WO2011070745A1 - Solid-state imaging device and imaging device - Google Patents

Solid-state imaging device and imaging device Download PDF

Info

Publication number
WO2011070745A1
WO2011070745A1 PCT/JP2010/006974 JP2010006974W WO2011070745A1 WO 2011070745 A1 WO2011070745 A1 WO 2011070745A1 JP 2010006974 W JP2010006974 W JP 2010006974W WO 2011070745 A1 WO2011070745 A1 WO 2011070745A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pixel
imaging device
solid
state imaging
Prior art date
Application number
PCT/JP2010/006974
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 原
誠之 松長
善久 南
洋之 林下
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011070745A1 publication Critical patent/WO2011070745A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to a solid-state imaging device and an imaging device in which pixels that photoelectrically convert incident light are two-dimensionally arranged on a semiconductor substrate.
  • MOS type image sensors solid-state imaging devices
  • DSLR digital single lens reflex cameras
  • MOS type image sensors solid-state imaging devices
  • DSLR digital single lens reflex cameras
  • the MOS type image sensor needs to have high image quality not only in the all-pixel readout mode for still image shooting but also in the pixel mixing mode for moving image recording.
  • Patent Document 1 there is one disclosed in Patent Document 1.
  • FIG. 20 is a diagram showing an overall configuration of the solid-state imaging device described in Patent Document 1.
  • This solid-state imaging device includes an imaging region 201 and a pixel readout circuit 100.
  • the imaging region 201 is arranged in a matrix and includes a plurality of unit cells 202 that photoelectrically convert incident light, and vertical signal lines 101 and 102 that are provided corresponding to the columns of the unit cells 202.
  • the unit cell 202 includes a photodiode 211, an amplification transistor 215, a reset switch 214, and a row selection switch 216.
  • the pixel readout circuit 100 includes a current source 103, a ground connection switch 104, a load transistor 105, and a power supply connection switch 106.
  • the ground connection switch 104 is turned off, the row selection switch 216 of the unit cell 202 in the selected row is turned on, and the power connection switch 106 is turned on.
  • the current source 103 is connected to either the source terminal or the drain terminal on the row selection switch 216 side of the amplification transistor 215 of the selected unit cell 202 via the vertical signal line 101, and the row selection switch 216 side A power source is connected to the other of the source terminal and the drain terminal on the opposite side via a vertical signal line 102.
  • the amplification transistor 215 of the unit cell 202 and the current source 103 form a source follower amplifier, and the signal of the selected unit cell 202 is read from the pixel output line 107.
  • the ground connection switch 104 is turned on, the row selection switch 216 of the unit cell 202 of the selected row is turned on, and the power connection switch 106 is turned off.
  • the ground is connected to either the source terminal or the drain terminal on the row selection switch 216 side of the amplification transistor 215 of the selected unit cell 202 via the vertical signal line 101, and opposite to the row selection switch 216 side.
  • a load transistor 105 is connected to one of the source terminal and the drain terminal on the side through a vertical signal line 102.
  • a common source amplifier is formed by the amplification transistor 215 and the load transistor 105 of the unit cell 202, and if the row selection switches 216 of two rows are simultaneously turned on, the signals of the upper and lower unit cells 202 arranged in the column direction are mixed.
  • the mixed signal is obtained from the pixel output line 108. If the mixed signal is read by sequentially turning on the row selection switch 216 two rows at a time, the mixed signal of the entire imaging region 201 is read.
  • the solid-state imaging device of FIG. 20 when the solid-state imaging device of FIG. 20 is driven in the pixel mixing mode, the operating current varies according to the signal level of the mixed signal. As a result, the power supply provided in common for all the pixel readout circuits 100 is shaken, and the captured image (pixel mixed image) obtained by the mixed signal is deteriorated.
  • an object of the present invention is to provide a solid-state imaging device and an imaging device capable of obtaining a high-quality image even when driven in a pixel mixing mode.
  • a solid-state imaging device includes a pixel that generates a signal corresponding to an amount of received light, a floating diffusion that accumulates the signal of the pixel, and a source that is the floating diffusion.
  • a plurality of unit cells arranged in a two-dimensional manner and corresponding to the column of pixels, and corresponding to the reset transistor connected to each other and amplifying transistors whose gates are connected to the floating diffusion A vertical signal line that is connected to a source of the amplification transistor of the unit cell including the pixel of the column and transmits a signal of the pixel of the corresponding column; and when the signal of the pixel is output to the vertical signal line
  • a pixel current source that supplies current to the signal line, a drain of the reset transistor, and a drain of the amplification transistor.
  • a pixel power supply line connected to IN and between the source of the amplification transistor and the vertical signal line, or between the drain of the amplification transistor and the pixel power supply line, and the pixel is connected to the vertical signal line. And an element that functions as a resistor when the above signal is output.
  • the element functioning as the resistor may be a transistor.
  • the on-resistance of the transistor functioning as the resistor may be larger than that of the reset transistor or the amplification transistor.
  • the solid-state imaging device of the present invention it is possible to obtain a high-quality image even when driven in the pixel mixing mode, and it is easy to realize a DSLR having a high-quality still image shooting function and a moving image recording function. The effect of becoming is obtained.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a detailed configuration of the column circuit of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a detailed configuration of the multiplexer and its periphery in the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a detailed configuration of the row selection circuit of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 3
  • FIG. 6 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit when the solid-state imaging device according to the first embodiment of the present invention is in the all-pixel readout mode.
  • FIG. 7 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels of the solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a relationship between the FD potential Vfd and the pixel SF output Vo when the solid-state imaging device according to the first embodiment of the present invention is in the all-pixel readout mode.
  • FIG. 9 is a diagram illustrating a relationship between the FD potential Vfd and the pixel SF output Vo when the solid-state imaging device according to the first embodiment of the present invention is in the pixel mixture mode.
  • FIG. 10 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a detailed configuration of the row selection circuit of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 12 is a diagram illustrating another detailed configuration of the row selection circuit of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 13 is a circuit diagram illustrating a detailed configuration of the imaging region of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a detailed configuration of the row selection circuit
  • FIG. 14 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit in the all-pixel readout mode of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 15 is a diagram illustrating timings of control signals supplied to the unit cell and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels of the solid-state imaging device according to the third embodiment of the present invention.
  • FIG. 16 is a circuit diagram illustrating a detailed configuration of the imaging region of the solid-state imaging device according to the fourth embodiment of the present invention.
  • FIG. 17 is a diagram illustrating an overall configuration of a solid-state imaging device according to the fifth embodiment of the present invention.
  • FIG. 18 is a diagram illustrating a detailed configuration of the column ADC of the solid-state imaging device according to the fifth embodiment of the present invention.
  • FIG. 19 is a timing chart for explaining the AD conversion operation of the column ADC of the solid-state imaging device according to the fifth embodiment of the present invention.
  • FIG. 20 is a diagram illustrating an overall configuration of the solid-state imaging device described in Patent Document 1.
  • FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating a detailed configuration of the imaging region 1 of the solid-state imaging device.
  • This solid-state imaging device includes an imaging region 1, a row selection circuit 3, a pixel current source circuit 4, a clamp circuit 5, a sample hold (S / H) circuit 6, a multiplexer (MUX) 7, a column selection circuit 8, a control unit 9, and
  • the output amplifier 10 is configured.
  • the imaging region 1 is provided corresponding to a column of a plurality of unit cells 2 and pixels (light receiving units) 11 arranged in a two-dimensional shape (matrix) on a semiconductor substrate, and includes a unit 11 including pixels 11 of the corresponding column.
  • a vertical signal line 19 connected to the source terminal of the amplification transistor of the cell 2 and transmitting the output signal from the pixel 11 of the corresponding column in the column direction (vertical direction), and the drain terminal of the reset transistor 14 of the unit cell 2
  • a pixel power line 17 connected to the drain terminal of the amplifying transistor 15 and supplying an initial voltage to the unit cell 2.
  • FIG. 1 shows an example in which 6 ⁇ 4 unit cells 2 are two-dimensionally arranged, the actual number of unit cells 2 is several million or more.
  • the row selection circuit 3 is provided for each horizontal row of the unit cells 2 and is common to a plurality of unit cells 2 in the same row, that is, a row selection signal SEL [n], a reset signal RST [n], and a transfer signal. It is connected to three control lines for supplying TRAN [n] (n is a natural number of 1 or more).
  • the row selection circuit 3 resets (initializes), reads (reads), and selects a line (row selection) for each unit cell 2 in the imaging region 1 in units of rows of the unit cell 2 via these control lines.
  • the pixel 11 to be controlled and to output a signal to the vertical signal line 19 is selected in units of rows.
  • the pixel current source circuit 4 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction (horizontal direction), and the signal of the pixel 11 is output to the vertical signal line 19. A current supplied to the vertical signal line 19 is sometimes generated and supplied.
  • the clamp circuit 5 is configured such that basic units provided corresponding to the respective columns of the pixels 11 are arranged in an array in the row direction, and the unit cell 2 is output from the output signal of the unit cell 2 in the row unit from the vertical signal line 19. The fixed pattern noise component generated in step 1 is removed.
  • the S / H circuit 6 includes basic units provided corresponding to the respective columns of the pixels 11 arranged in an array in the row direction, and holds the output signal of the unit cell 2 in units of rows from the clamp circuit 5. .
  • the MUX 7 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction, and switches connection between each basic unit of the S / H circuit 6 and the output amplifier 10.
  • the column selection circuit 8 is connected to the MUX 7 via a control line and controls the operation of the MUX 7. In other words, the column selection circuit 8 sequentially selects the column of the pixels 11 that outputs the output signal from the clamp circuit 5 to the output amplifier 10, that is, the basic unit of the S / H circuit 6.
  • the output amplifier 10 receives the output signal from the S / H circuit 6 via the MUX 7, amplifies the received output signal, and outputs it to the outside of the chip.
  • the control unit 9 supplies a drive signal for driving the row selection circuit 3 to the row selection circuit 3 in accordance with the drive mode.
  • the unit cell 2 photoelectrically converts incident light to generate a signal charge corresponding to the amount of received light, accumulates and outputs the generated signal charge, and accumulates and accumulates the signal charge generated by the pixel 11.
  • a floating diffusion (FD) 13 for outputting a signal charge as a voltage signal, and a reset for initializing the FD 13 so that the source terminal is connected to the FD 13 and the voltage indicated by the FD 13 becomes an initial voltage (here, VDD).
  • the transistor 14, the transfer transistor 12 inserted between the pixel 11 and the FD 13 and supplying the signal charge output from the pixel 11 to the FD 13, and the gate terminal thereof are connected to the FD 13, and follow the voltage indicated by the FD 13.
  • an amplifying transistor 15 for outputting to the vertical signal line 19.
  • the unit cell 2 outputs a reset voltage obtained by amplifying the voltage of the FD 13 when the FD 13 is initialized and a read voltage obtained by amplifying the voltage of the FD 13 when the signal charge of the pixel 11 is read to the FD 13 to the vertical signal line 19. To do.
  • the unit cell 2 is further inserted between the source terminal of the amplification transistor 15 and the vertical signal line 19, and when the row selection signal SEL [n] is received at the gate terminal from the row selection circuit 3 via the control line.
  • the row selection transistor 16 that connects the output (source terminal) of the amplification transistor 15 to the vertical signal line 19, and the source terminal of the amplification transistor 15 and the row selection transistor 16 (vertical signal line 19) are serially connected to the amplification transistor 15.
  • a resistance element 61 that can ensure a desired operating range of the FD 13 in the pixel mixture mode.
  • the resistance element 61 is formed of a wiring composed of a diffusion region, a metal wiring, a polysilicon wiring, a contact, and the like.
  • An example of the pixel 11 is a photodiode having a buried structure.
  • the resistance element 61 functions as a resistance when the signal of the pixel 11 is output to the vertical signal line 19.
  • the unit cell 2 in FIG. 2 has a structure including a pixel, a transfer transistor, an FD, a reset transistor, and an amplification transistor, that is, a so-called one-pixel one-cell structure.
  • the unit cell 2 includes a plurality of pixels, and may have a structure in which any one or all of the FD, the reset transistor, and the amplification transistor are shared within the unit cell, that is, a so-called multi-pixel 1-cell structure. Absent.
  • the pixel 11 can have a structure formed on the surface of the semiconductor substrate, that is, on the same side as the surface on which the gate terminal and the wiring of the transistor are formed. Furthermore, the structure of a so-called back-side illumination type image sensor (back-side illumination type solid-state imaging device) in which the pixels 11 are formed on the back side of the semiconductor substrate, that is, the side on which the gate terminal and the wiring of the transistor are formed. It can also be used.
  • back-side illumination type image sensor back-side illumination type solid-state imaging device
  • FIG. 3 is a diagram showing a detailed configuration of the column circuit.
  • the column circuit processes signals output from the pixels 11 in the same column, and includes a basic unit 4 a of the pixel current source circuit 4, a basic unit 5 a of the clamp circuit 5, and a basic unit 6 a of the S / H circuit 6. Composed.
  • the column circuit temporarily holds a pixel signal indicating a difference between the reset voltage and the read voltage output to the vertical signal line 19 for each pixel 11 or for each unit cell 2, and then outputs a pixel signal indicating the difference to the MUX 7. .
  • the basic unit 4a of the pixel current source circuit 4 is supplied with a current source bias voltage 21 at its gate terminal, and from the current source transistor 20 that supplies current to the amplifying transistor 15 when a signal is read from the unit cell 2 to the vertical signal line 19. Become.
  • the basic unit 5a of the clamp circuit 5 includes a clamp capacitor 23 having a capacitance value Ccl for obtaining a pixel signal, a sampling transistor 22 to which a sampling signal is supplied to the gate terminal, and the S / H circuit 6 opposite to the clamp capacitor 23. It comprises a clamp voltage input terminal 25 for setting the terminal potential on the pixel current source circuit 4 side to the clamp potential (VCL) and a clamp transistor 24 to which a clamp signal is supplied to the gate terminal.
  • VCL clamp potential
  • the basic unit 6 a of the S / H circuit 6 includes an S / H capacitor 27 having a capacitance value Csh for temporarily holding a pixel signal, an S / H capacitor input signal supplied to the gate terminal, and a pixel in the S / H capacitor 27.
  • An S / H capacitor input transistor 26 for inputting a signal is included.
  • FIG. 4 is a diagram showing a detailed configuration of the MUX 7 and its surroundings.
  • the basic unit 7 a of the MUX 7 includes a column selection transistor 28 disposed between the basic unit 6 a of the S / H circuit 6 and the horizontal common signal line 29.
  • the column selection transistor 28 sequentially outputs the pixel signal held in each basic unit 6 a of the S / H circuit 6 to the horizontal common signal line 29 in response to the column selection signal H [n] supplied to the gate terminal.
  • the pixel signal supplied to the output amplifier 10 via the horizontal common signal line 29 is amplified and then output to the outside of the chip.
  • FIG. 5 is a diagram showing a detailed configuration of the row selection circuit 3.
  • the row selection circuit 3 includes an address decoder 31 and a plurality of row selection logic circuits 32 provided corresponding to each row of the unit cell 2.
  • a Hi voltage is output to a predetermined row selection logic circuit 32 according to the address signal ADR supplied from the control unit 9, and a write enable signal is output to the flip-flop 33 of the predetermined row selection logic circuit 32. Entered.
  • the Hi voltage is set in the flip-flop 33 to which the write enable signal is input, and the unit cell 2 in the row connected to the flip-flop 33 via the AND gate 34 is selected.
  • the control pulses SEL_s, TRAN_s, and RST_s are input in the selected state, the row selection signal SEL [n], the reset signal RST [n], and the transfer signal TRAN [ n].
  • the driving of the unit cell 2 is completed, the value of each flip-flop 33 is reset to the Lo voltage, and the row selection is released.
  • the solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
  • FIG. 6 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment.
  • Vfd the potential of the FD 13
  • the threshold voltage of the amplification transistor 15 is Vth
  • the resistance value of the resistance element 61 is R
  • the current value of the pixel current source circuit 4 Is Vfdrst-Vth-RI (precisely Vfdrst-Vth-RI- ⁇ , where ⁇ is omitted) is output to the vertical signal line 19 as a reset voltage.
  • the reset voltage Vfdrst ⁇ Vth ⁇ RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state.
  • both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistor 12 is off and the row selection transistor 16 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage.
  • the input of the clamp capacitor 23 changes by Vfdsig.
  • the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal, and at timing t5, the row selection signal SEL [1] and the S / H capacitor input signal. Becomes the Lo voltage, and this pixel signal is accumulated in the S / H capacitor 27.
  • the pixel signals for one row are held in the S / H circuit 6.
  • the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on.
  • the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
  • the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on.
  • the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • pixel signals for one row are sequentially output to the outside of the chip.
  • FIG. 7 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of the present embodiment.
  • the row selection signals SEL [1] and SEL [2] are both Hi voltage, and the unit cells 2 in the first and second rows are selected.
  • two address decoders 31 of the row selection circuit 3 This can be achieved by sequentially supplying the address signal ADR, sequentially inputting the write enable signal to the flip-flop 33 of the row selection logic circuit 32, and sequentially setting the Hi voltage (also for the transfer signals TRAN [1] and TRAN [2]). The same).
  • Vfdrst ⁇ Vth ⁇ RI / 2 is output to the vertical signal line 19 as a reset voltage (more precisely, Vfdrst -Vth-RI / 2- ⁇ , where ⁇ is omitted). Further, the reset voltage Vfdrst ⁇ Vth is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state.
  • both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13.
  • the FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst ⁇ Vfdsig1 and Vfdrst ⁇ Vfdsig2.
  • Vfdrst ⁇ Vfdsig ⁇ Vth -RI / 2 is output to the vertical signal line 19 as a read voltage.
  • This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig.
  • the clamp transistor 24 since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows.
  • the row selection signals SEL [1] and SEL [2] and the S / H capacitor input signal become Lo voltage and are stored in the S / H capacitor 27.
  • the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on.
  • the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on.
  • an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
  • FIG. 8 is a diagram showing the relationship between Vfd and pixel SF output Vo at timing t4 in the all-pixel readout mode (FIG. 6).
  • the relationship between Vfd and Vo is expressed by equations (1) and (2).
  • Vo Vfd ⁇ Vth ⁇ RI ⁇ (I / a) (1)
  • a (1/2) ⁇ (W / L) ⁇ ⁇ eff ⁇ Cox (2)
  • Vth, W, L, ⁇ eff, and Cox indicate the threshold voltage, gate width, gate length, carrier mobility, and gate oxide film thickness of the amplification transistor 15, and I indicates the current value of the pixel current source circuit 4. Show. Strictly speaking, when Vo changes, the source-substrate potential of the amplification transistor 15 changes and Vth also changes. Here, Vth is treated as a fixed value.
  • Vo shows a linear characteristic that becomes a value obtained by subtracting a fixed value from Vfd.
  • Vfd is at the initial value Vfdrst at the timing t2, and the signal charge of the pixel 11 is transferred at the timing t3 to reduce the potential.
  • a pixel signal is detected by detecting the difference in the output potential of the pixel SF with respect to the two values of Vfd by a column circuit.
  • FIG. 9 is a diagram showing the relationship between the FD potential Vfd1 of the unit cell 2 in the first row and the FD potential Vfd2 of the unit cell 2 in the second row and the pixel SF output Vo when mixing signals of two vertical pixels. is there.
  • ⁇ V RI + (2- ⁇ 2) ⁇ ⁇ (I / a) (4)
  • the resistance element 61 serially inserted into the amplification transistor 15 can ensure a desired operating range in the signal mixing of a plurality of pixels arranged vertically.
  • a desired operating range of the FD 13 can be secured by the resistance element 61 even when signals output from the unit cells 2 are mixed by the vertical signal line 19.
  • fluctuations in the operating current during signal readout can be suppressed in both the all-pixel readout mode and the pixel mixture mode, so that a high-quality image can be obtained.
  • the unit cell 2 in FIG. 2 has a configuration using four transistors, that is, an amplification transistor, a transfer transistor, a reset transistor, and a row selection transistor, but includes only three transistors, an amplification transistor, a transfer transistor, and a reset transistor. But it doesn't matter.
  • the row selection of the unit cell 2 is executed by setting a low potential to the Vfd of the unit cell 2 in the row where reading is not performed.
  • the overall configuration of the solid-state imaging device according to the second embodiment of the present invention is the same as the overall configuration of the solid-state imaging device according to the first embodiment shown in FIG.
  • FIG. 10 is a circuit diagram illustrating a detailed configuration of the imaging region 1 of the solid-state imaging device according to the second embodiment.
  • the difference between this circuit and the circuit of the imaging region 1 of the first embodiment shown in FIG. 2 is that there is no resistance that is serially connected to the amplification transistor 15, and the on-resistance of the row selection transistor 16 is different from that of the unit cell 2. It is larger than the transistor (reset transistor 14 or amplification transistor 15).
  • FIG. 11 is a diagram showing a detailed configuration of the row selection circuit 3.
  • VDDL is supplied as a power source of the AND gate 34 that generates the row selection signal SEL [n].
  • VDDL is set to a voltage lower than the power supply of other circuits. Either the Hi voltage or the Lo voltage lower than the Hi voltage is supplied to the gate terminals of the reset transistor 14 and the row selection transistor 16 by the row selection signal SEL.
  • the Hi voltage supplied to the gate terminal of the row selection transistor 16 is Since the voltage is lower than the Hi voltage supplied to the gate terminal of the reset transistor 14, the on-resistance of the row selection transistor 16 when the row selection transistor 16 is turned on becomes a relatively large value.
  • the solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
  • the timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment is the same as the timing of the first embodiment shown in FIG.
  • Vfdrst-Vth-RI (exactly Vfdrst-Vth-RI- ⁇ , where ⁇ is omitted) Is output to the vertical signal line 19 as a reset voltage.
  • the reset voltage Vfdrst ⁇ Vth ⁇ RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state.
  • both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistor 12 is off and the row selection transistor 16 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage.
  • the input of the clamp capacitor 23 changes by Vfdsig.
  • the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal, and at timing t5, the row selection signal SEL [1] and the S / H capacitor input signal. Becomes the Lo voltage, and this pixel signal is accumulated in the S / H capacitor 27.
  • the pixel signals for one row are held in the S / H circuit 6.
  • the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on.
  • the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
  • the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on.
  • the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • pixel signals for one row are sequentially output to the outside of the chip.
  • each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of this embodiment is the same as the timing of the first embodiment shown in FIG. is there.
  • the row selection signals SEL [1] and SEL [2] are both Hi voltage, and the unit cells 2 in the first and second rows are selected.
  • two address decoders 31 of the row selection circuit 3 This can be achieved by sequentially supplying the address signal ADR, sequentially inputting the write enable signal to the flip-flop 33 of the row selection logic circuit 32, and sequentially setting the Hi voltage (also for the transfer signals TRAN [1] and TRAN [2]). The same).
  • the row selection transistor 16 is in the on state, but the on-resistance becomes a magnitude R that cannot be ignored because the gate potential is low, and Vfdrst ⁇ Vth ⁇ RI / 2. (To be precise, Vfdrst ⁇ Vth ⁇ RI / 2 ⁇ , where ⁇ is omitted) is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst ⁇ Vth ⁇ RI / 2 is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state. On the other hand, the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13.
  • the FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst ⁇ Vfdsig1 and Vfdrst ⁇ Vfdsig2.
  • Vfdrst ⁇ Vfdsig ⁇ Vth -RI / 2 is output to the vertical signal line 19 as a read voltage.
  • This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig.
  • the clamp transistor 24 since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows.
  • the row selection signals SEL [1] and SEL [2] and the S / H capacitor input signal become Lo voltage and are stored in the S / H capacitor 27.
  • the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on.
  • the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on.
  • an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
  • pixel signals in which signals of 2 vertical pixels and 2 horizontal pixels are mixed are sequentially output to the outside of the chip.
  • FD range ⁇ V in this pixel mixture mode is expressed by equation (4) as in the first embodiment. It can be seen that the operating range of the FD 13 can be secured by the on-resistance R generated by reducing the Hi voltage of the gate potential of the row selection transistor 16.
  • a resistance element is not provided separately, but the row selection transistor 16 functions as a resistor connected in series with the amplification transistor 15. Therefore, not only the signal mixing operation with the fluctuation of the operating current can be realized, but also the resistor element and the row selection transistor 16 can be realized by one device, and the circuit area of the unit cell 2 can be reduced and the sensitivity can be improved. There is also an advantage of being.
  • the gate width of the row selection transistor 16 is made smaller than the gate width of the amplification transistor 15, and the threshold voltage of the row selection transistor 16 is set to the threshold of the amplification transistor 15. There is also a method of adjusting larger than the value voltage. Further, the gate length of the row selection transistor 16 is made larger than the minimum value allowed in the process. For example, the gate length of the row selection transistor 16 is made larger than the minimum gate length of the transistors constituting the row selection circuit 3. The on-resistance of the selection transistor 16 can be increased.
  • FIG. 1 the configuration of another row selection circuit 3 for reducing the Hi voltage of the gate potential of the row selection transistor 16 is shown in FIG.
  • the output of the variable power source 62 having a variable output voltage is supplied as the power source of the AND gate 34 that generates the row selection signal SEL [n] for supplying the Hi voltage to the gate terminal of the row selection transistor 16.
  • the output of the variable power source 62 is a high voltage in the all-pixel reading mode and a low voltage in the pixel mixing mode.
  • the solid-state imaging device of the second embodiment is characterized in that the row selection transistor 16 functions as a resistance element, and the gate potential of the row selection transistor 16 is set low in order to clarify the effect of the feature.
  • the gate potential of the row selection transistor 16 is not adjusted, the on-resistance of the row selection transistor 16 exists, and in an application where the FD operation range ⁇ V may be relatively narrow, fluctuations in the operating current are suppressed even without this Hi voltage adjustment.
  • the pixel signal mixing operation in the state can be realized. In this case, a separate power source is unnecessary, and the configuration of the entire chip is simplified.
  • the gate width of the row selection transistor 16 is made smaller than that of the amplification transistor 15, and the gate length of the row selection transistor 16 is made larger than the minimum value allowed in the process.
  • the method of adjusting the threshold voltage of the row selection transistor 16 is also effective.
  • FIG. 13 is a circuit diagram showing a detailed configuration of the imaging region 1.
  • the resistance element 61 and the row selection transistor 16 function as an element that functions as a resistor connected in series with the amplification transistor 15.
  • a resistance transistor 63 whose gate terminal is connected to the pixel power supply line 17 and whose on-resistance is larger than the other transistors (reset transistor 14 or amplification transistor 15) constituting the unit cell 2 is serially connected to the amplification transistor 15.
  • the output VDDCEL of the pixel power supply generation circuit 73 is supplied to the pixel power supply line 17 connected to the drain terminals of the reset transistor 14 and the amplification transistor 15.
  • the row selection operation of the unit cell 2 is realized by turning on and off the row selection transistor 16, but here, the Vfd of all the rows of the unselected unit cell 2 is obtained.
  • the row selection operation of the unit cell 2 is realized by setting it low.
  • VDDCEL is switched between a low potential for non-selection and a high pixel potential (VDD) for signal readout.
  • the solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
  • FIG. 14 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment.
  • the transfer transistor 12 is in the OFF state
  • the VDDCEL is in the Hi voltage (VDD) state
  • the reset transistor 14 is in the ON state
  • the gate potential VDDCEL of the resistance transistor 63 is a Hi voltage. Accordingly, since the resistance transistor 63 is in the on state, assuming that the threshold voltage of the amplification transistor 15 is Vth, the on-resistance of the resistance transistor 63 is R, and the current value of the pixel current source circuit 4 is I, Vfdrst ⁇ Vth -RI (precisely Vfdrst-Vth-RI- ⁇ , where ⁇ is omitted) is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst ⁇ Vth ⁇ RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state. On the other hand, both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistor 12 is off and the resistance transistor 63 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage.
  • the input of the clamp capacitor 23 changes by Vfdsig.
  • the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal.
  • the S / H capacitance input signal becomes the Lo voltage, and this pixel signal is Accumulated in the S / H capacity 27.
  • the pixel signals for one row are held in the S / H circuit 6.
  • VDDCEL is at the Lo voltage and the reset transistor 14 is in the ON state, so that Vfd is set to a low potential, and the unit cell 2 in the row where the signal reading is completed returns to the non-selected state.
  • the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on.
  • the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
  • the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on.
  • the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • pixel signals for one row are sequentially output to the outside of the chip.
  • FIG. 15 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of the present embodiment.
  • VDDCEL is in the Hi voltage state
  • the two address signals ADR are sequentially supplied to the address decoder 31 of the row selection circuit 3, and the row selection logic circuit. This can be achieved by sequentially setting the 32 flip-flops 33 to the selected state (the same applies to the transfer signals TRAN [1] and TRAN [2]).
  • the gate potential VDDCEL of the resistance transistor 63 is the Hi voltage for the unit cells 2 in the first row and the second row. Accordingly, since the resistance transistor 63 is in the ON state, Vfdrst ⁇ Vth ⁇ RI / 2 (precisely Vfdrst ⁇ Vth ⁇ RI / 2 ⁇ , where ⁇ is omitted) is used as the reset voltage as the vertical signal line 19. Is output. Further, the reset voltage Vfdrst ⁇ Vth ⁇ RI / 2 is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state. On the other hand, the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
  • the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13.
  • the FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst ⁇ Vfdsig1 and Vfdrst ⁇ Vfdsig2.
  • Vfdrst ⁇ Vfdsig ⁇ Vth-RI / 2 is output to the vertical signal line 19 as a read voltage.
  • This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig.
  • the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig ⁇ Ccl / (Ccl + Csh).
  • This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows.
  • the S / H capacitor input signal becomes Lo voltage and is stored in the S / H capacitor 27.
  • VDDCEL is the Lo voltage and the reset transistors 14 of the unit cells 2 in the first row and the second row are in the ON state, Vfd is set to a low potential, Return to unselected state.
  • the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on.
  • the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on.
  • an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
  • the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
  • FD range ⁇ V in this pixel mixture mode is expressed by equation (4) as in the first and second embodiments.
  • a transistor corresponding to the row selection transistor 16 of the first and second embodiments that is, as a transistor for selecting the unit cell 2
  • a resistance transistor 63 is provided, and the operating range of the FD 13 is increased by the on-resistance R of the resistance transistor 63. It can be seen that it can be secured.
  • the solid-state imaging device of the present embodiment not only can a signal mixing operation with suppressed fluctuations in operating current be realized, but also a transistor that functions as a resistor compared to the solid-state imaging device of the second embodiment. This eliminates the need for a signal line to be supplied to the gate terminal, and therefore has an advantage of being suitable for reducing the circuit area and the aperture ratio of the unit cell 2.
  • FIG. 16 is a circuit diagram showing a detailed configuration of the imaging region 1.
  • ⁇ V bRI + (2- ⁇ 2) ⁇ ⁇ (I / a) (5)
  • FIG. 17 is a diagram illustrating an overall configuration of a solid-state imaging device according to the fifth embodiment of the present invention.
  • This solid-state imaging device includes an imaging region 1, a row selection circuit 3, a pixel current source circuit 4, a clamp circuit 5, a sample hold (S / H) circuit 6, a column ADC 44, a digital mixer 45, and a control unit 9. .
  • the column ADC 44 is configured such that basic units provided corresponding to the respective columns of the pixels 11 are arranged in an array in the row direction, and converts the row-unit analog pixel signals held in the S / H circuit 6 into digital signals. To do.
  • the digital mixer 45 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction, and mixes output data (digital signal) of the column ADC 44.
  • the detailed configuration of the unit cell 2, the pixel current source circuit 4, the clamp circuit 5, the S / H circuit 6, and the row selection circuit 3 is the same as that of the solid-state imaging device of the first embodiment.
  • FIG. 18 is a diagram showing a detailed configuration of the column ADC 44.
  • the column ADC 44 includes a plurality of basic units 44 a and a column ADC input terminal 46, a ramp waveform generation circuit 48, and a counter 50.
  • the basic unit 44 a of the column ADC 44 includes a comparator 47 and a latch 49.
  • the comparator 47 receives the pixel signal from the S / H circuit 6 input from the column ADC input terminal 46, compares the input pixel signal with the ramp waveform of the ramp waveform generation circuit 48, and the ramp waveform is When it is lower than the pixel signal, the Hi voltage is output.
  • the latch 49 receives the output (counter value) of the counter 50, and writes the output of the counter 50 when the latch signal from the counter 50 is switched from the Hi voltage to the Lo voltage.
  • the counter 50 counts up in synchronization with the ramp waveform generated by the ramp waveform generation circuit 48.
  • a pixel signal is input to the column ADC 44, the ramp waveform is set to the minimum value of the pixel signal, and the counter 50 is set to 0. At this time, since the ramp waveform is at a lower level than the pixel signal, the latch signal is at the Hi voltage.
  • the ramp waveform level starts to rise.
  • the rising slope is set to reach the maximum value of the pixel signal at timing t3.
  • the counter 50 also counts up in synchronization with the ramp waveform rise.
  • the latch signal is switched to the Lo voltage, and the counter value at that time is written in the latch 49.
  • the digital value written in the latch 49 is a value corresponding to the pixel signal.
  • the solid-state imaging device includes an all-pixel readout mode and a pixel mixture mode, similarly to the solid-state imaging device according to the first embodiment. Next, the signal reading operation in each mode will be described.
  • the unit cells 2 for one row are selected, and pixel signals for one row are read from the unit cells 2 and held in the S / H circuit 6.
  • the pixel signals for one row are read from the S / H circuit 6 to the column ADC 44 and are digitally converted by the column ADC 44.
  • the mixed pixel signal is read from the S / H circuit 6 to the column ADC 44 and is digitally converted by the column ADC 44.
  • digital signals are simultaneously read out from the basic units 44 a of the column ADCs 44 in a plurality of columns to the digital mixer 45 and mixed by the digital mixer 45.
  • the mixed digital signals are sequentially output to the outside of the chip via the output unit (not shown).
  • the solid-state imaging device As described above, according to the solid-state imaging device according to the present embodiment, a digital output solid-state imaging device having a pixel mixing function suitable for high image quality while suppressing fluctuations in operating current can be realized.
  • the MUX 7, the output amplifier 10, and the analog front end portion that performs AD conversion in the subsequent stage are wide-band circuits for a high data transfer rate. become. For this reason, there exists a subject that the noise from the outside tends to mix.
  • the solid-state imaging device has an advantage that the resistance to the disturbance noise is greatly improved since the signal is digitized by the column circuit. This also leads to easy creation of a camera substrate using a solid-state imaging device.
  • the present invention is not limited to this embodiment.
  • the present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
  • the solid-state imaging device of the above embodiment includes a lens that collects external light on the solid-state imaging device, an image signal processing device that processes a signal from the solid-state imaging device, and a signal processed by the image signal processing device. It can be used in an imaging apparatus that includes an image storage device for storing and has a still image shooting function and a moving image shooting function with a lower resolution and a higher frame rate than a still image.
  • each transistor constituting the solid-state imaging device is an n-channel type MOS transistor, but may be a p-channel type MOS transistor.
  • the present invention is useful as a solid-state imaging device and an imaging device, and particularly useful as an image sensor for an imaging device that requires high image quality and high functionality such as a digital single-lens reflex camera and a high-end compact camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

