least one neighboring cell.
  • the pilot symbols of strong transmit power are staggered in frequency and/or time;
  • the mapping scheme is a spatial layer number of the transmitted pilot symbol, a codeword used by the pilot symbol, and a correspondence between the subcarriers where the pilot symbol is located. Taking the resource block shown in Figure 2 as an example, mapping schemes A and Table 4 shown in Table 3 below can be set:
  • each cell may be selected according to a Cell lD (small cell identifier), for example:
  • mapping scheme A Let cell 1 choose mapping scheme A, and neighbor cell 2 choose mapping scheme B.
  • P represents the average power of the data RE.
  • the pilot interference power from the neighboring cell 2 can be effectively reduced on the pilot symbols of the small area 1 boundary user.
  • the different shifts of the above code words can be used on the second RE, for example:
  • the advantage of this is: When the cell-specific scrambling code is used, if the scrambling code used on the first RE and the second RE are the same scrambling code, the frequency-division multiplexed pilot symbols use the same scrambling code. The inter-code interference from the neighboring cell received on the first RE and the second RE is different, which can improve the detection performance.
  • codewords used by the pilot symbols of the neighboring cells may also be different, and this embodiment does not Body definition.
  • the method provided in this embodiment implements resource mapping by selecting one mapping scheme in at least two mapping schemes by each cell, where the pilot symbol with the strongest transmit power corresponding to the selected mapping scheme is adjacent to at least one neighbor.
  • the pilot symbols with the strongest transmit power corresponding to the cell-selected mapping scheme are mutually offset in frequency and/or time, so that the interference of the pilot symbols of the cell boundary user can be effectively reduced.
  • the method also supports that the pilot symbols of the frequency division multiplexing or the time division multiplexing use the same scrambling code sequence, and/or different codeword sequences, and therefore, the inter-symbol interference of the neighboring cells is different on the pilot. , in turn, can improve detection performance.
  • this embodiment provides a resource mapping apparatus, where the apparatus includes:
  • the storage module 401 is configured to store at least two mapping schemes, where the mapping scheme is a spatial layer number of the transmission pilot symbol, a codeword used by the pilot symbol, and a correspondence between subcarriers where the pilot symbol is located;
  • the selecting module 402 is configured to select, in the at least two mapping schemes stored by the storage module 401, a mapping scheme, where the mapping symbol with the strongest transmit power corresponding to the selected mapping scheme is mapped with the at least one neighboring cell selection
  • the pilot symbols corresponding to the scheme having the strongest transmit power are staggered in frequency and/or time;
  • the mapping module 403 is configured to perform resource mapping according to a mapping scheme selected by the selecting module 402.
  • the selecting module 402 is specifically configured to select one mapping scheme from the at least two mapping schemes stored by the storage module 402 according to the cell identifier.
  • the frequency division multiplexed or time division multiplexed pilot symbols employ the same scrambling code sequence and/or employ a different codeword sequence.
  • the apparatus provided in this embodiment implements resource mapping by selecting one mapping scheme in at least two mapping schemes by each cell, where the pilot symbol with the strongest transmit power corresponding to the selected mapping scheme is adjacent to at least one neighbor.
  • the pilot symbols with the strongest transmit power corresponding to the cell-selected mapping scheme are mutually offset in frequency and/or time, so that the interference of the pilot symbols of the cell boundary user can be effectively reduced.
  • the method also supports that the pilot symbols of the frequency division multiplexing or the time division multiplexing use the same scrambling code sequence, and/or different codeword sequences, and therefore, the inter-symbol interference of the neighboring cells is different on the pilot. , in turn, can improve detection performance.
  • this embodiment provides a code division multiplexing method, and the process of the method is specifically as follows:
  • 502 Determine a correspondence between a plurality of different codeword sequences and respective pilot subcarriers; 503: multiplex pilot symbols of each spatial layer according to a codeword sequence corresponding to each pilot subcarrier on each pilot subcarrier.
  • the method provided in this embodiment obtains a plurality of different codeword sequences by performing vector switching on the selected orthogonal matrix, and determines a correspondence between each pilot subcarrier and a plurality of different codeword sequences, so that Each pilot subcarrier uses a different codeword sequence, which can effectively improve the output power imbalance problem of the pilot symbols.
  • Embodiment 5
  • This embodiment provides a code division multiplexing method.
  • the present embodiment uses the resource block shown in FIG. 6 as an example to describe the method provided in this embodiment in detail.
  • one subframe contains 2 slots (slots) with 7 OFDM symbols in each slot; in each slot, there are 12x7 REs.
  • the pilot resource allocation method adopted by the resource block is: Introducing CDM in the time domain, and providing four orthogonal pilot resources.
  • CDM codeword Cl-C4
  • the same CDM codeword Cl-C4 is used on the subcarriers nl, nl+5, nl+10.
  • the embodiment provides a codeword design method. Referring to FIG. 7, the method of the method provided in this embodiment is as follows:
  • Orthogonal matrix W [l 1, 1, i;
  • W3 [C, D, A, B], or, [C, D, B, A];
  • W4 [D, C, B, A], or, [D, C, A, B] ;
  • the four different codeword sequences and each pilot subcarrier may adopt the following correspondence:
  • a codeword sequence W1 is used for the pilot subcarrier nl;
  • a codeword sequence W2 is used for the pilot subcarrier n2;
  • a codeword sequence W3 is used for the pilot subcarrier n3.
  • a codeword sequence W4 is used for the pilot subcarrier n4.
  • each pilot subcarrier sequentially uses four different codeword sequences W1, W2, W3, and W4.
  • the pilot symbols of these spatial layers are multiplexed by CDM codes.
  • the pilot symbols of each spatial layer are multiplexed according to a codeword sequence corresponding to each pilot subcarrier on each pilot subcarrier.
  • the number of pilot subcarriers is not an integral multiple of 4, the sum of the powers of the pilot REs is similar on each pilot OFDM symbol, that is, the OFDM symbols 6, 7, 13, 14 , and the output power of the pilot The imbalance problem will also be greatly improved.
  • row vector exchange may be performed on the selected orthogonal matrix to obtain a plurality of different codeword sequences.
  • This embodiment does not specifically limit the vector exchange form of the orthogonal matrix.
  • the 4-dimensional orthogonal matrix W is taken as an example to perform row vector exchange on the orthogonal matrix, and four different codeword sequences are obtained for description.
  • each pilot subcarrier and four different codeword sequences is as follows:
  • a codeword sequence W4' is used for the pilot subcarrier n4.
  • each pilot subcarrier sequentially uses four different codeword sequences Wl', W2', W3', and W4'.
  • the method provided in this embodiment obtains a plurality of different codeword sequences by performing vector switching on the selected orthogonal matrix, and determines a correspondence between each pilot subcarrier and a plurality of different codeword sequences, so that Each pilot subcarrier adopts a different codeword sequence, thereby effectively improving the output power imbalance problem of the pilot symbols.
  • this embodiment provides a code division multiplexing device, where the device includes:
  • the obtaining module 801 is configured to perform vector switching on the selected orthogonal matrix to obtain a plurality of different codeword sequences.
  • the determining module 802 is configured to determine a plurality of different codeword sequences obtained by the obtaining module and each pilot subcarrier. Correspondence relationship;
  • the multiplexing module 803 is configured to multiplex pilot symbols of each spatial layer according to a codeword sequence corresponding to each pilot subcarrier on each pilot subcarrier.
  • the obtaining module 801 is specifically configured to use an arbitrary orthogonal matrix W of 4 dimensions.
  • W (:, m) represents the column vector corresponding to the mth column of the orthogonal matrix W, and m is 1 to 4, and the orthogonal matrix W is exchanged by the column vector to obtain four different codeword sequences, respectively Yes:
  • W3 [ C, D, A, B] , or, [ C, D, B, A];
  • W4 [ D, C, B, A] , or, [ D, C, A, B] ;
  • the module 802 is determined, specifically for
  • a codeword sequence W1 is used for the pilot subcarrier nl;
  • a codeword sequence W2 is used for the pilot subcarrier n2;
  • a codeword sequence W3 is used for the pilot subcarrier n3.
  • a codeword sequence W4 is used for the pilot subcarrier n4.
  • the determining module 802 is configured to determine that the respective pilot subcarriers sequentially adopt four different codeword sequences W1, W2, W3, and W4.
  • the module 802 is determined, specifically for
  • a codeword sequence W4' is used for the pilot subcarrier n4.
  • the determining module is configured to determine that the respective pilot subcarriers sequentially adopt four different codeword sequences W1', W2 ⁇ W3', and W4'.
  • the apparatus provided in this embodiment obtains a plurality of different codeword sequences by performing vector exchange on the selected orthogonal matrix, and determines between each pilot subcarrier and a plurality of different codeword sequences. The corresponding relationship makes each pilot subcarrier adopt a different codeword sequence, thereby effectively improving the power imbalance caused by the pilot.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • All or part of the steps in the embodiments of the present invention may be implemented by using software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

