WO2011078585A2 - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
WO2011078585A2
WO2011078585A2 PCT/KR2010/009235 KR2010009235W WO2011078585A2 WO 2011078585 A2 WO2011078585 A2 WO 2011078585A2 KR 2010009235 W KR2010009235 W KR 2010009235W WO 2011078585 A2 WO2011078585 A2 WO 2011078585A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
ionic liquid
graphite
liquid polymer
electrochemical device
Prior art date
Application number
PCT/KR2010/009235
Other languages
French (fr)
Korean (ko)
Other versions
WO2011078585A3 (en
Inventor
서광석
김종은
김태영
Original Assignee
Suh Kwang Suck
Kim Jong Eun
Kim Tae Young
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suh Kwang Suck, Kim Jong Eun, Kim Tae Young filed Critical Suh Kwang Suck
Priority to JP2012545852A priority Critical patent/JP2013534686A/en
Priority to CN2010800580204A priority patent/CN102763251A/en
Priority to EP10839782A priority patent/EP2518805A2/en
Priority to US13/518,432 priority patent/US20120256138A1/en
Publication of WO2011078585A2 publication Critical patent/WO2011078585A2/en
Publication of WO2011078585A3 publication Critical patent/WO2011078585A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical device, and more specifically, a graphene-ionic liquid polymer composite prepared using a graphene material and an ionic liquid polymer is used as a material for an electrochemical device such as a supercapacitor and a secondary battery. And it relates to an electrochemical device manufactured through this.
  • Graphene is a two-dimensional plate-like carbon allotrope formed by hexagonal lattice of carbon atoms. It has a high charge mobility of about 20,000 to 50,000 cm / Vs and a specific surface area of 2,630 m 2 / g. Recently, research is being conducted to apply it to electrochemical devices such as supercapacitors or electric double layer capacitors.
  • Graphene may be prepared by a micromechanical method, a chemical vapor deposition (CVD) method, or an oxidation-reduction method.
  • CVD chemical vapor deposition
  • graphite is oxidized to separate each layer of graphite oxide (GO) in a solution, and graphene oxide (GO) obtained through the reduction is again reduced to reduce graphene (reduced graphene).
  • oxide (RG-O) method has the advantage of obtaining a large amount of graphene-based materials (generally, graphene and reduced graphene oxide have different characteristics.
  • graphene shall include both graphene and reduced graphene oxide).
  • this method may reduce the available specific surface area of graphene because graphene layers (RG-O platelets) re-aggregate in the dispersion during the reduction of graphene oxide.
  • the disadvantage is that the process is cumbersome because the binder material must be mixed again.
  • the electrolytes used in the supercapacitors are classified into aqueous electrolytes and organic solvent electrolytes. When using electrode materials having high compatibility with these electrolytes, an electrochemical device having higher capacitance can be manufactured. Therefore, the necessity of the electrode material with high compatibility with these electrolytes is increasing.
  • the aqueous or organic electrolyte has a disadvantage of low energy density of the supercapacitor because of its high ion conductivity and a narrow range of potentials in which electrochemical redox reactions do not occur. It is attempted to raise the energy density of a supercapacitor by using a sex liquid as electrolyte.
  • the present invention has been made to solve the above-mentioned problems of the prior art, to prepare a graphene-ionic liquid polymer composite by reacting graphene and ionic liquid polymer, to provide an electrochemical device using the same as an electrode material
  • the purpose is.
  • the present invention can produce an electrochemical device using a graphene-ionic liquid polymer composite including graphene and ionic liquid polymer.
  • the ionic liquid polymer may be a compound composed of a combination of cations and anions.
  • the ionic liquid polymer is used as a cation represented by the formula (1) below,
  • R 1 to R 10 independently represent each other selected from the following groups: i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl consisting of C 1 to C 25 hydrocarbons , May include O, N, Si and S as phenyl as a hetero atom, and may optionally include a group of Cl, Br, F, I, OH, NH 2 , SH)
  • Anions include [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3- , [HPO 4 ] 2- , [H 2 PO 4 ] - , [HSO 3 ] - , [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] -, [SbF 6] -, [CF 3 SO 3] -, [HCF 2 CF 2 SO 3] - , [CF 3 HFCCF 2 SO 3 ] - , [HCClFCF 2 SO 3 ] - , [(CF 3 SO 2 ) 2 N] -
  • the graphene is obtained by oxidation-reduction of graphite, or obtained by high temperature heat treatment of expandable graphite in which acid is inserted into each layer of graphite, or by inserting alkali metal into each layer of graphite. It may be obtained by treating intercalated graphite with microwaves or by treating graphite with an electrochemical method.
  • the composite may be composed of 5 to 95 wt% of graphene and 5 to 95 wt% of the ionic liquid polymer.
  • the electrochemical device may be a battery, a fuel cell, a capacitor or a combination thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor.
  • the electrochemical device may use a graphene-ionic liquid polymer composite as an electrode material.
  • the composite may additionally include one or more binders, carbon materials, metal particles, and electrically conductive polymers.
  • the binder is any one of polyperfluorosulfonic acid, polytetrafluoroethylene, polyvinylidene fluoride copolymer
  • the carbon material is at least one of activated carbon, graphite, carbon black, carbon nanotube, fullerene
  • the electrically conductive polymer may include any one or more of polyaniline, polypyrrole, polythiophene, and derivatives thereof.
  • the electrochemical device according to the present invention may be a device of the same category as the electrochemical device of US 2010/0035093.
  • the ionic liquid polymer is bonded to the graphene surface to improve the dispersibility of the graphene to increase the available specific surface area of the graphene, as well as to improve compatibility with the electrolyte containing the ionic liquid. Therefore, when used as an electrode material it can be produced an electrochemical device with more excellent capacitance and energy density.
  • FIG. 1 and 2 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1.
  • FIG. 1 and 2 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1.
  • FIG. 1 and 2 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1.
  • Figure 3 is a photograph and graph of the atomic force microscope (AFM) observation results of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1.
  • AFM atomic force microscope
  • Figure 4 is an electron scanning microscope (SEM) observation photograph of the graphene-ionic liquid polymer composite of Example 5.
  • FIG. 6 shows galvanostatic charge / discharge at cyclic potential curves and different constant currents of a supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as an electrode material. ) Curve.
  • the graphene-ionic liquid polymer of the present invention will be described as a composite of the ionic liquid polymer physically or chemically bonded to the graphene surface as a method for producing the same.
  • the graphene that can be used in the present invention is graphene obtained by separating each layer of graphite, and graphite may use any one of graphite or the like, which is pretreated to help layer separation.
  • Representative methods of pretreatment to aid in delamination are to oxidize graphite to produce graphene oxide, or to insert acid into each layer of graphite and heat treatment to swell, or to insert alkali metal into each layer of graphite and to microwave.
  • Various methods are possible, such as graphite separated by electrochemical reaction or using these methods in parallel.
  • the ionic liquid polymer that can be used in the present invention is a compound in the form of a polymer composed of a combination of cations and anions, and any one of these components may be used or a mixture thereof may be used.
  • Examples of representative cations constituting the ionic liquid of the present invention are as shown in the formula (1).
  • R 1 to R 10 independently represent each other selected from the following group. i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl, phenyl consisting of C 1 to C 25 hydrocarbons, which may include O, N, Si and S as heteroatoms, and optionally Cl , Br, F, I, OH, NH 2 , SH may include a group.
  • the anion constituting the ionic liquid polymer is not particularly limited as an inorganic or inorganic element, and specific examples thereof include [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [ C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3-, [HPO 4] 2- , [H 2 PO 4] -, [HSO 3] -, [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] - , [SbF 6 ] - , [CF 3 SO 3 ] - , [HCF 2 CF 2 SO 3 ] - , [CF 3 HFCCF 2 SO 3 ] -
  • the ionic liquid polymer binds to the graphene surface to facilitate the dispersion of graphene in the solution, and in the case of graphene oxide, promotes a reduction reaction.
  • Graphene oxide which is separated from each layer by oxidizing graphite, is mixed with an ionic liquid polymer to form a graphene oxide-ionic liquid polymer, which is oxidized using a reducing agent or heat.
  • a graphene-ionic liquid polymer composite obtained by reducing graphene is prepared.
  • the method for preparing the graphene-ionic liquid polymer composite using the method of the above method (i) is as follows.
  • General graphite is oxidized using a mixed solution of KMnO 4 , H 2 SO 4 , HNO 3, etc., as known by the Hummer method, and dispersed in water or an organic solvent to obtain a graphene oxide dispersion.
  • an ionic liquid polymer is mixed with the solution to form a graphene oxide-ionic liquid polymer.
  • the oxidation yes If it is dispersed in a water-pin as an anion of a hydrophilic ionic liquid polymer, for example, the ionic liquid polymer [NO 3] -, Cl - , Br -, I -, [CH 3 SO 4] - is It is preferable to use an ionic liquid polymer which is bound, and when graphene oxide is dispersed in an organic solvent such as propylene carbonate, the anion of the hydrophobic ionic liquid polymer, for example, the ionic liquid polymer, may be [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3] -, [CF 3 CFHOCF 2 CF 2 SO 3] - it is preferred to use the
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100.
  • the ionic liquid polymer in the process of reducing the graphene oxide to produce a graphene-ionic liquid polymer composite, the ionic liquid polymer exhibits an effect of stabilizing by combining with graphene to prevent the graphene from aggregating again during the reduction process.
  • graphene in graphene-ionic liquid polymer composites has the effect of exhibiting a high available specific surface area.
  • the ionic liquid monomer has a functional group capable of inducing a polymerization reaction to the cation, and the anion is [BF 4 ] - , [PF 6 ] - , [CF 3 ] for effective separation of the graphene-ionic liquid polymer composite.
  • the graphene-ionic liquid polymer composite is prepared by adding a polymerization initiator for polymerization of the ionic liquid to the graphene-ionic liquid monomer solution.
  • a polymerization initiator for polymerization of the ionic liquid any one of 2,2-azobisisobutyronitrile (AIBN), 1,1 ⁇ -azobiscyclohexanecarbonitrile (ABCN), and benzoyl peroxide (BP) Or you may mix and use more.
  • the content of the polymerization initiator may be used in an amount of 0.1 to 3 parts by weight based on the content of the ionic liquid, and the polymerization reaction may be performed at a temperature of 50-80 degrees Celsius for about 5-72 hours.
  • the temperature and the reaction time of the reaction is less than the lower limit, the reaction rate is too low or the reaction is not very good due to the high molecular weight is not good, the use of more than the upper limit unnecessarily large amount or long time reaction Or the temperature is too high to deteriorate the ionic liquid polymer or the solvent evaporation is severe and disadvantageous.
  • An example of the method of (i) or (ii) is to prepare a graphene-ionic liquid polymer composite, wherein the ionic liquid polymer in the composite is adjusted to have a weight average molecular weight in the range of 1,000-2,000,000 grams / mol It is preferable. If the molecular weight is 1,000 grams / mol or less, the long-term stability of the graphene dispersion is not good, and if it is 2,000,000 grams / mol or more, the molecular weight is too high, solubility is deteriorated.
  • the composite consisting of graphene-ionic liquid polymer is characterized in that composed of 5 to 95 wt% of graphene and 5 to 95 wt% of ionic liquid polymer. If the graphene content is less than 5 wt%, the electrical conductivity of the composite is very low, and because the amount of graphene that can form an electric double layer with an electrolyte is too small, it is difficult to secure sufficient capacitance, and the graphene content is 95 wt%. Exceeding the% causes a problem that the workability of the graphene composite is lowered.
  • the graphene-ionic liquid polymer composite according to the present invention can easily change the compatibility with an aqueous, organic, or ionic liquid electrolyte by exchanging anions bound to the ionic liquid polymer according to a conventional anion exchange reaction. have.
  • the anion of the ionic liquid polymer in the complex Cl -, Br -, [NO 3] -, [CH 3 SO 4] - the compatibility with water-based electrolyte together excellent if it is a combination, this anion substituted by [BF 4] -, [PF 6] -, [CF 3 sO 2) 2 N] -, [(CF 3 CF 2 sO 2) 2 N] - is when so combined organic electrolyte or ionic liquid electrolyte and The compatibility is excellent.
  • Graphene-ionic liquid polymer composite of the present invention is obtained in the form of a slurry through a process such as filtration, it can be used as a material of various electrochemical devices.
  • organic-inorganic materials such as binders, carbon materials, metal particles, and electrically conductive polymers may be selectively mixed.
  • polyperfluorosulfonic acid Nafion
  • polytetrafluoroethylene polytetrafluoroethylene
  • polyvinylidene fluoride copolymer etc.
  • carbon materials activated carbon, graphite, carbon black, carbon nanotube, fullerene, etc.
  • electrically conductive polymer examples include polyaniline, polypyrrole, polythiophene, and derivatives thereof.
  • binder material content ranges from 1 to 20 wt% of graphene content, and if the content is less than 1 wt%, the complementary effect of the mechanical properties is too small, and if it is more than 20 wt%, the binder, which is an electrical insulator, enters too much.
  • the performance as an electrochemical device is deteriorated and is rather disadvantageous.
  • the electrochemical device refers to various devices such as a battery, a fuel cell, a capacitor or a combination thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor. That is, it can be used in various electrochemical devices so that the capacitance is much better than the prior art.
  • Example 1 relates to a graphene dispersion stabilized with an ionic liquid polymer through an oxidation and reduction process, the specific method of which is as follows.
  • graphite is prepared by stirring 5 grams of graphite in a solution of 25 grams of KMnO 4 , 3.75 grams of NaNO 3 , and 170 milliliters of H 2 SO 4 , and the graphite oxide is stirred in water for 30 minutes and centrifuged to give yellow oxide.
  • An aqueous graphene oxide dispersion is obtained.
  • 400 milligrams of poly (1-vinyl-3-ethylimidazolium) bromide (poly (1-vinyl-3-ethylimidazolium) bromide) as an ionic liquid polymer was mixed and stirred.
  • An aqueous graphene oxide dispersion stabilized with a liquid polymer was obtained.
  • This solution is a graphene dispersion dispersed in water, and a portion of the solution is taken and observed with an atomic force microscope. As a result of the AFM photograph and the graph of the thickness profile of FIG. It was confirmed that the graphene-ionic liquid polymer composite is about nanometer.
  • Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). Prepared. After preparing the graphite oxide, an organic solvent dispersion having graphene oxide dispersed at a concentration of 1.0 mg / ml was obtained by stirring it for about 1 hour using propylene carbonate as a solvent.
  • the filter was filtered using a filter paper, and the electrical resistance of the graphene-ionic liquid polymer composite remaining on the filter paper was confirmed. As a result, the reduction of graphene oxide was rapidly progressed to 10 3 Ohm / sq. could.
  • AIBN polymerization initiator 2,2-azobisisobutyronitrile
  • the graphene dispersion is in a gel state, and when 20 grams of propylene carbonate is added thereto, the mixture is stirred to obtain a dark gray graphene dispersion, which is uniformly dispersed in an organic solvent. Dispersion.
  • Example 4 is an example of the process of converting the graphene dispersion obtained in Example 2 into water dispersible by the ion exchange method.
  • Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). It was prepared and put in water and stirred for 30 minutes to obtain an aqueous dispersion of graphene oxide dispersed at a concentration of 1.0 mg / ml.
  • the graphene-ionic liquid polymer composite was obtained by filtration using an alumina membrane filter (ANODISC), and 2 ml of a solution in which tetraethylammonium tetrafluoroborate (TEABF 4 ) was dissolved in propylene carbonate at a concentration of 1M in propylene carbonate. Dropping to obtain an electrode material consisting of a graphene-ionic liquid polymer composite in the form of a slurry. The photographs observed using the scanning electron microscope are shown in FIG. 4. 7 mg of the electrode material was placed on an aluminum foil coated with carbon black, and rolled together with a porous polypropylene film (Celgard 3501) as a separator to prepare a supercapacitor cell.
  • ANODISC alumina membrane filter
  • TEABF 4 tetraethylammonium tetrafluoroborate
  • Comparative Example 1 is the same as Example 5, except that 3 wt% of polytetrafluoroethylene was mixed with the binder material in the graphene obtained by the reduction reaction without using the ionic liquid polymer. As a result of testing the capacitance of the prepared supercapacitor cell, it was confirmed that the capacitance was lower than that of Example 4 using the ionic liquid polymer at about 144 F / g.
  • Graphite oxide was prepared by acid treatment of graphite (SP-1, Bay Carbon) using the Hummer method. Separately, 75 mg of the ionic liquid polymer poly (1-vinyl-3-ethyl imidazolium) bistrifluoromethylsulfonylamide was completely dissolved in 20 mL of propylene carbonate by stirring at room temperature for 30 minutes.
  • the reduced graphene oxide-ionic liquid polymer composite (PIL: RG-O), which is black, is heated by heating the graphene oxide-ionic liquid polymer dispersion at 150 ° C. for one hour in an oil bath. ), A dispersion liquid was obtained.
  • the manufacturing process of the supercapacitor using the graphene-ionic liquid polymer composite is as follows.
  • the graphene-ionic liquid polymer composite was collected on a Teflon membrane (0.2 micrometer pore size) by vacuum filtration, and the graphene-ionic liquid polymer composite was then ionic liquid electrolyte 1-ethyl-3-methyl.
  • Imidazolium bistrifluoromethylsulfonylamide [1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] (EMIM-NTf 2 ) (Basionics HP01, BASF), and used as an electrode without additional binders or additives .
  • the supercapacitor according to the present embodiment of FIG. 5 is a graphene-ionic liquid polymer composite electrode (PIL: RG-O electrode) on the right side and 1-ethyl-3-methylimidazolium bistrifluoro which is an ionic liquid electrolyte.
  • PIL graphene-ionic liquid polymer composite electrode
  • 1-ethyl-3-methylimidazolium bistrifluoro which is an ionic liquid electrolyte.
  • EMIM-NTf 2 methylsulfonylamide [1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide]
  • the graphene-ionic liquid polymer composite electrode ( PIL: RG-O electrodes are formed into a thick slurry and pressurized onto a carbon coated aluminum current collector.
  • Each electrode has a diameter of 20 mm and a thickness of about 100 micrometers.
  • the graphene-ionic liquid polymer composite electrode (PIL: RG-O electrode) and porous polypropylene separator (Celgard 3501) were sandwiched together in a stainless steel cell for a fully assembled two electrode cell device.
  • the galvanostatic charge and discharge at the cyclic potential curves and voltage constants as shown in FIG. 6 from the supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as the electrode material. / discharge) curve is obtained.
  • Fig. 6 (a) the cyclic potential curves for the voltage velocities of 40 mV / s, 60 mV / s, and 80 mV / s were obtained, and the galvanostatic charge / discharge of 6 (b) was also obtained.
  • the discharge curve is derived from constant currents of 10, 20, and 40 mA (individually corresponding to charge / discharge current densities of 2, 4, and 8 A / g) and shows a nearly linear response. It shows excellent capacitor characteristics.
  • FIG. 7 is a graph showing a maximum voltage cyclic potential curve of a supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as an electrode material at 7 (a) and 3.5V (current density: 8 A / g).
  • the galvanostatic charge / discharge curve of Fig. 7 (b) shows a stable curve from Fig. 7 to 3.5V.
  • the graphene dispersion preparation method according to the present invention and the graphene-ionic liquid polymer composite prepared therefrom and the preparation method thereof are graphene-ion using a graphene dispersion prepared by dispersing graphite in an ionic liquid.
  • a sex liquid polymer composite can be prepared.
  • the graphene-ionic liquid polymer composite thus prepared can be used as an electrode material of an electrochemical device such as a supercapacitor or an electric double layer.

