WO2011074905A2 - 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지 - Google Patents

연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지 Download PDF

Info

Publication number
WO2011074905A2
WO2011074905A2 PCT/KR2010/009040 KR2010009040W WO2011074905A2 WO 2011074905 A2 WO2011074905 A2 WO 2011074905A2 KR 2010009040 W KR2010009040 W KR 2010009040W WO 2011074905 A2 WO2011074905 A2 WO 2011074905A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrolyte membrane
polymer electrolyte
group
cellulose
Prior art date
Application number
PCT/KR2010/009040
Other languages
English (en)
French (fr)
Other versions
WO2011074905A3 (ko
Inventor
김혁
최성호
성경아
이상우
노태근
김지수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2012544392A priority Critical patent/JP5564577B2/ja
Priority to EP10837901.7A priority patent/EP2515368B1/en
Priority to CN201080057729.2A priority patent/CN102668207B/zh
Priority to US13/515,755 priority patent/US9005841B2/en
Publication of WO2011074905A2 publication Critical patent/WO2011074905A2/ko
Publication of WO2011074905A3 publication Critical patent/WO2011074905A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the most basic unit for generating electricity is a membrane-electrode assembly (MEA), which consists of an anode and a cathode electrode formed on both sides of the polymer electrolyte membrane and the polymer electrolyte membrane.
  • MEA membrane-electrode assembly
  • the polymer electrolyte membrane is accompanied by a change in film thickness and volume of 15 to 30% depending on temperature and degree of hydration, and in particular, at a volume of at least 200% by 3 to 50% by weight of methanol fuel. Change occurs. Accordingly, depending on the fuel cell operating conditions, the electrolyte membrane repeats swelling and contraction. Due to the volume change, the polymer chain is entangled in the polymer electrolyte membrane, and mechanical strength is reduced, and micropores or cracks are generated. Hydrogen or methanol crossovers are generated through such micropores or cracks, which is a major cause of deterioration of fuel cell durability.
  • a perfluorosulfonic acid resin film made of a perfluorosulfonic acid resin (trade name: Nafion) having excellent conductivity, mechanical properties, and chemical resistance is mainly used as the polymer electrolyte membrane.
  • the above-mentioned perfluorosulfonic acid resin has a problem that the price is high, which causes the manufacturing cost of the fuel cell to increase.
  • hydrocarbon-based electrolyte membranes which are relatively inexpensive as compared to fluorine-based electrolyte membranes such as perfluorosulfonic acid resins.
  • Hydrocarbon-based electrolyte membranes generally have less chemical durability degradation due to by-products generated by gas permeation in actual fuel cell operation due to their relatively lower gas permeability than fluorine-based electrolyte membranes.
  • the general hydrocarbon electrolyte membrane has a problem that it is difficult to secure mechanical durability in actual fuel cell operation because it has a large volume change and brittle properties due to changes in humidification conditions.
  • hydrocarbon-based membranes tend to be very fragile in cycle experiments in which humidification and non-humidification are repeated, which are typical methods for evaluating the mechanical durability of electrolyte membranes.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the first object of the present invention is to provide a polymer electrolyte membrane that significantly improves the mechanical properties of the conventional polymer electrolyte membrane for fuel cells by including fibrous nanoparticles having a hydrophilic group.
  • a second object of the present invention is to provide a membrane electrode assembly comprising the polymer electrolyte membrane for fuel cells.
  • the present invention provides a polymer electrolyte membrane for a fuel cell comprising a hydrocarbon-based cation exchange resin having a hydrogen ion conductivity and fibrous nanoparticles having a hydrophilic group.
  • the fibrous nanoparticles may have a small particle size, a large surface area, and may be evenly dispersed in a cation exchange resin having hydrogen ion conductivity due to a hydrophilic group, thereby greatly contributing to the improvement of mechanical properties of the prepared polymer electrolyte membrane.
  • the process becomes very simple as compared with the case of using a porous substrate or the like. Therefore, when manufacturing a fuel cell using the polymer electrolyte membrane as described above, it is possible to produce a fuel cell having excellent long-term durability and low manufacturing cost.
  • the mixing ratio of the hydrocarbon-based cation exchange resin having hydrogen ion conductivity and the fibrous nanoparticles having a hydrophilic group is preferably in the range of 99.9: 0.1 to 91: 9 by weight.
  • the content of the fibrous nanoparticles having a hydrophilic group is too small, it is difficult to improve the mechanical properties to a desired level.
  • the fibrous nanoparticles is too large, the fibrous nanoparticles partially aggregate to form a path for crossover of fuel. It is not desirable because it can.
  • the fibrous nanoparticles having a hydrophilic group are more preferably contained in an amount of 0.2 to 8% by weight, particularly preferably 0.2 to 5% by weight based on the total amount of the electrolyte membrane.
  • the diameter of the fibrous nanoparticles having a hydrophilic group is 10 to 200 nm, the length may be 1 to 20 ⁇ m.
  • the fibrous nanoparticles having the hydrophilic group have a particle size of the nano level, it can be more uniformly dispersed in the cation exchange resin, it is possible to improve the durability even in a small amount.
  • the diameter of the fibrous nanoparticles having hydrophilic groups is too small, it is difficult to contribute to the improvement of mechanical strength.
  • the diameter of the fibrous nanoparticles is too large, it may be difficult to expect the effect of improving the bonding strength by increasing the surface area characteristic of the fibrous nanoparticles.
  • the length of the fibrous nanoparticles having a hydrophilic group is short, it is difficult to have a fibrous form.
  • the length of the fibrous nanoparticles is too large, dispersibility in the cation exchange resin is lowered, which is not preferable.
  • the aspect ratio of the fibrous nanoparticles having a hydrophilic group may range from 1: 5 to 1: 2,000.
  • the aspect ratio When the aspect ratio is too small, it is difficult to have a fibrous form, and consequently, it is difficult to contribute to the improvement of mechanical strength. On the contrary, when the aspect ratio is too large, the dispersibility is lowered, and agglomeration occurs partially in the cation exchange resin. It is undesirable because it can act as a passage.
  • the fibrous nanoparticle having the hydrophilic group is not particularly limited as long as the fibrous nanoparticles have the properties as described above, but, for example, those having at least one selected from the group consisting of cellulose-based nanofibers and polyvinyl alcohol (PVA) Can be. Especially, cellulose nanofibers are especially preferable.
  • Cellulose-based nanofibers are composed of a crystallization region and an amorphous region, the crystallization region increases the elasticity and tensile strength of the material, the amorphous region increases the absorption of water or improves the flexibility of the material Do it.
  • the cellulose-based nanofibers or polyvinyl alcohol (PVA) has a hydroxyl group (-OH) as a hydrophilic group.
  • the hydroxy group of the cellulose-based nanofibers or polyvinyl alcohol (PVA) is preferably present in the range of 5 to 90% of the total hydroxyl group site.
