WO2011074930A1 - Concreto reforzado con nanomateriales híbridos - Google Patents

Concreto reforzado con nanomateriales híbridos Download PDF

Info

Publication number
WO2011074930A1
WO2011074930A1 PCT/MX2010/000153 MX2010000153W WO2011074930A1 WO 2011074930 A1 WO2011074930 A1 WO 2011074930A1 MX 2010000153 W MX2010000153 W MX 2010000153W WO 2011074930 A1 WO2011074930 A1 WO 2011074930A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotubes
carbon nanotubes
cement
concrete
concrete according
Prior art date
Application number
PCT/MX2010/000153
Other languages
English (en)
French (fr)
Inventor
José Antonio SOTO MONTOYA
Mauricio Martinez Alanis
Mauricio Terrones Maldonado
Humberto Terrones Maldonado
Daniel RAMÍREZ GONZÁLEZ
Original Assignee
Urbanizaciones Inmobiliarias Del Centro, S. A. De C. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urbanizaciones Inmobiliarias Del Centro, S. A. De C. V. filed Critical Urbanizaciones Inmobiliarias Del Centro, S. A. De C. V.
Priority to BR112012014175A priority Critical patent/BR112012014175A2/pt
Priority to CA2784320A priority patent/CA2784320C/en
Priority to CN201080064109.1A priority patent/CN102884018B/zh
Priority to IN6254DEN2012 priority patent/IN2012DN06254A/en
Priority to ES10837926.4T priority patent/ES2627912T3/es
Priority to US13/515,134 priority patent/US8551243B2/en
Priority to JP2012544411A priority patent/JP6113505B2/ja
Priority to EP10837926.4A priority patent/EP2514728B1/en
Publication of WO2011074930A1 publication Critical patent/WO2011074930A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/02Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Definitions

  • the present invention relates to reinforced concrete, and particularly to a concrete reinforced with nanostructured materials.
  • the concrete has various classifications, mainly based on its ability to resist stress under compression and the time it takes to acquire this resistance (drying). In this way you can have normal and high strength concrete or fast strength concrete. It is important to mention that there is a whole national and international industry that has generated different materials that can be combined with concrete in order to make it acquire new properties. These materials are known as additives, fluidizers, setting retardants, waterproofing agents, air constituers and fibers as reinforcement to the tensions In other words, concrete is a mixture that can accept a large number of external agents (additives) without detriment to its main characteristic (compressive strength) and with a gain in its original properties.
  • WO2009 / 099640 discloses a method for producing cement composite materials reinforced with dispersed carbon nanotubes, by applying ultrasonic energy and using a surfactant to form a fluid dispersion of carbon nanotubes and by mixing the dispersion and cement in a way that carbon nanotubes can be well dispersed in the cementitious matrix.
  • nanostructures are capable of transferring properties to bulk concrete matrices if they are mixed correctly, homogeneously and with the right proportion and that cement-water + aggregates hydraulic concrete can accept external agents, it is possible to generate a new family of nanostructured cements with improved mechanical properties by adding tiny amounts of nanomaterials (eg 0.1 - 10% by weight).
  • nanomaterials eg 0.1 - 10% by weight
  • hybrid materials would be the inclusion of doped nanotubes (bamboo type), nano bars of SiOx and nano-plates (or nano flakes of SiOx, AlOx).
  • doped tubes applies to a substitution of elements in the arrangement of a non-perfect graffiti network where we present 3 types of doping:
  • Type I carbon atom substitutions (with any atom that comes to mind) in a graffiti network without vacancy.
  • Type II substitutions of carbon atoms (with any atom that comes to mind) in a graffiti network with vacancy.
  • Type I I substitutions of carbon atoms (with hydrogen -H, or carbonyl or carboxylic groups -COH or COOH) with sites with general vacancy.
  • the carbon nanotubes that worked best are those doped with N, and their structure is bamboo type and this is not in any of the patents found and they are not properly tubes because of their physical structure.
  • the lighter being the element and easier to handle simplifies its manufacture in controlled environments to prefabricate a structure, allowing the industrialization of prefabricated concrete houses.
  • ecology is contributed since a ton of cement produced means a ton of C0 2 produced.
  • the decorative elements of facades of any type will require smaller thicknesses to withstand the pressures of winds and their usual demands of efforts and therefore means a lower weight for the main structure resulting in a saving in the foundation of the structure.
  • an objective of the invention is to provide a reinforced concrete, characterized in that it comprises cement and a dispersion that includes water, a surfactant, multilayer carbon nanotubes that on their outer walls are substituted carbon atoms by atoms of another element and nanotubes of multilayer coal that have chemical groups on its surface.
  • another object of the invention is to provide a method for reinforcing concrete, comprising the steps of forming a dispersion of a surfactant, multilayer carbon nanotubes that on their outer walls are substituted carbon atoms by atoms of another element and carbon nanotubes multilayer that have chemical groups on their surface; and mix the dispersion with cement to form a reinforced concrete.
  • Figure 1 a are models of carbon nanotubes with different orientations of the hexagons
  • Figure 1b is a diagram of a graphene sheet and a single-wall zigzag nanotube
  • Figure 2 is a diagram of the process for the synthesis of carbon nanotubes, using chemical vapor deposition assisted by espreo (AACVD), and the packaged growth of nanotubes.
  • Figure 3a is the x-ray diffraction pattern of the nanotubes
  • Figure 3b is an image showing the crystallinity of the nanotubes
  • Figure 3c is a high resolution transmission electron microscopy image of the nanotubes
  • Figure 4 is a graph made by electronic scanning for Portland cement
  • Figures 5a, 5b and 5c are scanning electron microscopy micrographs illustrating the morphology of gray or Portland cement, as well as particle sizes, ranging from 1 ⁇ to 15 ⁇ ;
  • Figure 6 is a scheme representing the concept of adding 2 types of nanotubes to cement to obtain the new nanostructured composite material
  • Figure 7a is a micrograph obtained with a scanning electron microscope, where the aligned packing is shown of carbon nanotubes doped with OH functional groups;
  • Figure 7b is a micrograph obtained with a scanning electron microscope, showing the aligned packing of nanotubes doped with nitrogen;
  • Figure 8a is a schematic of the process of simultaneous ultrasonic dispersion
  • Figure 8b is a schematic of the effect caused by the surface active agent to the carbon nanotube packages and the aqueous medium, which translates into a homogeneous dispersion, also compatible for the realization of the concrete mixture;
  • Figure 9a is a diagram of the PVC mold used for the manufacture of reinforced concrete specimens
  • Figure 9b illustrates a reinforced concrete specimen used for mechanical strength tests
  • Figures 10a, 10b and 10c show micrographs of the dispersion with nanotubes found in different percentages, at the bottom of each figure there is an image in greater detail of the same sample; Y
  • Figures 1 1 a, 1 1 b, 1 1 c and 1 1 d show the blocks of nanotubes that were dispersed and the nanometric structures catalyzed.
  • the agents used to reinforce the concrete are carbon nanostructures known as Nanotubes, which are cylindrical structures, of several concentric layers, arranged by graphene walls or meshes (carbon hexagon net) in the form of a tube (Fig. 1).
  • the carbon atoms within these graphene cylinders are strongly linked by covalent bonds. It should be noted that the carbon-carbon bond is one of the most resistant in nature.
  • some of the carbon atoms in hexagonal networks can be replaced by other elements or functional groups that make these tubes more reactive and make their interactions with different matrices larger.
  • groups or elements that can replace carbon atoms we can mention N, P, O, S, Si, B, Se, etc, or any functional group -OH, -OOH or OH.
  • the dimensions of the multilayer carbon nanotubes used in this work have average lengths of 300 ⁇ and diameters of 30-70 nm, and were synthesized with the method of AACVD (Aerosol Assisted Chemical Vapor Deposition), which employs a solution that It contains the source of carbon and the catalyst that is responsible for growth (eg transition metals such as Ni, Fe and Co).
  • AACVD Arosol Assisted Chemical Vapor Deposition
  • This solution is ultrasonically processed in order to generate an aerosol (Fig. 2) and through a flow of inert gas it is transported through a quartz tube to high temperature reactors where nanotube growth occurs (Fig. 2 ).
  • the Portland cement used in this work is constituted by the following oxides according to the list shown below:
  • Fig. 4 scanning electron microscopy
  • EDX X-ray energy dispersion
  • the cement - water mixture dictates its mechanical resistance. It is therefore possible to mix the nanotubes in two different ways: a) disperse them in the cement or b) disperse them in the water and then with the cement. Since the dispersions in the cement are not very feasible due to the consistency of the material when it is made, it is most appropriate to make dispersions of homogeneous nanotubes in the water that can then be added to the cement.
  • FIGS. 7a and 7b illustrate the aligned packing of carbon nanotubes doped with functional groups and doped with nitrogen respectively.
  • FIG. 8b shows the effect caused by the surface active agent to the carbon nanotube packages (left side) and the aqueous medium, which translates into a homogeneous dispersion (right side), which is also compatible for the realization of the concrete mix.
  • the experimental design for obtaining nanostructured reinforced concrete using doped or functionalized carbon nanotubes consists of the manufacture of test specimens, with dimensions attached to the ASTM (American Society Testing of Materials) standards. Different samples with different concentrations of doped or functionalized nanotubes were obtained. For example, the following percentages by weight were used in relation to the weight of gray or Portland cement CP30R: 1.0%, 0.1% and 0.01%.
  • the mold is obtained from a PVC pipe cut into segments of 10 cm long, in which a transverse cut is made, to facilitate the extraction of the specimen once the concrete has dried and is in a solid state ( Figures 9a and 9b).
  • the molds are placed on a wooden plate covered with a plastic film to avoid moisture loss through the base, the nanotube cement mixture is emptied. At the end of the emptying, a plastic cover is placed on top of the mold (also to avoid excessive moisture loss).
  • the specimens are removed from the molds, so that the specimens slide down.
  • the specimen is taken to a plastic container with water of a slightly larger strap at the height of the specimen, to remain cured for 24 hours.
  • a number of 4 specimens per type of mixture is set, thus having 1 control and 3 test samples.
  • the difference in the series of mixtures is the type of aqueous solution added to the cement.
  • This solution differs according to the type of doped nanotube that it carries, also according to the concentration of the nanostructure that ranges from 0.01% to 1.0% of the weight of the cement. It is very important to mention that during the preparation of aqueous solutions with carbon nanotubes, it was observed that for percentages of 0.01% and 0.1%, the dispersions are obtained very homogeneous, and practically no nanotube conglomerates are observed (Fig. 10a and 10b ), not so for the rest of the concentrations where lump formation is observed.
  • the aqueous solution is very saturated: 4 g of carbon nanotubes in 200 ml of water mixture plus 0.3% of surfactant (fig. 10c).
  • surfactant fig. 10c
  • the phenomenon of extreme viscosity is observed around 5 minutes after starting the dispersion process and therefore the solution becomes increasingly viscous, reducing the effectiveness of cavitation, resulting in some sites with nanotube packages.
  • carbon especially for carbon nanotubes doped with nitrogen.

Abstract

Un concreto reforzado con nanoestructuras, que comprende cemento y una dispersión que incluye agua, un surfactante, nanotubos de carbón que en sus paredes externas están substituidos átomos de carbono por átomos de otro elemento y nanotubos de carbón que poseen en su superficie grupos químicos.

Description

CONCRETO REFORZADO CON NANOM ATERI ALES HIBRIDOS.
Campo de la invención.
La presente invención se refiere a concretos reforzados, y particularmente a un concreto reforzado con materiales nano- estructurados.
Antecedentes de la invención.
En la industria de la construcción existe un material compuesto que es de utilización generalizada, un material en forma de una pasta que incluye otros materiales para ganar volumen y que presenta excelentes propiedades mecánicas, éste material es el concreto. A lo largo de su historia, el concreto ha ido sufriendo modificaciones importantes pasando de aglutinante de mampuestos hasta ser elemento primordial en la construcción de estructuras resistentes y esbeltas, como el concreto reforzado.
El concreto tiene diversas clasificaciones atendiendo principalmente a su capacidad de resistir esfuerzos bajo compresión y el tiempo que tarda en adquirir esta resistencia (secado). De esta manera se pueden tener el concreto de resistencia normal y el de alta resistencia o el de resistencia rápida. Es importante mencionar que existe toda una industria nacional e internacional que ha generado distintos materiales que pueden combinarse con el concreto con el fin de hacerlo adquirir nuevas propiedades. Estos materiales son conocidos como aditivos, los fluidizantes, los retardantes de fraguado, los impermeabilizantes, los inclusores de airé y las fibras como refuerzo a las tensiones. En otras palabras, el concreto es una mezcla que puede aceptar un gran número de agentes externos (aditivos) sin detrimento en su característica principal (resistencia a la compresión) y con una ganancia en sus propiedades originales.
Por otra parte, en los últimos años se ha incrementado el interés por desarrollar materiales compuestos, que combinan dos o más componentes y cuyas propiedades permiten su uso en diversas áreas. Más recientemente se ha incrementado el interés en el uso de materiales a escala nanométrica para fabricar nanocompuestos con propiedades mejoradas. Los nanotubos de carbono son excelentes candidatos para fabricar nanocompuestos, ya que éstos pueden llegar a ser 100 veces más resistentes que el acero y seis veces más ligeros que éste.
Un ejemplo de lo anterior, es el documento WO2009/099640 el cual revela un método para producir materiales compuestos de cemento reforzado con nanotubos de carbono dispersados, mediante aplicación de energía ultrasónica y utilizando un surfactante para formar una dispersión fluida de nanotubos de carbono y mediante mezclado de la dispersión y cemento de una manera que los nanotubos de carbono puedan estar bien dispersados en la matriz cementosa.
También el documento US2008/0134942 divulga el uso de nanotubos de carbón en compuestos de cemento, en donde se utiliza cemento, material de agregado, nanotubos de carbón y un plastificante.
Dentro de los diferentes tipos de nanotubos de carbono, encontramos estructuras de pared sencilla y pared múltiple, además de una diferenciación de acuerdo con los elementos que se adhieren a las paredes de los nanotubos mediante tratamientos físicos y/o químicos. Por ejemplo, diferentes elementos pueden reemplazar los átomos de carbono de las paredes. Entre éstos se encuentran nitrógeno, fosforo, potasio, silicio, oxígeno, boro, etc. Adicionalmente es posible que grupos funcionales se adhieran covalentemente a las paredes de los tubos, entre éstos destacan grupos metilos, carbonilos, hidroxilos, etc. La modificación de la superficie de los tubos ya sea dopaje o funcionalización aumenta la reactividad de la superficie de éstos, la cual es vital para crear fuertes interacciones entre los nanotubos y las matrices en cuestión como es el cemento o concreto.
Pensando en que las nanoestructuras son capaces de transferir propiedades a matrices de concreto en bulto si se mezclan de forma correcta, homogénea y con la proporción adecuada y que el concreto hidráulico de cemento-agua + agregados puede aceptar agentes externos, es posible generar una nueva familia de cementos nanoestructurados con propiedades mecánicas mejoradas agregando cantidades minúsculas de nanomateriales (e.g. 0.1 - 10 % por peso). Al respecto es importante mencionar los trabajos de Matthew Brenner sobre el mezclado de fibras de carbono reforzadas con nanotubos de carbono (puros) en cemento y concreto, en donde se reportan incrementos en la resistencia a la compresión de las muestras con éstas mezclas respecto de las que no tienen el aditivo.
Ninguno de los documentos o estudios anteriores, utilizan nanotubos de carbono de pared múltiple dopados o funcionalizados, que incrementan considerablemente la transferencia de carga de los tubos al concreto debido al dopaje o los sitios funcionales de los nanotubos. De manera general podemos considerar al concreto como una serie de esporas que se unen y dan una alta resistencia al compuesto porque son como "erizos" entrelazados estructura misma que le evita un desempeño mejor a la tensión, puesto que los erizos no se entrelazan en sus puntas y se separan a tensión, la presente invención es sobre la integración de esas estructuras cristalinas catalizándolas en la pared de nuestros tubos, que al ser dopados son mas reactivos y permiten esa unión, uniendo así las esporas con un elemento de tamaño similar como el nanotubo les damos un doble efecto, a la compresión los tubos de espora a espora les brindan un confinamiento aumentando su resistencia y a la tensión el tubo funciona como tensor entre las esporas que se crecen en su superficie.
Lo que entendemos por materiales híbridos seria la inclusión de nanotubos dopados (tipo bambú), nano barras de SiOx y nano-placas (o nano hojuelas de SiOx, AlOx).
Es importante mencionar que la utilización de los nanotubos dopados y en particular los de nitrógeno cuando se mezclan con los concretos, promueven la formación de nuevas nanoestrucuras de SiOx (hojuelas y barras) que generan un incremento del doble en las propiedades mecánicas del concreto. Si no se agregan los nanotubos dopados con nitrógeno y se agregan otros nanotubos (como en los documentos antes citados que no son dopados con N), estas nuevas estructuras de SiOx y AlOx NO interaccionan con los nanotubos. Es por ello que la combinación de los tubos dopados con nitrógeno, hojuelas de SiOx y AlOx y las nanobarras de SiOx forman un nanomaterial híbrido nuevo y más resistente dentro del concreto. Cabe mencionar que en el estado de la técnica los tubos tienen redes cristalinas perfectas y el dopaje que usamos, induce imperfecciones en los tubos por lo que la red grafitica no es perfecta.
Primero: el término "tubos dopados" se aplica a una sustitución de elementos en el arreglo de una red grafitica no perfecta donde presentamos 3 tipos de dopaje:
Tipo I sustituciones de átomos de carbono (con cualquier átomo que se nos ocurra) en red grafitica sin vacancia.
Figure imgf000007_0003
Tipo II sustituciones de átomos de carbono (con cualquier átomo que se nos ocurra) en red grafitica con vacancia.
Figure imgf000007_0001
Tipo I I I sustituciones de átomos de carbono (con hidrogeno -H, o grupos carbonilos o carboxilos -COH o COOH) con sitios con vacancia general.
Figure imgf000007_0002
En todos los casos, x va de 0.1 a 10 at% (porciento atómico), x=H, N, P, OX, S, Si, Se, B... grupos carbonilos, carboxilos incluyendo cualquier combinación o permutaciones. Segundo: además del dopaje, las dimensiones de los tubos son diferentes y también la relación de aspecto respecto de los trabajos mencionados como referencias.
Tercero: en el concreto nanoestructurado que describimos, se dan combinaciones de los nanomateriales y los mecanismos de refuerzo son diferentes:
1 . - con nanotubos de pared múltiple o multicapa (MWNT'S), con una red grafitica imperfecta, con dopajes tipo I II disminuido (<2-3 at%), y una reactividad inferior con el oxígeno. No se presentan nano estructuras diferentes a las adicionadas (es decir los nanotubos), el aumento moderado en la resistencia obedece a la presencia de los nanotubos y su distribución en el material.
2. - con COx, con una red grafitica imperfecta con dopaje tipo I I I (3-5 at%) y una reactividad media con el oxígeno. Tampoco se presentan nanoestructuras de SiOx o AlOx al adicionar los nanotubos, el aumento moderado en la resistencia obedece a la presencia de los nanotubos y su distribución en el material.
3. - con CNx, con una red imperfecta con dopaje tipos I y II (0.1 -10 at%) con reactividad alta con el oxigeno. Se presenta un arreglo de nano estructuras híbridas que consisten en nano fibras y nano placas de SiOx y AlOx, con la presencia de los CNx. Debido a su alta reactividad, las estructuras de SiOx y AlOx son catalizadas por los tubos de CNx, y el resultado no es únicamente una mezcla de nanotubos y cemento con agua, sino que los nanotubos de CNx catalizan durante el mezclado de cemento con agua y mediante una reacción exotérmica la formación nano fibras y nano placas de SiOx y AIOx, creando una modificación en la estructura nanométrica del concreto que no se ha reportado con anterioridad.
Cuarto: Los nanotubos de carbono que funcionaron mejor son los dopados con N, y su estructura es de tipo Bambú y esto tampoco está en ninguna de las patentes encontradas y propiamente dicho no son tubos por su estructura física.
Las aplicaciones de un concreto fabricado de acuerdo con la presente invención son tan amplias como el uso mismo del concreto en la actualidad, la industria de la construcción no se limita a un sector en particular, sino que abarca desde las obras civiles mas grandes como presas, centrales eléctricas, vías de comunicaciones, hasta edificios de la mayor complejidad por su altura o volumen, y también el sector vivienda, donde la aplicabilidad de éste material cobra un significado diferente por los siguientes motivos.
-Al resultar un concreto mucho más resistente que el actual se requiere menor cantidad de concreto para la construcción de los elementos estructurales de la vivienda, y por consiguiente mayor área útil en los espacios habitables.
-Por requerir menores espesores entonces también es menor el peso asociado a los elementos, por lo que el manejo del mismo se simplifica en su solución, es decir, requiere menos personal para su manejo.
-El ser más ligero el elemento y más fácil de manejarse se simplifica su fabricación en ambientes controlados para prefabricar una estructura, permitiendo la industrialización de las casas prefabricadas de concreto. -Al disminuir la cantidad de cemento usado se contribuye con la ecología puesto que una tonelada de cemento producido significa una tonelada de C02 producido.
-Los elementos decorativos de fachadas de cualquier tipo requerirán menores espesores para soportar las presiones de vientos y sus demandas habituales de esfuerzos y por consiguiente significa un peso menor para la estructura principal redundando en un ahorro en la cimentación de la estructura.
Sumario de la invención.
Por lo tanto, un objetivo de invención es proporcionar un concreto reforzado, caracterizado porque comprende cemento y una dispersión que incluye agua, un surfactante, nanotubos de carbón multicapa que en sus paredes externas están substituidos átomos de carbono por átomos de otro elemento y nanotubos de carbón multicapa que poseen en su superficie grupos químicos.
Además, otro objetivo de la invención es proporcionar un método para reforzar concreto, que comprende los pasos de formar una dispersión de un surfactante, nanotubos de carbón multicapa que en sus paredes externas están substituidos átomos de carbono por átomos de otro elemento y nanotubos de carbón multicapa que poseen en su superficie grupos químicos; y mezclar la dispersión con cemento para formar un concreto reforzado.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Para dar una mejor comprensión de la invención, a continuación se proporciona una descripción de la misma, junto con los dibujos que se acompañan, en los cuales:
La figura 1 a son modelos de Nanotubos de carbono con diferentes orientaciones de los hexágonos;
La figura 1 b es un esquema de una hoja de grafeno y de un nanotubo con estructura en zigzag de pared sencilla;
La figura 2 es un diagrama del proceso para la síntesis de nanotubos de carbono, empleando deposición química de vapores asistida por espreo (AACVD), y del crecimiento empaquetado de los nanotubos.
La figura 3a es el patrón de difracción de rayos X de los nanotubos;
La figura 3b es una imagen que muestra la cristalinidad de los nanotubos;
La figura 3c es una imagen de microscopía electrónica de trasmisión de alta resolución de los nanotubos;
La figura 4 es una gráfica realizada por barrido electrónico para el cemento portland;
La figuras 5a, 5b y 5c son micrografías de microscopía electrónica de barrido que ilustran la morfología del cemento gris o Portland, al igual que los tamaños de partícula, que van desde 1 μηι hasta 15μηι;
La figura 6 es un esquema que representa el concepto de adición de 2 tipos de nanotubos a cemento para obtener el nuevo material compuesto nanoestructurado ;
La figura 7a es una micrografía obtenida con un microscopio electrónico de barrido, donde se muestra el empaquetamiento alineado de los nanotubos de carbono dopados con grupos funcionales OH ;
La figura 7b es una micrografía obtenida con un microscopio electrónico de barrido, donde se muestra el empaquetamiento alineado de nanotubos dopados con nitrógeno;
La figura 8a es un esquema del proceso de dispersión ultrasónica simultánea;
La figura 8b es un esquema del efecto que causa el agente activo superficial a los paquetes de nanotubos de carbono y el medio acuoso, el cual se traduce en una dispersión homogénea, además compatible para la realización de la mezcla para concreto;
La figura 9a es un esquema del molde de PVC empleado para la fabricación de las probetas de concreto reforzado;
La figura 9b ilustra una probeta de concreto reforzado empleada para pruebas de resistencia mecánica;
Las figuras 10a, 10b y 10c muestran micrografías de la dispersión con nanotubos que se encuentran en diferentes porcentajes, en la parte inferior de cada figura se tiene una imagen con mayor detalle de la misma muestra; y
Las figuras 1 1 a, 1 1 b, 1 1 c y 1 1 d se muestran los bloques de nanotubos que se alcanzaron a dispersar y las estructuras nanometricas catalizadas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN.
Los agentes empleados para reforzar el concreto, son nanoestructuras de carbono conocidas como Nanotubos, que son estructuras cilindricas, de varias capas concéntricas, dispuestas por paredes o mallas de grafeno (red de hexágonos de carbono) en forma de tubo (Fig. 1 ). Los átomos de carbono dentro de éstos cilindros de grafeno son enlazados fuertemente mediante enlaces covalentes. Hay que hacer notar que el enlace carbono-carbono es uno de los más resistentes que existen en la naturaleza. Sin embargo, algunos de los átomos de carbono de las redes hexagonales pueden ser reemplazados por otros elementos o grupos funcionales que hacen que estos tubos sean más reactivos y que sus interacciones con diferentes matrices sean mayores. Dentro de los grupos o elementos que pueden reemplazar a los átomos de carbono podemos mencionar N, P, O, S, Si, B, Se, etc, o cualquier grupo funcional -OH, -OOH u OH.
Las dimensiones de los nanotubos de carbono de múltiples capas empleados en este trabajo tienen longitudes promedio de 300 μητι y diámetros de 30-70 nm, y fueron sintetizados con el método de AACVD (Aerosol Assisted Chemical Vapor Deposition), el cual emplea una solución que contiene la fuente de carbono y el catalizador que es responsable del crecimiento (e.g. metales de transición como el Ni, Fe y Co). Esta solución es procesada ultrasónicamente con el fin de generar un aerosol (Fig. 2) y mediante un flujo de gas inerte es transportada a través de un tubo de cuarzo a los reactores de alta temperatura donde ocurre el crecimiento de los nanotubos (Fig. 2).
Otras características importantes de los nanotubos producidos en este trabajo son:
• Reactividad, causadas por el dopaje o los grupos funcionales, lo cual permite una mejor interacción entre el nanotubo de carbono y la matriz en cuestión para fabricar el nanocopuesto. • Excelente grado de cristalinidad de los nanotubos
(Fig. 3b).
• Excelente pureza de los nanotubos que se puede observar en las figuras 3a, 3b y 3c.
El cemento Portland empleado en este trabajo se encuentra constituido por los siguientes óxidos de acuerdo a la lista mostrada a continuación:
64% óxido de calcio,
21 % óxido de silicio
5,5% óxido de aluminio
4,5% óxido de hierro
2,4% óxido de magnesio
1 ,6% sulfatos
1 % otros materiales, entre los cuales es principalmente agua.
Con el fin de caracterizar el cemento Portland utilizado en nuestro experimentos, se realizó un estudio previo del tamaño de partícula empleando microscopía electrónica de barrido (Fig. 4), así como un análisis de la composición química del material, empleando para ello la técnica de dispersión energética de rayos X (EDX por sus siglas en Inglés). En las Figs. 5a-5c se muestran las micrografías de microscopía electrónica de barrido que ilustran la morfología del cemento gris o Portland en diferente resolución, al igual que los tamaños de partícula, que van desde 1 μηι hasta 15μηι. Elemento % PESO % AT
Ca 39.45 22.21
0 35.43 49.96
C 8.3 15.59
Si 6.47 5.2
S 4.1 9 2.95
Al 2.07 1 .73
Fe 1 .97 0.8
K 1 .1 5 0.66 g 0.97 0.9
Este trabajo se concentra en el estudio para el aprovechamiento de las propiedades mecánicas de los nanotubos de carbono dopados y funcionalizados con el fin de incrementar significativamente las propiedades mecánicas del concreto utilizando cantidades mínimas de nanotubos. El punto clave de este trabajo gira en torno a la interacción de los sitios activos en la superficie de la nanoestructura (dopaje), es decir, el emplear nanotubos de carbono dopados en sus paredes externas (átomos de carbono que son sustituidos por átomos de otros elementos; Fig. 6) así como el que posee grupos funcionales en su superficie (funcionalizados con grupos químicos con los mencionados con anterioridad; Fig. 6), aprovechando la relación de aspecto (longitud/diámetro) de los nanotubos de carbono, única respecto de cualquier otro material empleado como agregado antes; las relaciones de aspecto de los nanotubos utilizados oscilan entre 30,000 y 50,000. Dispersión de los nanotubos en un medio adecuado.
En concretos, la mezcla de cemento - agua dicta su resistencia mecánica. Es por ello posible mezclar los nanotubos en dos formas distintas: a) dispersarlos en el cemento o b) dispersarlos en el agua y luego con el cemento. Dado que las dispersiones en el cemento son poco factibles por la consistencia del material cuando se elabora, lo más adecuado es realizar dispersiones de nanotubos homogéneas en el agua que luego podrá ser agregada al cemento.
Inicialmente los nanotubos se encuentran en arreglos alineados en forma de manojos y estos arreglos son por lo general hidrofóbicos, dificultando así una dispersión homogénea en el medio. Por esta razón es importante emplear un agente activo superficial o surfactante, esto nos permite poder llevar a cabo dispersiones homogéneas de los nanotubos y la obtención del medio adecuado para la preparación del concreto reforzado con nanotubos de carbono. En las figuras 7a y 7b se ilustra el empaquetamiento alineado de nanotubos de carbono dopados con grupos funcionales y dopados con nitrógeno respectivamente.
Para todos los casos de dispersión de nanotubos de carbono de pared múltiple dopados y/o funcionalizados se utilizaron diferentes proporciones dadas en el porcentaje en peso de nanotubos con respecto al peso del cemento que se utiliza para elaborar la mezcla en cuestión. En particular, se utiliza un matraz Erlenmeyer, conteniendo un surfactante común (jabón liquido con pH 9, también es posible utilizar SDS u otro tipo de surfactante) en agua al 0.3% en relación al volumen de agua (Fig. 8a). Posteriormente se empleó un proceso de dispersión sumergiendo el matraz en un baño . de ultrasónico (utilizando un transductor electro acústico de 42 kHz en un ciclo continuo de 30 minutos) y colocando al mismo tiempo dentro del matraz una punta ultrasónica de 500 watts con pulsos de sonicación de 5 minutos y 3 minutos de paro. En la figura 8b se muestra el efecto que causa el agente activo superficial a los paquetes de nanotubos de carbono (lado izquierdo) y el medio acuoso, lo cual se traduce en una dispersión homogénea (lado derecho), además compatible para la realización de la mezcla para concreto.
Elaboración de probetas de control.
El diseño experimental para la obtención de concreto reforzado nanoestructurado utilizando nanotubos de carbono dopados o funcionalizados, consiste en la fabricación de probetas de ensayo, con dimensiones apegadas a las normas ASTM (American Society Testing of Materiales). Se obtuvieron diferentes muestras con diferentes concentraciones de nanotubos dopados o funcionalizados. Por ejemplo se utilizaron los siguientes porcentajes por peso en relación al peso del cemento gris o portland CP30R: 1.0%, 0. 1 % y 0.01 %.
El molde se obtiene a partir de un tubo de PVC cortado en segmentos de 10 cm de largo, en el cual se realiza un corte transversal, para facilitar la extracción de la probeta una vez que el concreto se ha secado y se encuentra en estado sólido (Figuras 9a y 9b).
La estadística en nuestros experimentos se conforma de 2 testigos o probetas con una mezcla de 400g de cemento portland gris, 200 mi de la solución acuosa con el 0.3% de surfactante (pH 9).
Para las mezclas con nanotubos de carbono dopados y funcionalizados se vierten en un recipiente de plástico los 200 g de cemento gris, posteriormente, se va vertiendo poco a poco la solución acuosa (la solución es la que lleva los nanotubos de carbono dispersados), sin dejar de mezclar manualmente. Al final se mide el grado de alcalinidad, y se obtiene una medición de pH que es de aproximadamente 12.
Posteriormente, se colocan los moldes sobre una placa de madera cubierta de una película plástica para evitar perdida de humedad por la base, se vacía la mezcla de cemento nanotubos. Al concluir el vaciado, se coloca en la parte superior del molde una cubierta plástica (también para evitar una pérdida excesiva de humedad).
Pasadas 24 hrs, las probetas se extraen de los moldes, de tal manera que las probetas se deslicen hacia abajo. La probeta es llevada hasta un recipiente plástico con agua de un tirante un poco mayor a la altura de la probeta, para permanecer en curado por 24 Hrs.
Terminado el periodo de fraguado, se retiran del medio líquido y se colocan sobre una superficie, con un trapo húmedo y superficialmente seco, se limpian las probetas para eliminar el exceso de agua en su superficie y se rotulan conforme al tipo de mezcla.
Se fija un número de 4 probetas por tipo de mezcla teniendo así 1 testigo y 3 muestras de prueba. La diferencia en la serie de mezclas es el tipo de solución acuosa adicionada al cemento. Dicha solución se diferencia de acuerdo con el tipo de nanotubo dopado que lleva, también de acuerdo con la concentración de la nanoestructura que va del 0.01 % al 1 .0% del peso del cemento. Es muy importante mencionar que durante la preparación de las soluciones acuosas con nanotubos de carbono, se observó que para porcentajes de 0.01 % y 0.1 %, las dispersiones se obtienen muy homogéneas, y prácticamente no se observan conglomerados de nanotubos (Fig. 10a y 10b), no así para el resto de las concentraciones donde se observa la formación de grumos. Para porcentajes de 1 % en peso de nanotubos de carbono dopados o funcionalizados, la solución acuosa se encuentra muy saturada: 4 g de nanotubos de carbono en 200 mi de mezcla de agua mas 0.3% de surfactante (fig. 10c). El fenómeno de extrema viscosidad se observa alrededor de los 5 minutos de haber iniciado el proceso de dispersión y por lo tanto la solución se va tornando cada vez más viscosa reduciendo la efectividad de la cavitación dando como resultado que se tengan algunos sitios con paquetes de nanotubos de carbono, sobre todo para los nanotubos de carbono dopados con nitrógeno.
Las probetas se llevaron a la falla por compresión simple utilizando una prensa hidráulica de 120 ton de capacidad, todas las probetas se depositaron en y cubrieron con platos de acero recubiertos con neopreno (accesorios de la prensa) para uniformizar la fuerza aplicada en la cara transversal del cilindro, resultando para cada caso un esfuerzo de compresión asociado a cada probeta.
Figure imgf000020_0001
Figure imgf000021_0001
Una vez sometidas las probetas de concreto reforzado a pruebas mecánicas para análisis de la resistencia a la compresión, se obtuvieron resultados importantes. Se observaron incrementos significativos en las propiedades mecánicas para probetas reforzadas con porcentajes de 0.01 % de nanotubos de carbono dopados con nitrógeno, así mismo, se pudo observar la dispersión de las nanoestructuras en la matriz de concreto (Figs. 1 1 a-1 1 d).
En las imágenes de las figs. 1 1 a-1 1 d se puede ver en algunos casos bloques de nanotubos que no alcanzaron a ser dispersados en su totalidad, y también se ven formas cristalinas que pueden ser producto de la reacción entre el cemento el agua y los nanotubos de carbono dopados. La forma en la que los nanotubos catalizan en su superficie activa las estructuras cristalinas permite deducir un patrón de comportamiento adecuado entre las dos estructuras, fenómeno que probablemente causa el aumento en las propiedades mecánicas del concreto.
La presente invención ha sido descrita en su modalidad preferida, sin embargo, será evidente para aquellos expertos en el arte, que pueden hacerse una multiplicidad de cambios y modificaciones de este invento, sin apartarse del alcance de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1 . - Un concreto reforzado, caracterizado porque comprende: cemento y una dispersión que incluye agua, un surfactante, nanotubos de carbón multicapa que en sus paredes externas están substituidos átomos de carbono por átomos de otro elemento y nanotubos de carbón multicapa que poseen en su superficie grupos químicos.
2. - El concreto reforzado de conformidad con la reivindicación 1 , caracterizado porque el cemento es cemento Portland.
3.- El concreto reforzado de conformidad con la reivindicación 1 , caracterizado porque el otro elemento se selecciona del grupo que consiste de nitrógeno, hidrogeno, fosforo, oxigeno, azufre, silicio, selenio y boro.
4. - El concreto reforzado de conformidad con cualquiera de las reivindicaciones 1 o 3, caracterizado porque los grupos químicos se seleccionan del grupo que consiste de grupo carbonilo y grupo carboxilos.
5. - El concreto reforzado de conformidad con la reivindicación 1 , caracterizado porque los nanotubos de carbón son de tipo bambú.
6. - Un método para reforzar concreto, que comprende los pasos de:
formar una dispersión de un surfactante, nanotubos de carbón multicapa que en sus paredes externas están substituidos átomos de carbono por átomos de otro elemento y nanotubos de carbón multicapa que poseen en su superficie grupos químicos; y mezclar la dispersión con cemento para formar un concreto reforzado.
7.- El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque el cemento es cemento Portland.
8.- El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque el otro elemento se selecciona del grupo que consiste de nitrógeno, hidrogeno, fosforo, oxigeno, azufre, silicio, selenio y boro.
9. - El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque los grupos químicos se seleccionan del grupo que consiste de grupo carbonilo y grupo carboxilos.
10. - El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque la dispersión se realiza con sonicación.
1 1 . - El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque los nanotubos de carbón son nanotubos de pared múltiple.
12. - El método para reforzar concreto de conformidad con la reivindicación 6, caracterizado porque los nanotubos de carbón son de tipo bambú.
PCT/MX2010/000153 2009-12-17 2010-12-13 Concreto reforzado con nanomateriales híbridos WO2011074930A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112012014175A BR112012014175A2 (pt) 2009-12-17 2010-12-13 "concreto reforçado com nano-materiais híbridos
CA2784320A CA2784320C (en) 2009-12-17 2010-12-13 Concrete reinforced with hybrid nanomaterials
CN201080064109.1A CN102884018B (zh) 2009-12-17 2010-12-13 用混合纳米材料增强的混凝土
IN6254DEN2012 IN2012DN06254A (es) 2009-12-17 2010-12-13
ES10837926.4T ES2627912T3 (es) 2009-12-17 2010-12-13 Hormigón reforzado con nanomateriales híbridos
US13/515,134 US8551243B2 (en) 2009-12-17 2010-12-13 Concrete reinforced with hybrid nanomaterials
JP2012544411A JP6113505B2 (ja) 2009-12-17 2010-12-13 ハイブリッドナノ材料で強化されたコンクリート
EP10837926.4A EP2514728B1 (en) 2009-12-17 2010-12-13 Concrete reinforced with hybrid nanomaterials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2009013931A MX2009013931A (es) 2009-12-17 2009-12-17 Concreto reforzado con nanomateriales hibridos.
MXMX/A/2009/013931 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011074930A1 true WO2011074930A1 (es) 2011-06-23

Family

ID=44167506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2010/000153 WO2011074930A1 (es) 2009-12-17 2010-12-13 Concreto reforzado con nanomateriales híbridos

Country Status (10)

Country Link
US (1) US8551243B2 (es)
EP (1) EP2514728B1 (es)
JP (1) JP6113505B2 (es)
CN (1) CN102884018B (es)
BR (1) BR112012014175A2 (es)
CA (1) CA2784320C (es)
ES (1) ES2627912T3 (es)
IN (1) IN2012DN06254A (es)
MX (1) MX2009013931A (es)
WO (1) WO2011074930A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014063141A1 (en) * 2012-10-19 2014-04-24 Yi-Lung Mo Systems and methods utilizing carbon nanofiber aggregate for performance monitoring of concrete structures
CN103924713A (zh) * 2014-04-09 2014-07-16 葛加君 现浇生态保温墙施工方法
AU2013323327B2 (en) * 2012-09-28 2016-07-21 Halliburton Energy Services, Inc. Cement compositions comprising deagglomerated inorganic nanotubes and associated methods

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085678B2 (en) 2010-01-08 2015-07-21 King Abdulaziz City For Science And Technology Clean flame retardant compositions with carbon nano tube for enhancing mechanical properties for insulation of wire and cable
FR2969143B1 (fr) * 2010-12-21 2012-12-28 Arkema France Procede d'introduction de nanocharges carbonees dans un systeme inorganique durcissable
US8871019B2 (en) 2011-11-01 2014-10-28 King Abdulaziz City Science And Technology Composition for construction materials manufacturing and the method of its production
US9162924B2 (en) 2013-06-28 2015-10-20 Sophia Elizabeth Duluk Moisture wicking mortar with microtubes
CN104072037B (zh) * 2014-05-29 2016-02-10 蚌埠华东石膏有限公司 一种含碳纳米管混凝土及其制备方法
EP3548447B1 (en) * 2016-12-05 2021-04-14 Art Carbon International AG Construction material composition comprising carbon nanotubes and method for the preparation thereof
US10584072B2 (en) 2017-05-17 2020-03-10 Eden Innovations Ltd. Methods and systems for making nanocarbon particle admixtures and concrete
CN108218270A (zh) * 2018-01-24 2018-06-29 山东建筑大学 一种利用工业废弃物制备防水抗菌水泥的方法
CN108911595A (zh) * 2018-05-10 2018-11-30 连云港市天豪基础工程有限公司 一种改性早强抗裂混凝土的制备方法
CN108558316A (zh) * 2018-07-14 2018-09-21 段云涛 一种多壁碳纳米管混凝土
EP3744699A1 (en) 2019-05-28 2020-12-02 Sika Technology Ag Strength enhancer for concretes based on functionalized nanomaterials
KR102372277B1 (ko) * 2019-11-29 2022-03-10 단국대학교 산학협력단 탄소나노튜브 교착 혼합시멘트 및 이의 제조방법
CN111362628A (zh) * 2020-03-18 2020-07-03 盐城工学院 一种改性碳纳米管增强增韧地聚合物及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134942A1 (en) 2006-12-12 2008-06-12 Matthew Brenner Carbon Nanotube-Fiber Reinforced Cement And Concrete
WO2009099640A1 (en) 2008-02-08 2009-08-13 Northwestern University Highly-dispersed carbon nanotube-reinforced cement-based materials
EP2228343A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG Water vapour assisted ozonolysis of carbon nanotubes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143019A (ja) * 2002-10-28 2004-05-20 Shimizu Corp セメント硬化材、セメント硬化体、コンクリート打込み型枠およびコンクリート構造物
TW200535183A (en) * 2004-03-31 2005-11-01 Stella Chemifa Corp Carbon nanotubes aggregate, method for forming same, and biocompatible material
WO2006115486A1 (en) * 2005-04-22 2006-11-02 Seldon Technologies, Llc Article comprising carbon nanotubes and method of using the same for purifying fluids
CN101066758A (zh) * 2007-05-25 2007-11-07 上海第二工业大学 高氮掺杂竹节状碳纳米管材料及合成方法
JP2009203102A (ja) * 2008-02-27 2009-09-10 Nagoya Institute Of Technology セラミックス粉体の固化方法及びセラミックス固化体
BRPI0802018B1 (pt) * 2008-04-30 2019-01-29 Univ Minas Gerais processo de síntese de nanotubos de carbono sobre o clínquer de cimento e compósito nanoestruturado
KR20120117978A (ko) * 2009-11-23 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 카본 나노튜브-주입된 섬유 재료를 포함하는 세라믹 복합재료 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080134942A1 (en) 2006-12-12 2008-06-12 Matthew Brenner Carbon Nanotube-Fiber Reinforced Cement And Concrete
WO2009099640A1 (en) 2008-02-08 2009-08-13 Northwestern University Highly-dispersed carbon nanotube-reinforced cement-based materials
US20090229494A1 (en) * 2008-02-08 2009-09-17 Northwestern University Highly-dispersed carbon nanotube-reinforced cement-based materials
EP2228343A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG Water vapour assisted ozonolysis of carbon nanotubes

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CWIRZEN ET AL: "Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites", ADVANCES IN CEMENT RESEARCH, vol. 20, no. 2, 2008, pages 66 - 67, XP008164925, DOI: doi:10.1680/adcr.2008.20.2.65 *
HAN ET AL: "Effects of CNT doping level and water/cement ratio on the piezoresistivity of CNTS/CEMENT comoposites", PROCEEDINGS OF THE ASME 2010 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS SMASIS 2010, 28 September 2010 (2010-09-28) - 1 October 2010 (2010-10-01), PHYLADELPHIA, PENNSYLVANIA, USA, pages 22 *
LI ET AL: "Mechanical behavior and microstructure of cement composites incorporating surface-treated milti-walled carbon nanotubes", CARBON, vol. 43, 2005, pages 1240 *
LUO ET AL.: "Flexural strengths and characteristics of cement-based composite reinforced wit acid-treated multiwalled carbon nanotubes", JINGXI HUAGING, vol. 25, no. 10, 2008, pages 940 - 944, XP002713769 *
MUSSO ET AL: "Influence of carbon nanotubes structure on the mechabical behaviour of cement composites", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 69, 2009, pages 1986 *
SANCHEZ ET AL: "Nanotechnology in concrete- A review", CONSTRUCTION AND BULDING MATERIALS, vol. 24, 15 May 2010 (2010-05-15), pages 2067 - 2068 *
See also references of EP2514728A4
YU ET AL: "A carbon nanotube/cement composite with piezoresistive properties", SMART MATER.STRUCT., vol. 18, 2009, pages 2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013323327B2 (en) * 2012-09-28 2016-07-21 Halliburton Energy Services, Inc. Cement compositions comprising deagglomerated inorganic nanotubes and associated methods
WO2014063141A1 (en) * 2012-10-19 2014-04-24 Yi-Lung Mo Systems and methods utilizing carbon nanofiber aggregate for performance monitoring of concrete structures
US9797937B2 (en) 2012-10-19 2017-10-24 University Of Houston Systems and methods utilizing carbon nanofiber aggregate for performance monitoring of concrete structures
CN103924713A (zh) * 2014-04-09 2014-07-16 葛加君 现浇生态保温墙施工方法
CN103924713B (zh) * 2014-04-09 2015-12-02 葛加君 现浇生态保温墙施工方法

Also Published As

Publication number Publication date
CA2784320A1 (en) 2011-06-23
EP2514728B1 (en) 2017-03-08
ES2627912T3 (es) 2017-08-01
JP6113505B2 (ja) 2017-04-19
CA2784320C (en) 2017-10-10
IN2012DN06254A (es) 2015-09-25
EP2514728A1 (en) 2012-10-24
US8551243B2 (en) 2013-10-08
CN102884018A (zh) 2013-01-16
US20130199417A1 (en) 2013-08-08
EP2514728A4 (en) 2013-11-20
BR112012014175A2 (pt) 2017-07-18
CN102884018B (zh) 2016-08-31
JP2013514255A (ja) 2013-04-25
MX2009013931A (es) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2011074930A1 (es) Concreto reforzado con nanomateriales híbridos
Shamsaei et al. Graphene-based nanosheets for stronger and more durable concrete: A review
Lu et al. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties
Kaur et al. Studies on combined effect of superplasticizer modified graphene oxide and carbon nanotubes on the physico-mechanical strength and electrical resistivity of fly ash blended cement mortar
Sheikh et al. The mechanics of carbon-based nanomaterials as cement reinforcement—A critical review
Kaur et al. Positive synergistic effect of superplasticizer stabilized graphene oxide and functionalized carbon nanotubes as a 3-D hybrid reinforcing phase on the mechanical properties and pore structure refinement of cement nanocomposites
Abedi et al. Evaluation of CNT/GNP’s synergic effects on the Mechanical, Microstructural, and durability properties of a cementitious composite by the novel dispersion method
Prabavathy et al. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide
EP3548447B1 (en) Construction material composition comprising carbon nanotubes and method for the preparation thereof
Anwar et al. Nano-cementitious composites modified with Graphene Oxide–a review
Tatrari et al. Waste plastic derived graphene sheets as nanofillers to enhance mechanical strength of concrete mixture: An inventive approach to deal with universal plastic waste
Kharissova et al. Recent trends of reinforcement of cement with carbon nanotubes and fibers
Kumar et al. Effect of multiwalled carbon nanotube in cement composite on mechanical strength and freeze-thaw susceptibility
Kaur et al. Synergic influence of fly ash and graphene oxide-carbon nanotubes hybrid on mechanical, microstructural and porosity properties of cement mortars
DEVI et al. Mechanical and durability performance of concrete incorporating graphene oxide
Ginigaddara et al. An Introduction to High Performance Graphene Concrete
Etman et al. Effect of carbon nanotubes addition on mechanical properties of cement paste
Kaur et al. Durability of cementitious mortar: Incorporation of highly dispersed superplasticizer modified graphene oxide in fly ash blended mortar
Wang et al. Mechanical properties and microstructure of sulfur aluminate cement composites reinforced by multi-walled carbon nanotubes
Bhatrola et al. An Investigation on Mechanical Characteristics of Carbon Nanomaterials Used in Cementitious Composites
Kim et al. Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load
de Lima Ferreira et al. Use of graphene as an additive to improve the mechanical properties of gypsum plaster
Luping et al. Pre-Study of Graphene-Enhanced Cementitious Materials
Van Tien et al. Nanomaterials in construction: An overview
SINGLA STRENGTH AND DURABILITY INVESTIGATION OF CEMENT MORTAR PARTIALLY REPLACED WITH NANOCLAY AND CARBON NANO FIBERS A Thesis submitted

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064109.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837926

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2784320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012544411

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6254/DELNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010837926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010837926

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014175

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 13515134

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112012014175

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120612