WO2011068272A1 - Method for manufacturing a fuel cell - Google Patents

Method for manufacturing a fuel cell Download PDF

Info

Publication number
WO2011068272A1
WO2011068272A1 PCT/KR2009/007483 KR2009007483W WO2011068272A1 WO 2011068272 A1 WO2011068272 A1 WO 2011068272A1 KR 2009007483 W KR2009007483 W KR 2009007483W WO 2011068272 A1 WO2011068272 A1 WO 2011068272A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
electrode
membrane
fuel cell
electrode assembly
Prior art date
Application number
PCT/KR2009/007483
Other languages
French (fr)
Korean (ko)
Inventor
이재영
권영국
전홍래
엄성현
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2011068272A1 publication Critical patent/WO2011068272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, and more particularly to a fuel cell manufacturing method.
  • liquid fuel cell does not require a separate reforming device, unlike a fuel cell using hydrogen as a fuel, and has the advantage that the system can be miniaturized due to a simple system.
  • the fuel cell is basically composed of a membrane-electrode assembly.
  • an anode and a cathode in which all catalysts are introduced may be prepared, and the anode, the polymer electrolyte membrane, and the cathode may be pressed by a press.
  • the membrane-electrode assembly when the membrane-electrode assembly is formed using a press, since the electrodes may collapse or be compressed without maintaining their original structure, damage to the catalyst may occur, thereby reducing the active area of the catalyst. Can be. As a result, the reaction efficiency of the catalyst can be reduced and the performance of the fuel cell as a whole can be reduced.
  • the technical problem to be solved by the present invention is to provide a fuel cell manufacturing method that can improve the reaction efficiency of the catalyst, and improve the performance of the fuel cell.
  • an aspect of the present invention provides a fuel cell manufacturing method.
  • the fuel cell manufacturing method includes providing a membrane-electrode assembly including an anode, a polymer electrolyte membrane, and a cathode, and at least one electrode of the anode and the cathode in the membrane-electrode assembly using an electrochemical deposition method. Introducing at least one catalyst into it.
  • the providing of the membrane-electrode assembly may be a step of providing a battery structure in which flow path plates are disposed on both electrodes of the membrane-electrode assembly.
  • the electrode in the membrane-electrode assembly provided above may contain a conductive support and an ion conductive binder.
  • the electrode in the provided membrane-electrode assembly contains a conductive support, an ion conductive binder and a main catalyst, and introducing the catalyst may be introducing a promoter into the electrode.
  • the main catalyst is Pt
  • the promoter may be any one selected from the group 4A, 5A or 8B.
  • the electrochemical deposition method may be a UPD method or an OPD method.
  • the introducing of the catalyst may be performed by supplying a metal precursor solution to at least one of the anode and the cathode of the membrane electrode assembly, and supplying hydrogen gas to an electrode other than the electrode to which the metal precursor solution is supplied. .
  • the catalyst is introduced after the membrane-electrode assembly or the battery structure is manufactured, damage to the catalyst can be prevented, and the active area of the catalyst can be improved, thereby improving the reaction efficiency of the catalyst and improving the performance of the fuel cell. Can be.
  • the electrochemical deposition method used to introduce the catalyst can be deposited using less energy, and the catalyst can be stably maintained even in an environment where the actual fuel cell is used, so that the performance of the fuel cell can be further improved.
  • 1 to 3 are cross-sectional views illustrating a method of manufacturing a fuel cell according to one embodiment of the present invention for each process step.
  • FIG. 4 is a cross-sectional view illustrating a structure of a fuel cell according to an embodiment of the present invention.
  • FIG. 5 is a graph showing cell voltages of the battery structure according to Comparative Example 1 and Preparation Examples 1 and 2.
  • FIG. 5 is a graph showing cell voltages of the battery structure according to Comparative Example 1 and Preparation Examples 1 and 2.
  • 1 to 3 are cross-sectional views illustrating a method of manufacturing a fuel cell according to one embodiment of the present invention for each process step.
  • a membrane-electrode assembly 50 including an anode 10, a polymer electrolyte membrane 20, and a cathode 30 is provided.
  • the anode 10 may include a fuel diffusion layer 12 and an oxidation catalyst support layer 14.
  • the fuel diffusion layer 12 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent a decrease in ion conductivity.
  • the fuel diffusion layer 12 may adjust the diffusion rate of the fuel through heat treatment or electrochemical treatment.
  • the fuel diffusion layer 12 may be carbon fiber or carbon paper.
  • the fuel may be a liquid fuel such as formic acid solution, methanol, formaldehyde, or ethanol.
  • the oxidation catalyst support layer 14 is a layer into which the catalyst is introduced, and may include a conductive support CS and an ion conductive binder (not shown).
  • the oxidation catalyst support layer 14 may include a main catalyst C 1 attached to the conductive support CS.
  • the conductive support CS may be carbon black
  • the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst (C 1 ) may be a metal catalyst, for example platinum (Pt).
  • the oxidation catalyst support layer 14 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
  • the polymer electrolyte membrane 20 may be a hydrocarbon-based polymer, a polyimide, a perfluorosulfonic acid polymer, a polysulfone, a polyethersulfone, a polyester, or a polyphosphazine. It may be a polymer film such as (polyphosphazene).
  • the reduction electrode 30 may include a gas diffusion layer 32 and a reduction catalyst support layer 34.
  • the gas diffusion layer 32 may be provided to prevent sudden diffusion of the gas injected into the reduction electrode 30 and uniformly disperse the gas injected into the reduction electrode 30.
  • the gas diffusion layer 32 may be carbon paper or carbon fiber.
  • the reduction catalyst support layer 34 is a layer into which the catalyst is introduced, and may include a conductive support CS and an ion conductive binder (not shown).
  • the reduction catalyst support layer 34 may include a main catalyst C 1 attached to the conductive support CS.
  • the conductive support CS may be carbon black
  • the ion conductive binder may be a Nafion ionomer or a sulfonated polymer.
  • the main catalyst (C 1 ) may be a metal catalyst, for example platinum (Pt).
  • the reduction catalyst support layer 34 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
  • the membrane-electrode assembly 50 may be formed by placing and then fastening each of the anode electrode 10, the polymer electrolyte membrane 20, and the reduction electrode 30, or may be formed by pressing them at high temperature and high pressure.
  • flow path plates 62 and 64 are provided on both electrodes 10 and 30 of the membrane-electrode assembly 50 to form a battery structure 100.
  • the flow path plates 62 and 64 may include a fuel flow channel 65 and a gas flow channel 67 through which fuel and gas are moved, respectively, and both ends of the flow channel channels 65 and 67. It may be provided with respective inlets (IN) and outlets (OUT) so that fuel and gas can be injected and discharged.
  • a plurality of such battery structures 100 may be repeatedly stacked to form a stack structure.
  • At least one catalyst is introduced into at least one of the oxidation catalyst support layer 14 and the reduction catalyst support layer 34. If the oxidation catalyst support layer 14 includes a conductive support and an ion conductive binder but no main catalyst (C 1 ), the main catalyst (C 1 ) and the cocatalyst (C 2 ) in the catalyst support layer 14 are included. ) Can be introduced, and when the main catalyst (C 1 ) is introduced into the catalyst support layer 14 in advance, only the promoter (C 2 ) can be introduced.
  • the reduction catalyst support layer 34 includes a conductive support and an ion conductive binder but does not contain the main catalyst (C 1 ), the main catalyst (C 1 ) may be introduced into the reduction catalyst support layer 34. In the reducing catalyst support layer 34, a promoter C 2 may not be introduced.
  • the cocatalyst (C 2 ) is a substance for promoting the activity of the main catalyst (C 1 ), and the cocatalyst (C 2 ) is provided to reduce the use of expensive main catalyst (C 1 ), the use of a catalyst The efficiency can be improved.
  • the promoter C 2 may be any one selected from Groups 4A, 5A, or 8B, but the type of the promoter C 2 used may vary depending on the fuel used in the fuel cell. Specifically, the promoter C 2 may be any one selected from Bi, Sb, As, or Pb in common. However, when formic acid solution is used as fuel, Bi may be used as cocatalyst (C 2 ), when ethanol is used as fuel, Sn may be used as cocatalyst (C 2 ) and methanol may be used as fuel. If used, Ru may be used as cocatalyst (C 2 ).
  • electrochemical deposition may be used to introduce the catalyst into the catalyst support layers 14 and 34.
  • the electrochemical deposition may include an overpotential deposition (OPD) method in which electrochemical deposition is performed at a potential lower than the standard oxidation potential, and an underpotential deposition (UPD) method in which electrochemical deposition is performed at a potential higher than the standard oxidation potential.
  • OPD overpotential deposition
  • UPD underpotential deposition
  • Such an electrochemical deposition method can be formed using equipment consisting of a three-electrode system.
  • an electrode to which a catalyst is to be introduced may be disposed in a holder of a working electrode, and an electrode to which the catalyst is not introduced may be disposed on a counter electrode.
  • One side of the counter electrode may be a small Ag / AgCl electrode as a reference electrode.
  • the counter electrode can be used as a reference electrode.
  • the anode when the electrode to which the catalyst is to be introduced is the anode 10, the anode may be disposed in the holder of the working electrode, and the cathode 30 may be disposed in the counter electrode.
  • the metal precursor solution is supplied through the injection port of the fuel flow channel 65 of the membrane-electrode assembly 50 or the battery structure 100, and the Hydrogen gas can be supplied through the inlet
  • the reduction electrode 30 may generate electrons as shown in Scheme 1 below.
  • electrons generated as hydrogen is injected into the reduction electrode 30 may supply an application potential for introducing a catalyst to the anode 10.
  • the applied potential for the electrochemical deposition may be carried out in the potential range of -300mV to + 300mV, which may vary depending on the degree of hydrophobicity of the catalyst.
  • a catalyst metal may be introduced by receiving electrons from the reduction electrode 30 as in Scheme 2 below.
  • the metal precursor solution may include a metal precursor and a solvent, and the metal precursor may be H 2 PtCl 6 , Bi 2 O 3 , Bi (NO 3 ) 3 , Sb 2 O 3 , Sb 2 (SO 4 ) 3, or As 2. It may include at least one catalytic metal selected from the O 3 group.
  • the solvent may be a perchloric acid solution.
  • M is a catalytic metal
  • n is an integer selected from 1 to 3.
  • the method of introducing the catalyst into the anode 10 has been described as an example, but the method of introducing the catalyst into the cathode 30 is the same as the method of introducing the catalyst of the anode 10.
  • the catalyst is introduced after the membrane-electrode assembly 50 or the battery structure 100 is prepared, damage to the catalyst can be prevented, and the active area of the catalyst can be improved, whereby the reaction efficiency of the catalyst is improved, The performance of the fuel cell can be improved.
  • the electrochemical deposition method used to introduce the catalyst can be deposited using less energy, so that the catalyst can be stably maintained even in an environment where the actual fuel cell is used, and thus the performance of the fuel cell can be further improved.
  • FIG. 4 is a cross-sectional view illustrating a structure of a fuel cell according to an embodiment of the present invention.
  • a formic acid fuel cell using a formic acid solution as a fuel will be described as an example of the fuel cell, but is not limited thereto. It is apparent that a fuel such as methanol, formaldehyde, and ethanol may be used.
  • FIG. 4 a fuel cell in which a catalyst is introduced into an electrode by using the method described with reference to FIGS. 1 to 3 is provided.
  • HCOOH is supplied as fuel through the injection port of the fuel flow channel channel 65, and O 2 is supplied through the injection port of the gas flow channel channel 67.
  • the formic acid is oxidized by the electrochemical reaction in the anode 10 to generate carbon dioxide, hydrogen ions, and electrons.
  • Hydrogen ions generated from the anode 10 is moved to the reduction electrode 30 through the polymer electrolyte membrane 20, in the reduction electrode 30 oxygen and hydrogen ions and electrons react to react with water as shown in Scheme 5 below. Will be generated.
  • the electrons generated in the anode 10 is moved through an external circuit to convert the amount of change of free energy obtained through a chemical reaction into electrical energy.
  • a carbon fiber (SGL Technologies Co., Ltd.) was prepared as a fuel diffusion layer, and a solution containing 0.5 mg of Pt / C 40% supported catalyst, Nafion solution, and 0.1 M perchloric acid solution was applied to the carbon fiber to introduce a main catalyst. An anode was formed. The solution was applied onto the carbon fiber using the spray method.
  • a Nafion membrane (DuPont) was prepared as a polymer electrolyte membrane, and a reduction electrode was prepared by preparing carbon fibers as a reduction diffusion layer and forming a reduction catalyst layer containing 1.5 mg of Pt on the carbon fibers.
  • the anode, the polymer electrolyte membrane, and the cathode are fabricated by applying high temperature and high pressure using hot pressing to manufacture a membrane-electrode assembly, and a fuel cell structure is formed by installing a pair of flow path plates facing the anode and the cathode. It was.
  • the anode of the fuel cell structure is disposed on the working electrode, the cathode is disposed on the counter electrode and the reference electrode, and a 0.1 M perchloric acid solution is applied to the anode by using a pump through a fuel injection port connected to the anode.
  • 5mM Bi 2 O 3 was dissolved in a solution in which the precursor was supplied, and hydrogen was supplied to the cathode through an air inlet using a mass flow meter.
  • the applied potential was + 100mV
  • Bi solution supply rate was 5mL / min
  • the hydrogen supply rate was 100mL / min
  • electrochemical deposition was performed for 5 minutes.
  • Comparative Example 1 Manufacturing a battery structure in which only the main catalyst was introduced
  • FIG. 5 is a graph showing cell voltages of the battery structure according to Comparative Example 1 and Preparation Examples 1 and 2.
  • a battery structure in which Pt is introduced as a main catalyst exhibits a low cell voltage of about 0.3 V, whereas Bi of the promoter is selected in the battery structure in which the main catalyst is introduced using the UPD method.
  • a high cell voltage of about 0.55V was shown.
  • the power density value it is about 82.5mW / cm 2 , which is about twice the value of 45mW / cm 2 of the power density value of the fuel cell (Comparative Example 1) in which only the main catalyst is introduced.
  • the battery structure further includes a cocatalyst, compared with only the main catalyst, thereby improving the activity of the catalyst and improving cell voltage characteristics.
  • the activity of the catalyst also affects the formation method of the catalyst. That is, the promoter is preferably formed using the OPD method or the UPD method, but more preferably the UPD method is used.
  • Production Example 3-1, 3-2, 3-3 Battery structure production 3 in which a main catalyst and a promoter were introduced (UPD method)
  • a battery structure was prepared in the same manner as in Preparation Example 1, but using Sb, Pb, and Ru, respectively, without using Bi as a promoter.
  • Production Example 4-1, 4-2, 4-3 Production of battery structure 4 in which main catalyst and promoter were introduced (OPD method)
  • Table 1 below shows the cell voltages of Comparative Example 1, Preparation Examples 3-1 to 3-3, and 4-1 to 4-3.

