WO2011070849A1 - Alloy for hydrogen generation and method for producing same - Google Patents

Alloy for hydrogen generation and method for producing same Download PDF

Info

Publication number
WO2011070849A1
WO2011070849A1 PCT/JP2010/067911 JP2010067911W WO2011070849A1 WO 2011070849 A1 WO2011070849 A1 WO 2011070849A1 JP 2010067911 W JP2010067911 W JP 2010067911W WO 2011070849 A1 WO2011070849 A1 WO 2011070849A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
metal
hydrogen
aluminum
mass
Prior art date
Application number
PCT/JP2010/067911
Other languages
French (fr)
Japanese (ja)
Inventor
智典 梅崎
敦之 徳永
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2011070849A1 publication Critical patent/WO2011070849A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an alloy for hydrogen generation and a method for producing the same.
  • Conventional methods for generating hydrogen include (1) partial oxidation and reforming methods in which hydrocarbons such as natural gas and petroleum are reacted with oxygen, air or water vapor at high temperatures, and (2) thermal decomposition reaction with water and carbon. (3) A method of dissolving a metal in an acid, and the like are known. However, in the methods (1) and (2), CO and the like are by-produced together with hydrogen, so that high-purity hydrogen cannot be obtained. In the method (3), since an acid is required, handling is difficult. There are problems such as.
  • Patent Document 1 devised a method of generating hydrogen by applying a strong force with a compression spring in water and wearing aluminum with an electric motor to expose fresh aluminum metal. Has been.
  • Patent Document 2 a method has been devised in which water in an acidic or alkaline state is brought into contact with aluminum to extract hydrogen.
  • Patent Document 3 when an Al—Bi molten alloy is rapidly cooled at a cooling rate of 10,000 ° C./sec to produce a thin film, the Al—Bi alloy thin film has high activity with respect to water. It has been reported that it reacts continuously to generate hydrogen.
  • Patent Document 4 reports that a fired composite in which metal oxide particles or powder is baked on an aluminum surface in a vacuum or in an inert gas atmosphere has the ability to generate hydrogen gas by contact with water. ing.
  • Patent Document 5 when a metal material is obtained by pulverizing aluminum or an aluminum alloy in a mixed solvent containing water and an organic solvent, the metal material efficiently generates hydrogen by contact with water. Has been reported.
  • Patent Document 6 discloses a method in which an aluminum metal solid is polished to expose atomic aluminum, and indium or gallium is immersed in a liquid state to form an alloy for hydrogen generation.
  • Patent Document 7 discloses a method for producing an alloy for hydrogen generation by diffusing at least one of Al, Mg, and Zn into a large excess of low melting point alloy (gallium, indium, etc.).
  • Patent Document 8 includes a first metal containing one or more of Al, Zn, and Mg, and a second metal selected from Ga, Cd, In, Sn, Sb, Hg, Pb, and Bi.
  • Patent Document 1 The method of Patent Document 1 is a large-scale device as can be seen at a glance. Further, the fresh aluminum surface must always be exposed by the rotation of the motor, which is not necessarily advantageous in terms of energy. Furthermore, tap water cannot be applied as water, and there is a restriction that pure water must be used.
  • Patent Documents 3 to 8 are useful as a method for obtaining hydrogen by reacting aluminum with neutral water, but the alloy production process which is the premise thereof is complicated.
  • Patent Document 3 an Al—Bi molten alloy is rapidly cooled at a cooling rate of 10000 ° C./sec or more to produce a hydrogen generating alloy with good performance.
  • a large-scale apparatus is used. is required.
  • the amount of alloy obtained is small and the handling is somewhat troublesome although the apparatus is large.
  • Patent Document 4 requires a complicated process of baking a metal oxide on the aluminum surface in a vacuum or in an inert gas atmosphere.
  • Patent Document 5 requires a special process in which aluminum is finely pulverized in a “water / organic solvent” mixed solvent.
  • Patent Document 6 is a method in which a solid aluminum substrate is partially polished to expose atomic aluminum, which is preferably immersed in molten metal under reduced pressure conditions to form an alloy, which is complicated. As the production scale increases, it takes a long time to produce the alloy.
  • Patent Document 7 requires a large excess of expensive indium and gallium, and a small amount of aluminum, which is problematic in terms of production efficiency.
  • Patent Document 8 is an excellent method for easily producing an alloy for hydrogen generation by simply using a molten alloy of a metal such as aluminum having a specific composition as a raw material, and bringing it into contact with water and cooling it. .
  • Tap water is sufficient as water to be used, and the obtained alloy for generating hydrogen can also be stored in the air.
  • the alloy produced in this way can start a hydrogen generation reaction simply by contacting with water, and can stably obtain hydrogen gas over a long period of time.
  • competition of reaction (hydrogen generation) between a metal (aluminum or the like) and water is inevitable during the process of cooling the molten alloy in contact with water.
  • an object of the present invention is to provide a hydrogen generating alloy that can generate hydrogen gas safely, highly efficiently, and stably, without requiring special processing such as miniaturization, and a method for producing the same.
  • a first metal containing aluminum a second metal containing at least one metal selected from zinc, magnesium or silicon, and a melting point of 230 ° C. or lower.
  • Adopting a “ternary alloy” containing a third metal containing a low melting point metal which is heated to a temperature of 660 ° C. or higher to obtain a molten alloy containing the first to third metals.
  • a hydrogen-producing alloy an alloy that generates hydrogen by reaction with water
  • a hydrogen generation capacity can be obtained simply and simply by bringing a molten alloy into contact with a “solid material” and cooling and solidifying it.
  • a second step of cooling to obtain a solidified alloy, and a hydrogen generating alloy made of the solidified alloy is provided.
  • a third metal containing a first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a low melting metal having a melting point of 230 ° C. or lower.
  • a method for producing a hydrogen generating alloy comprising the solidified alloy, the method comprising: obtaining a second step.
  • the present invention provides a hydrogen generation method including the step of bringing the above-mentioned hydrogen generation alloy into contact with water.
  • the hydrogen generating alloy of the present invention contains the second metal in an amount of 0.1% by mass to 100% by mass and the third metal in an amount of 0.1% by mass to 100% by mass based on the first metal. It is preferable to do.
  • the low melting point metal of the third metal is at least one of tin, bismuth, indium, gallium, lead, cadmium, and antimony.
  • the solid material in the second step, it is preferable that the solid material is in contact with the molten alloy in contact with the coolant and cooled by the coolant.
  • the hydrogen generating alloy of the present invention is a ternary alloy that essentially includes the above-mentioned “first metal”, “second metal”, and “third metal”.
  • a feature of the present invention is that the ternary alloy is heated to the melting point of aluminum (at 660 ° C. under normal pressure) to be melted and then brought into contact with the “solid material” to be cooled. Regardless of the contact between the “molten alloy” and the “solid material”, the hydrogen generation ability of the solidified alloy obtained by cooling in the air or by directly cooling with liquid by pouring liquid nitrogen Is low (see comparative example).
  • the solidified alloy obtained by cooling by contact between the “molten alloy” and the “solid material” has a dramatic increase in hydrogen generation ability (specifically, utilization efficiency of aluminum).
  • a ternary alloy including “first metal”, “second metal”, and “third metal” must be used. Even if a molten alloy lacking “second metal” or “third metal” is subjected to the same “cooling by contact with a solid material”, a solidified alloy having sufficient hydrogen generation ability cannot be obtained. .
  • FIG. 1 is an Al—Si phase diagram (quoted from “Silicon and its binary systems”, A.S.Berezhnoi, Consultants Bureau (1960), P.66).
  • FIG. 2 is a schematic diagram for explaining a method of cooling a molten alloy by bringing it into contact with a flat solid material.
  • FIG. 3 is a schematic view for explaining a method of cooling a molten alloy by bringing it into contact with a twin-roll solid material.
  • FIG. 4 shows the result of XRD measurement after collecting used alloy remaining in water after the hydrogen generation reaction of Example 1 was completed.
  • FIG. 5 shows the result of SEM observation of the solidified alloy prepared in Example 1.
  • FIG. 6 shows the result of composition analysis by EDX between the line segments AB shown in FIG.
  • FIG. 7 shows the result of SEM observation of the solidified alloy prepared in Comparative Example 3.
  • FIG. 8 shows the result of the composition analysis by EDX between the line segment AB shown in FIG.
  • the hydrogen generating alloy of the present invention comprises three different first, second, and third metals (sometimes referred to as “metal A”, “metal B”, and “metal C”, respectively). It contains “ABC” ternary alloy. “Metal A” contains aluminum, “Metal B” is a metal containing at least one metal selected from zinc, magnesium or silicon, and “Metal C” is a low melting point metal having a melting point of 230 ° C. or less. It is a metal containing.
  • metal A aluminum is preferably used alone, but may be used in combination with other metals.
  • metal B any of the above-mentioned three kinds of metals can be suitably employed, but zinc is one of the particularly preferable ones because zinc exhibits a particularly high effect even in a relatively small amount. Any of the above three types of metals may be used in combination with other metals.
  • any low melting point metal or alloy having a melting point lower than that of tin (230 ° C.) can be used.
  • any one or more metals of tin, bismuth, indium, gallium, lead, cadmium, and antimony or alloys made of two or more types are preferable.
  • tin is particularly inexpensive, and it is particularly preferable that “metal C” contains tin because an alloy for generating hydrogen with excellent performance can be produced even in a small amount.
  • “Sn—Bi—In” alloy is an example of such a suitable “metal C”.
  • “Sn is 10 to 25% by mass
  • Bi is 40 to 70% by mass
  • In is 15 to 40% by mass” is one of the preferable ones.
  • metal A aluminum
  • metal B zinc, magnesium
  • metal C low melting point
  • metal C is an expensive metal, and once it reacts with water and enters a highly oxidized state, it is burdensome to recover and reuse.
  • metal A aluminum
  • metal B metal C
  • metal C low melting point metal
  • Metal C has a melting point of 230 ° C. or lower, and particularly preferably an alloy having a melting point of 100 ° C. or lower (see Examples).
  • the metal C is easily converted into a liquid by performing relatively little heating, and can be easily separated from other metals by physical separation means such as filtration and decantation.
  • the separated metal C can be mixed with the metal A and the metal B as they are, and can be reused in the production of the next batch of hydrogen generating alloy.
  • the most expensive metal C can be recycled many times, and the metal A (aluminum) can be selectively consumed for hydrogen generation.
  • the temperature of the “water that is lower than the boiling state” is approximately 10 ° C. or more and 90 ° C. or less. If the water temperature is low, the hydrogen generation rate is low, and the hydrogen generation rate increases as the water temperature increases. Therefore, the temperature may be properly used depending on the application, but is preferably 20 to 80 ° C, more preferably 50 to 70 ° C. It is.
  • the hydrogen generating alloy of the present invention and “water that is lower in temperature than the boiling state” are used to perform a hydrogen generating reaction, selectively consuming metal A (aluminum), and other metals (particularly metal)
  • metal A aluminum
  • other metals particularly metal
  • the inventors have found that a satisfactory hydrogen generation capacity can be obtained with a specific composition of metal A and metal B and metal C which are relatively small. .
  • the content of the metal B is preferably 0.1% by mass or more and 100% by mass or less based on the metal A (that is, the same mass or less as the metal A). Furthermore, it was found that even if the content of metal B exceeds 10% by mass based on metal A, it is difficult to expect further increase in the hydrogen generation rate. Considering these, it is particularly preferable that the content of the metal B is 0.1% by mass or more and 10% by mass or less based on the metal A.
  • the hydrogen generation rate tends to increase rapidly when the content is 0.1% by mass or more with respect to the metal A. Is recognized.
  • the low melting point metal itself does not participate in the direct reaction, so the amount of hydrogen generated per mass of the hydrogen generating alloy is reduced.
  • the amount is preferably 0.1% by mass or more and 100% by mass or less with respect to the metal A, and more preferably 10% by mass or more and 50% by mass or less considering the hydrogen generation efficiency per mass of the hydrogen generating alloy.
  • water having a temperature lower than that in the boiling state (usually 10 to 90 ° C., preferably 20 to 80 ° C., particularly preferably 50 to 70 ° C.)” is used, and Using an alloy containing 0.1% by mass or more and 10% by mass or less of metal B and 10% by mass or more and 50% by mass or less of metal C on the basis of metal A is high hydrogen generation ability (of aluminum Utilization rate) and a relatively expensive metal C can be easily recycled, which is one of the preferred embodiments of the present invention.
  • the aluminum component in the alloy selectively reacts with water to form aluminum hydroxide, while the other components remain in the system as a zero-valent metal.
  • the hydrogen generating alloy of the present invention is produced by the following two steps, and the method for producing the hydrogen generating alloy of the present invention includes the following two steps.
  • 1st step 1st metal (metal A) containing aluminum, 2nd metal (metal B) containing at least 1 sort (s) of metal chosen from zinc, magnesium, or silicon, and melting
  • fusing point are 230 degrees C or less Heating a third metal (metal C) containing a low melting point metal to a temperature not lower than the melting point of aluminum to obtain a molten alloy containing the first to third metals (metals A to C);
  • the hydrogen generating method of the present invention includes a third step of bringing the hydrogen generating alloy produced by the first and second steps into contact with water. It is also possible to recover at least the metal C by performing a recovery step after the end of the third step.
  • the “first step” is a process in which the first, second, and third metals are introduced into a heat-resistant container and heated to a melting point of aluminum or higher to melt.
  • the respective metals may be heated separately and mixed after melting, or may be melted after premixing. Either order does not affect the hydrogen generating ability of the final hydrogen generating alloy, so it is usually convenient and preferable to melt after premixing.
  • Air can be preferably used as the atmosphere during the heat treatment.
  • An inert gas such as nitrogen
  • An inert gas can be used, but such a special atmosphere need not be set.
  • the heating temperature must be higher than the melting point of aluminum (660 ° C). It is desirable to continue heating until the aluminum is fully melted. In the subsequent “second step”, it is important to bring the molten alloy obtained in the “first step” into contact with the solid material while maintaining the molten state. It is preferable to heat to above ° C.
  • the melting point of metal C is 230 ° C. or less, and among metals B, zinc has a melting point of 420 ° C. and magnesium has a melting point of 650 ° C., both of which are lower than aluminum. Therefore, by heating to 660 ° C. or higher, the “ABC alloy” becomes liquid as a whole.
  • the melting point of a single substance is 1410 ° C., which is higher than the melting point of aluminum, but as shown in FIG. 1, aluminum and silicon form a eutectic mixture. Therefore, even when silicon is used as the metal B, if the silicon component is approximately 25% by mass or less based on the metal A, the “ABC alloy” can be obtained by heating to 660 ° C. or higher.
  • the heating temperature may be a liquid of silicon because the solidification process in the subsequent “second step” may cause inconvenience in terms of formability. It is desirable that the temperature be higher than the phase line.
  • the upper limit of the heating temperature is not particularly limited, but since there is no merit even if the temperature is too high, it is preferably 1300 ° C. or less, more preferably 1100 ° C. or less from the viewpoint of the capacity of the heating equipment. .
  • the boiling point of zinc (907 ° C.) or less is preferable because volatilization of the zinc component can be suppressed and the load on the equipment can be reduced.
  • the molten metal obtained by heating in the first step becomes a homogeneous molten alloy if the respective components are sufficiently mixed. Therefore, the molten metal can be subjected to the subsequent second step after being made homogeneous by stirring or the like. preferable.
  • the “second step” is a process for obtaining a solidified alloy by bringing the molten alloy obtained in the “first step” into contact with a solid material while maintaining the molten state and cooling it.
  • the molten alloy obtained by the “first step” is immediately subjected to the “second step” (before being cooled). It is preferable to cool the molten alloy by quickly spreading the cooling heat of the solid material to the molten alloy.
  • the molten alloy is allowed to cool in the air, for example, or solidified by a method of applying liquid nitrogen even at a low temperature, the original hydrogen generating ability cannot be obtained. It is assumed that the cooling effect is not sufficient in the alloy, and the second and third components are phase-separated during solidification.
  • this step for example, since a cooling rate as high as that in Patent Document 3 is not required, it is not necessary to provide a large cooling mechanism or to extremely thin the solidified alloy.
  • the contact method with the solid material includes a method in which the molten metal is brought into contact with the solid material and a load is applied to the solid material.
  • an alloy for hydrogen generation having a good hydrogen generation ability can be obtained by bringing a flat plate made of a solid material into contact with a molten metal, compressing it, and solidifying it.
  • the molten metal is poured out of the container containing the molten metal and compressed by a twin roll (solid material) to solidify the molten metal.
  • a method is mentioned as desirable.
  • the temperature of the solid material is usually 100 ° C. or lower, preferably 50 ° C. or lower, and more preferably 25 ° C. or lower.
  • the heat of the molten alloy is transferred to the solid material.
  • the temperature of the solid material stably keeps the temperature range. For example, in the case of a solid material brought into contact with “ice water” described later, it can be stably maintained at around 0 ° C., which is particularly preferable.
  • a method of bringing the solid material into contact with a refrigerant is effective.
  • the opposite side of “the surface of the solid material in contact with the molten alloy” is contacted with water, ice water, dry ice, acetone contacted with dry ice, cold ethylene glycol, cold brine, liquid nitrogen, or the like.
  • the solid material can always be kept at a low temperature.
  • the twin roll maintained at a low temperature is always melted by circulating the refrigerant continuously or intermittently inside the twin roll (that is, the side opposite to the surface in contact with the molten alloy). It is possible to contact the metal.
  • an alloy for generating hydrogen with excellent performance can be produced stably.
  • the type of refrigerant to be used can be appropriately determined according to the knowledge of those skilled in the art according to the characteristics of the apparatus.
  • the temperature of the solid material is approximately ⁇ 196 ° C. (liquid nitrogen temperature) or higher and 100 ° C. or lower.
  • the thickness of the molten alloy after applying a load is preferably within 10 mm, and more preferably within 5 mm in order to allow the cooling heat to rapidly penetrate into the molten alloy.
  • the lower limit of the thickness is not particularly limited, but even if a very large load is applied and the thickness is reduced, it is difficult to further improve the hydrogen generation capability. More preferred.
  • a plurality of twin rolls can be set in order to enhance the cooling effect.
  • cooling can also be achieved by lowering the rotational speed of the twin rolls, lowering the temperature of the refrigerant circulating in the interior, or increasing the load applied to the molten alloy from the twin rolls ("d" in the figure is reduced accordingly). It is possible to increase the effect.
  • each device may be combined as appropriate.
  • the material of the solid material is not particularly limited as long as it has a melting point equal to or higher than the temperature of the molten metal (heating temperature in the first step), but 10 W / mK for rapidly solidifying the molten metal. It is desirable to use one having the above thermal conductivity.
  • a metal material is preferable from the viewpoint of thermal conductivity, and examples thereof include iron, copper, and stainless steel. Among them, stainless steel that is chemically stable and durable even at high temperatures is particularly preferable.
  • the atmosphere during cooling may be in the air as in the first step.
  • the hydrogen generating alloy obtained by the above method can be stably stored without impairing the hydrogen generating ability in dry air.
  • it when stored in a humid atmosphere for a long period of time, it may react with moisture and generate hydrogen gas, which may reduce the amount of hydrogen generated per alloy mass in the subsequent hydrogen generation process. Therefore, it is not preferable to store in humid air for a long time.
  • the “third step” is a step of generating hydrogen gas by reacting the hydrogen generating alloy produced in the second step with water.
  • the “third step” is a step of generating hydrogen gas by reacting the hydrogen generating alloy produced in the second step with water.
  • the temperature of water to be contacted may be any temperature of 0 ° C. or more and 100 ° C. or less, but as described above, it is usually 10 to 90 ° C., preferably 20 to 80 ° C., particularly preferably 50 to 70 ° C. It is. In particular, it is preferable to employ a temperature of 50 to 70 ° C. because hydrogen gas can be obtained at a high rate and the reaction of metals B and C can be stably suppressed.
  • metal A (aluminum) shows good reactivity with water, whereas metal B and metal C do not react substantially with water and remain zero-valent metal.
  • the In the XRD chart of the recovered alloy after completion of the third step only the peak attributed to aluminum hydroxide was detected as the metal oxide, and peaks indicating oxides or hydroxides were observed for the other metal components. I could't. (See FIG. 4).
  • the “third step” is performed under a condition in which only the metal A (aluminum) is selectively reacted, particularly, the expensive “metal C” is recovered after the hydrogen generation step is completed. It is particularly preferable because it can be reused without reduction treatment.
  • the amount of water to be added it may be equal to or more than the reaction equivalent with respect to the aluminum content in the hydrogen generating alloy. Assuming that this alloy is a hydrogen source for fuel cells, the higher the total amount of hydrogen generated from the total mass of the alloy and water, the better. It is preferably 1 to 5 reaction equivalents. When the amount of water is around one reaction equivalent, the capacity of the water is relatively small. Therefore, in order to control the temperature of the water with respect to the heat of reaction, the water is appropriately cooled or the rate of water addition is adjusted. It may be preferable to do this.
  • the solidified alloy lump obtained in the “second step (cooling process)” can be used as it is.
  • Recovery step refers to a process of recovering an alloy remaining in water after the completion of the “third step”.
  • metals B and C in addition to metal A (aluminum), are also recovered because at least part of them reacts with water. All of the metals A, B, and C thus converted have been converted into hydroxides and the like, and a reduction treatment is required for use in the preparation of the next batch of alloys.
  • the metals B and C remain as unreacted zero-valent metals as described above.
  • the zero-valent metal can be separated from the reaction product aluminum hydroxide by using a difference in melting point.
  • the metal C is an alloy having a boiling point of 230 ° C. or less, the metal C becomes a liquid only by performing a relatively slight heating.
  • the metal C that has become liquid can be easily recovered in an unreacted state by subjecting it to conventional means such as filtration or decantation, and can be reused for the preparation of alloys for the next batch. For this reason, when the “recovery step” is performed, the object of the present invention can be achieved more preferably.
  • the use of water at 10 to 90 ° C. as the water in the third step allows substantially only aluminum to selectively react with water in the third step, and After the step 3 is completed, the used metal solid remaining in the water is recovered, and the step of recovering at least the metal C from the metal solid allows the expensive metal C to be reused repeatedly.
  • the step of recovering at least the metal C from the metal solid allows the expensive metal C to be reused repeatedly.
  • using an alloy containing 0.1 to 10% by mass of metal B and 10 to 50% by mass of metal C based on metal A it is more preferable in that a high hydrogen generation ability (availability of aluminum) can be achieved.
  • Example 1 To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate cooled with liquid nitrogen and cooled (see FIG. 2). By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 49.1 cc / min. (A value obtained by dividing the total hydrogen generation amount for 5 minutes from the start by the reaction time (5 minutes), converted to 0 ° C. and 1 atm. The same applies hereinafter).
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.77 NL (NL is the number of liters converted to 0 ° C. and 1 atm. The same shall apply hereinafter). It was.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 93%.
  • the amount of hydrogen generated per mass of the alloy was 0.81 NL.
  • Example 2 0.01 g of zinc was mixed with 5.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%, Bi
  • the hydrogen generation rate 5 minutes after the start of the reaction was 10.1 cc / min. Per 1 g of aluminum. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.29 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen gas generated was 85%.
  • the amount of hydrogen generated per mass of the alloy was 0.75 NL.
  • the metal B (zinc) is a small amount of 0.2% by mass of the metal A (aluminum). For this reason, the utilization efficiency of aluminum is slightly lower than that of Example 1, but still maintains a high level of 85%.
  • Example 3 To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a 2 inch diameter, 1 cm thick stainless steel plate cooled with 100 g of ice water (0 ° C.) and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 40.8 cc / min.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.60 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen gas generated was 90%.
  • the amount of hydrogen generated per mass of the alloy was 0.79 NL.
  • the temperature of the solid material is 0 ° C., which is higher than other embodiments (cooling with liquid nitrogen).
  • the utilization efficiency of 90% is maintained, which can be said to be one of the particularly preferable embodiments from the viewpoint of industrial implementation.
  • Example 4 To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a 2 inch diameter, 1 cm thick copper plate cooled by liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%, Bi: 57.5 mass%, In: 2
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 51.3 cc / min. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.84 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 94%.
  • the amount of hydrogen generated per mass of the alloy was 0.82 NL.
  • a copper plate is used in place of stainless steel as a cooling plate. The obtained aluminum utilization efficiency is as high as that in Example 1, and it is understood that the material of the solid material for cooling does not affect the performance of the hydrogen generating alloy.
  • Example 5 To 5.0 g of aluminum, 0.1 g of magnesium was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%,
  • the hydrogen generation rate 5 minutes after the start of the reaction was 33.2 cc / min. Per 1 g of aluminum. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.21 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 84%.
  • the amount of hydrogen generated per mass of the alloy was 0.73 NL.
  • the metal B is changed from zinc to magnesium, but the utilization efficiency of aluminum is maintained at a high level of 84%.
  • Example 6 5.0 g of aluminum was mixed with 0.1 g of silicon in a graphite crucible and melted in an electric furnace heated to 1000 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%, Bi:
  • the hydrogen generation rate 5 minutes after the start of the reaction was 19.8 cc / min. Per 1 g of aluminum. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 4.75 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generated was 76%.
  • the amount of hydrogen generated per mass of the alloy was 0.67 NL.
  • the metal B was used in place of zinc instead of silicon, but the utilization efficiency of aluminum is still 76%, which is still at a high level.
  • Example 7 2.0 g of zinc was mixed with 5.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%, Bi:
  • the hydrogen generation rate 5 minutes after the start of the reaction was 47.1 cc / min. Per 1 g of aluminum. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.74 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 92%.
  • the amount of hydrogen generated per mass of the alloy was 0.64 NL.
  • a relatively large amount of metal B (zinc), 40% by mass with respect to metal A (aluminum) is used.
  • the utilization factor of aluminum was 92%, which was the same value as in Example 1.
  • the amount of hydrogen generated per mass of the alloy is reduced by the amount of metal B.
  • Example 8 To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 5.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
  • Sn—Bi—In based low melting point alloy Sn: 17.3 mass%
  • the hydrogen generation rate was 49.1 cc / min. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.80 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 93%.
  • the amount of hydrogen generated per mass of the alloy was 0.57 NL.
  • a relatively large amount of metal B (zinc), which is 100% by mass with respect to metal A (aluminum) is used.
  • the utilization factor of aluminum was 93%, which was the same value as in Example 1.
  • the amount of hydrogen generated per mass of the alloy is reduced by the amount of metal C.
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 0.035 cc / min. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.50 NL.
  • the utilization efficiency of aluminum calculated from the hydrogen generation amount was 8%.
  • the amount of hydrogen generated per mass of the alloy was 0.07 NL.
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 0.02 cc / min. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.29 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 5%.
  • the amount of hydrogen generated per mass of the alloy was 0.04 NL.
  • the hydrogen generation rate after 5 minutes from the start of the reaction was 1.1 cc / min. Met.
  • the amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.54 NL.
  • the utilization efficiency of aluminum calculated from the amount of hydrogen generation was 9%.
  • the amount of hydrogen generated per mass of the alloy was 0.08 NL.
  • the hydrogen generation performance of the hydrogen generation alloy produced by cooling with liquid nitrogen was poor.
  • the medium to be contacted was liquid nitrogen at -196 ° C., sufficient hydrogen generation ability was not obtained because in the case of liquid nitrogen, a film of nitrogen gas was formed between the molten metal surface and liquid nitrogen. It is assumed that this is because of insufficient heat transfer.
  • the hydrogen generation rate was 52.1 cc / min. Met.
  • the utilization efficiency of aluminum by the hydrogen generation reaction 48 hours after the start of the reaction was 93%, and the hydrogen generation amount was 4.63 NL.
  • the alloy produced in this reference example shows excellent hydrogen generation performance (aluminum utilization efficiency of 93%).
  • a small amount of hydrogen was observed during the cooling operation with water. For this reason, it has been necessary to quickly pull out the cooled and solidified alloy from the water so that the generation of hydrogen does not proceed as much as possible.
  • FIG. 5 The SEM observation result of the solidified alloy obtained by the 2nd step of Example 1, and the composition analysis result by EDX are shown in FIG. 5, FIG.
  • FIGS. 7 and 8 show the SEM observation results of the solidified alloy obtained by the method of Comparative Example 3 and the composition analysis results by EDX.
  • 5 and 6 aluminum and a low-melting-point metal component are dispersed in a micron-order region, whereas in FIGS. 7 and 8, no low-melting-point metal component is observed. Only the dissolved zinc component was observed. From the above, it can be seen that in the solidified alloy cooled in a nitrogen atmosphere, the aluminum phase and the low melting point metal phase are phase separated in a wide range. The low melting point metal not detected in FIG. 8 is presumed to be deposited as a low melting point metal phase outside the observation region.
  • Hydrogen obtained by this method is extremely pure and does not contain impurity gas such as carbon monoxide.
  • the present invention can be used for an internal combustion engine such as a hydrogen engine that operates using a combustion reaction with oxygen. Therefore, the fuel cell using the hydrogen gas obtained by the present invention is used as a power source for mobile portable equipment, and the internal combustion engine using the hydrogen gas obtained by the present invention is used as a vehicle drive source or a generator power source. It becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Disclosed is an alloy for hydrogen generation, which is produced by a first step wherein a first metal containing aluminum, a second metal containing at least one metal selected from among zinc, magnesium and silicon, and a third metal containing a low melting point metal having a melting point of not more than 230°C are heated to a temperature that is not less than the melting point of aluminum, thereby obtaining a molten alloy that contains the first to third metals, and a second step wherein the molten alloy is brought into contact with a solid material, thereby being cooled and solidified. The alloy for hydrogen generation is easy to handle, and generates hydrogen by merely being brought into contact with water and continues to stably generate a hydrogen gas over a long period of time, thereby achieving improved hydrogen generation efficiency.

