WO2011082562A1 - 风轮和风力发电机组 - Google Patents

风轮和风力发电机组 Download PDF

Info

Publication number
WO2011082562A1
WO2011082562A1 PCT/CN2010/071249 CN2010071249W WO2011082562A1 WO 2011082562 A1 WO2011082562 A1 WO 2011082562A1 CN 2010071249 W CN2010071249 W CN 2010071249W WO 2011082562 A1 WO2011082562 A1 WO 2011082562A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
blade
diameter
wind speed
wind wheel
Prior art date
Application number
PCT/CN2010/071249
Other languages
English (en)
French (fr)
Inventor
汤文兵
杨本新
余绍清
Original Assignee
中船重工(重庆)海装风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工(重庆)海装风电设备有限公司 filed Critical 中船重工(重庆)海装风电设备有限公司
Publication of WO2011082562A1 publication Critical patent/WO2011082562A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2021Rotors with adjustable area of intercepted fluid by means of telescoping blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • a wind power generator is a device for converting wind energy into electric energy.
  • a wind wheel is a device that absorbs wind energy from the air and converts it into mechanical energy by rotating the blade.
  • the wind power generator is composed of a wind wheel and a generator, and the wind wheel is composed of a blade,
  • the hub and the reinforcing member are composed of a blade that is driven by the wind to rotate the generator to generate electricity.
  • the annual average wind speed of wind resources that can be economically developed is about 5.5m/s ⁇ 10m/s.
  • the wind speed and wind frequency of the wind generally follow the Weibull or Rayleigh distribution (Roily).
  • the average wind speed is 7.5m/s.
  • the wind speed is less than 4m/s, accounting for 8%, the 4 ⁇ 13m/s wind speed is about 78%, and the 13 ⁇ 25m/s wind speed is about 10%.
  • the wind speed is more than 20m/s, which accounts for about 4%. It can be seen that in a year, the wind speed is mostly 4 ⁇ 13m / s, so the maximum use of high wind frequency, medium wind speed range of wind (about less than 13m / s), is the key to the economics of wind turbines.
  • the ratio of the wind speed of the wind turbine to the annual average wind speed is about 1.4 ⁇ 2 times
  • the difference between the wind speed of the IEC II wind zone and the IEC III wind zone is 1.4 ⁇ 2.0m / s
  • the wind speed of the quota is about 13m/s.
  • the work absorbed from the air P l/2 ⁇ CpAV3 (where ⁇ is the air density kg / m3, P is the energy absorbed from the air kW, Cp is the wind energy utilization coefficient, A is the windswept area , V is the wind speed m / s), increase the blade rotation length to increase the windswept area of the wind turbine, thereby increasing the output power of the wind turbine.
  • the present invention provides a wind turbine and a wind turbine to achieve the most economical and maximum utilization of wind resources, and to enable efficient wind power generation under the wind speed.
  • the present invention provides the following technical solutions:
  • a novel wind power generator includes: a wind wheel, a generator and a main controller, wherein the wind wheel is specifically: a gear box, a blade and a pitch bearing, a variable pitch drive, and a blade disposed on the blade Telescopic mechanism,
  • the main controller is configured to receive a blade position signal, a wind speed signal, a transmission chain speed signal, and a generator power signal, and determine according to the received signal, and send an execution signal to the variable pitch driver;
  • variable pitch drive is configured to receive an execution signal from the main controller and control movement of the gearbox or telescoping mechanism based on the execution signal.
  • the vane expansion mechanism is disposed between the pitch bearing and the blade root.
  • the blade expansion and contraction mechanism is a hydraulic mechanism.
  • the difference between the blade telescopic mechanism and the shortest and the shortest is 3 meters.
  • a novel wind wheel includes a blade and a driving mechanism, and the blade is provided with a telescopic mechanism.