资源映射、 码分复用方法及装置
本申请要求于 2010年 1月 8日提交中国专利局、 申请号为 CN 201010002397.X 发明名称为 "资源映射、 码分复用方法及装置"的中国专利申请的优先权, 其全部内容 通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 特别涉及一种资源映射、 码分复用方法及装置。 背景技术 在 LTE (Long Term Evolution, 长期演进)技术中, 发射端提供给接收端导频符号, 接收端用户设备根据接收到的导频符号可以获得用户数据解调所需要的信道估计值。而 为了保证导频符号的传输, 需要进行资源映射, 以确定传输导频符号的空间层号、 导频 符号所在子载波和导频符号使用的码字之间的对应关系。 而对于资源映射中的码字, 可 以有多种设计方案。
现有技术在实现资源映射时, 各个小区采用相同的映射方案, 现有技术在进行码分 复用时, 各导频符号所在子载波上采用同样的码字序列。
对于资源映射, 由于各个小区采用相同的映射方案, 将导致小区边界用户的导频符 号受到较强干扰;而在进行码字设计时,由于各导频符号所在子载波上采用同样的码字, 则存在导频符号的输出功率不平衡问题。 发明内容 为了降低小区边界用户的导频符号受到的干扰, 改善导频符号的输出功率不平衡问 题, 本发明实施例提供了一种资源映射、 码分复用方法及装置。 所述技术方案如下: 一方面, 提供了一种资源映射方法, 所述方法包括:
在预设的至少两种映射方案中选择一种映射方案,被选择的映射方案所对应的具有 最强发射功率的导频符号与至少一个相邻小区选择的映射方案所对应的具有最强发射 功率的导频符号在频率和 /或时间上相互错开;
按照选择的映射方案进行资源映射。
还提供了一种资源映射装置, 所述装置包括:
存储模块,用于存储至少两种映射方案,所述映射方案为传输导频符号的空间层号、 导频符号采用的码字和导频符号所在子载波之间的对应关系;
选择模块, 用于在所述存储模块存储的至少两种映射方案中选择一种映射方案, 被 选择的映射方案所对应的具有最强发射功率的导频符号与至少一个相邻小区选择的映 射方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相互错开;
映射模块, 用于按照所述选择模块选择的映射方案进行资源映射。
另一方面, 提供了一种码分复用方法, 所述方法包括:
对选定的正交矩阵进行向量交换, 得到多个不同的码字序列;
确定所述多个不同的码字序列与各个导频子载波的对应关系;
在所述各个导频子载波上,将各个空间层的导频符号按照各个导频子载波对应的码 字序列进行复用。
还提供了一种码分复用装置, 所述装置包括:
获取模块, 用于对选定的正交矩阵进行向量交换, 得到多个不同的码字序列; 确定模块,用于确定所述获取模块得到的多个不同的码字序列与各个导频子载波的 对应关系;
复用模块, 用于在所述各个导频子载波上, 将各个空间层的导频符号按照所述各个 导频子载波对应的码字序列进行复用。
本发明实施例提供的技术方案的有益效果是:
通过各个小区在至少两种映射方案中选择一种映射方案, 实现资源映射, 由于被选 择的映射方案所对应的具有最强发射功率的导频符号与至少一个相邻小区选择的映射 方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相互错开,则可有效降低 小区边界用户的导频信号受到的干扰; 另外, 通过对选定的正交矩阵进行向量交换, 得 到多个不同的码字序列, 并确定各个导频子载波与多个不同的码字序列之间的对应关 系, 可有效改善导频符号的输出功率不平衡问题。
附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 图 1是本发明实施例一提供的资源映射方法流程图;
图 2是本发明实施例二提供的时频资源块的结构示意图;
图 3是本发明实施例二提供的资源映射方法流程图;
图 4是本发明实施例三提供的资源映射装置的结构示意图;
图 5是本发明实施例四提供的码分复用方法流程图;
图 6是本发明实施例五提供的码分复用示意图;
图 7是本发明实施例五提供的码分复用方法流程图;
图 8是本发明实施例六提供的码分复用装置的结构示意图。
具体实肺式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式 作进一步地详细描述。
实施例一
参见图 1, 本实施例提供了一种资源映射方法, 该方法流程具体如下:
101: 在预设的至少两种映射方案中选择一种映射方案, 被选择的映射方案所对应 的具有最强发射功率的导频符号与至少一个相邻小区选择的映射方案所对应的具有最 强发射功率的导频符号在频率和 /或时间上相互错开;
102: 按照选择的映射方案进行资源映射。
本实施例提供的方法,通过各个小区在预设的至少两种映射方案中选择一种映射方 案, 实现资源映射, 由于被选择的映射方案所对应的具有最强发射功率的导频符号与至 少一个相邻小区选择的映射方案所对应的具有最强发射功率的导频符号在频率和 /或时 间上相互错开, 则可有效降低小区边界用户的导频符号受到的干扰。 实施例二
本实施例提供了一种资源映射方法, 为了便于说明, 本实施例以图 2所示的时频资 源块为例, 并将导频符号所在子载波称为导频子载波, 对本实施例提供的资源映射方法 进行说明。
图 2中, 一个子帧包含 2个 slot (时隙),在每一个 slot内有 7个 OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号; 在每一个 slot内, 共有 12x7个 RE (Resource Element, 资源粒子)。 该资源块采用的导频资源分配方法是: 在时域上引 入 CDM ( Code Division Multiplexing, 码分复用), 可以提供 4个正交的导频资源, 如 图 2中的第一资源粒子; 在频域上引入 FDM (Frequency Division Multiplexing, 频分复 用), 也可以提供 4个正交的导频资源, 如图 2中的第二资源粒子。 针对图 2所示的导 频资源分配方式, 现有技术在进行资源映射时, 各小区采用相同的映射方案, 以下面表 1所示的映射方案为例:
表 1
Figure imgf000006_0001
根据表 1所示的映射方案, 例如: 当空间总传输层数 RANK为 3的时候, 根据上述表 1所示的映射关系, 将会有 2个空间层在第一 RE上传输, 有 1个空间层在第二 RE上传输。 若各空间层的传输功率相等, 且为数据 RE平均功率的 1/3, 贝 IJ :
第一 RE上的专用导频资源的发射功率是: (P/3+P/3)*beta=beta*P*2/3 ;
第二 RE上的专用导频资源的发射功率是: (P/3)*beta=beta*P/3;
其中, beta表示导频的功率调整因子, P表示数据 RE的平均功率。 此时, 第一 RE上 专用导频资源的发射功率是第二 RE上专用导频资源的发射功率的 2倍。
需要说明的是: 如何设置导频的功率调整因子, 是现有技术, 本实施例不作具体限 定。 本实施例仅以 RANK>2时, 设置导频的功率调整因子 beta=2, 否则 beta=l为例进行 说明。