Description

水素発生用合金とその製造方法Hydrogen generating alloy and method for producing the same
 本発明は、水素発生用合金とその製造方法に関する。 The present invention relates to an alloy for hydrogen generation and a method for producing the same.
 従来、水素を発生させる方法として、(1)天然ガスや石油等の炭化水素を酸素、空気または水蒸気などと高温で反応させる部分酸化法や改質法、(2)水と炭素による熱分解反応を用いる方法、(3)金属を酸に溶解する方法、などが知られている。しかしながら、(1)および(2)の方法では、水素とともにCO等が副生するため、高純度の水素が得られない、(3)の方法では酸を必要とするため取り扱いに難点がある、等の問題がある。 Conventional methods for generating hydrogen include (1) partial oxidation and reforming methods in which hydrocarbons such as natural gas and petroleum are reacted with oxygen, air or water vapor at high temperatures, and (2) thermal decomposition reaction with water and carbon. (3) A method of dissolving a metal in an acid, and the like are known. However, in the methods (1) and (2), CO and the like are by-produced together with hydrogen, so that high-purity hydrogen cannot be obtained. In the method (3), since an acid is required, handling is difficult. There are problems such as.
 上記以外の方法として近年、水を水素源とし、これをアルミニウムと反応させて水素を得る方法が報告されている。アルミニウムは軽量であり、空気中で発火したり、さびたりすることがなく、安定に貯蔵できる。なおかつ、中性の水と反応して水素ガスを発生するという利点がある。しかしアルミニウムは空気中で表面に不動態膜を形成する性質を有するため、常温ではそのまま水と反応し難いという問題がある。 In recent years, a method other than the above has been reported in which water is used as a hydrogen source and this is reacted with aluminum to obtain hydrogen. Aluminum is lightweight and can be stored stably without igniting or rusting in the air. In addition, there is an advantage that hydrogen gas is generated by reacting with neutral water. However, since aluminum has a property of forming a passive film on the surface in air, there is a problem that it hardly reacts with water at room temperature.
 このような問題を克服するため、特許文献1では、水中にて圧縮バネにて強い力をかけつつ、電動モーターでアルミニウムを磨耗させ、新鮮なアルミニウム金属を露出させて水素を発生する方法が考案されている。 In order to overcome such problems, Patent Document 1 devised a method of generating hydrogen by applying a strong force with a compression spring in water and wearing aluminum with an electric motor to expose fresh aluminum metal. Has been.
 また特許文献2にあるように、酸性またはアルカリ性の状態にした水をアルミニウムに接触し、水素を取り出す方法も考案されている。 Also, as disclosed in Patent Document 2, a method has been devised in which water in an acidic or alkaline state is brought into contact with aluminum to extract hydrogen.
 これに対し、アルミニウムに何らかの化学的・物理的処理を施し、それによって、アルミニウム本来の安定な性質を保持しながら、アルミニウムを水に対し反応活性にする試みが報告されている。 In contrast, it has been reported that aluminum is subjected to some chemical / physical treatment, thereby making aluminum reactive with water while maintaining the original stable properties of aluminum.
 例えば特許文献3には、Al-Biの溶融合金を10000℃/secの冷却速度で急速冷却して薄膜を作製すると、該Al-Bi合金薄膜は、水に対して高い活性を有し、水と継続して反応し水素を発生することが報告されている。 For example, in Patent Document 3, when an Al—Bi molten alloy is rapidly cooled at a cooling rate of 10,000 ° C./sec to produce a thin film, the Al—Bi alloy thin film has high activity with respect to water. It has been reported that it reacts continuously to generate hydrogen.
 特許文献4には、アルミニウム表面に、真空中もしくは不活性ガス雰囲気下で金属酸化物粒子または粉末を焼き付けた焼成複合体が、水との接触により水素ガスを発生させる性能を有することが報告されている。 Patent Document 4 reports that a fired composite in which metal oxide particles or powder is baked on an aluminum surface in a vacuum or in an inert gas atmosphere has the ability to generate hydrogen gas by contact with water. ing.
 特許文献5には、水と有機溶媒とを含む混合溶媒中で、アルミニウム又はアルミニウム合金を粉砕することで金属材料を得たところ、該金属材料は水との接触によって効率よく水素を発生することが報告されている。 In Patent Document 5, when a metal material is obtained by pulverizing aluminum or an aluminum alloy in a mixed solvent containing water and an organic solvent, the metal material efficiently generates hydrogen by contact with water. Has been reported.
 特許文献6には、アルミニウム金属の固体を磨いて原子状アルミニウムを露出させ、そこにインジウムまたはガリウムを液状で浸して水素発生用合金を作るという方法が開示されている。 Patent Document 6 discloses a method in which an aluminum metal solid is polished to expose atomic aluminum, and indium or gallium is immersed in a liquid state to form an alloy for hydrogen generation.
 特許文献7には大過剰の低融点合金(ガリウム、インジウム等)にAl、Mg、Znの少なくとも一種を拡散させ、水素発生用合金を作る方法が開示されている。 Patent Document 7 discloses a method for producing an alloy for hydrogen generation by diffusing at least one of Al, Mg, and Zn into a large excess of low melting point alloy (gallium, indium, etc.).
 さらに特許文献8には、Al、Zn、Mgのうちの一種類以上を含む第1の金属と、Ga、Cd、In、Sn、Sb、Hg、Pb、Biから選ばれる第2の金属とを、前記第1の金属の融点以上の温度にて溶融して溶融合金を得る第1のステップと、前記第1のステップによって形成された前記溶融合金を水に接触させて、冷却固化すると共に、表面に前記第1の金属に由来する水酸化物を形成した固化合金を得る第2のステップと、によって、第1の金属、第2の金属とも水と反応し水素を発生する水素発生用合金が得られることが開示されている。 Further, Patent Document 8 includes a first metal containing one or more of Al, Zn, and Mg, and a second metal selected from Ga, Cd, In, Sn, Sb, Hg, Pb, and Bi. A first step of obtaining a molten alloy by melting at a temperature equal to or higher than the melting point of the first metal, contacting the molten alloy formed by the first step with water, cooling and solidifying, and A second step of obtaining a solidified alloy having a hydroxide derived from the first metal formed on the surface thereof, and the first metal and the second metal both react with water to generate hydrogen. Is disclosed.
特開2004-123517号公報JP 2004-123517 A 特開2005-200283号公報JP 2005-200823 A 特公平7-62198号公報Japanese Patent Publication No. 7-62198 特開2005-162552号公報JP 2005-162552 A 特開2007-254256号公報JP 2007-254256 A 特開2002-161325号公報JP 2002-161325 A 特開2003-12301号公報Japanese Patent Laid-Open No. 2003-12301 国際公開2008/004428号パンフレットInternational Publication 2008/004428 Pamphlet
 上述の先行技術はそれぞれ有用な方法であるが、次のような課題が存在する。 The above prior arts are each a useful method, but the following problems exist.
 特許文献1の方法は、一見して分かる通り、装置が大掛かりである。また、モーターの回転によって常に新鮮なアルミニウム表面を露出させ続けなくてはならず、エネルギー的にも必ずしも有利でない。さらに、水として、水道水は適用できず、純水を用いなければならないという制約もある。 The method of Patent Document 1 is a large-scale device as can be seen at a glance. Further, the fresh aluminum surface must always be exposed by the rotation of the motor, which is not necessarily advantageous in terms of energy. Furthermore, tap water cannot be applied as water, and there is a restriction that pure water must be used.
 特許文献2の方法では、継続的に水素を得るためには、強酸もしくは強塩基性の水溶液が大量に必要になる。すなわち、中性の水と穏和な条件で反応するという、アルミニウムの利点を十分に活かすことができない。 In the method of Patent Document 2, in order to obtain hydrogen continuously, a large amount of a strong acid or strongly basic aqueous solution is required. That is, the advantage of aluminum that it reacts with neutral water under mild conditions cannot be fully utilized.
 特許文献3~8の方法は、アルミニウムを中性の水と反応させ、水素を得る方法として有用であるが、その前提となる合金製造プロセスが煩雑である。 The methods of Patent Documents 3 to 8 are useful as a method for obtaining hydrogen by reacting aluminum with neutral water, but the alloy production process which is the premise thereof is complicated.
 また、特許文献3では、Al-Biの溶融合金を10000℃/sec以上の冷却速度で急速冷却することにより、良好な性能の水素発生用合金を製造しているが、そのためには大掛かりな装置が必要である。しかも、得られるのは薄膜であるから、装置が大掛かりな割りに、得られる合金の量は少なく、取り扱いもやや面倒である。 In Patent Document 3, an Al—Bi molten alloy is rapidly cooled at a cooling rate of 10000 ° C./sec or more to produce a hydrogen generating alloy with good performance. For this purpose, a large-scale apparatus is used. is required. Moreover, since a thin film can be obtained, the amount of alloy obtained is small and the handling is somewhat troublesome although the apparatus is large.
 特許文献4の方法では、真空中もしくは不活性ガス雰囲気下で、金属酸化物をアルミ表面に焼き付けるという煩雑な処理を必要とする。 The method of Patent Document 4 requires a complicated process of baking a metal oxide on the aluminum surface in a vacuum or in an inert gas atmosphere.
 特許文献5の方法は、「水/有機溶媒」混合溶媒中でアルミニウムを微細に粉砕するという、特殊な工程を要する。 The method of Patent Document 5 requires a special process in which aluminum is finely pulverized in a “water / organic solvent” mixed solvent.
 特許文献6の方法は、固体のアルミニウム基盤を部分的に磨いて原子状アルミニウムを露出させ、それを好ましくは減圧条件下、溶融金属に浸して合金を作るという方法であり、操作が煩雑であり、製造規模が大きくなると、合金作製には長時間を要する。 The method of Patent Document 6 is a method in which a solid aluminum substrate is partially polished to expose atomic aluminum, which is preferably immersed in molten metal under reduced pressure conditions to form an alloy, which is complicated. As the production scale increases, it takes a long time to produce the alloy.
 特許文献7の方法は、高価なインジウム、ガリウムを大過剰に要し、アルミニウムは少量であるため、生産効率の上で問題がある。 The method of Patent Document 7 requires a large excess of expensive indium and gallium, and a small amount of aluminum, which is problematic in terms of production efficiency.
 特許文献8の方法は、特定の組成を有する、アルミニウム等の金属の溶融合金を原料とし、これを水と接触させて冷却するだけで、簡便に水素発生用合金を製造できる優れた方法である。用いる水としては水道水で十分であり、得られた水素発生用合金も空気中に保存できる。このようにして作製した合金は、水と接触させるだけで水素発生反応を開始し、長時間にわたって安定して水素ガスを得ることができる。しかしながら、この方法では、溶融合金を水と接触して冷却する工程中に、金属(アルミニウム等)と水との反応(水素発生)の競合が避けられない。このため、冷却完了次第、水素のこれ以上の発生を防止すべく、直ちに合金を水中より引き上げなければならない。この操作は、小規模での合金製造においては問題にはならないが、製造規模が大きくなると、水素ガスが可燃性であることから、操作が煩雑になる懸念がある。 The method of Patent Document 8 is an excellent method for easily producing an alloy for hydrogen generation by simply using a molten alloy of a metal such as aluminum having a specific composition as a raw material, and bringing it into contact with water and cooling it. . Tap water is sufficient as water to be used, and the obtained alloy for generating hydrogen can also be stored in the air. The alloy produced in this way can start a hydrogen generation reaction simply by contacting with water, and can stably obtain hydrogen gas over a long period of time. However, in this method, competition of reaction (hydrogen generation) between a metal (aluminum or the like) and water is inevitable during the process of cooling the molten alloy in contact with water. For this reason, as soon as cooling is completed, the alloy must be immediately pulled out of the water in order to prevent further generation of hydrogen. Although this operation does not pose a problem in small-scale alloy production, there is a concern that the operation becomes complicated because hydrogen gas is flammable as the production scale increases.
 以上の通り、アルミニウムを水と反応させて水素を得るための種々な方法がこれまで考案されているが、操作の簡便化という観点からは、なお改善の余地があった。 As described above, various methods for obtaining hydrogen by reacting aluminum with water have been devised so far, but there is still room for improvement from the viewpoint of easy operation.
 そこで本発明は、微細化等の特別な処理を行う必要がなく、安全にしかも高効率で安定して水素ガスを発生し得る水素発生用合金とその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a hydrogen generating alloy that can generate hydrogen gas safely, highly efficiently, and stably, without requiring special processing such as miniaturization, and a method for producing the same.
 本発明者らは上記課題に基づいて鋭意検討した結果、アルミニウムを含む第1の金属と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属と、融点が230℃以下である低融点金属を含む第3の金属を含む「三元系合金」を採用し、これを660℃以上の温度に加熱して、第1~第3の金属を含む溶融合金を得、前記溶融合金を「固体材料」に接触させて冷却し固化することによって、ごく簡便に、高い水素発生能を有する水素発生用合金(水との反応によって水素を発生する合金)が得られるという知見に到達し、本発明を完成させた。 As a result of intensive studies based on the above problems, the present inventors have found that a first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a melting point of 230 ° C. or lower. Adopting a “ternary alloy” containing a third metal containing a low melting point metal, which is heated to a temperature of 660 ° C. or higher to obtain a molten alloy containing the first to third metals, The knowledge that a hydrogen-producing alloy (an alloy that generates hydrogen by reaction with water) having a high hydrogen generation capacity can be obtained simply and simply by bringing a molten alloy into contact with a “solid material” and cooling and solidifying it. Has arrived and completed the present invention.
 すなわち本発明では、アルミニウムを含む第1の金属と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属と、融点が230℃以下である低融点金属を含む第3の金属と、を、アルミニウムの融点以上の温度に加熱して、第1~第3の金属を含む溶融合金を得る第1のステップと、前記溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却して、固化合金を得る第2のステップと、によって製造される、前記固化合金によりなる水素発生用合金が提供される。 That is, in the present invention, a third metal containing a first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a low melting metal having a melting point of 230 ° C. or lower. A first step of obtaining a molten alloy containing first to third metals by heating the metal to a temperature equal to or higher than the melting point of aluminum, and contacting the molten alloy with a solid material while maintaining the molten state. And a second step of cooling to obtain a solidified alloy, and a hydrogen generating alloy made of the solidified alloy is provided.
 また本発明では、アルミニウムを含む第1の金属と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属と、融点が230℃以下である低融点金属を含む第3の金属と、を、アルミニウムの融点以上の温度に加熱して、溶融合金を得る第1のステップと、前記溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却して、固化合金を得る第2のステップと、を含む、前記固化合金によりなる水素発生用合金の製造方法が提供される。 In the present invention, a third metal containing a first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a low melting metal having a melting point of 230 ° C. or lower. A first step of heating the metal to a temperature equal to or higher than the melting point of aluminum to obtain a molten alloy; and cooling the molten alloy by contacting it with a solid material while maintaining a molten state. A method for producing a hydrogen generating alloy comprising the solidified alloy, the method comprising: obtaining a second step.
 さらに本発明では、上記の水素発生用合金を、水と接触させるステップを含む、水素発生方法が提供される。 Furthermore, the present invention provides a hydrogen generation method including the step of bringing the above-mentioned hydrogen generation alloy into contact with water.
 本発明の水素発生合金は、第1の金属を基準に、第2の金属を0.1質量%以上100質量%以下含有し、第3の金属を0.1質量%以上100質量%以下含有することが好ましい。 The hydrogen generating alloy of the present invention contains the second metal in an amount of 0.1% by mass to 100% by mass and the third metal in an amount of 0.1% by mass to 100% by mass based on the first metal. It is preferable to do.
 本発明の水素発生合金では、第3の金属の低融点金属が、スズ、ビスマス、インジウム、ガリウム、鉛、カドミウム、アンチモンのいずれか1つ以上の金属であることが好ましい。 In the hydrogen generating alloy of the present invention, it is preferable that the low melting point metal of the third metal is at least one of tin, bismuth, indium, gallium, lead, cadmium, and antimony.