In order to provide an imaging device and a solid-state imaging device that can obtain high-quality images when operating in pixel-blending mode, the devices are provided with: a plurality of unit cells (2) that are arrayed two-dimensionally and that each have a pixel (11), an FD (13), a reset transistor (14), and an amplifying transistor (15); a vertical signal line (19) that is provided corresponding to a column of pixels (11), connects with the sources of the amplifying transistors (15) of the unit cells (2) containing the corresponding column of pixels (11), and transmits the signals of the corresponding column of pixels (11); a pixel current-source circuit (4) that supplies current to the vertical signal line (19) when the signal of a pixel is output to the vertical signal line (19) ; a pixel power-source line (17) that is connected to the drains of the amplifying transistors (15) and the drains of the reset transistors (14); and a resistive element (61) inserted between the source of the amplifying transistor (15) and the vertical signal line (19).

Description

固体撮像装置及び撮像装置Solid-state imaging device and imaging device
 本発明は、入射された光を光電変換する画素が半導体基板上に2次元状に配置された固体撮像装置及び撮像装置に関する。 The present invention relates to a solid-state imaging device and an imaging device in which pixels that photoelectrically convert incident light are two-dimensionally arranged on a semiconductor substrate.
 MOS型イメージセンサ(固体撮像装置)は高速及び高感度など優れた特徴があり、MOS型イメージセンサを搭載したデジタル一眼レフカメラ(DSLR)の市場は近年急速に拡大している。また、最近は静止画撮影機能だけでなく、ハイビジョン動画記録機能を搭載したDSLR(Digital Single Lens Reflex camera)も増えてきている。これは静止画撮影用の全画素読み出しモードだけでなく、動画記録用の画素混合モードも高画質であることがMOS型イメージセンサで必要になっていることを意味する。MOS型イメージセンサとしては、例えば特許文献1に開示されているものがある。 MOS type image sensors (solid-state imaging devices) have excellent features such as high speed and high sensitivity, and the market for digital single lens reflex cameras (DSLR) equipped with MOS type image sensors has been rapidly expanding in recent years. Recently, not only the still image shooting function but also the DSLR (Digital Single Lens Reflex camera) equipped with a high-definition video recording function is increasing. This means that the MOS type image sensor needs to have high image quality not only in the all-pixel readout mode for still image shooting but also in the pixel mixing mode for moving image recording. As the MOS type image sensor, for example, there is one disclosed in Patent Document 1.
米国特許第7091466号明細書US Pat. No. 7,091,466
 図20は、特許文献1に記載されている固体撮像装置の全体構成を示す図である。 FIG. 20 is a diagram showing an overall configuration of the solid-state imaging device described in Patent Document 1.
 この固体撮像装置は、撮像領域201及び画素読み出し回路100から構成される。撮像領域201は、行列状に配置され、入射された光を光電変換する複数の単位セル202と、単位セル202の列に対応して設けられた垂直信号線101及び102とを含む。 This solid-state imaging device includes an imaging region 201 and a pixel readout circuit 100. The imaging region 201 is arranged in a matrix and includes a plurality of unit cells 202 that photoelectrically convert incident light, and vertical signal lines 101 and 102 that are provided corresponding to the columns of the unit cells 202.
 単位セル202は、フォトダイオード211、増幅トランジスタ215、リセットスイッチ214及び行選択スイッチ216を含む。画素読み出し回路100は、電流源103、グランド接続スイッチ104、負荷トランジスタ105及び電源接続スイッチ106を含む。 The unit cell 202 includes a photodiode 211, an amplification transistor 215, a reset switch 214, and a row selection switch 216. The pixel readout circuit 100 includes a current source 103, a ground connection switch 104, a load transistor 105, and a power supply connection switch 106.
 次に、図20の固体撮像装置の動作を説明する。 Next, the operation of the solid-state imaging device of FIG. 20 will be described.
 この固体撮像装置の駆動モードは、全画素読み出しモードと画素混合モードの2種類である。 There are two drive modes for this solid-state imaging device: an all-pixel readout mode and a pixel mixture mode.
 全画素読み出しモードでは、グランド接続スイッチ104がオフ、選択された行の単位セル202の行選択スイッチ216がオン、電源接続スイッチ106がオンに設定される。これにより、選択された単位セル202の増幅トランジスタ215の行選択スイッチ216側のソース端子及びドレイン端子のいずれか一方には垂直信号線101を介して電流源103が接続され、行選択スイッチ216側と反対側のソース端子及びドレイン端子のいずれか他方には垂直信号線102を介して電源が接続される。この構成では単位セル202の増幅トランジスタ215と電流源103とでソースフォロアアンプが形成され、画素出力線107から選択された単位セル202の信号が読み出される。1行ずつ順次行選択スイッチ216をオンにして単位セル202の信号を読み出せば、全ての単位セル202の信号が読み出される。 In the all-pixel readout mode, the ground connection switch 104 is turned off, the row selection switch 216 of the unit cell 202 in the selected row is turned on, and the power connection switch 106 is turned on. As a result, the current source 103 is connected to either the source terminal or the drain terminal on the row selection switch 216 side of the amplification transistor 215 of the selected unit cell 202 via the vertical signal line 101, and the row selection switch 216 side A power source is connected to the other of the source terminal and the drain terminal on the opposite side via a vertical signal line 102. In this configuration, the amplification transistor 215 of the unit cell 202 and the current source 103 form a source follower amplifier, and the signal of the selected unit cell 202 is read from the pixel output line 107. When the row selection switch 216 is sequentially turned on one row at a time and the signals of the unit cells 202 are read, the signals of all the unit cells 202 are read.
 一方、画素混合モードでは、グランド接続スイッチ104がオン、選択された行の単位セル202の行選択スイッチ216がオン、電源接続スイッチ106がオフに設定される。これにより、選択された単位セル202の増幅トランジスタ215の行選択スイッチ216側のソース端子及びドレイン端子のいずれか一方には垂直信号線101を介してグランドが接続され、行選択スイッチ216側と反対側のソース端子及びドレイン端子のいずれか他方には垂直信号線102を介して負荷トランジスタ105が接続される。この構成では単位セル202の増幅トランジスタ215と負荷トランジスタ105とでソース接地アンプが形成され、2行の行選択スイッチ216を同時にオンすれば、列方向に並ぶ上下2つの単位セル202の信号を混合した混合信号が画素出力線108から得られる。2行ずつ順次行選択スイッチ216をオンにして混合信号を読み出せば、撮像領域201全体の混合信号が読み出される。 On the other hand, in the pixel mixture mode, the ground connection switch 104 is turned on, the row selection switch 216 of the unit cell 202 of the selected row is turned on, and the power connection switch 106 is turned off. As a result, the ground is connected to either the source terminal or the drain terminal on the row selection switch 216 side of the amplification transistor 215 of the selected unit cell 202 via the vertical signal line 101, and opposite to the row selection switch 216 side. A load transistor 105 is connected to one of the source terminal and the drain terminal on the side through a vertical signal line 102. In this configuration, a common source amplifier is formed by the amplification transistor 215 and the load transistor 105 of the unit cell 202, and if the row selection switches 216 of two rows are simultaneously turned on, the signals of the upper and lower unit cells 202 arranged in the column direction are mixed. The mixed signal is obtained from the pixel output line 108. If the mixed signal is read by sequentially turning on the row selection switch 216 two rows at a time, the mixed signal of the entire imaging region 201 is read.
 しかしながら、図20の固体撮像装置を画素混合モードで駆動させた場合、混合信号の信号レベルに応じて動作電流が変動する。その結果、全ての画素読み出し回路100で共通して設けられた電源にゆれが発生し、混合信号により得られる撮像画像(画素混合画像)が劣化する。 However, when the solid-state imaging device of FIG. 20 is driven in the pixel mixing mode, the operating current varies according to the signal level of the mixed signal. As a result, the power supply provided in common for all the pixel readout circuits 100 is shaken, and the captured image (pixel mixed image) obtained by the mixed signal is deteriorated.
 そこで、本発明は、かかる問題点に鑑み、画素混合モードで駆動させたときでも高画質な画像を得ることができる固体撮像装置及び撮像装置を提供することを目的とする。 Therefore, in view of such a problem, an object of the present invention is to provide a solid-state imaging device and an imaging device capable of obtaining a high-quality image even when driven in a pixel mixing mode.
 上記目的を達成するために、本発明の一態様に係る固体撮像装置は、受光量に応じた信号を生成する画素と、前記画素の信号を蓄積するためのフローティングディフュージョンと、ソースが前記フローティングディフュージョンと接続されたリセットトランジスタと、ゲートが前記フローティングディフュージョンと接続された増幅トランジスタとを有し、2次元状に配列された複数の単位セルと、前記画素の列に対応して設けられ、対応する列の画素を含む前記単位セルの前記増幅トランジスタのソースと接続され、対応する列の画素の信号を伝達する垂直信号線と、前記垂直信号線に前記画素の信号が出力されるときに前記垂直信号線に電流を供給する画素電流源と、前記リセットトランジスタのドレインと前記増幅トランジスタのドレインとに接続された画素電源線と、前記増幅トランジスタのソースと前記垂直信号線との間、又は前記増幅トランジスタのドレインと前記画素電源線との間に挿入され、前記垂直信号線に前記画素の信号が出力されるときに抵抗として機能する素子とを備えることを特徴とする。 In order to achieve the above object, a solid-state imaging device according to an aspect of the present invention includes a pixel that generates a signal corresponding to an amount of received light, a floating diffusion that accumulates the signal of the pixel, and a source that is the floating diffusion. A plurality of unit cells arranged in a two-dimensional manner and corresponding to the column of pixels, and corresponding to the reset transistor connected to each other and amplifying transistors whose gates are connected to the floating diffusion A vertical signal line that is connected to a source of the amplification transistor of the unit cell including the pixel of the column and transmits a signal of the pixel of the corresponding column; and when the signal of the pixel is output to the vertical signal line A pixel current source that supplies current to the signal line, a drain of the reset transistor, and a drain of the amplification transistor. And a pixel power supply line connected to IN and between the source of the amplification transistor and the vertical signal line, or between the drain of the amplification transistor and the pixel power supply line, and the pixel is connected to the vertical signal line. And an element that functions as a resistor when the above signal is output.
 本態様によれば、複数の行を同時に選択して垂直信号線に複数の行の信号を同時に出力させ、信号を垂直信号線上で混合して信号の混合を行うときでも増幅トランジスタにシリアル接続された抵抗により所望のフローティングディフュージョンの動作レンジを確保することができる。その結果、画素混合モードにおける信号混合時の動作電流の変動を抑えることができ、高画質な画像を得ることができる。 According to this aspect, even when a plurality of rows are simultaneously selected and signals of a plurality of rows are simultaneously output to the vertical signal line, and the signals are mixed on the vertical signal line, they are serially connected to the amplification transistor. A desired floating diffusion operating range can be secured by the resistance. As a result, fluctuations in the operating current during signal mixing in the pixel mixing mode can be suppressed, and high-quality images can be obtained.
 ここで、本発明の一態様に係る固体撮像装置は、前記抵抗として機能する素子はトランジスタであってもよい。このとき、前記抵抗として機能するトランジスタのオン抵抗は前記リセットトランジスタ又は前記増幅トランジスタよりも大きくてもよい。 Here, in the solid-state imaging device according to one embodiment of the present invention, the element functioning as the resistor may be a transistor. At this time, the on-resistance of the transistor functioning as the resistor may be larger than that of the reset transistor or the amplification transistor.
 本態様によれば、信号出力を目的として単位セルに設けられているトランジスタを抵抗として用いることで、抵抗素子を別途単位セルに設ける必要がなくなるので、単位セルの回路面積の縮小及び感度の向上を実現することができる。 According to this aspect, by using a transistor provided in the unit cell for the purpose of signal output as a resistor, there is no need to separately provide a resistive element in the unit cell, so the circuit area of the unit cell is reduced and the sensitivity is improved. Can be realized.
 本発明に係る固体撮像装置によれば、画素混合モードで駆動させたときでも高画質な画像を得ることができ、高画質な静止画撮影機能と動画記録機能とを有するDSLRの実現が容易になるという効果が得られる。 According to the solid-state imaging device of the present invention, it is possible to obtain a high-quality image even when driven in the pixel mixing mode, and it is easy to realize a DSLR having a high-quality still image shooting function and a moving image recording function. The effect of becoming is obtained.
図1は、本発明の第1の実施形態における固体撮像装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態の形態における固体撮像装置の撮像領域の詳細な構成を示す回路図である。FIG. 2 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態における固体撮像装置の列回路の詳細な構成を示す図である。FIG. 3 is a diagram showing a detailed configuration of the column circuit of the solid-state imaging device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態における固体撮像装置のマルチプレクサ及びその周辺の詳細な構成を示す図である。FIG. 4 is a diagram illustrating a detailed configuration of the multiplexer and its periphery in the solid-state imaging device according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態における固体撮像装置の行選択回路の詳細な構成を示す図である。FIG. 5 is a diagram illustrating a detailed configuration of the row selection circuit of the solid-state imaging device according to the first embodiment of the present invention. 図6は、本発明の第1の実施形態における固体撮像装置の全画素読み出しモード時の単位セルと列回路に供給される各制御信号のタイミングを示す図である。FIG. 6 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit when the solid-state imaging device according to the first embodiment of the present invention is in the all-pixel readout mode. 図7は、本発明の第1の実施形態における固体撮像装置の垂直2画素水平2画素の画素混合モード時の単位セルと列回路に供給される各制御信号のタイミングを示す図である。FIG. 7 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels of the solid-state imaging device according to the first embodiment of the present invention. 図8は、本発明の第1の実施形態における固体撮像装置の全画素読み出しモード時のFDの電位Vfdと画素SF出力Voとの関係を示す図である。FIG. 8 is a diagram illustrating a relationship between the FD potential Vfd and the pixel SF output Vo when the solid-state imaging device according to the first embodiment of the present invention is in the all-pixel readout mode. 図9は、本発明の第1の実施形態における固体撮像装置の画素混合モード時のFDの電位Vfdと画素SF出力Voとの関係を示す図である。FIG. 9 is a diagram illustrating a relationship between the FD potential Vfd and the pixel SF output Vo when the solid-state imaging device according to the first embodiment of the present invention is in the pixel mixture mode. 図10は、本発明の第2の実施形態における固体撮像装置の撮像領域の詳細な構成を示す回路図である。FIG. 10 is a circuit diagram showing a detailed configuration of the imaging region of the solid-state imaging device according to the second embodiment of the present invention. 図11は、本発明の第2の実施形態における固体撮像装置の行選択回路の詳細な構成を示す図である。FIG. 11 is a diagram illustrating a detailed configuration of the row selection circuit of the solid-state imaging device according to the second embodiment of the present invention. 図12は、本発明の第2の実施形態における固体撮像装置の行選択回路の他の詳細な構成を示す図である。FIG. 12 is a diagram illustrating another detailed configuration of the row selection circuit of the solid-state imaging device according to the second embodiment of the present invention. 図13は、本発明の第3の実施形態における固体撮像装置の撮像領域の詳細な構成を示す回路図である。FIG. 13 is a circuit diagram illustrating a detailed configuration of the imaging region of the solid-state imaging device according to the third embodiment of the present invention. 図14は、本発明の第3の実施形態における固体撮像装置の全画素読み出しモード時の単位セルと列回路に供給される各制御信号のタイミングを示す図である。FIG. 14 is a diagram illustrating the timing of each control signal supplied to the unit cell and the column circuit in the all-pixel readout mode of the solid-state imaging device according to the third embodiment of the present invention. 図15は、本発明の第3の実施形態における固体撮像装置の垂直2画素水平2画素の画素混合モード時の単位セルと列回路に供給される各制御信号のタイミングを示す図である。FIG. 15 is a diagram illustrating timings of control signals supplied to the unit cell and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels of the solid-state imaging device according to the third embodiment of the present invention. 図16は、本発明の第4の実施形態における固体撮像装置の撮像領域の詳細な構成を示す回路図である。FIG. 16 is a circuit diagram illustrating a detailed configuration of the imaging region of the solid-state imaging device according to the fourth embodiment of the present invention. 図17は、本発明の第5の実施形態における固体撮像装置の全体構成を示す図である。FIG. 17 is a diagram illustrating an overall configuration of a solid-state imaging device according to the fifth embodiment of the present invention. 図18は、本発明の第5の実施形態における固体撮像装置のカラムADCの詳細な構成を示す図である。FIG. 18 is a diagram illustrating a detailed configuration of the column ADC of the solid-state imaging device according to the fifth embodiment of the present invention. 図19は、本発明の第5の実施形態における固体撮像装置のカラムADCのAD変換動作を説明するためのタイミングチャートを示す図である。FIG. 19 is a timing chart for explaining the AD conversion operation of the column ADC of the solid-state imaging device according to the fifth embodiment of the present invention. 図20は、特許文献1に記載の固体撮像装置の全体構成を示す図である。FIG. 20 is a diagram illustrating an overall configuration of the solid-state imaging device described in Patent Document 1.
 以下、本発明の実施の形態における固体撮像装置及び撮像装置について、図面を参照しながら説明する。 Hereinafter, a solid-state imaging device and an imaging device according to an embodiment of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態における固体撮像装置の全体構成を示す図である。図2は、同固体撮像装置の撮像領域1の詳細な構成を示す回路図である。
(First embodiment)
FIG. 1 is a diagram illustrating an overall configuration of a solid-state imaging device according to the first embodiment of the present invention. FIG. 2 is a circuit diagram illustrating a detailed configuration of the imaging region 1 of the solid-state imaging device.
 この固体撮像装置は、撮像領域1、行選択回路3、画素電流源回路4、クランプ回路5、サンプルホールド(S/H)回路6、マルチプレクサ(MUX)7、列選択回路8、制御部9及び出力アンプ10から構成される。 This solid-state imaging device includes an imaging region 1, a row selection circuit 3, a pixel current source circuit 4, a clamp circuit 5, a sample hold (S / H) circuit 6, a multiplexer (MUX) 7, a column selection circuit 8, a control unit 9, and The output amplifier 10 is configured.
 撮像領域1は、半導体基板に2次元状(行列状)に配置された複数の単位セル2と、画素(受光部)11の列に対応して設けられ、対応する列の画素11を含む単位セル2の増幅トランジスタのソース端子と接続され、対応する列の画素11からの出力信号を列方向(垂直方向)に伝達するための垂直信号線19と、単位セル2のリセットトランジスタ14のドレイン端子と増幅トランジスタ15のドレイン端子とに接続され、単位セル2に初期電圧を供給するための画素電源線17とを含む。なお、図1では6×4個の単位セル2が2次元状に配列された例が示されているが、実際の単位セル2の数は数百万個以上である。 The imaging region 1 is provided corresponding to a column of a plurality of unit cells 2 and pixels (light receiving units) 11 arranged in a two-dimensional shape (matrix) on a semiconductor substrate, and includes a unit 11 including pixels 11 of the corresponding column. A vertical signal line 19 connected to the source terminal of the amplification transistor of the cell 2 and transmitting the output signal from the pixel 11 of the corresponding column in the column direction (vertical direction), and the drain terminal of the reset transistor 14 of the unit cell 2 And a pixel power line 17 connected to the drain terminal of the amplifying transistor 15 and supplying an initial voltage to the unit cell 2. Although FIG. 1 shows an example in which 6 × 4 unit cells 2 are two-dimensionally arranged, the actual number of unit cells 2 is several million or more.