Abstract

Provided is a method for manufacturing a fuel cell. The method for manufacturing a fuel cell comprises the steps of: providing a membrane/electrode assembly including an oxide electrode, a polymer electrolyte membrane, and a cathode; and introducing at least one type of catalyst into the oxide electrode and/or the cathode in the membrane/electrode assembly using an electrochemical deposition technique.

Description

연료전지 제조방법Fuel Cell Manufacturing Method
본 발명은 연료전지에 관한 것으로, 보다 상세하게는 연료전지 제조방법에 관한 것이다.The present invention relates to a fuel cell, and more particularly to a fuel cell manufacturing method.
[관련 출원][Related Application]
본 출원은 2009년 12월 2일에 출원된 대한민국 특허출원 제10-2009-0118383호에 대한 우선권을 주장하며, 상기 출원의 모든 개시는 본원에 참조로서 포함된다.This application claims the benefit of Korean Patent Application No. 10-2009-0118383, filed December 2, 2009, the entire disclosure of which is hereby incorporated by reference.
[배경 기술]Background Technology
연료전지는 환경친화적일 뿐 아니라, 최근 고출력 휴대용 전원의 수요가 급증하고 있는 상황에서 기존의 가솔린 엔진, 이차전지 등의 에너지 시스템을 충분히 대체할 수 있을 것으로 기대된다. 특히, 액체연료전지는 수소를 연료로 사용하는 연료전지와는 달리 별도의 개질 장치를 필요로 하지 않으며, 시스템이 간단하여 소형화가 가능하다는 이점을 갖고 있다. In addition to being environmentally friendly, fuel cells are expected to be able to replace energy systems such as gasoline engines and secondary batteries in a situation where demand for high output portable power is increasing rapidly. In particular, the liquid fuel cell does not require a separate reforming device, unlike a fuel cell using hydrogen as a fuel, and has the advantage that the system can be miniaturized due to a simple system.
이러한 연료전지는 기본적으로 막-전극 접합체로 구성되는데, 이를 제조하기 위해서는 모든 촉매가 도입된 산화전극 및 환원전극을 제조하고, 산화전극, 고분자 전해질막 및 환원전극을 프레스로 압착시킬 수 있다.  The fuel cell is basically composed of a membrane-electrode assembly. In order to manufacture the fuel cell, an anode and a cathode in which all catalysts are introduced may be prepared, and the anode, the polymer electrolyte membrane, and the cathode may be pressed by a press.
이와 같이, 상기 막-전극 접합체를 프레스를 사용하여 형성하는 경우, 전극들이 원래의 구조를 유지하지 못하고 붕괴되거나 압착될 수 있으므로, 촉매의 손상이 발생할 수 있고, 이에 따라 촉매의 활성면적이 감소될 수 있다. 그 결과, 촉매의 반응 효율이 감소되어 전체적으로 연료전지의 성능이 저하될 수 있다.As such, when the membrane-electrode assembly is formed using a press, since the electrodes may collapse or be compressed without maintaining their original structure, damage to the catalyst may occur, thereby reducing the active area of the catalyst. Can be. As a result, the reaction efficiency of the catalyst can be reduced and the performance of the fuel cell as a whole can be reduced.
본 발명이 해결하고자 하는 기술적 과제는 촉매의 반응 효율을 향상시키고,연료전지의 성능을 향상시킬 수 있는 연료전지 제조방법을 제공함에 있다.The technical problem to be solved by the present invention is to provide a fuel cell manufacturing method that can improve the reaction efficiency of the catalyst, and improve the performance of the fuel cell.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 연료전지 제조방법을 제공한다. 상기 연료전지 제조방법은 산화전극, 고분자 전해질막 및 환원전극을 구비하는 막-전극 접합체를 제공하는 단계, 및 전기화학적 증착법을 사용하여 상기 막-전극 접합체 내의 산화전극 및 환원전극 중 적어도 하나의 전극 내에 적어도 1종의 촉매를 도입시키는 단계를 포함한다.In order to achieve the above technical problem, an aspect of the present invention provides a fuel cell manufacturing method. The fuel cell manufacturing method includes providing a membrane-electrode assembly including an anode, a polymer electrolyte membrane, and a cathode, and at least one electrode of the anode and the cathode in the membrane-electrode assembly using an electrochemical deposition method. Introducing at least one catalyst into it.
상기 막-전극 접합체를 제공하는 단계는 상기 막-전극 접합체의 양측 전극들 상에 각각 유로판들이 배치된 전지 구조체를 제공하는 단계일 수 있다. 상기 제공된 막-전극 접합체 내의 전극은 도전성 지지체 및 이온 전도성 바인더를 함유할 수 있다.The providing of the membrane-electrode assembly may be a step of providing a battery structure in which flow path plates are disposed on both electrodes of the membrane-electrode assembly. The electrode in the membrane-electrode assembly provided above may contain a conductive support and an ion conductive binder.
상기 제공된 막-전극 접합체 내의 전극은 도전성 지지체, 이온 전도성 바인더 및 주촉매를 함유하고, 상기 촉매를 도입시키는 단계는 상기 전극 내에 조촉매를 도입하는 단계일 수 있다. 상기 주촉매는 Pt이고, 상기 조촉매는 4A, 5A 또는 8B족에서 선택되는 어느 하나일 수 있다. 상기 전기화학적 증착법은 UPD법 또는 OPD법일 수 있다.The electrode in the provided membrane-electrode assembly contains a conductive support, an ion conductive binder and a main catalyst, and introducing the catalyst may be introducing a promoter into the electrode. The main catalyst is Pt, the promoter may be any one selected from the group 4A, 5A or 8B. The electrochemical deposition method may be a UPD method or an OPD method.
상기 촉매를 도입시키는 단계는 상기 막전극 접합체의 산화전극 및 환원전극 중 적어도 하나의 전극에 금속 전구체 용액을 공급하고, 상기 금속 전구체 용액이 공급되는 전극 외의 전극에는 수소가스를 공급하여 수행될 수 있다.The introducing of the catalyst may be performed by supplying a metal precursor solution to at least one of the anode and the cathode of the membrane electrode assembly, and supplying hydrogen gas to an electrode other than the electrode to which the metal precursor solution is supplied. .
상술한 바와 같이 막-전극 접합체 또는 전지 구조체를 제조한 후에 촉매를 도입함으로써 촉매의 손상을 방지하고, 촉매의 활성면적을 향상시킬 수 있으므로, 촉매의 반응 효율이 향상되고, 연료전지의 성능이 향상될 수 있다.As described above, since the catalyst is introduced after the membrane-electrode assembly or the battery structure is manufactured, damage to the catalyst can be prevented, and the active area of the catalyst can be improved, thereby improving the reaction efficiency of the catalyst and improving the performance of the fuel cell. Can be.
또한, 촉매를 도입시키기 위해 사용하는 전기화학 증착법은 적은 에너지를 이용한 증착이 가능하고, 실제 연료전지가 사용되는 환경에서도 촉매를 안정적으로 유지시킬 수 있으므로, 연료전지의 성능은 더욱 향상될 수 있다.In addition, the electrochemical deposition method used to introduce the catalyst can be deposited using less energy, and the catalyst can be stably maintained even in an environment where the actual fuel cell is used, so that the performance of the fuel cell can be further improved.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 연료전지 제조방법을 공정단계별로 나타낸 단면도들이다. 1 to 3 are cross-sectional views illustrating a method of manufacturing a fuel cell according to one embodiment of the present invention for each process step.