 また、本発明の水素発生用合金の製造方法では、第2のステップにおいて、固体材料が、冷媒に接触し、該冷媒によって冷却された状態で、溶融合金に接触されることが好ましい。 In the method for producing a hydrogen generating alloy according to the present invention, in the second step, it is preferable that the solid material is in contact with the molten alloy in contact with the coolant and cooled by the coolant.
 本発明の水素発生用合金は、上述の「第1の金属」「第2の金属」および「第3の金属」を必須とする三元系合金である。当該三元系合金をアルミニウムの融点(常圧条件では660℃である)以上に加熱して溶融させた後、「固体材料」に接触させて冷却するという点に本発明の特徴がある。「溶融合金」と「固体材料」との接触によらず、空気中で放冷したり、或いは、液体窒素を注いで液体によって直接冷却したりしても、得られた固化合金の水素発生能は低い(比較例を参照)。逆に「溶融合金」と「固体材料」との接触によって冷却して得た固化合金は、水素発生能(具体的にはアルミニウムの利用効率)が飛躍的に増大することが明らかになった。尚、本発明では、「第1の金属」「第2の金属」および「第3の金属」を含む三元系合金を必ず用いなければならない。「第2の金属」または「第3の金属」を欠いた溶融合金を、同様の「固体材料との接触による冷却」に付しても、十分な水素発生能を有する固化合金は得られない。 The hydrogen generating alloy of the present invention is a ternary alloy that essentially includes the above-mentioned “first metal”, “second metal”, and “third metal”. A feature of the present invention is that the ternary alloy is heated to the melting point of aluminum (at 660 ° C. under normal pressure) to be melted and then brought into contact with the “solid material” to be cooled. Regardless of the contact between the “molten alloy” and the “solid material”, the hydrogen generation ability of the solidified alloy obtained by cooling in the air or by directly cooling with liquid by pouring liquid nitrogen Is low (see comparative example). On the contrary, it has been clarified that the solidified alloy obtained by cooling by contact between the “molten alloy” and the “solid material” has a dramatic increase in hydrogen generation ability (specifically, utilization efficiency of aluminum). In the present invention, a ternary alloy including “first metal”, “second metal”, and “third metal” must be used. Even if a molten alloy lacking “second metal” or “third metal” is subjected to the same “cooling by contact with a solid material”, a solidified alloy having sufficient hydrogen generation ability cannot be obtained. .
 上述の通り、本発明によれば、上述の特許文献のような複雑な工程が回避でき、「固体との接触」という、意外にも簡便な操作により、優れた水素発生能を有する水素発生合金を提供することができる。例えば特許文献3のように、極端に急速な冷却も必要でなく、溶融合金をそのまま冷固体材料に接触させれば十分である。また、この冷却操作中に「水」を用いないために、特許文献8に見られた、冷却工程中の水素発生反応の競合も、本発明では懸念する必要がない。本方法で得られる水素発生用合金は、空気中でも安全に貯蔵でき、なおかつこれに水を注ぐだけで速やかに、かつ高いアルミニウム利用効率で水素を得ることができる。 As described above, according to the present invention, a complicated process as in the above-mentioned patent document can be avoided, and a hydrogen generating alloy having excellent hydrogen generating ability by an unexpectedly simple operation of “contact with a solid”. Can be provided. For example, as in Patent Document 3, extremely rapid cooling is not necessary, and it is sufficient that the molten alloy is directly brought into contact with the cold solid material. In addition, since “water” is not used during the cooling operation, the competition of the hydrogen generation reaction during the cooling process, which is seen in Patent Document 8, does not need to be a concern in the present invention. The alloy for hydrogen generation obtained by this method can be stored safely even in the air, and hydrogen can be obtained quickly and with high aluminum utilization efficiency simply by pouring water into it.
図1は、Al-Si系状態図(“Silicon and its binary systems”, A.S.Berezhnoi, Consultants Bureau (1960), P.66から引用)である。FIG. 1 is an Al—Si phase diagram (quoted from “Silicon and its binary systems”, A.S.Berezhnoi, Consultants Bureau (1960), P.66). 図2は、溶融合金を平板の固体材料に接触させて冷却する方法を説明する模式図である。FIG. 2 is a schematic diagram for explaining a method of cooling a molten alloy by bringing it into contact with a flat solid material. 図3は、溶融合金を双ロールの固体材料に接触させて冷却する方法を説明する模式図である。FIG. 3 is a schematic view for explaining a method of cooling a molten alloy by bringing it into contact with a twin-roll solid material. 図4は、実施例1の水素発生反応終了後に水中に残存した使用済みの合金を回収し、XRD測定した結果である。FIG. 4 shows the result of XRD measurement after collecting used alloy remaining in water after the hydrogen generation reaction of Example 1 was completed. 図5は、実施例1で作成した固化合金をSEM観察した結果である。FIG. 5 shows the result of SEM observation of the solidified alloy prepared in Example 1. 図6は、図5で示した線分A-B間をEDXにより組成分析した結果である。FIG. 6 shows the result of composition analysis by EDX between the line segments AB shown in FIG. 図7は、比較例3で作成した固化合金をSEM観察した結果である。FIG. 7 shows the result of SEM observation of the solidified alloy prepared in Comparative Example 3. 図8は、図7で示した線分A-B間をEDXにより組成分析した結果である。FIG. 8 shows the result of the composition analysis by EDX between the line segment AB shown in FIG.
 以下、本発明について、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の水素発生用合金は、三種類の異なる第1、第2、及び第3の金属(これらをそれぞれ「金属A」、「金属B」、及び「金属C」と呼ぶこともある)を含有する「A-B-C」三元系合金である。「金属A」はアルミニウムを含み、「金属B」は、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む金属であり、「金属C」は、融点が230℃以下である低融点金属を含む金属である。 The hydrogen generating alloy of the present invention comprises three different first, second, and third metals (sometimes referred to as “metal A”, “metal B”, and “metal C”, respectively). It contains “ABC” ternary alloy. “Metal A” contains aluminum, “Metal B” is a metal containing at least one metal selected from zinc, magnesium or silicon, and “Metal C” is a low melting point metal having a melting point of 230 ° C. or less. It is a metal containing.
 「金属A」としては、好適にはアルミニウムが単独で用いられるが、他の金属と組み合わせて用いてもよい。 As the “metal A”, aluminum is preferably used alone, but may be used in combination with other metals.
 「金属B」としては、上記3種類の金属の何れも好適に採用できるが、亜鉛は、比較的少量であっても特に高い効果を発揮するから、亜鉛が特に好ましいものの一つである。上記3種類の金属の何れかと他の金属を組み合わせて用いてもよい。 As the “metal B”, any of the above-mentioned three kinds of metals can be suitably employed, but zinc is one of the particularly preferable ones because zinc exhibits a particularly high effect even in a relatively small amount. Any of the above three types of metals may be used in combination with other metals.
 「金属C」としては、融点がスズの融点(230℃)以下である、低融点金属または合金であれば使用可能である。特に、スズ、ビスマス、インジウム、ガリウム、鉛、カドミウム、アンチモンのいずれか1つ以上の金属または2種類以上からなる合金が好ましい。さらには、融点が100℃以下である低融点金属を用いることが、水との反応により発生する単位時間当たりの水素発生速度が上昇するため、より好ましい。中でもスズは、安価である上、少量であっても優れた性能の水素発生用合金を作製できるために、「金属C」としてはスズを含むことが、特に好ましい。但しスズ単独では融点が230℃あるため、融点を下げ、水素発生性能を向上させるために、他の金属も併用し、合金として用いることが好ましい。「Sn-Bi-In」合金はそうした、好適な「金属C」の一例である。例えばこの「Sn-Bi-In合金」の組成として「Snが10~25質量%、Biが40~70質量%、Inが15~40質量%」は好ましいものの1つである。 As the “metal C”, any low melting point metal or alloy having a melting point lower than that of tin (230 ° C.) can be used. In particular, any one or more metals of tin, bismuth, indium, gallium, lead, cadmium, and antimony or alloys made of two or more types are preferable. Furthermore, it is more preferable to use a low melting point metal having a melting point of 100 ° C. or lower because the rate of hydrogen generation per unit time generated by the reaction with water increases. Among these, tin is particularly inexpensive, and it is particularly preferable that “metal C” contains tin because an alloy for generating hydrogen with excellent performance can be produced even in a small amount. However, since tin alone has a melting point of 230 ° C., in order to lower the melting point and improve the hydrogen generation performance, it is preferable to use other metals in combination as an alloy. “Sn—Bi—In” alloy is an example of such a suitable “metal C”. For example, as the composition of the “Sn—Bi—In alloy”, “Sn is 10 to 25% by mass, Bi is 40 to 70% by mass, and In is 15 to 40% by mass” is one of the preferable ones.
 金属A、金属B、金属Cの比率に特別な制限はない。但し、本発明者らは鋭意検討の結果、以下の重要な知見を見出した。 There are no special restrictions on the ratio of metal A, metal B, and metal C. However, as a result of intensive studies, the present inventors have found the following important findings.
 本発明の水素発生用合金は、煮沸した水(100℃)と接触させれば、金属A(アルミニウム)のみならず、金属Bとして示したものの一部(亜鉛、マグネシウム)、金属C(低融点金属)ともども、水と反応し、水素を発生する(これに対し、金属A,金属B、金属Cそれぞれ単独では、煮沸した水と接触しても、容易には水素を発生しない)。そして、「その単一バッチでの水素発生量」にのみ着目するならば、金属A~Cの全てが水と反応する方が有利である。 When the alloy for hydrogen generation of the present invention is brought into contact with boiling water (100 ° C.), not only metal A (aluminum) but also a part of what is shown as metal B (zinc, magnesium), metal C (low melting point) (Metal) reacts with water to generate hydrogen (in contrast, metal A, metal B, and metal C alone do not easily generate hydrogen even when in contact with boiling water). If attention is paid only to “the amount of hydrogen generated in that single batch”, it is advantageous that all of the metals A to C react with water.
 しかしながら、とりわけ金属Cは高価な金属であり、一たび水と反応し、高酸化状態になってしまうと、回収、再利用するには負荷がかかる。 However, especially, metal C is an expensive metal, and once it reacts with water and enters a highly oxidized state, it is burdensome to recover and reuse.
 このような状況に鑑み、発明者らは、本発明の組成の三元系合金を「煮沸状態よりは低温である水」と接触させることを試みた。その結果、金属A(アルミニウム)が水と反応して高い効率で水素を発生する一方、金属B、金属Cは未反応のまま、固体としてほぼ全量が残存することが判った。このうち、特に金属C(低融点金属)が未反応(0価金属)のまま残存するという知見は重要である。金属Cは融点が230℃以下であり、特に好ましくは100℃以下の合金が用いられる(実施例を参照)。つまり金属Cは、水素発生工程の終了後、比較的わずかな加熱を行うだけで容易に液体となり、ろ過、デカンテーション等の物理的な分離手段によって、他の金属から簡単に分離できる。こうして分離した金属Cは、そのまま金属A、金属Bと混合させ、次バッチの水素発生用合金の製造に再利用できる。この方法を採れば、最も高価な金属Cを何度もリサイクルでき、金属A(アルミニウム)を選択的に水素発生に消費できる。 In view of such a situation, the inventors tried to bring the ternary alloy having the composition of the present invention into contact with “water having a temperature lower than the boiling state”. As a result, it was found that metal A (aluminum) reacts with water to generate hydrogen with high efficiency, while metal B and metal C remain unreacted and almost all remains as a solid. Of these, the knowledge that metal C (low melting point metal) remains unreacted (zero-valent metal) is particularly important. Metal C has a melting point of 230 ° C. or lower, and particularly preferably an alloy having a melting point of 100 ° C. or lower (see Examples). That is, after the hydrogen generation step, the metal C is easily converted into a liquid by performing relatively little heating, and can be easily separated from other metals by physical separation means such as filtration and decantation. The separated metal C can be mixed with the metal A and the metal B as they are, and can be reused in the production of the next batch of hydrogen generating alloy. By adopting this method, the most expensive metal C can be recycled many times, and the metal A (aluminum) can be selectively consumed for hydrogen generation.
 前記「煮沸状態よりも低温である水」の温度としては、概ね10℃以上90℃以下である。水温が低いと水素発生速度が低く、水温が上がるほど水素発生速度が向上するため、用途に応じて温度を使い分ければよいが、好ましくは20~80℃であり、さらに好ましくは50~70℃である。 The temperature of the “water that is lower than the boiling state” is approximately 10 ° C. or more and 90 ° C. or less. If the water temperature is low, the hydrogen generation rate is low, and the hydrogen generation rate increases as the water temperature increases. Therefore, the temperature may be properly used depending on the application, but is preferably 20 to 80 ° C, more preferably 50 to 70 ° C. It is.
 このように本発明の水素発生用合金と「煮沸状態よりも低温である水」とを用いて水素発生反応を行い、金属A(アルミニウム)を選択的に消費し、それ以外の金属(特に金属C)を回収、再利用する場合、発明者らは、金属Aが相対的に多く、金属B、金属Cは比較的少ない特定の組成で、満足のいく水素発生能を得られることを知った。 In this way, the hydrogen generating alloy of the present invention and “water that is lower in temperature than the boiling state” are used to perform a hydrogen generating reaction, selectively consuming metal A (aluminum), and other metals (particularly metal) In the case of recovering and reusing C), the inventors have found that a satisfactory hydrogen generation capacity can be obtained with a specific composition of metal A and metal B and metal C which are relatively small. .
 具体的に、金属Bの含有量は、金属Aを基準に0.1質量%以上100質量%以下(すなわち金属Aと同質量以下)であることが好ましい。さらに、金属Bの含有量が金属Aを基準に10質量%を超えてもさらなる水素発生速度の上昇は期待し難いことも判った。これらを考慮すると、金属Bの含有量は、金属Aを基準に、0.1質量%以上10質量%以下であることが特に好ましい。 Specifically, the content of the metal B is preferably 0.1% by mass or more and 100% by mass or less based on the metal A (that is, the same mass or less as the metal A). Furthermore, it was found that even if the content of metal B exceeds 10% by mass based on metal A, it is difficult to expect further increase in the hydrogen generation rate. Considering these, it is particularly preferable that the content of the metal B is 0.1% by mass or more and 10% by mass or less based on the metal A.
 金属Cの含有量(金属Cが複数の金属の合金であるときはその合計量)については、含有量が金属Aに対して0.1質量%以上になると水素発生速度が急激に上昇する傾向が認められる。先述の通り、「煮沸状態よりも低い温度の水」を用いた場合は、低融点金属自体は直接の反応に関与しないため、水素発生用合金の質量当たりの水素発生量は減少するため、含有量は金属Aに対して、0.1質量%以上100質量%以下が好ましく、特に、水素発生用合金質量当りの水素発生効率を考慮すると10質量%以上50質量%以下がより好ましい。 Regarding the content of metal C (the total amount when the metal C is an alloy of a plurality of metals), the hydrogen generation rate tends to increase rapidly when the content is 0.1% by mass or more with respect to the metal A. Is recognized. As mentioned above, when using `` water at a temperature lower than the boiling state '', the low melting point metal itself does not participate in the direct reaction, so the amount of hydrogen generated per mass of the hydrogen generating alloy is reduced. The amount is preferably 0.1% by mass or more and 100% by mass or less with respect to the metal A, and more preferably 10% by mass or more and 50% by mass or less considering the hydrogen generation efficiency per mass of the hydrogen generating alloy.
 以上の事実を総合すると、水素発生反応において、「煮沸状態よりも低い温度の水(通常10~90℃、好ましくは20~80℃、特に好ましくは50~70℃)の水」を用い、なおかつ、金属Aを基準に、金属Bを0.1質量%以上10質量%以下含有し、かつ金属Cを10質量%以上50質量%以下含有する合金を用いることは、高い水素発生能(アルミニウムの利用率)を達成でき、かつ、比較的高価な金属Cを容易にリサイクルできるため、本発明の好ましい態様の1つである。この場合、合金中のアルミニウム成分が水と選択的に反応して水酸化アルミニウムとなる一方で、それ以外の成分は0価金属のまま、系内に残存することとなる。 In summary of the above facts, in the hydrogen generation reaction, “water having a temperature lower than that in the boiling state (usually 10 to 90 ° C., preferably 20 to 80 ° C., particularly preferably 50 to 70 ° C.)” is used, and Using an alloy containing 0.1% by mass or more and 10% by mass or less of metal B and 10% by mass or more and 50% by mass or less of metal C on the basis of metal A is high hydrogen generation ability (of aluminum Utilization rate) and a relatively expensive metal C can be easily recycled, which is one of the preferred embodiments of the present invention. In this case, the aluminum component in the alloy selectively reacts with water to form aluminum hydroxide, while the other components remain in the system as a zero-valent metal.