Abstract

The present invention relates to an electrochemical device, wherein ionic-liquid polymers are bonded to the surface of graphene to produce a graphene/ionic-liquid polymer composite, and the thus-produced composite is used as materials for electrodes thereof.

Description

전기화학 장치Electrochemical device
본 발명은 전기화학 장치에 관한 것으로, 보다 상세하게는 그래핀 소재와 이온성 액체 고분자를 이용하여 제조되는 그래핀-이온성액체 고분자 복합물을 수퍼커패시터, 이차전지 등의 전기화학 장치의 재료로 활용하고, 이를 통해 제조된 전기화학 장치에 관한 것이다.The present invention relates to an electrochemical device, and more specifically, a graphene-ionic liquid polymer composite prepared using a graphene material and an ionic liquid polymer is used as a material for an electrochemical device such as a supercapacitor and a secondary battery. And it relates to an electrochemical device manufactured through this.
그래핀(graphene)은 탄소 원자들이 육각형의 격자구조를 이루면서 만들어진 2차원 판상구조의 탄소동소체로서, 전하이동도가 약 20,000 내지 50,000 cm/Vs 로 높고 비표면적의 이론치가 2,630 m2/g으로 매우 높아 최근 이를 초고용량 수퍼커패시터 또는 전기이중층 커패시터와 같은 전기화학 장치에 응용하려는 연구가 진행되고 있다. Graphene is a two-dimensional plate-like carbon allotrope formed by hexagonal lattice of carbon atoms. It has a high charge mobility of about 20,000 to 50,000 cm / Vs and a specific surface area of 2,630 m 2 / g. Recently, research is being conducted to apply it to electrochemical devices such as supercapacitors or electric double layer capacitors.
그래핀을 제조하는 방법으로는 미세 기계적인(micromechanical) 방법, 화학기상증착법(chemical vapor deposition, CVD)을 이용하는 방법, 산화-환원반응 방법(oxidation-reduction) 등이 있다.Graphene may be prepared by a micromechanical method, a chemical vapor deposition (CVD) method, or an oxidation-reduction method.
이들 중 흑연을 산화시켜 흑연산화물(graphite oxide, 이하 GO)의 각 층을 용액내에서 분리하고, 이를 통해 얻은 산화그래핀(graphene oxide, 이하 G-O)를 다시 환원하여 환원된 산화그래핀(reduced graphene oxide, 이하 RG-O)을 얻는 방법은 그래핀 기반의 소재를 대량으로 얻을 수 있는 장점이 있다(일반적으로 그래핀(graphene)과 환원된 산화그래핀(reduced graphene oxide)은 다른 특성을 가지는 것으로 인식되고 있으나, 본 명세서에서는 용어의 편의상 그래핀이라고 하면 그래핀과 환원된 산화그래핀을 모두 포함하는 것으로 한다). 최근에 이러한 산화-환원 방법을 통해 얻은 그래핀 소재를 수퍼커패시터 (또는 울트라커패시터)의 전극으로 활용하는 방법이 제시되었으며, 이를 통해 정전용량(specific capacitance)이 약 80 F/g 이상인 수퍼커패시터를 제조하는 것이 보고된 바 있다. (R. S. Ruoff, Nano Lett., 2008, 8 (10), pp 3498-3502) Of these, graphite is oxidized to separate each layer of graphite oxide (GO) in a solution, and graphene oxide (GO) obtained through the reduction is again reduced to reduce graphene (reduced graphene). oxide (RG-O) method has the advantage of obtaining a large amount of graphene-based materials (generally, graphene and reduced graphene oxide have different characteristics. However, in the present specification, for convenience of terms, graphene shall include both graphene and reduced graphene oxide). Recently, a method of using a graphene material obtained through the redox method as an electrode of a supercapacitor (or ultracapacitor) has been proposed, and thus a supercapacitor having a specific capacitance of about 80 F / g or more is manufactured. Has been reported. (R. S. Ruoff, Nano Lett., 2008, 8 (10), pp 3498-3502)
그러나 이러한 방법은 산화그래핀을 환원하는 과정에서 그래핀층 (RG-O platelets)이 분산액내에서 다시 뭉치는 현상이 발생하기 때문에 그래핀의 가용 비표면적이 줄어드는 문제가 있을 수 있고, 그래핀 분산액에 다시 바인더 물질을 혼합해야 하기 때문에 공정이 번거롭다는 단점이 있다. 또한 수퍼 커패시터에 사용되는 전해질은 크게 수계 전해질(aqueous electrolyte)과 유기계 전해질(organic solvent electrolyte)로 구분되는데, 이러한 전해질과 상용성이 높은 전극재료를 이용할 경우 보다 정전용량이 우수한 전기화학 장치를 제조할 수 있기 때문에 이들 전해질과의 상용성이 높은 전극재료의 필요성이 증대되고 있다. 더욱이 상기 수계 또는 유기계 전해질은 이온전도도는 높은 반면 전기화학적으로 산화환원 반응이 일어나지 않는 전위범위가 좁기 때문에 수퍼커패시터의 에너지 밀도(energy density)가 낮은 단점이 있어, 최근에는 높은 전위범위를 가지고 있는 이온성 액체를 전해질로 사용함으로써 수퍼커패시터의 에너지 밀도를 높이는 것이 시도되고 있다.However, this method may reduce the available specific surface area of graphene because graphene layers (RG-O platelets) re-aggregate in the dispersion during the reduction of graphene oxide. The disadvantage is that the process is cumbersome because the binder material must be mixed again. In addition, the electrolytes used in the supercapacitors are classified into aqueous electrolytes and organic solvent electrolytes. When using electrode materials having high compatibility with these electrolytes, an electrochemical device having higher capacitance can be manufactured. Therefore, the necessity of the electrode material with high compatibility with these electrolytes is increasing. In addition, the aqueous or organic electrolyte has a disadvantage of low energy density of the supercapacitor because of its high ion conductivity and a narrow range of potentials in which electrochemical redox reactions do not occur. It is attempted to raise the energy density of a supercapacitor by using a sex liquid as electrolyte.
따라서, 상기에 제시된 문제점을 해결하고 이온성 액체를 포함하는 여러 전해질과 상용성이 높은 새로운 그래핀 복합체 및 이를 이용한 전기화학 장치의 발명이 필요하다.Accordingly, there is a need for a novel graphene composite having high compatibility with various electrolytes including an ionic liquid and an electrochemical device using the same.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 그래핀과 이온성 액체 고분자를 반응시킴으로써 그래핀-이온성 액체 고분자 복합물을 제조하고, 이를 전극재료로 이용하는 전기화학 장치를 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems of the prior art, to prepare a graphene-ionic liquid polymer composite by reacting graphene and ionic liquid polymer, to provide an electrochemical device using the same as an electrode material The purpose is.
이러한 목적을 달성하기 위하여, 본 발명은 그래핀 및 이온성 액체 고분자를 포함하는 그래핀-이온성액체 고분자 복합물을 사용하여 전기화학 장치를 제조할 수 있다.In order to achieve this object, the present invention can produce an electrochemical device using a graphene-ionic liquid polymer composite including graphene and ionic liquid polymer.
상기 이온성 액체 고분자는 양이온 및 음이온의 조합으로 구성된 화합물일 수 있다.The ionic liquid polymer may be a compound composed of a combination of cations and anions.
상기 이온성 액체 고분자가 양이온으로 아래 화학식 1에 나타낸 것이 사용되거나,The ionic liquid polymer is used as a cation represented by the formula (1) below,
화학식 1
Figure PCTKR2010009235-appb-C000001
Formula 1
Figure PCTKR2010009235-appb-C000001
(여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다)Wherein R 1 to R 10 independently represent each other selected from the following groups: i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl consisting of C 1 to C 25 hydrocarbons , May include O, N, Si and S as phenyl as a hetero atom, and may optionally include a group of Cl, Br, F, I, OH, NH 2 , SH)
음이온으로는 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]-를 포함하는 것이 사용되거나, 또는 상기 양이온과 음이온이 모두 사용된 것일 수 있다.Anions include [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3- , [HPO 4 ] 2- , [H 2 PO 4 ] - , [HSO 3 ] - , [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] -, [SbF 6] -, [CF 3 SO 3] -, [HCF 2 CF 2 SO 3] - , [CF 3 HFCCF 2 SO 3 ] - , [HCClFCF 2 SO 3 ] - , [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3 ] - , [CF 3 CFHOCF 2 CF 2 SO 3 ] - What is included may be used, or both cations and anions may be used.
상기 그래핀은 흑연 (graphite)을 산화-환원반응을 통해 얻은 것이거나, 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하여 얻은 것이거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하여 얻은 것이거나 혹은 흑연을 전기화학적 방법으로 처리하여 얻은 것일 수 있다.The graphene is obtained by oxidation-reduction of graphite, or obtained by high temperature heat treatment of expandable graphite in which acid is inserted into each layer of graphite, or by inserting alkali metal into each layer of graphite. It may be obtained by treating intercalated graphite with microwaves or by treating graphite with an electrochemical method.
상기 복합물은 그래핀 5 ~ 95 wt% 및 이온성 액체 고분자 5 ~ 95 wt%로 구성될 수 있다.The composite may be composed of 5 to 95 wt% of graphene and 5 to 95 wt% of the ionic liquid polymer.
상기 전기화학 장치는 배터리, 연료전지, 커패시터 또는 이들의 복합장치, 수퍼커패시터, 울트라커패시터, 또는 전기이중층 커패시터일 수 있다.The electrochemical device may be a battery, a fuel cell, a capacitor or a combination thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor.
상기 전기화학 장치가 그래핀-이온성액체 고분자 복합물을 전극재료로 사용할 수 있다.The electrochemical device may use a graphene-ionic liquid polymer composite as an electrode material.
상기 복합물은 추가적으로 바인더, 탄소재료, 금속입자 및 전기 전도성 고분자를 하나 이상 더 포함할 수 있다.The composite may additionally include one or more binders, carbon materials, metal particles, and electrically conductive polymers.
상기 바인더는 폴리퍼플루오로술폰산, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 중 어느 하나이고, 상기 탄소재료는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 중 어느 하나 이상이며, 상기 전기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 중 어느 하나 이상인 것를 포함할 수 있다.The binder is any one of polyperfluorosulfonic acid, polytetrafluoroethylene, polyvinylidene fluoride copolymer, the carbon material is at least one of activated carbon, graphite, carbon black, carbon nanotube, fullerene, The electrically conductive polymer may include any one or more of polyaniline, polypyrrole, polythiophene, and derivatives thereof.
본 발명에 따른 전기화학 장치는 미국특허공개 제 US 2010/0035093 호의 전기화학 장치와 동일 카테고리의 장치일 수 있다.The electrochemical device according to the present invention may be a device of the same category as the electrochemical device of US 2010/0035093.
본 발명에 따르면, 이온성 액체 고분자가 그래핀 표면에 결합함으로써 그래핀의 분산성을 우수하게 하여 그래핀의 가용 비표면적을 높일 뿐만 아니라, 이온성 액체를 포함하는 전해질과의 상용성을 향상시키기 때문에 이를 전극재료로 활용할 경우 정전용량 및 에너지 밀도가 보다 우수한 전기화학 장치를 제조할 수 있다.According to the present invention, the ionic liquid polymer is bonded to the graphene surface to improve the dispersibility of the graphene to increase the available specific surface area of the graphene, as well as to improve compatibility with the electrolyte containing the ionic liquid. Therefore, when used as an electrode material it can be produced an electrochemical device with more excellent capacitance and energy density.
도 1 및 도 2는 실시예 1의 이온성 액체 고분자를 이용하여 제조한 그래핀-이온성 액체 고분자 복합물의 투과전자현미경(TEM) 사진들이다.1 and 2 are transmission electron microscope (TEM) images of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1. FIG.
도 3은 실시예 1의 이온성 액체 고분자를 이용하여 제조한 그래핀-이온성 액체 고분자 복합물의 원자현미경(AFM) 관찰 결과의 사진 및 그래프이다. Figure 3 is a photograph and graph of the atomic force microscope (AFM) observation results of the graphene-ionic liquid polymer composite prepared using the ionic liquid polymer of Example 1.
도 4는 실시예 5의 그래핀-이온성액체 고분자 복합물의 전자주사현미경(SEM) 관찰사진이다.Figure 4 is an electron scanning microscope (SEM) observation photograph of the graphene-ionic liquid polymer composite of Example 5.
도 5는 실시예 6의 슈퍼커패시터의 개략적인 도이다.5 is a schematic diagram of the supercapacitor of Embodiment 6;
도 6은 실시예 6의 그래핀-이온성액체 고분자 복합물을 전극재료로 이용한 수퍼커패시터의 전압속도별 순환전위곡선 및 다른 정전류(constant currents) 에서의 갈바노스태틱(Galvanostatic) 충방전(charge/discharge) 곡선이다.FIG. 6 shows galvanostatic charge / discharge at cyclic potential curves and different constant currents of a supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as an electrode material. ) Curve.