 行選択回路3は、単位セル2の横1行毎に設けられた、同一行の複数の単位セル2に共通の制御信号つまり行選択信号SEL[n]、リセット信号RST[n]及び転送信号TRAN[n](nは1以上の自然数)を供給するための3本の制御線と接続されている。行選択回路3は、撮像領域1の各単位セル2に対して、これら制御線を介して単位セル2の行単位でリセット(初期化)、リード(読み出し)、及びラインセレクト(行選択)を制御し、垂直信号線19に信号を出力させる画素11を行単位で選択する。 The row selection circuit 3 is provided for each horizontal row of the unit cells 2 and is common to a plurality of unit cells 2 in the same row, that is, a row selection signal SEL [n], a reset signal RST [n], and a transfer signal. It is connected to three control lines for supplying TRAN [n] (n is a natural number of 1 or more). The row selection circuit 3 resets (initializes), reads (reads), and selects a line (row selection) for each unit cell 2 in the imaging region 1 in units of rows of the unit cell 2 via these control lines. The pixel 11 to be controlled and to output a signal to the vertical signal line 19 is selected in units of rows.
 画素電流源回路4は、画素11の各列に対応して設けられた基本単位が行方向(水平方向)にアレイ状に並んで構成され、垂直信号線19に画素11の信号が出力されるときに垂直信号線19に供給される電流を生成及び供給する。 The pixel current source circuit 4 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction (horizontal direction), and the signal of the pixel 11 is output to the vertical signal line 19. A current supplied to the vertical signal line 19 is sometimes generated and supplied.
 クランプ回路5は、画素11の各列に対応して設けられた基本単位が行方向にアレイ状に並んで構成され、垂直信号線19からの行単位の単位セル2の出力信号から単位セル2で発生する固定パターンノイズ成分を除去する。 The clamp circuit 5 is configured such that basic units provided corresponding to the respective columns of the pixels 11 are arranged in an array in the row direction, and the unit cell 2 is output from the output signal of the unit cell 2 in the row unit from the vertical signal line 19. The fixed pattern noise component generated in step 1 is removed.
 S/H回路6は、画素11の各列に対応して設けられた基本単位が行方向にアレイ状に並んで構成され、クランプ回路5からの行単位の単位セル2の出力信号を保持する。 The S / H circuit 6 includes basic units provided corresponding to the respective columns of the pixels 11 arranged in an array in the row direction, and holds the output signal of the unit cell 2 in units of rows from the clamp circuit 5. .
 MUX7は、画素11の各列に対応して設けられた基本単位が行方向にアレイ状に並んで構成され、S/H回路6の各基本単位と出力アンプ10との接続を切り替える。 The MUX 7 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction, and switches connection between each basic unit of the S / H circuit 6 and the output amplifier 10.
 列選択回路8は、制御線を介してMUX7と接続され、MUX7の動作を制御する。言い換えると、列選択回路8は、クランプ回路5からの出力信号を出力アンプ10に出力させる画素11の列、つまりS/H回路6の基本単位を順次選択する。 The column selection circuit 8 is connected to the MUX 7 via a control line and controls the operation of the MUX 7. In other words, the column selection circuit 8 sequentially selects the column of the pixels 11 that outputs the output signal from the clamp circuit 5 to the output amplifier 10, that is, the basic unit of the S / H circuit 6.
 出力アンプ10は、MUX7を介してS/H回路6からの出力信号を受け取り、受け取った出力信号を増幅した後にチップ外部に出力する。 The output amplifier 10 receives the output signal from the S / H circuit 6 via the MUX 7, amplifies the received output signal, and outputs it to the outside of the chip.
 制御部9は、駆動モードに応じて、行選択回路3を駆動するための駆動信号を行選択回路3に供給する。 The control unit 9 supplies a drive signal for driving the row selection circuit 3 to the row selection circuit 3 in accordance with the drive mode.
 単位セル2は、入射した光を光電変換して受光量に応じた信号電荷を生成し、生成した信号電荷を蓄積及び出力する画素11と、画素11により発生した信号電荷を蓄積し、蓄積した信号電荷を電圧信号として出力するためのフローティングディフュージョン(FD)13と、ソース端子がFD13と接続され、FD13の示す電圧が初期電圧(ここではVDD)になるようにFD13を初期化するためのリセットトランジスタ14と、画素11とFD13との間に挿入され、画素11により出力される信号電荷をFD13に供給するための転送トランジスタ12と、ゲート端子がFD13と接続され、FD13の示す電圧に追従して変化する電圧を垂直信号線19に出力するための増幅トランジスタ15とを備えている。 The unit cell 2 photoelectrically converts incident light to generate a signal charge corresponding to the amount of received light, accumulates and outputs the generated signal charge, and accumulates and accumulates the signal charge generated by the pixel 11. A floating diffusion (FD) 13 for outputting a signal charge as a voltage signal, and a reset for initializing the FD 13 so that the source terminal is connected to the FD 13 and the voltage indicated by the FD 13 becomes an initial voltage (here, VDD). The transistor 14, the transfer transistor 12 inserted between the pixel 11 and the FD 13 and supplying the signal charge output from the pixel 11 to the FD 13, and the gate terminal thereof are connected to the FD 13, and follow the voltage indicated by the FD 13. And an amplifying transistor 15 for outputting to the vertical signal line 19.
 単位セル2は、FD13を初期化した時のFD13の電圧を増幅したリセット電圧と、画素11の信号電荷をFD13に読み出した時のFD13の電圧を増幅したリード電圧とを垂直信号線19に出力する。 The unit cell 2 outputs a reset voltage obtained by amplifying the voltage of the FD 13 when the FD 13 is initialized and a read voltage obtained by amplifying the voltage of the FD 13 when the signal charge of the pixel 11 is read to the FD 13 to the vertical signal line 19. To do.
 単位セル2は、さらに、増幅トランジスタ15のソース端子と垂直信号線19との間に挿入され、行選択回路3から制御線を介して行選択信号SEL[n]をゲート端子に受けたときに増幅トランジスタ15の出力(ソース端子)を垂直信号線19に接続する行選択トランジスタ16と、増幅トランジスタ15にシリアルに接続される形で増幅トランジスタ15のソース端子と行選択トランジスタ16(垂直信号線19)との間に挿入され、画素混合モードでの所望のFD13の動作レンジの確保を可能にする抵抗素子61とを備えている。 The unit cell 2 is further inserted between the source terminal of the amplification transistor 15 and the vertical signal line 19, and when the row selection signal SEL [n] is received at the gate terminal from the row selection circuit 3 via the control line. The row selection transistor 16 that connects the output (source terminal) of the amplification transistor 15 to the vertical signal line 19, and the source terminal of the amplification transistor 15 and the row selection transistor 16 (vertical signal line 19) are serially connected to the amplification transistor 15. ) And a resistance element 61 that can ensure a desired operating range of the FD 13 in the pixel mixture mode.
 抵抗素子61は、拡散領域からなる配線、金属の配線、ポリシリコンの配線、及びコンタクトなどで形成される。画素11の一例としては埋め込み構造のフォトダイオードがある。抵抗素子61は、垂直信号線19に画素11の信号が出力されるときに抵抗として機能する。 The resistance element 61 is formed of a wiring composed of a diffusion region, a metal wiring, a polysilicon wiring, a contact, and the like. An example of the pixel 11 is a photodiode having a buried structure. The resistance element 61 functions as a resistance when the signal of the pixel 11 is output to the vertical signal line 19.
 なお、図2の単位セル2は、画素、転送トランジスタ、FD、リセットトランジスタ及び増幅トランジスタを有する構造、いわゆる1画素1セル構造を有するとした。しかし、単位セル2は、複数の画素を含み、さらに、FD、リセットトランジスタ及び増幅トランジスタのいずれか、あるいは、すべてを単位セル内で共有する構造、いわゆる多画素1セル構造を有しても構わない。 Note that the unit cell 2 in FIG. 2 has a structure including a pixel, a transfer transistor, an FD, a reset transistor, and an amplification transistor, that is, a so-called one-pixel one-cell structure. However, the unit cell 2 includes a plurality of pixels, and may have a structure in which any one or all of the FD, the reset transistor, and the amplification transistor are shared within the unit cell, that is, a so-called multi-pixel 1-cell structure. Absent.
 また、画素11は半導体基板の表面、すなわち、トランジスタのゲート端子及び配線が形成された面と同じ面側に形成される構造を用いることが出来る。さらに、画素11が半導体基板の裏面、すなわちトランジスタのゲート端子及び配線が形成された面に対して裏面側に形成される、いわゆる、裏面照射型イメージセンサ(裏面照射型固体撮像装置)の構造を用いることも出来る。 In addition, the pixel 11 can have a structure formed on the surface of the semiconductor substrate, that is, on the same side as the surface on which the gate terminal and the wiring of the transistor are formed. Furthermore, the structure of a so-called back-side illumination type image sensor (back-side illumination type solid-state imaging device) in which the pixels 11 are formed on the back side of the semiconductor substrate, that is, the side on which the gate terminal and the wiring of the transistor are formed. It can also be used.
 図3は、列回路の詳細な構成を示す図である。 FIG. 3 is a diagram showing a detailed configuration of the column circuit.
 この列回路は、同一列の画素11から出力された信号を処理し、画素電流源回路4の基本単位4aと、クランプ回路5の基本単位5aと、S/H回路6の基本単位6aとから構成される。同列回路は、画素11毎または単位セル2毎に垂直信号線19に出力されるリセット電圧とリード電圧との差分を示す画素信号を一時保持した後、その差分を示す画素信号をMUX7に出力する。 The column circuit processes signals output from the pixels 11 in the same column, and includes a basic unit 4 a of the pixel current source circuit 4, a basic unit 5 a of the clamp circuit 5, and a basic unit 6 a of the S / H circuit 6. Composed. The column circuit temporarily holds a pixel signal indicating a difference between the reset voltage and the read voltage output to the vertical signal line 19 for each pixel 11 or for each unit cell 2, and then outputs a pixel signal indicating the difference to the MUX 7. .
 画素電流源回路4の基本単位4aは、ゲート端子に電流源バイアス電圧21が供給され、単位セル2から垂直信号線19への信号読み出し時に、増幅トランジスタ15に電流を供給する電流源トランジスタ20からなる。 The basic unit 4a of the pixel current source circuit 4 is supplied with a current source bias voltage 21 at its gate terminal, and from the current source transistor 20 that supplies current to the amplifying transistor 15 when a signal is read from the unit cell 2 to the vertical signal line 19. Become.
 クランプ回路5の基本単位5aは、画素信号を求めるための容量値Cclのクランプ容量23と、ゲート端子にサンプリング信号が供給されるサンプリングトランジスタ22と、クランプ容量23のS/H回路6と反対側(画素電流源回路4側)の端子電位をクランプ電位(VCL)に設定するためのクランプ電圧入力端子25及びゲート端子にクランプ信号が供給されるクランプトランジスタ24とからなる。 The basic unit 5a of the clamp circuit 5 includes a clamp capacitor 23 having a capacitance value Ccl for obtaining a pixel signal, a sampling transistor 22 to which a sampling signal is supplied to the gate terminal, and the S / H circuit 6 opposite to the clamp capacitor 23. It comprises a clamp voltage input terminal 25 for setting the terminal potential on the pixel current source circuit 4 side to the clamp potential (VCL) and a clamp transistor 24 to which a clamp signal is supplied to the gate terminal.
 S/H回路6の基本単位6aは、画素信号を一時保持するための容量値CshのS/H容量27と、ゲート端子にS/H容量入力信号が供給され、S/H容量27に画素信号を入力するためのS/H容量入力トランジスタ26を含む。 The basic unit 6 a of the S / H circuit 6 includes an S / H capacitor 27 having a capacitance value Csh for temporarily holding a pixel signal, an S / H capacitor input signal supplied to the gate terminal, and a pixel in the S / H capacitor 27. An S / H capacitor input transistor 26 for inputting a signal is included.
 図4は、MUX7及びその周辺の詳細な構成を示す図である。 FIG. 4 is a diagram showing a detailed configuration of the MUX 7 and its surroundings.
 MUX7の基本単位7aは、S/H回路6の基本単位6aと水平共通信号線29との間に配置された列選択トランジスタ28から構成される。列選択トランジスタ28は、ゲート端子に供給される列選択信号H[n]に応じてS/H回路6の各基本単位6aに保持された画素信号を水平共通信号線29に順次出力する。水平共通信号線29を介して出力アンプ10に供給された画素信号は増幅された後にチップ外部に出力される。 The basic unit 7 a of the MUX 7 includes a column selection transistor 28 disposed between the basic unit 6 a of the S / H circuit 6 and the horizontal common signal line 29. The column selection transistor 28 sequentially outputs the pixel signal held in each basic unit 6 a of the S / H circuit 6 to the horizontal common signal line 29 in response to the column selection signal H [n] supplied to the gate terminal. The pixel signal supplied to the output amplifier 10 via the horizontal common signal line 29 is amplified and then output to the outside of the chip.
 図5は、行選択回路3の詳細な構成を示す図である。 FIG. 5 is a diagram showing a detailed configuration of the row selection circuit 3.
 行選択回路3は、アドレスデコーダ31と、単位セル2の各行に対応して設けられた複数の行選択用論理回路32とから構成される。 The row selection circuit 3 includes an address decoder 31 and a plurality of row selection logic circuits 32 provided corresponding to each row of the unit cell 2.
 アドレスデコーダ31では、制御部9から供給されるアドレス信号ADRに応じて所定の行選択用論理回路32にHi電圧が出力され、所定の行選択用論理回路32のフリップフロップ33にライトイネーブル信号が入力される。ライトイネーブル信号が入力されたフリップフロップ33にはHi電圧が設定され、そのフリップフロップ33とANDゲート34を介して接続された行の単位セル2は選択状態になる。選択された状態で、各制御用のパルスSEL_s、TRAN_s及びRST_sが入力されると、選択された行の単位セル2に行選択信号SEL[n]、リセット信号RST[n]及び転送信号TRAN[n]が供給される。単位セル2の駆動が完了したら、各フリップフロップ33の値がLo電圧にリセットされ、行選択が解除される。 In the address decoder 31, a Hi voltage is output to a predetermined row selection logic circuit 32 according to the address signal ADR supplied from the control unit 9, and a write enable signal is output to the flip-flop 33 of the predetermined row selection logic circuit 32. Entered. The Hi voltage is set in the flip-flop 33 to which the write enable signal is input, and the unit cell 2 in the row connected to the flip-flop 33 via the AND gate 34 is selected. When the control pulses SEL_s, TRAN_s, and RST_s are input in the selected state, the row selection signal SEL [n], the reset signal RST [n], and the transfer signal TRAN [ n]. When the driving of the unit cell 2 is completed, the value of each flip-flop 33 is reset to the Lo voltage, and the row selection is released.
 本実施形態の固体撮像装置は、カメラスチル撮影に使える全画素読み出しモードと動画記録機能に使える画素混合モードとを備えている。次に、それぞれのモードに関し信号読み出し動作を説明する。 The solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
 図6は、本実施形態の固体撮像装置における全画素読み出しモード時の単位セル2と列回路に供給される各制御信号のタイミングを示す図である。 FIG. 6 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment.
 タイミングt1では、1行目の単位セル2について、転送トランジスタ12がオフ状態でリセットトランジスタ14はオン状態であり、FD13の電位(以下ではVfd)はFDリセット電位Vfdrst(=VDD)に初期化される。 At timing t1, for the unit cell 2 in the first row, the transfer transistor 12 is off and the reset transistor 14 is on, and the potential of the FD 13 (hereinafter Vfd) is initialized to the FD reset potential Vfdrst (= VDD). The
 タイミングt2では、1行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持され、VfdはFDリセット電位Vfdrstに維持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cell 2 in the first row, the reset state of Vfd is maintained and Vfd is maintained at the FD reset potential Vfdrst.
 このとき、1行目の単位セル2について、行選択トランジスタ16はオン状態のため、増幅トランジスタ15のしきい値電圧をVth、抵抗素子61の抵抗値をR、画素電流源回路4の電流値をIとすると、Vfdrst-Vth-RI(正確にはVfdrst-Vth-RI-αであるが、ここではαは省略)がリセット電圧として垂直信号線19に出力される。さらに、このリセット電圧Vfdrst-Vth-RIは、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号とは共にHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, for the unit cell 2 in the first row, since the row selection transistor 16 is in the ON state, the threshold voltage of the amplification transistor 15 is Vth, the resistance value of the resistance element 61 is R, and the current value of the pixel current source circuit 4 Is Vfdrst-Vth-RI (precisely Vfdrst-Vth-RI-α, where α is omitted) is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst−Vth−RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state. On the other hand, both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目の単位セル2について、転送トランジスタ12がオン状態となるため、画素11に蓄積された信号電荷がFD13に転送され、Vfdはこの信号電荷量に応じた電圧Vfdsigだけ低下しVfdrst-Vfdsigとなる。 At the timing t3, since the transfer transistor 12 is turned on for the unit cell 2 in the first row, the signal charge accumulated in the pixel 11 is transferred to the FD 13, and Vfd is decreased by a voltage Vfdsig corresponding to the signal charge amount. Vfdrst−Vfdsig.
 タイミングt4では、1行目の単位セル2について、転送トランジスタ12がオフ状態で行選択トランジスタ16がオン状態であり、Vfdrst-Vfdsig-Vth-RIがリード電圧として垂直信号線19に出力される。これによりクランプ容量23の入力はVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち画素信号に対応する電圧であり、タイミングt5では、行選択信号SEL[1]及びS/H容量入力信号がLo電圧となりこの画素信号がS/H容量27に蓄積される。 At timing t4, for the unit cell 2 in the first row, the transfer transistor 12 is off and the row selection transistor 16 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage. As a result, the input of the clamp capacitor 23 changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal, and at timing t5, the row selection signal SEL [1] and the S / H capacitor input signal. Becomes the Lo voltage, and this pixel signal is accumulated in the S / H capacitor 27.
 以上により1行分の画素信号がS/H回路6に保持されることになる。 Thus, the pixel signals for one row are held in the S / H circuit 6.
 次に、タイミングt11では、列選択信号H[1]がHi電圧となり、1列目の列選択トランジスタ28がオン状態となる。これにより1列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 Next, at the timing t11, the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[2]がHi電圧となり、2列目の列選択トランジスタ28がオン状態となる。これにより2列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[3]、H[4]・・・をHi電圧にすれば各列のS/H容量27の画素信号が順次チップ外部に出力される。 Similarly, if the column selection signals H [3], H [4],... Are sequentially set to the Hi voltage, the pixel signals of the S / H capacitors 27 in each column are sequentially output outside the chip.
 以上より、1行分の画素信号が順次チップ外部に出力される。 As described above, pixel signals for one row are sequentially output to the outside of the chip.
 図6の動作を撮像領域1の行数だけ繰り返せば、撮像領域1全体の画素信号が読み出されることになる。 If the operation of FIG. 6 is repeated for the number of rows in the imaging area 1, the pixel signals of the entire imaging area 1 are read out.
 図7は、本実施形態の固体撮像装置における垂直2画素水平2画素の画素混合モード時の単位セル2と列回路に供給される各制御信号のタイミングを示す図である。 FIG. 7 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of the present embodiment.
 タイミングt1では、行選択信号SEL[1]及びSEL[2]が共にHi電圧で1行目及び2行目の単位セル2が選択されている。その選択された単位セル2では、転送トランジスタ12がオフ状態でリセットトランジスタ14はオン状態であり、VfdはFDリセット電位Vfdrst(=VDD)に初期化される。2つの行の単位セル2に同時に行選択信号SEL[1]及びSEL[2]並びにリセット信号RST[1]及びRST[2]を入力するには、行選択回路3のアドレスデコーダ31に2つのアドレス信号ADRを順次供給し、行選択用論理回路32のフリップフロップ33にライトイネーブル信号を順次入力しHi電圧を順次設定すれば可能になる(転送信号TRAN[1]及びTRAN[2]についても同様)。 At timing t1, the row selection signals SEL [1] and SEL [2] are both Hi voltage, and the unit cells 2 in the first and second rows are selected. In the selected unit cell 2, the transfer transistor 12 is off and the reset transistor 14 is on, and Vfd is initialized to the FD reset potential Vfdrst (= VDD). In order to simultaneously input the row selection signals SEL [1] and SEL [2] and the reset signals RST [1] and RST [2] to the unit cells 2 of two rows, two address decoders 31 of the row selection circuit 3 This can be achieved by sequentially supplying the address signal ADR, sequentially inputting the write enable signal to the flip-flop 33 of the row selection logic circuit 32, and sequentially setting the Hi voltage (also for the transfer signals TRAN [1] and TRAN [2]). The same).