 なお、上記各組成の合金を「煮沸状態の水(90℃よりも高温の水)」と反応させることを妨げるものではない。この場合は、反応時間にもよるが、金属A(アルミニウム)の他に、金属B,金属Cともに、水と反応し、水素を発生するようになる。但し、この場合も、水と最も反応しやすい(しかも軽量で安価な)金属は金属A(アルミニウム)であるから、金属Aの相対量が多い上記金属組成は、水素発生速度を高める観点から、好ましいと言える。 It should be noted that this does not prevent the alloy having the above composition from reacting with “boiled water (water having a temperature higher than 90 ° C.)”. In this case, although depending on the reaction time, in addition to metal A (aluminum), both metal B and metal C react with water to generate hydrogen. However, in this case as well, since the metal that is most likely to react with water (and is light and inexpensive) is metal A (aluminum), the metal composition having a large relative amount of metal A is from the viewpoint of increasing the hydrogen generation rate. It can be said that it is preferable.
 本発明の水素発生用合金は下記の2工程によって作製され、本発明の水素発生用合金の製造方法は下記の2工程を含む。
 第1のステップ:アルミニウムを含む第1の金属(金属A)と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属(金属B)と、融点が230℃以下である低融点金属を含む第3の金属(金属C)と、を、アルミニウムの融点以上の温度に加熱して、第1~第3の金属(金属A~C)を含む溶融合金を得るステップ。
 第2のステップ:前記溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却して、水素発生用合金として固化合金を得るステップ。
The hydrogen generating alloy of the present invention is produced by the following two steps, and the method for producing the hydrogen generating alloy of the present invention includes the following two steps.
1st step: 1st metal (metal A) containing aluminum, 2nd metal (metal B) containing at least 1 sort (s) of metal chosen from zinc, magnesium, or silicon, and melting | fusing point are 230 degrees C or less Heating a third metal (metal C) containing a low melting point metal to a temperature not lower than the melting point of aluminum to obtain a molten alloy containing the first to third metals (metals A to C);
Second step: A step of bringing the molten alloy into contact with a solid material while maintaining a molten state and cooling it to obtain a solidified alloy as an alloy for generating hydrogen.
 本発明の水素発生方法は、第1~第2のステップによって作製した水素発生用合金を、水と接触させる第3のステップを含む。第3のステップの終了後に、回収ステップを施すことにより、少なくとも金属Cを回収することもできる。 The hydrogen generating method of the present invention includes a third step of bringing the hydrogen generating alloy produced by the first and second steps into contact with water. It is also possible to recover at least the metal C by performing a recovery step after the end of the third step.
 以下、「第1のステップ」~「第3のステップ」、「回収ステップ」の順を追って、具体的な実施態様につき説明する。 Hereinafter, specific embodiments will be described in the order of “first step” to “third step” and “collection step”.
 まず「第1のステップ」について説明する。 First, the “first step” will be described.
 「第1のステップ」は、第1、第2、第3の金属を耐熱容器内に導入し、アルミニウムの融点以上に加熱して溶融させる工程である。金属を溶融させる順序としては、其々の金属を別々に加温して溶融後に混合してもよいし、予混合後に溶融してもよい。どちらの順序でも、最終的な水素発生用合金の水素発生能に影響を及ぼさないので、通常は予混合後に溶融することが、簡便で好ましい。 The “first step” is a process in which the first, second, and third metals are introduced into a heat-resistant container and heated to a melting point of aluminum or higher to melt. As the order of melting the metals, the respective metals may be heated separately and mixed after melting, or may be melted after premixing. Either order does not affect the hydrogen generating ability of the final hydrogen generating alloy, so it is usually convenient and preferable to melt after premixing.
 加熱処理中の雰囲気は、空気を好ましく採用することができる。不活性ガス(窒素など)を用いることもできるが、そのような特別な雰囲気を設定する必要はない。 Air can be preferably used as the atmosphere during the heat treatment. An inert gas (such as nitrogen) can be used, but such a special atmosphere need not be set.
 加熱温度はアルミニウムの融点(660℃)以上が必要である。アルミニウムが十分に融解するまで、加熱を続けることが望ましい。また、続く「第2のステップ」は「第1のステップ」で得た溶融合金を、溶融状態を保ったまま、固体材料に接触させることが大切であるので、10℃程度の余裕をみて670℃以上に加熱することが好ましい。 The heating temperature must be higher than the melting point of aluminum (660 ° C). It is desirable to continue heating until the aluminum is fully melted. In the subsequent “second step”, it is important to bring the molten alloy obtained in the “first step” into contact with the solid material while maintaining the molten state. It is preferable to heat to above ° C.
 先述の通り、金属Cの融点は230℃以下であり、金属Bのうち、亜鉛の融点は420℃、マグネシウムの融点は650℃であり、何れもアルミニウムよりも低い。従って、660℃以上に加熱することで、「A-B-C合金」は全体として液状となる。ケイ素については単体の融点が1410℃であり、アルミニウムの融点よりも高温であるが、図1に示すように、アルミニウムとケイ素は共晶混合物を形成する。従って、金属Bとしてケイ素を用いた場合であっても、金属Aを基準としてケイ素成分が概ね25質量%以下であるならば660℃以上に加熱することで、「A-B-C合金」は全体として液状となる。ケイ素含有量がさらに増加し、ある温度においてケイ素の液相線濃度を越えた場合に限り、ケイ素成分は全量が溶融せずに一部析出した状態をとる。析出した形態であっても合金そのものの性能が低下することはないが、続く「第2のステップ」における固化工程において、成形性の面から不都合が生じることがあるため、加熱温度はケイ素の液相線以上の温度とすることが望ましい。 As described above, the melting point of metal C is 230 ° C. or less, and among metals B, zinc has a melting point of 420 ° C. and magnesium has a melting point of 650 ° C., both of which are lower than aluminum. Therefore, by heating to 660 ° C. or higher, the “ABC alloy” becomes liquid as a whole. With respect to silicon, the melting point of a single substance is 1410 ° C., which is higher than the melting point of aluminum, but as shown in FIG. 1, aluminum and silicon form a eutectic mixture. Therefore, even when silicon is used as the metal B, if the silicon component is approximately 25% by mass or less based on the metal A, the “ABC alloy” can be obtained by heating to 660 ° C. or higher. It becomes liquid as a whole. Only when the silicon content further increases and exceeds the liquidus concentration of silicon at a certain temperature, the entire silicon component is not melted and is partially precipitated. Although the performance of the alloy itself does not deteriorate even in the precipitated form, the heating temperature may be a liquid of silicon because the solidification process in the subsequent “second step” may cause inconvenience in terms of formability. It is desirable that the temperature be higher than the phase line.
 加熱温度の上限については特に限定されることはないが、あまり高温にしてもメリットはないので、加熱設備の能力の観点から1300℃以下であることが好ましく、1100℃以下であることがより好ましい。金属Bとして亜鉛を用いる場合には、亜鉛の沸点(907℃)以下であれば、亜鉛成分の揮発を抑制することができることから、設備の負荷が低減でき、好ましい。 The upper limit of the heating temperature is not particularly limited, but since there is no merit even if the temperature is too high, it is preferably 1300 ° C. or less, more preferably 1100 ° C. or less from the viewpoint of the capacity of the heating equipment. . When zinc is used as the metal B, the boiling point of zinc (907 ° C.) or less is preferable because volatilization of the zinc component can be suppressed and the load on the equipment can be reduced.
 第1のステップで加熱して得た溶融金属は、各成分を十分混ざり合わせれば、均質な溶融合金になるので、攪拌等によって均質な状態にした上で、続く第2のステップに供することが好ましい。 The molten metal obtained by heating in the first step becomes a homogeneous molten alloy if the respective components are sufficiently mixed. Therefore, the molten metal can be subjected to the subsequent second step after being made homogeneous by stirring or the like. preferable.
 次に「第2のステップ」について説明する。 Next, the “second step” will be described.
 「第2のステップ」は、「第1のステップ」で得た溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却し、固化合金を得る工程である。 The “second step” is a process for obtaining a solidified alloy by bringing the molten alloy obtained in the “first step” into contact with a solid material while maintaining the molten state and cooling it.
 本ステップは、「溶融合金の溶融状態を保ったままで固体材料に接触する」ことが、優れた水素発生能を持つ合金を製造する上で重要である。すなわち、「第1のステップ」によって得た溶融合金を直ちに(冷却されるより前に)「第2のステップ」に供することが好ましい。そして固体材料の持つ冷却熱を速やかに溶融合金に行き渡らせ、溶融合金を冷却することが好ましい。溶融合金を、例えば空気中で放冷させたり、或いは、低温とはいえ、液体窒素をかけたりする方法で固化させた場合、本来の水素発生能が得られなくなるが、これは、冷却速度が十分でなく、あるいは冷却効果が合金内で不均一となって、第2、第3の成分が固化中に相分離するためと推測している。但し、本ステップでは、例えば特許文献3ほど高い冷却速度を必要としないため、大掛かりな冷却機構を備えたり、固化合金を極度に薄膜化させたりする必要はない。 In this step, it is important to produce an alloy having excellent hydrogen generation ability that “the molten alloy is kept in a molten state while being in contact with the solid material”. That is, it is preferable that the molten alloy obtained by the “first step” is immediately subjected to the “second step” (before being cooled). It is preferable to cool the molten alloy by quickly spreading the cooling heat of the solid material to the molten alloy. When the molten alloy is allowed to cool in the air, for example, or solidified by a method of applying liquid nitrogen even at a low temperature, the original hydrogen generating ability cannot be obtained. It is assumed that the cooling effect is not sufficient in the alloy, and the second and third components are phase-separated during solidification. However, in this step, for example, since a cooling rate as high as that in Patent Document 3 is not required, it is not necessary to provide a large cooling mechanism or to extremely thin the solidified alloy.
 本ステップにおける、固体材料との接触方法としては、溶融金属を固体材料に接触させ、固体材料に荷重をかける方法が挙げられる。具体的には、図2に示すように溶融金属上に固体材料の平板を接触させ圧縮し、固化させることで良好な水素発生能を有する水素発生用合金を得ることができる。工業的な量産プロセスを想定した場合には、図3に示すように溶融金属の入った容器から、溶融金属を流し出し、双ロール(固体材料)にて圧縮することで、溶融金属を固化させる方法が、望ましいものとして挙げられる。 In this step, the contact method with the solid material includes a method in which the molten metal is brought into contact with the solid material and a load is applied to the solid material. Specifically, as shown in FIG. 2, an alloy for hydrogen generation having a good hydrogen generation ability can be obtained by bringing a flat plate made of a solid material into contact with a molten metal, compressing it, and solidifying it. Assuming an industrial mass production process, as shown in FIG. 3, the molten metal is poured out of the container containing the molten metal and compressed by a twin roll (solid material) to solidify the molten metal. A method is mentioned as desirable.
 固体材料の温度としては、固体材料の温度は通常100℃以下であり、50℃以下であることが好ましく、25℃以下であることがより好ましい。これらの固体材料が溶融金属と接触することで、溶融合金の持つ熱が固体材料に移るが、この冷却工程の間、固体材料の温度が前記温度範囲を安定的に保つことが好ましい。例えば後述の「氷水」に接触させた固体材料の場合、0℃付近に安定して維持でき、特に好ましい。 As the temperature of the solid material, the temperature of the solid material is usually 100 ° C. or lower, preferably 50 ° C. or lower, and more preferably 25 ° C. or lower. When these solid materials come into contact with the molten metal, the heat of the molten alloy is transferred to the solid material. During this cooling step, it is preferable that the temperature of the solid material stably keeps the temperature range. For example, in the case of a solid material brought into contact with “ice water” described later, it can be stably maintained at around 0 ° C., which is particularly preferable.
 固体材料の温度をこのように低く保つためには、固体材料を冷媒に接触させる方法が有効である。例えば図2に示す装置では、「溶融合金に接する固体材料の面」の反対側を、水、氷水、ドライアイス、ドライアイスに接触させたアセトン、冷エチレングリコール、冷ブライン、液体窒素などと接触させることにより、常に固体材料を低温に維持することができる。また図3に示す装置では、双ロールの内部(すなわち、溶融合金に接触する面の反対側)に、連続的もしくは断続的に前記冷媒を流通させることによって、常に低温に維持した双ロールを溶融金属に接触させることが可能である。 In order to keep the temperature of the solid material at such a low level, a method of bringing the solid material into contact with a refrigerant is effective. For example, in the apparatus shown in FIG. 2, the opposite side of “the surface of the solid material in contact with the molten alloy” is contacted with water, ice water, dry ice, acetone contacted with dry ice, cold ethylene glycol, cold brine, liquid nitrogen, or the like. By doing so, the solid material can always be kept at a low temperature. In the apparatus shown in FIG. 3, the twin roll maintained at a low temperature is always melted by circulating the refrigerant continuously or intermittently inside the twin roll (that is, the side opposite to the surface in contact with the molten alloy). It is possible to contact the metal.
 特に大量規模で合金を製造する場合には、氷水もしくはそれ以下の温度の冷媒を用いると、安定的に、優れた性能の水素発生用合金を製造できる。用いる冷媒の種類は、装置の特性に応じて当業者の知識によって適宜定めることができる。 Especially when producing an alloy on a large scale, if an ice water or a refrigerant having a temperature lower than that is used, an alloy for generating hydrogen with excellent performance can be produced stably. The type of refrigerant to be used can be appropriately determined according to the knowledge of those skilled in the art according to the characteristics of the apparatus.
 以上のことから、固体材料の温度としては概ね-196℃(液体窒素の温度)以上、100℃以下ということになる。 From the above, the temperature of the solid material is approximately −196 ° C. (liquid nitrogen temperature) or higher and 100 ° C. or lower.
 優れた水素発生能を確保するためには、固体材料によるすみやかな冷却を行うことが望ましく、具体的には、図2、図3において、荷重をかけた後の溶融合金の厚み(荷重方向の溶融金属の厚み:図中の「d」)は、冷却熱を速やかに溶融合金内に浸透させるために、10mm以内とすることが好ましく、5mm以内とすることは一層好ましい。厚みの下限は特に制限がないが、あまり大きな荷重をかけ、厚みを小さくしても水素発生能のさらなる向上にはつながりにくいため、通常0.1mm以上であり、0.5mm以上であることはより好ましい。 In order to ensure an excellent hydrogen generation capability, it is desirable to perform rapid cooling with a solid material. Specifically, in FIGS. 2 and 3, the thickness of the molten alloy after applying a load (in the load direction) The thickness of the molten metal (“d” in the figure) is preferably within 10 mm, and more preferably within 5 mm in order to allow the cooling heat to rapidly penetrate into the molten alloy. The lower limit of the thickness is not particularly limited, but even if a very large load is applied and the thickness is reduced, it is difficult to further improve the hydrogen generation capability. More preferred.
 なお、図3においては、冷却効果を高めるために、複数の双ロールを設定することも可能である。但し、双ロールの回転速度を下げ、内部に流通させる冷媒の温度を下げ、又は双ロールから溶融合金にかかる荷重を上げる(その分、図中の「d」は小さくなる)ことによっても、冷却効果を高めることが可能である。合金製造プロセスの規模等に応じて、それぞれの工夫を適宜組み合わせればよい。 In FIG. 3, a plurality of twin rolls can be set in order to enhance the cooling effect. However, cooling can also be achieved by lowering the rotational speed of the twin rolls, lowering the temperature of the refrigerant circulating in the interior, or increasing the load applied to the molten alloy from the twin rolls ("d" in the figure is reduced accordingly). It is possible to increase the effect. Depending on the scale of the alloy manufacturing process and the like, each device may be combined as appropriate.