  • PVA polyvinyl alcohol
  • More preferred content of hydroxy groups can be 10 to 80%, in particular 20 to 70%.
  • the cellulose-based nanofibers include, for example, cellulose unsubstituted cellulose nanofibers, cellulose partially hydroxy substituted cellulose such as cellulose ester nanofibers, cellulose ether nanofibers, and the like. It may be roughly classified into nanofibers, which may be used alone or in a mixture of two or more.
  • cellulose unsubstituted cellulose nanofibers include cellulose unsubstituted cellulose nanofibers; Cellulose nanofibers substituted with acetyl groups or derivatives thereof; Sulfuric acid cellulose nanofibers; Phosphate cellulose nanofibers; Cellulose nanofibers substituted with C 1 -C 10 alkyl groups or derivatives thereof such as methyl cellulose nanofibers, ethyl cellulose nanofibers, carboxymethyl cellulose nanofibers, hydroxyethyl cellulose nanofibers, and the like.
  • at least one selected from the group consisting of cellulose nanofibers substituted with a C 2 -C 6 alkyl group or a derivative thereof but is not limited thereto.
  • cellulose nanofibers substituted with a low water-soluble C 2 -C 10 alkyl group or derivatives thereof cellulose nanofibers substituted with an acetyl group or derivatives thereof, and the like are more preferable.
  • the molecular weight range of the cellulose may be, for example, 30,000 to 3,000,000, but may be beyond the exemplary range due to various factors such as the aspect ratio of the fibrous nanoparticles, the type of the substituent, and the degree of substitution. to be.
  • benzimidazole polymer examples thereof include benzimidazole polymer, polyimide polymer, polyetherimide polymer, polyphenylene sulfide polymer, polysulfone polymer, polyether sulfone polymer, polyether ketone polymer and polyether- It may be one or more selected from the group consisting of an ether ketone-based polymer and a polyphenylquinoxaline-based polymer, but is not limited thereto.
  • polyether ether ketone type polymer, polyether sulfone type polymer, or a mixture thereof is more preferable.
  • the fuel cell polymer electrolyte membrane may further include a cation exchange resin membrane having two or more hydrogen ion conductivity stacked opposite to each other with the fuel cell polymer electrolyte membrane interposed therebetween.
  • a method of coating and thermally pressing corresponding films, respectively may be used, and a known film lamination method may be used without limitation.
  • the present invention also provides a fuel cell membrane electrode assembly in which the fuel cell polymer electrolyte membrane is positioned between an anode electrode and a cathode electrode which face each other.
  • the membrane electrode assembly for fuel cell has an advantage in that the mechanical strength of the polymer electrolyte membrane inside the fuel cell during operation is greatly improved and thus the durability is excellent.
  • the present invention includes the fuel cell membrane electrode assembly and at least one separator plate,
  • At least one electricity generating unit for generating electricity through an electrochemical reaction between the fuel and the oxidant
  • a fuel supply unit supplying fuel to the electricity generation unit
  • An oxidant supply unit for supplying an oxidant to the electricity generating unit
  • It provides a fuel cell comprising a.
  • 1 is a schematic diagram for explaining the principle of electricity generation of a fuel cell
  • FIG. 2 is a schematic diagram schematically showing a polymer electrolyte membrane according to one embodiment of the present invention
  • FIG. 3 is a schematic diagram schematically showing the structure of a membrane electrode assembly for a fuel cell according to one embodiment of the present invention
  • FIG. 4 is a schematic diagram schematically showing the structure of a fuel cell according to one embodiment of the present invention.
  • 5 and 7 are graphs showing performance test results under 100% RH conditions of a fuel cell according to the Examples and Comparative Examples of the present invention.
  • 6 and 8 are graphs showing the results of performance experiments under 50% RH conditions of a fuel cell according to the Examples and Comparative Examples of the present invention.
  • FIGS. 9 and 10 are graphs showing the results of a humidification-no humidification cycle experiment of a membrane electrode assembly to which a polymer electrolyte membrane for a fuel cell according to Examples and Comparative Examples of the present invention is applied.
  • FIG. 2 schematically illustrates a polymer electrolyte membrane for a fuel cell according to one embodiment of the present invention
  • FIG. 3 schematically illustrates a structure of a membrane electrode assembly for a fuel cell according to one embodiment of the present invention.
  • the fuel cell polymer electrolyte membrane 201 is characterized in that it comprises cellulose nanofibers.
  • the membrane electrode assembly for a fuel cell may be configured to include an anode electrode 203 and a cathode electrode 205 positioned to face each other with the polymer electrolyte membrane 201 interposed therebetween.
  • the anode electrode 203 and the cathode electrode 205 may further include a gas diffusion layer 208, and the gas diffusion layer 208 may be formed on the substrates 209a and 209b and one surface of the substrate. 207b).
  • FIG. 4 schematically shows a structure of a fuel cell according to an embodiment of the present invention.
  • the oxidant supply unit 300 serves to supply an oxidant to the electricity generator.
  • Oxygen is typically used as the oxidant, and may be used by injecting oxygen or air into the pump 300.
  • 0.2 parts by weight of the cellulose nanofibers prepared above were added to 2,000 parts by weight of DMSO as a solvent together with 99.8 parts by weight of sulfonated polyether-etherketone to be uniformly dissolved.
  • the film was applied to a substrate by a solution casting method using a film applicator to prepare a film having a thickness of 20 ⁇ m, and then gradually heated up to 80 ° C., dried for about 24 hours, dried at 120 ° C. for 24 hours, and then sulfuric acid. Proton exchange was performed to prepare the final polymer electrolyte membrane.
  • a platinum-carrying carbon catalyst and a Nafion ionomer were dissolved in a mixed solvent of water and isopropyl alcohol, and then coated on carbon paper to prepare two electrode diffusion layers containing 0.4 mg / cm 2 of platinum. After placing the polymer electrolyte membrane between two electrode diffusion layers, an electrode membrane assembly was manufactured by thermocompression bonding at 140 ° C. for 5 minutes, and a fuel cell having a structure as shown in FIG. 4 was prepared.
  • a polymer electrolyte membrane, a membrane electrode assembly, and a fuel cell were manufactured in the same manner as in Example 1, except that 97 parts by weight of sulfonated polyether-etherketone and 3 parts by weight of ethyl cellulose nanofiber were used. .
  • the hydrogen (H 2 ) crossover rapidly rises by about 1,000 cycles. This is because fine pores and cracks are formed in the polymer electrolyte membrane due to repeated swelling and shrinkage, thereby forming a hydrogen (H 2 ) channel.
  • the membrane electrode assemblies according to Examples 1 to 4 can be seen that the hydrogen (H 2 ) crossover is maintained in a similar range to the initial stage even without progressing up to 10,000 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 연료전지용 고분자 전해질 막, 그를 포함하는 막 전극 접합체 및 연료전지에 관한 것으로서, 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지와 친수성기를 가진 섬유상 나노 입자를 포함하는 연료전지용 고분자 전해질 막을 제공한다. 본 발명에 따르면 친수성기를 가진 섬유상 나노 입자를 수소이온 전도성 탄화수소계 양이온 교환수지에 혼합 사용함으로써 연료전지의 성능을 저하시키기 않으면서, 기체에 대한 차단성 및 장기 내구성이 향상된 고분자 전해질 막을 제공할 수 있으며, 상기 고분자 전해질 막을 포함하는 연료전지를 제공할 수 있다.