进一步地, 对于相邻小区的边界用户而言, 由于 SINR ( Signal to Interference plus Noise Ratio, 信干噪比) 比较低, 通常会采用空间传输总层数 RANK=1或 2的传输方式。 若采用上述表 1所示的映射方案, 该用户会占用第一 RE的资源传输专用导频。
如果设小区 1和相邻小区 2都选择上述表 1所示的映射方案,对于小区 1的边界用户而 言, 一般采用 Rank=l或 2的传输方案, 则导频符号受到的来自小区 2的干扰功率如下表 2 所示:
表 2
Figure imgf000006_0002
表 2中, P表示数据 RE的平均功率, 当小区 2的 RANK>2的时候, 设置导频的功率调 整因子 beta=2, 否则 beta=l。 当空间传输总层数 (RANK) 为 1, 2, 3, 5和 7的时候, 那 么在第一 RE上将会传输更多的空间层数,也就是占用更多的功率资源,并且对邻小区的 对应资源产生较大的干扰。 在后面的分析中, 本实施例将占用功率资源更多, 并且对邻 小区的对应资源产生较大的干扰的导频符号称为具有最强发射功率的导频符号,将该类 导频符号所在的导频子载波称为具有最强发射功率的导频子载波。
为了降低小区边界用户的导频符号受到的干扰, 本实施例提供了一种资源映射方 法, 参见图 3, 以预设两种映射方案为例, 该方法流程具体如下:
301: 在预设的两种映射方案中选择一种映射方案, 该被选择的映射方案所对应的 具有最强发射功率的导频符号与至少一个相邻小区选择的映射方案所对应的具有最强 发射功率的导频符号在频率和 /或时间上相互错开;
其中, 映射方案为传输导频符号的空间层号、 导频符号采用的码字和导频符号所在 子载波之间的对应关系。 仍以图 2所示的资源块为例, 可设如下面表 3所示的映射方案 A 和表 4所示的映射方案 B:
表 3
Figure imgf000007_0001
具体地,在预设的两种映射方案中选择一种映射方案时,各小区可根据 Cell lD (小 区标识) 进行选择, 例如:
若 cell ID mod 2 =0, 则选择表 3所示的映射方案 A;
若 cell ID mod 2 =1, 则选择表 4所示的映射方案8。
设小区 1选择映射方案 A, 而相邻小区 2选择映射方案 B。
302: 按照选择的映射方案进行资源映射。
针对该步骤, 进行资源映射之后, 则在导频符号传输过程中, 对于小区 1的边界用 户而言,一般采用 Rank=l或 2的传输方案, 受到的来自小区 2的干扰功率如下面表 5所示: 表 5
Figure imgf000008_0001
如表 5所示, P表示数据 RE的平均功率, 当小区 2的 RANK>2的时候, 设置导频的功 率调整因子 beta=2, 否贝 ijbeta=l。 从表 5中可以看出: 采用本实施例提供的映射方案, 小 区 1边界用户的导频符号上, 来自相邻小区 2的导频干扰功率可以有效减少。
进一步地, 在图 2所示的资源块中, 第一 RE上的码字和第二 RE上的码字可以不同。 即频分复用的导频符号采用不同的码字序列, 例如, 以下面表 6所示的映射方案为例, 码字 Cm(m=l-4)和 Dm(m=l-4)可以不同。
表 6
Figure imgf000008_0002
设小区 1第一 RE上可以使用如下码字:
[ 1, 1, 1, 1;
1, -1, 1, -1;
1, 1, -1, -1;
1, -1, -1, 1]
而第二 RE上可以使用上述码字的不同移位, 例如:
[ 1, 1, 1, 1;
-1, 1, -1, 1;
-1, 1, 1, -1;
ι, ι, -ι, -1]
这样做的好处是: 当采用 cell-specific扰码的时候, 若第一 RE上采用的扰码和第二 RE上采用相同的扰码, 即频分复用的导频符号采用相同的扰码, 则第一 RE上和第二 RE 上受到的来自邻小区的码间干扰是不一样的, 这样可以提高检测性能。
进一步地, 相邻小区的导频符号使用的码字也可以是不同的, 本实施例对此不作具 体限定。
本实施例提供的方法, 通过各个小区在至少两种映射方案中选择一种映射方案, 实 现资源映射, 由于被选择的映射方案所对应的具有最强发射功率的导频符号与至少一个 相邻小区选择的映射方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相 互错开, 则可有效降低小区边界用户的导频符号受到的干扰; 另外, 由于本实施例提供 的方法,还支持频分复用或时分复用的导频符号采用相同的扰码序列,和 /或不同的码字 序列, 因此, 在导频上受到相邻小区的码间干扰是不一样的, 进而可以提高检测性能。 实施例三
参见图 4, 本实施例提供了一种资源映射装置, 该装置包括:
存储模块 401,用于存储至少两种映射方案,映射方案为传输导频符号的空间层号、 导频符号采用的码字和导频符号所在子载波之间的对应关系;
选择模块 402,用于在存储模块 401存储的至少两种映射方案中选择一种映射方案, 被选择的映射方案所对应的具有最强发射功率的导频符号与至少一个相邻小区选择的 映射方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相互错开;
映射模块 403, 用于按照选择模块 402选择的映射方案进行资源映射。
具体地, 选择模块 402, 具体用于根据小区标识, 在存储模块 402存储的至少两种 映射方案中选择一种映射方案。
优选地,频分复用或时分复用的导频符号采用相同的扰码序列,和 /或采用不同的码 字序列。
本实施例提供的装置, 通过各个小区在至少两种映射方案中选择一种映射方案, 实 现资源映射, 由于被选择的映射方案所对应的具有最强发射功率的导频符号与至少一个 相邻小区选择的映射方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相 互错开, 则可有效降低小区边界用户的导频符号受到的干扰; 另外, 由于本实施例提供 的方法,还支持频分复用或时分复用的导频符号采用相同的扰码序列,和 /或不同的码字 序列, 因此, 在导频上受到相邻小区的码间干扰是不一样的, 进而可以提高检测性能。 实施例四
参见图 5, 本实施例提供了一种码分复用方法, 该方法流程具体如下:
501: 对选定的正交矩阵进行向量交换, 得到多个不同的码字序列;
502: 确定多个不同的码字序列与各个导频子载波的对应关系; 503: 在各个导频子载波上, 将各个空间层的导频符号按照各个导频子载波对应的 码字序列进行复用。
本实施例提供的方法, 通过对选定的正交矩阵进行向量交换, 得到多个不同的码字 序列, 并确定各个导频子载波与多个不同的码字序列之间的对应关系, 使各个导频子载 波采用不同的码字序列, 可有效改善导频符号的输出功率不平衡问题。 实施例五
本实施例提供了一种码分复用方法, 为了便于说明, 本实施例以图 6所示的资源块 为例, 对本实施例提供的方法进行详细说明。
图 6中, 一个子帧包含 2个 slot (时隙), 在每一个 slot内有 7个 OFDM符号; 在 每一个 slot内, 共有 12x7个 RE。 该资源块采用的导频资源分配方法是: 在时域上引入 CDM,可以提供 4个正交的导频资源。现有技术在设计码字时,在子载波 nl, nl+5,nl+10 上, 采用同样的 CDM码字 (Cl-C4)。