  • the vane expansion mechanism is disposed between the pitch bearing and the blade root.
  • the blade expansion and contraction mechanism is a hydraulic mechanism.
  • the drive mechanism is a variable pitch drive.
  • the difference between the extension of the blade telescopic mechanism and the shortest and the shortest is 3 meters.
  • FIG. 1 is a flow chart of a wind turbine variable diameter and pitch control of a wind power generator set according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a power curve of a maximum and minimum wind wheel diameter state of a wind power generator set according to an embodiment of the present invention
  • Figure 3 is a schematic view showing the structure of a blade according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a wind power generator set in a minimum state of a wind turbine according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a wind power generator set in a maximum state of a wind turbine according to an embodiment of the present invention.
  • the invention provides a wind wheel and a wind power generator to realize the most economical and maximum utilization of wind resources, and to enable efficient wind power generation under the wind speed.
  • FIG. 1 is a flow chart of a wind turbine variable diameter and pitch control of a wind power generator set according to an embodiment of the present invention.
  • the wind power generator of the present invention is composed of a wind wheel, a generator and a main controller, and the wind wheel is composed of a blade, a variable pitch pitch driver, a gear box, a pitch bearing, a hub and a reinforcing member, and the blade is subjected to wind power.
  • the rotation drives the generator to rotate to generate electricity.
  • the principle of the embodiment of the present invention is: a signal for changing the diameter of the wind wheel or the angle of the pitch, which is changed by the signal of the blade position, the speed of the transmission chain, the power of the generator, the wind speed and the like collected by the main controller, and the variable diameter is changed.
  • the paddle drive controls the blade telescopic mechanism (many mechanisms capable of controlling the blade telescoping, such as a worm gear mechanism, a hydraulic mechanism, etc., the present invention preferably employs a hydraulic mechanism) or a blade pitch mechanism (ie, a gearbox that changes the angle of the blade by gear transmission) Action (in which the blade telescopic mechanism and the gearbox each have a motor for driving), so that the wind wheel is in the corresponding wind wheel diameter state or the corresponding pitch angle, reaching the air It absorbs most of the wind energy and increases the amount of electricity generated.
  • a hydraulic mechanism ie, a gearbox that changes the angle of the blade by gear transmission
  • Action in which the blade telescopic mechanism and the gearbox each have a motor for driving
  • the pitch angle is maintained at 0 degrees in the medium wind speed range that often occurs below the wind speed (amount of wind speed is about 13 m/s).
  • the main controller sends a signal to increase the diameter of the wind wheel to the variable pitch drive, and the variable pitch drive controls the movement of the blade expansion mechanism to make the wind wheel
  • the maximum diameter of the wind wheel achieves the purpose of absorbing most of the wind energy from the air and increasing the amount of power generated.
  • variable diameter method is preferred.
  • the main controller sends a reduced wind wheel diameter signal to the variable pitch drive, and the variable pitch drive controls the blade expansion mechanism to minimize the wind wheel.
  • the state of the diameter of the wind wheel using the existing pitch technology, pitching in the state of the minimum wind wheel diameter, avoiding the increase of the unfavorable load on the fan, thereby maintaining the economy and safety of the fan, and also adopting the variable diameter The way it is done simultaneously with pitching.