Description

연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
본 발명은 전해질 막의 기계적 성질의 개선을 위한 연료전지용 고분자 전해질 막에 관한 것으로서, 보다 상세하게는 친수성기를 가진 섬유상 나노 입자를 포함함으로써 연료전지용 고분자 전해질 막의 기계적 성질을 개선한 연료전지용 고분자 전해질 막, 그를 포함하는 막 전극 접합체 및 연료전지에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 수 있는 에너지에 대한 관심이 높아지고 있다. 이러한 대체에너지의 하나로서 연료전지는 고효율이고, NOx 및 SOx 등의 공해 물질을 배출하지 않으며, 사용되는 연료가 풍부하다는 등의 장점으로 인해 특히 주목 받고 있다.
연료전지는 연료와 산화제의 화학반응 에너지를 전기 에너지로 변환시키는 발전 시스템으로서, 연료로는 수소, 메탄올, 부탄 등과 같은 탄화수소가, 산화제로는 산소가 대표적으로 사용된다.
고분자 전해질 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막-전극 접합체(MEA)로서, 이는 고분자 전해질 막과 고분자 전해질 막 양면에 형성되는 애노드 및 캐소드 전극으로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1 및 반응식 1(수소를 연료로 사용한 경우의 연료전지의 반응식)을 참조하면, 애노드 전극에서는 연료의 산화 반응이 일어나 수소이온 및 전자가 발생하고, 수소이온은 고분자 전해질 막을 통해 캐소드 전극으로 이동하며, 캐소드 전극에서는 산소(산화제)와 고분자 전해질 막을 통해 전달된 수소이온과 전자가 반응하여 물이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
[반응식 1]
애노드 전극: H2 → 2H+ + 2e-
캐소드 전극: 1/2O2 + 2H+ + 2e- → H2O
전체 반응식: H2 + 1/2O2 → H2O
이러한 반응에서, 상기 고분자 전해질 막은 온도와 수화(hydration) 정도에 따라 15 내지 30%의 막두께 변화와 체적 변화를 수반하고, 특히, 3 내지 50 중량%의 메탄올 연료에 의해서는 최대 200% 이상 체적 변화가 발생한다. 이에 연료전지 운전 조건에 따라 전해질 막은 팽윤과 수축을 반복하게 되며, 이러한 체적변화로 인하여 고분자 전해질 막에서 고분자 사슬의 얽힘이 풀리면서 기계적 강도가 줄어 들고, 미세 구멍이나 균열이 발생하게 된다. 이러한 미세 구멍이나 균열을 통해 수소 또는 메탄올 크로스오버(crossover)가 발생하여 연료전지의 내구성이 저하되는 주요 원인이 되고 있다.
이러한 이유로 상기 고분자 전해질 막으로는 전도성, 기계적 물성 및 내화학성이 우수한 퍼플루오로설폰산 수지(상품명: Nafion)로 제조된 퍼플루오로설폰산 수지막이 주로 사용되고 있다. 그러나, 상기 퍼플루오로설폰산 수지는 가격이 비싸다는 문제로 인하여, 연료전지의 제조 단가를 상승시키는 원인이 되고 있다.
이에 상기 퍼플루오로설폰산 수지 등과 같은 불소계 전해질 막에 비하여 상대적으로 저렴한 탄화수소계 전해질 막에 대한 관심이 높아지고 있다. 탄화수소계 전해질 막은 일반적으로 불소계 전해질 막 대비 상대적으로 낮은 기체 투과도로 인해 실제 연료전지 운전에서 기체 투과로 생성되는 부산물에 의한 화학적 내구성 저하는 적은 편이다. 그러나, 일반적인 탄화수소계 전해질 막은 가습 상황의 변화에 따른 체적 변화가 크고, 부서지기 쉬운 물성으로 가지므로, 실제 연료전지 운전에서 기계적 내구성을 확보하기가 어렵다는 문제를 내포하고 있다. 일례로 전해질 막의 기계적 내구성을 평가하는 대표적인 방법인 가습과 무가습을 반복하는 사이클 실험에서 탄화수소계 막은 매우 취약한 경향을 보인다.
또한, 일반적으로 연료전지용 고분자 전해질 막의 내구성을 보강하기 위하여, 전해질 막 수지 자체를 개선하거나 다공성 기재에 전해질 막 수지를 채우는 방식이 시도되고 있다. 그러나, 전해질 막 자체의 강도를 높이는 경우, 일반적으로 이온 교환능력이 떨어지며, 다공성 기재에 채우는 방식은 내구성 향상의 효과는 있으나 공정상에 어려움이 많고, 원재료 가격이 상승하는 문제를 가지고 있다. 특히, 탄화수소계 전해질 막 수지의 경우는 가습 상황의 변화에 따른 체적 변화가 커서, 상기 다공성 기재를 적용한 방식에서도 내구성의 향상 효과가 크지 않다. 또 다른 방식으로서 전해질 막 수지와 내구성 향상을 위한 물질을 혼합하여 제조하는 방식이 있으나, 역시 혼합과정이 쉽지 않으며 무엇보다도 뚜렷한 효과를 보이지 않고 있다.
따라서, 이와 같은 문제점을 해결하려는 노력이 관련 분야에서 꾸준하게 이루어져 왔으며, 이러한 기술적 배경 하에서 본 발명이 안출되었다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
구체적으로, 본 발명의 첫 번째 목적은 친수성기를 가진 섬유상 나노 입자를 포함함으로써, 기존의 연료전지용 고분자 전해질 막에 대해 기계적 성질을 현저히 개선한 고분자 전해질 막을 제공하는 것이다.
본 발명의 두 번째 목적은 상기 연료전지용 고분자 전해질 막을 포함하는 막 전극 접합체를 제공하는 것이다.
본 발명의 세 번째 목적은 상기 연료전지용 고분자 전해질 막을 포함하는 연료전지를 제공하는 것이다.
이러한 목적을 달성하기 위하여, 본 발명은 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지와 친수성기를 가진 섬유상 나노 입자를 포함하는 연료전지용 고분자 전해질 막을 제공한다.
상기와 같이, 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지가 친수성기를 가지는 섬유상 나노 입자를 포함하는 경우, 친수성기를 가진 섬유상 나노 입자가 탄화수소계 양이온 교환수지의 팽윤, 수축시에 같이 연동함으로써 체적 변화에 의한 스트레스를 줄일 수 있고, 친수성기의 존재로 인해 낮은 가습 상태에서도 수분 손실에 의한 수축 정도를 줄일 수 있으며, 수분에 노출된 상황에서 인장 강도를 향상할 수 있다. 또한, 상기 섬유상 나노 입자는 입자 사이즈가 작고 표면적이 크며 친수성기로 인해 수소이온 전도성을 갖는 양이온 교환수지에 고르게 분산될 수 있으므로, 제조된 고분자 전해질 막의 기계적 물성 향상에 크게 기여할 수 있다. 공정적인 면에서도 다공성 기재 등을 사용하는 경우에 비하여 공정이 매우 단순해진다. 따라서, 상기와 같은 고분자 전해질 막을 사용하여 연료전지를 제조하는 경우, 우수한 장기 내구성을 가지면서 제조단가가 저렴한 연료전지를 생산할 수 있다.