以 4x4的 Walsh矩阵为例, 例如:
c=[ i, 1, 1, 1;
1, -1, 1, -1;
1, 1, -1, -1:
1, -1, -1, 1]
设 C1为矩阵 C的第一行, 即 C1=C(1,:)。类似地, 设 C2=C(2,:), C3=C(3,:), C4=C(4,:)。 针对图 6, 对于功率不平衡的主要分析场景, 考虑宽带空间预处理向量, 即对于每 一个空间层而言, 在各子载波上采用相同的空间预处理向量。 以 8发射天线为例, 设空 间层 m的专用导频符号在码字 Cm (m=l-4) 上进行承载和传输, 则在任意一个导频子载 波上, 发送端的导频符号矩阵是:
C42 C43 C44 P
Figure imgf000010_0001
其中, ^是第 j (j=l-4) 层传输在第 i ( i=l-8) 个发射天线上的加权系数, s是导频 符号, 是码字 ς. ( i=l-4) 的第 j (j=l-4) 个符号。
从上式中可以看出, 对于第 i ( i=l-8) 个发射天线上的导频符号向量是:
Figure imgf000011_0001
其中, 符号 P, ., (k=l-4) 分别在第 i个发射天线的 OFDM符号 6, 7, 13和 14上进行 ki
传输。
对于不同的 i和 j, 考虑到空间预处理向量系数 ^一般是不同的, 结合码字矩阵 C 的正交性,即对于不同的 i和 j, 则 C(:,i)不等于 C(:,j),因此可以推出:导频符号: p , (k=l-4) 一般是不同的 4个数值。 也就是说: 在任意一个导频子载波上, 在 OFDM符号 6, 7, 13 和 14上发送的导频符号是不同的。 进一步地, 考虑到所有的导频子载波上采用同样的空间预处理向量和同样的导频码 字, 此时, 在各导频 OFDM符号上, 之和分别是:
Figure imgf000011_0002
其中, 表示在导频 OFDM符号 m (在这里, m=6,7,13,14) 上, 所有导频 RE的功 率之和。 根据上述分析可以知道, 一般情况下:
Figure imgf000011_0003
也就是说: 在各导频 OFDM符号上, 存在导频的输出功率不平衡问题。
为了解决导频的输出功率不平衡问题, 本实施例提供了一种码字设计方法, 参见图 7, 本实施例提供的方法流程具体如下:
701: 对选定的 4维正交矩阵进行列向量交换, 得到 4个不同的码字序列; 其中, 为了便于说明, 以 4x4 Walsh矩阵为例, 如:
正交矩阵 W=[l 1, 1, i;
1, i, -i;
1, -i, -i;
1, -i, i]
设 A=W(:,1), B=W(:,2), C=W(:,3), D=W(:,4) o
则对正交矩阵 W进行列向量交换, 得到正交矩阵 W的四种变换矩阵, 分别是:
Wl= [ A, B, C, D]; W2= [ B, A, D, C];
W3= [C, D,A, B], 或, [C,D,B, A];
W4= [D, C, B, A], 或, [D, C,A, B];
702: 确定 4个不同的码字序列与各个导频子载波的对应关系;
具体地, 根据上述步骤 701得到的 4个不同的码字序列, 该 4个不同的码字序列和各 个导频子载波可采用如下的对应关系:
对于导频子载波 nl, 采用码字序列 W1;
对于导频子载波 n2, 采用码字序列 W2;
对于导频子载波 n3, 采用码字序列 W3;
对于导频子载波 n4, 采用码字序列 W4;
对于导频子载波 n5, 采用码字序列 W1;
对于导频子载波 n6, 采用码字序列 W2;
并依次重复下去。
也就是,确定各个导频子载波依次顺序采用四种不同码字序列 Wl、 W2、 W3和 W4。 其中: 在导频子载波 η1,η2,··· 上, 这些空间层的导频符号依靠 CDM码进行复用。
703: 在各个导频子载波上, 将各个空间层的导频符号按照各个导频子载波对应的 码字序列进行复用。
针对本实施例提供的码分复用方法, 在解决导频符号的输出功率不平衡问题时, 具 体分析如下:
考虑空间宽带预处理向量, 仍以 8发射天线为例。 如图 6所示, 在子载波 nl上, 设空 间层 m (m=l-4) 的专用导频符号在码字 Wl(m,:)上进行承载和传输, 则在子载波 nl上发
[Π(4,1) 1(4,2) 1(4,3) Π(4,4)
Figure imgf000012_0001
其中 是第 j (j=l-4) 层传输在第 i (i=l-8) 个发射天线上的加权系数, s是导频符号 t 从上式可以看出, 第 i (i=l-8) 个发射天线上的导频符号向量是:
Figure imgf000012_0002
其中, 符号 P, .
ki, (k=l-4) 分别在第 i个发射天线的导频 OFDM符号 6, 7, 13和 14上 进行传输。 根据 W2与 W1的对应关系, 可以推出在导频子载波 n2上, 对应的第 i ( i=l-8 ) 个发 射天线上的导频符号向量是: Pu p4i ; ¾]。 类似的, 可以推出:
在导频子载波 n3上, 对应的第 i ( i=l-8 ) 个发射天线上的导频符号向量是:
Figure imgf000013_0001
在导频子载波 n4上, 对应的第 i ( i=l-8 ) 个发射天线上的导频符号向量是:
Pit Pu A!]。
若导频子载波数目是 4的整倍数, 可以推出: 在对应的第 i ( i=l-8 ) 个发射天线上, 在各导频 OFDM符号, 即 OFDM符号 6, 7, 13和 14上, 所有导频 RE上的功率之和相等, 即:
Figure imgf000013_0002
其中, 表示在导频 OFDM符号 m (在这里, m=6,7,13,14) 上, 所有导频 RE的功 率之和。 此时, 由于各个导频 OFDM符号的输出功率都相等, 这样就解决了导频输出功 率不平衡的问题。
进一步地, 若导频子载波数目不是 4的整倍数, 在各导频 OFDM符号, 即 OFDM符号 6, 7, 13, 14上, 导频 RE的功率之和也相差不多, 导频的输出功率不平衡问题也将得到 很大的改善。
例如: 若导频子载波数目是 5, 可以推出: 在各导频 OFDM符号 6, 7, 13, 14上,
Figure imgf000013_0003
从上式中可以看出: 在各导频 OFDM符号 6, 7, 13, 14上, 导频 RE的功率之和仅相 差一项, 因此, 可以改善导频输出的功率不平衡问题。
可选地, 除了对选定的正交矩阵进行列向量交换, 得到多个不同的码字序列, 还可 以对选定的正交矩阵进行行向量交换, 得到多个不同的码字序列。 本实施例不对正交矩 阵的向量交换形式进行具体限定。 下面, 仍以 4维正交矩阵 W为例, 对正交矩阵进行行向 量交换,得到 4个不同的码字序列进行说明, 则对于任意 4维的正交矩阵 W, 设 A'=W'(1,:), B'=W'(2,:), C'=W'(3,:), D'=W'(4,:); 其中, W'(m,:)(m=1..4)表示 W矩阵的第 m行所对应的行向量; 对正交矩阵 W进行行 向量交换, 得到的四种变换矩阵, 分别是:
Figure imgf000014_0001
相应地, 各个导频子载波与 4个不同的码字序列的对应关系如下:
对于导频子载波 nl, 采用码字序列 W1';
对于导频子载波 n2, 采用码字序列 W2';
对于导频子载波 n3, 采用码字序列 W3';
对于导频子载波 n4, 采用码字序列 W4' ;
对于导频子载波 n5, 采用码字序列 W1';
对于导频子载波 n6, 采用码字序列 W2';
并依次重复下去。
确定各个导频子载波依次顺序采用四种不同码字序列 Wl'、 W2'、 W3'和 W4'。 本实施例提供的方法, 通过对选定的正交矩阵进行向量交换, 得到多个不同的码字 序列, 并确定各个导频子载波与多个不同的码字序列之间的对应关系, 使各个导频子载 波采用不同的码字序列, 从而可有效改善导频符号的输出功率不平衡问题。 实施例六
参见图 8, 本实施例提供了一种码分复用装置, 该装置包括:
获取模块 801, 用于对选定的正交矩阵进行向量交换, 得到多个不同的码字序列; 确定模块 802, 用于确定获取模块得到的多个不同的码字序列与各个导频子载波的 对应关系;
复用模块 803, 用于在各个导频子载波上, 将各个空间层的导频符号按照各个导频 子载波对应的码字序列进行复用。
其中, 获取模块 801, 具体用于对于任意 4维的正交矩阵 W,
设 A=W(:,1),B=W(:,2), C=W(:,3), D=W(:,4);
其中, W (:, m)表示正交矩阵 W的第 m列所对应的列向量, m为 1至 4, 则将正交矩阵 W 进行列向量交换, 得到 4种不同的码字序列, 分别是:
Wl= [ A, B, C, D]; W2= [ B, A, D, C];
W3= [ C, D, A, B] , 或, [ C, D, B, A];
W4= [ D, C, B, A] , 或, [ D, C, A, B] ;
相应地, 确定模块 802, 具体用于
对于导频子载波 nl, 采用码字序列 W1;
对于导频子载波 n2, 采用码字序列 W2;
对于导频子载波 n3, 采用码字序列 W3;
对于导频子载波 n4, 采用码字序列 W4;
对于导频子载波 n5, 采用码字序列 W1;
对于导频子载波 n6, 采用码字序列 W2;
并依次重复下去。
也就是, 确定模块 802, 用于确定各个导频子载波依次顺序采用四种不同码字序列 Wl、 W2、 W3和 W4。
可选地, 获取模块 801, 具体用于对于任意 4 维的正交矩阵 W, 设 A'=W'(1,:), B'=W'(2,:), C'=W'(3,:), D'=W'(4,:);
其中, W'(m,:)(m=1..4)表示正交矩阵 w的第 m行所对应的行向量, m为 1至 4, 则将正 交矩阵 W进行行向量交换, 得到 4种不同的码字序列, 分别是:
Figure imgf000015_0001
相应地, 确定模块 802, 具体用于
对于导频子载波 nl, 采用码字序列 W1';
对于导频子载波 n2, 采用码字序列 W2';
对于导频子载波 n3, 采用码字序列 W3';
对于导频子载波 n4, 采用码字序列 W4' ;
对于导频子载波 n5, 采用码字序列 W1';
对于导频子载波 n6, 采用码字序列 W2';
并依次重复下去。
也就是,确定模块,用于确定各个导频子载波依次顺序采用四种不同码字序列 Wl'、 W2\ W3'和 W4'。 综上所述, 本实施例提供的装置, 通过对选定的正交矩阵进行向量交换, 得到多个 不同的码字序列, 并确定各个导频子载波与多个不同的码字序列之间的对应关系, 使各 个导频子载波采用不同的码字序列, 从而可有效改善由于导频所造成的功率不平衡问 题。 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本发明实施例中的全部或部分步骤, 可以利用软件实现, 相应的软件程序可以存储 在可读取的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原 则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种资源映射方法, 其特征在于, 所述方法包括:
在预设的至少两种映射方案中选择一种映射方案,所述被选择的映射方案所对应的 具有最强发射功率的导频符号与至少一个相邻小区选择的映射方案所对应的具有最强 发射功率的导频符号在频率和 /或时间上相互错开;
按照选择的映射方案进行资源映射。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在预设的至少两种映射方案中 选择一种映射方案, 具体包括:
根据小区标识, 在预设的至少两种映射方案中选择一种映射方案。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述映射方案所对应的频分复 用或时分复用的导频符号采用相同的扰码序列, 和 /或采用不同的码字序列。
4、 一种资源映射装置, 其特征在于, 所述装置包括:
存储模块,用于存储至少两种映射方案,所述映射方案为传输导频符号的空间层号、 导频符号采用的码字和导频符号所在子载波之间的对应关系;
选择模块, 用于在所述存储模块存储的至少两种映射方案中选择一种映射方案, 被 选择的映射方案所对应的具有最强发射功率的导频符号与至少一个相邻小区选择的映 射方案所对应的具有最强发射功率的导频符号在频率和 /或时间上相互错开;
映射模块, 用于按照所述选择模块选择的映射方案进行资源映射。
5、 根据权利要求 4所述的装置, 其特征在于, 所述选择模块, 具体用于根据小区 标识, 在存储模块存储的至少两种映射方案中选择一种映射方案。
6、 一种码分复用方法, 其特征在于, 所述方法包括:
对选定的正交矩阵进行向量交换, 得到多个不同的码字序列;
确定所述多个不同的码字序列与各个导频子载波的对应关系;
在所述各个导频子载波上,将各个空间层的导频符号按照各个导频子载波对应的码 字序列进行复用。
7、 根据权利要求 6所述的方法, 其特征在于, 所述对选定的正交矩阵进行向量交 换, 得到多个不同的码字序列, 具体包括:
对四维的正交矩阵 W进行列向量交换, 得到四种不同的码字序列;
其中, W (:, m)表示正交矩阵 W的第 m列所对应的列向量, m为 1至 4,
A=W(:,1),B=W(:,2), C=W(:,3),D=W(:,4);
所述四种不同的码字序列是:
Wl= [ A, B, C, D];
W2= [ B, A, D, C];
W3= [ C, D, A, B] , 或, [ C, D, B, A];
W4= [ D, C, B, A] , 或, [ D, C, A, B] ;
所述确定所述多个不同的码字序列与各个导频子载波的对应关系, 包括: 确定所述 各个导频子载波依次顺序采用所述四种不同码字序列 Wl、 W2、 W3和 W4。
8、 根据权利要求 6所述的方法, 其特征在于, 所述对选定的正交矩阵进行向量交 换, 得到多个不同的码字序列, 具体包括:
对四维的正交矩阵 W进行行向量交换, 得到 4种不同的码字序列;
其中, W'(m,:)表示正交矩阵 w的第 m行所对应的行向量, m为 1至 4, A'=W'(1,:),