  • FIG. 2 is a schematic diagram of a power curve of a maximum and minimum wind turbine diameter state of a wind power generator set according to an embodiment of the present invention
  • FIG. 4 is a wind power generator set provided in the wind according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a wind turbine set in a maximum state of a wind turbine according to an embodiment of the present invention.
  • Curve 1 is the power curve of the maximum wind wheel diameter state
  • curve 2 is the power curve of the minimum wind wheel diameter state
  • £1 is the maximum wind speed corresponding to the maximum wind wheel diameter
  • V e2 is the amount corresponding to the minimum wind wheel diameter.
  • Wind speed, 1 is the blade
  • 2 is the blade expansion mechanism.
  • the curve 1 is always above the curve, that is, when the diameter of the wind wheel is maximum, the power of the wind turbine generator can be maximized; when the wind speed is equal to the wind speed of the quota v el , the diameter of the wind turbine is the largest. It can guarantee the output full power (ie the maximum power, the power reaches 100%); When the wind speed is greater than the wind speed v e2 , the minimum diameter of the wind wheel can guarantee the output full power.
  • the diameter of the wind wheel of the maximum wind wheel diameter state and the minimum wind wheel diameter state may be selected according to actual needs.
  • the diameter difference of the wind wheel of the maximum wind wheel diameter state and the minimum wind wheel diameter state is preferably about 6 m.
  • the wind field is an IEC Class II wind zone (annual average wind speed ⁇ 8.5m/s)
  • select the blade and blade length of the adapted wind zone and set the blade expansion mechanism on the blade.
  • V el the extended blade To the maximum diameter of the wind wheel to increase the sweeping area, through the shifting operation, improve the absorption from the air at the same wind speed Wind power can generate more electricity; wind speed is at the maximum and minimum diameter of the wind wheel corresponding to the wind speed of £1 and
  • V e2 When V e2 is used, under the action of the variable pitch propeller driver, the output full power is ensured by changing the diameter of the wind wheel and the constant speed. When the wind speed reaches the wind speed v e2 , the blade to the minimum diameter of the wind wheel is shortened. Reduce the windswept area of the wind turbine, ensure the output full power through constant speed operation; keep the minimum wind wheel diameter state when the wind speed exceeds the rated wind speed V e2 , ensure the output full power and reduce the wind load through pitch and constant speed operation , to ensure the cost of wind turbine combination.
  • FIG. 3 is a schematic structural view of a blade according to an embodiment of the present invention, wherein 1 is a blade expansion mechanism, and 2 is a blade pitch mechanism.
  • the blade telescopic mechanism 1 is generally located between the pitch bearing in the wind turbine and the blade root.
  • the blade telescopic mechanism 1 and the blade rotate synchronously around the pitch bearing on the blade axis, and the blade telescopic mechanism 1 realizes the shortening of the blade according to the control signal command. Or the elongation, so that the diameter of the wind wheel becomes larger or smaller, so as to achieve the purpose of reducing the diameter, the blade telescopic mechanism can also be located between the middle portion of the blade and the tip of the blade.
  • the embodiment of the invention provides a telescopic mechanism on the blade, so that when the wind speed is small, the blade can be extended to the maximum wind wheel diameter state to increase the sweeping area, and the ability to absorb wind energy from the air at the same wind speed can be increased to generate more power; When the wind speed is too high, the blade to the minimum diameter of the wind wheel can be shortened to ensure that the wind turbine is not damaged by strong wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

风轮和风力发电机组
本申请要求于 2010 年 1 月 8 日提交中国专利局、 申请号为 201010002923.2、 发明名称为"一种新型的风轮和风力发电机组"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及风力发电设备制造技术领域, 更具体地说, 涉及一种新型的风 轮和风力发电机组。 背景技术 风力发电机组是将风能转换为电能的装置,风轮是通过叶片旋转,从空中 吸收风能并转换为机械能的装置,风力发电机组是由风轮和发电机组成的,风 轮由叶片、轮毂和加固件等组成,它由叶片受风力旋转带动发电机转动而发电。
在大自然中, 目前可经济开发的风资源年平均风速约为 5.5m/s ~ 10m/s, 风的风速、 风频一般遵从威布尔分布(Weibell )或瑞利分布(Roily ), 如年平 均风速为 7.5m/s, 在一年内, 风速小于 4m/s的时间约占 8%, 4 ~ 13m/s风速 的时间约占 78%, 13 ~ 25m/s风速的时间约占 10%, 风速大于 20m/s的时间约 占 4%。 可见, 在一年中, 风速大多在 4 ~ 13m/s, 因此最大限度利用高风频、 中等风速区间的风(约小于 13m/s ), 是风电机组的经济性的关键。
从经济性考虑, 目前风力发电机组的额度风速与年平均风速之比约为 1.4 ~ 2倍, IEC II风区与 IECIII风区的额度风速之差为 1.4 ~ 2.0m/s, 额度风速 约为 13m/s。
随着风力发电技术以及风资源利用的不断发展,最经济及最大限度地利用 风资源是目前最大的技术问题。如何使额度风速下的有效风多发电而风机的强 度变化较小 (成本不变), 是目前业界面临的主要问题。
发明内容
在风力发电***中, 从空中吸收的功 P = l/2 ^ CpAV3 (其中 ^为空气密度 kg/m3 , P为从空中吸收的能量 kW, Cp为风能利用系数, A为风轮扫风面积, V为风速 m/s ), 增大叶片旋转长度即可增加风轮扫风面积, 以此同比提高风 机的输出功率。 有鉴于此, 本发明提供了一种风轮和风力发电机组, 以实现最经济及最大 限度地利用风资源, 使额度风速下的有效风多发电。
为实现上述目的, 本发明提供如下技术方案:
一种新型的风力发电机组, 包括: 风轮、 发电机和主控制器, 所述风轮具 体为: 齿轮箱、 叶片和变桨轴承, 变径变桨驱动器和设置在所述叶片上的叶片 伸缩机构,
所述主控制器用于接收叶片位置信号、风速信号、传动链转速信号和发电 机功率信号, 并根据接收的信号进行判断,且向所述变径变桨驱动器发送执行 信号;
所述变径变桨驱动器用于接收来自所述主控制器发来的执行信号,并根据 执行信号控制齿轮箱或伸缩机构运动。
优选的, 上述风力发电机组, 所述叶片伸缩机构设置在所述变桨轴承和所 述叶片根部之间。
优选的, 上述风力发电机组, 所述叶片伸缩机构为液压机构。
优选的, 上述风力发电机组, 所述叶片伸缩机构伸到最长和降到最短时的 差值为 3米。
一种新型的风轮, 包括叶片和驱动机构, 所述叶片上设置有伸缩机构。 优选的, 上述风轮, 所述叶片伸缩机构设置在所述变桨轴承和所述叶片***之间。
优选的, 上述风轮, 所述叶片伸缩机构为液压机构。
优选的, 上述风轮, 所述驱动机构为变径变桨驱动器。
优选的, 上述风轮, 所述叶片伸缩机构伸到最长和降到最短时的差值为 3 米。
从上述的技术方案可以看出, 本发明实施例中通过在叶片上设置伸缩机 构, 使得在风速较小时, 可以伸长叶片到最大风轮直径状态以增大扫风面积, 提高同风速下从空中吸收风能的能力而多发电; 在风速过大时, 可以缩短叶片 到最小风轮直径状态, 以保证风力发电机不至于被强风损坏。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的风力发电机组的风轮变径和变桨控制流程图; 图 2 为为本发明实施例提供的风力发电机组最大和最小风轮直径状态的 功率曲线示意图;
图 3本发明实施例提供的叶片结构示意图;
图 4 为本发明实施例提供的风力发电机组在风轮最小状态下的结构示意 图;
图 5 为本发明实施例提供的风力发电机组在风轮最大状态下的结构示意 图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供了一种风轮和风力发电机组,以实现最经济及最大限度地利用 风资源, 使额度风速下的有效风多发电。
请参阅图 1 , 图 1为本发明实施例提供的风力发电机组的风轮变径和变桨 控制流程图。
本发明风力发电机组是由风轮、发电机和主控制器等组成的,风轮由叶片、 变径变桨驱动器、 齿轮箱、 变桨轴承、 轮毂和加固件等组成, 它由叶片受风力 旋转带动发电机转动而发电。
本发明实施例的原理: 是通过主控制器采集的叶片位置、 传动链转速、 发 电机功率、风速等信号, 向变径变桨驱动器发出改变风轮直径或变桨角度的信 号, 变径变桨驱动器控制叶片伸缩机构(能够控制叶片伸缩的机构很多, 如涡 轮蜗杆机构, 液压机构等, 本发明优选采用液压机构)或叶片变桨机构(即齿 轮箱, 通过齿轮的传动改变叶片的角度)动作(其中叶片伸缩机构和齿轮箱各 有马达进行驱动), 使风轮处于相应风轮直径状态或相应变桨角度, 达到从空 中吸收大部分风能而增加发电量的目的。
在额度风速(额度风速约为 13m/s ) 以下而经常出现的中等风速区间内, 保持变桨角度为 0度。 通过采集的叶片位置、 传动链转速、 发电机功率、 风速 等信号, 主控制器向变径变桨驱动器发出增加风轮直径的信号, 变径变桨驱动 器控制叶片伸缩机构动作,使风轮处于最大风轮直径状态, 达到从空中吸收大 部分风能而增加发电量的目的。
同时, 在额度风速以上的较高风速区间内, 优先采用变径的方式。 通过采 集的叶片位置、 传动链转速、 风速及发电机功率等信号, 主控制器向变径变桨 驱动器发出减小风轮直径信号,变径变桨驱动器控制叶片伸缩机构动作使风轮 处于最小风轮直径状态,再利用现有的变桨距技术,在最小风轮直径状态下变 桨, 避免产生对风机不利载荷的增加, 以此保持风机的经济性和安全性, 也可 采用变径和变桨同时进行的方式。
请参阅图 2, 图 4和图 5, 图 2为为本发明实施例提供的风力发电机组最 大和最小风轮直径状态的功率曲线示意图,图 4为本发明实施例提供的风力发 电机组在风轮最小状态下的结构示意图,图 5为本发明实施例提供的风力发电 机组在风轮最大状态下的结构示意图。
其中, 曲线 1为最大风轮直径状态的功率曲线, 曲线 2为最小风轮直径状 态的功率曲线, £1为最大风轮直径所对应的额度风速, Ve2为最小风轮直径所 对应的额度风速, 1为叶片, 2为叶片伸缩机构。
当风速小于额度风速 Vel时, 曲线 1始终处于曲线之上, 即风轮直径为最 大时, 能够保证风力发电机组的功率为最大; 当风速等于额度风速 vel, 采用 风轮直径为最大, 能够保证输出满发功率(即最大的功率, 功率达到 100% ); 当风速大于额度风速 ve2时, 风轮采用最小直径即可保证输出满发功率。
最大风轮直径状态和最小风轮直径状态的风轮直径可根据实际需要自己 选择,本发明实施例优选的采用最大风轮直径状态和最小风轮直径状态的风轮 直径差约 6m。
如风场是 IEC II类风区 (年平均风速≤8.5m/s ), 选择相适应风区的叶片和 叶片长度, 在叶片上设置叶片伸缩机构, 在额定风速 Vel 下时, 伸长叶片到 最大风轮直径状态以增大扫风面积,通过变速运行,提高同风速下从空中吸收 风能的能力而多发电; 风速处于最大和最小风轮直径所对应的额度风速 £1
Ve2之间时, 在变径变桨驱动器的作用下, 通过改变风轮直径和恒速运行, 保 证输出满发功率, 当风速到达额度风速 ve2时, 缩短叶片到最小风轮直径状态 以减少风轮扫风面积,通过恒速运行保证输出满发功率; 当风速超过额定风速 Ve2时,保持最小风轮直径状态,通过变桨和恒速运行,保证输出满发功率, 减 少风载荷, 保证风电机组合理的成本。
请参阅图 3 , 图 3为本发明实施例提供的叶片结构示意图, 其中 1为叶片 伸缩机构, 2为叶片变桨机构。
叶片伸缩机构 1一般位于风力发电机组中的变桨轴承与叶片根部之间,叶 片伸缩机构 1 和叶片在叶片轴线上围绕变桨轴承同步旋转, 叶片伸缩机构 1 根据控制信号指令,实现叶片的缩短或伸长,从而实现风轮直径的变大或变小, 以此达到变径的目的, 叶片伸缩机构也可位于叶片中部和叶片尖部之间。
本发明实施例通过在叶片上设置伸缩机构,使得在风速较小时, 可以伸长 叶片到最大风轮直径状态以增大扫风面积,提高同风速下从空中吸收风能的能 力而多发电; 在风速过大时, 可以缩短叶片到最小风轮直径状态, 以保证风力 发电机组不至于被强风损坏。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所 公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对 这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中 所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例 中实现。 因此, 本发明将不会被限制于本文所示的这些实施例, 而是要符合与 本文所公开的原理和新颖特点相一致的最宽的范围。
+

Claims

权 利 要 求
1.一种风轮, 包括叶片和变桨轴承, 其特征在于, 还包括用过调节所述叶 片伸缩的伸缩机构, 该叶片伸缩机构分别连接所述叶片和所述变桨轴承。
2.根据权利要求 1所述的风轮, 其特征在于, 所述叶片伸缩机构分别连接 所述变桨轴承和所述叶片的根部。
3.根据权利要求 1所述的风轮, 其特征在于, 所述叶片伸缩机构为液压机 构。
4.根据权利要求 1所述的风轮, 其特征在于, 所述叶片伸缩机构为涡轮蜗 杆机构。
5.—种风力发电机组, 其特征在于, 包括主控制器、 发电机、 变径变桨驱 动器、 权利要求 1-4任一项所述的风轮;
所述主控制器用于接收风速信号,根据所述风速信号所表示的风速向变径 变桨驱动器发送控制信号, 所述变径变桨驱动器驱动所述叶片伸缩机构动作, 使得风轮的直径为预设的风轮直径长度。
6.根据权利要求 5所述的风力发电机组, 其特征在于, 所述主控制器接收 所述风速信号, 若风速小于最大风轮直径所对应的额定风速 Vel , 则使风轮处 于最大直径状态; 若风速大于最小风轮直径所对应的额定风速 Ve2, 则使风轮 处于最小直径状态; 若风速处于额定风速 vel和额定风速 ve2之间, 则使风轮 的直径为与所述风速相对应的风轮直径长度。
7.根据权利要求 5所述的风力发电机组, 其特征在于, 还包括用于改变叶 片角度的叶片变桨机构。
8.根据权利要求 7所述的分类发电机组, 其特征在于, 所述叶片变桨机构 为齿轮箱。
PCT/CN2010/071249 2010-01-08 2010-03-24 风轮和风力发电机组 WO2011082562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010002923.2 2010-01-08
CN2010100029232A CN101718256B (zh) 2010-01-08 2010-01-08 一种新型的风力发电机组

Publications (1)

Publication Number Publication Date
WO2011082562A1 true WO2011082562A1 (zh) 2011-07-14

Family

ID=42432873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071249 WO2011082562A1 (zh) 2010-01-08 2010-03-24 风轮和风力发电机组

Country Status (2)

Country Link
CN (1) CN101718256B (zh)
WO (1) WO2011082562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931793A (zh) * 2021-11-12 2022-01-14 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组仿真的变桨环节等值方法及***

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454376A (zh) * 2013-09-22 2015-03-25 王智勇 一种带支撑装置的风力发电机桨叶
CN104389736A (zh) * 2014-09-16 2015-03-04 黄军 管叶锥连体风力发电机风轮
CN104963811B (zh) * 2015-07-15 2018-03-06 上海电机学院 自适应风速的多级风力发电机及其控制方法
CN105156266A (zh) * 2015-09-14 2015-12-16 华锐风电科技(集团)股份有限公司 风电机组叶片及风电机组
CN106150916A (zh) * 2016-07-19 2016-11-23 四川大学 一种双叶轮同步风力发电机组
CN112211775A (zh) * 2016-12-31 2021-01-12 毛永波 轴向流力齿轮组外伸缩叶流轮
CN109707568B (zh) * 2018-11-26 2020-09-08 零碳天下(苏州)节能科技有限公司 一种风机发电装置
CN114962143B (zh) * 2022-06-15 2024-03-15 华北电力大学 双风轮风力发电机组及其控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132615A (ja) * 1999-11-11 2001-05-18 Hitachi Zosen Corp 発電用プロペラ形風車
JP2006307816A (ja) * 2005-04-26 2006-11-09 System Giken Kk ブレードの長さ、ピッチが可変する、水平・垂直型の風力発電用風車。
CN2903462Y (zh) * 2006-04-29 2007-05-23 华小平 风力发电机组伸缩型风轮叶片
CN100458145C (zh) * 2006-03-29 2009-02-04 代运波 具有变径变实度功能的风力发电机
CN101440783A (zh) * 2008-12-22 2009-05-27 三一电气有限责任公司 风力发电机组、风力发电***及其运行控制方法
CN101555871A (zh) * 2009-05-21 2009-10-14 中船重工(重庆)海装风电设备有限公司 一种变桨距变速风力发电机组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490093A (en) * 1981-07-13 1984-12-25 U.S. Windpower, Inc. Windpower system
CN101487445A (zh) * 2009-02-25 2009-07-22 陈小兵 旋叶立式风能机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132615A (ja) * 1999-11-11 2001-05-18 Hitachi Zosen Corp 発電用プロペラ形風車
JP2006307816A (ja) * 2005-04-26 2006-11-09 System Giken Kk ブレードの長さ、ピッチが可変する、水平・垂直型の風力発電用風車。
CN100458145C (zh) * 2006-03-29 2009-02-04 代运波 具有变径变实度功能的风力发电机
CN2903462Y (zh) * 2006-04-29 2007-05-23 华小平 风力发电机组伸缩型风轮叶片
CN101440783A (zh) * 2008-12-22 2009-05-27 三一电气有限责任公司 风力发电机组、风力发电***及其运行控制方法
CN101555871A (zh) * 2009-05-21 2009-10-14 中船重工(重庆)海装风电设备有限公司 一种变桨距变速风力发电机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931793A (zh) * 2021-11-12 2022-01-14 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组仿真的变桨环节等值方法及***
CN113931793B (zh) * 2021-11-12 2023-04-25 中国华能集团清洁能源技术研究院有限公司 一种串列式双风轮风电机组仿真的变桨环节等值方法及***

Also Published As

Publication number Publication date
CN101718256A (zh) 2010-06-02
CN101718256B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2011082562A1 (zh) 风轮和风力发电机组
CN101440783B (zh) 风力发电***运行控制方法
US5474425A (en) Wind turbine rotor blade
WO2017096645A1 (zh) 一种基于倾斜铰接叶片的前端支撑可调变桨装置
EP1891326A1 (en) A blade with hinged blade tip
CN201339544Y (zh) 带拨动装置的被动变桨风力发电机
CN101520027A (zh) 用于风力涡轮机的可变叶尖速比跟踪控制
KR100832053B1 (ko) 유체 토크 컨버터를 이용한 풍력 발전 시스템
CN108457795B (zh) 自动变桨和失能保护的风力发电机风轮
CN202157900U (zh) 一种基于内模pid的风电机组变桨控制***
CN202056007U (zh) 一种大功率风力发电机及其叶片
CN202215429U (zh) 一种差动齿箱调速型同步风力发电机组的控制***
CN101270720B (zh) 双叶片立轴风力机
CN104295441A (zh) 一种垂直轴风力机
CN202756176U (zh) 一种风轮叶片可调速的垂直轴风力发电机
CN201953567U (zh) 一种风力发电机组及其变桨机构
CN103225587A (zh) 一种下风向风力发电机组
CN201339543Y (zh) 被动变桨风力发电机
CN103375332A (zh) 变速变桨风力发电机组最优阻力矩动态优化方法
CN204175525U (zh) 一种垂直轴风力机
CN110131106B (zh) 一种可提高风能截面利用率的风车
CN103790774B (zh) 一种可调迎风面积的垂直轴风力机
CN203560036U (zh) 具有尾舵转向功能的风力发电机
KR20110034999A (ko) 소형 풍력발전기의 가변형 꼬리날개 및 제어방법
CN102192097A (zh) 风力机风压式变桨装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10841905

Country of ref document: EP

Kind code of ref document: A1