도 7은 실시예 6의 그래핀-이온성액체 고분자 복합물을 전극재료로 이용한 수퍼커패시터의 최대 전압별 순환전위곡선 및 3.5 V(전류밀도 : 8 A/g)에서의 갈바노스태틱(Galvanostatic) 충방전(charge/discharge) 곡선이다.7 is a galvanostatic charge at a maximum voltage cyclic potential curve and 3.5 V (current density: 8 A / g) of the supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as an electrode material It is a discharge / charge curve.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저 본 발명의 그래핀-이온성 액체 고분자는 그래핀 표면에 이온성 액체 고분자가 물리적 혹은 화학적으로 결합되어 있는 형태의 복합물로서 이를 제조하는 방법에 대해 설명한다. First, the graphene-ionic liquid polymer of the present invention will be described as a composite of the ionic liquid polymer physically or chemically bonded to the graphene surface as a method for producing the same.
먼저 본 발명에 사용 가능한 그래핀은 흑연의 각층을 분리하여 얻은 그래핀으로서 흑연은 흑연 자체를 사용하거나 또는 층상 분리를 돕기 위해 미리 처리된 흑연 등 어느 것이나 사용할 수 있다. 층상분리를 돕기 위해 미리 처리하는 대표적인 방법은 흑연을 산화시켜 산화그래핀을 제조하거나 산을 흑연의 각층에 삽입한 후 열처리하여 팽창시키거나 또는 알칼리 금속을 흑연의 각층에 삽입한 후 마이크로파 처리하거나 또는 흑연을 전기화학 반응시켜 분리한 것이거나 또는 이들 방법을 병행해서 사용하거나 하는 등 여러 가지 방법이 가능하다.First, the graphene that can be used in the present invention is graphene obtained by separating each layer of graphite, and graphite may use any one of graphite or the like, which is pretreated to help layer separation. Representative methods of pretreatment to aid in delamination are to oxidize graphite to produce graphene oxide, or to insert acid into each layer of graphite and heat treatment to swell, or to insert alkali metal into each layer of graphite and to microwave. Various methods are possible, such as graphite separated by electrochemical reaction or using these methods in parallel.
본 발명에 사용할 수 있는 이온성 액체 고분자는 양이온 및 음이온의 조합으로 구성된 고분자(polymer) 형태의 화합물로서, 이들 성분 중 어느 하나를 사용하거나 또는 그 이상을 혼합하여 사용할 수 있다. 본 발명의 이온성 액체를 구성하는 대표적인 양이온의 예로는 화학식 1에 나타낸 바와 같다.The ionic liquid polymer that can be used in the present invention is a compound in the form of a polymer composed of a combination of cations and anions, and any one of these components may be used or a mixture thereof may be used. Examples of representative cations constituting the ionic liquid of the present invention are as shown in the formula (1).
<화학식 1><Formula 1>
Figure PCTKR2010009235-appb-I000001
Figure PCTKR2010009235-appb-I000001
여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다.Here, R 1 to R 10 independently represent each other selected from the following group. i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl, phenyl consisting of C 1 to C 25 hydrocarbons, which may include O, N, Si and S as heteroatoms, and optionally Cl , Br, F, I, OH, NH 2 , SH may include a group.
상기 이온성 액체 고분자를 구성하는 음이온은 무기 또는 무기원소로 이루어진 화합물로서 특별히 한정되지 않으며, 이의 구체적인 예로는 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]-를 포함한다.The anion constituting the ionic liquid polymer is not particularly limited as an inorganic or inorganic element, and specific examples thereof include [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [ C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3-, [HPO 4] 2- , [H 2 PO 4] -, [HSO 3] -, [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] - , [SbF 6 ] - , [CF 3 SO 3 ] - , [HCF 2 CF 2 SO 3 ] - , [CF 3 HFCCF 2 SO 3 ] - , [HCClFCF 2 SO 3 ] - , [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3 ] - , [CF 3 CFHOCF 2 CF 2 SO 3 ] - .
상기 이온성 액체 고분자는 그래핀 표면에 결합하여 용액내에서 그래핀의 분산을 용이하게 하는 한편, 산화그래핀의 경우 환원반응을 촉진시키는 역할을 하게 된다. The ionic liquid polymer binds to the graphene surface to facilitate the dispersion of graphene in the solution, and in the case of graphene oxide, promotes a reduction reaction.
이하 본 발명의 그래핀-이온성 액체 고분자의 복합물을 제조하는 방법에 대해 아래와 같이 보다 상세히 설명한다. Hereinafter, the method for preparing the composite of the graphene-ionic liquid polymer of the present invention will be described in more detail as follows.
(i) 일반흑연 (graphite)을 산화하여 각층을 분리한 산화그래핀 (graphene oxide)을 이온성 액체 고분자를 혼합하여 산화그래핀-이온성 액체 고분자를 형성하고, 이를 환원제 또는 열을 이용하여 산화그래핀을 환원시킴으로써 얻은 그래핀-이온성액체 고분자 복합물을 제조한다.(i) Graphene oxide, which is separated from each layer by oxidizing graphite, is mixed with an ionic liquid polymer to form a graphene oxide-ionic liquid polymer, which is oxidized using a reducing agent or heat. A graphene-ionic liquid polymer composite obtained by reducing graphene is prepared.
(ii) 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하거나 혹은 흑연을 전기화학적 방법으로 처리한 후, 이를 이온성 액체 단량체에 넣고 분산시켜 그래핀-이온성 액체 단량체를 형성하고, 상기 이온성 액체를 중합함으로써 얻은 그래핀-이온성액체 고분자 복합물을 제조한다.(ii) high-temperature heat treatment of expandable graphite in which acid is inserted into each layer of graphite, microwave treatment of graphite (intercalated graphite) into which alkali metal is inserted into each layer of graphite, or electrochemical treatment of graphite. Then, it is added to the ionic liquid monomer and dispersed to form a graphene-ionic liquid monomer, and the graphene-ionic liquid polymer composite obtained by polymerizing the ionic liquid is prepared.
먼저 상기 방법 (i)의 방법을 이용한 그래핀-이온성액체 고분자 복합물의 제조하는 방법은 다음과 같다. 일반 흑연을 Hummer방법으로 알려진 바와 같이 KMnO4, H2SO4, HNO3등의 혼합용액을 이용하여 산화시키고 물 또는 유기용매에 분산함으로써 산화그래핀 분산액을 얻는다. 이후 상기 용액에 이온성 액체 고분자를 혼합하여 산화그래핀-이온성 액체 고분자를 형성한다.First, the method for preparing the graphene-ionic liquid polymer composite using the method of the above method (i) is as follows. General graphite is oxidized using a mixed solution of KMnO 4 , H 2 SO 4 , HNO 3, etc., as known by the Hummer method, and dispersed in water or an organic solvent to obtain a graphene oxide dispersion. Thereafter, an ionic liquid polymer is mixed with the solution to form a graphene oxide-ionic liquid polymer.
이때 산화그래핀이 물에 분산되어 있을 경우 친수성 이온성 액체 고분자, 예를 들면 이온성 액체 고분자의 음이온으로 [NO3]-, Cl-, Br-, I-, [CH3SO4]-이 결합되어 있는 이온성 액체 고분자를 사용하는 것이 바람직하며, 산화그래핀이 프로필렌카보네이트와 같은 유기용매에 분산되어 있을 경우 소수성 이온성 액체 고분자, 예를 들면 이온성 액체 고분자의 음이온으로 [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]- 등이 결합되어 있는 이온성 액체 고분자를 사용하는 것이 바람직하다.The oxidation yes If it is dispersed in a water-pin as an anion of a hydrophilic ionic liquid polymer, for example, the ionic liquid polymer [NO 3] -, Cl - , Br -, I -, [CH 3 SO 4] - is It is preferable to use an ionic liquid polymer which is bound, and when graphene oxide is dispersed in an organic solvent such as propylene carbonate, the anion of the hydrophobic ionic liquid polymer, for example, the ionic liquid polymer, may be [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3] -, [CF 3 CFHOCF 2 CF 2 SO 3] - it is preferred to use the ionic liquid polymer is a combination or the like.
이후 상기 산화그래핀-이온성 액체 고분자 분산액에 하이드라진(hydrazine), 하이드로퀴논(hydroquinone), 소듐보로하이드라이드(sodium borohydride) 등을 포함하는 환원제를 투입하여 환원시키거나, 상기 분산액의 온도를 100도 내지 300도로 하여 열을 이용한 환원과정을 통해 그래핀-이온성액체 고분자 복합물을 제조한다.Thereafter, a reducing agent including hydrazine, hydroquinone, sodium borohydride, or the like is added to the graphene oxide-ionic liquid polymer dispersion, or the temperature of the dispersion is 100. To 300 to prepare a graphene-ionic liquid polymer composite through a reduction process using heat.
본 발명에서 산화그래핀을 환원시켜 그래핀-이온성 액체 고분자 복합물을 제조하는 과정에서 이온성 액체 고분자는 그래핀과 결합하여 안정화시키는 효과를 나타내어 그래핀이 환원 과정중에 다시 뭉치는 현상을 방지할 수 있으며, 따라서 그래핀-이온성액체 고분자 복합물내의 그래핀은 높은 가용 비표면적을 나타내는 효과를 나타낸다.In the present invention, in the process of reducing the graphene oxide to produce a graphene-ionic liquid polymer composite, the ionic liquid polymer exhibits an effect of stabilizing by combining with graphene to prevent the graphene from aggregating again during the reduction process. Thus, graphene in graphene-ionic liquid polymer composites has the effect of exhibiting a high available specific surface area.
본 발명의 그래핀-이온성액체 고분자 복합물을 제조하는 또 다른 방법으로 상기 (ii)에 제시된 방법을 설명하면 다음과 같다. 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하거나 혹은 흑연을 전기화학적 방법으로 처리함으로써 흑연의 각 층간 인력을 감소시킨다.Another method for preparing the graphene-ionic liquid polymer composite of the present invention will be described as described in the method (ii) above. High-temperature heat treatment of expandable graphite in which acid is inserted into each layer of graphite, intercalated graphite in which alkali metal is inserted into each layer of graphite, or microwave treatment of graphite to treat each graphite Reduces the interlayer attraction
이후 이를 이온성 액체 단량체 용액에 넣고 분산시킴으로써 그래핀-이온성 액체 단량체 분산액을 형성한다. 이때 이온성 액체 단량체는 양이온에 중합반응을 유도할 수 있는 작용기를 가지고 있고, 음이온은 그래핀-이온성 액체 고분자 복합물의 효과적인 분리를 위해 [BF4]-, [PF6]-, [CF3SO2)2N]-, [(CF3CF2SO2)2N]-를 가지고 있는 것이 바람직하다.It is then placed in an ionic liquid monomer solution and dispersed to form a graphene-ionic liquid monomer dispersion. At this time, the ionic liquid monomer has a functional group capable of inducing a polymerization reaction to the cation, and the anion is [BF 4 ] - , [PF 6 ] - , [CF 3 ] for effective separation of the graphene-ionic liquid polymer composite. SO 2) 2 N] - preferably with an -, [(CF 3 CF 2 SO 2) 2 N].
이후 상기 그래핀-이온성 액체 단량체 용액에 이온성 액체의 중합반응을 위한 중합개시제를 투입하여 반응함으로써 그래핀-이온성액체 고분자 복합물을 제조한다. 이때 이온성 액체 단량체를 중합하기 위한 개시제로는 2,2-아조비스이소부티로니트릴 (AIBN), 1,1`-아조비스시클로헥산카보니트릴 (ABCN), 벤조일 퍼록사이드 (BP) 중 어느 하나 또는 그 이상을 혼합하여 사용하면 된다.Then, the graphene-ionic liquid polymer composite is prepared by adding a polymerization initiator for polymerization of the ionic liquid to the graphene-ionic liquid monomer solution. In this case, as an initiator for polymerizing the ionic liquid monomer, any one of 2,2-azobisisobutyronitrile (AIBN), 1,1`-azobiscyclohexanecarbonitrile (ABCN), and benzoyl peroxide (BP) Or you may mix and use more.
중합개시제의 함량은 이온성 액체 함량 대비 0.1 내지 3 중량부 사용하면 되고, 중합반응은 섭씨 50-80도의 온도에서 5-72시간 정도 반응시키면 된다. 상기 반응의 개시제 함량, 온도 및 반응시간의 경우 하한치 미만일 경우에는 반응속도가 너무 낮거나 또는 반응이 잘 안 일어나 고분자량화가 잘 안 되어 불리하고, 상한치 이상을 사용하면 불필요하게 많은 양 또는 오랜 시간 반응시키거나 온도가 너무 높아 오히려 이온성 액체 고분자를 열화시키거나 또는 용매 증발이 심하여 오히려 불리하다.The content of the polymerization initiator may be used in an amount of 0.1 to 3 parts by weight based on the content of the ionic liquid, and the polymerization reaction may be performed at a temperature of 50-80 degrees Celsius for about 5-72 hours. In the case of the initiator content, the temperature and the reaction time of the reaction is less than the lower limit, the reaction rate is too low or the reaction is not very good due to the high molecular weight is not good, the use of more than the upper limit unnecessarily large amount or long time reaction Or the temperature is too high to deteriorate the ionic liquid polymer or the solvent evaporation is severe and disadvantageous.