도 4는 본 발명의 일 실시예에 따른 연료전지의 구조를 나타내는 단면도이다. 4 is a cross-sectional view illustrating a structure of a fuel cell according to an embodiment of the present invention.
도 5는 비교예 1, 및 제조예들 1 및 2에 따른 전지 구조체의 셀 전압을 나타낸 그래프이다.5 is a graph showing cell voltages of the battery structure according to Comparative Example 1 and Preparation Examples 1 and 2. FIG.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장된 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 연료전지 제조방법을 공정단계별로 나타낸 단면도들이다. 1 to 3 are cross-sectional views illustrating a method of manufacturing a fuel cell according to one embodiment of the present invention for each process step.
도 1을 참조하면, 산화전극(10), 고분자 전해질막(20) 및 환원전극(30)을 구비하는 막-전극 접합체(50)를 제공한다. Referring to FIG. 1, a membrane-electrode assembly 50 including an anode 10, a polymer electrolyte membrane 20, and a cathode 30 is provided.
상기 산화전극(10)은 연료 확산층(12) 및 산화 촉매 지지층(14)을 구비할 수 있다. 상기 연료 확산층(12)은 연료전지에 주입되는 연료의 급격한 확산을 방지하고, 이온 전도도의 저하를 방지하기 위해 구비될 수 있다. 상기 연료 확산층(12)은 열처리 또는 전기화학적 처리를 통하여 연료의 확산 속도를 조절할 수 있다. 상기 연료 확산층(12)은 탄소섬유 또는 탄소종이일 수 있다. 여기서, 상기 연료는 개미산 용액, 메탄올, 포름알데히드, 또는 에탄올과 같은 액체연료일 수 있다. The anode 10 may include a fuel diffusion layer 12 and an oxidation catalyst support layer 14. The fuel diffusion layer 12 may be provided to prevent rapid diffusion of fuel injected into the fuel cell and to prevent a decrease in ion conductivity. The fuel diffusion layer 12 may adjust the diffusion rate of the fuel through heat treatment or electrochemical treatment. The fuel diffusion layer 12 may be carbon fiber or carbon paper. Here, the fuel may be a liquid fuel such as formic acid solution, methanol, formaldehyde, or ethanol.
상기 산화 촉매 지지층(14)은 촉매가 도입되는 층으로서, 도전성 지지체(C.S) 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 산화 촉매 지지층(14)은 상기 도전성 지지체(C.S)에 부착된 주촉매(C1)를 포함할 수 있다. 상기 도전성 지지체(C.S)는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매(C1)는 금속촉매일 수 있으며, 일 예로서 백금(Pt)일 수 있다. The oxidation catalyst support layer 14 is a layer into which the catalyst is introduced, and may include a conductive support CS and an ion conductive binder (not shown). In addition, the oxidation catalyst support layer 14 may include a main catalyst C 1 attached to the conductive support CS. The conductive support CS may be carbon black, and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. In addition, the main catalyst (C 1 ) may be a metal catalyst, for example platinum (Pt).
상기 산화 촉매 지지층(14)은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The oxidation catalyst support layer 14 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 고분자 전해질막(20)은 탄화수소계 폴리머, 폴리이미드(polyimide), 퍼플루오르 술폰산 폴리머(perfluorosulfonic acid polymer), 폴리술폰 (polysulfone), 폴리에테르술폰(polyethersulfone), 폴리에스테르(polyester) 또는 폴리포스파진(polyphosphazene)과 같은 고분자막일 수 있다. The polymer electrolyte membrane 20 may be a hydrocarbon-based polymer, a polyimide, a perfluorosulfonic acid polymer, a polysulfone, a polyethersulfone, a polyester, or a polyphosphazine. It may be a polymer film such as (polyphosphazene).
상기 환원전극(30)은 가스 확산층(32) 및 환원 촉매 지지층(34)을 포함할 수 있다. 상기 가스 확산층(32)은 상기 환원전극(30)에 주입되는 가스의 급격한 확산을 방지하고, 상기 환원전극(30)에 주입된 가스를 균일하게 분산시켜주기 위해 구비될 수 있다. 상기 가스 확산층은(32) 탄소 종이 또는 탄소 섬유일 수 있다. The reduction electrode 30 may include a gas diffusion layer 32 and a reduction catalyst support layer 34. The gas diffusion layer 32 may be provided to prevent sudden diffusion of the gas injected into the reduction electrode 30 and uniformly disperse the gas injected into the reduction electrode 30. The gas diffusion layer 32 may be carbon paper or carbon fiber.
상기 환원 촉매 지지층(34)은 촉매가 도입되는 층으로서, 도전성 지지체(C.S) 및 이온 전도성 바인더(미도시)를 포함할 수 있다. 이에 더하여, 상기 환원 촉매 지지층(34)은 상기 도전성 지지체(C.S)에 부착된 주촉매(C1)를 포함할 수 있다. 상기 도전성 지지체(C.S)는 카본 블랙일 수 있고, 상기 이온 전도성 바인더는 나피온 이오노머 또는 술폰화된 폴리머일 수 있다. 또한, 상기 주촉매(C1)는 금속촉매일 수 있으며, 일 예로서 백금(Pt)일 수 있다. The reduction catalyst support layer 34 is a layer into which the catalyst is introduced, and may include a conductive support CS and an ion conductive binder (not shown). In addition, the reduction catalyst support layer 34 may include a main catalyst C 1 attached to the conductive support CS. The conductive support CS may be carbon black, and the ion conductive binder may be a Nafion ionomer or a sulfonated polymer. In addition, the main catalyst (C 1 ) may be a metal catalyst, for example platinum (Pt).
상기 환원 촉매 지지층(34)은 전기도금법, 스프레이법, 페인팅법, 닥터블레이드법 또는 전사법을 사용하여 형성할 수 있다. The reduction catalyst support layer 34 may be formed using an electroplating method, a spray method, a painting method, a doctor blade method, or a transfer method.
상기 막-전극 접합체(50)는 상기 산화전극(10), 고분자 전해질막(20) 및 환원전극(30) 각각을 배치시킨 후 체결하여 형성하거나, 이를 고온 및 고압으로 압착하여 형성할 수 있다. The membrane-electrode assembly 50 may be formed by placing and then fastening each of the anode electrode 10, the polymer electrolyte membrane 20, and the reduction electrode 30, or may be formed by pressing them at high temperature and high pressure.
도 2를 참조하면, 상기 막-전극 접합체(50)의 양측 전극들(10, 30) 상에 각각 유로판들(62, 64)을 설치하여 전지 구조체(100)를 형성한다. 상기 유로판들(62, 64)은 내부에 연료 및 가스가 이동되는 각각 연료 유로 채널(65) 및 가스 유로 채널(67)을 구비할 수 있으며, 상기 유로 채널들(65, 67)의 양 끝단에는 연료 및 가스가 주입 및 배출될 수 있도록 각각의 주입구들(IN) 및 배출구들(OUT)을 구비할 수 있다. Referring to FIG. 2, flow path plates 62 and 64 are provided on both electrodes 10 and 30 of the membrane-electrode assembly 50 to form a battery structure 100. The flow path plates 62 and 64 may include a fuel flow channel 65 and a gas flow channel 67 through which fuel and gas are moved, respectively, and both ends of the flow channel channels 65 and 67. It may be provided with respective inlets (IN) and outlets (OUT) so that fuel and gas can be injected and discharged.
이와 같은 전지 구조체(100)를 다수 개 반복 적층하여 스택 구조를 형성할 수 있다.A plurality of such battery structures 100 may be repeatedly stacked to form a stack structure.