B'=W'(2,:), C'=W'(3,:), D'=W'(4,:)
所述四种不同的码字序列是:
Figure imgf000018_0001
所述确定所述多个不同的码字序列与各个导频子载波的对应关系, 包括: 确定所述 各个导频子载波依次顺序采用所述四种不同码字序列 Wl '、 W2'、 W3'和 W4'。
9、 一种码字设计装置, 其特征在于, 所述装置包括:
获取模块, 用于对选定的正交矩阵进行向量交换, 得到多个不同的码字序列; 确定模块,用于确定所述获取模块得到的多个不同的码字序列与各个导频子载波的 对应关系; 复用模块, 用于在所述各个导频子载波上, 将各个空间层的导频符号按照所述各个 导频子载波对应的码字序列进行复用。
10、 根据权利要求 9所述的装置, 其特征在于, 所述获取模块, 具体用于对四维的 正交矩阵 W进行列向量交换, 得到四种不同的码字序列;
其中, W:,m)表示正交矩阵 W的第 m列所对应的列向量, m为 1至 4,A=W:,1),B=W:,2), C=W(:,3), D=W(:,4),
所述四种不同的码字序列是:
Wl= [ A, B, C, D];
W2= [ B, A, D, C];
W3=[C, D,A, B], 或, [C,D,B, A];
W4=[D, C, B, A], 或, [D, C,A, B];
所述确定模块, 具体用于确定所述各个导频子载波依次顺序采用所述四种不同码字 序列 Wl、 W2、 W3和 W4。
11、 根据权利要求 9所述的装置, 其特征在于, 所述获取模块, 具体用于对四维的 正交矩阵 W进行行向量交换, 得到四种不同的码字序列;
其中, W'(m,:)表示正交矩阵 w的第 m行所对应的行向量, m为 1至 4, A'=W' 1,:), B'=W'(2,:), C'=W'(3,:), D'=W'(4,:),
所述四种不同的码字序列是:
Figure imgf000019_0001
所述确定模块, 具体用于确定所述各个导频子载波依次顺序采用所述四种不同码字 序列 Wl'、 W2\ W3'和 W4'。
PCT/CN2011/070082 2010-01-08 2011-01-07 资源映射、码分复用方法及装置 WO2011082681A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP20151328.0A EP3672182B1 (en) 2010-01-08 2011-01-07 Method and apparatus for resource mapping and code division multiplexing
EP11731682.8A EP2410709B1 (en) 2010-01-08 2011-01-07 Method and device for resource mapping and code division multiplexing
AU2011204705A AU2011204705B2 (en) 2010-01-08 2011-01-07 Method and device for resource mapping and code division multiplexing
EP13182544.0A EP2696549B1 (en) 2010-01-08 2011-01-07 Method and apparatus for resource mapping and code division multiplexing
PL20151328T PL3672182T3 (pl) 2010-01-08 2011-01-07 Sposób i urządzenie do mapowania zasobów i multipleksowania z podziałem kodowym
ES11731682.8T ES2439844T3 (es) 2010-01-08 2011-01-07 Método y dispositivo para poner en correspondencia recursos y la multiplexación por división en código
BR112012007856-9A BR112012007856B1 (pt) 2010-01-08 2011-01-07 Metodo para multiplexar por divisão de código e aparelho para projetar palavra código
RU2012113733/07A RU2502206C1 (ru) 2010-01-08 2011-01-07 Способ и устройство для преобразования ресурсов и мультиплексирования с кодовым разделением каналов
CN2011800055494A CN102714644A (zh) 2010-01-08 2011-01-07 资源映射、码分复用方法及装置
US13/291,697 US8315149B2 (en) 2010-01-08 2011-11-08 Method and apparatus for resource mapping and code division multiplexing
US13/614,726 US8625403B2 (en) 2010-01-08 2012-09-13 Method and apparatus for resource mapping and code division multiplexing
US13/729,729 US8553523B2 (en) 2010-01-08 2012-12-28 Method and apparatus for resource mapping and code division multiplexing
US14/095,656 US9166720B2 (en) 2010-01-08 2013-12-03 Method and apparatus for resource mapping and code division multiplexing
US14/868,346 US9496977B2 (en) 2010-01-08 2015-09-28 Method and apparatus for resource mapping and code division multiplexing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010002397XA CN102014475B (zh) 2010-01-08 2010-01-08 资源映射、码分复用方法及装置
CN201010002397.X 2010-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/291,697 Continuation US8315149B2 (en) 2010-01-08 2011-11-08 Method and apparatus for resource mapping and code division multiplexing