상기 (i) 또는 (ii)의 방법의 예로서 그래핀-이온성액체 고분자 복합물을 제조되는데, 이때 상기 복합물내의 이온성 액체 고분자는 중량평균 분자량이 1,000 - 2,000,000 그램/몰의 범위가 되도록 조절하는 것이 바람직하다. 분자량이 1,000 그램/몰 이하이면 그래핀 분산액의 장기 안정성이 좋지 않아 불리하고, 2,000,000 그램/몰 이상이면 분자량이 너무 높아 용해도가 떨어져 오히려 불리하다. An example of the method of (i) or (ii) is to prepare a graphene-ionic liquid polymer composite, wherein the ionic liquid polymer in the composite is adjusted to have a weight average molecular weight in the range of 1,000-2,000,000 grams / mol It is preferable. If the molecular weight is 1,000 grams / mol or less, the long-term stability of the graphene dispersion is not good, and if it is 2,000,000 grams / mol or more, the molecular weight is too high, solubility is deteriorated.
또한, 그래핀-이온성 액체 고분자로 구성된 복합물은 그래핀 5 ~ 95 wt% 및 이온성 액체 고분자 5 ~ 95 wt%로 구성되는 것임을 특징으로 한다. 그래핀의 함량이 5 wt% 미만이면 복합물의 전기전도도가 매우 낮으며 전해질과 전기이중층을 형성할 수 있는 그래핀의 양이 너무 적기 때문에 충분한 정전용량을 확보하기 어렵고, 그래핀의 함량이 95 wt%를 초과하면 그래핀 복합물의 가공성이 저하되는 문제점이 발생한다.In addition, the composite consisting of graphene-ionic liquid polymer is characterized in that composed of 5 to 95 wt% of graphene and 5 to 95 wt% of ionic liquid polymer. If the graphene content is less than 5 wt%, the electrical conductivity of the composite is very low, and because the amount of graphene that can form an electric double layer with an electrolyte is too small, it is difficult to secure sufficient capacitance, and the graphene content is 95 wt%. Exceeding the% causes a problem that the workability of the graphene composite is lowered.
또한 본 발명에 따른 그래핀-이온성액체 고분자 복합물은 이온성 액체 고분자에 결합된 음이온을 통상적인 음이온 교환반응에 따라 교환시킴으로써 수계, 유기계, 또는 이온성 액체 전해질과의 상용성을 쉽게 변화시킬 수 있다. 예를 들어, 상기 복합물내의 이온성 액체 고분자의 음이온으로 Cl-, Br-, [NO3]-, [CH3SO4]-이 결합되어 있는 경우 수계 전해질과의 상용성이 우수한데, 이를 음이온 치환하여 [BF4]-, [PF6]-,[CF3SO2)2N]-, [(CF3CF2SO2)2N]-가 결합되게 하면 유기계 전해질 또는 이온성 액체 전해질과의 상용성이 우수하다. In addition, the graphene-ionic liquid polymer composite according to the present invention can easily change the compatibility with an aqueous, organic, or ionic liquid electrolyte by exchanging anions bound to the ionic liquid polymer according to a conventional anion exchange reaction. have. For example, the anion of the ionic liquid polymer in the complex Cl -, Br -, [NO 3] -, [CH 3 SO 4] - the compatibility with water-based electrolyte together excellent if it is a combination, this anion substituted by [BF 4] -, [PF 6] -, [CF 3 sO 2) 2 N] -, [(CF 3 CF 2 sO 2) 2 N] - is when so combined organic electrolyte or ionic liquid electrolyte and The compatibility is excellent.
본 발명의 그래핀-이온성액체 고분자 복합물은 여과 등의 과정을 거쳐 슬러리의 형태로 얻어지게 되며, 이를 각종 전기화학 장치의 재료로 활용할 수 있다.Graphene-ionic liquid polymer composite of the present invention is obtained in the form of a slurry through a process such as filtration, it can be used as a material of various electrochemical devices.
이때 그래핀-이온성액체 고분자 복합물의 기계적 성질을 보완하거나 또는 다른 전기적 성질을 보완하기 위해 별도의 유무기 재료, 예를 들면 바인더, 탄소재료, 금속입자 및 전기전도성 고분자를 선택적으로 혼합하여 사용할 수 있다.At this time, in order to supplement the mechanical properties or other electrical properties of the graphene-ionic liquid polymer composite, additional organic-inorganic materials such as binders, carbon materials, metal particles, and electrically conductive polymers may be selectively mixed. have.
바인더로는 폴리퍼플루오로술폰산 (Nafion), 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 등을 사용할 수 있으며, 탄소재료로는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 등이 있으며, 전기전도성 고분자로는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 등이 있다.As the binder, polyperfluorosulfonic acid (Nafion), polytetrafluoroethylene, polyvinylidene fluoride copolymer, etc. may be used, and as carbon materials, activated carbon, graphite, carbon black, carbon nanotube, fullerene, etc. may be used. Examples of the electrically conductive polymer include polyaniline, polypyrrole, polythiophene, and derivatives thereof.
통상적인 바인더 물질의 함량범위는 그래핀 함량대비 1 ~ 20 wt%로서, 함량이 1 wt% 미만이면 기계적 성질의 보완효과가 너무 미미하여 불리하고, 20 wt% 이상이면 전기적 절연체인 바인더가 너무 많이 들어가 전기화학 장치로서의 성능이 저하되어 오히려 불리하다. 여기서 상기 전기화학 장치는 배터리, 연료전지, 커패시터 또는 이들의 복합장치, 수퍼커패시터, 울트라커패시터, 또는 전기이중층 커패시터 등 다양한 장치를 의미한다. 즉, 정전용량이 종래보다 매우 우수하도록 다양한 전기화학 장치에 사용될 수 있다.Conventional binder material content ranges from 1 to 20 wt% of graphene content, and if the content is less than 1 wt%, the complementary effect of the mechanical properties is too small, and if it is more than 20 wt%, the binder, which is an electrical insulator, enters too much. The performance as an electrochemical device is deteriorated and is rather disadvantageous. Here, the electrochemical device refers to various devices such as a battery, a fuel cell, a capacitor or a combination thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor. That is, it can be used in various electrochemical devices so that the capacitance is much better than the prior art.
상기 언급된 내용을 실시예를 이용하여 보다 구체적으로 설명하고자 한다. 그러나 본 발명의 범위는 실시예에 국한되는 것은 아니다.The above-mentioned contents will be described in more detail using examples. However, the scope of the present invention is not limited to the examples.
<실시예 1><Example 1>
실시예 1은 산화, 환원과정을 통해 이온성 액체 고분자로 안정화시킨 그래핀 분산액에 관한 것으로 이의 구체적인 제조방법은 다음과 같다.Example 1 relates to a graphene dispersion stabilized with an ionic liquid polymer through an oxidation and reduction process, the specific method of which is as follows.
먼저 흑연 5 그램을 KMnO4 25 그램, NaNO3 3.75 그램, H2SO4 170 밀리리터의 용액에서 교반하여 반응시킴으로써 산화흑연을 제조하고, 상기 산화흑연은 물에서 30분동안 교반하고 원심분리함으로써 황색의 산화그래핀 수분산액을 얻는다. 상기 산화그래핀 수분산액 19 밀리리터에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸 이미다졸리움) 브로마이드 (poly(1-vinyl-3-ethylimidazolium) bromide) 400 밀리그램을 혼합하여 교반함으로써 이온성 액체 고분자로 안정화된 산화그래핀 수분산액을 수득하였다.First, graphite is prepared by stirring 5 grams of graphite in a solution of 25 grams of KMnO 4 , 3.75 grams of NaNO 3 , and 170 milliliters of H 2 SO 4 , and the graphite oxide is stirred in water for 30 minutes and centrifuged to give yellow oxide. An aqueous graphene oxide dispersion is obtained. To 19 milliliters of the aqueous graphene oxide dispersion, 400 milligrams of poly (1-vinyl-3-ethylimidazolium) bromide (poly (1-vinyl-3-ethylimidazolium) bromide) as an ionic liquid polymer was mixed and stirred. An aqueous graphene oxide dispersion stabilized with a liquid polymer was obtained.
이후, 히드라진 3.2 밀리몰을 첨가하여 약 90도의 온도에서 1시간동안 환원반응을 시키면 용액이 황색에서 검은색으로 바뀌면서 이온성 액체 고분자로 안정화된 그래핀 수분산액을 얻을 수 있었다. 상기 그래핀 수분산액은 5개월 이상 방치해도 침전이 일어나지 않는 안정한 분산액임으로 확인하였으며, 이 샘플의 일부를 채취하여 투과전자현미경 (transmission electron microscope)으로 관찰한 결과 응집현상이 일어나지 않고 단일층으로 분리된 그래핀-이온성 액체 고분자 복합물로 존재하는 것을 도 1 및 도 2의 사진과 같이 확인하였다. 도 1 및 도 2은 같은 시료를 배율을 달리하여 찍은 사진이다. 이 용액이 물에 분산된 그래핀 분산액으로서, 이 용액의 일부를 채취하여 원자현미경 (atomic force microscope)으로 관찰한 결과는 도 3의 AFM 사진과 두께 프로파일을 나타내는 그래프에 나타난 바와 같이 높이는 1-2 나노미터 정도인 그래핀-이온성 액체 고분자 복합물임을 확인하였다. Subsequently, when 3.2 mmol of hydrazine was added for 1 hour at a temperature of about 90 degrees, the solution was changed from yellow to black to obtain an aqueous graphene dispersion stabilized with an ionic liquid polymer. The graphene aqueous dispersion was found to be a stable dispersion that does not precipitate even when left for more than 5 months. A portion of this sample was collected and observed with a transmission electron microscope, and the coagulation phenomenon was not separated into a single layer. It was confirmed that the graphene-ionic liquid polymer composite exists as shown in the photographs of FIGS. 1 and 2 are photographs taken of the same sample at different magnifications. This solution is a graphene dispersion dispersed in water, and a portion of the solution is taken and observed with an atomic force microscope. As a result of the AFM photograph and the graph of the thickness profile of FIG. It was confirmed that the graphene-ionic liquid polymer composite is about nanometer.
<실시예 2> <Example 2>
Hummer방법 (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339)을 이용하여 흑연 (SP-1, Bay Carbon사)을 산처리하여 산화그래파이트를 제조하였다. 산화그래파이트를 제조한 후, 프로필렌카보네이트를 용매로 하여 이를 약 1시간 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 분산된 유기용매 분산액을 얻는다.Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). Prepared. After preparing the graphite oxide, an organic solvent dispersion having graphene oxide dispersed at a concentration of 1.0 mg / ml was obtained by stirring it for about 1 hour using propylene carbonate as a solvent.
상기 산화그래핀 분산액 20 ml에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸 이미다졸리움) 비스(트리플루오로메틸설포닐아미드) (poly(1-vinyl-3-ethyl imidazolium) bis(trifluoromethylsulfonylamide)) 70 밀리그램을 혼합하고 약 150 도의 온도에서 교반하였다. 상기의 경우 환원시간이 약 0.5 시간이 지나면서 반응물의 색상이 검은색으로 변하면서 환원반응이 진행되는 것을 관찰할 수 있었으며, 또한 환원반응 이후에도 그래핀의 침전이 일어나지 않고 안정적으로 분산된 그래핀 분산액을 제조할 수 있었다. 약 1시간의 환원반응 후에 여과지를 이용하여 여과시킨 후, 여과지 위에 남은 그래핀-이온성 액체 고분자 복합물의 전기저항을 확인한 결과 103 Ohm/sq으로 빠른 시간내에 산화그래핀의 환원이 진행된 것을 확인할 수 있었다. In 20 ml of the graphene oxide dispersion, poly (1-vinyl-3-ethyl imidazolium) bis (trifluoromethylsulfonylamide) (poly (1-vinyl-3-ethyl imidazolium) bis () as an ionic liquid polymer. 70 mg of trifluoromethylsulfonylamide)) were mixed and stirred at a temperature of about 150 degrees. In the above case, it was observed that the reduction reaction proceeds as the color of the reactant turns black as the reduction time is about 0.5 hours, and the graphene dispersion is stably dispersed without the precipitation of graphene even after the reduction reaction. Could be prepared. After about 1 hour of reduction reaction, the filter was filtered using a filter paper, and the electrical resistance of the graphene-ionic liquid polymer composite remaining on the filter paper was confirmed. As a result, the reduction of graphene oxide was rapidly progressed to 10 3 Ohm / sq. Could.
<실시예 3><Example 3>
1,000도의 온도에서 1분간 열처리한 팽창성 흑연 1 밀리그램을 이온성 액체인 1-비닐-3-에틸이미다졸리움 비스(트리플루오로메틸설포닐아미드 ((1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonylamide)) 3 그램에 넣고 700 rpm으로 교반하였다. 이후 상기 그래핀 분산액에 중합개시제인 2,2-아조비스이소부티로니트릴 (AIBN) 0.03 그램을 투입하고 섭씨 65도의 온도에서 6시간 동안 반응시킴으로써 이온성 액체를 중합하였다. 이 과정을 거친 그래핀 분산액은 젤 상태로 되는데, 여기에 프로필렌카보네이트를 20 그램 더 첨가하여 교반하면 진회색의 그래핀 분산액을 얻는데, 이 용액이 유기 용매에 균일하게 분산되어 있는 그래핀 분산액이다.One milligram of expandable graphite, heat-treated for 1 minute at a temperature of 1,000 degrees, is an ionic liquid, 1-vinyl-3-ethylimidazolium bis ((1-vinyl-3-ethylimidazolium bis (trifluoromethylsulfonylamide)) 3 grams and stirred at 700 rpm Then, ionic liquid by adding 0.03 grams of polymerization initiator 2,2-azobisisobutyronitrile (AIBN) to the graphene dispersion and reacting at a temperature of 65 degrees Celsius for 6 hours. After this process, the graphene dispersion is in a gel state, and when 20 grams of propylene carbonate is added thereto, the mixture is stirred to obtain a dark gray graphene dispersion, which is uniformly dispersed in an organic solvent. Dispersion.