 固体材料の材質は、溶融金属の温度(第1のステップにおける加熱温度)以上の融点をもつものであれば特に限定されることはないが、溶融金属を速やかに固化させるためには10W/mK以上の熱伝導率を持つものを用いることが望ましい。具体的な材料としては熱伝導率の観点から金属材料が好ましく、鉄、銅、ステンレス鋼などが挙げられるが、中でも高温でも化学的に安定で、耐久性のあるステンレス鋼が特に好ましい。 The material of the solid material is not particularly limited as long as it has a melting point equal to or higher than the temperature of the molten metal (heating temperature in the first step), but 10 W / mK for rapidly solidifying the molten metal. It is desirable to use one having the above thermal conductivity. As a specific material, a metal material is preferable from the viewpoint of thermal conductivity, and examples thereof include iron, copper, and stainless steel. Among them, stainless steel that is chemically stable and durable even at high temperatures is particularly preferable.
 冷却時の雰囲気は第1のステップと同様に空気中であってもよい。 The atmosphere during cooling may be in the air as in the first step.
 以上の方法にて得られた水素発生用合金は、乾燥した空気中であれば、水素発生能を損なうことなく安定して保存することが可能である。一方、湿度の高い雰囲気中で長期間保存すると、水分と反応し、水素ガスを発生することがあるため、その後の水素発生プロセスにおける、合金質量当りの水素発生量が低下することがある。したがって湿度の高い空気中にあまり長時間保存することは好ましくない。 The hydrogen generating alloy obtained by the above method can be stably stored without impairing the hydrogen generating ability in dry air. On the other hand, when stored in a humid atmosphere for a long period of time, it may react with moisture and generate hydrogen gas, which may reduce the amount of hydrogen generated per alloy mass in the subsequent hydrogen generation process. Therefore, it is not preferable to store in humid air for a long time.
 続いて「第3のステップ」について説明する。 Next, the “third step” will be described.
 「第3のステップ」は、第2のステップにより作製した水素発生用合金を水と反応させることにより、水素ガスを発生させる工程である。使用する水の種類については特に制限がなく、超純水を用いても、水道水を用いても、その水素発生挙動には顕著の相違がない。よって実際は水道水、工業用の上水を用いることが、経済的な観点から好ましい。 The “third step” is a step of generating hydrogen gas by reacting the hydrogen generating alloy produced in the second step with water. There is no restriction | limiting in particular about the kind of water to be used, and even if it uses ultrapure water or tap water, there is no remarkable difference in the hydrogen generation | occurrence | production behavior. Therefore, it is actually preferable from the economical viewpoint to use tap water or industrial water.
 接触させる水の温度は0℃以上100℃以下の任意の温度であっても構わないが、前述のとおり、通常10~90℃であり、好ましくは20~80℃、特に好ましくは50~70℃である。特に50~70℃という温度を採用することは、速い速度で水素ガスを得ることを可能にし、なおかつ金属BやCの反応を安定的に抑制できるために、好ましい。 The temperature of water to be contacted may be any temperature of 0 ° C. or more and 100 ° C. or less, but as described above, it is usually 10 to 90 ° C., preferably 20 to 80 ° C., particularly preferably 50 to 70 ° C. It is. In particular, it is preferable to employ a temperature of 50 to 70 ° C. because hydrogen gas can be obtained at a high rate and the reaction of metals B and C can be stably suppressed.
 これらの温度範囲の場合、金属A(アルミニウム)は水と良好な反応性を示すのと対照的に、金属Bと金属Cは、水と事実上反応せず、0価の金属のまま維持される。このことは第3工程終了後の回収合金のXRDチャートにおいて、金属酸化物としては水酸化アルミニウムに帰属するピークのみが検出され、他の金属成分については酸化物あるいは水酸化物を示すピークが認められなかった。(図4を参照)。このように、金属A(アルミニウム)だけを選択的に反応させるような条件で「第3のステップ」を実施した場合には、とりわけ、高価な「金属C」を水素発生工程終了後に回収して、還元処理なしで再利用することが可能となるため、特に好ましい。 In these temperature ranges, metal A (aluminum) shows good reactivity with water, whereas metal B and metal C do not react substantially with water and remain zero-valent metal. The In the XRD chart of the recovered alloy after completion of the third step, only the peak attributed to aluminum hydroxide was detected as the metal oxide, and peaks indicating oxides or hydroxides were observed for the other metal components. I couldn't. (See FIG. 4). As described above, when the “third step” is performed under a condition in which only the metal A (aluminum) is selectively reacted, particularly, the expensive “metal C” is recovered after the hydrogen generation step is completed. It is particularly preferable because it can be reused without reduction treatment.
 添加する水分量に関しては、水素発生用合金中のアルミニウム含有量に対して反応当量以上であればよい。本合金を燃料電池用の水素源として想定した場合には、合金と水の合計質量当たりから発生する総水素発生量が多ければ多いほどよいことから、水素発生用合金中のアルミニウム含有量に対して1~5反応当量であることが好ましい。水の量が1反応当量前後の場合は、水の容量は比較的少ないこととなるため、反応熱に対して水の温度を制御するために、適宜冷却したり、水の添加速度を調整したりすることが好ましい場合もある。 As for the amount of water to be added, it may be equal to or more than the reaction equivalent with respect to the aluminum content in the hydrogen generating alloy. Assuming that this alloy is a hydrogen source for fuel cells, the higher the total amount of hydrogen generated from the total mass of the alloy and water, the better. It is preferably 1 to 5 reaction equivalents. When the amount of water is around one reaction equivalent, the capacity of the water is relatively small. Therefore, in order to control the temperature of the water with respect to the heat of reaction, the water is appropriately cooled or the rate of water addition is adjusted. It may be preferable to do this.
 水の量が1反応当量未満であっても水素発生を行うことは可能であるが、0.7反応当量、とりわけ0.5反応当量を下回るとアルミニウムの有効利用率が低下するため、好ましくない。一方で、生産効率にこだわらない場合(例えば小規模の装置の場合)には、上記よりも大過剰の水(例えば、100反応当量、1000反応当量)を用いることは妨げられない。 Although it is possible to generate hydrogen even when the amount of water is less than one reaction equivalent, it is not preferable because the effective utilization rate of aluminum is reduced when the amount is less than 0.7 reaction equivalent, especially 0.5 reaction equivalent. . On the other hand, when production efficiency is not particular (for example, in the case of a small-scale apparatus), it is not prevented to use a large excess of water (for example, 100 reaction equivalents, 1000 reaction equivalents) than the above.
 「第3のステップ」に供する固化合金としては、「第2のステップ(冷却工程)」で得た固化合金の塊をそのまま用いることも可能である。但し、事前に固化合金を一定の粒度に粉砕して使用する方が、水素の発生が安定するため、好ましい。 As the solidified alloy used in the “third step”, the solidified alloy lump obtained in the “second step (cooling process)” can be used as it is. However, it is preferable to pulverize the solidified alloy to a certain particle size in advance because hydrogen generation is stable.
 最後に、任意ステップである「回収ステップ」について説明する。「回収ステップ」とは、「第3のステップ」終了後、水中に残存した合金を回収する工程のことをいう。 Finally, the “recovery step” which is an optional step will be described. “Recovery step” refers to a process of recovering an alloy remaining in water after the completion of the “third step”.
 既に述べたように、「第3のステップ」において沸騰水(100℃)を用いた場合、金属A(アルミニウム)の他に、金属B,Cも、少なくとも一部は水と反応するため、回収された金属A,B,Cはいずれも水酸化物等に変換しており、次のバッチの合金作製に使用するためには、還元処理が必要である。 As already mentioned, when boiling water (100 ° C.) is used in the “third step”, metals B and C, in addition to metal A (aluminum), are also recovered because at least part of them reacts with water. All of the metals A, B, and C thus converted have been converted into hydroxides and the like, and a reduction treatment is required for use in the preparation of the next batch of alloys.
 これに対し、「第3のステップ」で「沸騰水よりも低い温度の水」を使用した場合には、前述のように、金属B,Cは未反応の0価金属として残存する。このため、例えば融点差を用いて、これら0価金属を、反応生成物の水酸化アルミニウムから分離させることができる。特に、金属Cは沸点が230℃以下の合金であるから、比較的僅かな加熱を行うだけで液状になる。液体になった金属Cはろ過、もしくはデカンテーション等、常用の手段に付すことによって、未反応の状態のまま容易に回収でき、次バッチの合金作製に再利用できる。このため、「回収ステップ」を行うと、本発明の目的を一層好ましく達成できる。 On the other hand, when “water having a temperature lower than boiling water” is used in the “third step”, the metals B and C remain as unreacted zero-valent metals as described above. For this reason, for example, the zero-valent metal can be separated from the reaction product aluminum hydroxide by using a difference in melting point. In particular, since the metal C is an alloy having a boiling point of 230 ° C. or less, the metal C becomes a liquid only by performing a relatively slight heating. The metal C that has become liquid can be easily recovered in an unreacted state by subjecting it to conventional means such as filtration or decantation, and can be reused for the preparation of alloys for the next batch. For this reason, when the “recovery step” is performed, the object of the present invention can be achieved more preferably.
 以上述べたことを総合すると、第3のステップの水として、10~90℃の水を用いることによって、第3のステップにおいて、実質的にアルミニウムのみを選択的に水と反応させ、なおかつ、第3のステップ終了後に、水中に残存した、使用済みの金属固体を回収し、該金属固体の中から、少なくとも金属Cを回収するステップを行うことは、高価な金属Cを繰り返し再利用できるという点で、特に好ましい実施態様として挙げられる。とりわけ、この実施態様において、金属Aを基準に、金属Bを0.1質量%以上10質量%以下含有し、かつ金属Cを10質量%以上50質量%以下含有する合金を用いることは、上の利点に加えて、高い水素発生能(アルミニウムの利用率)を達成できるという点で、一層好ましい。 In summary, the use of water at 10 to 90 ° C. as the water in the third step allows substantially only aluminum to selectively react with water in the third step, and After the step 3 is completed, the used metal solid remaining in the water is recovered, and the step of recovering at least the metal C from the metal solid allows the expensive metal C to be reused repeatedly. And particularly preferred embodiments. In particular, in this embodiment, using an alloy containing 0.1 to 10% by mass of metal B and 10 to 50% by mass of metal C based on metal A, In addition to the above advantages, it is more preferable in that a high hydrogen generation ability (availability of aluminum) can be achieved.
 以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to such examples.
 [実施例1]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させたステンレス製のプレートにより圧縮し、冷却した(図2を参照)。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 1]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate cooled with liquid nitrogen and cooled (see FIG. 2). By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり49.1cc/min.であった(開始時から5分間の全水素発生量を反応時間(5分間)で除した値。0℃、1気圧換算。以下、本明細書で同じ)。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.77NL(NLとは、0℃、1気圧に換算したリットル数をいう。以下、本明細書において同じ。)であった。水素発生量から算出されるアルミニウムの利用効率は93%であった。合金の質量当たりの水素発生量は0.81NLであった。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 49.1 cc / min. (A value obtained by dividing the total hydrogen generation amount for 5 minutes from the start by the reaction time (5 minutes), converted to 0 ° C. and 1 atm. The same applies hereinafter). The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.77 NL (NL is the number of liters converted to 0 ° C. and 1 atm. The same shall apply hereinafter). It was. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 93%. The amount of hydrogen generated per mass of the alloy was 0.81 NL.
 水素発生終了後、水中に沈んだ固体を回収し、均一化した上でX線回折測定を測定した。この結果を図4に示す。このように水酸化アルミニウムに帰属するピーク及び金属スズ、金属インジウムの回折ピークが観測されたが、アルミニウム以外の金属と酸素の結合を示すピークは観測されなかった。すなわちAlが選択的に水と反応したことが判った。 After completion of hydrogen generation, the solids that were submerged in water were collected and homogenized, and then X-ray diffraction measurement was performed. The result is shown in FIG. Thus, although the peak attributed to aluminum hydroxide and the diffraction peak of metallic tin and metallic indium were observed, the peak which showed the coupling | bonding of metals other than aluminum and oxygen was not observed. That is, it was found that Al selectively reacted with water.
 [実施例2]
 5.0gのアルミニウムに対し0.01gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 2]
0.01 g of zinc was mixed with 5.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり10.1cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.29NLであった。水素ガス発生量から算出されるアルミニウムの利用効率は85%であった。合金の質量当たりの水素発生量は0.75NLであった。本実施例では、金属B(亜鉛)が、金属A(アルミニウム)の0.2質量%という少量である。このためアルミニウムの利用効率は、実施例1よりも若干下回っているが、それでも85%という高水準を保っている。 As a result, the hydrogen generation rate 5 minutes after the start of the reaction was 10.1 cc / min. Per 1 g of aluminum. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.29 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen gas generated was 85%. The amount of hydrogen generated per mass of the alloy was 0.75 NL. In this embodiment, the metal B (zinc) is a small amount of 0.2% by mass of the metal A (aluminum). For this reason, the utilization efficiency of aluminum is slightly lower than that of Example 1, but still maintains a high level of 85%.
 [実施例3]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に100gの氷水(0℃)により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 3]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a 2 inch diameter, 1 cm thick stainless steel plate cooled with 100 g of ice water (0 ° C.) and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり40.8cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.60NLであった。水素ガス発生量から算出されるアルミニウムの利用効率は90%であった。合金の質量当たりの水素発生量は0.79NLであった。本実施例では、固体材料の温度は0℃であり、他の実施例(液体窒素による冷却)に比べて高い温度である。しかし90%という利用効率を保っており、工業的な実施の観点から特に好ましい態様の1つと言える。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 40.8 cc / min. Per 1 g of aluminum. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.60 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen gas generated was 90%. The amount of hydrogen generated per mass of the alloy was 0.79 NL. In the present embodiment, the temperature of the solid material is 0 ° C., which is higher than other embodiments (cooling with liquid nitrogen). However, the utilization efficiency of 90% is maintained, which can be said to be one of the particularly preferable embodiments from the viewpoint of industrial implementation.
 [実施例4]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cm銅製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 4]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a 2 inch diameter, 1 cm thick copper plate cooled by liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり51.3cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.84NLであった。水素発生量から算出されるアルミニウムの利用効率は94%であった。合金の質量当たりの水素発生量は0.82NLであった。本実施例では、冷却用のプレートとしてステンレス鋼の代わりに銅製のプレートを用いている。得られたアルミニウム利用効率は、実施例1と同等の高い水準であり、冷却用の固体材料の材質は、水素発生用合金の性能には影響を及ぼしていないことが判る。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 51.3 cc / min. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.84 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 94%. The amount of hydrogen generated per mass of the alloy was 0.82 NL. In this embodiment, a copper plate is used in place of stainless steel as a cooling plate. The obtained aluminum utilization efficiency is as high as that in Example 1, and it is understood that the material of the solid material for cooling does not affect the performance of the hydrogen generating alloy.