도 3을 참조하면, 상기 산화 촉매 지지층(14) 또는 환원 촉매 지지층(34) 중 적어도 어느 하나에 적어도 1종의 촉매를 도입한다. 만약, 상기 산화 촉매 지지층(14)이 도전성 지지체 및 이온 전도성 바인더를 포함하되 주촉매(C1)가 포함되지 않은 경우, 상기 촉매 지지층(14) 내에 주촉매(C1)및 조촉매(C2) 모두를 도입할 수 있고, 상기 촉매 지지층(14)에 주촉매(C1)가 미리 도입된 상태인 경우, 조촉매(C2)만을 도입할 수 있다. Referring to FIG. 3, at least one catalyst is introduced into at least one of the oxidation catalyst support layer 14 and the reduction catalyst support layer 34. If the oxidation catalyst support layer 14 includes a conductive support and an ion conductive binder but no main catalyst (C 1 ), the main catalyst (C 1 ) and the cocatalyst (C 2 ) in the catalyst support layer 14 are included. ) Can be introduced, and when the main catalyst (C 1 ) is introduced into the catalyst support layer 14 in advance, only the promoter (C 2 ) can be introduced.
한편, 상기 환원 촉매 지지층(34)이 도전성 지지체 및 이온 전도성 바인더를 포함하되 주촉매(C1)가 포함되지 않은 경우, 상기 환원 촉매 지지층(34) 내에 주촉매(C1)를 도입할 수 있으며, 상기 환원 촉매 지지층(34) 내에는 조촉매(C2)가 도입되지 않을 수 있다. On the other hand, when the reduction catalyst support layer 34 includes a conductive support and an ion conductive binder but does not contain the main catalyst (C 1 ), the main catalyst (C 1 ) may be introduced into the reduction catalyst support layer 34. In the reducing catalyst support layer 34, a promoter C 2 may not be introduced.
상기 조촉매(C2)는 상기 주촉매(C1)의 활성을 촉진시키기 위한 물질로서, 상기 조촉매(C2)가 구비됨으로써 고가의 주촉매(C1)의 사용을 줄이고, 촉매의 사용효율을 향상시킬 수 있다.The cocatalyst (C 2 ) is a substance for promoting the activity of the main catalyst (C 1 ), and the cocatalyst (C 2 ) is provided to reduce the use of expensive main catalyst (C 1 ), the use of a catalyst The efficiency can be improved.
상기 조촉매(C2)는 4A, 5A 또는 8B족에서 선택되는 어느 하나일 수 있으나, 연료전지에 사용되는 연료에 따라 사용되는 조촉매(C2)의 종류가 다소 변경될 수 있다. 구체적으로, 조촉매(C2)는 공통적으로 Bi, Sb, As 또는 Pb에서 선택되는 어느 하나일 수 있다. 그러나, 연료로서 개미산 용액이 사용되는 경우, 조촉매(C2)로서, Bi가 사용될 수 있고, 연료로서 에탄올이 사용되는 경우, 조촉매(C2)로서 Sn가 사용될 수 있으며, 연료로서 메탄올이 사용되는 경우, 조촉매(C2)로서 Ru가 사용될 수 있다.The promoter C 2 may be any one selected from Groups 4A, 5A, or 8B, but the type of the promoter C 2 used may vary depending on the fuel used in the fuel cell. Specifically, the promoter C 2 may be any one selected from Bi, Sb, As, or Pb in common. However, when formic acid solution is used as fuel, Bi may be used as cocatalyst (C 2 ), when ethanol is used as fuel, Sn may be used as cocatalyst (C 2 ) and methanol may be used as fuel. If used, Ru may be used as cocatalyst (C 2 ).
상기와 같이 촉매 지지층들(14, 34) 내에 촉매를 도입시키기 위해서는 전기화학 증착법이 사용될 수 있다. 상기 전기화학 증착법은 표준산화전위 보다 낮은 전위에서 전기화학적 증착이 수행되는 OPD(overpotential deposition)법과 표준산화전위 보다 높은 전위에서 전기화학적 증착이 수행되는 UPD(underpotential deposition)법을 포함할 수 있다. As described above, electrochemical deposition may be used to introduce the catalyst into the catalyst support layers 14 and 34. The electrochemical deposition may include an overpotential deposition (OPD) method in which electrochemical deposition is performed at a potential lower than the standard oxidation potential, and an underpotential deposition (UPD) method in which electrochemical deposition is performed at a potential higher than the standard oxidation potential.
이러한 전기화학 증착법은 3전극 시스템으로 구성된 장비를 이용하여 형성할 수 있는데, 본 발명에서는 촉매를 도입하고자 하는 전극을 작용전극의 홀더에 배치시키고, 촉매가 도입되지 않는 전극을 상대전극에 배치시킬 수 있으며, 상기 상대전극의 일 측에는 기준전극으로서, 소형 Ag/AgCl전극을 배치시킬 수 있다. 또한 수소가스를 도입해 줌으로써 상대전극을 기준전극으로 사용할 수 있다. Such an electrochemical deposition method can be formed using equipment consisting of a three-electrode system. In the present invention, an electrode to which a catalyst is to be introduced may be disposed in a holder of a working electrode, and an electrode to which the catalyst is not introduced may be disposed on a counter electrode. One side of the counter electrode may be a small Ag / AgCl electrode as a reference electrode. In addition, by introducing hydrogen gas, the counter electrode can be used as a reference electrode.
일 예로서, 촉매를 도입하고자 하는 전극이 산화전극(10)인 경우, 상기 작용전극의 홀더에는 산화전극이 배치될 수 있고, 상기 상대전극에는 환원전극(30)이 배치될 수 있다. As an example, when the electrode to which the catalyst is to be introduced is the anode 10, the anode may be disposed in the holder of the working electrode, and the cathode 30 may be disposed in the counter electrode.
이와 같이 3전극 시스템의 준비가 완료되면, 상기 막-전극 접합체(50) 또는 전지 구조체(100)의 연료 유로 채널(65)의 주입구를 통해 금속 전구체 용액이 공급되고, 가스 유로 채널(67)의 주입구를 통해 수소가스가 공급될 수 있다 When the preparation of the three-electrode system is completed as described above, the metal precursor solution is supplied through the injection port of the fuel flow channel 65 of the membrane-electrode assembly 50 or the battery structure 100, and the Hydrogen gas can be supplied through the inlet
이 경우, 상기 환원전극(30)에서는 하기 반응식 1과 같이 전자를 발생시킬 수 있다. 이 때, 상기 환원전극(30)에 수소가 주입됨에 따라 발생되는 전자는 상기 산화전극(10)에 촉매 도입을 위한 적용전위를 공급해줄 수 있다. 상기 전기화학 증착을 위한 적용전위는 -300mV 내지 +300mV의 전위 범위 내에서 수행될 수 있으며, 이는 촉매의 소수성 정도에 따라 변화될 수 있다. In this case, the reduction electrode 30 may generate electrons as shown in Scheme 1 below. In this case, electrons generated as hydrogen is injected into the reduction electrode 30 may supply an application potential for introducing a catalyst to the anode 10. The applied potential for the electrochemical deposition may be carried out in the potential range of -300mV to + 300mV, which may vary depending on the degree of hydrophobicity of the catalyst.
한편, 상기 산화전극(10)에서는 하기 반응식 2와 같이 상기 환원전극(30)으로부터 전자를 전달받아 촉매금속이 도입될 수 있다. 상기 금속 전구체 용액은 금속 전구체 및 용매를 포함할 수 있으며, 금속 전구체는 H2PtCl6, Bi2O3, Bi(NO3)3, Sb2O3, Sb2(SO4)3 또는 As2O3 군에서 선택되는 적어도 1종의 촉매 금속을 포함할 수 있다. 또한, 상기 용매는 과염소산 용액일 수 있다. Meanwhile, in the anode 10, a catalyst metal may be introduced by receiving electrons from the reduction electrode 30 as in Scheme 2 below. The metal precursor solution may include a metal precursor and a solvent, and the metal precursor may be H 2 PtCl 6 , Bi 2 O 3 , Bi (NO 3 ) 3 , Sb 2 O 3 , Sb 2 (SO 4 ) 3, or As 2. It may include at least one catalytic metal selected from the O 3 group. In addition, the solvent may be a perchloric acid solution.
[반응식 1]Scheme 1
상대전극: ½nH2 → nH+ + ne- Counter electrode: ½nH 2 → nH + + ne -
[반응식 2]Scheme 2
작용전극: Mn+ + ne- → M0 Working electrode: M n + + ne - → M 0
[반응식 3]Scheme 3
전체반응: Mn+ + ½nH2 → M0 + nH+ Total reaction: M n + + ½nH 2 → M 0 + nH +
상기 반응식들 1 내지 3에서 상기 M은 촉매금속이고, 상기 n은 1 내지 3에서 선택되는 정수이다. 상술한 바에서는 산화전극(10)에 촉매를 도입하는 방법을 일 예로서 설명하였으나, 환원전극(30)에 촉매를 도입하는 방법은 상기 산화전극(10)의 촉매 도입방법과 동일하다. In Reaction Schemes 1 to 3, M is a catalytic metal, and n is an integer selected from 1 to 3. As described above, the method of introducing the catalyst into the anode 10 has been described as an example, but the method of introducing the catalyst into the cathode 30 is the same as the method of introducing the catalyst of the anode 10.
상술한 바와 같이 막-전극 접합체(50) 또는 전지 구조체(100)를 제조한 후에 촉매를 도입함으로써 촉매의 손상을 방지하고, 촉매의 활성면적을 향상시킬 수 있으므로, 촉매의 반응 효율이 향상되고, 연료전지의 성능이 향상될 수 있다. As described above, since the catalyst is introduced after the membrane-electrode assembly 50 or the battery structure 100 is prepared, damage to the catalyst can be prevented, and the active area of the catalyst can be improved, whereby the reaction efficiency of the catalyst is improved, The performance of the fuel cell can be improved.
또한, 촉매를 도입시키기 위해 사용하는 전기화학 증착법은 적은 에너지를 이용한 증착이 가능하여 실제 연료전지가 사용되는 환경에서도 촉매를 안정적으로 유지시킬 수 있으므로, 연료전지의 성능은 더욱 향상될 수 있다. In addition, the electrochemical deposition method used to introduce the catalyst can be deposited using less energy, so that the catalyst can be stably maintained even in an environment where the actual fuel cell is used, and thus the performance of the fuel cell can be further improved.
도 4는 본 발명의 일 실시예에 따른 연료전지의 구조를 나타내는 단면도이다. 이하에서는 연료전지의 일 예로서 개미산 용액을 연료로 사용하는 개미산 연료 전지에 대해 설명하나 이에 한정하지 않으며, 메탄올, 포름알데히드, 에탄올과 같은 연료를 이용할 수 있음은 자명하다.4 is a cross-sectional view illustrating a structure of a fuel cell according to an embodiment of the present invention. Hereinafter, a formic acid fuel cell using a formic acid solution as a fuel will be described as an example of the fuel cell, but is not limited thereto. It is apparent that a fuel such as methanol, formaldehyde, and ethanol may be used.
도 4를 참조하면, 먼저 도 1 내지 도 3을 참조하여 설명한 방법을 사용하여 전극 내에 촉매를 도입한 연료전지가 제공된다.Referring to FIG. 4, a fuel cell in which a catalyst is introduced into an electrode by using the method described with reference to FIGS. 1 to 3 is provided.
연료 유로 채널(65)의 주입구를 통해 연료로서 HCOOH가 공급되고, 가스 유로 채널(67)의 주입구를 통해 O2가 공급된다. 이 경우, 상기 산화전극(10)에서는 하기의 반응식 4와 같이 전기화학적 반응에 의해 개미산이 산화되어 이산화탄소, 수소이온 및 전자가 생성된다. 산화전극(10)에서 생성된 수소 이온은 고분자 전해질막(20)을 통해 환원전극(30)으로 이동하며, 환원전극(30)에서는 하기 반응식 5와 같이 산소와 수소이온 및 전자가 반응하여 물을 생성시키게 된다. 한편, 산화전극(10)에서 생성된 전자는 외부 회로를 통해 이동하면서 화학반응을 통해 얻어진 자유에너지의 변화량을 전기 에너지로 전환시키게 된다.HCOOH is supplied as fuel through the injection port of the fuel flow channel channel 65, and O 2 is supplied through the injection port of the gas flow channel channel 67. In this case, the formic acid is oxidized by the electrochemical reaction in the anode 10 to generate carbon dioxide, hydrogen ions, and electrons. Hydrogen ions generated from the anode 10 is moved to the reduction electrode 30 through the polymer electrolyte membrane 20, in the reduction electrode 30 oxygen and hydrogen ions and electrons react to react with water as shown in Scheme 5 below. Will be generated. On the other hand, the electrons generated in the anode 10 is moved through an external circuit to convert the amount of change of free energy obtained through a chemical reaction into electrical energy.
전체 반응식은 하기 반응식 6과 같이 개미산과 산소가 반응하여 물과 이산화탄소를 생성시키게 되며, 반응결과 1.45 V의 전위차를 발생시키게 된다.In the overall scheme, formic acid and oxygen react as in Scheme 6 to generate water and carbon dioxide, and as a result, a potential difference of 1.45 V is generated.
[반응식 4]Scheme 4
HCOOH → CO2 + 2H+ + 2e- HCOOH → CO 2 + 2H + + 2e -
[반응식 5]Scheme 5
0.5O2 + 2H+ + 2e- → H2O 0.5O 2 + 2H + + 2e - → H 2 O
[반응식 6]Scheme 6
HCOOH + 0.5O2 →CO2 + H2OHCOOH + 0.5O 2 → CO 2 + H 2 O
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예들(examples)을 제시한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기 실험예들에 의해 한정되는 것은 아니다. Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following experimental examples are only for helping understanding of the present invention, and the present invention is not limited to the following experimental examples.
<실험예들; examples>Experimental Examples; examples>
제조예 1: 주촉매 및 조촉매가 도입된 전지 구조체 제조 1(UPD법)Preparation Example 1 Battery Structure Preparation 1 Including Main Catalyst and Cocatalyst (UPD Method)
연료확산층으로서 탄소섬유(독일 SGL Technologies 사)를 준비하고, 0.5mg의 Pt/C 40% 담지촉매, 나피온 용액 및 0.1M 과염소산 용액을 포함하는 용액을 상기 탄소섬유에 도포하여 주촉매가 도입된 산화전극을 형성하였다. 상기 용액은 스프레이법을 사용하여 상기 탄소섬유 상에 도포하였다.A carbon fiber (SGL Technologies Co., Ltd.) was prepared as a fuel diffusion layer, and a solution containing 0.5 mg of Pt / C 40% supported catalyst, Nafion solution, and 0.1 M perchloric acid solution was applied to the carbon fiber to introduce a main catalyst. An anode was formed. The solution was applied onto the carbon fiber using the spray method.
고분자 전해질막으로서 나피온막(DuPont 사)을 준비하였으며, 환원전극은 환원 확산층으로서 탄소섬유를 준비하고, 상기 탄소섬유에 1.5mg의 Pt가 함유된 환원 촉매층을 형성하여 제조하였다.A Nafion membrane (DuPont) was prepared as a polymer electrolyte membrane, and a reduction electrode was prepared by preparing carbon fibers as a reduction diffusion layer and forming a reduction catalyst layer containing 1.5 mg of Pt on the carbon fibers.
상기 산화전극, 고분자 전해질막 및 환원전극은 핫프레싱을 사용하여 고온 및 고압을 가하여 막-전극 접합체를 제조하고, 산화전극 및 환원전극과 마주보는 한 쌍의 유로판들을 설치하여 연료전지 구조체를 구성하였다.The anode, the polymer electrolyte membrane, and the cathode are fabricated by applying high temperature and high pressure using hot pressing to manufacture a membrane-electrode assembly, and a fuel cell structure is formed by installing a pair of flow path plates facing the anode and the cathode. It was.
이어, 상기 연료전지 구조체의 산화전극을 작업전극에 배치시키고, 환원전극을 상대전극 및 기준전극에 배치시킨 후, 상기 산화전극과 연결된 연료 주입구를 통해 펌프를 이용하여 상기 산화전극에 0.1M 과염소산 용액에 5mM Bi2O3 전구체가 용해된 용액을 공급하였으며, 상기 환원전극에는 질량유량계를 이용하여 공기 주입구를 통해 수소를 공급하였다.Subsequently, the anode of the fuel cell structure is disposed on the working electrode, the cathode is disposed on the counter electrode and the reference electrode, and a 0.1 M perchloric acid solution is applied to the anode by using a pump through a fuel injection port connected to the anode. 5mM Bi 2 O 3 was dissolved in a solution in which the precursor was supplied, and hydrogen was supplied to the cathode through an air inlet using a mass flow meter.