<실시예 4><Example 4>
실시예 4는 실시예 2에서 수득한 그래핀 분산액을 이온교환법에 의해 수분산성으로 변환하는 과정에 대한 실시예이다.Example 4 is an example of the process of converting the graphene dispersion obtained in Example 2 into water dispersible by the ion exchange method.
실시예 2에서 얻은 그래핀 분산액 20 그램에 테트라부틸암모늄 브로마이드를 3.6 그램 첨가하여 10 분 동안 교반하면 진회색의 침전물이 생긴다. 이 침전물을 수득하여 건조한 후 이를 다시 물에 분산하여 수계 분산된 그래핀을 얻는다. To 20 grams of the graphene dispersion obtained in Example 2, 3.6 grams of tetrabutylammonium bromide was added and stirred for 10 minutes to give a dark gray precipitate. This precipitate is obtained, dried, and then dispersed in water to obtain aqueous dispersed graphene.
<실시예 5>Example 5
Hummer방법 (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339)을 이용하여 흑연 (SP-1, Bay Carbon사)을 산 처리하여 산화그래파이트를 제조하고 이를 물에 넣고 30분 동안 교반함으로써 1.0 mg/ml의 농도로 산화그래핀이 분산된 수분산액을 얻는다.Graphite oxide was treated by acid treatment of graphite (SP-1, Bay Carbon) using Hummer method (Hummers W, Offeman R., "Preparation of graphite oxide", Jounal of the American Chemical Society, 80, 1958, 1339). It was prepared and put in water and stirred for 30 minutes to obtain an aqueous dispersion of graphene oxide dispersed at a concentration of 1.0 mg / ml.
상기 산화그래핀 수분산액 20 ml에 이온성 액체 고분자로서 폴리(1-비닐-3-에틸 이미다졸리움) 브로마이드 [poly(1-vinyl-3-ethylimidazolium) bromide] 100 mg을 혼합하여 교반함으로써 산화그래핀-이온성 액체 고분자를 수득하였다. 이후, 환원제로서 하이드라진 하이드레이트 6.4 mmol을 첨가하여 약 90도의 온도에서 1시간동안 환원반응시킴으로써 그래핀-이온성 액체 고분자 복합물을 제조하였다.20 ml of the aqueous graphene oxide dispersion is mixed with 100 mg of poly (1-vinyl-3-ethylimidazolium) bromide] as an ionic liquid polymer and stirred. A pin-ionic liquid polymer was obtained. Subsequently, 6.4 mmol of hydrazine hydrate was added as a reducing agent, and a graphene-ionic liquid polymer composite was prepared by reducing for 1 hour at a temperature of about 90 degrees.
상기 그래핀-이온성액체 고분자 복합물을 알루미나 멤브레인 필터 (ANODISC)를 이용하여 여과하여 수득하고 여기에 전해질로서 테트라에틸암모늄 테트라플루오로보레이트 (TEABF4)을 프로필렌 카보네이트에 1M 농도로 용해시킨 용액 2 ml를 떨어뜨려 슬러리 형태의 그래핀-이온성액체 고분자 복합물로 이루어진 전극재료를 수득하였다. 이를 전자주사현미경 (scanning electron microscope)를 이용하여 관찰한 사진을 도 4에 나타내었다. 상기 전극재료 7 mg을 카본블랙이 도포된 알루미늄 호일에 올려 놓고 분리막으로 다공성 폴리프로필렌 필름 (Celgard 3501)과 함께 압연가공하여 수퍼커패시터 셀을 제조하였다. 이를 순환전위측정계 (WPG100, WonA tech)를 통해 0-2.5 V의 범위에서 전위-전류 곡선을 얻었으며, 이를 통해 정전용량 (Csp=2I/(dt/dv)*1/m)을 구한 결과 약 188 F/g으로 측정되었다. The graphene-ionic liquid polymer composite was obtained by filtration using an alumina membrane filter (ANODISC), and 2 ml of a solution in which tetraethylammonium tetrafluoroborate (TEABF 4 ) was dissolved in propylene carbonate at a concentration of 1M in propylene carbonate. Dropping to obtain an electrode material consisting of a graphene-ionic liquid polymer composite in the form of a slurry. The photographs observed using the scanning electron microscope are shown in FIG. 4. 7 mg of the electrode material was placed on an aluminum foil coated with carbon black, and rolled together with a porous polypropylene film (Celgard 3501) as a separator to prepare a supercapacitor cell. The potential-current curve was obtained in the range of 0-2.5 V through the cyclic potentiometer (WPG100, WonA tech), and the capacitance (Csp = 2I / (dt / dv) * 1 / m) was obtained. Measured at 188 F / g.
<비교예 1>Comparative Example 1
비교예 1은 이온성 액체 고분자를 사용하지 않고, 환원반응을 통해 수득한 그래핀에 바인더 물질로 폴리테트라플루오로에틸렌을 3 wt% 혼합한 것을 제외하고는 실시예 5와 동일하다. 이를 통해 제조된 수퍼커패시터 셀의 정전용량을 테스트 한 결과 약 144 F/g으로 이온성 액체 고분자를 사용한 실시예 4의 경우보다 낮은 정전용량을 가지는 것을 확인하였다. Comparative Example 1 is the same as Example 5, except that 3 wt% of polytetrafluoroethylene was mixed with the binder material in the graphene obtained by the reduction reaction without using the ionic liquid polymer. As a result of testing the capacitance of the prepared supercapacitor cell, it was confirmed that the capacitance was lower than that of Example 4 using the ionic liquid polymer at about 144 F / g.
<실시예 6><Example 6>
Hummer방법을 이용하여 흑연 (SP-1, Bay Carbon사)을 산처리하여 산화그래파이트를 제조하였다. 이와 별개로 이온성 액체 고분자인 폴리(1-비닐-3-에틸 이미다졸리움) 비스트리플루오로메틸술포닐아미드 75 mg을 프로필렌카보네이트 20 mL에 실온에서 30분간 교반함으로써 완전 용해시켰다. Graphite oxide was prepared by acid treatment of graphite (SP-1, Bay Carbon) using the Hummer method. Separately, 75 mg of the ionic liquid polymer poly (1-vinyl-3-ethyl imidazolium) bistrifluoromethylsulfonylamide was completely dissolved in 20 mL of propylene carbonate by stirring at room temperature for 30 minutes.
이후 산화그래파이트 파우더 20 mg이 상기 고분자 이온성 액체 고분자를 포함하는 프로필렌카보네이트 용액에서 초음파를 통해 분산되었다. 통상적인 공정으로, 프로필렌카보네이트 용매내에서 1.0 mg/mL의 농도로 일정한 브라운색의 산화 그래핀-이온성 액체 고분자 분산액이 1시간의 초음파 처리로 얻어졌다. Then, 20 mg of graphite oxide powder was dispersed by ultrasonic waves in a propylene carbonate solution containing the polymer ionic liquid polymer. In a conventional process, a constant brownish graphene oxide-ionic liquid polymer dispersion at a concentration of 1.0 mg / mL in propylene carbonate solvent was obtained by sonication for 1 hour.
상기 산화그래핀-이온성 액체 고분자 분산액을 유조(oil bath)에서 150도에서 한시간 동안 가열하여 열환원을 시킴으로써, 검은색을 나타내는 환원된 산화 그래핀-이온성액체 고분자 복합물 (PIL:RG-O)의 분산액이 얻어졌다. The reduced graphene oxide-ionic liquid polymer composite (PIL: RG-O), which is black, is heated by heating the graphene oxide-ionic liquid polymer dispersion at 150 ° C. for one hour in an oil bath. ), A dispersion liquid was obtained.
그래핀-이온성액체 고분자 복합물을 이용한 슈퍼커패시터의 제조과정은 다음과 같다. 그래핀-이온성액체 고분자 복합물은 진공 여과에 의해 테플론 멤브레인(0.2 마이크로미터 pore size)에 수집되었고, 그런 다음, 그래핀-이온성액체 고분자 복합물은 이온성 액체 전해질인 1-에틸-3-메틸이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide](EMIM-NTf2) (Basionics HP01, BASF)로 차있고, 그리고 추가적인 바인더나 첨가제 없이 전극으로서 사용되었다. The manufacturing process of the supercapacitor using the graphene-ionic liquid polymer composite is as follows. The graphene-ionic liquid polymer composite was collected on a Teflon membrane (0.2 micrometer pore size) by vacuum filtration, and the graphene-ionic liquid polymer composite was then ionic liquid electrolyte 1-ethyl-3-methyl. Imidazolium bistrifluoromethylsulfonylamide [1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] (EMIM-NTf 2 ) (Basionics HP01, BASF), and used as an electrode without additional binders or additives .
도 5의 본 실시예에 따른 슈퍼커패시터는 우측의 그래핀-이온성액체 고분자 복합물 전극( PIL:RG-O electrode)과 이온성 액체 전해질인 1-에틸-3-메틸이미다졸리움 비스트리플루오로메틸술포닐아미드 [1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylamide](EMIM-NTf2)을 구비한 좌측의 수퍼커패시터 구조로서, 도시된 바와 같이, 상기 그래핀-이온성액체 고분자 복합물 전극( PIL:RG-O electrode)들은 두꺼운 슬러리로 형성되고 카본이 도포된 알루미늄 전류 콜렉터에 가압된다. 각 전극은 20 mm의 지름 및 약 100 마이크로미터의 두께를 가진다. 그래핀-이온성액체 고분자 복합물 전극(PIL:RG-O electrode) 및 다공성 폴리프로필렌 분리막(Celgard 3501)은 완전히 조립된 두 전극 셀 장치를 위한 스테인레스 스틸 셀에서 함께 끼워졌다. The supercapacitor according to the present embodiment of FIG. 5 is a graphene-ionic liquid polymer composite electrode (PIL: RG-O electrode) on the right side and 1-ethyl-3-methylimidazolium bistrifluoro which is an ionic liquid electrolyte. As a supercapacitor structure on the left side with methylsulfonylamide [1-ethyl-3-methylimidazolium bis (trifluoromethyl) sulfonylamide] (EMIM-NTf 2 ), as shown, the graphene-ionic liquid polymer composite electrode ( PIL: RG-O electrodes are formed into a thick slurry and pressurized onto a carbon coated aluminum current collector. Each electrode has a diameter of 20 mm and a thickness of about 100 micrometers. The graphene-ionic liquid polymer composite electrode (PIL: RG-O electrode) and porous polypropylene separator (Celgard 3501) were sandwiched together in a stainless steel cell for a fully assembled two electrode cell device.
본 실시예 6의 그래핀-이온성액체 고분자 복합물을 전극재료로 이용한 수퍼커패시터로부터 도 6과 같은 전압속도별 순환전위곡선 및 다른 정전류(constant currents) 에서의 갈바노스태틱(Galvanostatic) 충방전(charge/discharge) 곡선이 얻어진다. 도 6(a)에서 40 mV/s, 60 mV/s, 80 mV/s 각각의 전압 속도에 대한 순환전위곡선이 얻어졌으며, 또한 6(b)의 갈바노스태틱(Galvanostatic) 충방전(charge/discharge) 곡선은 일정한 전류인 10, 20 및 40 mA (개별적으로 2, 4, 및 8 A/g의 충방전 전류밀도(charge/discharge current density)에 대응됨)에서 얻어진 것으로 거의 선형적인 응답을 나타내며 우수한 커패시터 특성을 보여준다. The galvanostatic charge and discharge at the cyclic potential curves and voltage constants as shown in FIG. 6 from the supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as the electrode material. / discharge) curve is obtained. In Fig. 6 (a), the cyclic potential curves for the voltage velocities of 40 mV / s, 60 mV / s, and 80 mV / s were obtained, and the galvanostatic charge / discharge of 6 (b) was also obtained. The discharge curve is derived from constant currents of 10, 20, and 40 mA (individually corresponding to charge / discharge current densities of 2, 4, and 8 A / g) and shows a nearly linear response. It shows excellent capacitor characteristics.
그리고 도 7은 실시예 6의 그래핀-이온성액체 고분자 복합물을 전극재료로 이용한 수퍼커패시터의 최대 전압별 순환전위곡선을 도시하는 7(a) 및 3.5V(전류밀도 : 8 A/g)에서의 갈바노스태틱(Galvanostatic) 충방전(charge/discharge) 곡선을 도시한 7(b)로, 도 7에서 3.5V 까지 안정한 곡선을 나타내고 있다.FIG. 7 is a graph showing a maximum voltage cyclic potential curve of a supercapacitor using the graphene-ionic liquid polymer composite of Example 6 as an electrode material at 7 (a) and 3.5V (current density: 8 A / g). The galvanostatic charge / discharge curve of Fig. 7 (b) shows a stable curve from Fig. 7 to 3.5V.
이와 같이 본 발명에 따른 그래핀 분산액 제조 방법 및 이를 통해 제조되는 그래핀-이온성 액체 고분자 복합물 및 그 제조 방법은 흑연을 이온성 액체에 넣어 분산시킴으로써 제조된 그래핀 분산액을 이용하여 그래핀-이온성 액체 고분자 복합물을 제조할 수 있다.As such, the graphene dispersion preparation method according to the present invention and the graphene-ionic liquid polymer composite prepared therefrom and the preparation method thereof are graphene-ion using a graphene dispersion prepared by dispersing graphite in an ionic liquid. A sex liquid polymer composite can be prepared.
또한, 이와 같이 제조된 그래핀-이온성 액체 고분자 복합물을 수퍼커패시터 또는 전기이중층 등의 전기화학 장치의 전극재료로 이용할 수 있는 효과가 있다.In addition, the graphene-ionic liquid polymer composite thus prepared can be used as an electrode material of an electrochemical device such as a supercapacitor or an electric double layer.
이상에서, 본 발명의 구성 및 동작을 상기한 설명 및 도면에 따라 도시하였지만 이는 예를 들어 설명한 것에 불과하며, 본 발명의 기술적 사상 및 범위를 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능함은 물론이다.In the above, the configuration and operation of the present invention has been shown in accordance with the above description and drawings, but this is merely an example, and various changes and modifications are possible without departing from the spirit and scope of the present invention. .