 タイミングt2では、1行目及び2行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cells 2 in the first row and the second row, the reset state of Vfd is maintained.
 このとき、1行目及び2行目の単位セル2について、行選択トランジスタ16はオン状態のため、Vfdrst-Vth-RI/2がリセット電圧として垂直信号線19に出力される(正確にはVfdrst-Vth-RI/2-αであるが、ここではαは省略)。さらに、このリセット電圧Vfdrst-Vthは、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号とは共にHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, for the unit cells 2 in the first and second rows, since the row selection transistor 16 is in an on state, Vfdrst−Vth−RI / 2 is output to the vertical signal line 19 as a reset voltage (more precisely, Vfdrst -Vth-RI / 2-α, where α is omitted). Further, the reset voltage Vfdrst−Vth is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state. On the other hand, both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目及び2行目の単位セル2について、転送トランジスタ12がオン状態となるため、1行目及び2行目の単位セル2の画素11に蓄積された信号電荷がFD13に転送され、1行目及び2行目の単位セル2それぞれのFD電位Vfd1、Vfd2はこの信号電荷量に応じた電圧Vfdsig1、Vfdsig2だけ低下しVfdrst-Vfdsig1、Vfdrst-Vfdsig2となる。 At the timing t3, the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13. The FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst−Vfdsig1 and Vfdrst−Vfdsig2.
 タイミングt4では、1行目及び2行目の単位セル2について転送トランジスタ12がオフ状態で行選択トランジスタ16がオン状態であり、Vfdsig1とVfdsig2との平均をVfdsigとしたとき、Vfdrst-Vfdsig-Vth-RI/2がリード電圧として垂直信号線19に出力される。このリード電圧は1行目及び2行目の単位セル2の混合信号に相当する。この垂直信号線19の電位変化によりクランプ容量23の入力もVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち1行目及び2行目の単位セル2の平均化された画素信号(垂直画素混合信号)であり、タイミングt5で行選択信号SEL[1]及びSEL[2]並びにS/H容量入力信号がLo電圧となりS/H容量27に蓄積される。 At timing t4, when the transfer transistor 12 is off and the row selection transistor 16 is on for the unit cells 2 in the first and second rows, and Vfdsig1 and Vfdsig2 are averaged to Vfdsig, Vfdrst−Vfdsig−Vth -RI / 2 is output to the vertical signal line 19 as a read voltage. This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows. At timing t5, the row selection signals SEL [1] and SEL [2] and the S / H capacitor input signal become Lo voltage and are stored in the S / H capacitor 27.
 タイミングt11では、S/H容量入力信号と列選択信号H[1]及びH[2]とがHi電圧となり、1列目及び2列目の列選択トランジスタ28がオン状態となる。これにより、1列目のS/H容量27と2列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t11, the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on. As a result, the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[3]及びH[4]がHi電圧となり、3列目及び4列目の列選択トランジスタ28がオン状態となる。これにより、3列目のS/H容量27と4列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on. As a result, an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[5]、H[6]・・・をHi電圧にすれば各列のS/H容量27の画素信号の平均信号が順次チップ外部に出力される。 Similarly, if the column selection signals H [5], H [6],... Are sequentially set to the Hi voltage, the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
 以上より、垂直2画素水平2画素の画素信号が混合された信号が順次チップ外部に出力される。 From the above, a signal in which pixel signals of two vertical pixels and two horizontal pixels are mixed is sequentially output to the outside of the chip.
 図7の動作を撮像領域1の単位セル2の行数/2だけ繰り返せば、撮像領域1全体の信号が読み出されることになる。 7 is repeated by the number of rows of the unit cells 2 in the imaging region 1/2, the signal of the entire imaging region 1 is read out.
 次に、全画素読み出しモード時(図6)のタイミングt4における増幅トランジスタ15と画素電流源回路4とで構成される画素ソースフォロア(SF)の動作の詳細を説明する。 Next, details of the operation of the pixel source follower (SF) composed of the amplification transistor 15 and the pixel current source circuit 4 at the timing t4 in the all-pixel readout mode (FIG. 6) will be described.
 図8は全画素読み出しモード時(図6)のタイミングt4におけるVfdと画素SF出力Voとの関係を示す図である。VfdとVoとの関係は式(1)及び(2)で表される。 FIG. 8 is a diagram showing the relationship between Vfd and pixel SF output Vo at timing t4 in the all-pixel readout mode (FIG. 6). The relationship between Vfd and Vo is expressed by equations (1) and (2).
  Vo=Vfd-Vth-RI-√(I/a)・・・・・(1)
  a=(1/2)×(W/L)×μeff×Cox・・・・・(2)
Vo = Vfd−Vth−RI−√ (I / a) (1)
a = (1/2) × (W / L) × μeff × Cox (2)
 ここで、Vth、W、L、μeff及びCoxは増幅トランジスタ15のしきい値電圧、ゲート幅、ゲート長、キャリア移動度及びゲート酸化膜厚を示し、Iは画素電流源回路4の電流値を示す。厳密にはVoが変化すると増幅トランジスタ15のソース-基板電位が変化しVthも変化するが、ここではVthは固定値として扱う。 Here, Vth, W, L, μeff, and Cox indicate the threshold voltage, gate width, gate length, carrier mobility, and gate oxide film thickness of the amplification transistor 15, and I indicates the current value of the pixel current source circuit 4. Show. Strictly speaking, when Vo changes, the source-substrate potential of the amplification transistor 15 changes and Vth also changes. Here, Vth is treated as a fixed value.
 VoはVfdから固定値を引いた値になるという線形な特性を示す。Vfdはタイミングt2では、その初期値Vfdrstにあり、タイミングt3で画素11の信号電荷が転送され電位はさがる。この2つのVfdの値に対する画素SFの出力電位の差を列回路で検出することにより画素信号が検出される。 Vo shows a linear characteristic that becomes a value obtained by subtracting a fixed value from Vfd. Vfd is at the initial value Vfdrst at the timing t2, and the signal charge of the pixel 11 is transferred at the timing t3 to reduce the potential. A pixel signal is detected by detecting the difference in the output potential of the pixel SF with respect to the two values of Vfd by a column circuit.
 次に、垂直2画素水平2画素の画素混合モード時(図7)のタイミングt4における画素SFの動作の詳細を説明する。 Next, the details of the operation of the pixel SF at the timing t4 in the pixel mixing mode of two vertical pixels and two horizontal pixels (FIG. 7) will be described.
 図9は、垂直2画素の信号の混合を行う場合の1行目の単位セル2のFD電位Vfd1及び2行目の単位セル2のFD電位Vfd2と画素SF出力Voとの関係を示す図である。 FIG. 9 is a diagram showing the relationship between the FD potential Vfd1 of the unit cell 2 in the first row and the FD potential Vfd2 of the unit cell 2 in the second row and the pixel SF output Vo when mixing signals of two vertical pixels. is there.
 曲線1はVfd1=Vfd2のときの特性であり、曲線2はVfd1をVfdrstに固定し、Vfd2=VfdとしてVfd2のみを変化させたときの特性である。Vfd1=Vfd2のときの特性は信号の混合を行わないときの特性と同様であり式(3)で表される。 Curve 1 is a characteristic when Vfd1 = Vfd2, and curve 2 is a characteristic when Vfd1 is fixed to Vfdrst and only Vfd2 is changed with Vfd2 = Vfd. The characteristic when Vfd1 = Vfd2 is the same as the characteristic when signal mixing is not performed, and is expressed by Expression (3).
  Vo=Vfd-Vth-RI/2-√(I/2a)・・・・・(3) Vo = Vfd-Vth-RI / 2-√ (I / 2a) (3)
 Vfd1=Vfd2のときには増幅トランジスタ15と画素SF出力との間の抵抗が1/2になり、電圧低下量が小さくなっている。一方、曲線2ではVfdがVfdrstから低下したとき一定範囲は線形な特性を示し、2つのVfdの平均に対応する出力が得られる。しかし、VoがVfdrst-Vth-RI-√(I/a)に近づくと低下しなくなる。Voの低下が飽和したときには最初2つの増幅トランジスタ15に分かれて流れていた電流がすべてVfdの高い側の一方の増幅トランジスタ15に流れることになる。これよりFD13の動作可能レンジΔVが決まり式(4)で表される。 When Vfd1 = Vfd2, the resistance between the amplification transistor 15 and the pixel SF output is halved, and the amount of voltage drop is small. On the other hand, in the curve 2, when Vfd decreases from Vfdrst, the certain range shows a linear characteristic, and an output corresponding to the average of the two Vfd is obtained. However, when Vo approaches Vfdrst−Vth−RI−√ (I / a), it does not decrease. When the drop in Vo is saturated, all of the current that has flowed in the two amplification transistors 15 first flows to one amplification transistor 15 on the higher Vfd side. From this, the operable range ΔV of the FD 13 is determined and expressed by equation (4).
  ΔV=RI+(2-√2)×√(I/a)・・・・・(4) ΔV = RI + (2-√2) × √ (I / a) (4)
 式(4)より増幅トランジスタ15にシリアルに挿入した抵抗素子61は垂直に並ぶ複数画素の信号混合における所望の動作レンジの確保を可能にすることがわかる。 From equation (4), it can be seen that the resistance element 61 serially inserted into the amplification transistor 15 can ensure a desired operating range in the signal mixing of a plurality of pixels arranged vertically.
 以上のように本実施形態の固体撮像装置では、垂直信号線19で単位セル2から出力された信号を混合する場合においても、抵抗素子61により所望のFD13の動作レンジを確保できる。その結果、全画素読み出しモード及び画素混合モードの両方で信号読み出し時の動作電流の変動を抑えることができるため、高画質な画像を得ることができる。 As described above, in the solid-state imaging device of the present embodiment, a desired operating range of the FD 13 can be secured by the resistance element 61 even when signals output from the unit cells 2 are mixed by the vertical signal line 19. As a result, fluctuations in the operating current during signal readout can be suppressed in both the all-pixel readout mode and the pixel mixture mode, so that a high-quality image can be obtained.
 なお、図2の単位セル2は、増幅トランジスタ、転送トランジスタ、リセットトランジスタ及び行選択トランジスタという4つのトランジスタを用いた構成であるが、増幅トランジスタ、転送トランジスタ及びリセットトランジスタという3つのトランジスタのみを含む構成でもかまわない。このときの単位セル2の行選択は読み出しを行わない行の単位セル2のVfdに低い電位を設定することにより実行される。 The unit cell 2 in FIG. 2 has a configuration using four transistors, that is, an amplification transistor, a transfer transistor, a reset transistor, and a row selection transistor, but includes only three transistors, an amplification transistor, a transfer transistor, and a reset transistor. But it doesn't matter. At this time, the row selection of the unit cell 2 is executed by setting a low potential to the Vfd of the unit cell 2 in the row where reading is not performed.
 (第2の実施形態)
 本発明の第2の実施形態による固体撮像装置の全体構成は図1に示す第1の実施形態の固体撮像装置の全体構成と同じである。
(Second Embodiment)
The overall configuration of the solid-state imaging device according to the second embodiment of the present invention is the same as the overall configuration of the solid-state imaging device according to the first embodiment shown in FIG.
 図10は、第2の実施形態の固体撮像装置の撮像領域1の詳細な構成を示す回路図である。 FIG. 10 is a circuit diagram illustrating a detailed configuration of the imaging region 1 of the solid-state imaging device according to the second embodiment.
 この回路と図2に示す第1の実施形態の撮像領域1の回路との違いは増幅トランジスタ15にシリアルに接続する抵抗がなく、行選択トランジスタ16のオン抵抗が単位セル2を構成する他のトランジスタ(リセットトランジスタ14又は増幅トランジスタ15)よりも大きいことである。 The difference between this circuit and the circuit of the imaging region 1 of the first embodiment shown in FIG. 2 is that there is no resistance that is serially connected to the amplification transistor 15, and the on-resistance of the row selection transistor 16 is different from that of the unit cell 2. It is larger than the transistor (reset transistor 14 or amplification transistor 15).
 図11は行選択回路3の詳細な構成を示す図である。 FIG. 11 is a diagram showing a detailed configuration of the row selection circuit 3.
 この行選択回路3と図5に示す第1の実施形態の行選択回路3との違いは行選択信号SEL[n]を生成するANDゲート34の電源として別電位VDDLが供給されていることである。VDDLは他の回路の電源よりも低い電圧に設定される。リセットトランジスタ14及び行選択トランジスタ16のゲート端子にはHi電圧及びHi電圧より低いLo電圧のいずれかが行選択信号SELにより供給されるが、行選択トランジスタ16のゲート端子に供給されるHi電圧はリセットトランジスタ14のゲート端子に供給されるHi電圧よりも低くなるため、行選択トランジスタ16がオン状態になるときの行選択トランジスタ16のオン抵抗が比較的大きな値になる。 The difference between the row selection circuit 3 and the row selection circuit 3 of the first embodiment shown in FIG. 5 is that another potential VDDL is supplied as a power source of the AND gate 34 that generates the row selection signal SEL [n]. is there. VDDL is set to a voltage lower than the power supply of other circuits. Either the Hi voltage or the Lo voltage lower than the Hi voltage is supplied to the gate terminals of the reset transistor 14 and the row selection transistor 16 by the row selection signal SEL. The Hi voltage supplied to the gate terminal of the row selection transistor 16 is Since the voltage is lower than the Hi voltage supplied to the gate terminal of the reset transistor 14, the on-resistance of the row selection transistor 16 when the row selection transistor 16 is turned on becomes a relatively large value.
 本実施形態の固体撮像装置は、カメラスチル撮影に使える全画素読み出しモードと動画記録機能に使える画素混合モードとを備えている。次に、それぞれのモードに関し信号読み出し動作を説明する。 The solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
 本実施形態の固体撮像装置における全画素読み出しモード時の単位セル2と列回路に供給される各制御信号のタイミングは図6に示す第1の実施形態のタイミングと同じである。 The timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment is the same as the timing of the first embodiment shown in FIG.
 すなわち、タイミングt1では、1行目の単位セル2について、転送トランジスタ12がオフ状態でリセットトランジスタ14はオン状態であり、VfdはFDリセット電位Vfdrst(=VDD)に初期化される。 That is, at the timing t1, for the unit cell 2 in the first row, the transfer transistor 12 is off and the reset transistor 14 is on, and Vfd is initialized to the FD reset potential Vfdrst (= VDD).
 タイミングt2では、1行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持され、VfdはFDリセット電位Vfdrstに維持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cell 2 in the first row, the reset state of Vfd is maintained and Vfd is maintained at the FD reset potential Vfdrst.
 このとき、1行目の単位セル2について、行選択トランジスタ16はオン状態であるが、そのゲート電位が低いため、オン抵抗が無視できない大きさRとなる。増幅トランジスタ15のしきい値電圧をVth、画素電流源回路4の電流値をIとすると、Vfdrst-Vth-RI(正確にはVfdrst-Vth-RI-αであるが、ここではαは省略)がリセット電圧として垂直信号線19に出力される。さらに、このリセット電圧Vfdrst-Vth-RIは、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号は共にHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, for the unit cell 2 in the first row, the row selection transistor 16 is in the ON state, but since the gate potential is low, the ON resistance becomes a magnitude R that cannot be ignored. Assuming that the threshold voltage of the amplification transistor 15 is Vth and the current value of the pixel current source circuit 4 is I, Vfdrst-Vth-RI (exactly Vfdrst-Vth-RI-α, where α is omitted) Is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst−Vth−RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state. On the other hand, both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目の単位セル2について、転送トランジスタ12がオン状態となるため、画素11に蓄積された信号電荷がFD13に転送され、Vfdはこの信号電荷量に応じた電圧Vfdsigだけ低下しVfdrst-Vfdsigとなる。 At the timing t3, since the transfer transistor 12 is turned on for the unit cell 2 in the first row, the signal charge accumulated in the pixel 11 is transferred to the FD 13, and Vfd is decreased by a voltage Vfdsig corresponding to the signal charge amount. Vfdrst−Vfdsig.
 タイミングt4では、1行目の単位セル2について、転送トランジスタ12がオフ状態で行選択トランジスタ16がオン状態であり、Vfdrst-Vfdsig-Vth-RIがリード電圧として垂直信号線19に出力される。これによりクランプ容量23の入力はVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち画素信号に対応する電圧であり、タイミングt5では、行選択信号SEL[1]及びS/H容量入力信号がLo電圧となりこの画素信号がS/H容量27に蓄積される。 At timing t4, for the unit cell 2 in the first row, the transfer transistor 12 is off and the row selection transistor 16 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage. As a result, the input of the clamp capacitor 23 changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal, and at timing t5, the row selection signal SEL [1] and the S / H capacitor input signal. Becomes the Lo voltage, and this pixel signal is accumulated in the S / H capacitor 27.
 以上により1行分の画素信号がS/H回路6に保持されることになる。 Thus, the pixel signals for one row are held in the S / H circuit 6.
 次に、タイミングt11では、列選択信号H[1]がHi電圧となり、1列目の列選択トランジスタ28がオン状態となる。これにより1列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 Next, at the timing t11, the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[2]がHi電圧となり、2列目の列選択トランジスタ28がオン状態となる。これにより2列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[3]、H[4]・・・をHi電圧にすれば各列のS/H容量27の画素信号が順次チップ外部に出力される。 Similarly, if the column selection signals H [3], H [4],... Are sequentially set to the Hi voltage, the pixel signals of the S / H capacitors 27 in each column are sequentially output outside the chip.
 以上より、1行分の画素信号が順次チップ外部に出力される。 As described above, pixel signals for one row are sequentially output to the outside of the chip.
 図6の動作を撮像領域1の行数だけ繰り返せば、撮像領域1全体の画素信号が読み出されることになる。 If the operation of FIG. 6 is repeated for the number of rows in the imaging area 1, the pixel signals of the entire imaging area 1 are read out.
 本実施形態の固体撮像装置における垂直2画素水平2画素の画素混合モード時の単位セル2と列回路に供給される各制御信号のタイミングは図7に示す第1の実施形態のタイミングと同じである。 The timing of each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of this embodiment is the same as the timing of the first embodiment shown in FIG. is there.
 すなわち、タイミングt1では、行選択信号SEL[1]及びSEL[2]が共にHi電圧で1行目及び2行目の単位セル2が選択されている。その選択された単位セル2では、転送トランジスタ12がオフ状態でリセットトランジスタ14はオン状態であり、VfdはFDリセット電位Vfdrst(=VDD)に初期化される。2つの行の単位セル2に同時に行選択信号SEL[1]及びSEL[2]並びにリセット信号RST[1]及びRST[2]を入力するには、行選択回路3のアドレスデコーダ31に2つのアドレス信号ADRを順次供給し、行選択用論理回路32のフリップフロップ33にライトイネーブル信号を順次入力しHi電圧を順次設定すれば可能になる(転送信号TRAN[1]及びTRAN[2]についても同様)。 That is, at the timing t1, the row selection signals SEL [1] and SEL [2] are both Hi voltage, and the unit cells 2 in the first and second rows are selected. In the selected unit cell 2, the transfer transistor 12 is off and the reset transistor 14 is on, and Vfd is initialized to the FD reset potential Vfdrst (= VDD). In order to simultaneously input the row selection signals SEL [1] and SEL [2] and the reset signals RST [1] and RST [2] to the unit cells 2 of two rows, two address decoders 31 of the row selection circuit 3 This can be achieved by sequentially supplying the address signal ADR, sequentially inputting the write enable signal to the flip-flop 33 of the row selection logic circuit 32, and sequentially setting the Hi voltage (also for the transfer signals TRAN [1] and TRAN [2]). The same).
 タイミングt2では、1行目及び2行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cells 2 in the first row and the second row, the reset state of Vfd is maintained.
 このとき、1行目及び2行目の単位セル2について、行選択トランジスタ16はオン状態であるが、そのゲート電位が低いためオン抵抗が無視できない大きさRとなり、Vfdrst-Vth-RI/2(正確にはVfdrst-Vth-RI/2-αであるが、ここではαは省略)がリセット電圧として垂直信号線19に出力される。さらに、このリセット電圧Vfdrst-Vth-RI/2は、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号とはHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, for the unit cells 2 in the first row and the second row, the row selection transistor 16 is in the on state, but the on-resistance becomes a magnitude R that cannot be ignored because the gate potential is low, and Vfdrst−Vth−RI / 2. (To be precise, Vfdrst−Vth−RI / 2−α, where α is omitted) is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst−Vth−RI / 2 is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state. On the other hand, the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目及び2行目の単位セル2について、転送トランジスタ12がオン状態となるため、1行目及び2行目の単位セル2の画素11に蓄積された信号電荷がFD13に転送され、1行目及び2行目の単位セル2それぞれのFD電位Vfd1、Vfd2はこの信号電荷量に応じた電圧Vfdsig1、Vfdsig2だけ低下しVfdrst-Vfdsig1、Vfdrst-Vfdsig2となる。 At the timing t3, the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13. The FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst−Vfdsig1 and Vfdrst−Vfdsig2.