이 때, 적용전위는 +100mV로 하고, Bi 용액의 공급속도는 5mL/min로 하였으며, 상기 수소의 공급속도는 100mL/min로 하여, 5분간 전기화학적 증착을 수행하였다.At this time, the applied potential was + 100mV, Bi solution supply rate was 5mL / min, the hydrogen supply rate was 100mL / min, electrochemical deposition was performed for 5 minutes.
제조예 2: 주촉매 및 조촉매가 도입된 전지 구조체 제조 2(OPD법)Preparation Example 2 Battery Structure Preparation 2 Including Main Catalyst and Cocatalyst (OPD Method)
제조예 1과 동일하게 수행하되, 상기 적용전위를 -100mV로 하여 전기화학적 증착을 수행하였다.In the same manner as in Preparation Example 1, the electrochemical deposition was performed with the applied potential of -100mV.
비교예 1: 주촉매만 도입된 전지 구조체를 제조Comparative Example 1: Manufacturing a battery structure in which only the main catalyst was introduced
제조예 1과 동일하되, 별도의 조촉매 도입과정은 수행하지 않았다.Same as Preparation Example 1, but did not perform a separate promoter introduction process.
도 5는 비교예 1, 및 제조예들 1 및 2에 따른 전지 구조체의 셀 전압을 나타낸 그래프이다. 이 때, 전지 구조체 내의 전류는 150mA/cm2로 일정하게 흘러주었다.5 is a graph showing cell voltages of the battery structure according to Comparative Example 1 and Preparation Examples 1 and 2. FIG. At this time, the current in the battery structure flowed constantly at 150 mA / cm 2 .
도 5를 참조하면, 주촉매로서 Pt가 도입된 전지 구조체(비교예 1)는 약 0.3V의 낮은 셀 전압을 나타내는 반면, 주촉매가 도입된 전지 구조체 내에 UPD법을 이용하여 조촉매의 Bi를 더 도입시킨 경우(제조예 1), 약 0.55V의 높은 셀 전압을 나타내었다. 이를 전력밀도 값으로 환산하는 경우, 약 82.5mW/cm2로서, 이는 주촉매만 도입된 연료전지(비교예 1)의 전력밀도 값인 45mW/cm2에 비해 약 2배에 해당되는 값이다.Referring to FIG. 5, a battery structure in which Pt is introduced as a main catalyst (Comparative Example 1) exhibits a low cell voltage of about 0.3 V, whereas Bi of the promoter is selected in the battery structure in which the main catalyst is introduced using the UPD method. When further introduced (Production Example 1), a high cell voltage of about 0.55V was shown. When converted to the power density value, it is about 82.5mW / cm 2 , which is about twice the value of 45mW / cm 2 of the power density value of the fuel cell (Comparative Example 1) in which only the main catalyst is introduced.
또한, 주촉매가 도입된 전지 구조체에 OPD법을 이용하여 조촉매의 Bi를 더 도입한 경우(제조예 2), 약 0.45V의 높은 셀 전압을 나타내었다. 이 또한, 주촉매만 도입된 연료전지(비교예 1)에 비해 약 1.5배에 해당되는 값이다.In addition, when the Bi of the promoter was further introduced into the battery structure in which the main catalyst was introduced by using the OPD method (Production Example 2), a high cell voltage of about 0.45V was shown. This value is also about 1.5 times that of the fuel cell (Comparative Example 1) in which only the main catalyst is introduced.
이와 같은 결과를 통해, 전지 구조체는 주촉매만 구비하는 것에 비해, 조촉매를 더 구비하는 것이, 촉매의 활성도가 향상되어 셀 전압 특성을 향상시킬 수 있음을 예측할 수 있다. 또한, 촉매의 활성도는 촉매의 형성방법에도 영향을 미치는 것을 알 수 있다. 즉, 조촉매는 OPD법 또는 UPD법를 이용하여 형성하는 것이 바람직하나, 더 바람직하게는 UPD법을 이용하는 것이 바람직하다. Through such a result, it can be predicted that the battery structure further includes a cocatalyst, compared with only the main catalyst, thereby improving the activity of the catalyst and improving cell voltage characteristics. In addition, it can be seen that the activity of the catalyst also affects the formation method of the catalyst. That is, the promoter is preferably formed using the OPD method or the UPD method, but more preferably the UPD method is used.
제조예 3-1, 3-2, 3-3: 주촉매 및 조촉매가 도입된 전지 구조체 제조 3(UPD법)Production Example 3-1, 3-2, 3-3: Battery structure production 3 in which a main catalyst and a promoter were introduced (UPD method)
제조예 1과 동일하되, 조촉매로서 Bi를 사용하지 않고, 각각 Sb, Pb 및 Ru를 사용하여 전지 구조체를 제조하였다.A battery structure was prepared in the same manner as in Preparation Example 1, but using Sb, Pb, and Ru, respectively, without using Bi as a promoter.
제조예 4-1, 4-2, 4-3: 주촉매 및 조촉매가 도입된 전지 구조체 제조 4(OPD법)Production Example 4-1, 4-2, 4-3: Production of battery structure 4 in which main catalyst and promoter were introduced (OPD method)
제조예 2와 동일하되, 조촉매로서 Bi를 사용하지 않고, 각각 Sb, Pb 및 Ru를 사용하여 전지 구조체를 제조하였다.In the same manner as in Preparation Example 2, without using Bi as a promoter, a battery structure was prepared using Sb, Pb, and Ru, respectively.
하기 표 1은 비교예 1, 제조예 3-1 내지 3-3, 및 4-1 내지 4-3의 셀전압을 나타낸다.Table 1 below shows the cell voltages of Comparative Example 1, Preparation Examples 3-1 to 3-3, and 4-1 to 4-3.
표 1
NO. 주촉매 조촉매 조촉매도입방법 셀전압(V) 전력밀도(mW/㎠)
제조예 3-1 Pt Sb UPD 0.58 87
제조예 3-2 Pb UPD 0.52 78
제조예 3-3 Ru UPD 0.42 63
제조예 4-1 Sb OPD 0.47 71
제조예 4-2 Pb OPD 0.44 66
제조예 4-3 Ru OPD 0.36 54
비교예 1 - - 0.30 45
Table 1
NO. Main catalyst Promoter Promoter introduction method Cell voltage (V) Power density (mW / ㎠)
Preparation Example 3-1 Pt Sb UPD 0.58 87
Preparation Example 3-2 Pb UPD 0.52 78
Preparation Example 3-3 Ru UPD 0.42 63
Preparation Example 4-1 Sb OPD 0.47 71
Preparation Example 4-2 Pb OPD 0.44 66
Preparation Example 4-3 Ru OPD 0.36 54
Comparative Example 1 - - 0.30 45
표 1을 참조하여 설명하면, 주촉매가 도입된 전지 구조체를 제조한 후 UPD법을 통하여 조촉매를 도입시킨 경우(제조예 3-1, 3-2, 3-3), 조촉매 금속의 종류와 관계없이, 주촉매만을 도입한 전지 구조체(비교예 1)에 비해, 셀 전압이 약 2배 증가한 것을 알 수 있으며, OPD법을 통하여 조촉매를 도입시킨 경우(제조예 4-1, 4-2, 4-3) 또한, 셀 전압이 약 1.5배 증가된 것을 알 수 있다.Referring to Table 1, when the promoter was introduced through the UPD method after manufacturing the battery structure in which the main catalyst was introduced (Production Examples 3-1, 3-2, 3-3), the type of promoter metal Irrespective of this, it can be seen that the cell voltage increased about twice as compared with the battery structure in which only the main catalyst was introduced (Comparative Example 1), and when the promoter was introduced through the OPD method (Production Examples 4-1 and 4- 2, 4-3) It can also be seen that the cell voltage is increased about 1.5 times.
이러한 전지 구조체들의 전력밀도는 연료전지의 상용화 가능 수치인 50 내지 100mW/㎠ 내에 모두 포함되므로, 상용화 가능성이 있음을 예측할 수 있다.Since the power densities of these battery structures are all included within the commercially available values of 50 to 100 mW / cm 2, it can be predicted that there is a possibility of commercialization.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those skilled in the art within the spirit and scope of the present invention. This is possible.

Claims (7)

  1. 산화전극, 고분자 전해질막 및 환원전극을 구비하는 막-전극 접합체를 제공하는 단계; 및Providing a membrane-electrode assembly comprising an anode, a polymer electrolyte membrane, and a cathode; And
    전기화학적 증착법을 사용하여 상기 막-전극 접합체 내의 산화전극 및 환원전극 중 적어도 하나의 전극 내에 적어도 1종의 촉매를 도입시키는 단계를 포함하는 연료전지 제조방법.And introducing at least one catalyst into at least one of the anode and the cathode in the membrane-electrode assembly using an electrochemical deposition method.
  2. 제1항에 있어서, The method of claim 1,
    상기 막-전극 접합체를 제공하는 단계는Providing the membrane-electrode assembly
    상기 막-전극 접합체의 양측 전극들 상에 각각 유로판들이 배치된 전지 구조체를 제공하는 단계인 연료전지 제조방법.Providing a battery structure in which flow path plates are disposed on both electrodes of the membrane-electrode assembly.
  3. 제1항에 있어서,The method of claim 1,
    상기 제공된 막-전극 접합체 내의 전극은 도전성 지지체 및 이온 전도성 바인더를 함유하는 연료전지 제조방법.And the electrode in the provided membrane-electrode assembly comprises a conductive support and an ion conductive binder.
  4. 제1항에 있어서,The method of claim 1,
    상기 제공된 막-전극 접합체 내의 전극은 도전성 지지체, 이온 전도성 바인더 및 주촉매를 함유하고,The electrode in the provided membrane-electrode assembly contains a conductive support, an ion conductive binder and a main catalyst,
    상기 촉매를 도입시키는 단계는 상기 전극 내에 조촉매를 도입하는 단계인 연료전지 제조방법.Introducing the catalyst is a step of introducing a promoter into the electrode fuel cell manufacturing method.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 주촉매는 Pt이고, The main catalyst is Pt,
    상기 조촉매는 4A, 5A 또는 8B족에서 선택되는 어느 하나인 연료전지 제조방법.The promoter is a fuel cell manufacturing method of any one selected from group 4A, 5A or 8B.
  6. 제1항에 있어서, The method of claim 1,
    상기 전기화학적 증착법은 UPD법 또는 OPD법인 연료전지 제조방법.The electrochemical deposition method is a fuel cell manufacturing method of the UPD method or OPD method.
  7. 제1항에 있어서, The method of claim 1,
    상기 촉매를 도입시키는 단계는Introducing the catalyst
    상기 막전극 접합체의 산화전극 및 환원전극 중 적어도 하나의 전극에 금속 전구체 용액을 공급하고, 상기 금속 전구체 용액이 공급되는 전극 외의 전극에는 수소가스를 공급하여 수행되는 연료전지 제조방법.And supplying a metal precursor solution to at least one of the anode and the cathode of the membrane electrode assembly, and supplying hydrogen gas to an electrode other than the electrode to which the metal precursor solution is supplied.
PCT/KR2009/007483 2009-12-02 2009-12-15 Method for manufacturing a fuel cell WO2011068272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0118383 2009-12-02
KR1020090118383A KR101209486B1 (en) 2009-12-02 2009-12-02 Method for fabricating of fuel cell

Publications (1)

Publication Number Publication Date
WO2011068272A1 true WO2011068272A1 (en) 2011-06-09

Family

ID=44115103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007483 WO2011068272A1 (en) 2009-12-02 2009-12-15 Method for manufacturing a fuel cell

Country Status (2)

Country Link
KR (1) KR101209486B1 (en)
WO (1) WO2011068272A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491752B1 (en) * 2012-05-04 2015-02-11 강원대학교산학협력단 Bipolar plate for fuel cell and mehtod for manufacturing the same, and fuel cell including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050095975A (en) * 2004-03-29 2005-10-05 주식회사 엘지화학 Method of manufacturing membrane electrode assembly for fuel cell
KR20060125918A (en) * 2004-03-15 2006-12-06 캐보트 코포레이션 Modified carbon products, their use in fluid/gas diffusion layers and similar devices and methods relating to the same
WO2008104322A2 (en) * 2007-02-26 2008-09-04 Elcomax Gmbh Method for producing a catalyst layer
KR20090108216A (en) * 2008-04-11 2009-10-15 광주과학기술원 Membrane Electrode Assembly for Direct Liquid Fuel Cell and Manufacturing Method Thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720688C1 (en) 1997-05-16 1998-06-18 Forschungszentrum Juelich Gmbh Fuel cell electrode- solid electrolyte unit manufacture
JP4428774B2 (en) 1999-10-20 2010-03-10 株式会社豊田中央研究所 Manufacturing method of fuel cell electrode
DE10065074A1 (en) * 2000-12-23 2002-07-04 Forschungszentrum Juelich Gmbh Process for the deposition of a catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125918A (en) * 2004-03-15 2006-12-06 캐보트 코포레이션 Modified carbon products, their use in fluid/gas diffusion layers and similar devices and methods relating to the same
KR20050095975A (en) * 2004-03-29 2005-10-05 주식회사 엘지화학 Method of manufacturing membrane electrode assembly for fuel cell
WO2008104322A2 (en) * 2007-02-26 2008-09-04 Elcomax Gmbh Method for producing a catalyst layer
KR20090108216A (en) * 2008-04-11 2009-10-15 광주과학기술원 Membrane Electrode Assembly for Direct Liquid Fuel Cell and Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR20110061856A (en) 2011-06-10
KR101209486B1 (en) 2012-12-07

Similar Documents

Publication Publication Date Title
CN100372160C (en) Fuel cell electrode and membrane-electrode assembly and fuel cell system
CN100495793C (en) Solid porous supporting body flat-plate series micro solid oxide fuel battery
KR20180002089A (en) Membrane electrode assembly with adhesive layer between membrane and electrode, method for preparing the same, and fuel cell comprising the same
CN114024000B (en) Anode activation method of proton exchange membrane fuel cell stack
KR20070004657A (en) Membrane electrode unit
CN100454622C (en) Bipolar plate and direct liquid feed fuel cell stack
CN110911714A (en) Proton exchange membrane fuel cell stack activation method
CN111769308A (en) Universal activation method for proton exchange membrane fuel cell stack
CN114005993A (en) Gas diffusion layer, preparation method thereof and fuel cell
WO2019135451A1 (en) Electrochemical hydrogenation reactor and method for producing hydride by using same
WO2011068272A1 (en) Method for manufacturing a fuel cell
CN114737211B (en) Proton exchange composite reinforced membrane, preparation method, water electrolysis membrane electrode and application
CN108604698A (en) The integrated proton conductive electrochemical appliance and related methods of production reformed
KR101000197B1 (en) Method of preparing electrode of membrane-electrode assembly for fuel cell, electrode and membrane-electrode assembly prepared by the same
WO2021137517A1 (en) Membrane-electrode assembly capable of improving reverse voltage durability of fuel cell, method for manufacturing same, and fuel cell including same
WO2021137514A1 (en) Catalyst for fuel cell, method for manufacturing same, and membrane-electrode assembly comprising same
CN101826622B (en) Method for prolonging service life of cell by adding redox shuttle
WO2020145453A1 (en) Solid oxide fuel cell for reducing carbon dioxide generation by simultaneously performing electricity generation and synthetic gas production, manufacturing method therefor, and operation condition
WO2016052831A1 (en) Electrochemical unit cell
WO2011052843A1 (en) Solid-oxide fuel cell and a production method therefor
KR101098676B1 (en) Method of preparing the electrode for fuel cell and Membrane electrode assembly and Fuel cell comprising the electrode made by the same
WO2019212071A1 (en) Electrochemical dehydration reactor and method for manufacturing hydrogen by using same
WO2022085979A1 (en) Membrane-electrode assembly and fuel cell including same
WO2014092357A1 (en) Stack structure for fuel cell
WO2016122287A1 (en) Compound comprising aromatic ring and polymer electrolyte membrane using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851889

Country of ref document: EP

Kind code of ref document: A1