Claims (9)

  1. 그래핀 및 이온성 액체 고분자를 포함하는 그래핀-이온성액체 고분자 복합물을 사용하여 제조되는 전기화학 장치.An electrochemical device manufactured using a graphene-ionic liquid polymer composite including graphene and an ionic liquid polymer.
  2. 제1항에 있어서, 상기 전기화학 장치가 그래핀-이온성액체 고분자 복합물을 전극재료로 사용하는 것을 특징으로 하는 전기화학 장치.The electrochemical device according to claim 1, wherein the electrochemical device uses a graphene-ionic liquid polymer composite as an electrode material.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 전기화학 장치는 배터리, 연료전지, 커패시터 또는 이들의 복합장치, 수퍼커패시터, 울트라커패시터, 또는 전기이중층 커패시터임을 특징으로 하는 전기화학 장치.The electrochemical device is a battery, a fuel cell, a capacitor or a composite device thereof, a supercapacitor, an ultracapacitor, or an electric double layer capacitor, characterized in that.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 이온성 액체 고분자는 양이온 및 음이온의 조합으로 구성된 화합물임을 특징으로 하는 전기화학 장치.The ionic liquid polymer is an electrochemical device, characterized in that the compound consisting of a combination of cations and anions.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 이온성 액체 고분자가The method according to any one of claims 1 to 4, wherein the ionic liquid polymer
    양이온으로는 아래 화학식으로 나타낸 어느 하나를 포함하거나,The cation includes any one represented by the following formula,
    <화학식 1><Formula 1>
    Figure PCTKR2010009235-appb-I000002
    Figure PCTKR2010009235-appb-I000002
    (여기서, R1 내지 R10은 서로 독립적으로 다음의 그룹에서 선택된 어느 하나임을 나타낸다. i) 수소, ii) 할로겐, iii) C1 내지 C25의 탄화수소로 구성된 알킬, 알케닐, 알키닐, 벤질, 페닐로서 O, N, Si 및 S를 이종원자로 포함할 수 있으며, 또한 선택적으로 Cl, Br, F, I, OH, NH2, SH의 그룹을 포함할 수 있다)Wherein R 1 to R 10 independently represent each other selected from the following groups: i) hydrogen, ii) halogen, iii) alkyl, alkenyl, alkynyl, benzyl consisting of C 1 to C 25 hydrocarbons , May include O, N, Si and S as phenyl as a hetero atom, and may optionally include a group of Cl, Br, F, I, OH, NH 2 , SH)
    음이온으로는 [CH3CO2]-, [HSO4]-, [CH3OSO3]-, [C2H5OSO3]-, [AlCl4]-, [CO3]2-, [HCO3]-, [NO2]-, [NO3]-, [SO4]2-, [PO4]3-, [HPO4]2-, [H2PO4]-, [HSO3]-, [CuCl2]-, Cl-, Br-, I-, [BF4]-, [PF6]-, [SbF6]-, [CF3SO3]-, [HCF2CF2SO3]-, [CF3HFCCF2SO3]-, [HCClFCF2SO3]-, [(CF3SO2)2N]-, [(CF3CF2SO2)2N]-, [(CF3SO2)3C]-, [CF3CO2]-, [CF3OCFHCF2SO3]-, [CF3CF2OCFHCF2SO3]-, [CF3CFHOCF2CF2SO3]-중 어느 하나를 포함하거나, 또는 As anions, [CH 3 CO 2 ] - , [HSO 4 ] - , [CH 3 OSO 3 ] - , [C 2 H 5 OSO 3 ] - , [AlCl 4 ] - , [CO 3 ] 2- , [HCO 3 ] - , [NO 2 ] - , [NO 3 ] - , [SO 4 ] 2- , [PO 4 ] 3- , [HPO 4 ] 2- , [H 2 PO 4 ] - , [HSO 3 ] - , [CuCl 2] -, Cl -, Br -, I -, [BF 4] -, [PF 6] -, [SbF 6] -, [CF 3 SO 3] -, [HCF 2 CF 2 SO 3] - , [CF 3 HFCCF 2 SO 3 ] - , [HCClFCF 2 SO 3 ] - , [(CF 3 SO 2 ) 2 N] - , [(CF 3 CF 2 SO 2 ) 2 N] - , [(CF 3 SO 2 ) 3 C] - , [CF 3 CO 2 ] - , [CF 3 OCFHCF 2 SO 3 ] - , [CF 3 CF 2 OCFHCF 2 SO 3 ] - , [CF 3 CFHOCF 2 CF 2 SO 3 ] - Include any one, or
    상기 양이온과 음이온이 모두 사용된 것,All of the cations and anions are used,
    을 특징으로 하는 전기화학 장치.Electrochemical device characterized in that.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 그래핀은 일반흑연 (pristine graphite)을 산화-환원반응을 통해 얻은 것이거나, 산이 흑연의 각층에 삽입되어 있는 팽창성흑연 (expandable graphite)을 고온 열처리하여 얻은 것이거나, 알칼리 금속을 흑연의 각층에 삽입시킨 흑연 (intercalated graphite)을 마이크로파로 처리하여 얻은 것이거나 혹은 흑연을 전기화학적 방법으로 처리하여 얻은 것임을 특징으로 하는 그래핀-이온성액체 고분자 복합물을 사용하는 전기화학 장치.According to any one of claims 1 to 5, wherein the graphene is obtained by the oxidation-reduction reaction of the normal graphite (pristine graphite), or expandable graphite (acid expandable graphite) is inserted into each layer of graphite Graphene-ionic liquid polymers obtained by high-temperature heat treatment, obtained by microwave treatment of graphite (intercalated graphite) in which alkali metal is inserted into each layer of graphite, or by electrochemical treatment of graphite. Electrochemical devices using composites.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 복합물은 그래핀 5 ~ 95 wt% 및 이온성 액체 고분자 5 ~ 95 wt%로 구성되는 것임을 특징으로 하는 전기화학 장치.The electrochemical device according to any one of claims 1 to 6, wherein the composite is composed of 5 to 95 wt% of graphene and 5 to 95 wt% of an ionic liquid polymer.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 복합물은 추가적으로 바인더, 탄소재료, 금속입자 및 전기전도성 고분자를 하나 이상 더 포함할 수 있는 것임을 특징으로 하는 전기화학 장치.The electrochemical device according to claim 1, wherein the composite may further include one or more binders, carbon materials, metal particles, and electrically conductive polymers.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 8,
    상기 바인더는 폴리퍼플루오로술폰산, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드 공중합물 중 어느 하나이고, The binder is any one of polyperfluorosulfonic acid, polytetrafluoroethylene, polyvinylidene fluoride copolymer,
    상기 탄소재료는 활성탄소, 흑연, 카본블랙, 카본나노튜브, 플러렌 중 어느 하나 이상이며,The carbon material is any one or more of activated carbon, graphite, carbon black, carbon nanotubes, fullerenes,
    상기 전기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜 및 이들의 유도체 중 어느 하나 이상인 것,The electrically conductive polymer is any one or more of polyaniline, polypyrrole, polythiophene and derivatives thereof,
    을 특징으로 하는 전기화학 장치.Electrochemical device characterized in that.
PCT/KR2010/009235 2009-12-22 2010-12-22 Electrochemical device WO2011078585A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012545852A JP2013534686A (en) 2009-12-22 2010-12-22 Electrochemical equipment
CN2010800580204A CN102763251A (en) 2009-12-22 2010-12-22 Electrochemical device
EP10839782A EP2518805A2 (en) 2009-12-22 2010-12-22 Electrochemical device
US13/518,432 US20120256138A1 (en) 2009-12-22 2010-12-22 Electrochemical device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2009-0129361 2009-12-22
KR20090129361 2009-12-22
KR10-2010-0014723 2010-02-18
KR20100014723 2010-02-18
KR20100061995 2010-06-29
KR10-2010-0061995 2010-06-29