 [実施例5]
 5.0gのアルミニウムに対し0.1gのマグネシウムを黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 5]
To 5.0 g of aluminum, 0.1 g of magnesium was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり33.2cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.21NLであった。水素発生量から算出されるアルミニウムの利用効率は84%であった。合金の質量当たりの水素発生量は0.73NLであった。本実施例では、金属Bを亜鉛からマグネシウムに代えているが、アルミニウムの利用効率は84%と、高い水準を保っている。 As a result, the hydrogen generation rate 5 minutes after the start of the reaction was 33.2 cc / min. Per 1 g of aluminum. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.21 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 84%. The amount of hydrogen generated per mass of the alloy was 0.73 NL. In this embodiment, the metal B is changed from zinc to magnesium, but the utilization efficiency of aluminum is maintained at a high level of 84%.
 [実施例6]
 5.0gのアルミニウムに対し0.1gのケイ素を黒鉛坩堝内で混合し、1000℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 6]
5.0 g of aluminum was mixed with 0.1 g of silicon in a graphite crucible and melted in an electric furnace heated to 1000 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり19.8cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は4.75NLであった。水素発生量から算出されるアルミニウムの利用効率は76%であった。合金の質量当たりの水素発生量は0.67NLであった。本実施例では、金属Bを亜鉛からケイ素に代えて用いたが、アルミニウムの利用効率は76%と、依然高い水準を保っている。 As a result, the hydrogen generation rate 5 minutes after the start of the reaction was 19.8 cc / min. Per 1 g of aluminum. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 4.75 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generated was 76%. The amount of hydrogen generated per mass of the alloy was 0.67 NL. In this example, the metal B was used in place of zinc instead of silicon, but the utilization efficiency of aluminum is still 76%, which is still at a high level.
 [実施例7]
 5.0gのアルミニウムに対し2.0gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 7]
2.0 g of zinc was mixed with 5.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり47.1cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.74NLであった。水素発生量から算出されるアルミニウムの利用効率は92%であった。合金の質量当たりの水素発生量は0.64NLであった。本実施例では、金属B(亜鉛)を、金属A(アルミニウム)に対して40質量%という、比較的多量を用いている。結果としては、アルミニウムの利用率は92%と、実施例1等と同等の値であった。但し、金属Bが多い分、合金の質量当たりの水素発生量は低下している。 As a result, the hydrogen generation rate 5 minutes after the start of the reaction was 47.1 cc / min. Per 1 g of aluminum. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.74 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 92%. The amount of hydrogen generated per mass of the alloy was 0.64 NL. In the present embodiment, a relatively large amount of metal B (zinc), 40% by mass with respect to metal A (aluminum), is used. As a result, the utilization factor of aluminum was 92%, which was the same value as in Example 1. However, the amount of hydrogen generated per mass of the alloy is reduced by the amount of metal B.
 [実施例8]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)5.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Example 8]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 5.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solid alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、水素発生速度はアルミニウム1gあたり49.1cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は5.80NLであった。水素発生量から算出されるアルミニウムの利用効率は93%であった。合金の質量当たりの水素発生量は0.57NLであった。本実施例では、金属B(亜鉛)を、金属A(アルミニウム)に対して100質量%という、比較的多量を用いている。結果としては、アルミニウムの利用率は93%と、実施例1等と同等の値であった。但し、金属Cが多い分、合金の質量当たりの水素発生量は低下している。 As a result, the hydrogen generation rate was 49.1 cc / min. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 5.80 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 93%. The amount of hydrogen generated per mass of the alloy was 0.57 NL. In this embodiment, a relatively large amount of metal B (zinc), which is 100% by mass with respect to metal A (aluminum), is used. As a result, the utilization factor of aluminum was 93%, which was the same value as in Example 1. However, the amount of hydrogen generated per mass of the alloy is reduced by the amount of metal C.
 [比較例1(金属Bの存在しない合金)]
 5.0gのアルミニウムを750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Comparative Example 1 (alloy without metal B)]
5.0 g of aluminum was melted in an electric furnace heated to 750 ° C. Thereafter, Sn-Bi-In low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point: 78.8 ° C) 2.0 g in molten aluminum And stirred with a graphite rod. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solidified alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり0.035cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は0.50NLであった。水素発生量から算出されるアルミニウムの利用効率は8%であった。合金の質量当たりの水素発生量は0.07NLであった。このように、金属B(亜鉛)を用いることなく、各実施例と同様の手法で合金を作成したところ、水素の発生性能は不良であった。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 0.035 cc / min. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.50 NL. The utilization efficiency of aluminum calculated from the hydrogen generation amount was 8%. The amount of hydrogen generated per mass of the alloy was 0.07 NL. As described above, when an alloy was prepared by the same method as in each example without using metal B (zinc), the hydrogen generation performance was poor.
 [比較例2(金属Cの存在しない合金)]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融した混合物をアルミナ製のプレート上に流しこんだ後に液体窒素により冷却させた直径2インチ、厚さ1cmのステンレス製のプレートにより圧縮し、冷却した。このように圧縮することにより、厚さ2~3mmの固化合金の塊を得た。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Comparative example 2 (alloy without metal C)]
0.1 g of zinc was mixed with 5.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, the molten mixture was poured onto an alumina plate and then compressed by a stainless steel plate having a diameter of 2 inches and a thickness of 1 cm which was cooled with liquid nitrogen and cooled. By compacting in this way, a solidified alloy lump having a thickness of 2 to 3 mm was obtained. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、水素の発生は認められなかった。このように、金属C(低融点金属)を用いることなく、各実施例と同様の手法で合金を作成したところ、水素の発生性能は不良であった。 As a result, generation of hydrogen was not recognized. Thus, when an alloy was prepared by the same method as in each example without using metal C (low melting point metal), the hydrogen generation performance was poor.
 [比較例3(窒素雰囲気下で放冷して作製した合金)]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物を坩堝ごと室温の窒素雰囲気中で冷却、凝固した。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Comparative Example 3 (Alloy produced by cooling in a nitrogen atmosphere)]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was cooled and solidified in a nitrogen atmosphere at room temperature together with the crucible. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり0.02cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は0.29NLであった。水素発生量から算出されるアルミニウムの利用効率は5%であった。合金の質量当たりの水素発生量は0.04NLであった。このように、各実施例と異なり、窒素雰囲気下での放冷によって水素発生用合金を製造したところ、水素発生性能は不良であった。固体材料との接触による冷却が行われなかったため、溶融合金の冷却速度が低く、第2、第3の成分が相分離を生じたために本合金が持つ本来の性能を発揮できなかったものと推測される。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 0.02 cc / min. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.29 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 5%. The amount of hydrogen generated per mass of the alloy was 0.04 NL. Thus, unlike each Example, when the alloy for hydrogen generation was manufactured by standing-cooling in nitrogen atmosphere, the hydrogen generation performance was unsatisfactory. Presumed that the cooling performance of the molten alloy was low because the cooling by contact with the solid material was not performed, and the original performance of this alloy could not be exhibited because the second and third components caused phase separation. Is done.
 [比較例4(液体窒素により冷却した合金)]
 5.0gのアルミニウムに対し0.1gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した。その後、溶融した混合物を500ccの液体窒素中に投入して冷却した。その後、凝固した合金を60℃の水道水20mlに投入し、水素発生速度を測定した。
[Comparative Example 4 (alloy cooled with liquid nitrogen)]
To 5.0 g of aluminum, 0.1 g of zinc was mixed in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced and stirred with a graphite rod. Thereafter, the molten mixture was poured into 500 cc of liquid nitrogen and cooled. Thereafter, the solidified alloy was put into 20 ml of tap water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、反応開始から5分後の水素発生速度はアルミニウム1gあたり1.1cc/min.であった。反応開始から48時間経過後の水素発生反応による水素ガスの発生量は0.54NLであった。水素発生量から算出されるアルミニウムの利用効率は9%であった。合金の質量当たりの水素発生量は0.08NLであった。このように、比較例2と比較すると若干の性能向上は認められたものの、各実施例と異なり、液体窒素による冷却で製造した水素発生用合金の水素発生性能は不良であった。接触させる媒体が-196℃の液体窒素であるにも関わらず、十分な水素発生能が得られなかったのは、液体窒素の場合は溶融金属表面と液体窒素間に窒素ガスの膜が生じるため、十分な伝熱ができなかったことが原因であると推測する。 As a result, the hydrogen generation rate after 5 minutes from the start of the reaction was 1.1 cc / min. Met. The amount of hydrogen gas generated by the hydrogen generation reaction 48 hours after the start of the reaction was 0.54 NL. The utilization efficiency of aluminum calculated from the amount of hydrogen generation was 9%. The amount of hydrogen generated per mass of the alloy was 0.08 NL. Thus, although a slight performance improvement was recognized as compared with Comparative Example 2, unlike in each Example, the hydrogen generation performance of the hydrogen generation alloy produced by cooling with liquid nitrogen was poor. Although the medium to be contacted was liquid nitrogen at -196 ° C., sufficient hydrogen generation ability was not obtained because in the case of liquid nitrogen, a film of nitrogen gas was formed between the molten metal surface and liquid nitrogen. It is assumed that this is because of insufficient heat transfer.
 [参考例1(水との接触によって急冷して作製した合金)]
 4.0gのアルミニウムに対し0.4gの亜鉛を黒鉛坩堝内で混合し、750℃に加温した電気炉内で溶融させた。その後、溶融したアルミニウム-亜鉛混合物の中にSn-Bi-In系低融点合金(Sn:17.3質量%、Bi:57.5質量%、In:25.2質量%;融点78.8℃)2.0gを導入し、黒鉛棒で攪拌した後に300ccの超純水中に投入して急冷した。水中に投入して10秒後、凝固した合金を水中より引き上げて大気雰囲気中で乾燥処理を行った。その後、60℃の超純水中20mlに合金を投入し水素発生速度を測定した。
[Reference Example 1 (alloy prepared by rapid cooling by contact with water)]
4.0 g of zinc was mixed with 4.0 g of aluminum in a graphite crucible and melted in an electric furnace heated to 750 ° C. Thereafter, in the molten aluminum-zinc mixture, a Sn—Bi—In based low melting point alloy (Sn: 17.3 mass%, Bi: 57.5 mass%, In: 25.2 mass%; melting point 78.8 ° C.) ) 2.0 g was introduced, stirred with a graphite rod, and then poured into 300 cc of ultrapure water for rapid cooling. Ten seconds after being put into water, the solidified alloy was pulled up from the water and dried in an air atmosphere. Thereafter, the alloy was put into 20 ml of ultrapure water at 60 ° C., and the hydrogen generation rate was measured.
 その結果、水素発生速度はアルミニウム1gあたり52.1cc/min.であった。反応開始から48時間経過後の水素発生反応によるアルミニウムの利用効率は93%、水素発生量は4.63NLであった。本参考例において作製された合金は優れた水素発生性能(アルミニウム利用効率93%)を示している。但し、水による冷却操作中にも水素の発生が少量ながら観測された。このため、水素の発生ができる限り進行しない様、冷却凝固した合金をすばやく水中から引き上げる必要があった。 As a result, the hydrogen generation rate was 52.1 cc / min. Met. The utilization efficiency of aluminum by the hydrogen generation reaction 48 hours after the start of the reaction was 93%, and the hydrogen generation amount was 4.63 NL. The alloy produced in this reference example shows excellent hydrogen generation performance (aluminum utilization efficiency of 93%). However, a small amount of hydrogen was observed during the cooling operation with water. For this reason, it has been necessary to quickly pull out the cooled and solidified alloy from the water so that the generation of hydrogen does not proceed as much as possible.
 [参考データ]
 実施例1の第2ステップにより得た固化合金のSEM観察結果と、EDXによる組成分析結果を図5、図6に示す。比較として、比較例3の方法で得た固化合金のSEM観察結果と、EDXによる組成分析結果を図7、図8に示す。図5、図6ではミクロンオーダーの領域にアルミニウムと低融点金属成分が分散した形態を取っているのに対し、図7、図8では、低融点金属成分が観察されず、アルミニウムとその中に固溶した亜鉛成分のみが観察された。以上より、窒素雰囲気中で放冷した固化合金ではアルミニウム相と低融点金属相が広範囲で相分離している様子がうかがえる。図8中で検出されなかった低融点金属は、観察領域外で低融点金属相として析出しているものと推測される。
[reference data]
The SEM observation result of the solidified alloy obtained by the 2nd step of Example 1, and the composition analysis result by EDX are shown in FIG. 5, FIG. For comparison, FIGS. 7 and 8 show the SEM observation results of the solidified alloy obtained by the method of Comparative Example 3 and the composition analysis results by EDX. 5 and 6, aluminum and a low-melting-point metal component are dispersed in a micron-order region, whereas in FIGS. 7 and 8, no low-melting-point metal component is observed. Only the dissolved zinc component was observed. From the above, it can be seen that in the solidified alloy cooled in a nitrogen atmosphere, the aluminum phase and the low melting point metal phase are phase separated in a wide range. The low melting point metal not detected in FIG. 8 is presumed to be deposited as a low melting point metal phase outside the observation region.
 本法により作製した合金と水を反応させることにより安全に水素ガスを得ることが可能である。この方法により得られる水素は、極めて純度が高く一酸化炭素等の不純物ガスを含まないため、例えば燃料電池の燃料として用いた場合、電極の劣化等を防止しつつ高効率で発電を行うことができる。また、酸素との燃焼反応を用いて作動する水素エンジンなどの内燃機関に利用可能である。したがって、本発明により得られる水素ガスを用いる燃料電池は、移動用携帯機器の電源に、また、本発明により得られる水素ガスを用いる内燃機関は車両の駆動源や発電機の動力源などに用いることが可能となる。 It is possible to obtain hydrogen gas safely by reacting the alloy produced by this method with water. Hydrogen obtained by this method is extremely pure and does not contain impurity gas such as carbon monoxide. For example, when used as a fuel for a fuel cell, it is possible to generate electricity with high efficiency while preventing electrode deterioration and the like. it can. Further, the present invention can be used for an internal combustion engine such as a hydrogen engine that operates using a combustion reaction with oxygen. Therefore, the fuel cell using the hydrogen gas obtained by the present invention is used as a power source for mobile portable equipment, and the internal combustion engine using the hydrogen gas obtained by the present invention is used as a vehicle drive source or a generator power source. It becomes possible.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Based on the normal knowledge of those skilled in the art in the range which does not deviate from the meaning of this invention, following embodiment Needless to say, it can be appropriately changed and improved.