본 발명에 따른 연료전지용 고분자 전해질 막에서, 상기 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지와 친수성기를 가진 섬유상 나노 입자의 혼합비율은 중량비로 99.9 : 0.1 내지 91 : 9의 범위인 것이 바람직하다. 상기 친수성기를 가진 섬유상 나노 입자의 함량이 너무 적은 경우에는 소망하는 수준으로 기계적 성질의 향상을 도모하기 어렵고, 반대로 너무 많은 경우에는 부분적으로 섬유상 나노 입자가 응집되어 연료의 크로스오버를 위한 패스를 형성할 수 있으므로 바람직하지 않다. 상기와 같은 이유로, 친수성기를 가진 섬유상 나노 입자는 전해질 막 전체량을 기준으로 0.2 내지 8 중량%로 함유되는 것이 더욱 바람직하고, 0.2 내지 5 중량%로 함유되는 것이 특히 바람직하다.
하나의 바람직한 예에서, 상기 친수성기를 가진 섬유상 나노 입자의 직경은 10 내지 200 nm 이고, 길이는 1 내지 20 ㎛일 수 있다.
상기 친수성기를 가진 섬유상 나노 입자는 나노 수준의 입자 크기를 가짐으로써, 상기 양이온 교환수지 내에 보다 균일하게 분산될 수 있으며, 적은 양으로도 내구성을 향상시킬 수 있다.
그러나, 친수성기를 가진 섬유상 나노 입자의 직경이 너무 작은 경우에는 기계적 강도의 향상에 기여하기 어렵고, 반대로 너무 큰 경우에는 섬유상 나노 입자의 특징인 표면적 증대에 의한 결합력 향상효과를 기대하기 어려울 수 있다. 또한, 친수성기를 가진 섬유상 나노 입자의 길이가 짧은 경우에는 섬유상의 형태를 가지기 어렵고, 반대로 너무 큰 경우에는 양이온 교환수지 내에서의 분산성이 저하되므로 바람직하지 않다.
또 다른 바람직한 예에서, 상기 친수성기를 가진 섬유상 나노 입자의 종횡비(aspect ratio)는 1 : 5 내지 1 : 2,000의 범위일 수 있다.
상기 종횡비가 지나치게 작은 경우에는 섬유상의 형태를 가지기 어렵고, 이에 따라 기계적 강도 향상에 기여하기 어려우며, 반대로 너무 큰 경우에는 분산성이 저하되어 양이온 교환수지 내에서 부분적으로 뭉침이 발생하고, 이는 연료 등의 통로로 작용할 수 있으므로 바람직하지 않다.
상기 친수성기를 가진 섬유상 나노 입자는 상기와 같은 성질을 가지는 것이면 그 종류가 특별히 제한되는 것은 아니지만, 바람직한 예로, 셀룰로우즈계 나노파이버 및 폴리비닐알콜(PVA)로 이루어진 군에서 선택되는 하나 이상인 것을 들 수 있다. 그 중에서도 셀룰로우즈계 나노파이버가 특히 바람직하다.
셀룰로우즈계 나노파이버는 결정화 영역과 무정형 영역으로 구성되어 있으며, 결정화 영역은 물질의 탄성과 인장강도를 증가시키는 역할을 하며, 무정형 영역은 물을 흡수하여 늘어나거나, 물질의 유연성을 향상시키는 역할을 한다.
상기 셀룰로우즈계 나노파이버 또는 폴리비닐알콜(PVA)는 친수성기로 히드록시기(-OH)를 가지고 있다.
하나의 바람직한 예에서, 상기 셀룰로우즈계 나노파이버 또는 폴리비닐알콜(PVA)의 히드록시기는 전체 히드록시기 사이트 대비 5 내지 90% 범위에서 존재하는 것이 바람직하다. 상기 히드록시기의 함량이 너무 적으면 물을 흡수하여 팽윤하는 정도가 낮아서 양이온 수지와의 결합력이 낮아져, 결국 연료전지 막의 기계적 강도 향상에 기여하지 못하고, 너무 많으면 용매와의 혼합성이 저하되어 연료전지용 고분자 전해질 막을 제조하기 어려울 수 있으므로 바람직하지 않다.
히드록시기의 더욱 바람직한 함량은 10 내지 80%, 특히, 20 내지 70%일 수 있다.
상기 셀룰로우즈계 나노파이버는, 예를 들어, 히드록시가 비치환된 셀룰로우즈 나노파이버와, 셀룰로우즈 에스테르 나노파이버, 셀룰로우즈 에테르 나노파이버 등과 같이 히드록시가 일부 치환된 셀룰로우즈 나노파이버로 대략 분류될 수 있으며, 이들은 단독으로 사용될 수도 있고 둘 이상의 혼합 형태로 사용될 수도 있다. 이들의 구체적인 예로는, 히드록시가 비치환된 셀룰로우즈 나노파이버; 아세틸기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버; 황산 셀룰로우즈 나노파이버; 인산 셀룰로우즈 나노파이버; 메틸 셀룰로우즈 나노파이버, 에틸 셀룰로우즈 나노파이버, 카르복시메틸 셀룰로우즈 나노파이버, 히드록시에틸 셀룰로우즈 나노파이버 등과 같은 C1-C10 알킬기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버, 바람직하게는, C2-C6 알킬기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버;로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이들로 한정되는 것은 아니다. 그 중에서, 수용성이 낮은 C2-C10 알킬기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버, 아세틸기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버 등이 더욱 바람직하다.
상기 셀룰로우즈의 분자량의 범위는, 예를 들어, 30,000 내지 3,000,000일 수 있지만, 섬유상 나노 입자의 종횡비, 치환기의 종류 및 치환도 등 다양한 요인들에 의해 상기 예시적인 범위를 넘어설 수 있음은 물론이다.
본 발명에 있어서, 상기 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지는, 예를 들어, 측쇄에 설폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군으로부터 선택되는 하나 이상의 양이온 교환기를 가지는 고분자일 수 있다.
이들의 구체적인 예로는, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이들로 한정되는 것은 아니다. 그 중에서도 폴리에테르-에테르케톤계 고분자, 폴리에테르술폰계 고분자, 또는 이들의 혼합물이 더욱 바람직하다.
경우에 따라서는, 본 발명에 따른 연료전지용 고분자 전해질 막에서, 상기 연료전지용 고분자 전해질 막을 사이에 두고 대향하여 적층된 2개 이상의 수소이온 전도성을 갖는 양이온 교환 수지막을 더 포함할 수도 있다. 상기 적층 형태를 제조하기 위해서는 대응하는 막들을 각각 도포하고 가열 압착하는 방법을 사용할 수 있으며, 공지된 막 적층 방법을 제한없이 사용할 수 있다.
본 발명은 또한, 상기 연료전지용 고분자 전해질 막이 서로 대향하여 위치하는 애노드 전극과 캐소드 전극 사이에 위치하는 연료전지용 막 전극 접합체를 제공한다.
상기 연료전지용 막 전극 접합체는 연료전지 운전시의 내부의 고분자 전해질 막의 기계적 강도가 크게 향상되어 내구성이 우수하다는 장점이 있다.
또한, 본 발명은 상기 연료전지용 막 전극 접합체 및 하나 이상의 분리판을 포함하며,
연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 하나 이상의 전기 발생부;
연료를 상기 전기 발생부로 공급하는 연료 공급부; 및
산화제를 상기 전기 발생부로 공급하는 산화제 공급부;
를 포함하는 연료전지를 제공한다.
고분자 전해질 막을 사용하여 제조되는 막 전극 접합체과 연료전지의 구조 및 제조 방법 등은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명을 본 명세서에서는 생략한다.
도 1은 연료전지의 전기 발생 원리를 설명하기 위한 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 고분자 전해질 막을 개략적으로 나타낸 모식도이다;
도 3은 본 발명의 하나의 실시예에 따른 연료전지용 막 전극 접합체의 구조를 개략적으로 나타낸 모식도이다;
도 4는 본 발명의 하나의 실시예에 따른 연료전지의 구조를 개략적으로 나타낸 모식도이다;
도 5 및 7은 본 발명의 실시예 및 비교예에 따른 연료전지의 100% RH 조건에서의 성능 실험 결과를 나타내는 그래프이다;
도 6 및 8은 본 발명의 실시예 및 비교예에 따른 연료전지의 50% RH 조건에서의 성능 실험 결과를 나타내는 그래프이다;
도 9 및 10은 본 발명의 실시예 및 비교예에 따른 연료전지용 고분자 전해질 막을 적용한 막 전극 접합체의 가습-무가습 사이클 실험 결과를 나타내는 그래프이다.
이하 본 발명의 내용을 도면과 실시예를 통하여 더욱 상세히 설명하지만, 본 발명의 내용이 이들로 한정 해석되는 것은 아니다.
도 2에는 본 발명의 하나의 실시예에 따른 연료전지용 고분자 전해질 막이 모식적으로 도시되어 있고, 도 3에는 본 발명의 하나의 실시예에 따른 연료전지용 막 전극 접합체의 구조가 모식적으로 도시되어 있다.
이들 도면들을 참조하면, 본 발명에 따른 연료전지용 고분자 전해질 막(201)은 셀룰로우즈 나노파이버를 포함하고 있는 것을 특징으로 한다.
또한, 본 발명에 따른 연료전지용 막 전극 접합체는 고분자 전해질 막(201)을 사이에 두고 서로 대향하여 위치하는 애노드 전극(203)과 캐소드 전극(205)을 포함하는 것으로 구성될 수 있다. 애노드 전극(203) 및 캐소드 전극(205)은 기체 확산층(208)을 추가로 포함할 수 있으며, 기체 확산층(208)은 기재(209a, 209b)와 기재의 일면에 형성되는 미세기공층(207a, 207b)을 포함할 수 있다.
도 4에는 본 발명의 하나의 실시예에 따른 연료전지의 구조가 개략적으로 도시되어 있다.
도 4를 참조하면, 본 발명의 연료전지는 전기 발생부(200), 연료 공급부(400) 및 산화제 공급부(300)를 포함하는 것으로 구성되어 있다. 본 발명의 연료전지는 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 및 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하며, 본 발명에 따른 연료전지용 복합 전해질 막을 포함하는 하나 이상의 막 전극 접합체 및 하나 이상의 분리판을 포함하며, 연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 하나 이상의 전기 발생부(200); 연료를 상기 전기 발생부로 공급하는 연료 공급부(400); 산화제를 상기 전기 발생부로 공급하는 산화제 공급부(300)를 포함한다.
상기 전기 발생부(200)는 본 발명의 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다 상기 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
상기 연료 공급부(400)는 연료를 상기 전기 발생부로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(410) 및 연료탱크(410)에 저장된 연료를 전기 발생부(200)로 공급하는 펌프(420)로 구성될 수 있다. 상기 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있으며, 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 산화제 공급부(300)는 산화제를 상기 전기 발생부로 공급하는 역할을 한다. 상기 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(300)로 주입하여 사용할 수 있다.
이하 실시예를 통해 본 발명의 내용을 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실시예 1]
에틸 셀룰로우즈 분말(Dow사, ETHOCELTM, 에틸기 48-49.5% 치환)을 DMSO에 분산시킨 후, 용액 상태에서 마이크로플루다이져를 이용하여 다수회 처리하여 셀룰로우즈를 분해함으로써 나노파이버를 제조하였다. 제조된 에틸 셀룰로우즈 나노파이버의 직경은 10-100 nm의 범위이고, 길이는 1-10 ㎛의 범위였다.
상기에서 제조한 셀룰로우즈 나노파이버 0.2 중량부를 설폰화된 폴리에테르-에테르케톤 99.8 중량부와 함께 용매인 DMSO 2,000 중량부에 첨가하여 균일하게 녹였다. 이를 film applicator를 이용하여 용액 캐스팅(solution casting) 방법으로 기판에 도포하여 20 ㎛ 두께의 막을 제조한 후 80℃까지 서서히 승온시킨 후 약 24 시간 동안 건조시키고, 다시 120℃에서 24 시간 건조한 후, 황산처리로 프로톤 교환을 하여 최종적인 고분자 전해질 막을 제조하였다.