Publications (2)

Publication Number Publication Date
WO2011078585A2 true WO2011078585A2 (en) 2011-06-30
WO2011078585A3 WO2011078585A3 (en) 2011-11-17

Family

ID=44196227

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2010/005401 WO2011078462A2 (en) 2009-12-22 2010-08-16 Graphene dispersion and graphene-ionic liquid polymer compound
PCT/KR2010/009235 WO2011078585A2 (en) 2009-12-22 2010-12-22 Electrochemical device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005401 WO2011078462A2 (en) 2009-12-22 2010-08-16 Graphene dispersion and graphene-ionic liquid polymer compound

Country Status (6)

Country Link
US (2) US20120261612A1 (en)
EP (2) EP2518103A4 (en)
JP (2) JP2013514963A (en)
KR (2) KR101550386B1 (en)
CN (2) CN102712779A (en)
WO (2) WO2011078462A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683035A (en) * 2012-05-02 2012-09-19 清华大学 Carbon nanometer electrode material for super capacitor and preparation method thereof
WO2013165846A1 (en) * 2012-05-03 2013-11-07 Prc-Desoto International, Inc. Compositions with a sulfur-containing polymer and graphenic carbon particles
KR101328495B1 (en) 2011-12-28 2013-11-13 전자부품연구원 Anionic polymer surface-treated ceramic particle and method thereof
JP2014188389A (en) * 2013-03-26 2014-10-06 Toyo Ink Sc Holdings Co Ltd Carbon catalyst, production method of carbon catalyst, and catalyst ink using the carbon catalyst as well as fuel cell
WO2014185418A1 (en) * 2013-05-15 2014-11-20 住友電気工業株式会社 Electrode for power storage device, power storage device, and production method for electrode for power storage device
US20150287543A1 (en) * 2012-02-17 2015-10-08 The Trustees Of Princeton University Graphene-ionic liquid composites
KR101824207B1 (en) * 2015-06-19 2018-03-14 순천향대학교 산학협력단 Preparation method of field effect transistor having carbon nanotube

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140150970A1 (en) 2010-11-19 2014-06-05 Ppg Industries Ohio, Inc. Structural adhesive compositions
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
JP5717867B2 (en) * 2010-12-22 2015-05-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Electrode plate and method for preparing the same, super capacitor and lithium ion battery
US8865754B2 (en) 2011-03-03 2014-10-21 Proteotech Inc. Compounds for the treatment of neurodegenerative diseases
KR101275636B1 (en) * 2011-08-30 2013-06-17 전자부품연구원 Laminate with graphene comprising doped-polymer layer
KR101303285B1 (en) * 2011-09-08 2013-09-04 한국기계연구원 Graphene paper which reduced graphene oxide layers and coating layers are stacked in sequence and preparation method thereof
PL222519B1 (en) 2011-09-19 2016-08-31 Inst Tech Materiałów Elektronicznych Method for obtaining graphene layers and graphene paste containing nanopuffs
CN104125925A (en) 2011-12-21 2014-10-29 加州大学评议会 Interconnected corrugated carbon-based network
JP6325462B2 (en) 2012-03-05 2018-05-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Capacitors with electrodes made of interconnected corrugated carbon-based networks
IN2014DN09432A (en) * 2012-05-03 2015-07-17 Ppg Ind Ohio Inc
KR101347198B1 (en) * 2012-05-03 2014-01-10 한국에너지기술연구원 Method of manufacturing coating agent of dye-sensitive solar cell surface, coating agent thereof and dye-sensitive solar cell coated with coating agent
CN104284890B (en) * 2012-05-14 2017-08-15 国立大学法人东京大学 Novel graphite alkene nano dispersion fluid and preparation method thereof
CN102732230A (en) * 2012-06-29 2012-10-17 华南理工大学 Preparation method for ionic liquid nanometer fluid for high temperature heat utilization in solar energy
CN103681000A (en) * 2012-09-25 2014-03-26 海洋王照明科技股份有限公司 A method for producing graphene paper
CN103681002A (en) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 Nitrogen-doped graphene/ionic liquid composite electrode, preparation method thereof and capacitor
CN103680977A (en) * 2012-09-26 2014-03-26 海洋王照明科技股份有限公司 Graphene/ionic liquid composite electrode, preparation method thereof and capacitor
DE102012109404A1 (en) * 2012-10-02 2014-04-03 Byk-Chemie Gmbh Graphene-containing suspension, process for their preparation, graphene plates and use
CN104718246B (en) 2012-10-09 2017-03-08 沙特基础工业公司 Composite based on Graphene, its manufacture method and application
CN103779083A (en) * 2012-10-23 2014-05-07 海洋王照明科技股份有限公司 Nitrogen-doped graphene/metal composite current collector and preparation method thereof
US9545625B2 (en) * 2012-11-09 2017-01-17 Arizona Board Of Regents On Behalf Of Arizona State University Ionic liquid functionalized reduced graphite oxide / TiO2 nanocomposite for conversion of CO2 to CH4
CN103839694B (en) * 2012-11-27 2016-09-07 海洋王照明科技股份有限公司 A kind of preparation method of Graphene/metal collector
KR20140075836A (en) * 2012-11-27 2014-06-20 삼성전기주식회사 Electrode structure and method for manufacturing the electrode structure, and apparatus for storaging energy with the electrode structure
CN103839698A (en) * 2012-11-27 2014-06-04 海洋王照明科技股份有限公司 Graphene composite electrode material and preparation method and application thereof
WO2014112337A1 (en) * 2013-01-15 2014-07-24 学校法人 芝浦工業大学 Dielectric material and electrochemical element using same
CN103971943A (en) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 Preparation method for graphene-ionic liquid composite materials and preparation method for supercapacitor
CN103971951B (en) * 2013-01-28 2017-02-01 海洋王照明科技股份有限公司 Preparing method for supercapacitor
CN103971945A (en) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 Preparation method for graphene-ionic liquid composite materials and preparation method for supercapacitor
CN103971944A (en) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 Preparation method for graphene-ionic liquid composite materials and preparation method for supercapacitor
KR101455588B1 (en) * 2013-02-08 2014-10-31 신라대학교 산학협력단 Multi-layer capacitor and electromagnetic-shielding film using the same
CN103991861A (en) * 2013-02-20 2014-08-20 海洋王照明科技股份有限公司 Nitrogen-doped graphene and preparation method thereof
CN104008894A (en) * 2013-02-21 2014-08-27 海洋王照明科技股份有限公司 Nitrogen-doped graphene material, preparation method thereof, nitrogen-doped graphene electrode, and electrochemical capacitor
KR101817260B1 (en) 2013-02-22 2018-01-11 삼성전자주식회사 Graphene-nanomaterial composite, electrode and electric device including the graphene-nanomaterial composite, and method of manufacturing the graphene-nanomaterial composite
US9290524B2 (en) 2013-03-15 2016-03-22 Washington State University Methods for producing functionalized graphenes
WO2014144139A1 (en) * 2013-03-15 2014-09-18 Xolve, Inc. Polymer-graphene nanocomposites
KR102055776B1 (en) * 2013-03-28 2019-12-13 인텔렉추얼디스커버리 주식회사 Method of FABRICATING n-type semiconductor using N-doped reduced GRAPHENE OXIDE
ITMI20130834A1 (en) * 2013-05-22 2014-11-23 Versalis Spa CATIONIC POLYMERIZATION PROCEDURE FOR THE SYNTHESIS OF NANO-STRUCTURED POLYMERS CONTAINING GRAPHENE
CN103320056B (en) * 2013-07-11 2015-08-19 中国科学院宁波材料技术与工程研究所 Integrated timber tackiness agent
ES2534575B1 (en) 2013-09-24 2016-01-14 Consejo Superior De Investigaciones Científicas (Csic) GRAPHITE EXFOLIATION WITH DEEP EUTETIC SOLVENTS
KR20150063269A (en) * 2013-11-29 2015-06-09 삼성전자주식회사 Composite electrode for lithium air battery, preparing method thereof, and lithium air battery including the same
KR101634961B1 (en) 2013-12-26 2016-07-01 한국과학기술원 Graphene hydrogel and graphene hydrogel nano composite, and manufacturing method theorof
KR101614320B1 (en) 2013-12-31 2016-04-21 한국세라믹기술원 Graphite oxide concentrate coating agent manufacturing method Graphite oxide coatings manufacturing method
WO2015131933A1 (en) 2014-03-05 2015-09-11 Westfälische Wilhelms-Universität Münster Method of producing graphene by exfoliation of graphite
TWI583043B (en) 2014-03-31 2017-05-11 長興材料工業股份有限公司 Electrolyte composition
CN103887075B (en) * 2014-04-11 2017-04-26 电子科技大学 Method for manufacturing high-specific-capacity electrode thin film
KR101870544B1 (en) * 2014-04-28 2018-06-22 닝보 모시 테크놀로지 컴퍼니.,리미티드. Graphene composite powder material and preparation method therefor
CN103980424A (en) * 2014-05-08 2014-08-13 嘉兴学院 Graphene-poly ionic liquid composite material, and preparation method and application thereof
DE102014007137A1 (en) * 2014-05-16 2015-11-19 Dräger Safety AG & Co. KGaA Electrode for an electronic gas sensor, production method for an electrode and use of an electrode
EA201790003A1 (en) 2014-06-16 2019-07-31 Дзе Риджентс Ов Зе Юниверсити Ов Калифорния HYBRID ELECTRICAL CELL
CN104071778A (en) * 2014-06-20 2014-10-01 宁波墨西科技有限公司 Graphene dispersion liquid and method for preparing graphene material power
CN104122311A (en) * 2014-07-29 2014-10-29 无锡百灵传感技术有限公司 Preparation method for electrochemical sensor based on fullerene functionalized modified electrode
JP6345020B2 (en) * 2014-07-29 2018-06-20 住友化学株式会社 Film-forming method, film and dispersion
JP6581340B2 (en) * 2014-10-10 2019-09-25 株式会社Adeka Method for producing layered substance-containing liquid
WO2016063036A1 (en) * 2014-10-21 2016-04-28 2-Dtech Limited Methods for the production of 2-d materials
EP3016186A1 (en) * 2014-10-31 2016-05-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Use of a poly(ionic liquid) as a binder material for electrodes in electrochemical devices
JP2018501644A (en) 2014-11-18 2018-01-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Porous interconnected corrugated carbon based network (ICCN) composites
CN104525254B (en) * 2014-12-24 2016-08-17 东华大学 A kind of for methyl orange of degrading containing Au catalyst and preparation thereof and application
CN104617291A (en) * 2015-01-24 2015-05-13 复旦大学 Uniform carbon coated lithium ion battery anode/cathode material and preparation method thereof
US10946360B2 (en) 2015-03-18 2021-03-16 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
CN104843682A (en) * 2015-04-07 2015-08-19 大连理工大学 Preparation method and application of reduced graphene oxide
KR102093118B1 (en) 2015-05-11 2020-05-27 한국과학기술원 Graphene fiber complex, method for manufacutring the same, and exothermic material comprising the same
JP6455861B2 (en) * 2015-05-28 2019-01-23 国立研究開発法人物質・材料研究機構 Electrode material, method for producing the same, and power storage device using the same
KR20180071147A (en) * 2015-11-12 2018-06-27 주식회사 동진쎄미켐 High performance electrodes
KR101751733B1 (en) 2015-12-10 2017-06-28 성균관대학교산학협력단 Adsorbing or sensing method for anionic materials
US10351661B2 (en) 2015-12-10 2019-07-16 Ppg Industries Ohio, Inc. Method for producing an aminimide
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
CN108431918B (en) 2015-12-22 2020-12-29 加利福尼亚大学董事会 Honeycomb graphene film
CN105572200B (en) * 2016-01-06 2018-09-21 辽宁大学 It is a kind of existing for ascorbic acid under the conditions of the detection modified glassy carbon electrode of dopamine, preparation method and application
CN105548313A (en) * 2016-01-06 2016-05-04 辽宁大学 Modified electrode for detecting low-concentration dopamine and making method and application thereof
CN105462390B (en) * 2016-01-08 2017-08-25 石棉县亿欣钙业有限责任公司 Environmentally friendly handheld device electronic curtain repair materials
WO2017127539A1 (en) 2016-01-22 2017-07-27 The Regents Of The University Of California High-voltage devices
CN105776187A (en) * 2016-01-27 2016-07-20 复旦大学 Method for green environmental-protection preparation of high-concentration ultra-clean graphene dispersion liquid
JP6887646B2 (en) * 2016-02-15 2021-06-16 国立大学法人東京工業大学 Sp2-type carbon-containing composition, graphene quantum dot-containing composition and method for producing them, and method for exfoliating graphite.
AU2017238201B2 (en) 2016-03-23 2022-01-27 Nanotech Energy, Inc. Devices and methods for high voltage and solar applications
CN105633285A (en) * 2016-03-24 2016-06-01 浙江零维光伏科技有限公司 Preparation method of carbon electrode of organic film solar cell
KR102068257B1 (en) * 2016-03-31 2020-01-20 주식회사 엘지화학 Method for preparation of polymer-graphene hybrid
CN109074967B (en) 2016-04-01 2022-07-08 加利福尼亚大学董事会 Method for directly growing polyaniline nanotubes on carbon cloth for flexible high-performance super capacitor
CN106053561B (en) * 2016-05-11 2018-08-17 华中科技大学 Nano-graphene-carbon nanotube-ionic liquid composite membrane and its preparation and application
KR101866190B1 (en) * 2016-05-31 2018-06-12 가천대학교 산학협력단 Graphene metal nanoparticle-composite
CN106124255B (en) * 2016-06-17 2019-01-29 苍南县宝丰印业有限公司 A kind of method of phthalic acid ester in graphene/ionic liquid composite material enriched air
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
CN106430155A (en) * 2016-08-17 2017-02-22 吉林吉大地球科学与地质开发股份有限公司 Method for preparing graphene based on ionic liquid
MX2019001891A (en) 2016-08-31 2019-07-08 Univ California Devices comprising carbon-based material and fabrication thereof.
US11634545B2 (en) 2016-12-19 2023-04-25 Adeka Corporation Layered-substance-containing solution and method of manufacturing same
CN106829941A (en) * 2017-04-07 2017-06-13 厦门大学 A kind of preparation method of Graphene
CN107189493A (en) * 2017-04-10 2017-09-22 桂林理工大学 A kind of preparation method of ion liquid modified graphene
KR101977232B1 (en) * 2017-05-29 2019-09-10 한국생산기술연구원 Electrode and Energy Storage Composites Having the Same
EP3652797B1 (en) 2017-07-14 2023-11-22 The Regents of The University of California Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
KR102124789B1 (en) * 2017-07-21 2020-06-22 충남대학교산학협력단 Preparation Method for Graphenedot-PtNi Hybrid with Sponge Structure and Graphenedot-PtNi Hybrid Catalyst Thereby
CN107715283A (en) * 2017-09-14 2018-02-23 江门大诚医疗器械有限公司 Graphene polarity fragment solution, graphene fabric and vagina packer
CN107574000A (en) * 2017-10-10 2018-01-12 广西科技大学 A kind of preparation method of conductive grease
CN107596932B (en) * 2017-10-16 2020-11-17 黑龙江青谷酒庄有限公司 Cation exchange membrane and preparation method and application thereof
DE102017223892A1 (en) * 2017-12-29 2019-07-04 Sixonia Tech Gmbh Process for the preparation of a functionalized semiconductor or conductor material and its use
JP6930608B2 (en) * 2018-01-16 2021-09-01 株式会社村田製作所 Manufacturing method of power storage device
CN108461308B (en) * 2018-01-25 2019-11-12 齐鲁工业大学 A kind of graphene/poly ion liquid composite material and preparation method and application
CN108424613A (en) * 2018-02-02 2018-08-21 桂林理工大学 A kind of preparation method of ion liquid modified graphene/carbon nano-tube/epoxy resin composite material
CN108530621B (en) * 2018-03-19 2021-01-01 厦门理工学院 Soluble conductive polymer and preparation method thereof
CN110734516B (en) * 2018-07-19 2022-03-01 中国石油天然气股份有限公司 Method for preparing fluorine-containing isobutylene and isoprene polymer by using ionic liquid modified fluorinated graphene
CN111313067B (en) * 2018-12-11 2021-05-04 中国科学院大连化学物理研究所 Composite alkaline electrolyte membrane based on ionic liquid and having electrostatic effect, and preparation and application thereof
CN109576047B (en) * 2019-01-14 2021-06-15 西南交通大学 Method for preparing graphene with high lubricating property by using ionic liquid
CN109868340A (en) * 2019-02-20 2019-06-11 常州市宝平不锈钢制品有限公司 A kind of steel-making efficient carburant and preparation method thereof
KR20200104708A (en) 2019-02-27 2020-09-04 현대자동차주식회사 A membrane electrode assembly for fuel cells with improved mechanical strength and hydrogen ion conductivity and method for manufacturing of the same
CN110203917B (en) * 2019-05-29 2021-04-02 常熟理工学院 Graphene hyperdispersant, preparation method thereof and application thereof in graphene
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
CN113387348B (en) * 2020-08-14 2022-07-19 中国科学院过程工程研究所 Method for preparing graphene by using composite ionic liquid
KR102415110B1 (en) * 2020-09-23 2022-07-01 주식회사 지에버 Wet-dry hybrid method of preparing graphene flake and graphene flake prepared by the same
KR102415100B1 (en) * 2020-09-23 2022-06-30 주식회사 지에버 Wet-dry hybrid method of preparing graphene flake composition and graphene flake composition prepared by the same
CN113248738B (en) * 2021-06-24 2022-07-01 西南科技大学 Two-dimensional material modified epoxy resin composite material and preparation method thereof
CN114852998A (en) * 2022-04-20 2022-08-05 西南交通大学 Method for preparing polyaniline hybridized graphene material by electrochemical intercalation method
CN115015347B (en) * 2022-04-20 2024-03-26 华东师范大学 Establishment and application of ionic liquid colloid/water interface based on microtubes
CN115050984A (en) * 2022-06-15 2022-09-13 一汽解放汽车有限公司 Preparation method and application of modified graphene oxide coating bipolar plate
CN115368747B (en) * 2022-09-27 2023-04-07 西南交通大学 Dispersing agent for improving low-temperature performance of waxy asphalt, asphalt and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035093A1 (en) 2008-04-27 2010-02-11 Ruoff Rodney S Ultracapacitors and methods of making and using