Publications (1)

Publication Number Publication Date
WO2011082681A1 true WO2011082681A1 (zh) 2011-07-14

Family

ID=43844429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070082 WO2011082681A1 (zh) 2010-01-08 2011-01-07 资源映射、码分复用方法及装置

Country Status (9)

Country Link
US (5) US8315149B2 (zh)
EP (3) EP2410709B1 (zh)
CN (4) CN102014475B (zh)
AU (3) AU2011204705B2 (zh)
BR (1) BR112012007856B1 (zh)
ES (1) ES2439844T3 (zh)
PL (1) PL3672182T3 (zh)
RU (3) RU2502206C1 (zh)
WO (1) WO2011082681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194530A (zh) * 2017-10-06 2020-05-22 高通股份有限公司 小区特定的交织、速率匹配和/或资源元素映射

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014475B (zh) 2010-01-08 2012-01-04 华为技术有限公司 资源映射、码分复用方法及装置
US9288089B2 (en) 2010-04-30 2016-03-15 Ecole Polytechnique Federale De Lausanne (Epfl) Orthogonal differential vector signaling
CN102237945A (zh) 2010-05-06 2011-11-09 松下电器产业株式会社 基于正交编码的码分复用方法、码分复用设备和解复用设备
US9251873B1 (en) 2010-05-20 2016-02-02 Kandou Labs, S.A. Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications
US9763246B2 (en) * 2012-06-12 2017-09-12 Qualcomm Incorporated Transport block size determination in new carrier type in LTE
US9184889B2 (en) * 2012-08-08 2015-11-10 Blackberry Limited Method and system having reference signal design for new carrier types
US9402256B2 (en) 2012-08-08 2016-07-26 Blackberry Limited Method and system having reference signal design for new carrier types
WO2014051494A1 (en) * 2012-08-09 2014-04-03 Telefonaktiebolaget L M Ericsson (Publ) Reference signal mapping
WO2014101040A1 (zh) * 2012-12-27 2014-07-03 华为技术有限公司 信号处理方法和设备
CN105379170B (zh) 2013-04-16 2019-06-21 康杜实验室公司 高带宽通信接口方法和***
EP3100424B1 (en) * 2014-02-02 2023-06-07 Kandou Labs S.A. Method and apparatus for low power chip-to-chip communications with constrained isi ratio
US9363114B2 (en) 2014-02-28 2016-06-07 Kandou Labs, S.A. Clock-embedded vector signaling codes
CN105101043B (zh) * 2014-05-08 2018-11-06 上海诺基亚贝尔股份有限公司 在无线网络中进行设备到设备的广播通信的方法
US11240076B2 (en) 2014-05-13 2022-02-01 Kandou Labs, S.A. Vector signaling code with improved noise margin
US9509437B2 (en) 2014-05-13 2016-11-29 Kandou Labs, S.A. Vector signaling code with improved noise margin
CA2895659A1 (en) 2014-07-01 2016-01-01 Pfizer Inc. Bispecific heterodimeric diabodies and uses thereof
US9900186B2 (en) 2014-07-10 2018-02-20 Kandou Labs, S.A. Vector signaling codes with increased signal to noise characteristics
US9432082B2 (en) 2014-07-17 2016-08-30 Kandou Labs, S.A. Bus reversable orthogonal differential vector signaling codes
CN106576087B (zh) 2014-08-01 2019-04-12 康杜实验室公司 带内嵌时钟的正交差分向量信令码
CN113193938B (zh) 2015-06-26 2023-10-27 康杜实验室公司 高速通信***
WO2017047971A1 (ko) * 2015-09-14 2017-03-23 엘지전자 주식회사 복조 참조 신호 송수신 방법 및 이를 이용한 장치
US10055372B2 (en) 2015-11-25 2018-08-21 Kandou Labs, S.A. Orthogonal differential vector signaling codes with embedded clock
KR102117772B1 (ko) 2016-01-20 2020-06-02 닛본 덴끼 가부시끼가이샤 기준 신호를 송신하는 방법 및 장치
US10333741B2 (en) 2016-04-28 2019-06-25 Kandou Labs, S.A. Vector signaling codes for densely-routed wire groups
US10448380B2 (en) * 2016-06-27 2019-10-15 Qualcomm Incorporated Split symbol control for aligned numerology
WO2018139782A1 (ko) * 2017-01-26 2018-08-02 엘지전자 주식회사 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
WO2018191749A1 (en) 2017-04-14 2018-10-18 Kandou Labs, S.A. Pipelined forward error correction for vector signaling code channel
US20210288761A1 (en) * 2017-05-04 2021-09-16 Ntt Docomo, Inc. Method of codeword mapping and transmission and reception point
DE112018002643T5 (de) 2017-05-22 2020-05-07 Invention Mine, Llc Multimodale datengetriebene taktwiederherstellungsschaltung
US10116468B1 (en) 2017-06-28 2018-10-30 Kandou Labs, S.A. Low power chip-to-chip bidirectional communications
US10693587B2 (en) 2017-07-10 2020-06-23 Kandou Labs, S.A. Multi-wire permuted forward error correction
CN109429344B (zh) * 2017-08-29 2021-11-16 维沃移动通信有限公司 一种流数据的发送方法、接收方法、相关设备及***
CN109587092B (zh) 2017-09-29 2021-12-03 华为技术有限公司 基于序列的信号处理方法及装置
CN109117184A (zh) 2017-10-30 2019-01-01 上海寒武纪信息科技有限公司 人工智能处理器及使用处理器执行平面旋转指令的方法
US10467177B2 (en) 2017-12-08 2019-11-05 Kandou Labs, S.A. High speed memory interface
KR102347396B1 (ko) 2017-12-28 2022-01-04 칸도우 랩스 에스에이 동기식으로 스위칭된 다중 입력 복조 비교기
US11990137B2 (en) 2018-09-13 2024-05-21 Shanghai Cambricon Information Technology Co., Ltd. Image retouching method and terminal device
WO2023184217A1 (zh) * 2022-03-30 2023-10-05 北京小米移动软件有限公司 码字的层映射指示方法、装置、设备及存储介质
WO2024049482A1 (en) 2022-08-30 2024-03-07 Kandou Labs SA Pre-scaler for orthogonal differential vector signalling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631406B1 (fr) * 1993-06-21 2000-12-20 France Telecom Signal numérique apte à être reçu par des récepteurs à démodulateur de signaux modulés en amplitude à bande latérale réduite, procédé de transmission, procédé de réception, dispositif de réception et utilisation correspondants
CN101110805A (zh) * 2006-07-19 2008-01-23 华为技术有限公司 基于正交频分复用的收发方法及***
CN101237271A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 帧同步和获取小区组信息的方法及***
CN101304397A (zh) * 2008-06-10 2008-11-12 上海瀚讯无线技术有限公司 一种ofdm***同频干扰抑制的导频设计方法与收发装置
CN101389136A (zh) * 2008-10-24 2009-03-18 中兴通讯股份有限公司 物理随机接入信道的映射方法和装置
EP2139135A1 (en) * 2007-03-20 2009-12-30 NTT DoCoMo, Inc. Base station device, user device, and method used in mobile communication system