백금 담지 카본 촉매와 Nafion ionomer를 물과 이소프로필 알코올 혼합용매에 녹인 후 이를 카본 페이퍼에 도포하여 0.4 mg/cm2의 백금이 존재하는 두 장의 전극 확산층을 준비하였다. 두 장의 전극 확산층 사이에 상기 고분자 전해질 막을 넣은 후 140℃에서 5분 동안 열압착을 통해 전극 막 접합체를 제작하고, 도 4에서와 같은 구조의 연료전지를 제작하였다.
[실시예 2]
설폰화된 폴리에테르-에테르케톤을 99 중량부 사용하고 에틸 셀룰로우즈 나노파이버를 1 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[실시예 3]
설폰화된 폴리에테르-에테르케톤을 97 중량부 사용하고 에틸 셀룰로우즈 나노파이버를 3 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[실시예 4]
설폰화된 폴리에테르-에테르케톤을 95 중량부 사용하고 에틸 셀룰로우즈 나노파이버를 5 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[실시예 5]
설폰화된 폴리에테르-에테르케톤을 92 중량부 사용하고 에틸 셀룰로우즈 나노파이버를 8 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[비교예 1]
셀룰로우즈 나노파이버를 사용하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[비교예 2]
설폰화된 폴리에테르-에테르케톤을 90 중량부 사용하고 에틸 셀룰로우즈 나노파이버를 10 중량부 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[비교예 3]
나노파이버가 아닌 에틸 셀룰로우즈 분말(Dow사, ETHOCELTM, 에틸기 48-49.5% 치환) 자체를 사용하였다는 점을 제외하고는, 실시예 3과 동일한 방법으로 고분자 전해질 막, 막 전극 접합체 및 연료전지를 제작하였다.
[실험예 1]
상기 실시예 1 내지 5 및 비교예 1 내지 3에서 각각 제작된 연료전지들을 각각 100% RH와 50% RH 상태에서 셀 성능을 측정하여 그 결과를 도 5 내지 8에 나타내었다. 이 때 측정 온도는 70℃였다.
먼저 도 5 및 6을 참조하면, 100% RH와 50% RH 상태에서 실시예 1 내지 5에서 제조된 전해질 막을 사용한 연료전지의 성능이 셀룰로우즈 나노파이버를 사용하지 않은 비교예 1에서 제조된 전해질 막을 사용한 연료전지의 성능과 동등하거나 일부 향상된 것을 확인할 수 있다.
이러한 결과는 전해질 막 자체의 강도를 높이는 시도가 전해질 막의 양이온 전도성을 저하시켜 연료전지의 성능을 저하시킬 것이라는 일반적인 통념을 벗어나는 것이다.
또한, 도 7 및 8을 참조하면, 100% RH와 50% RH 상태에서 동일한 셀룰로우즈 함량을 가지는 실시예 3과 비교예 3을 비교했을 때, 셀룰로우즈 나노파이버를 포함하는 실시예 3은 비교예 1에 비하여 동등 수준 이상의 성능을 나타내는 반면에, 셀룰로우즈 분말을 포함하는 비교예 3은 비교예 1에 비하여 동등 수준 이하의 성능을 나타내는 것을 볼 수 있다.
이러한 결과가 나타나는 이유는 명확히 규명되지는 않았으나, 상기 결과를 바탕으로 판단할 때, 나노 사이즈와 친수성기를 가진 셀룰로우즈 나노파이버가 탄화수소계 양이온 교환수지 내에 미세하게 분산된 상태로 분포하여, 오히려 양이온의 이동 성능을 향상시키기 때문인 것으로 인식된다.
[실험예 2]
상기 실시예 1 내지 5 및 비교예 1 내지 3에서 각각 제조된 막 전극 접합체를 일반적인 단위전지 장치에 적용한 후, 80℃에서 단위전지의 양쪽 가스 주입구에 RH 150%와 RH 0%의 질소를 2분 간격으로 스위칭하면서 공급하여, 가습-무가습 사이클 실험을 수행하였다. 실험 중에 주기적으로 수소(H2) 크로스오버를 측정하여 급격하게 증가한 경우 실험을 중단하였다. 상기 실험 결과를 도 9 내지 10에 그래프로 도시하였다.
도 9를 참조하면, 비교예 1 및 2에서 제조된 막 전극 접합체는 약 1,000 사이클에 이르러서는 수소(H2) 크로스오버가 급격하게 상승하는 것을 알 수 있다. 이는 반복적인 팽윤과 수축으로 인하여 고분자 전해질 막에 미세한 구멍과 균열이 생겨 수소(H2) 통로가 형성되었기 때문이다. 이와 반대로, 실시예 1 내지 4에 따른 막 전극 접합체는 10,000 사이클까지 진행되는 과정에서도 수소(H2) 크로스오버가 급격하게 상승되지 않고 초기와 유사한 범위에서 유지되는 것을 볼 수 있다.
또한, 실시예 5의 경우, 약 5,000 사이클에 이르러서 수소(H2) 크로스오버가 급격하게 상승하지만, 비교예 1의 결과와 비교할 때, 수소 크로스오버가 일어나는 사이클 수가 현저히 커졌음을 알 수 있다.
도 10을 참조하면, 비교예 3에서 제조된 막 전극 접합체는 약 2,000 사이클에 이르러서 수소(H2) 크로스오버가 급격하게 상승하는 것을 알 수 있다. 반면에, 동일 함량의 셀룰로우즈를 나노파이버 형태로 함유하고 있는 실시예 3의 경우에는, 10,000 사이클까지 진행되는 과정에서 수소(H2) 크로스오버가 급격하게 상승되지 않고, 초기와 유사한 범위에서 유지되는 것을 볼 수 있다.
이러한 결과는, 앞서 설명한 바와 같이, 실시예 1 내지 5에서 사용된 셀룰로우즈 나노파이버가 탄화수소계 전해질 막에 고르게 분산됨으로써 고분자 전해질 막의 기계적 성질을 크게 향상시키기 때문으로 이해된다. 상기 셀룰로우즈 나노파이버가 과량으로 함유된 비교예 2의 경우에는 상기 셀룰로우즈 나노파이버가 일부 뭉쳐서 존재하게 되고 이러한 구조가 수소(H2)의 패스로 작용할 수 있기 때문에 오히려 내구성 향상 효과가 나타나지 않는 것으로 보인다.
이상과 같이, 본 발명에 따른 연료전지용 고분자 전해질 막은 탄화수소계 양이온 교환수지를 기반으로 한 전해질 막에서, 연료전지의 성능을 저하시키기 않으면서, 기체에 대한 차단성 및 장기 내구성 등을 현저히 향상시킬 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (14)

  1. 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지와 친수성기를 가진 섬유상 나노 입자를 포함하는 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  2. 제 1 항에 있어서, 상기 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지와 친수성기를 가진 섬유상 나노 입자의 혼합비율은 중량비로 99.9 : 0.1 내지 91 : 9의 범위인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  3. 제 1 항에 있어서, 상기 친수성기를 가진 섬유상 나노 입자의 직경은 1 내지 200 nm이고 길이는 1 내지 20 ㎛인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  4. 제 1 항에 있어서, 상기 친수성기를 가진 섬유상 나노 입자의 종횡비(aspect ratio)는 1 : 5 내지 1 : 2,000의 범위인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  5. 제 1 항에 있어서, 상기 친수성기를 가진 섬유상 나노 입자는 셀룰로우즈계 나노파이버 및 폴리비닐알콜(PVA)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  6. 제 5 항에 있어서, 상기 셀룰로우즈계 나노파이버 및 폴리비닐알콜(PVA)는 전체 히드록시기(-OH) 사이트 대비 5 내지 90% 범위에서 히드록시기가 존재하는 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  7. 제 5 항에 있어서, 상기 셀룰로우즈계 나노파이버는, 히드록시가 비치환된 셀룰로우즈 나노파이버, 아세틸기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버, 황산 셀룰로우즈 나노파이버, 인산 셀룰로우즈 나노파이버, 및 C1-C10 알킬기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  8. 제 7 항에 있어서, 상기 셀룰로우즈계 나노파이버는, 히드록시가 비치환된 셀룰로우즈 나노파이버, 아세틸기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버, 황산 셀룰로우즈 나노파이버, 인산 셀룰로우즈 나노파이버, 및 C2-C6 알킬기 또는 그것의 유도체로 치환된 셀룰로우즈 나노파이버로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  9. 제 1 항에 있어서, 상기 수소이온 전도성을 갖는 탄화수소계 양이온 교환수지는 측쇄에 설폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군으로부터 선택되는 하나 이상의 양이온 교환기를 갖는 고분자인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  10. 제 1 항에 있어서, 상기 탄화수소계 양이온 교환수지는 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  11. 제 10 항에 있어서, 상기 탄화수소계 고분자는 폴리에테르-에테르케톤계 고분자, 또는 폴리에테르술폰계 고분자, 또는 이들의 혼합물인 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  12. 제 1 항에 있어서, 상기 연료전지용 고분자 전해질 막을 사이에 두고 대향하여 적층된 2개 이상의 수소이온 전도성을 갖는 양이온 교환 수지 막을 더 포함하는 것을 특징으로 하는 연료전지용 고분자 전해질 막.
  13. 제 1 항 내지 제 12 항 중 어느 하나에 따른 연료전지용 고분자 전해질 막이 서로 대향하여 위치하는 애노드 전극과 캐소드 전극 사이에 위치하는 것을 특징으로 하는 연료전지용 막 전극 접합체.
  14. 제 13 항에 따른 연료전지용 막 전극 접합체 및 하나 이상의 분리판을 포함하며,
    연료와 산화제의 전기화학적 반응을 통하여 전기를 생성시키는 하나 이상의 전기 발생부;
    연료를 상기 전기 발생부로 공급하는 연료 공급부; 및
    산화제를 상기 전기 발생부로 공급하는 산화제 공급부;
    를 포함하는 것을 특징으로 하는 연료전지.
PCT/KR2010/009040 2009-12-18 2010-12-17 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지 WO2011074905A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012544392A JP5564577B2 (ja) 2009-12-18 2010-12-17 燃料電池のための高分子電解質膜、並びにそれを含む膜電極結合材料および燃料電池
EP10837901.7A EP2515368B1 (en) 2009-12-18 2010-12-17 Macromolecular electrolyte membrane for a fuel cell, and a membrane electrode binder material and a fuel cell comprising the same
CN201080057729.2A CN102668207B (zh) 2009-12-18 2010-12-17 用于燃料电池的聚合物电解质膜和包括该聚合物电解质膜的膜电极组件和燃料电池
US13/515,755 US9005841B2 (en) 2009-12-18 2010-12-17 Polymer electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090126591 2009-12-18
KR10-2009-0126591 2009-12-18
KR20100118698 2010-11-26
KR10-2010-0118698 2010-11-26