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235119A1 (en) * 2002-04-24 2003-11-10 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electric double layer capacitor, and secondary battery
US7321012B2 (en) * 2003-02-28 2008-01-22 The University Of Connecticut Method of crosslinking intrinsically conductive polymers or intrinsically conductive polymer precursors and the articles obtained therefrom
JP2004289130A (en) * 2003-03-04 2004-10-14 Jeol Ltd Electric double-layer capacitor
US20050227146A1 (en) * 2003-12-12 2005-10-13 Dania Ghantous Medium rate and high rate batteries
EP1702374B1 (en) * 2003-12-30 2015-11-18 LG Chem, Ltd. Ionic liquid-modified cathode and electrochemical device using the same
WO2006026064A2 (en) * 2004-08-05 2006-03-09 University Of Wyoming Poly(ionic liquid)s as materials for co2 separation
EP1786007A4 (en) * 2004-08-30 2008-10-15 Nisshin Spinning Closed type capacitor
EP2038218A1 (en) * 2006-05-31 2009-03-25 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Porous electrically conductive carbon material and uses thereof
JP5298309B2 (en) * 2007-02-17 2013-09-25 国立大学法人東京工業大学 Carbon onion and method for producing the same, and gel composition and method for producing the same
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
JP5429845B2 (en) * 2007-12-04 2014-02-26 Necエナジーデバイス株式会社 Non-aqueous electrolyte, gel electrolyte and secondary battery using them
US8211958B2 (en) * 2007-12-05 2012-07-03 The Research Foundation Of State University Of New York Polyolefin nanocomposites with functional ionic liquids and carbon nanofillers
KR101435999B1 (en) * 2007-12-07 2014-08-29 삼성전자주식회사 Reduced graphene oxide doped by dopant, thin layer and transparent electrode
KR101684823B1 (en) * 2008-01-07 2016-12-08 위시스 테크놀로지 파운데이션, 인크. A method of preparing a polymer composite and the polymer composite comprising and electrically conductive assemblage of graphene sheets formed according to the method
CN100586848C (en) * 2008-01-22 2010-02-03 东北师范大学 Method for preparing conductive single-layer graphite sheet modified by ionic liquid cation group
TW201004869A (en) * 2008-06-10 2010-02-01 Nanotune Technologies Corp Nanoporous materials and related methods
US20110319554A1 (en) * 2008-11-25 2011-12-29 The Board Of Trustees Of The University Of Alabama Exfoliation of graphite using ionic liquids
CN101409368B (en) * 2008-12-05 2010-12-01 北京理工大学 Lithium secondary battery employing ion liquid type solid polymer electrolyte
CN101575095B (en) * 2009-05-26 2012-12-12 北京大学 Method for preparing graphene
KR20110061909A (en) * 2009-12-02 2011-06-10 삼성전자주식회사 Graphene doped by dopant and device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035093A1 (en) 2008-04-27 2010-02-11 Ruoff Rodney S Ultracapacitors and methods of making and using

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUMMERS W; OFFEMAN R.: "Preparation of graphite oxide", JOUNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 80, 1958, pages 1339
R. S. RUOFF, NANO LETT., vol. 8, no. 10, 2008, pages 3498 - 3502

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328495B1 (en) 2011-12-28 2013-11-13 전자부품연구원 Anionic polymer surface-treated ceramic particle and method thereof
US20150287543A1 (en) * 2012-02-17 2015-10-08 The Trustees Of Princeton University Graphene-ionic liquid composites
US9484158B2 (en) * 2012-02-17 2016-11-01 The Trustees Of Princeton University Graphene-ionic liquid composites
US10068716B2 (en) 2012-02-17 2018-09-04 The Trustees Of Princeton University Graphene-ionic liquid composites
CN102683035A (en) * 2012-05-02 2012-09-19 清华大学 Carbon nanometer electrode material for super capacitor and preparation method thereof
WO2013165846A1 (en) * 2012-05-03 2013-11-07 Prc-Desoto International, Inc. Compositions with a sulfur-containing polymer and graphenic carbon particles
CN104619778A (en) * 2012-05-03 2015-05-13 Ppg工业俄亥俄公司 Compositions with a sulfur-containing polymer and graphenic carbon particles
JP2014188389A (en) * 2013-03-26 2014-10-06 Toyo Ink Sc Holdings Co Ltd Carbon catalyst, production method of carbon catalyst, and catalyst ink using the carbon catalyst as well as fuel cell
WO2014185418A1 (en) * 2013-05-15 2014-11-20 住友電気工業株式会社 Electrode for power storage device, power storage device, and production method for electrode for power storage device
JP2014225508A (en) * 2013-05-15 2014-12-04 住友電気工業株式会社 Electrode for electricity storage device, electricity storage device, and method for manufacturing electrode for electricity storage device
US9972446B2 (en) 2013-05-15 2018-05-15 Meidensha Corporation Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
KR101824207B1 (en) * 2015-06-19 2018-03-14 순천향대학교 산학협력단 Preparation method of field effect transistor having carbon nanotube

Also Published As

Publication number Publication date
JP2013514963A (en) 2013-05-02
WO2011078462A2 (en) 2011-06-30
WO2011078462A3 (en) 2011-08-25
KR20120104264A (en) 2012-09-20
JP2013534686A (en) 2013-09-05
US20120256138A1 (en) 2012-10-11
EP2518103A4 (en) 2014-07-30
US20120261612A1 (en) 2012-10-18
KR20110073222A (en) 2011-06-29
WO2011078585A3 (en) 2011-11-17
KR101550386B1 (en) 2015-09-08
CN102712779A (en) 2012-10-03
EP2518103A2 (en) 2012-10-31
EP2518805A2 (en) 2012-10-31
CN102763251A (en) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2011078585A2 (en) Electrochemical device
US11866339B2 (en) Anodes crumpled MXene compositions, composites, and devices
Male et al. Effect of reduced graphene oxide–silica composite in polyaniline: electrode material for high-performance supercapacitor
Zhang et al. Hierarchical Tubular Structures Constructed by Carbon‐Coated SnO2 Nanoplates for Highly Reversible Lithium Storage
Sahoo et al. Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor
Huang et al. An overview of the applications of graphene‐based materials in supercapacitors
Xie et al. Layer-by-layer β-Ni (OH) 2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance
Song et al. Biotemplate synthesis of polypyrrole@ bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance
WO2010147254A1 (en) Electrode of high-density super capacitor and method for manufacturing same
Cheng et al. Hybrid nanomaterial of α-Co (OH) 2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors
Butt et al. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long‐life anode material for Li‐ion batteries
Sydulu Singu et al. Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials
WO2017022900A1 (en) Catalyst for oxygen reduction electrode and method for manufacturing same
Pereira et al. Graphene oxide–ionic liquid composite electrolytes for safe and high-performance supercapacitors
Zhang et al. All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors
Prakash et al. Unusual battery type pseudocapacitive behaviour of graphene oxynitride electrode: High energy solid-state asymmetric supercapacitor
Gao et al. Free-standing WS2-MWCNTs hybrid paper integrated with polyaniline for high-performance flexible supercapacitor
Huang et al. Controllable-multichannel carbon nanofibers-based amorphous vanadium as binder-free and conductive-free electrode materials for supercapacitor
Huang et al. Quaternized chitosan-assisted in situ synthesized CuS/cellulose nanofibers conductive paper for flexible electrode
Li et al. The synthesis of graphene oxide nanostructures for supercapacitors: a simple route
Chu et al. A novel ternary nanocomposite for improving the cycle life and capacitance of polypyrrole
Cao et al. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials
Liu et al. Hierarchically porous PDAA@ rGO/HrGO composite films for high-performance symmetric solid-state supercapacitors
Cheng et al. Poly (o-phenylenediamine)-Decorated V4C3T x MXene/Poly (o-phenylenediamine) Blends as Electrode Materials to Boost Storage Capacity for Supercapacitors and Lithium-Ion Batteries
Sun et al. Electrodes of carbonized MWCNT-cellulose paper for supercapacitor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058020.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012545852

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127016365

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518432

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010839782

Country of ref document: EP