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219743B1 (en) 1998-09-30 2001-04-17 International Business Machines Corporation Apparatus for dynamic resource mapping for isolating interrupt sources and method therefor
US6873614B2 (en) * 2002-12-19 2005-03-29 Motorola, Inc. Digital communication system having improved color code capability
CN1640038A (zh) 2003-01-31 2005-07-13 连宇通信有限公司 一种空时扩频多地址码编码及应用方法
KR100594028B1 (ko) 2003-04-15 2006-07-03 삼성전자주식회사 Gpon에서의 ont 관리 제어 정보 전송을 위한gtc 프레임 구조와 그 전송 방법
KR100918730B1 (ko) 2003-10-27 2009-09-24 삼성전자주식회사 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서기지국 구분을 위한 파일럿 패턴 세트 송수신 장치 및 방법
CN100433837C (zh) 2004-03-18 2008-11-12 华中科技大学 视频编码的整数变换方法
CN1719817A (zh) 2004-07-09 2006-01-11 北京三星通信技术研究有限公司 正交频分复用通信***的导频传输和接收方法
UA91538C2 (ru) 2005-03-10 2010-08-10 Квелкомм Инкорпорейтед Системы и способы для формирования луча и регулирования скорости в системах связи с множеством входов и множеством выходов
US20060203794A1 (en) 2005-03-10 2006-09-14 Qualcomm Incorporated Systems and methods for beamforming in multi-input multi-output communication systems
CA2610425C (en) 2005-05-31 2016-09-27 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
RU2385545C2 (ru) * 2005-05-31 2010-03-27 Квэлкомм Инкорпорейтед Подтверждение выделения ресурса для системы беспроводной связи
WO2007022631A1 (en) * 2005-08-23 2007-03-01 Nortel Networks Limited Methods and systems to mitigate inter-cell interference
CN1980212A (zh) 2005-12-08 2007-06-13 北京三星通信技术研究有限公司 多小区正交频分复用***中的传输方法
US7555641B2 (en) 2006-03-20 2009-06-30 Intel Corporation Efficient resource mapping beyond installed memory space by analysis of boot target
CN101060523B (zh) 2006-04-26 2010-09-08 华为技术有限公司 光网络终端、其端口限速属性配置方法及报文处理方法
CN101202591B (zh) 2006-12-13 2011-01-19 中兴通讯股份有限公司 一种gpon***中组播虚拟局域网注册的实现方法
US20080232493A1 (en) * 2007-03-19 2008-09-25 Interdigital Technology Corporation Combined precoding vector switch and frequency switch transmit diversity for secondary synchronization channel in evolved utra
US8213538B2 (en) 2007-05-29 2012-07-03 Qualcomm Incorporated Methods and apparatus for improved utilization of air link resources in a wireless communications system
CN101359952B (zh) 2007-07-30 2012-04-18 华为技术有限公司 时分双工模式下多输入多输出***通信方法及设备
US8014265B2 (en) 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
CN101394382B (zh) * 2007-09-19 2013-01-16 中兴通讯股份有限公司 基于宽带单载波***减少导频序列碰撞的方法
KR101376233B1 (ko) 2007-10-02 2014-03-21 삼성전자주식회사 주파수 분할 다중 접속 방식의 시스템에서 제어 채널의자원 할당 장치 및 방법
CN101252522B (zh) 2008-04-02 2012-07-04 中兴通讯股份有限公司 介质访问控制地址过滤配置的方法及***
CN101616438A (zh) * 2008-06-24 2009-12-30 华为技术有限公司 多载波***信号发射、接收方法及装置
CN101621805B (zh) * 2008-06-30 2011-12-14 展讯通信(上海)有限公司 一种提高无线通信***边缘性能的方法
CN101420734A (zh) * 2008-11-28 2009-04-29 华为技术有限公司 下行干扰协调方法和基站
CN102014475B (zh) * 2010-01-08 2012-01-04 华为技术有限公司 资源映射、码分复用方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631406B1 (fr) * 1993-06-21 2000-12-20 France Telecom Signal numérique apte à être reçu par des récepteurs à démodulateur de signaux modulés en amplitude à bande latérale réduite, procédé de transmission, procédé de réception, dispositif de réception et utilisation correspondants
CN101110805A (zh) * 2006-07-19 2008-01-23 华为技术有限公司 基于正交频分复用的收发方法及***
CN101237271A (zh) * 2007-02-02 2008-08-06 华为技术有限公司 帧同步和获取小区组信息的方法及***
EP2139135A1 (en) * 2007-03-20 2009-12-30 NTT DoCoMo, Inc. Base station device, user device, and method used in mobile communication system
CN101304397A (zh) * 2008-06-10 2008-11-12 上海瀚讯无线技术有限公司 一种ofdm***同频干扰抑制的导频设计方法与收发装置
CN101389136A (zh) * 2008-10-24 2009-03-18 中兴通讯股份有限公司 物理随机接入信道的映射方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP DRAFT RL-060031, 19 January 2006 (2006-01-19)
HLAING MINN ET AL., PAR-CONSTRAINED TRAINING SIGNAL DESIGNS FOR MIMO OFDM CHANNEL ESTIMATION IN THE PRESENCE OF FREQUENCY OFFSETS, 2008
See also references of EP2410709A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111194530A (zh) * 2017-10-06 2020-05-22 高通股份有限公司 小区特定的交织、速率匹配和/或资源元素映射

Also Published As

Publication number Publication date
AU2014204485A1 (en) 2014-08-07
US20130114392A1 (en) 2013-05-09
PL3672182T3 (pl) 2022-01-10
AU2015230777A1 (en) 2015-10-15
ES2439844T3 (es) 2014-01-27
RU2015107233A (ru) 2016-09-20
US20160094303A1 (en) 2016-03-31
BR112012007856B1 (pt) 2021-12-21
US20130010586A1 (en) 2013-01-10
EP2410709A1 (en) 2012-01-25
AU2011204705B2 (en) 2014-04-17
RU2601552C2 (ru) 2016-11-10
US9496977B2 (en) 2016-11-15
BR112012007856A2 (pt) 2020-08-18
US8625403B2 (en) 2014-01-07
US20140092874A1 (en) 2014-04-03
US9166720B2 (en) 2015-10-20
CN105281881A (zh) 2016-01-27
US20120051209A1 (en) 2012-03-01
CN102014475A (zh) 2011-04-13
EP2696549B1 (en) 2020-03-11
EP2696549A1 (en) 2014-02-12
RU2548028C1 (ru) 2015-04-10
CN105119697B (zh) 2018-09-07
EP2410709A4 (en) 2012-04-04
EP2410709B1 (en) 2013-10-02
AU2014204485B2 (en) 2015-06-25
CN105281881B (zh) 2018-03-27
RU2502206C1 (ru) 2013-12-20
AU2015230777B2 (en) 2016-05-12
EP3672182A1 (en) 2020-06-24
RU2013142626A (ru) 2015-03-27
US8553523B2 (en) 2013-10-08
CN105119697A (zh) 2015-12-02
CN102714644A (zh) 2012-10-03
CN102014475B (zh) 2012-01-04
US8315149B2 (en) 2012-11-20
AU2011204705A1 (en) 2012-04-05
EP3672182B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2011082681A1 (zh) 资源映射、码分复用方法及装置
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
RU2560718C1 (ru) Устройство генерирования кодов, устройство генерирования опорных сигналов и соответствующие способы
JP2012222722A (ja) 無線通信システム、移動局装置および基地局装置
CN103581090B (zh) 导频信号发送方法和装置
WO2012159343A1 (zh) 一种发送分集方法、相关设备及***
CN107343321B (zh) 接入方法及装置、发射机、接收机、终端
CN103780528B (zh) 通信***及其信号发送方法与装置、信号接收方法与装置
US20140369390A1 (en) System and method for increasing maximum payload size
WO2011073252A1 (en) Reference signal resource randomization with su-mimo
CN103780529B (zh) 通信***及其信号发送方法与装置、信号接收方法与装置
CN117121414A (zh) 用于传输参考信号的方法和装置
CN103120016B (zh) 下行链路mimo的低等待时间信道估计
CN102571255B (zh) 资源映射、码分复用方法及装置
KR101241917B1 (ko) 하향링크 참조신호 전송방법 및 기지국과, 하향링크 참조신호 수신방법 및 사용자기기
CN102801513B (zh) 资源映射、码分复用方法及装置
KR20240037183A (ko) 복조 참조 신호(dmrs) 및 위상 추적 참조 신호(ptrs) 연관의 표시
KR20100023717A (ko) 다중 안테나 시스템에서 참조신호 전송 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005549.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7617/CHENP/2011

Country of ref document: IN

Ref document number: 2011731682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011204705

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011204705

Country of ref document: AU

Date of ref document: 20110107

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012113733

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007856

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007856

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120405