 タイミングt4では、1行目及び2行目の単位セル2について転送トランジスタ12がオフ状態で行選択トランジスタ16がオン状態であり、Vfdsig1とVfdsig2との平均をVfdsigとしたとき、Vfdrst-Vfdsig-Vth-RI/2がリード電圧として垂直信号線19に出力される。このリード電圧は1行目及び2行目の単位セル2の混合信号に相当する。この垂直信号線19の電位変化によりクランプ容量23の入力もVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち1行目及び2行目の単位セル2の平均化された画素信号(垂直画素混合信号)であり、タイミングt5で行選択信号SEL[1]及びSEL[2]並びにS/H容量入力信号がLo電圧となりS/H容量27に蓄積される。 At timing t4, when the transfer transistor 12 is off and the row selection transistor 16 is on for the unit cells 2 in the first and second rows, and Vfdsig1 and Vfdsig2 are averaged to Vfdsig, Vfdrst−Vfdsig−Vth -RI / 2 is output to the vertical signal line 19 as a read voltage. This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows. At timing t5, the row selection signals SEL [1] and SEL [2] and the S / H capacitor input signal become Lo voltage and are stored in the S / H capacitor 27.
 タイミングt11では、S/H容量入力信号と列選択信号H[1]及びH[2]とがHi電圧となり、1列目及び2列目の列選択トランジスタ28がオン状態となる。これにより、1列目のS/H容量27と2列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t11, the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on. As a result, the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[3]及びH[4]がHi電圧となり、3列目及び4列目の列選択トランジスタ28がオン状態となる。これにより、3列目のS/H容量27と4列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on. As a result, an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[5]、H[6]・・・をHi電圧にすれば各列のS/H容量27の画素信号の平均信号が順次チップ外部に出力される。 Similarly, if the column selection signals H [5], H [6],... Are sequentially set to the Hi voltage, the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
 以上より、垂直2画素水平2画素の信号が混合された画素信号が順次チップ外部に出力される。 From the above, pixel signals in which signals of 2 vertical pixels and 2 horizontal pixels are mixed are sequentially output to the outside of the chip.
 図7の動作を撮像領域1の単位セル2の行数/2だけ繰り返せば、撮像領域1全体の信号が読み出されることになる。 7 is repeated by the number of rows of the unit cells 2 in the imaging region 1/2, the signal of the entire imaging region 1 is read out.
 この画素混合モードでのFDレンジΔVは第1の実施形態と同様に式(4)であらわされる。行選択トランジスタ16のゲート電位のHi電圧をさげることにより生成されたオン抵抗RによりFD13の動作レンジを確保できることがわかる。 FD range ΔV in this pixel mixture mode is expressed by equation (4) as in the first embodiment. It can be seen that the operating range of the FD 13 can be secured by the on-resistance R generated by reducing the Hi voltage of the gate potential of the row selection transistor 16.
 以上のように、本実施の形態の固体撮像装置によれば、抵抗素子が別途設けられるのではなく、行選択トランジスタ16を増幅トランジスタ15とシリアルに接続された抵抗として機能させる。よって、動作電流の変動を抑えた信号の混合動作が実現できるだけでなく、抵抗素子と行選択トランジスタ16とを1つのデバイスで実現でき、単位セル2の回路面積の縮小及び感度の向上が可能であるという利点もある。 As described above, according to the solid-state imaging device of the present embodiment, a resistance element is not provided separately, but the row selection transistor 16 functions as a resistor connected in series with the amplification transistor 15. Therefore, not only the signal mixing operation with the fluctuation of the operating current can be realized, but also the resistor element and the row selection transistor 16 can be realized by one device, and the circuit area of the unit cell 2 can be reduced and the sensitivity can be improved. There is also an advantage of being.
 なお、行選択トランジスタ16のオン抵抗をあげるために、行選択トランジスタ16のゲート幅を増幅トランジスタ15のゲート幅よりも小さくする、及び行選択トランジスタ16のしきい値電圧を増幅トランジスタ15のしきい値電圧より大きく調整するという方法もある。また、行選択トランジスタ16のゲート長をプロセスで許容される最小値よりも大きくする、例えば行選択トランジスタ16のゲート長を、行選択回路3を構成するトランジスタの最小ゲート長より大きくすることでも行選択トランジスタ16のオン抵抗をあげることができる。 In order to increase the on-resistance of the row selection transistor 16, the gate width of the row selection transistor 16 is made smaller than the gate width of the amplification transistor 15, and the threshold voltage of the row selection transistor 16 is set to the threshold of the amplification transistor 15. There is also a method of adjusting larger than the value voltage. Further, the gate length of the row selection transistor 16 is made larger than the minimum value allowed in the process. For example, the gate length of the row selection transistor 16 is made larger than the minimum gate length of the transistors constituting the row selection circuit 3. The on-resistance of the selection transistor 16 can be increased.
 ここで、行選択トランジスタ16のゲート電位のHi電圧をさげるための他の行選択回路3の構成を図12に示す。 Here, the configuration of another row selection circuit 3 for reducing the Hi voltage of the gate potential of the row selection transistor 16 is shown in FIG.
 行選択トランジスタ16のゲート端子にHi電圧を供給する行選択信号SEL[n]を生成するANDゲート34の電源として出力電圧が可変な可変電源62の出力が供給されている。可変電源62の出力は全画素読み出しモード時には高い電圧、画素混合モード時には低い電圧になる。その結果、画素混合モード時には所望のFDレンジΔVの確保に有効なオン抵抗が得られ、一方全画素読み出しモード時には不要なオン抵抗を小さくでき消費電力が低減できるというメリットがある。 The output of the variable power source 62 having a variable output voltage is supplied as the power source of the AND gate 34 that generates the row selection signal SEL [n] for supplying the Hi voltage to the gate terminal of the row selection transistor 16. The output of the variable power source 62 is a high voltage in the all-pixel reading mode and a low voltage in the pixel mixing mode. As a result, an on-resistance effective for securing a desired FD range ΔV can be obtained in the pixel mixture mode, and an unnecessary on-resistance can be reduced in the all-pixel readout mode, thereby reducing power consumption.
 なお、第2の実施形態の固体撮像装置は、行選択トランジスタ16を抵抗素子として機能させることを特徴とし、その特徴による効果を明確にするために行選択トランジスタ16のゲート電位を低く設定する構成を説明してきた。しかし、行選択トランジスタ16のゲート電位の調整なしでも行選択トランジスタ16のオン抵抗は存在し、FD動作レンジΔVが比較的狭くてもよい用途ではこのHi電圧調整なしでも動作電流の変動を抑えた状態での画素信号の混合動作は実現できる。この場合は別電源が不要でありチップ全体の構成が簡素になる。電圧によるオン抵抗増大の効果がないことを補うためには、行選択トランジスタ16のゲート幅を増幅トランジスタ15よりも小さくする、行選択トランジスタ16のゲート長をプロセスで許容される最小値よりも大きくする、及び行選択トランジスタ16のしきい値電圧を大きく調整するという方法が同じく有効である。 Note that the solid-state imaging device of the second embodiment is characterized in that the row selection transistor 16 functions as a resistance element, and the gate potential of the row selection transistor 16 is set low in order to clarify the effect of the feature. Have explained. However, even if the gate potential of the row selection transistor 16 is not adjusted, the on-resistance of the row selection transistor 16 exists, and in an application where the FD operation range ΔV may be relatively narrow, fluctuations in the operating current are suppressed even without this Hi voltage adjustment. The pixel signal mixing operation in the state can be realized. In this case, a separate power source is unnecessary, and the configuration of the entire chip is simplified. In order to compensate for the absence of the effect of increasing the on-resistance due to the voltage, the gate width of the row selection transistor 16 is made smaller than that of the amplification transistor 15, and the gate length of the row selection transistor 16 is made larger than the minimum value allowed in the process. The method of adjusting the threshold voltage of the row selection transistor 16 is also effective.
 (第3の実施形態)
 本発明の第3の実施形態による固体撮像装置の全体構成は図1に示す第1の実施形態の固体撮像装置の全体構成と同じである。
(Third embodiment)
The overall configuration of the solid-state imaging device according to the third embodiment of the present invention is the same as the overall configuration of the solid-state imaging device according to the first embodiment shown in FIG.
 図13は、撮像領域1の詳細な構成を示す回路図である。 FIG. 13 is a circuit diagram showing a detailed configuration of the imaging region 1.
 この回路と図2に示す第1及び第2の実施形態の撮像領域1の回路との違いは、増幅トランジスタ15とシリアルに接続された抵抗として機能する素子として抵抗素子61及び行選択トランジスタ16のかわりに、ゲート端子が画素電源線17と接続され、オン抵抗が単位セル2を構成する他のトランジスタ(リセットトランジスタ14又は増幅トランジスタ15)よりも大きい抵抗用トランジスタ63が増幅トランジスタ15にシリアルに接続する形で配置されていること、並びにリセットトランジスタ14及び増幅トランジスタ15のドレイン端子に接続される画素電源線17に画素電源生成回路73の出力VDDCELが供給されることである。第1及び第2の実施形態の固体撮像装置では単位セル2の行の選択動作は行選択トランジスタ16のオン及びオフで実現するとしたが、ここでは非選択の単位セル2の行すべてのVfdを低く設定することにより単位セル2の行の選択動作を実現する。VDDCELはこの非選択のための低い電位と、信号読み出しのための高い画素電位(VDD)とに切り替えられる。 The difference between this circuit and the circuit in the imaging region 1 of the first and second embodiments shown in FIG. 2 is that the resistance element 61 and the row selection transistor 16 function as an element that functions as a resistor connected in series with the amplification transistor 15. Instead, a resistance transistor 63 whose gate terminal is connected to the pixel power supply line 17 and whose on-resistance is larger than the other transistors (reset transistor 14 or amplification transistor 15) constituting the unit cell 2 is serially connected to the amplification transistor 15. And the output VDDCEL of the pixel power supply generation circuit 73 is supplied to the pixel power supply line 17 connected to the drain terminals of the reset transistor 14 and the amplification transistor 15. In the solid-state imaging devices of the first and second embodiments, the row selection operation of the unit cell 2 is realized by turning on and off the row selection transistor 16, but here, the Vfd of all the rows of the unselected unit cell 2 is obtained. The row selection operation of the unit cell 2 is realized by setting it low. VDDCEL is switched between a low potential for non-selection and a high pixel potential (VDD) for signal readout.
 本実施形態の固体撮像装置は、カメラスチル撮影に使える全画素読み出しモードと動画記録機能に使える画素混合モードとを備えている。次に、それぞれのモードに関し信号読み出し動作を説明する。 The solid-state imaging device of the present embodiment has an all-pixel readout mode that can be used for camera still photography and a pixel mixture mode that can be used for a moving image recording function. Next, the signal reading operation will be described for each mode.
 図14は、本実施形態の固体撮像装置における全画素読み出しモード時の単位セル2と列回路に供給される各制御信号のタイミングを示す図である。 FIG. 14 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the all-pixel readout mode in the solid-state imaging device of the present embodiment.
 タイミングt1では、1行目の単位セル2について、転送トランジスタ12がオフ状態で、VDDCELがHi電圧(VDD)の状態で、さらにリセットトランジスタ14がオン状態であり、VfdはFDリセット電位Vfdrst(=VDD)に初期化される。これにより、Vfdが初期化された単位セル2の行は信号読み出しのために選択された状態になる(後で述べるように、選択される前ではFD電位は非選択状態に対応する低い電位に設定されている)。 At the timing t1, for the unit cell 2 in the first row, the transfer transistor 12 is in the OFF state, the VDDCEL is in the Hi voltage (VDD) state, the reset transistor 14 is in the ON state, and Vfd is the FD reset potential Vfdrst (= VDD). As a result, the row of the unit cell 2 in which Vfd is initialized is selected for signal reading (as will be described later, the FD potential is set to a low potential corresponding to the non-selected state before selection). Is set).
 タイミングt2では、1行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cell 2 in the first row, the reset state of Vfd is maintained.
 このとき、抵抗用トランジスタ63のゲート電位VDDCELはHi電圧である。従って、抵抗用トランジスタ63はオン状態であるため、増幅トランジスタ15のしきい値電圧をVth、抵抗用トランジスタ63のオン抵抗をR、画素電流源回路4の電流値をIとすると、Vfdrst-Vth-RI(正確にはVfdrst-Vth-RI-αであるが、ここではαは省略)がリセット電圧として垂直信号線19に出力される。さらに、このリセット電圧Vfdrst-Vth-RIは、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号とは共にHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, the gate potential VDDCEL of the resistance transistor 63 is a Hi voltage. Accordingly, since the resistance transistor 63 is in the on state, assuming that the threshold voltage of the amplification transistor 15 is Vth, the on-resistance of the resistance transistor 63 is R, and the current value of the pixel current source circuit 4 is I, Vfdrst−Vth -RI (precisely Vfdrst-Vth-RI-α, where α is omitted) is output to the vertical signal line 19 as a reset voltage. Further, the reset voltage Vfdrst−Vth−RI is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in an on state. On the other hand, both the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目の単位セル2について、転送トランジスタ12がオン状態となるため、画素11に蓄積された信号電荷がFD13に転送され、Vfdはこの信号電荷量に応じた電圧Vfdsigだけ低下しVfdrst-Vfdsigとなる。 At the timing t3, since the transfer transistor 12 is turned on for the unit cell 2 in the first row, the signal charge accumulated in the pixel 11 is transferred to the FD 13, and Vfd is decreased by a voltage Vfdsig corresponding to the signal charge amount. Vfdrst−Vfdsig.
 タイミングt4では、1行目の単位セル2について、転送トランジスタ12がオフ状態で抵抗用トランジスタ63がオン状態であり、Vfdrst-Vfdsig-Vth-RIがリード電圧として垂直信号線19に出力される。これによりクランプ容量23の入力はVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち画素信号に対応する電圧であり、タイミングt5では、S/H容量入力信号がLo電圧となりこの画素信号がS/H容量27に蓄積される。 At timing t4, for the unit cell 2 in the first row, the transfer transistor 12 is off and the resistance transistor 63 is on, and Vfdrst-Vfdsig-Vth-RI is output to the vertical signal line 19 as a read voltage. As a result, the input of the clamp capacitor 23 changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, a voltage corresponding to the pixel signal. At timing t5, the S / H capacitance input signal becomes the Lo voltage, and this pixel signal is Accumulated in the S / H capacity 27.
 以上により1行分の画素信号がS/H回路6に保持されることになる。 Thus, the pixel signals for one row are held in the S / H circuit 6.
 このとき、同じくタイミングt5ではVDDCELがLo電圧で、かつリセットトランジスタ14がオン状態のため、Vfdが低い電位にセットされ、信号の読み出しが完了した行の単位セル2は非選択状態に戻ることになる。 At this time, similarly, at timing t5, VDDCEL is at the Lo voltage and the reset transistor 14 is in the ON state, so that Vfd is set to a low potential, and the unit cell 2 in the row where the signal reading is completed returns to the non-selected state. Become.
 次に、タイミングt11では、列選択信号H[1]がHi電圧となり、1列目の列選択トランジスタ28がオン状態となる。これにより1列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 Next, at the timing t11, the column selection signal H [1] becomes the Hi voltage, and the column selection transistor 28 in the first column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the first column is output to the horizontal common signal line 29 and is output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[2]がHi電圧となり、2列目の列選択トランジスタ28がオン状態となる。これにより2列目のS/H容量27の画素信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signal H [2] becomes the Hi voltage, and the column selection transistor 28 in the second column is turned on. As a result, the pixel signal of the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[3]、H[4]・・・をHi電圧にすれば各列のS/H容量27の画素信号が順次出力される。 Similarly, if the column selection signals H [3], H [4]... Are set to the Hi voltage, the pixel signals of the S / H capacitors 27 in each column are sequentially output.
 以上より、1行分の画素信号が順次チップ外部に出力される。 As described above, pixel signals for one row are sequentially output to the outside of the chip.
 図14の動作を撮像領域1の行数だけ繰り返せば、撮像領域1全体の画素信号が読み出されることになる。 If the operation in FIG. 14 is repeated for the number of rows in the imaging area 1, the pixel signals of the entire imaging area 1 are read out.
 図15は、本実施形態の固体撮像装置における垂直2画素水平2画素の画素混合モード時の単位セル2と列回路に供給される各制御信号のタイミングを示す図である。 FIG. 15 is a diagram showing the timing of each control signal supplied to the unit cell 2 and the column circuit in the pixel mixing mode of two vertical pixels and two horizontal pixels in the solid-state imaging device of the present embodiment.
 タイミングt1では、VDDCELがHi電圧の状態で、2つのリセット信号RST[1]及びRST[2]が共にHi電圧であるため、1行目及び2行目の単位セル2では、VfdがFDリセット電位Vfdrst(=VDD)に初期化される。これにより、1行目及び2行目の単位セル2は、読み出しのための選択状態になる。2つの単位セル2の行に同時にリセット信号RST[1]及びRST[2]を入力するには、行選択回路3のアドレスデコーダ31に2つのアドレス信号ADRを順次供給し、行選択用論理回路32のフリップフロップ33を選択状態に順次設定すれば可能になる(転送信号TRAN[1]及びTRAN[2]についても同様)。 At timing t1, VDDCEL is in the Hi voltage state, and the two reset signals RST [1] and RST [2] are both in the Hi voltage. Therefore, Vfd is FD reset in the unit cells 2 in the first and second rows. Initialized to potential Vfdrst (= VDD). As a result, the unit cells 2 in the first and second rows are selected for reading. In order to simultaneously input the reset signals RST [1] and RST [2] to the rows of the two unit cells 2, the two address signals ADR are sequentially supplied to the address decoder 31 of the row selection circuit 3, and the row selection logic circuit. This can be achieved by sequentially setting the 32 flip-flops 33 to the selected state (the same applies to the transfer signals TRAN [1] and TRAN [2]).
 タイミングt2では、1行目及び2行目の単位セル2について、転送トランジスタ12及びリセットトランジスタ14がオフ状態なので、Vfdのリセット状態は保持される。 At timing t2, since the transfer transistor 12 and the reset transistor 14 are in the OFF state for the unit cells 2 in the first row and the second row, the reset state of Vfd is maintained.
 このとき、1行目及び2行目の単位セル2について、抵抗用トランジスタ63のゲート電位VDDCELはHi電圧である。従って、抵抗用トランジスタ63はオン状態のため、Vfdrst-Vth-RI/2(正確にはVfdrst-Vth-RI/2-αであるが、ここではαは省略)がリセット電圧として垂直信号線19に出力される。さらに、このリセット電圧Vfdrst-Vth-RI/2は、サンプリングトランジスタ22がオン状態のため、クランプ容量23の一方の端子に出力される。一方、クランプ信号とS/H容量入力信号とはHi電圧であり、クランプ容量23の他方の端子及びS/H容量27の電位はVCLに設定される。 At this time, the gate potential VDDCEL of the resistance transistor 63 is the Hi voltage for the unit cells 2 in the first row and the second row. Accordingly, since the resistance transistor 63 is in the ON state, Vfdrst−Vth−RI / 2 (precisely Vfdrst−Vth−RI / 2−α, where α is omitted) is used as the reset voltage as the vertical signal line 19. Is output. Further, the reset voltage Vfdrst−Vth−RI / 2 is output to one terminal of the clamp capacitor 23 because the sampling transistor 22 is in the ON state. On the other hand, the clamp signal and the S / H capacitor input signal are Hi voltages, and the potential of the other terminal of the clamp capacitor 23 and the S / H capacitor 27 is set to VCL.
 タイミングt3では、1行目及び2行目の単位セル2について、転送トランジスタ12がオン状態となるため、1行目及び2行目の単位セル2の画素11に蓄積された信号電荷がFD13に転送され、1行目及び2行目の単位セル2それぞれのFD電位Vfd1、Vfd2はこの信号電荷量に応じた電圧Vfdsig1、Vfdsig2だけ低下しVfdrst-Vfdsig1、Vfdrst-Vfdsig2となる。 At the timing t3, the transfer transistors 12 are turned on for the unit cells 2 in the first and second rows, so that the signal charges accumulated in the pixels 11 of the unit cells 2 in the first and second rows are transferred to the FD 13. The FD potentials Vfd1 and Vfd2 of the unit cells 2 in the first row and the second row are reduced by the voltages Vfdsig1 and Vfdsig2 corresponding to the signal charge amounts to Vfdrst−Vfdsig1 and Vfdrst−Vfdsig2.