Publications (2)

Publication Number Publication Date
WO2011074905A2 true WO2011074905A2 (ko) 2011-06-23
WO2011074905A3 WO2011074905A3 (ko) 2011-11-17

Family

ID=44167889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009040 WO2011074905A2 (ko) 2009-12-18 2010-12-17 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지

Country Status (6)

Country Link
US (1) US9005841B2 (ko)
EP (1) EP2515368B1 (ko)
JP (1) JP5564577B2 (ko)
KR (1) KR101400094B1 (ko)
CN (1) CN102668207B (ko)
WO (1) WO2011074905A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193741A1 (en) * 2011-06-16 2014-07-10 Lg Chem, Ltd. Polymer electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242658B (zh) * 2013-05-24 2015-07-29 珠海市红旌发展有限公司 一种多孔膜及其制备方法
KR102098639B1 (ko) * 2013-09-30 2020-04-08 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
CN104530682B (zh) * 2015-01-16 2017-01-25 长春工业大学 纳米纤维素/磺化聚芳醚酮复合膜及其制备方法与应用
JPWO2018008500A1 (ja) * 2016-07-07 2019-04-18 リンテック株式会社 固体電解質および電池
JP6228707B1 (ja) * 2016-12-21 2017-11-08 日本製紙株式会社 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
CN108285643A (zh) * 2017-10-19 2018-07-17 天津工业大学 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法
JP7449527B2 (ja) * 2018-10-01 2024-03-14 第一工業製薬株式会社 蓄電デバイスの電極材料、電極、蓄電デバイス、電気機器、及び蓄電デバイスの電極材料の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599614A (en) 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5547551A (en) 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
CN1242112A (zh) * 1996-12-23 2000-01-19 纳幕尔杜邦公司 用于直接供给燃料的燃料电池的多层隔膜
US5981097A (en) * 1996-12-23 1999-11-09 E.I. Du Pont De Nemours And Company Multiple layer membranes for fuel cells employing direct feed fuels
EP1402590B1 (en) * 2001-07-05 2007-11-14 W.L. Gore & Associates, Inc. Ionomer for use in fuel cells and method of making same
CA2407202C (en) * 2001-10-11 2009-11-03 Honda Giken Kogyo Kabushiki Kaisha Electrode for polymer electrolyte fuel cell
FR2841255B1 (fr) 2002-06-21 2005-10-28 Inst Nat Polytech Grenoble Materiau a conduction ionique renforce, son utilisation dans les electrodes et les electrolytes
JP2004063430A (ja) * 2002-07-31 2004-02-26 Hitachi Cable Ltd 燃料電池用固体高分子電解質膜
US6630265B1 (en) * 2002-08-13 2003-10-07 Hoku Scientific, Inc. Composite electrolyte for fuel cells
KR100519011B1 (ko) 2003-03-12 2005-10-06 대주전자재료 주식회사 복합재료 고체 고분자 전해질막, 이의 제조방법 및 이를이용한 연료전지
JP4041422B2 (ja) * 2003-03-26 2008-01-30 ニッポン高度紙工業株式会社 固体電解質及び該固体電解質を使用した電気化学システム
WO2007120442A2 (en) * 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
DE102004009287A1 (de) 2004-02-26 2005-09-15 Institut Für Neue Materialien Gem. Gmbh Amphiphile Nanopartikel
JP2005285549A (ja) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology 固体高分子型燃料電池用の電解質膜
JP4845609B2 (ja) 2005-06-28 2011-12-28 三星エスディアイ株式会社 燃料電池用高分子電解質膜、これを含む燃料電池用膜−電極組立体、及びこれを含む燃料電池システム
DE602006008536D1 (de) * 2005-06-28 2009-10-01 Samsung Sdi Co Ltd Polymerelektrolytmembran und Membran-Elektroden-Einheit für ein Brennstoffzellensystem diese enthaltend
KR20070014679A (ko) 2005-07-29 2007-02-01 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막, 이의 제조방법 및 이를포함하는 연료 전지 시스템
KR101306230B1 (ko) 2006-09-07 2013-09-09 주식회사 동진쎄미켐 유기-무기 복합체 고분자 및 이를 이용한 고분자 전해질막
KR100800313B1 (ko) 2006-11-07 2008-02-01 한양대학교 산학협력단 설폰산기를 갖는 폴리실세스퀴옥산 나노입자를 함유한직접메탄올 연료전지용 유무기 하이브리드 분리막
JP4827781B2 (ja) * 2007-03-30 2011-11-30 Nok株式会社 高分子電解質膜
JP5300061B2 (ja) * 2008-03-11 2013-09-25 公立大学法人首都大学東京 ナノファイバー、電解質膜、膜電極接合体及び燃料電池
KR20100020049A (ko) * 2008-08-12 2010-02-22 (재) 전북테크노파크 탄소나노튜브 벌키페이퍼의 제조방법, 탄소나노튜브 벌키페이퍼 및 연료전지용 분리판
KR101070015B1 (ko) * 2009-02-27 2011-10-04 고려대학교 산학협력단 고분자 전해질 복합막 제조 방법 및 이를 이용하여 형성한 고분자 전해질 복합막을 포함하는 고분자 전해질 연료전지
JP2010211965A (ja) * 2009-03-06 2010-09-24 Sekisui Chem Co Ltd 多層型プロトン伝導性膜、膜−電極接合体及び固体高分子形燃料電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2515368A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193741A1 (en) * 2011-06-16 2014-07-10 Lg Chem, Ltd. Polymer electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell including the same
US9385388B2 (en) * 2011-06-16 2016-07-05 Lg Chem, Ltd. Polymer electrolyte membrane for fuel cell, membrane electrode assembly and fuel cell including the same

Also Published As

Publication number Publication date
KR101400094B1 (ko) 2014-05-28
JP5564577B2 (ja) 2014-07-30
CN102668207A (zh) 2012-09-12
WO2011074905A3 (ko) 2011-11-17
EP2515368B1 (en) 2018-09-05
JP2013514625A (ja) 2013-04-25
KR20110070807A (ko) 2011-06-24
EP2515368A4 (en) 2014-06-25
US9005841B2 (en) 2015-04-14
US20130230790A1 (en) 2013-09-05
EP2515368A2 (en) 2012-10-24
CN102668207B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2012173352A2 (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
WO2011074905A2 (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
KR100709190B1 (ko) 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템
KR20140046213A (ko) 연료전지용 복합 전해질 막, 그의 제조방법 및 그를 포함하는 막 전극 접합체와 연료전지
WO2017175891A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2009145568A2 (ko) 연료전지용 고분자 전해질막의 제조방법, 막 전극 접합체 및 고분자 전해질형 연료전지
CN1716669A (zh) 燃料电池的膜电极组件及包含它的燃料电池
KR100496936B1 (ko) 양성자 전도성 고분자 막, 이의 제조방법, 이를 이용한막-전극 어셈블리 및 이를 포함하는 연료전지
WO2016195313A1 (ko) 연료 전지용 캐소드 촉매층, 이의 제조 방법 및 이를 포함하는 연료 전지용 막-전극 어셈블리
KR101070015B1 (ko) 고분자 전해질 복합막 제조 방법 및 이를 이용하여 형성한 고분자 전해질 복합막을 포함하는 고분자 전해질 연료전지
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
KR100709191B1 (ko) 연료 전지용 막-전극 어셈블리, 고분자 전해질 막의 제조방법 및 연료 전지 시스템
KR20120139066A (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
KR20190026543A (ko) 고분자 전해질 연료전지용 수소이온 전도성 고분자 섬유 매트릭스 내장 전극 및 이를 포함하는 막-전극 접합체
WO2017175890A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2022085979A1 (ko) 막 전극 접합체 및 이를 포함하는 연료전지
WO2023096114A1 (ko) 다층 강화 복합 전해질막 및 이의 제조방법
WO2023101333A1 (ko) 연료전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지
WO2017090860A1 (ko) 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
KR100709219B1 (ko) 연료 전지용 고분자 전해질 막의 제조 방법
KR101315671B1 (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지
KR101425158B1 (ko) 세라믹 섬유의 수소이온전달 작용기 기능화로 섬유 강화 고분자 복합 전해질 막
KR101325033B1 (ko) 내구성이 향상된 연료전지용 전해질 막, 및 이를 포함하는 막 전극 접합체 및 연료전지
KR20120139058A (ko) 연료전지용 고분자 전해질 막, 이를 포함하는 막 전극 접합체 및 연료전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057729.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837901

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010837901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012544392

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13515755

Country of ref document: US