Claims (10)

  1. アルミニウムを含む第1の金属と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属と、融点が230℃以下である低融点金属を含む第3の金属と、を、アルミニウムの融点以上の温度に加熱して、第1~第3の金属を含む溶融合金を得る第1のステップと、前記溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却して、固化合金を得る第2のステップと、によって製造される、前記固化合金によりなる水素発生用合金。 A first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a third metal containing a low melting point metal having a melting point of 230 ° C. or lower, A first step of obtaining a molten alloy containing first to third metals by heating to a temperature not lower than the melting point of aluminum, and cooling the molten alloy by contacting it with a solid material while maintaining a molten state. And a second step of obtaining a solidified alloy, and an alloy for hydrogen generation comprising the solidified alloy.
  2. 第1の金属を基準に、第2の金属を0.1質量%以上100質量%以下含有し、第3の金属を0.1質量%以上100質量%以下含有する、請求項1に記載の水素発生用合金。 The second metal is contained in an amount of 0.1% by mass to 100% by mass based on the first metal, and the third metal is contained in an amount of 0.1% by mass to 100% by mass. Alloy for hydrogen generation.
  3. 前記低融点金属が、スズ、ビスマス、インジウム、ガリウム、鉛、カドミウム、アンチモンのいずれか1つ以上の金属である、請求項1又は請求項2に記載の水素発生用合金。 The hydrogen generating alloy according to claim 1 or 2, wherein the low melting point metal is one or more of tin, bismuth, indium, gallium, lead, cadmium, and antimony.
  4. 第2のステップにおいて、前記固体材料が、冷媒に接触し冷却された状態で、前記溶融合金に接触されることを特徴とする、請求項1乃至請求項3の何れかに記載の水素発生用合金。 The hydrogen generating material according to any one of claims 1 to 3, wherein in the second step, the solid material is brought into contact with the molten alloy while being in contact with a coolant and cooled. alloy.
  5. アルミニウムを含む第1の金属と、亜鉛、マグネシウムまたはケイ素から選ばれる少なくとも1種類の金属を含む第2の金属と、融点が230℃以下である低融点金属を含む第3の金属と、を、アルミニウムの融点以上の温度に加熱して、溶融合金を得る第1のステップと、前記溶融合金を、溶融状態を保ったまま固体材料に接触させて冷却して、固化合金を得る第2のステップと、を含む、前記固化合金によりなる水素発生用合金の製造方法。 A first metal containing aluminum, a second metal containing at least one metal selected from zinc, magnesium or silicon, and a third metal containing a low melting point metal having a melting point of 230 ° C. or lower, A first step of obtaining a molten alloy by heating to a temperature equal to or higher than the melting point of aluminum, and a second step of obtaining a solidified alloy by bringing the molten alloy into contact with a solid material while being in a molten state and cooling it. And a method for producing an alloy for hydrogen generation comprising the solidified alloy.
  6. 第1の金属を基準に、第2の金属を0.1質量%以上100質量%以下含有し、第3の金属を0.1質量%以上100質量%以下含有する、請求項5に記載の水素発生用合金の製造方法。 The second metal is contained in an amount of 0.1% by mass or more and 100% by mass or less based on the first metal, and the third metal is contained in an amount of 0.1% by mass or more and 100% by mass or less. A method for producing an alloy for hydrogen generation.
  7. 前記低融点金属が、スズ、ビスマス、インジウム、ガリウム、鉛、カドミウム、アンチモンのいずれか1つ以上の金属である、請求項5又は請求項6に記載の水素発生用合金の製造方法。 The method for producing an alloy for hydrogen generation according to claim 5 or 6, wherein the low melting point metal is at least one of tin, bismuth, indium, gallium, lead, cadmium, and antimony.
  8. 第2のステップにおいて、前記固体材料が、冷媒に接触し冷却された状態で、前記溶融合金に接触されることを特徴とする、請求項5乃至請求項7の何れかに記載の水素発生用合金の製造方法。 The hydrogen generating material according to any one of claims 5 to 7, wherein, in the second step, the solid material is brought into contact with the molten alloy in a state of being cooled by contacting with a refrigerant. Alloy manufacturing method.
  9. 請求項1乃至請求項4の何れかに記載の水素発生用合金を、水と接触させる第3のステップを含む、水素の発生方法。 A method for generating hydrogen, comprising a third step of bringing the alloy for generating hydrogen according to any one of claims 1 to 4 into contact with water.
  10. 第3のステップの水として、10~90℃の水を用いることによって、実質的に第1の金属のみを選択的に水と反応させ、なおかつ、第3のステップ終了後に、水中に残存した、使用済みの金属固体を回収し、該金属固体の中から、少なくとも第3の金属を回収するステップを含むことを特徴とする、請求項9に記載の水素の発生方法。 By using water at 10 to 90 ° C. as the water in the third step, substantially only the first metal is selectively reacted with water, and remains in the water after the completion of the third step. The method for generating hydrogen according to claim 9, further comprising a step of recovering a used metal solid and recovering at least a third metal from the metal solid.
PCT/JP2010/067911 2009-12-10 2010-10-13 Alloy for hydrogen generation and method for producing same WO2011070849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009280498A JP2011122202A (en) 2009-12-10 2009-12-10 Alloy for hydrogen generation and method for producing the same
JP2009-280498 2009-12-10

Publications (1)

Publication Number Publication Date
WO2011070849A1 true WO2011070849A1 (en) 2011-06-16

Family

ID=44145402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067911 WO2011070849A1 (en) 2009-12-10 2010-10-13 Alloy for hydrogen generation and method for producing same

Country Status (2)

Country Link
JP (1) JP2011122202A (en)
WO (1) WO2011070849A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520693A (en) * 2020-12-02 2021-03-19 中国计量大学 Device and process for heat treatment of waste silicon wafers
CN114672681A (en) * 2022-04-06 2022-06-28 深圳海闻科技有限公司 Preparation method of hydrolytic hydrogen production alloy
CN116445770A (en) * 2023-04-17 2023-07-18 楚氢(苏州)科技有限公司 Aluminum-based alloy particles, preparation method and application

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980219B1 (en) 2013-10-04 2015-03-17 Toyota Motor Engineering & Manufacturing North America, Inc. Stable complexes of zero-valent metal and hydride as novel reagents
US9216910B2 (en) * 2013-10-04 2015-12-22 Toyota Motor Engineering & Manufacturing North America, Inc. Stable complexes of multiple zero-valent metals and hydride as novel reagents
US9260312B2 (en) 2013-10-04 2016-02-16 Toyota Motor Engineering & Manufacturing North America, Inc. Stable complexes of non-metal elements and hydride as novel reagents
US9346676B2 (en) 2013-10-04 2016-05-24 Toyota Motor Engineering & Manufacturing North America, Inc. Stable complexes of zero-valent metallic element and hydride as novel reagents
JP5753987B1 (en) * 2014-06-06 2015-07-22 合同会社エネオン総合研究所 Hydrogen generating alloy, method for producing hydrogen generating alloy, hydrogen generating cartridge, hydrogen producing apparatus, hydrogen producing method, and fuel cell system
CN105648282A (en) * 2016-02-26 2016-06-08 江西德义半导体科技有限公司 Gallium-aluminum alloy and preparation method thereof
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
US10910672B2 (en) 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
US10680280B2 (en) 2017-09-26 2020-06-09 Toyota Jidosha Kabushiki Kaisha 3D magnesium battery and method of making the same
JP7470941B2 (en) 2020-05-25 2024-04-19 アルハイテック株式会社 Hydrogen production method and production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128552A (en) * 1997-05-15 1999-02-02 Nippon Steel Corp Method for changing over winding roll for quenched and solidified strip having magnetism
JP2006306700A (en) * 2005-01-07 2006-11-09 Hitachi Maxell Ltd Hydrogen generating material, hydrogen generator and fuel cell
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2008266777A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Hydrogen generating alloy, hydrogen generating method, and fuel cell
JP2010024480A (en) * 2008-07-17 2010-02-04 Mitsubishi Alum Co Ltd Aluminum alloy material for generating hydrogen and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128552A (en) * 1997-05-15 1999-02-02 Nippon Steel Corp Method for changing over winding roll for quenched and solidified strip having magnetism
JP2006306700A (en) * 2005-01-07 2006-11-09 Hitachi Maxell Ltd Hydrogen generating material, hydrogen generator and fuel cell
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2008266777A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Hydrogen generating alloy, hydrogen generating method, and fuel cell
JP2010024480A (en) * 2008-07-17 2010-02-04 Mitsubishi Alum Co Ltd Aluminum alloy material for generating hydrogen and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520693A (en) * 2020-12-02 2021-03-19 中国计量大学 Device and process for heat treatment of waste silicon wafers
CN114672681A (en) * 2022-04-06 2022-06-28 深圳海闻科技有限公司 Preparation method of hydrolytic hydrogen production alloy
CN116445770A (en) * 2023-04-17 2023-07-18 楚氢(苏州)科技有限公司 Aluminum-based alloy particles, preparation method and application

Also Published As

Publication number Publication date
JP2011122202A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
WO2011070849A1 (en) Alloy for hydrogen generation and method for producing same
Liu et al. Hydrogen generation from hydrolysis of activated Al-Bi, Al-Sn powders prepared by gas atomization method
CN110679013B (en) Battery with carbon coated macroscopically porous silicon anode
TWI503277B (en) Porous silicon particle, porous silicon complex particle and methods for manufacturing thereof
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
TWI523305B (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP5598861B2 (en) Porous silicon particles and method for producing the same
JP2009051714A (en) Hydrogen gas generating member and method for producing hydrogen gas
WO2013128936A1 (en) Active material composite, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaquoeus electrolyte secondary battery
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2012036265A1 (en) Porous silicon particles and complex porous silicon particles, and method for producing both
TW201107242A (en) Methods of making lithium vanadium oxide powders and uses of the powders
JP5598635B1 (en) Recovery method of rare earth elements
JP2011068977A (en) Alloy for hydrogen generation, and method for producing the same
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
US11158845B2 (en) Low temperature, high yield synthesis of nanomaterials and composites from Zintl phases
JP6307317B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode and battery
JP2023530325A (en) Cathode material recovery method
AU2016309953B2 (en) Method for production of a composite material using excess oxidant
EP2122720B1 (en) Novel materials including elements of group 14
JP6376884B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode and battery
JP2007117989A (en) Hydrogen storage material and its production method
JP5718734B2 (en) Secondary battery electrode material and manufacturing method thereof
Zhu et al. Direct synthesis of MgH2 nanofibers from waste Mg
JP2015145512A (en) Method for producing intermetallic compound particle and intermetallic compound particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835771

Country of ref document: EP

Kind code of ref document: A1