 タイミングt4では、1行目及び2行目の単位セル2について、転送トランジスタ12がオフ状態で抵抗用トランジスタ63がオン状態であり、Vfdsig1とVfdsig2との平均をVfdsigとしたとき、Vfdrst-Vfdsig-Vth-RI/2がリード電圧として垂直信号線19に出力される。このリード電圧は1行目及び2行目の単位セル2の混合信号に相当する。この垂直信号線19の電位変化によりクランプ容量23の入力もVfdsigだけ変化する。さらに、クランプトランジスタ24はオフ状態なので、クランプ容量23の他方の端子の電位、すなわちS/H容量27の電位はVfdsig×Ccl/(Ccl+Csh)だけ変化する。この電位変化は垂直信号線19におけるリセット電圧とリード電圧との差分に対応した電圧、すなわち1行目及び2行目の単位セル2の平均化された画素信号(垂直画素混合信号)であり、タイミングt5でS/H容量入力信号がLo電圧となりS/H容量27に蓄積される。 At timing t4, for the unit cells 2 in the first and second rows, when the transfer transistor 12 is in the off state and the resistance transistor 63 is in the on state, and Vfdsig1 and Vfdsig2 are averaged to Vfdsig, Vfdrst−Vfdsig− Vth-RI / 2 is output to the vertical signal line 19 as a read voltage. This read voltage corresponds to the mixed signal of the unit cells 2 in the first and second rows. Due to the potential change of the vertical signal line 19, the input of the clamp capacitor 23 also changes by Vfdsig. Further, since the clamp transistor 24 is in the OFF state, the potential of the other terminal of the clamp capacitor 23, that is, the potential of the S / H capacitor 27 changes by Vfdsig × Ccl / (Ccl + Csh). This potential change is a voltage corresponding to the difference between the reset voltage and the read voltage in the vertical signal line 19, that is, an averaged pixel signal (vertical pixel mixed signal) of the unit cells 2 in the first and second rows. At timing t5, the S / H capacitor input signal becomes Lo voltage and is stored in the S / H capacitor 27.
 このとき、VDDCELがLo電圧であり、かつ1行目及び2行目の単位セル2のリセットトランジスタ14がオン状態のため、Vfdは低い電位にセットされ、読み出しが完了した行の単位セル2は非選択の状態に戻る。 At this time, since VDDCEL is the Lo voltage and the reset transistors 14 of the unit cells 2 in the first row and the second row are in the ON state, Vfd is set to a low potential, Return to unselected state.
 タイミングt11では、S/H容量入力信号と列選択信号H[1]及びH[2]とがHi電圧となり、1列目及び2列目の列選択トランジスタ28がオン状態となる。これにより、1列目のS/H容量27と2列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t11, the S / H capacitor input signal and the column selection signals H [1] and H [2] are set to the Hi voltage, and the column selection transistors 28 in the first column and the second column are turned on. As a result, the average signal of the S / H capacitor 27 in the first column and the S / H capacitor 27 in the second column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 タイミングt12では、列選択信号H[3]及びH[4]がHi電圧となり、3列目及び4列目の列選択トランジスタ28がオン状態となる。これにより、3列目のS/H容量27と4列目のS/H容量27との平均信号が水平共通信号線29に出力され、出力アンプ10を介してチップ外部に出力される。 At timing t12, the column selection signals H [3] and H [4] become Hi voltage, and the column selection transistors 28 in the third and fourth columns are turned on. As a result, an average signal of the S / H capacitors 27 in the third column and the S / H capacitors 27 in the fourth column is output to the horizontal common signal line 29 and output to the outside of the chip via the output amplifier 10.
 同様に順次列選択信号H[5]、H[6]・・・をHi電圧にすれば各列のS/H容量27の画素信号の平均信号が順次チップ外部に出力される。 Similarly, if the column selection signals H [5], H [6],... Are sequentially set to the Hi voltage, the average signal of the pixel signals of the S / H capacitors 27 in each column is sequentially output outside the chip.
 以上より、垂直2画素水平2画素の画素信号が混合された信号が順次チップ外部に出力される。 From the above, a signal in which pixel signals of two vertical pixels and two horizontal pixels are mixed is sequentially output to the outside of the chip.
 図15の動作を撮像領域1の単位セル2の行数/2だけ繰り返せば、撮像領域1全体の信号が読み出されることになる。 When the operation of FIG. 15 is repeated by the number of rows of the unit cell 2 in the imaging region 1/2, the signal of the entire imaging region 1 is read out.
 この画素混合モードでのFDレンジΔVは第1及び第2の実施形態と同様に式(4)であらわされる。第1及び第2の実施形態の行選択トランジスタ16に対応するものとして、つまり単位セル2を選択するトランジスタとして抵抗用トランジスタ63が設けられ、抵抗用トランジスタ63のオン抵抗RによりFD13の動作レンジを確保できることがわかる。 FD range ΔV in this pixel mixture mode is expressed by equation (4) as in the first and second embodiments. As a transistor corresponding to the row selection transistor 16 of the first and second embodiments, that is, as a transistor for selecting the unit cell 2, a resistance transistor 63 is provided, and the operating range of the FD 13 is increased by the on-resistance R of the resistance transistor 63. It can be seen that it can be secured.
 以上のように、本実施の形態の固体撮像装置によれば、動作電流の変動を抑えた信号の混合動作が実現できるだけでなく、第2の実施形態の固体撮像装置に比べ抵抗として機能するトランジスタのゲート端子に供給する信号線が不要のため、単位セル2の回路面積の縮小及び開口率拡大に適するという利点がある。 As described above, according to the solid-state imaging device of the present embodiment, not only can a signal mixing operation with suppressed fluctuations in operating current be realized, but also a transistor that functions as a resistor compared to the solid-state imaging device of the second embodiment. This eliminates the need for a signal line to be supplied to the gate terminal, and therefore has an advantage of being suitable for reducing the circuit area and the aperture ratio of the unit cell 2.
 (第4の実施形態)
 本発明の第4の実施形態による固体撮像装置の全体構成は図1に示す第1の実施形態の固体撮像装置の構成と同じである。
(Fourth embodiment)
The overall configuration of the solid-state imaging device according to the fourth embodiment of the present invention is the same as the configuration of the solid-state imaging device according to the first embodiment shown in FIG.
 図16は、撮像領域1の詳細な構成を示す回路図である。 FIG. 16 is a circuit diagram showing a detailed configuration of the imaging region 1.
 この回路と図2に示す第1の実施形態の撮像領域1の回路との違いは増幅トランジスタ15にシリアルに接続される抵抗素子61が増幅トランジスタ15のドレイン端子と画素電源線17との間に挿入されていることである。このとき、画素混合モードでのFDレンジΔVは式(5)で表される。 The difference between this circuit and the circuit of the imaging region 1 of the first embodiment shown in FIG. 2 is that a resistance element 61 serially connected to the amplification transistor 15 is between the drain terminal of the amplification transistor 15 and the pixel power line 17. It is inserted. At this time, the FD range ΔV in the pixel mixture mode is expressed by Expression (5).
  ΔV=bRI+(2-√2)×√(I/a)・・・・・(5) ΔV = bRI + (2-√2) × √ (I / a) (5)
 なお、bは1より小さい係数である。式(5)と、抵抗素子61を増幅トランジスタ15のソース端子側に配置したときのFDレンジを示す式(4)との違いは抵抗の効果(抵抗素子61によるFDレンジの広がり)が係数bだけ低減していることである。これは増幅トランジスタ15のドレイン端子側の電位変化は部分的にソースフォロア回路の出力に伝わることを反映している。一方、抵抗素子61が増幅トランジスタ15のドレイン端子側に配置されると、増幅トランジスタ15が駆動する負荷が低減し、高速読み出しがしやすくなるという利点がある。 Note that b is a coefficient smaller than 1. The difference between Expression (5) and Expression (4) showing the FD range when the resistance element 61 is arranged on the source terminal side of the amplification transistor 15 is that the effect of resistance (expansion of the FD range by the resistance element 61) is a coefficient b. It is only reduced. This reflects that the potential change on the drain terminal side of the amplification transistor 15 is partially transmitted to the output of the source follower circuit. On the other hand, when the resistance element 61 is arranged on the drain terminal side of the amplification transistor 15, there is an advantage that the load driven by the amplification transistor 15 is reduced and high-speed reading is facilitated.
 (第5の実施形態)
 図17は、本発明の第5の実施形態における固体撮像装置の全体構成を示す図である。
(Fifth embodiment)
FIG. 17 is a diagram illustrating an overall configuration of a solid-state imaging device according to the fifth embodiment of the present invention.
 この固体撮像装置は、撮像領域1、行選択回路3、画素電流源回路4、クランプ回路5、サンプルホールド(S/H)回路6、カラムADC44、デジタル混合器45及び制御部9から構成される。 This solid-state imaging device includes an imaging region 1, a row selection circuit 3, a pixel current source circuit 4, a clamp circuit 5, a sample hold (S / H) circuit 6, a column ADC 44, a digital mixer 45, and a control unit 9. .
 カラムADC44は、画素11の各列に対応して設けられた基本単位が行方向にアレイ状にならんで構成され、S/H回路6に保持された行単位のアナログ画素信号をデジタル信号に変換する。 The column ADC 44 is configured such that basic units provided corresponding to the respective columns of the pixels 11 are arranged in an array in the row direction, and converts the row-unit analog pixel signals held in the S / H circuit 6 into digital signals. To do.
 デジタル混合器45は、画素11の各列に対応して設けられた基本単位が行方向にアレイ状にならんで構成され、カラムADC44の出力データ(デジタル信号)の混合を行う。 The digital mixer 45 is configured such that basic units provided corresponding to each column of the pixels 11 are arranged in an array in the row direction, and mixes output data (digital signal) of the column ADC 44.
 単位セル2、画素電流源回路4、クランプ回路5、S/H回路6及び行選択回路3の詳細な構成は第1の実施の形態の固体撮像装置と同様である。 The detailed configuration of the unit cell 2, the pixel current source circuit 4, the clamp circuit 5, the S / H circuit 6, and the row selection circuit 3 is the same as that of the solid-state imaging device of the first embodiment.
 図18は、カラムADC44の詳細な構成を示す図である。 FIG. 18 is a diagram showing a detailed configuration of the column ADC 44.
 カラムADC44は、複数の基本単位44a及びカラムADC入力端子46と、ランプ波形生成回路48と、カウンタ50とから構成される。カラムADC44の基本単位44aは、コンパレータ47及びラッチ49から構成される。 The column ADC 44 includes a plurality of basic units 44 a and a column ADC input terminal 46, a ramp waveform generation circuit 48, and a counter 50. The basic unit 44 a of the column ADC 44 includes a comparator 47 and a latch 49.
 コンパレータ47は、カラムADC入力端子46から入力されるS/H回路6からの画素信号の入力をうけ、入力された画素信号とランプ波形生成回路48のランプ波形との比較を行い、ランプ波形が画素信号よりも低いときにHi電圧を出力する。 The comparator 47 receives the pixel signal from the S / H circuit 6 input from the column ADC input terminal 46, compares the input pixel signal with the ramp waveform of the ramp waveform generation circuit 48, and the ramp waveform is When it is lower than the pixel signal, the Hi voltage is output.
 ラッチ49は、カウンタ50の出力(カウンタ値)をうけ、カウンタ50からのラッチ信号がHi電圧からLo電圧に切り替わったときにカウンタ50の出力を書き込む。 The latch 49 receives the output (counter value) of the counter 50, and writes the output of the counter 50 when the latch signal from the counter 50 is switched from the Hi voltage to the Lo voltage.
 カウンタ50は、ランプ波形生成回路48により生成されたランプ波形に同期してカウントアップを行う。 The counter 50 counts up in synchronization with the ramp waveform generated by the ramp waveform generation circuit 48.
 次に、カラムADC44のAD変換動作について図19のタイミングチャートを参照して説明する。 Next, the AD conversion operation of the column ADC 44 will be described with reference to the timing chart of FIG.
 まず、タイミングt0で画素信号がカラムADC44に入力され、ランプ波形は画素信号の最小値に、カウンタ50は0に設定される。このとき、ランプ波形は画素信号より低いレベルなのでラッチ信号はHi電圧である。 First, at timing t0, a pixel signal is input to the column ADC 44, the ramp waveform is set to the minimum value of the pixel signal, and the counter 50 is set to 0. At this time, since the ramp waveform is at a lower level than the pixel signal, the latch signal is at the Hi voltage.
 次に、タイミングt1で、ランプ波形のレベルは上昇し始める。上昇の傾きはタイミングt3で画素信号の最大値に達するように設定される。カウンタ50もランプ波形の上昇に同期してカウントアップする。 Next, at the timing t1, the ramp waveform level starts to rise. The rising slope is set to reach the maximum value of the pixel signal at timing t3. The counter 50 also counts up in synchronization with the ramp waveform rise.
 次に、タイミングt2でランプ波形が画素信号より大きくなるので、ラッチ信号がLo電圧に切り替わり、そのときのカウンタ値がラッチ49に書き込まれる。先に述べたように、ランプ波形の上昇とカウントアップは同期しているので、ラッチ49に書き込まれたデジタル値は画素信号に対応した値になっている。 Next, since the ramp waveform becomes larger than the pixel signal at the timing t2, the latch signal is switched to the Lo voltage, and the counter value at that time is written in the latch 49. As described above, since the ramp waveform rises and counts up, the digital value written in the latch 49 is a value corresponding to the pixel signal.
 以上のAD変換動作は各列で並列に行われており、1行分のアナログ画素信号が並列にAD変換され、デジタル信号として各列のラッチ49に保持される。 The above AD conversion operations are performed in parallel in each column, and analog pixel signals for one row are AD converted in parallel and held in the latch 49 of each column as a digital signal.
 本実施形態の固体撮像装置は、第1の実施形態に係る固体撮像装置と同様に、全画素読み出しモードと画素混合モードとを備えている。次に、それぞれのモードでの信号読み出し動作を説明する。 The solid-state imaging device according to the present embodiment includes an all-pixel readout mode and a pixel mixture mode, similarly to the solid-state imaging device according to the first embodiment. Next, the signal reading operation in each mode will be described.
 まず、全画素読み出しモードでは、1行分の単位セル2が選択され、単位セル2から1行分の画素信号が読み出されS/H回路6に保持される。 First, in the all-pixel reading mode, the unit cells 2 for one row are selected, and pixel signals for one row are read from the unit cells 2 and held in the S / H circuit 6.
 次に、1行分の画素信号がS/H回路6からカラムADC44に読み出され、カラムADC44でデジタル変換される。 Next, the pixel signals for one row are read from the S / H circuit 6 to the column ADC 44 and are digitally converted by the column ADC 44.
 最後に、出力部(図外)を介してカラムADC44からのデジタル信号が順次チップ外部に出力される。 Finally, digital signals from the column ADC 44 are sequentially output to the outside of the chip via the output unit (not shown).
 以上の動作を撮像領域1の単位セル2の行数だけ繰り返せば撮像領域1全体の信号が出力される。 If the above operation is repeated for the number of rows of the unit cell 2 in the imaging area 1, a signal of the entire imaging area 1 is output.
 一方、画素混合モードでも、まず2行の単位セル2が同時に選択され、単位セル2から2行分の画素信号が読み出され、垂直信号線19で混合された後、S/H回路6に保持される。 On the other hand, also in the pixel mixing mode, first, two rows of unit cells 2 are simultaneously selected, and pixel signals for two rows are read from the unit cells 2 and mixed by the vertical signal line 19 before being sent to the S / H circuit 6. Retained.
 次に、混合された画素信号がS/H回路6からカラムADC44に読み出され、カラムADC44でデジタル変換される。 Next, the mixed pixel signal is read from the S / H circuit 6 to the column ADC 44 and is digitally converted by the column ADC 44.
 次に、デジタル信号が複数列のカラムADC44の基本単位44aから同時にデジタル混合器45に読み出され、デジタル混合器45で混合される。 Next, digital signals are simultaneously read out from the basic units 44 a of the column ADCs 44 in a plurality of columns to the digital mixer 45 and mixed by the digital mixer 45.
 最後に、出力部(図外)を介して混合されたデジタル信号が順次チップ外部に出力される。 Finally, the mixed digital signals are sequentially output to the outside of the chip via the output unit (not shown).
 以上の動作を撮像領域1の単位セル2の行数/2だけ繰り返せば撮像領域1全体の信号が出力される。 If the above operation is repeated by the number of rows of the unit cell 2 in the imaging region 1/2, the signal of the entire imaging region 1 is output.
 以上のように、本実施形態に係る固体撮像装置によれば、動作電流の変動を抑えた高画質化に適した画素混合機能を有するデジタル出力の固体撮像装置を実現できる。第1の実施形態から第4の実施形態に係る固体撮像装置では、図4に示すMUX7、出力アンプ10及び後段でAD変換を行うアナログフロントエンドの部分は高いデータ転送レートのために広帯域の回路になる。このため、外部からのノイズが混入しやすいという課題がある。これに対し、本実施形態に係る固体撮像装置では列回路で信号のデジタル化を行うためにこの外乱ノイズへの耐性が大幅に向上するという利点がある。これは固体撮像装置を用いたカメラ基板の作成が容易になることにもつながる。 As described above, according to the solid-state imaging device according to the present embodiment, a digital output solid-state imaging device having a pixel mixing function suitable for high image quality while suppressing fluctuations in operating current can be realized. In the solid-state imaging device according to the first to fourth embodiments, the MUX 7, the output amplifier 10, and the analog front end portion that performs AD conversion in the subsequent stage are wide-band circuits for a high data transfer rate. become. For this reason, there exists a subject that the noise from the outside tends to mix. On the other hand, the solid-state imaging device according to the present embodiment has an advantage that the resistance to the disturbance noise is greatly improved since the signal is digitized by the column circuit. This also leads to easy creation of a camera substrate using a solid-state imaging device.
 以上、本発明の固体撮像装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。 As mentioned above, although the solid-state imaging device of the present invention has been described based on the embodiment, the present invention is not limited to this embodiment. The present invention includes various modifications made by those skilled in the art without departing from the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 例えば、上記実施形態の固体撮像装置は、外部からの光を固体撮像装置に集光するレンズ、固体撮像装置からの信号を処理する画像信号処理装置、及び画像信号処理装置で処理された信号を記憶する画像記憶装置を備え、スチル画像撮影機能とスチル画像よりも低解像度で高フレームレートな動画撮影機能を有する撮像装置に用いることができる。 For example, the solid-state imaging device of the above embodiment includes a lens that collects external light on the solid-state imaging device, an image signal processing device that processes a signal from the solid-state imaging device, and a signal processed by the image signal processing device. It can be used in an imaging apparatus that includes an image storage device for storing and has a still image shooting function and a moving image shooting function with a lower resolution and a higher frame rate than a still image.
 また、上記実施形態の固体撮像装置では、固体撮像装置を構成する各トランジスタは、nチャネル型のMOSトランジスタであるとしたが、pチャネル型のMOSトランジスタであってもよい。 In the solid-state imaging device of the above embodiment, each transistor constituting the solid-state imaging device is an n-channel type MOS transistor, but may be a p-channel type MOS transistor.
 本発明は、固体撮像装置及び撮像装置として有用であり、特にデジタル一眼レフカメラ及び高級コンパクトカメラなど高画質及び高機能が求められる撮像機器向けイメージセンサとして有用である。 The present invention is useful as a solid-state imaging device and an imaging device, and particularly useful as an image sensor for an imaging device that requires high image quality and high functionality such as a digital single-lens reflex camera and a high-end compact camera.
  1、201  撮像領域
  2、202  単位セル
  3  行選択回路
  4  画素電流源回路
  4a、5a、6a、7a、44a  基本単位
  5  クランプ回路
  6  S/H回路
  7  マルチプレクサ
  8  列選択回路
  9  制御部
  10  出力アンプ
  11  画素
  12  転送トランジスタ
  13  フローティングディフュージョン
  14  リセットトランジスタ
  15、215  増幅トランジスタ
  16  行選択トランジスタ
  17  画素電源線
  19、101、102  垂直信号線
  20  電流源トランジスタ
  21  電流源バイアス電圧
  22  サンプリングトランジスタ
  23  クランプ容量
  24  クランプトランジスタ
  25  クランプ電圧入力端子
  26  S/H容量入力トランジスタ
  27  S/H容量
  28  列選択トランジスタ
  29  水平共通信号線
  31  アドレスデコーダ
  32  行選択用論理回路
  33  フリップフロップ
  34  ANDゲート
  44  カラムADC
  45  デジタル混合器
  46  カラムADC入力端子
  47  コンパレータ
  48  ランプ波形生成回路
  49  ラッチ
  50  カウンタ
  61  抵抗素子
  63  抵抗用トランジスタ
  73  画素電源生成回路
  100  画素読み出し回路
  103  電流源
  104  グランド接続スイッチ
  105  負荷トランジスタ
  106  電源接続スイッチ
  107、108  画素出力線
  211  フォトダイオード
  214  リセットスイッチ
  216  行選択スイッチ
 
DESCRIPTION OF SYMBOLS 1,201 Imaging region 2,202 Unit cell 3 Row selection circuit 4 Pixel current source circuit 4a, 5a, 6a, 7a, 44a Basic unit 5 Clamp circuit 6 S / H circuit 7 Multiplexer 8 Column selection circuit 9 Control part 10 Output amplifier DESCRIPTION OF SYMBOLS 11 Pixel 12 Transfer transistor 13 Floating diffusion 14 Reset transistor 15, 215 Amplification transistor 16 Row selection transistor 17 Pixel power supply line 19, 101, 102 Vertical signal line 20 Current source transistor 21 Current source bias voltage 22 Sampling transistor 23 Clamp capacity 24 Clamp transistor 25 Clamp voltage input terminal 26 S / H capacity input transistor 27 S / H capacity 28 Column selection transistor 29 Horizontal common signal line 31 Address 32 decoder logic circuit for row selection 33 flip-flop 34 AND gate 44 column ADC
45 Digital mixer 46 Column ADC input terminal 47 Comparator 48 Ramp waveform generation circuit 49 Latch 50 Counter 61 Resistive element 63 Resistor transistor 73 Pixel power supply circuit 100 Pixel readout circuit 103 Current source 104 Ground connection switch 105 Load transistor 106 Power connection switch 107, 108 Pixel output line 211 Photodiode 214 Reset switch 216 Row selection switch

Claims (14)

  1.  受光量に応じた信号を生成する画素と、前記画素の信号を蓄積するためのフローティングディフュージョンと、ソースが前記フローティングディフュージョンと接続されたリセットトランジスタと、ゲートが前記フローティングディフュージョンと接続された増幅トランジスタとを有し、2次元状に配列された複数の単位セルと、
     前記画素の列に対応して設けられ、対応する列の画素を含む前記単位セルの前記増幅トランジスタのソースと接続され、対応する列の画素の信号を伝達する垂直信号線と、
     前記垂直信号線に前記画素の信号が出力されるときに前記垂直信号線に電流を供給する画素電流源と、
     前記リセットトランジスタのドレインと前記増幅トランジスタのドレインとに接続された画素電源線と、
     前記増幅トランジスタのソースと前記垂直信号線との間、又は前記増幅トランジスタのドレインと前記画素電源線との間に挿入され、前記垂直信号線に前記画素の信号が出力されるときに抵抗として機能する素子とを備える
     固体撮像装置。
    A pixel that generates a signal corresponding to the amount of received light; a floating diffusion for storing the signal of the pixel; a reset transistor having a source connected to the floating diffusion; and an amplifying transistor having a gate connected to the floating diffusion; A plurality of unit cells arranged two-dimensionally,
    A vertical signal line provided corresponding to the column of pixels, connected to the source of the amplification transistor of the unit cell including the pixel of the corresponding column, and transmitting a signal of the pixel of the corresponding column;
    A pixel current source for supplying a current to the vertical signal line when a signal of the pixel is output to the vertical signal line;
    A pixel power line connected to the drain of the reset transistor and the drain of the amplification transistor;
    Inserted between the source of the amplification transistor and the vertical signal line, or between the drain of the amplification transistor and the pixel power supply line, and functions as a resistor when the pixel signal is output to the vertical signal line A solid-state imaging device.
  2.  前記画素は、埋め込み構造のフォトダイオードであり、
     前記単位セルは、さらに、前記フォトダイオードと前記フローティングディフュージョンとの間に挿入された転送トランジスタを有する
     請求項1記載の固体撮像装置。
    The pixel is an embedded photodiode.
    The solid-state imaging device according to claim 1, wherein the unit cell further includes a transfer transistor inserted between the photodiode and the floating diffusion.
  3.  前記抵抗として機能する素子は、抵抗素子である
     請求項1又は2に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the element functioning as the resistor is a resistance element.
  4.  前記単位セルは、さらに、前記増幅トランジスタのソースと前記垂直信号線との間に、前記抵抗素子と直列に挿入された選択トランジスタを有する
     請求項3記載の固体撮像装置。
    The solid-state imaging device according to claim 3, wherein the unit cell further includes a selection transistor inserted in series with the resistance element between a source of the amplification transistor and the vertical signal line.
  5.  前記抵抗として機能する素子はトランジスタである
     請求項1又は2に記載の固体撮像装置。
    The solid-state imaging device according to claim 1, wherein the element functioning as the resistor is a transistor.
  6.  前記抵抗として機能するトランジスタのオン抵抗は前記リセットトランジスタ又は前記増幅トランジスタよりも大きい
     請求項5に記載の固体撮像装置。
    The solid-state imaging device according to claim 5, wherein an on-resistance of the transistor functioning as the resistor is larger than that of the reset transistor or the amplification transistor.
  7.  前記抵抗として機能する素子としてのトランジスタのゲートは、前記画素電源線と接続されている
     請求項5記載の固体撮像装置。
    The solid-state imaging device according to claim 5, wherein a gate of a transistor as an element functioning as the resistor is connected to the pixel power supply line.
  8.  前記固体撮像装置は、さらに、同一行の複数の前記単位セルにおける前記抵抗として機能する素子としてのトランジスタのゲートに共通の制御信号を供給する制御線を備える
     請求項5記載の固体撮像装置。
    The solid-state imaging device according to claim 5, further comprising a control line that supplies a common control signal to a gate of a transistor as an element functioning as the resistor in the plurality of unit cells in the same row.
  9.  前記リセットトランジスタ及び前記抵抗として機能する素子としてのトランジスタのゲートには、Hi電圧及び前記Hi電圧より低いLo電圧のいずれかが供給され、
     前記抵抗として機能する素子としてのトランジスタのゲートに供給されるHi電圧は、前記リセットトランジスタのゲートに供給されるHi電圧よりも低い
     請求項8記載の固体撮像装置。
    Either the Hi voltage or the Lo voltage lower than the Hi voltage is supplied to the gate of the reset transistor and the transistor serving as the resistor.
    The solid-state imaging device according to claim 8, wherein a Hi voltage supplied to a gate of a transistor as an element functioning as the resistor is lower than a Hi voltage supplied to a gate of the reset transistor.
  10.  前記固体撮像装置は、さらに、前記抵抗として機能するトランジスタのゲートにハイレベル電圧を供給する可変電源を備える
     請求項8記載の固体撮像装置。
    The solid-state imaging device according to claim 8, further comprising a variable power supply that supplies a high level voltage to a gate of the transistor that functions as the resistor.
  11.  前記抵抗として機能するトランジスタのゲート幅は、前記増幅トランジスタのゲート幅より小さい
     請求項5~10のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 5 to 10, wherein a gate width of the transistor functioning as the resistor is smaller than a gate width of the amplification transistor.
  12.  前記固体撮像装置は、さらに、前記垂直信号線に信号を出力させる画素を行単位で選択する行選択回路を備え、
     前記抵抗として機能するトランジスタのゲート長は、前記行選択回路を構成するトランジスタの最小ゲート長より大きい
     請求項5~10のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes a row selection circuit that selects pixels for outputting signals to the vertical signal lines in units of rows,
    The solid-state imaging device according to any one of claims 5 to 10, wherein a gate length of the transistor functioning as the resistor is larger than a minimum gate length of the transistors constituting the row selection circuit.
  13.  前記抵抗として機能するトランジスタのしきい値電圧は、前記増幅トランジスタのしきい値電圧より大きい
     請求項5~10のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 5 to 10, wherein a threshold voltage of the transistor functioning as the resistor is larger than a threshold voltage of the amplification transistor.
  14.  請求項1~13のいずれか1項に記載の固体撮像装置、レンズ、画像信号処理装置及び画像記憶装置を備え、
     スチル画像撮影機能と前記スチル画像よりも低解像度で高フレームレートな動画撮影機能を有する
     撮像装置。
    A solid-state imaging device, a lens, an image signal processing device, and an image storage device according to any one of claims 1 to 13,
    An imaging apparatus having a still image shooting function and a moving image shooting function having a lower resolution and a higher frame rate than the still image.
PCT/JP2010/006974 2009-12-09 2010-11-30 Solid-state imaging device and imaging device WO2011070745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009279648 2009-12-09
JP2009-279648 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011070745A1 true WO2011070745A1 (en) 2011-06-16

Family

ID=44145308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006974 WO2011070745A1 (en) 2009-12-09 2010-11-30 Solid-state imaging device and imaging device

Country Status (1)

Country Link
WO (1) WO2011070745A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218139A (en) * 2005-04-04 2005-08-11 Canon Inc Solid-state image pickup device, solid-state image pickup system using it, and signal transferring device
JP2008271159A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2009010787A (en) * 2007-06-28 2009-01-15 Panasonic Corp Solid-state imaging device and its driving method, imaging device
JP2010136110A (en) * 2008-12-04 2010-06-17 Canon Inc Solid-state imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218139A (en) * 2005-04-04 2005-08-11 Canon Inc Solid-state image pickup device, solid-state image pickup system using it, and signal transferring device
JP2008271159A (en) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus
JP2009010787A (en) * 2007-06-28 2009-01-15 Panasonic Corp Solid-state imaging device and its driving method, imaging device
JP2010136110A (en) * 2008-12-04 2010-06-17 Canon Inc Solid-state imaging device

Similar Documents

Publication Publication Date Title
JP5250474B2 (en) Solid-state imaging device
JP4609428B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
JP4403387B2 (en) Solid-state imaging device and driving method of solid-state imaging device
JP4701975B2 (en) Solid-state imaging device and imaging device
JP5066996B2 (en) Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device
US8212905B2 (en) Photoelectric conversion device, imaging system, and photoelectric conversion device driving method
US20050062867A1 (en) Semiconductor device, and control method and device for driving unit component of semiconductor device
WO2011155442A1 (en) Amplification-type solid state imaging device
JP6172608B2 (en) Solid-state imaging device, driving method thereof, and imaging device
US20070001098A1 (en) Solid-state imaging device
KR20080107295A (en) A/d conversion circuit, control method thereof, solid-state imaging device, and imaging apparatus
KR20110109891A (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP2001230974A (en) Solid-state image pickup device and image pickup system
JP2010087802A (en) Method of driving solid-state imaging apparatus
JP2006319951A (en) Amplifying solid-state imaging device
KR20080012129A (en) Solid state imaging device and imaging device
JP2008263546A (en) Solid-state imaging apparatus, method for driving the solid-state imaging apparatus and imaging system using them
JP2008301378A (en) Solid-state imaging apparatus and electronic information equipment
JP4243688B2 (en) Amplification type solid-state imaging device
WO2011083541A1 (en) Solid-state image capture device and image capture device
JP4661212B2 (en) Physical information acquisition method, physical information acquisition device, and semiconductor device
WO2012053127A1 (en) Solid-state imaging device, driving method therefor, and imaging device
JP2009171027A (en) Imaging apparatus
WO2011105018A1 (en) Solid-state imaging device and camera system
JP2004228874A (en) Image processor, image processing method and solid-state imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP