WO2011068143A1 - Antibody against influenza virus subtype h5 and use thereof - Google Patents

Antibody against influenza virus subtype h5 and use thereof Download PDF

Info

Publication number
WO2011068143A1
WO2011068143A1 PCT/JP2010/071539 JP2010071539W WO2011068143A1 WO 2011068143 A1 WO2011068143 A1 WO 2011068143A1 JP 2010071539 W JP2010071539 W JP 2010071539W WO 2011068143 A1 WO2011068143 A1 WO 2011068143A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
amino acid
influenza virus
chain variable
Prior art date
Application number
PCT/JP2010/071539
Other languages
French (fr)
Japanese (ja)
Inventor
恵 樋口
定彦 鈴木
礼人 高田
宏 喜田
玲子 吉田
学 五十嵐
洋子 宮本
Original Assignee
独立行政法人科学技術振興機構
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, 国立大学法人北海道大学 filed Critical 独立行政法人科学技術振興機構
Publication of WO2011068143A1 publication Critical patent/WO2011068143A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1018Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an antibody against H5 subtype influenza virus and use thereof. Specifically, the antibody and functional fragment thereof against H5 subtype influenza virus, a hybridoma producing the antibody, and the variable region of the antibody are encoded. Polynucleotides, expression vectors containing the polynucleotides, cells into which the expression vectors have been introduced, methods for detecting H5 subtype influenza viruses using the antibodies, detection kits for H5 subtype influenza viruses containing the antibodies, and the antibodies The present invention relates to a preventive or therapeutic agent for H5 subtype influenza virus infection diseases.
  • Influenza viruses are classified into A type, B type and C type according to the difference in antigenicity between nucleoprotein (NP) and membrane protein (M). Among them, influenza A viruses are further classified into 16 types of HA (H1-16) and NA of 9 types (N1-9), depending on the amino acid sequence or antigenicity of hemagglutinin (HA) and neuraminidase (NA). There are as many subtypes of that combination. Among these, the main subtypes that infect humans using humans as hosts are H1-3 and N1-2. Influenza A virus infects not only humans but many mammals and birds.
  • An avian infectious disease caused by an influenza A virus infecting birds is “bird flu”, and all subtypes of H1-16 and N1-9 have been confirmed as influenza virus causing the infection. Many of these influenza viruses do not show serious symptoms to birds, but some H5, H7 and H9 subtypes of influenza viruses show severe symptoms when infected with birds. . These are called highly pathogenic avian influenza viruses, and there is concern about the possibility of human infection.
  • Antibodies are effective for detection and measurement of influenza virus and prevention or treatment of influenza virus-infected diseases. So far, various monoclonal antibodies having neutralizing activity against H5 subtype influenza virus have been reported (for example, Non-Patent Documents 1 to 4). However, nothing has been put into practical use for the prevention or treatment of H5 subtype influenza virus-infected diseases, and the development of a new antibody having high neutralizing activity against H5 subtype influenza virus is desired.
  • Prabakaran M. et al. Combination therapy using chimeric monoclonal antibodies protects mice from lethal H5N1 infection and prevents formation of escape mutants.
  • Simmons C.P. et al. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza.
  • An object of the present invention is to provide a novel antibody having neutralizing activity against H5 subtype influenza virus, and a preventive or therapeutic agent for H5 subtype influenza virus infection disease containing the antibody as an active ingredient.
  • the present invention includes the following inventions in order to solve the above problems.
  • [8] A polynucleotide encoding the heavy chain variable region of the antibody according to any one of [1] to [5].
  • [9] A polynucleotide encoding the light chain variable region of the antibody according to any one of [1] to [5].
  • An expression vector comprising the polynucleotide according to [8] and / or [9].
  • [11] A cell into which the expression vector according to [10] is introduced.
  • Detection of H5 subtype influenza virus comprising the step of bringing the antibody according to any one of [1] to [5] above or the functional fragment according to claim 7 into contact with a test sample Method.
  • a detection kit for H5 subtype influenza virus comprising the antibody according to any one of [1] to [5] or the functional fragment according to claim 7.
  • a preventive or therapeutic agent for H5 subtype influenza virus infection disease comprising the antibody according to any one of [1] to [5] or the functional fragment according to claim 7 as an active ingredient .
  • An H5 subtype comprising a step of administering an effective amount of the antibody according to any one of [1] to [5] or the functional fragment according to claim 7 to an animal.
  • a method for preventing or treating influenza virus-infected diseases comprising the antibody according to any one of [1] to [5] or the functional fragment according to claim 7.
  • a novel antibody having neutralizing activity against H5 subtype influenza virus can be provided.
  • the antibody has been confirmed to have preventive and therapeutic effects in experiments using H5 subtype influenza virus-infected mice, and is useful as an active ingredient for preventive or therapeutic agents for H5 subtype influenza virus-infected diseases.
  • FIG. 4 is a diagram comparing the amino acid sequences of the heavy chain variable regions of mouse 36-1 antibody and mouse 61 antibody.
  • FIG. 3 is a diagram comparing the amino acid sequences of the light chain variable regions of mouse 36-1 antibody and mouse 61 antibody.
  • FIG. 3 is a view showing the structure of a basic vector pDN11-cohCk for light chain expression.
  • FIG. 3 is a diagram showing the structure of a heavy chain expression basic vector pUCBR-SPyhCg1c. It is a figure which shows the design of the humanized antibody based on the mouse
  • FIG. 1 It is a figure which shows the structure of a recombinant antibody expression vector. It is a figure showing the results of evaluating the binding to H5 subtype influenza virus A / rgViet Num / 1194 ⁇ HA / 2004 (H5N1) strain, (A) shows the results of mouse 36-1 antibody and chimeric 36-1 antibody, (B) shows the results of mouse 61 antibody and chimera 61 antibody. It is a figure which shows the result of having evaluated the neutralization activity with respect to H5 subtype influenza virus A / Hong Kong / 483/1977 (H5N1) stock, (A) shows the result of mouse 36-1 antibody and chimera 36-1 antibody , (B) shows the results of mouse 61 antibody and chimeric 61 antibody.
  • the present inventors immunized mice with influenza virus A / Vietnam / 1194/04 (H5N1) as an antigen, prepared hybridomas according to a conventional method, and the reactivity of monoclonal antibodies produced by the obtained hybridomas with various viruses.
  • influenza virus A / Vietnam / 1194/04 H5N1
  • the neutralizing activity two types of mouse monoclonal antibodies that specifically bind to hemagglutinin of H5 subtype influenza virus and neutralize infectivity of H5 subtype influenza virus were found.
  • Research has been completed and the present invention has been completed.
  • the mouse monoclonal antibody produced by the hybridoma 36-1 is a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3.
  • the mouse monoclonal antibody produced by the hybridoma 61-2-1 has a heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 4 and a light chain consisting of the amino acid sequence shown in SEQ ID NO: 5.
  • Hybridoma 36-1 accesion No. NITE BP-832
  • Hybridoma 61-2-1 accesion No. NITE BP-833 have been internationally deposited with the Patent Microorganism Depositary, National Institute of Technology and Evaluation. (Contract date: October 30, 2009).
  • the present invention provides an antibody that specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus.
  • the antibody of the present invention comprises a lysine at position 177 and lysine at position 205 in the amino acid sequence (SEQ ID NO: 1) of hemagglutinin of influenza virus A / Vietnam / 1194/04 (H5N1) strain, which is a type of H5 subtype influenza virus. Any epitope-recognizing epitope may be used, and the H5 subtype influenza virus hemagglutinin epitope other than the A / Vietnam / 1194/04 (H5N1) strain is not limited.
  • the antibody of the present invention can neutralize the infectivity of H5 subtype influenza virus.
  • the antibody of the present invention preferably neutralizes H5 subtype influenza virus infectivity by at least 50%, more preferably at least 70% neutralization, and even more preferably at least 90% neutralization.
  • Examples of the antibody of the present invention include antibodies including the following (a) and (b).
  • the antibody of the present invention is preferably a human chimeric antibody or a humanized antibody.
  • a human chimeric antibody refers to an antibody comprising a heavy chain variable region and a light chain variable region of an antibody derived from a non-human animal, and a heavy chain constant region and a light chain constant region of a human antibody.
  • a humanized antibody is obtained by grafting a CDR (complementarity determining region) of an antibody derived from a non-human animal into a CDR of a human antibody, and is also referred to as a CDR-grafted antibody, a reconstituted antibody, or the like.
  • the FR (framework region) of the humanized antibody is selected so that CDR forms a favorable antigen-binding site. If necessary, the amino acid sequence of the FR in the variable region of the antibody may be substituted so that the CDR of the humanized antibody forms an appropriate antigen-binding site.
  • the constant regions of human antibodies are used as the constant regions of chimeric antibodies and humanized antibodies.
  • C ⁇ 1, C ⁇ 2, C ⁇ 3, C ⁇ 4 can be used for the heavy chain
  • C ⁇ , C ⁇ can be used for the light chain.
  • human antibody constant regions may be modified to improve the stability of the antibody or its production.
  • Human antibodies used for humanization may be human antibodies of any isotype such as IgG, IgM, IgA, IgE, IgD, but IgG is preferred, IgG1 or IgG3 is more preferred, and IgG1 is particularly preferred.
  • the amino acid sequence of the constant region of a human antibody can be obtained from a known database (Protein Data Bank etc.).
  • the human chimeric antibody of the present invention includes a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 or 4, a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3 or 5, and a human antibody heavy chain. Antibodies consisting of a chain constant region and a light chain constant region are preferred.
  • the humanized antibody of the present invention includes a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 or 8, a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7 or 9, and a human antibody. An antibody consisting of a heavy chain constant region and a light chain constant region is preferred.
  • an antibody having a heavy chain variable region consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, 4, 6 or 8, and SEQ ID NO: 3 An antibody having a light chain variable region consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by 5, 7 or 9 is also specific to hemagglutinin of H5 subtype influenza virus.
  • One or several amino acids have been deleted, substituted or added means that the number can be deleted, substituted or added by a known mutant peptide production method such as site-directed mutagenesis (preferably 10 or less). , More preferably 7 or less, and even more preferably 5 or less) amino acids are deleted, substituted or added.
  • the present invention includes a functional fragment of the antibody of the present invention.
  • the “functional fragment” in the present invention is a part (partial fragment) of the antibody of the present invention, which specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus.
  • Any hemagglutinin consisting of the amino acid sequence shown in SEQ ID NO: 1 may be used as long as it retains the function of recognizing an epitope containing lysine at position 177 and lysine at position 205.
  • Specific examples include Fab, F (ab ′) 2 , Fab ′, Fv, scFv, and the like.
  • the antibody of the present invention can be produced by a known method.
  • it can be produced as a monoclonal antibody produced by a hybridoma or a recombinant antibody produced using a gene recombination technique.
  • the monoclonal antibody-producing hybridoma immunizes a mammal according to a normal immunization method using, for example, H5 subtype influenza virus hemagglutinin as a sensitizing antigen, and fuses the obtained immune cell with a known parent cell by a normal cell fusion method.
  • the target monoclonal antibody-producing hybridoma can be obtained by a normal screening method.
  • a protein containing lysine at position 177 and lysine at position 205 of hemagglutinin of the influenza virus A / Vietnam / 1194/04 (H5N1) strain consisting of the amino acid sequence represented by SEQ ID NO: 1 Use it.
  • a partial fragment containing lysine at position 205 can be used.
  • the hemagglutinin or a partial fragment thereof can be produced as a recombinant protein using a known gene recombination technique. Partial fragments can also be produced by chemical synthesis.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion.
  • mouse, rat, hamster, etc. Rodents, rabbits, monkeys, etc. are used.
  • the antigen is mixed with Freund's complete or incomplete adjuvant, or an adjuvant such as potassium alum, and the animal is immunized as an immunogen.
  • the administration method of the immunogen is appropriately selected from subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection, footpad injection and the like. Immunization can be repeated once or multiple times at appropriate intervals (preferably at intervals of 3 days to 1 week).
  • the antibody titer against the antigen in the serum of the immunized animal is measured, and if the animal having a sufficiently high antibody titer is used as a source of antibody-producing cells, the effect of subsequent operations can be enhanced.
  • animal-derived antibody-producing cells 3 to 5 days after the final immunization for subsequent cell fusion.
  • various known techniques such as radioisotope immunoassay (RIA method), solid-phase enzyme immunoassay (ELISA method), fluorescent antibody method, passive hemagglutination reaction method and the like can be used.
  • Mammalian myeloma cells are usually used as parent cells to be fused with antibody-producing cells obtained from immunized mammals.
  • a known cell line can be preferably used.
  • a cell line obtained from a mouse for example, 8-azaguanine-resistant mouse myeloma line P3X63Ag8U.1 (P3-U1) (Yelton, DE et al., Current Topics in Microbiology and Immunology, 81, 1-7 (1978)), P3 / NSI / 1-Ag4-1 (NS-1) (Kohler, G. et al., European J.
  • Antibody-producing cells are plasma cells and their precursor cells, lymphocytes, which may be obtained from any part of the individual, generally spleen, lymph nodes, bone marrow, tonsils, peripheral blood, or these as appropriate. Spleen cells are most commonly used, although they can be obtained from a combination or the like. After the final immunization, a site where antibody-producing cells are present, such as the spleen, is removed from a mouse having a predetermined antibody titer, and spleen cells that are antibody-producing cells are prepared. The most commonly used method for fusing these spleen cells and myeloma cells is a method using polyethylene glycol. This method can be performed, for example, by the following procedure.
  • Spleen cells and myeloma are thoroughly washed with a serum-free medium (for example, DMEM) or PBS, mixed so that the ratio of the number of spleen cells to myeloma is about 5: 1 to 10: 1, and centrifuged. After removing the supernatant and loosening the precipitated cells, a serum-free medium containing 1 ml of 50% (w / v) polyethylene glycol (molecular weight 1000 to 4000) is added dropwise with stirring. Thereafter, 10 ml of serum-free medium is slowly added and then centrifuged.
  • a serum-free medium for example, DMEM
  • PBS a serum-free medium containing 1 ml of 50% (w / v) polyethylene glycol (molecular weight 1000 to 4000)
  • HAT medium normal medium
  • HAT hypoxanthine / aminopterin / thymidine
  • IL-2 human interleukin-2
  • the myeloma cells are 8-azaguanine resistant strains, that is, hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient strains
  • HGPRT hypoxanthine / guanine / phosphoribosyltransferase
  • the fused myeloma cells and the fused cells of the myeloma cells cannot survive in the HAT medium.
  • non-fused antibody-producing cells and fused cells between antibody-producing cells cannot proliferate. Therefore, by continuing the culture in the HAT medium, only the hybridoma of the antibody producing cell and the myeloma cell grows, and as a result, the hybridoma can be selected.
  • a culture medium is changed into the culture medium (HT culture medium) remove
  • the hybridoma confirmed to produce a specific antibody against hemagglutinin of H5 subtype influenza virus by antibody titer measurement is transferred to another plate for cloning.
  • the cloning method include a limiting dilution method, a soft agar method, a method using a micromanipulator, a method using a cell sorter, etc., but the limiting dilution method is simple and often used. For example, cloning by limiting dilution is repeated 2 to 4 times, hybridomas with stable antibody titers are selected, and the neutralizing activity and epitope of the produced monoclonal antibody are confirmed.
  • the neutralizing activity can be confirmed by, for example, the same method as in Example 5 described later. That is, the antibody produced by the selected hybridoma and H5 subtype influenza virus are mixed and incubated, the mixture is added to MDCK cells cultured in a confluent state, the virus is infected, and an agar medium is added. After hardening and culturing for 2 days, the number of plaques is counted. If the number of plaques is reduced as compared with the case where only H5 subtype influenza virus is infected, it can be determined that the antibody has neutralizing activity.
  • Epitope identification can be confirmed, for example, by the same method as in Example 7 described later. That is, after reacting the virus with the antibody, infect appropriate cells with the virus to isolate the escape mutant strain, and the sequence analysis of the hemagglutinin gene of the isolated virus strain identifies the amino acid with the mutation. By doing so, the epitope can be identified.
  • the medium is changed to a normal medium and cultured.
  • Mass culture can be performed by rotary culture or spinner culture using a large culture bottle.
  • the antibody of the present invention can be obtained by purifying the supernatant obtained by mass culture using a method well known to those skilled in the art, such as a gel filtration column.
  • ascites containing a large amount of the antibody of the present invention can be obtained by growing the hybridoma in the peritoneal cavity of the same strain of mouse or Nu / Nu mouse, rat, guinea pig, hamster or rabbit.
  • the antibody of the present invention can be obtained.
  • an antibody gene from a hybridoma producing the antibody of the present invention incorporate it into an appropriate vector, and introduce this vector into a host to produce a recombinant antibody (for example, Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990).
  • a recombinant antibody for example, Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990.
  • human chimeric antibodies and humanized antibodies can be produced as recombinant antibodies.
  • the gene encoding the heavy chain of the human chimeric antibody can be prepared by combining the portion encoding the heavy chain variable region of the antibody gene cloned from the hybridoma with the gene encoding the heavy chain constant region of the human antibody.
  • the gene encoding the light chain of the human chimeric antibody is prepared by combining the portion encoding the light chain variable region of the antibody gene cloned from the hybridoma with the gene encoding the light chain constant region of the human antibody. Can do.
  • the gene encoding the heavy chain of the humanized antibody In the gene encoding the heavy chain of the humanized antibody, the CDR coding portion of the heavy chain variable region of the antibody gene cloned from the hybridoma is replaced with the corresponding CDR portion of the gene encoding the heavy chain of the human antibody. It can produce by doing. Similarly, the gene encoding the light chain of the humanized antibody is the same as the CDR of the gene encoding the light chain of the human antibody. It can be produced by replacing the portion.
  • the obtained gene encoding the heavy chain and the gene encoding the light chain are inserted into an appropriate vector, and a recombinant expression vector for expressing the antibody of the present invention is constructed.
  • the gene encoding the heavy chain and the gene encoding the light chain may be incorporated into one vector or into separate vectors.
  • the obtained vector is introduced into a host cell to produce a transformant.
  • the gene encoding the heavy chain and the gene encoding the light chain are incorporated into separate vectors, the two vectors are co-introduced into the host cell. Details of the vector and the host cell will be described later.
  • the host cell (transformant) introduced with the vector can be cultured, and the antibody of the present invention can be collected from the culture.
  • the culture include culture supernatant, cultured cells or cultured cells or disrupted products thereof, and secretions of transformants.
  • the medium and culture conditions are appropriately selected according to the host cell used.
  • the target protein is produced in cells or cells after culturing, antibodies are collected by disrupting the cells or cells.
  • the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Thereafter, the target antibody can be isolated and purified from the culture by appropriately selecting and using a general biochemical method using various chromatographies used for protein isolation and purification.
  • the present invention provides a polynucleotide encoding the heavy chain variable region and the polynucleotide encoding the light chain variable region of the antibody of the present invention.
  • the polynucleotide of the present invention is useful when the antibody of the present invention is produced as a recombinant antibody. Moreover, it can also be used as a probe for screening an antibody having a function equivalent to that of the antibody of the present invention.
  • polynucleotide is used interchangeably with “gene”, “nucleic acid” or “nucleic acid molecule”.
  • the polynucleotides of the present invention can exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA).
  • the DNA may be double stranded or single stranded.
  • the single-stranded DNA or RNA may be either a coding strand (sense strand) or a non-coding strand (antisense strand).
  • the polynucleotide encoding the heavy chain variable region of the present invention includes CDR1 consisting of positions 31 to 35, CDR2 consisting of positions 50 to 66, and positions 98 of the amino acid sequence shown in SEQ ID NO: 2 or 4.
  • a polynucleotide encoding a heavy chain variable region comprising CDR3 consisting of position 109, more preferably a polynucleotide encoding a heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 2, 4, 6 or 8 It is.
  • Examples of the polynucleotide encoding the heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 2 include the polynucleotide consisting of the base sequence shown in SEQ ID NO: 10, and the heavy chain consisting of the amino acid sequence shown in SEQ ID NO: 4.
  • polynucleotide encoding the variable region examples include a polynucleotide comprising the base sequence represented by SEQ ID NO: 12, and the polynucleotide encoding the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 includes SEQ ID NO: And a polynucleotide encoding the heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 8 is a polynucleotide consisting of the base sequence shown in SEQ ID NO: 16. However, any of them is not limited.
  • the polynucleotide encoding the light chain variable region of the present invention includes CDR1 consisting of positions 24 to 33, CDR2 consisting of positions 49 to 55, and 88 of the amino acid sequence shown in SEQ ID NO: 3 or 5.
  • a polynucleotide encoding a light chain variable region comprising CDR3 consisting of position 96 is preferred, more preferably a polynucleotide encoding a light chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 3, 5, 7 or 9 It is a nucleotide.
  • Examples of the polynucleotide encoding the light chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 3 include the polynucleotide consisting of the base sequence shown in SEQ ID NO: 11, and the light chain consisting of the amino acid sequence shown in SEQ ID NO: 5.
  • polynucleotide encoding the variable region examples include a polynucleotide comprising the base sequence represented by SEQ ID NO: 13, and the polynucleotide encoding the light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7 include SEQ ID NO: And a polynucleotide encoding a light chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 9 includes a polynucleotide consisting of the base sequence shown in SEQ ID NO: 17. However, any of them is not limited.
  • Examples of the method for obtaining the polynucleotide of the present invention include a method using amplification means such as PCR.
  • amplification means such as PCR.
  • cDNAs prepared from RNA of hybridoma 36-1 by designing primers based on the 5 ′ side and 3 ′ side sequences (or their complementary sequences) of the nucleotide sequence shown in SEQ ID NO: 10, respectively.
  • PCR is performed using the above as a template, and a DNA region sandwiched between both primers is amplified, whereby a large amount of DNA fragments containing a polynucleotide encoding the polypeptide of the present invention can be obtained.
  • the present invention provides an expression vector comprising the polynucleotide of the present invention.
  • the expression vector of the present invention can be used for producing the antibody of the present invention or a functional fragment of the antibody.
  • the expression vector of the present invention is not particularly limited as long as it contains the above-described polynucleotide of the present invention, but a plasmid vector having an RNA polymerase recognition sequence is preferred.
  • the polynucleotide encoding the heavy chain variable region in addition to the polynucleotide encoding the heavy chain variable region and the polynucleotide encoding the light chain variable region, the polynucleotide encoding the heavy chain constant region And a polynucleotide encoding the light chain constant region.
  • a polynucleotide encoding a heavy chain in which a polynucleotide encoding a heavy chain variable region and a polynucleotide encoding a heavy chain constant region are combined, a polynucleotide encoding a light chain variable region, and a light chain constant It is preferable to include a polynucleotide encoding a light chain bound to a polynucleotide encoding a region.
  • a method for producing a recombinant expression vector includes, but is not particularly limited to, a method using a plasmid, phage, cosmid or the like.
  • the specific type of expression vector is not particularly limited, and a vector that can be expressed in a host cell can be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell to ensure expression of the polynucleotide of the present invention, and a vector in which this and the polynucleotide of the present invention are incorporated into various plasmids or the like is used as an expression vector. Good. It is also preferable to include at least one selectable marker.
  • Such markers include dihydrofolate reductase or neomycin resistance genes when the host is a eukaryotic cell, and tetracycline resistance genes or ampicillin resistance genes when the host is E. coli or other bacteria.
  • the present invention provides a cell into which the expression vector of the present invention has been introduced.
  • the cells of the present invention various microorganisms, plant or animal cells known as host cells can be used. Specifically, for example, bacteria such as Escherichia coli, yeast (budding yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe), Xenopus oocytes, insect cells, animal cells (eg, CHO cells, COS cells, etc.) Etc. CHO cells are preferred for the purpose of mass expression in animal cells.
  • a method for introducing the expression vector of the present invention into a host cell that is, a transformation method is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method is preferably used. Can do.
  • the cell of the present invention preferably stably expresses the protein encoded by the polynucleotide of the present invention, but may be expressed transiently.
  • the present invention provides a method for detecting H5 subtype influenza virus.
  • the detection method of the present invention only needs to include a step of bringing the antibody of the present invention or a functional fragment thereof (hereinafter referred to as “the antibody of the present invention”) into contact with a test sample.
  • the test sample is not particularly limited as long as it may contain H5 subtype influenza virus.
  • a sample derived from a living body including biological components of animals and plants is preferable, and a sample derived from an animal including humans is more preferable.
  • samples derived from animals including humans include body fluids such as blood, tissue fluid, lymph fluid, cerebrospinal fluid, pus, mucus, runny nose, sputum, urine, feces, ascites, skin, lung, kidney, mucous membrane, various organs. And a washing solution after washing tissues such as bones, nasal cavity, bronchi, skin, various organs, bones and the like.
  • a sample obtained secondarily from the test sample such as a culture solution obtained by culturing cells collected from the body of an organism, is also suitable as the test sample.
  • the antibody of the present invention specifically binds to the hemagglutinin of the H5 subtype influenza virus, and the complex Form.
  • H5 subtype influenza virus can be detected.
  • a known immunological method can be suitably used for detecting the complex. Specific examples include radioimmunoassay, enzyme immunoassay, fluorescent immunoassay, luminescence immunoassay, immunoprecipitation method, immunoturbidimetric method, and the like, and enzyme immunoassay, particularly ELISA method is preferred.
  • the ELISA method can be performed by a method well known to those skilled in the art.
  • the antibody of the present invention is bound to a solid phase such as a well of a microplate or a plastic tube, a test sample is added thereto, and after washing, an enzyme-labeled secondary antibody is added.
  • control sample in addition to the test sample.
  • control sample include a negative control sample not containing H5 subtype influenza virus and a positive control sample containing H5 subtype influenza virus.
  • the present invention provides a detection kit for H5 subtype influenza virus.
  • the detection kit of the present invention only needs to contain the antibody of the present invention.
  • the configuration of the kit other than the antibody and the like of the present invention is not particularly limited, and other necessary reagents and instruments may be appropriately selected to form the kit.
  • it when implemented as an ELISA detection kit, it preferably contains a labeled secondary antibody, a coloring reagent, a washing buffer, an ELISA plate, instructions for use, and the like.
  • the detection method of the present invention can be carried out simply and rapidly.
  • the present invention provides a preventive or therapeutic agent for H5 subtype influenza virus infection diseases comprising the antibody of the present invention as an active ingredient. Since the antibody of the present invention can neutralize the infectivity of H5 subtype influenza virus at a low concentration, it is useful for the prevention or treatment of H5 subtype influenza virus infection diseases.
  • the preventive or therapeutic agent of the present invention can be administered orally or parenterally to humans or non-human animals. Moreover, it can be set as a suitable dosage form according to an administration route. Specifically, it can be prepared in various preparation forms such as granules, tablets, pills, capsules, syrups, emulsions, suspensions, injections, drops, external preparations, suppositories and the like. These various preparations are commonly used excipients, extenders, binders, wetting agents, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, solubilizers, preservatives. , And can be produced by conventional methods using colorants, flavoring agents, stabilizers and the like.
  • excipient examples include lactose, fructose, glucose, corn starch, sorbit, crystalline cellulose, sterilized water, ethanol, glycerol, physiological saline, and buffer solution.
  • disintegrant examples include starch, sodium alginate, gelatin, calcium carbonate, calcium citrate, dextrin, magnesium carbonate, and synthetic magnesium silicate.
  • binder examples include methyl cellulose, ethyl cellulose, gum arabic, gelatin, hydroxypropyl cellulose, polyvinyl pyrrolidone and the like.
  • lubricant examples include talc, magnesium stearate, polyethylene glycol, hydrogenated vegetable oil, and the like.
  • stabilizer examples include amino acids such as arginine, histidine, lysine, and methionine, human serum albumin, gelatin, dextran 40, methylcellulose, sodium sulfite, and sodium metasulfite.
  • other additives include syrup, petrolatum, glycerin, ethanol, propylene glycol, citric acid, sodium chloride, sodium nitrite, and sodium phosphate.
  • a preferred route of administration is parenteral administration, and preferred dosage forms include injections, nasal administration agents, pulmonary administration agents, transdermal administration agents, and the like.
  • the injection can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose of the prophylactic or therapeutic agent of the present invention can be selected, for example, within the range of 0.0001 mg to 1000 mg per kg of body weight at one time, but is not limited.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., and can be appropriately selected by those skilled in the art.
  • the present invention further includes a method for preventing or treating an H5 subtype influenza virus-infected disease using the antibody of the present invention.
  • the method for preventing or treating an H5 subtype influenza virus-infected disease of the present invention includes a step of administering a pharmaceutically effective amount of the preventive or therapeutic agent of the present invention.
  • Example 1 Preparation of anti-influenza virus H5 subtype mouse monoclonal antibody
  • Mice were immunized using the influenza virus A / Vietnam / 1194/04 (H5N1) strain as an antigen, and a hybridoma producing a monoclonal antibody against the antigen was prepared according to a standard method. That is, the virus solution and an equal volume of Freund's complete adjuvant were mixed, and the mouse (BALB / c) was immunized three times, and the splenocytes were used for cell fusion.
  • the collected spleen cells and mouse myeloma cells Sp2 / 0 were cell-fused by the polyethylene glycol method and cultured in a HAT medium to obtain a hybridoma producing a monoclonal antibody against the antigen virus.
  • mouse monoclonal antibodies derived from four types of hybridomas (clone names: 36-1, 61-2-1, 25, 64) (hereinafter referred to as “mouse 36-1 antibody” and “mouse 61 antibody”, respectively) , “Mouse 25 antibody” and “mouse 64 antibody”) had binding activity on A / swan / Hokaido / 67 (H5N3).
  • mouse 36-1 antibody and mouse 61 antibody showed high reactivity to the A / rgViet Num / 1194 ⁇ HA / 2004 (H5N1) strain attenuated from the virus isolated from the patient, while the mouse 25 antibody and mouse 64 antibody were The reactivity to the same strain was found to be low. It was also confirmed that the mouse 36-1 antibody and mouse 61 antibody can neutralize the A / Hong / Kong / 483 / K / (H5N1) strain at a relatively low concentration (see Example 5).
  • hybridoma 36-1 has been deposited internationally with the Patent Microorganism Depositary of the National Institute of Technology and Evaluation of Product Evaluation Technology under the accession number NITE BP-832 and the hybridoma 61-2-1 has the accession number NITE BP-833. (Contract date: October 30, 2009).
  • Sense primer CGACTGGAGCACGAGGACACTGA (SEQ ID NO: 18, attached to GeneRacer kit)
  • -Antisense primer for heavy chain TTGGGCAGCAGATCCAGGGGCC (SEQ ID NO: 19)
  • -Antisense primer for light chain CACCTCCAGATGTTAACTGCTCAC (SEQ ID NO: 20)
  • the obtained gene fragment was cloned into pT7Blue T-Vector (manufactured by Novagen), and the base sequence was determined according to a conventional method.
  • the nucleotide sequence of the heavy chain variable region cDNA of the mouse 36-1 antibody is shown in SEQ ID NO: 10
  • the nucleotide sequence of the light chain variable region cDNA is shown in SEQ ID NO: 11.
  • the nucleotide sequence of the heavy chain variable region cDNA of mouse 61 antibody is shown in SEQ ID NO: 12
  • the nucleotide sequence of the light chain variable region cDNA is shown in SEQ ID NO: 13.
  • nucleotide sequences were converted into amino acid sequences based on mammalian codons, and divided into framework regions (FWR1 to 4) and complementarity determining regions (CDR1 to 3) with reference to the domain structure of the mouse antibody.
  • the amino acid sequence of the heavy chain variable region of the mouse 36-1 antibody is shown in SEQ ID NO: 2
  • the amino acid sequence of the light chain variable region is shown in SEQ ID NO: 3
  • the amino acid sequence of the heavy chain variable region of the mouse 61 antibody is shown in SEQ ID NO: 4
  • the amino acid sequence of the light chain variable region is shown in SEQ ID NO: 5.
  • FIG. 1 shows a comparison of the amino acid sequences of the heavy chain variable regions of mouse 36-1 antibody and mouse 61 antibody.
  • FIG. 2 the amino acid sequences of the light chain variable regions of mouse 36-1 antibody and mouse 61 antibody are shown in comparison.
  • the framework regions of the H5HA-specific mouse 36-1 antibody and mouse 61 antibody were very similar and were thought to be derived from the same germline sequence.
  • both the amino acid sequence of the light chain and the amino acid sequence of the heavy chain were very well conserved, so that one cell is the somatic cell that produces these two antibodies. There was a possibility that it was differentiated by mutation.
  • Example 3 Preparation of chimeric antibody or humanized antibody expression vector and production cell
  • a DNA fragment containing a human ⁇ chain constant region gene whose codon was optimized for CHO cells was artificially synthesized by linking synthetic oligonucleotides having the base sequences shown in Table 2 to form double-stranded DNA.
  • the obtained gene fragment was inserted into a high expression vector for CHO cells to complete a basic vector pDN11-cohCk for light chain expression (see FIG. 3).
  • the base sequence of human ⁇ chain constant region cDNA in the synthesized DNA fragment is shown in SEQ ID NO: 21, and the encoded amino acid sequence is shown in SEQ ID NO: 22.
  • DNA fragments containing human IgG1 chain constant region genes whose codons are optimized for CHO cells are artificially synthesized by linking synthetic oligonucleotides having the base sequences shown in Table 3 to form double-stranded DNA.
  • the obtained gene fragment was inserted into a high expression vector for CHO cells to complete a heavy chain expression basic vector pUCBR-SPyhCg1c (see FIG. 4).
  • the nucleotide sequence of human ⁇ chain constant region cDNA in the synthesized DNA fragment is shown in SEQ ID NO: 23, and the encoded amino acid sequence is shown in SEQ ID NO: 24.
  • amino acid sequences in which the light chain variable region and the heavy chain variable region were humanized were designed based on the mouse 36-1 antibody and mouse 61 antibody by structure prediction using a computer.
  • the amino acid sequences most similar to FWR1, 2, 3, 4 were individually extracted from the human antibody germline sequence database. This was designed by embedding CDRs 1, 2 and 3 of the respective antibodies.
  • amino acids near the CDRs in the human antibody FWR were substituted with amino acids of the mouse antibody.
  • humanized 36-1 antibody The design of a humanized antibody based on the mouse 36-1 antibody (hereinafter referred to as “humanized 36-1 antibody”) is shown in FIG.
  • humanized 61 antibody The design of a humanized antibody based on the mouse 61 antibody (hereinafter referred to as “humanized 61 antibody”) is shown in FIG. 5 and 6, the upper part shows the amino acid sequence of the mouse antibody, the middle part shows the amino acid sequence of the human antibody FWR extracted from the human antibody germline sequence database based on the amino acid sequence of the mouse antibody, and the lower part shows Frankenstein. -The amino acid sequence of the humanized antibody designed by the protocol is shown. In the amino acid sequence of the lower humanized antibody, the light letter indicates the amino acid derived from the mouse antibody sequence.
  • a DNA sequence with optimized codons was designed in mammalian cells, and 6 types of synthetic oligonucleotides shown in Table 4 were joined together. PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the heavy chain variable region of the humanized 36-1 antibody.
  • hz36-1VH-F TCTTAAGTCAGGTGCAGCTGGTG (SEQ ID NO: 48)
  • hz36-1VH-R TGCTAGCGCTGCTCACGGTC (SEQ ID NO: 49)
  • a DNA sequence with optimized codons was designed for mammalian cells and obtained by joining the 6 synthetic oligonucleotides shown in Table 5 PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the light chain variable region of the humanized 36-1 antibody.
  • hz36-1VL-F TCCGCGGTGCTAGACAGATC (SEQ ID NO: 56)
  • hz36-1VL-R CCGTACGCTTGATCTCCAGC (SEQ ID NO: 57)
  • hz61VH-F TCTTAAGTCAGGTGCAGCTGGTG (same as hz36-1VH-F, SEQ ID NO: 48)
  • hz61VH-R TGCTAGCGCTGCTCACGGTC (same as hz36-1VH-R, SEQ ID NO: 49)
  • a DNA sequence with optimized codons was designed for mammalian cells and obtained by joining the 6 synthetic oligonucleotides shown in Table 7 PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the light chain variable region of the humanized 36-1 antibody.
  • hz61VL-F TCCGCGGTGCTAGACAGATC (same as hz36-1VL-F, SEQ ID NO: 56)
  • hz61VL-R CCGTACGCTTGATCTCCAG (SEQ ID NO: 70)
  • the DNA fragment encoding the light chain variable region of the mouse 36-1 antibody was inserted into the basic vector pDN11-cohCk for light chain expression to complete the light chain expression vector of the chimeric 36-1 antibody.
  • a DNA fragment encoding the heavy chain variable region of mouse 36-1 antibody was inserted into basic vector for heavy chain expression pUCBR-SPyhCg1c to complete the heavy chain expression vector of chimeric 36-1 antibody.
  • a chimeric 61 antibody light chain expression vector and a chimeric 61 antibody heavy chain expression vector were completed.
  • DNA fragment encoding the light chain variable region of the humanized 36-1 antibody was inserted into the light chain expression basic vector pDN11-cohCk to complete the light chain expression vector of the humanized 36-1 antibody.
  • a DNA fragment encoding the heavy chain variable region of the humanized 36-1 antibody was inserted into the basic vector pUCBR-SPyhCg1c for heavy chain expression to complete the heavy chain expression vector of the humanized 36-1 antibody.
  • a humanized 61 antibody light chain expression vector and a humanized 61 antibody heavy chain expression vector were completed.
  • Each light chain expression vector was treated with SmaI and EcoRI to obtain fragments.
  • Each heavy chain expression vector was treated with EcoRV and EcoRI to obtain fragments.
  • an antibody expression vector was constructed by ligating the corresponding light and heavy chain fragments. According to the instructions of LipofectAmine2000 (Invitrogen), each antibody expression vector was transfected into CHO cells to obtain high expression clones of each antibody-producing cell.
  • Example 4. Evaluation of binding to H5 subtype influenza virus The binding of H5 subtype influenza virus to A / rgViet Num / 1194 ⁇ HA / 2004 (H5N1) strain was evaluated by ELISA.
  • Four types of antibodies were used: chimeric 36-1 antibody and chimeric 61 antibody, and the corresponding mouse 36-1 antibody and mouse 61 antibody, respectively.
  • As each chimeric antibody the chimeric 36-1 antibody-producing cells and chimeric 61 antibody-producing cells prepared in Example 3 were cultured in a protein-free medium and then purified using a protein G agarose column. Specifically, the experiment was performed according to the following procedure.
  • a secondary antibody peroxidase-labeled anti-human constant region antibody or peroxidase-labeled anti-mouse constant region antibody
  • PBST peroxidase-labeled anti-human constant region antibody or peroxidase-labeled anti-mouse constant region antibody
  • FIG. (A) shows the results of the mouse 36-1 antibody and the chimeric 36-1 antibody
  • (B) shows the results of the mouse 61 antibody and the chimeric 61 antibody. Due to the difference in reactivity of the secondary antibody (anti-human constant region antibody or anti-mouse constant region antibody), the mouse antibody shows a lower absorbance in all results, but the affinity (dissociation constant (Kd)) As a result, the mouse 36-1 antibody was about 0.4 nM, the chimera 36-1 antibody was about 0.3 nM, the mouse 61 antibody was about 0.3 nM, and the chimera 61 antibody was about 0.2 nM. Almost the same numerical value was shown.
  • the chimeric 36-1 antibody and the chimeric 61 antibody have high affinity for the H5 subtype influenza virus. Judging from the fact that the range of affinity for antigen in therapeutic antibodies currently in practical use is 0.1 nM to 10 nM, chimeric 36-1 antibody and chimeric 61 antibody are effective in preventing against H5 subtype influenza virus infection or It was thought that it could be applied as a therapeutic agent.
  • Example 5 Evaluation of neutralizing activity against H5 subtype influenza virus
  • H5N1 influenza virus isolated from a human infected subject using four types of chimeric 36-1 antibody and chimeric 61 antibody and corresponding mouse 36-1 antibody and mouse 61 antibody, respectively.
  • Strains A / Hong Kong / 483/1977 (H5N1), A / Viet Nam / 1194/2004 (H5N1)) were selected, and experiments were performed according to the following procedure.
  • (i) MDCK cells were seeded on a 12-well plate and cultured in a DMEM medium containing 10% serum at 37 ° C. for 2 days to obtain a confluent state.
  • the results for the A / Hong Kong / 483/1977 (H5N1) strain are shown in FIG. 10, and the results for the A / Viet Nam / 1194/2004 (H5N1) strain are shown in FIG.
  • (A) shows the results of the mouse 36-1 antibody and the chimeric 36-1 antibody
  • (B) shows the results of the mouse 61 antibody and the chimeric 61 antibody.
  • the chimeric 36-1 antibody and the chimeric 61 antibody had an activity to neutralize the infectious titer of the target virus in the same manner as the mouse 36-1 antibody and the mouse 61 antibody.
  • the antibody concentration required to reduce the number of plaques by 50% was different depending on the antibody and virus, but both antibodies showed sufficient neutralizing activity at a low concentration of 0.5 ⁇ g / mL or less. From these results, it was considered that both the chimeric 36-1 antibody and the chimeric 61 antibody are promising as preventive or therapeutic agents for the H5 subtype influenza virus.
  • Example 6 Evaluation of efficacy using infected mice Since the infectious titer neutralizing activity was sufficiently observed in both the chimeric 36-1 antibody and the chimeric 61 antibody in the culture test, the prevention and treatment effect in the actual infected animal was expected.
  • the effectiveness of chimeric 36-1 antibody and chimeric 61 antibody was evaluated by infection experiments. The mice used were BALB / c, female, and 6 weeks old (at the start of the experiment). The A / Hong Kong / 483/1977 (H5N1) strain was used as the H5 subtype influenza virus.
  • the antibody of the present invention is effective for the prevention and treatment of H5 subtype influenza virus infection.
  • Example 7 The epitopes of mouse 36-1 antibody and mouse 61 antibody were determined by the following procedure. As a virus, chicken chorioallantoic fluid infected with A / Viet Nam / 1194/2004 (H5N1) was used. (i) A 10-fold serial dilution series of virus was prepared. (ii) Purified antibodies of mouse 36-1 antibody and mouse 61 antibody were each diluted with a medium (MEM) to 20 ⁇ g / mL, and dispensed in 100 ⁇ L each into a small test tube. As a control, 100 ⁇ L of the medium alone was dispensed into small test tubes.
  • MEM medium
  • acetyltrypsin was added immediately before the overlay so that the concentration was 0.0005%.
  • ascites obtained from BALB / c mice inoculated intraperitoneally with hybridoma 36-1 or hybridoma 61-2-1 was added to a final concentration of 1: 1000.
  • the solution of (v) was layered on the MDCK cells of (iv) and cultured at 35 ° C. in the presence of 5% CO 2 for 2 to 3 days, and it was observed that plaques could be confirmed.
  • Plaque was collected and added to 1 mL of MEM / BSA and mixed well.
  • the escape mutant strain for the mouse 36-1 antibody and the escape mutant strain for the mouse 61 antibody are both lysine at position 177 in the amino acid sequence of hemagglutinin (SEQ ID NO: 1) of the A / Viet Nam / 1194/2004 (H5N1) strain. And at least one of lysine at position 205 was mutated to another amino acid. From this result, the mouse 36-1 antibody and the mouse 61 antibody were prepared by lysing the lysine at position 177 and lysine at position 205 in the amino acid sequence (SEQ ID NO: 1) of hemagglutinin of the A / Viet Nam / 1194/2004 (H5N1) strain. It was revealed that the antibody recognizes the contained epitope.

Abstract

Disclosed is a novel antibody which specifically binds to influenza virus subtype H5 hemagglutinin and neutralizes the infectiousness of influenza virus subtype H5. The antibody recognizes an epitope that includes the lysine at position 177 and the lysine at position 205 of a hemagglutinin comprising the amino acid sequence represented by SEQ ID NO: 1. Also disclosed is a prophylactic or therapeutic agent for influenza virus subtype H5 infectious diseases, which contains the antibody as an active ingredient.

Description

H5亜型インフルエンザウイルスに対する抗体およびその利用Antibodies against H5 subtype influenza virus and use thereof
 本発明は、H5亜型インフルエンザウイルスに対する抗体およびその利用に関するものであり、詳細には、H5亜型インフルエンザウイルスに対する抗体およびその機能的断片、当該抗体を産生するハイブリドーマ、当該抗体の可変領域をコードするポリヌクレオチド、当該ポリヌクレオチドを含む発現ベクター、当該発現ベクターが導入された細胞、当該抗体を用いるH5亜型インフルエンザウイルスの検出方法、当該抗体を含むH5亜型インフルエンザウイルスの検出キット、当該抗体を含むH5亜型インフルエンザウイルス感染疾患の予防または治療薬に関するものである。 The present invention relates to an antibody against H5 subtype influenza virus and use thereof. Specifically, the antibody and functional fragment thereof against H5 subtype influenza virus, a hybridoma producing the antibody, and the variable region of the antibody are encoded. Polynucleotides, expression vectors containing the polynucleotides, cells into which the expression vectors have been introduced, methods for detecting H5 subtype influenza viruses using the antibodies, detection kits for H5 subtype influenza viruses containing the antibodies, and the antibodies The present invention relates to a preventive or therapeutic agent for H5 subtype influenza virus infection diseases.
 インフルエンザウイルスは、核タンパク質(NP)と膜タンパク質(M)の抗原性の違いによりA型、B型およびC型に分類される。このうちのインフルエンザA型ウイルスは、さらにヘマグルチニン(HA)とノイラミニダーゼ(NA)のアミノ酸配列または抗原性の違いにより、HAはH1~16の16種類、NAはN1~9の9種類に分類され、その組み合わせの数の亜型が存在する。この中で、ヒトを宿主としてヒトに感染する主な亜型は、H1~3、N1~2である。インフルエンザA型ウイルスはヒトだけでなく、多くの哺乳動物および鳥類にも感染する。インフルエンザA型ウイルスが鳥類に感染して起きる鳥類の感染症が「鳥インフルエンザ」であり、その原因となるインフルエンザウイルスには、H1~16、N1~9のすべての亜型が確認されている。これらのインフルエンザウイルスの多くは鳥類に対して重篤な症状を示さないが、H5、H7およびH9亜型のインフルエンザウイルスの中には、鳥類に感染した場合に重篤な症状を示すものもある。これらは高病原性鳥インフルエンザウイルスと呼ばれるものであり、ヒトへの感染の可能性が危惧されている。 Influenza viruses are classified into A type, B type and C type according to the difference in antigenicity between nucleoprotein (NP) and membrane protein (M). Among them, influenza A viruses are further classified into 16 types of HA (H1-16) and NA of 9 types (N1-9), depending on the amino acid sequence or antigenicity of hemagglutinin (HA) and neuraminidase (NA). There are as many subtypes of that combination. Among these, the main subtypes that infect humans using humans as hosts are H1-3 and N1-2. Influenza A virus infects not only humans but many mammals and birds. An avian infectious disease caused by an influenza A virus infecting birds is “bird flu”, and all subtypes of H1-16 and N1-9 have been confirmed as influenza virus causing the infection. Many of these influenza viruses do not show serious symptoms to birds, but some H5, H7 and H9 subtypes of influenza viruses show severe symptoms when infected with birds. . These are called highly pathogenic avian influenza viruses, and there is concern about the possibility of human infection.
 インフルエンザウイルスの検出および測定、インフルエンザウイルス感染疾患の予防または治療には抗体が有効である。これまでに、H5亜型インフルエンザウイルスに対して中和活性を有する種々のモノクローナル抗体が報告されている(例えば、非特許文献1~4)。しかし、未だH5亜型インフルエンザウイルス感染疾患の予防または治療に実用化されているものはなく、H5亜型インフルエンザウイルスに対して高い中和活性を有する新たな抗体の開発が望まれている。 Antibodies are effective for detection and measurement of influenza virus and prevention or treatment of influenza virus-infected diseases. So far, various monoclonal antibodies having neutralizing activity against H5 subtype influenza virus have been reported (for example, Non-Patent Documents 1 to 4). However, nothing has been put into practical use for the prevention or treatment of H5 subtype influenza virus-infected diseases, and the development of a new antibody having high neutralizing activity against H5 subtype influenza virus is desired.
 本発明は、H5亜型インフルエンザウイルスに対して中和活性を有する新規な抗体、および当該抗体を有効成分とするH5亜型インフルエンザウイルス感染疾患の予防または治療薬を提供することを目的とする。 An object of the present invention is to provide a novel antibody having neutralizing activity against H5 subtype influenza virus, and a preventive or therapeutic agent for H5 subtype influenza virus infection disease containing the antibody as an active ingredient.
 本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和する抗体であって、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの第177位のリジンおよび第205位のリジンを含むエピトープを認識することを特徴とする抗体。
[2]以下の(a)および(b)を含むことを特徴とする前記[1]に記載の抗体。
(a)配列番号2または4で示されるアミノ酸配列の第31位-第35位からなるCDR1、第50位-第66位からなるCDR2および98位-第109位からなるCDR3を含む重鎖可変領域
(b)配列番号3または5で示されるアミノ酸配列の第24位-第33位からなるCDR1、第49位-第55位からなるCDR2および第88位-第96位からなるCDR3を含む軽鎖可変領域
[3]配列番号2または4で示されるアミノ酸配列からなる重鎖可変領域と、配列番号3または5で示されるアミノ酸配列からなる軽鎖可変領域とを含むことを特徴とする前記[2]に記載の抗体。
[4]配列番号6または8で示されるアミノ酸配列からなる重鎖可変領域と、配列番号7または9で示されるアミノ酸配列からなる軽鎖可変領域とを含むことを特徴とする前記[2]に記載の抗体。
[5]ハイブリドーマ36-1(受託番号NITE BP-832)またはハイブリドーマ61-2-1(受託番号NITE BP-833)によって産生されることを特徴とする前記[3]に記載の抗体。
[6]ハイブリドーマ36-1(受託番号NITE BP-832)またはハイブリドーマ61-2-1(受託番号NITE BP-833)。
[7]前記[1]~[5]のいずれかに記載の抗体の機能的断片。
[8]前記[1]~[5]のいずれかに記載の抗体の重鎖可変領域をコードするポリヌクレオチド。
[9]前記[1]~[5]のいずれかに記載の抗体の軽鎖可変領域をコードするポリヌクレオチド。
[10]前記[8]および/または[9]に記載のポリヌクレオチドを含む発現ベクター。
[11]前記[10]に記載の発現ベクターが導入された細胞。
[12]前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片を被験試料に接触させる工程を包含することを特徴とするH5亜型インフルエンザウイルスの検出方法。
[13]前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片を含むことを特徴とするH5亜型インフルエンザウイルスの検出キット。
[14]前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片を有効成分として含むことを特徴とするH5亜型インフルエンザウイルス感染疾患の予防または治療薬。
[15]動物に対して、前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片の有効量を投与する工程を含むことを特徴とするH5亜型インフルエンザウイルス感染疾患の予防または治療方法。
[16]H5亜型インフルエンザウイルス感染疾患の予防または治療薬を製造するための、前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片の使用。
[17]H5亜型インフルエンザウイルス感染疾患の予防または治療に使用するための、前記[1]~[5]のいずれかに記載の抗体または請求項7に記載の機能的断片。
The present invention includes the following inventions in order to solve the above problems.
[1] An antibody that specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus, which is located at position 177 of hemagglutinin consisting of the amino acid sequence represented by SEQ ID NO: 1. An antibody characterized by recognizing an epitope containing lysine and lysine at position 205.
[2] The antibody according to [1] above, comprising the following (a) and (b):
(A) Heavy chain variable comprising CDR1 consisting of positions 31 to 35, CDR2 consisting of positions 50 to 66, and CDR3 consisting of positions 98 to 109 of the amino acid sequence shown in SEQ ID NO: 2 or 4 Region (b) a light chain comprising CDR1 consisting of positions 24 to 33, CDR2 consisting of positions 49 to 55 and CDR3 consisting of positions 88 to 96 of the amino acid sequence shown in SEQ ID NO: 3 or 5 Chain variable region [3] comprising the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 or 4 and the light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3 or 5 2].
[4] In the above [2], comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 or 8, and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7 or 9 The antibody described.
[5] The antibody according to [3] above, which is produced by hybridoma 36-1 (Accession No. NITE BP-832) or hybridoma 61-2-1 (Accession No. NITE BP-833).
[6] Hybridoma 36-1 (Accession number NITE BP-832) or Hybridoma 61-2-1 (Accession number NITE BP-833).
[7] A functional fragment of the antibody according to any one of [1] to [5].
[8] A polynucleotide encoding the heavy chain variable region of the antibody according to any one of [1] to [5].
[9] A polynucleotide encoding the light chain variable region of the antibody according to any one of [1] to [5].
[10] An expression vector comprising the polynucleotide according to [8] and / or [9].
[11] A cell into which the expression vector according to [10] is introduced.
[12] Detection of H5 subtype influenza virus comprising the step of bringing the antibody according to any one of [1] to [5] above or the functional fragment according to claim 7 into contact with a test sample Method.
[13] A detection kit for H5 subtype influenza virus comprising the antibody according to any one of [1] to [5] or the functional fragment according to claim 7.
[14] A preventive or therapeutic agent for H5 subtype influenza virus infection disease comprising the antibody according to any one of [1] to [5] or the functional fragment according to claim 7 as an active ingredient .
[15] An H5 subtype comprising a step of administering an effective amount of the antibody according to any one of [1] to [5] or the functional fragment according to claim 7 to an animal. A method for preventing or treating influenza virus-infected diseases.
[16] Use of the antibody according to any one of [1] to [5] above or the functional fragment according to claim 7 for producing a prophylactic or therapeutic agent for H5 subtype influenza virus infection disease.
[17] The antibody according to any one of [1] to [5] or the functional fragment according to claim 7, for use in the prophylaxis or treatment of H5 subtype influenza virus-infected diseases.
 本発明により、H5亜型インフルエンザウイルスに対して中和活性を有する新規な抗体を提供することができる。当該抗体は、H5亜型インフルエンザウイルス感染マウスを用いた実験において予防効果および治療効果を有することが確認されており、H5亜型インフルエンザウイルス感染疾患の予防または治療薬の有効成分として有用である。 According to the present invention, a novel antibody having neutralizing activity against H5 subtype influenza virus can be provided. The antibody has been confirmed to have preventive and therapeutic effects in experiments using H5 subtype influenza virus-infected mice, and is useful as an active ingredient for preventive or therapeutic agents for H5 subtype influenza virus-infected diseases.
マウス36-1抗体とマウス61抗体との重鎖可変領域のアミノ酸配列を対比した図である。FIG. 4 is a diagram comparing the amino acid sequences of the heavy chain variable regions of mouse 36-1 antibody and mouse 61 antibody. マウス36-1抗体とマウス61抗体との軽鎖可変領域のアミノ酸配列を対比した図である。FIG. 3 is a diagram comparing the amino acid sequences of the light chain variable regions of mouse 36-1 antibody and mouse 61 antibody. 軽鎖発現用基本ベクターpDN11-cohCkの構造を示す図である。FIG. 3 is a view showing the structure of a basic vector pDN11-cohCk for light chain expression. 重鎖発現用基本ベクターpUCBR-SPyhCg1cの構造を示す図である。FIG. 3 is a diagram showing the structure of a heavy chain expression basic vector pUCBR-SPyhCg1c. マウス36-1抗体に基づくヒト化抗体のデザインを示す図である。It is a figure which shows the design of the humanized antibody based on the mouse | mouth 36-1 antibody. マウス61抗体に基づくヒト化抗体のデザインを示す図である。It is a figure which shows the design of the humanized antibody based on the mouse 61 antibody. 組換え抗体発現ベクターの構築手順を示す図である。It is a figure which shows the construction procedure of a recombinant antibody expression vector. 組換え抗体発現ベクターの構造を示す図である。It is a figure which shows the structure of a recombinant antibody expression vector. H5亜型インフルエンザウイルスA/rgViet Num/1194ΔHA/2004(H5N1)株に対する結合性を評価した結果を示す図であり、(A)はマウス36-1抗体およびキメラ36-1抗体の結果を示し、(B)はマウス61抗体およびキメラ61抗体の結果を示す。It is a figure showing the results of evaluating the binding to H5 subtype influenza virus A / rgViet Num / 1194ΔHA / 2004 (H5N1) strain, (A) shows the results of mouse 36-1 antibody and chimeric 36-1 antibody, (B) shows the results of mouse 61 antibody and chimera 61 antibody. H5亜型インフルエンザウイルスA/Hong Kong/483/1977(H5N1)株に対する中和活性を評価した結果を示す図であり、(A)はマウス36-1抗体およびキメラ36-1抗体の結果を示し、(B)はマウス61抗体およびキメラ61抗体の結果を示す。It is a figure which shows the result of having evaluated the neutralization activity with respect to H5 subtype influenza virus A / Hong Kong / 483/1977 (H5N1) stock, (A) shows the result of mouse 36-1 antibody and chimera 36-1 antibody , (B) shows the results of mouse 61 antibody and chimeric 61 antibody. H5亜型インフルエンザウイルスA/Viet Nam/1194/2004(H5N1)株に対する中和活性を評価した結果を示す図であり、(A)はマウス36-1抗体およびキメラ36-1抗体の結果を示し、(B)はマウス61抗体およびキメラ61抗体の結果を示す。It is a figure which shows the result of having evaluated the neutralization activity with respect to H5 subtype influenza virus A / Viet Nam / 1194/2004 (H5N1) strain, (A) shows the result of mouse 36-1 antibody and chimeric 36-1 antibody , (B) shows the results of mouse 61 antibody and chimeric 61 antibody. H5亜型インフルエンザウイルス感染マウスに対して、ウイルス感染1日前に各抗体を投与して有効性を評価した結果を示す図であり、(A)は生存率を示し、(B)は平均体重を示す。It is a figure which shows the result which administered each antibody to the H5 subtype influenza virus infection mouse | mouth 1 day before virus infection, and evaluated the effectiveness, (A) shows survival rate, (B) shows average body weight. Show. H5亜型インフルエンザウイルス感染マウスに対して、ウイルス感染1日後に各抗体を投与して有効性を評価した結果を示す図であり、(A)は生存率を示し、(B)は平均体重を示す。It is a figure which shows the result of having administered each antibody to the H5 subtype influenza virus infection mouse | mouth 1 day after virus infection, and evaluating the effectiveness, (A) shows survival rate, (B) shows average body weight. Show. H5亜型インフルエンザウイルス感染マウスに対して、ウイルス感染3日後に各抗体を投与して有効性を評価した結果を示す図であり、(A)は生存率を示し、(B)は平均体重を示す。It is a figure which shows the result of having administered each antibody 3 days after virus infection with respect to H5 subtype influenza virus infection mouse | mouth, and showing the result, (A) shows survival rate, (B) shows average body weight. Show.
〔抗体〕
 本発明者らは、インフルエンザウイルスA/Vietnam/1194/04(H5N1)株を抗原としてマウスを免疫し、定法に従ってハイブリドーマを作製し、得られたハイブリドーマが産生するモノクローナル抗体と各種ウイルスとの反応性、中和活性を評価した結果、H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和する2種類のマウスモノクローナル抗体を見出し、この知見に基づいてさらに研究を重ね、本発明を完成させるに至った。
〔antibody〕
The present inventors immunized mice with influenza virus A / Vietnam / 1194/04 (H5N1) as an antigen, prepared hybridomas according to a conventional method, and the reactivity of monoclonal antibodies produced by the obtained hybridomas with various viruses. As a result of evaluating the neutralizing activity, two types of mouse monoclonal antibodies that specifically bind to hemagglutinin of H5 subtype influenza virus and neutralize infectivity of H5 subtype influenza virus were found. Research has been completed and the present invention has been completed.
 ハイブリドーマ36-1(受託番号NITE BP-832)によって産生されるマウスモノクローナル抗体は、配列番号2で示されるアミノ酸配列からなる重鎖可変領域および配列番号3で示されるアミノ酸配列からなる軽鎖可変領域を有する。ハイブリドーマ61-2-1(受託番号NITE BP-833)によって産生されるマウスモノクローナル抗体は、配列番号4で示されるアミノ酸配列からなる重鎖可変領域および配列番号5で示されるアミノ酸配列からなる軽鎖可変領域を有する。なお、ハイブリドーマ36-1(受託番号NITE BP-832)、ハイブリドーマ61-2-1(受託番号NITE BP-833)は、それぞれ独立行政法人製品評価技術基盤機構特許微生物寄託センターに国際寄託済みである(受託日:2009年10月30日)。 The mouse monoclonal antibody produced by the hybridoma 36-1 (Accession No. NITE BP-832) is a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3. Have The mouse monoclonal antibody produced by the hybridoma 61-2-1 (Accession No. NITE BP-833) has a heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 4 and a light chain consisting of the amino acid sequence shown in SEQ ID NO: 5. Has a variable region. Hybridoma 36-1 (Accession No. NITE BP-832) and Hybridoma 61-2-1 (Accession No. NITE BP-833) have been internationally deposited with the Patent Microorganism Depositary, National Institute of Technology and Evaluation. (Contract date: October 30, 2009).
 本発明は、H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和する抗体を提供する。本発明の抗体は、H5亜型インフルエンザウイルス一種であるインフルエンザウイルスA/Vietnam/1194/04(H5N1)株のヘマグルチニンのアミノ酸配列(配列番号1)における第177位のリジンおよび第205位のリジンを含むエピトープを認識する抗体であればよく、A/Vietnam/1194/04(H5N1)株以外のH5亜型インフルエンザウイルスのヘマグルチニンのエピトープについては限定されない。インフルエンザウイルスA/Vietnam/1194/04(H5N1)株のヘマグルチニンのアミノ酸配列における第177位のリジンおよび第205位のリジンを含むエピトープを認識する抗体であることは、第177位のリジンおよび第205位のリジンのいずれか一方が他のアミノ酸に置換されたヘマグルチニンに対する親和性がなくなることにより確認できる。 The present invention provides an antibody that specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus. The antibody of the present invention comprises a lysine at position 177 and lysine at position 205 in the amino acid sequence (SEQ ID NO: 1) of hemagglutinin of influenza virus A / Vietnam / 1194/04 (H5N1) strain, which is a type of H5 subtype influenza virus. Any epitope-recognizing epitope may be used, and the H5 subtype influenza virus hemagglutinin epitope other than the A / Vietnam / 1194/04 (H5N1) strain is not limited. An antibody that recognizes an epitope containing the lysine at position 177 and the position lysine at position 205 in the amino acid sequence of the hemagglutinin of influenza virus A / Vietnam / 1194/04 (H5N1) strain This can be confirmed by the loss of affinity for hemagglutinin in which either one of the lysines is substituted with another amino acid.
 本発明の抗体は、H5亜型インフルエンザウイルスの感染性を中和することができる。本発明の抗体は、H5亜型インフルエンザウイルスの感染性を少なくとも50%中和することが好ましく、少なくとも70%中和することがより好ましく、少なくとも90%中和することがさらに好ましい。 The antibody of the present invention can neutralize the infectivity of H5 subtype influenza virus. The antibody of the present invention preferably neutralizes H5 subtype influenza virus infectivity by at least 50%, more preferably at least 70% neutralization, and even more preferably at least 90% neutralization.
 本発明の抗体としては、以下の(a)および(b)を含む抗体が挙げられる。
(a)配列番号2または4で示されるアミノ酸配列の第31位-第35位からなるCDR1、第50位-第66位からなるCDR2および98位-第109位からなるCDR3を含む重鎖可変領域
(b)配列番号3または5で示されるアミノ酸配列の第24位-第33位からなるCDR1、第49位-第55位からなるCDR2および第88位-第96位からなるCDR3を含む軽鎖可変領域
Examples of the antibody of the present invention include antibodies including the following (a) and (b).
(A) Heavy chain variable comprising CDR1 consisting of positions 31 to 35, CDR2 consisting of positions 50 to 66, and CDR3 consisting of positions 98 to 109 of the amino acid sequence shown in SEQ ID NO: 2 or 4 Region (b) a light chain comprising CDR1 consisting of positions 24 to 33, CDR2 consisting of positions 49 to 55 and CDR3 consisting of positions 88 to 96 of the amino acid sequence shown in SEQ ID NO: 3 or 5 Chain variable region
 本発明の抗体としては、ヒト型キメラ抗体またはヒト化抗体が好ましい。ヒト型キメラ抗体は、ヒト以外の動物由来の抗体の重鎖可変領域および軽鎖可変領域と、ヒト抗体の重鎖定常領域および軽鎖定常領域からなる抗体をいう。ヒト化抗体は、ヒト以外の動物由来の抗体のCDR(相補性決定領域:complementarity determining region)をヒト抗体のCDRへ移植したものをいい、CDR移植抗体、再構成抗体などとも称される。ヒト化抗体のFR(フレームワーク領域:framework region)は、CDRが良好な抗原結合部位を形成するものが選択される。必要に応じ、ヒト化抗体のCDRが適切な抗原結合部位を形成するように、抗体の可変領域におけるFRのアミノ酸配列を置換してもよい。 The antibody of the present invention is preferably a human chimeric antibody or a humanized antibody. A human chimeric antibody refers to an antibody comprising a heavy chain variable region and a light chain variable region of an antibody derived from a non-human animal, and a heavy chain constant region and a light chain constant region of a human antibody. A humanized antibody is obtained by grafting a CDR (complementarity determining region) of an antibody derived from a non-human animal into a CDR of a human antibody, and is also referred to as a CDR-grafted antibody, a reconstituted antibody, or the like. The FR (framework region) of the humanized antibody is selected so that CDR forms a favorable antigen-binding site. If necessary, the amino acid sequence of the FR in the variable region of the antibody may be substituted so that the CDR of the humanized antibody forms an appropriate antigen-binding site.
 キメラ抗体およびヒト化抗体の定常領域には、ヒト抗体の定常領域が使用され、例えば重鎖では、Cγ1、Cγ2、Cγ3、Cγ4を、軽鎖ではCκ、Cλを使用することができる。また、抗体またはその産生の安定性を改善するために、ヒト抗体定常領域を修飾してもよい。ヒト化の際に用いられるヒト抗体は、IgG、IgM、IgA、IgE、IgDなどいずれのアイソタイプのヒト抗体でもよいが、IgGを用いることが好ましく、さらにIgG1またはIgG3が好ましく、特にIgG1が好ましい。ヒト抗体の定常領域のアミノ酸配列は、公知のデータベース(Protein Data Bank等)から取得することができる。 The constant regions of human antibodies are used as the constant regions of chimeric antibodies and humanized antibodies. For example, Cγ1, Cγ2, Cγ3, Cγ4 can be used for the heavy chain, and Cκ, Cλ can be used for the light chain. In addition, human antibody constant regions may be modified to improve the stability of the antibody or its production. Human antibodies used for humanization may be human antibodies of any isotype such as IgG, IgM, IgA, IgE, IgD, but IgG is preferred, IgG1 or IgG3 is more preferred, and IgG1 is particularly preferred. The amino acid sequence of the constant region of a human antibody can be obtained from a known database (Protein Data Bank etc.).
 本発明のヒト型キメラ抗体としては、配列番号2または4で示されるアミノ酸配列からなる重鎖可変領域と、配列番号3または5で示されるアミノ酸配列からなる軽鎖可変領域と、ヒト抗体の重鎖定常領域および軽鎖定常領域からなる抗体が好ましい。また、本発明のヒト化抗体としては、配列番号6または8で示されるアミノ酸配列からなる重鎖可変領域と、配列番号7または9で示されるアミノ酸配列からなる軽鎖可変領域と、ヒト抗体の重鎖定常領域および軽鎖定常領域からなる抗体が好ましい。 The human chimeric antibody of the present invention includes a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 or 4, a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3 or 5, and a human antibody heavy chain. Antibodies consisting of a chain constant region and a light chain constant region are preferred. The humanized antibody of the present invention includes a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 or 8, a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7 or 9, and a human antibody. An antibody consisting of a heavy chain constant region and a light chain constant region is preferred.
 また、配列番号2、4、6または8で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなる重鎖可変領域を有する抗体、ならびに、配列番号3、5、7または9で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなる軽鎖可変領域を有する抗体も、H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和し、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの第177位のリジンおよび第205位のリジンを含むエピトープを認識する限り、本発明の抗体として好適である。「1もしくは数個のアミノ酸が欠失、置換もしくは付加された」とは、部位特異的変異法等の公知の変異ペプチド作製法により欠失、置換もしくは付加できる程度の数(好ましくは10個以下、より好ましくは7個以下、さらに好ましくは5個以下)のアミノ酸が欠失、置換もしくは付加されることを意味する。 In addition, an antibody having a heavy chain variable region consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2, 4, 6 or 8, and SEQ ID NO: 3, An antibody having a light chain variable region consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by 5, 7 or 9 is also specific to hemagglutinin of H5 subtype influenza virus. As long as it binds, neutralizes the infectivity of H5 subtype influenza virus, and recognizes an epitope containing lysine at position 177 and lysine at position 205 of hemagglutinin consisting of the amino acid sequence represented by SEQ ID NO: 1, Suitable as an antibody. “One or several amino acids have been deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant peptide production method such as site-directed mutagenesis (preferably 10 or less). , More preferably 7 or less, and even more preferably 5 or less) amino acids are deleted, substituted or added.
 本発明には、上記本発明の抗体の機能的断片が含まれる。本発明における「機能的断片」は、上記本発明の抗体の一部分(部分断片)であって、H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和し、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの第177位のリジンおよび第205位のリジンを含むエピトープを認識する機能を維持しているものであればいかなるものでもよい。具体的には、例えば、Fab、F(ab’)、Fab’、Fv、scFvなどが挙げられる。 The present invention includes a functional fragment of the antibody of the present invention. The “functional fragment” in the present invention is a part (partial fragment) of the antibody of the present invention, which specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus. Any hemagglutinin consisting of the amino acid sequence shown in SEQ ID NO: 1 may be used as long as it retains the function of recognizing an epitope containing lysine at position 177 and lysine at position 205. Specific examples include Fab, F (ab ′) 2 , Fab ′, Fv, scFv, and the like.
 本発明の抗体は、公知の方法により製造することができる。例えば、ハイブリドーマが産生するモノクローナル抗体、または、遺伝子組換え技術を用いて産生させる組換え抗体として製造することができる。モノクローナル抗体産生ハイブリドーマは、例えば、H5亜型インフルエンザウイルスのヘマグルチニンを感作抗原として通常の免疫方法に従って哺乳動物を免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、目的のモノクローナル抗体産生ハイブリドーマを取得することができる。 The antibody of the present invention can be produced by a known method. For example, it can be produced as a monoclonal antibody produced by a hybridoma or a recombinant antibody produced using a gene recombination technique. The monoclonal antibody-producing hybridoma immunizes a mammal according to a normal immunization method using, for example, H5 subtype influenza virus hemagglutinin as a sensitizing antigen, and fuses the obtained immune cell with a known parent cell by a normal cell fusion method. The target monoclonal antibody-producing hybridoma can be obtained by a normal screening method.
 抗体取得の感作抗原としては、配列番号1で示されるアミノ酸配列からなるインフルエンザウイルスA/Vietnam/1194/04(H5N1)株のヘマグルチニンの第177位のリジンおよび第205位のリジンを含むタンパク質を用いればよい。具体的には、インフルエンザウイルスA/Vietnam/1194/04(H5N1)株、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの全長、または、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの第177位のリジンおよび第205位のリジンを含む部分断片を用いることができる。当該ヘマグルチニンまたはその部分断片は、公知の遺伝子組換え技術を用いて組換えタンパク質として作製することができる。また、部分断片は化学合成により作製することも可能である。 As a sensitizing antigen for obtaining an antibody, a protein containing lysine at position 177 and lysine at position 205 of hemagglutinin of the influenza virus A / Vietnam / 1194/04 (H5N1) strain consisting of the amino acid sequence represented by SEQ ID NO: 1 Use it. Specifically, the influenza virus A / Vietnam / 1194/04 (H5N1) strain, the full length of hemagglutinin consisting of the amino acid sequence represented by SEQ ID NO: 1, or the 177th position of hemagglutinin consisting of the amino acid sequence represented by SEQ ID NO: 1 And a partial fragment containing lysine at position 205 can be used. The hemagglutinin or a partial fragment thereof can be produced as a recombinant protein using a known gene recombination technique. Partial fragments can also be produced by chemical synthesis.
 感作抗原で免疫される哺乳動物は、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、例えば、マウス、ラット、ハムスター等のげっ歯類、ウサギ、サル等が使用される。抗原と、フロイントの完全もしくは不完全アジュバント、またはカリミョウバンのような助剤とを混合し、免疫原として動物に免疫する。免疫原の投与方法は、皮下注射、腹腔内注射、静脈内注射、皮内注射、筋肉内注射、足蹠注射などから適宜選択される。免疫は、一回または適当な間隔で(好ましくは3日間から1週間間隔で)複数回繰返し行なうことができる。その後、免疫した動物の血清中の抗原に対する抗体価を測定し、抗体価が十分高くなった動物を抗体産生細胞の供給源として用いれば、以後の操作の効果を高めることができる。一般的には、最終免疫後3~5日後の動物由来の抗体産生細胞を、後の細胞融合に用いることが好ましい。抗体価の測定法としては、放射性同位元素免疫定量法(RIA法)、固相酵素免疫定量法(ELISA法)、蛍光抗体法、受身血球凝集反応法など種々の公知技術を用いることができる。 The mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. For example, mouse, rat, hamster, etc. Rodents, rabbits, monkeys, etc. are used. The antigen is mixed with Freund's complete or incomplete adjuvant, or an adjuvant such as potassium alum, and the animal is immunized as an immunogen. The administration method of the immunogen is appropriately selected from subcutaneous injection, intraperitoneal injection, intravenous injection, intradermal injection, intramuscular injection, footpad injection and the like. Immunization can be repeated once or multiple times at appropriate intervals (preferably at intervals of 3 days to 1 week). Thereafter, the antibody titer against the antigen in the serum of the immunized animal is measured, and if the animal having a sufficiently high antibody titer is used as a source of antibody-producing cells, the effect of subsequent operations can be enhanced. In general, it is preferable to use animal-derived antibody-producing cells 3 to 5 days after the final immunization for subsequent cell fusion. As a method for measuring the antibody titer, various known techniques such as radioisotope immunoassay (RIA method), solid-phase enzyme immunoassay (ELISA method), fluorescent antibody method, passive hemagglutination reaction method and the like can be used.
 免疫された哺乳動物から得られる抗体産生細胞と融合する親細胞には、通常哺乳動物のミエローマ細胞が用いられる。ミエローマ細胞としては、公知の細胞株を好適に用いることができるが、一般的にはマウスから得られた株化細胞、例えば8-アザグアニン耐性マウスミエローマ株P3X63Ag8U.1(P3-U1)(Yelton, D.E. et al., Current Topics in Microbiology and Immunology, 81, 1-7(1978))、P3/NSI/1-Ag4-1(NS-1)(Kohler, G. et al., European J. Immunology, 6, 511-519 (1976))、Sp2/O-Ag14(SP-2)(Shulman, M. et al., Nature, 276, 269-270(1978))、P3X63Ag8.653(653)(Kearney, J. F. et al., J. Immunology, 123, 1548-1550(1979))、P3X63Ag8(X63)(Horibata, K. and Harris, A. W. Nature, 256, 495-497 (1975))などを用いることが好ましい。 Mammalian myeloma cells are usually used as parent cells to be fused with antibody-producing cells obtained from immunized mammals. As the myeloma cell, a known cell line can be preferably used. Generally, a cell line obtained from a mouse, for example, 8-azaguanine-resistant mouse myeloma line P3X63Ag8U.1 (P3-U1) (Yelton, DE et al., Current Topics in Microbiology and Immunology, 81, 1-7 (1978)), P3 / NSI / 1-Ag4-1 (NS-1) (Kohler, G. et al., European J. Immunology, 6, 511-519 (1976)), Sp2 / O-Ag14 (SP-2) (Shulman, M. et al., Nature, 276, 269-270 (1978)), P3X63Ag8.653 (653) (Kearney, J. F. et al., J. Immunology, 123, 1548-1550 (1979)), P3X63Ag8 (X63) (Horibata, K. and Harris, A. W. Nature, 256, 495-497 (1975)) Is preferably used.
 抗体産生細胞は、形質細胞、およびその前駆細胞であるリンパ球であり、これは個体のいずれの部位から得てもよく、一般には脾、リンパ節、骨髄、扁桃、末梢血、またはこれらを適宜組み合わせたもの等から得ることができるが、脾細胞が最も一般的に用いられる。最終免疫後、所定の抗体価が得られたマウスから抗体産生細胞が存在する部位、例えば脾臓を摘出し、抗体産生細胞である脾細胞を調製する。この脾細胞とミエローマ細胞とを融合させる手段として現在最も一般的に行われているのは、ポリエチレングリコールを用いる方法である。この方法は、例えば以下の手順で行うことができる。 Antibody-producing cells are plasma cells and their precursor cells, lymphocytes, which may be obtained from any part of the individual, generally spleen, lymph nodes, bone marrow, tonsils, peripheral blood, or these as appropriate. Spleen cells are most commonly used, although they can be obtained from a combination or the like. After the final immunization, a site where antibody-producing cells are present, such as the spleen, is removed from a mouse having a predetermined antibody titer, and spleen cells that are antibody-producing cells are prepared. The most commonly used method for fusing these spleen cells and myeloma cells is a method using polyethylene glycol. This method can be performed, for example, by the following procedure.
 脾細胞とミエローマとを無血清培地(例えばDMEM)、またはPBSでよく洗浄し、脾細胞とミエローマの細胞数の比が5:1~10:1程度になるように混合し、遠心分離する。上清を除去し、沈澱した細胞群をよくほぐした後、撹拌しながら1mlの50%(w/v)ポリエチレングリコール(分子量1000~4000)を含む無血清培地を滴下する。その後、10mlの無血清培地をゆっくりと加えた後遠心分離する。再び上清を捨て、沈澱した細胞を適量のヒポキサンチン・アミノプテリン・チミジン(HAT)液およびヒトインターロイキン-2(IL-2)を含む正常培地(HAT培地)中に懸濁して培養用プレートの各ウェルに分注し、5%炭酸ガス存在下、37℃で2週間程度培養する。途中適宜HAT培地を補う。 Spleen cells and myeloma are thoroughly washed with a serum-free medium (for example, DMEM) or PBS, mixed so that the ratio of the number of spleen cells to myeloma is about 5: 1 to 10: 1, and centrifuged. After removing the supernatant and loosening the precipitated cells, a serum-free medium containing 1 ml of 50% (w / v) polyethylene glycol (molecular weight 1000 to 4000) is added dropwise with stirring. Thereafter, 10 ml of serum-free medium is slowly added and then centrifuged. The supernatant was discarded again, and the precipitated cells were suspended in a normal medium (HAT medium) containing an appropriate amount of hypoxanthine / aminopterin / thymidine (HAT) solution and human interleukin-2 (IL-2). Dispense into each well and incubate at 37 ° C. for about 2 weeks in the presence of 5% carbon dioxide gas. HAT medium is supplemented as needed.
 ミエローマ細胞が8-アザグアニン耐性株、すなわちヒポキサンチン・グアニン・ホスホリボシルトランスフェラーゼ(HGPRT)欠損株である場合、融合しなかったミエローマ細胞およびミエローマ細胞どうしの融合細胞は、HAT培地中では生存できない。また、融合しなかった抗体産生細胞および抗体産生細胞同士の融合細胞は増殖できない。したがって、HAT培地での培養を続けることによって、抗体産生細胞とミエローマ細胞とのハイブリドーマのみが増殖し、結果的にハイブリドーマを選択することができる。コロニー状に生育してきたハイブリドーマについて、培地をHAT培地からアミノプテリンを除いた培地(HT培地)に変更する。以後、培養上清の一部を採取し、例えば、ELISA法によりH5亜型インフルエンザウイルスのヘマグルチニンに対する抗体価を測定する。 When the myeloma cells are 8-azaguanine resistant strains, that is, hypoxanthine / guanine / phosphoribosyltransferase (HGPRT) deficient strains, the fused myeloma cells and the fused cells of the myeloma cells cannot survive in the HAT medium. In addition, non-fused antibody-producing cells and fused cells between antibody-producing cells cannot proliferate. Therefore, by continuing the culture in the HAT medium, only the hybridoma of the antibody producing cell and the myeloma cell grows, and as a result, the hybridoma can be selected. About the hybridoma which grew to colony form, a culture medium is changed into the culture medium (HT culture medium) remove | excluding aminopterin from the HAT culture medium. Thereafter, a part of the culture supernatant is collected, and the antibody titer against hemagglutinin of H5 subtype influenza virus is measured, for example, by ELISA.
 抗体価測定により、H5亜型インフルエンザウイルスのヘマグルチニンに対する特異的抗体を産生することが確認されたハイブリドーマを別のプレートに移しクローニングを行う。クローニング法としては、限界希釈法、軟寒天法、マイクロマニュピレーターによる方法、セルソーターによる方法などが挙げられるが、限界希釈法が簡便であり、よく用いられる。例えば限界希釈法によるクローニングを2~4回繰返し、安定して抗体価の認められたハイブリドーマを選択し、産生されるモノクローナル抗体の中和活性およびエピトープを確認する。 The hybridoma confirmed to produce a specific antibody against hemagglutinin of H5 subtype influenza virus by antibody titer measurement is transferred to another plate for cloning. Examples of the cloning method include a limiting dilution method, a soft agar method, a method using a micromanipulator, a method using a cell sorter, etc., but the limiting dilution method is simple and often used. For example, cloning by limiting dilution is repeated 2 to 4 times, hybridomas with stable antibody titers are selected, and the neutralizing activity and epitope of the produced monoclonal antibody are confirmed.
 中和活性は、例えば後述する実施例5と同様の方法で確認することができる。すなわち、選択したハイブリドーマにより産生された抗体とH5亜型インフルエンザウイルスとを混合してインキュベーションし、コンフルエントな状態に培養したMDCK細胞に当該混合液を添加してウイルスを感染させ、寒天培地を入れて固め、2日間培養した後プラークの数を計測する。H5亜型インフルエンザウイルスのみを感染させた場合よりプラーク数が減少していれば、当該抗体は中和活性を有すると判定できる。 The neutralizing activity can be confirmed by, for example, the same method as in Example 5 described later. That is, the antibody produced by the selected hybridoma and H5 subtype influenza virus are mixed and incubated, the mixture is added to MDCK cells cultured in a confluent state, the virus is infected, and an agar medium is added. After hardening and culturing for 2 days, the number of plaques is counted. If the number of plaques is reduced as compared with the case where only H5 subtype influenza virus is infected, it can be determined that the antibody has neutralizing activity.
 エピトープの同定は、例えば後述する実施例7と同様の方法で確認することができる。すなわち、ウイルスと抗体とを反応させた後に、適当な細胞にウイルスを感染させてエスケープミュータント株を単離し、単離したウイルス株のヘマグルチニン遺伝子をシークエンス解析した結果から、変異が生じたアミノ酸を同定することでエピトープを同定することができる。 Epitope identification can be confirmed, for example, by the same method as in Example 7 described later. That is, after reacting the virus with the antibody, infect appropriate cells with the virus to isolate the escape mutant strain, and the sequence analysis of the hemagglutinin gene of the isolated virus strain identifies the amino acid with the mutation. By doing so, the epitope can be identified.
 本発明の抗体を産生するハイブリドーマが選択できれば、培地を正常培地に換えて培養する。大量培養は、大型培養瓶を用いた回転培養またはスピナー培養で行うことができる。大量培養により得られる上清を、ゲル濾過カラム等、当業者に周知の方法を用いて精製することにより、本発明の抗体を得ることができる。また、同系統のマウスもしくはNu/Nuマウス、ラット、モルモット、ハムスターまたはウサギ等の腹腔内で当該ハイブリドーマを増殖させることにより、本発明の抗体を大量含む腹水を得ることができ、これを精製して本発明の抗体を得ることができる。 If the hybridoma producing the antibody of the present invention can be selected, the medium is changed to a normal medium and cultured. Mass culture can be performed by rotary culture or spinner culture using a large culture bottle. The antibody of the present invention can be obtained by purifying the supernatant obtained by mass culture using a method well known to those skilled in the art, such as a gel filtration column. In addition, ascites containing a large amount of the antibody of the present invention can be obtained by growing the hybridoma in the peritoneal cavity of the same strain of mouse or Nu / Nu mouse, rat, guinea pig, hamster or rabbit. Thus, the antibody of the present invention can be obtained.
 本発明の抗体を産生するハイブリドーマから抗体遺伝子をクローニングし、適当なベクターに組み込んで、このベクターを宿主に導入して組換え抗体を製造することも可能である(例えば、Vandamme, A. M. et al., Eur. J. Biochem.(1990)192, 767-775, 1990参照)。本発明の抗体のうち、ヒト型キメラ抗体およびヒト化抗体は、組換え抗体として製造することができる。 It is also possible to clone an antibody gene from a hybridoma producing the antibody of the present invention, incorporate it into an appropriate vector, and introduce this vector into a host to produce a recombinant antibody (for example, Vandamme, A. M. et al., Eur. J. Biochem. (1990) 192, 767-775, 1990). Of the antibodies of the present invention, human chimeric antibodies and humanized antibodies can be produced as recombinant antibodies.
 ヒト型キメラ抗体の重鎖をコードする遺伝子は、ハイブリドーマからクローニングした抗体遺伝子の重鎖可変領域をコードする部分をヒト抗体の重鎖定常領域をコードする遺伝子と結合して作製することができる。同様に、ヒト型キメラ抗体の軽鎖をコードする遺伝子は、ハイブリドーマからクローニングした抗体遺伝子の軽鎖可変領域をコードする部分をヒト抗体の軽鎖定常領域をコードする遺伝子と結合して作製することができる。 The gene encoding the heavy chain of the human chimeric antibody can be prepared by combining the portion encoding the heavy chain variable region of the antibody gene cloned from the hybridoma with the gene encoding the heavy chain constant region of the human antibody. Similarly, the gene encoding the light chain of the human chimeric antibody is prepared by combining the portion encoding the light chain variable region of the antibody gene cloned from the hybridoma with the gene encoding the light chain constant region of the human antibody. Can do.
 ヒト化抗体の重鎖をコードする遺伝子は、ハイブリドーマからクローニングした抗体遺伝子の重鎖可変領域のCDR1、2および3をコードする部分をヒト抗体の重鎖をコードする遺伝子の対応するCDR部分と置換することで作製することができる。同様に、ヒト化抗体の軽鎖をコードする遺伝子は、ハイブリドーマからクローニングした抗体遺伝子の軽鎖可変領域のCDR1、2および3をコードする部分をヒト抗体の軽鎖をコードする遺伝子の対応するCDR部分と置換することで作製することができる。 In the gene encoding the heavy chain of the humanized antibody, the CDR coding portion of the heavy chain variable region of the antibody gene cloned from the hybridoma is replaced with the corresponding CDR portion of the gene encoding the heavy chain of the human antibody. It can produce by doing. Similarly, the gene encoding the light chain of the humanized antibody is the same as the CDR of the gene encoding the light chain of the human antibody. It can be produced by replacing the portion.
 得られた重鎖をコードする遺伝子と軽鎖をコードする遺伝子を適切なベクターに挿入し、本発明の抗体を発現するための組換え発現ベクターを構築する。重鎖をコードする遺伝子と軽鎖をコードする遺伝子は、1つのベクターに組み込んでもよく、別々のベクターに組み込んでもよい。次に、得られたベクターを宿主細胞に導入し形質転換体を作製する。重鎖をコードする遺伝子と軽鎖をコードする遺伝子を別々のベクターに組み込んだ場合には、2つのベクターを宿主細胞に共導入する。ベクターおよび宿主細胞の詳細については後述する。 The obtained gene encoding the heavy chain and the gene encoding the light chain are inserted into an appropriate vector, and a recombinant expression vector for expressing the antibody of the present invention is constructed. The gene encoding the heavy chain and the gene encoding the light chain may be incorporated into one vector or into separate vectors. Next, the obtained vector is introduced into a host cell to produce a transformant. When the gene encoding the heavy chain and the gene encoding the light chain are incorporated into separate vectors, the two vectors are co-introduced into the host cell. Details of the vector and the host cell will be described later.
 ベクターが導入された宿主細胞(形質転換体)を培養し、その培養物から本発明の抗体を採取することができる。培養物としては、培養上清、培養細胞もしくは培養菌体またはその破砕物、形質転換体の分泌物等が挙げられる。培地および培養条件は、使用する宿主細胞に応じて適宜選択する。培養後、目的タンパク質が菌体内または細胞内に生産される場合には、菌体または細胞を破砕することにより抗体を採取する。また、目的抗体が菌体外または細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離等により菌体または細胞を除去する。その後、タンパク質の単離精製に用いられる各種クロマトグラフィーを用いた一般的な生化学的方法を適宜選択して用いることにより、培養物中から目的の抗体を単離精製することができる。 The host cell (transformant) introduced with the vector can be cultured, and the antibody of the present invention can be collected from the culture. Examples of the culture include culture supernatant, cultured cells or cultured cells or disrupted products thereof, and secretions of transformants. The medium and culture conditions are appropriately selected according to the host cell used. When the target protein is produced in cells or cells after culturing, antibodies are collected by disrupting the cells or cells. When the target antibody is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or the like. Thereafter, the target antibody can be isolated and purified from the culture by appropriately selecting and using a general biochemical method using various chromatographies used for protein isolation and purification.
〔ポリヌクレオチド〕
 本発明は、本発明の抗体の重鎖可変領域をコードするポリヌクレオチドおよび軽鎖可変領域をコードするポリヌクレオチドを提供する。本発明のポリヌクレオチドは、本発明の抗体を組換え抗体として製造する際に有用である。また、本発明の抗体と同等の機能を有する抗体をスクリーニングするために、プローブとして用いることもできる。
[Polynucleotide]
The present invention provides a polynucleotide encoding the heavy chain variable region and the polynucleotide encoding the light chain variable region of the antibody of the present invention. The polynucleotide of the present invention is useful when the antibody of the present invention is produced as a recombinant antibody. Moreover, it can also be used as a probe for screening an antibody having a function equivalent to that of the antibody of the present invention.
 本明細書において「ポリヌクレオチド」は、「遺伝子」、「核酸」または「核酸分子」と交換可能に使用される。本発明のポリヌクレオチドは、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在することができる。DNAは、二本鎖でもよく一本鎖でもよい。一本鎖DNAまたはRNAは、コード鎖(センス鎖)、または、非コード鎖(アンチセンス鎖)のいずれであってもよい。 In the present specification, “polynucleotide” is used interchangeably with “gene”, “nucleic acid” or “nucleic acid molecule”. The polynucleotides of the present invention can exist in the form of RNA (eg, mRNA) or in the form of DNA (eg, cDNA or genomic DNA). The DNA may be double stranded or single stranded. The single-stranded DNA or RNA may be either a coding strand (sense strand) or a non-coding strand (antisense strand).
 本発明の重鎖可変領域をコードするポリヌクレオチドとしては、配列番号2または4で示されるアミノ酸配列の第31位-第35位からなるCDR1、第50位-第66位からなるCDR2および98位-第109位からなるCDR3を含む重鎖可変領域をコードするポリヌクレオチドが好ましく、より好ましくは、配列番号2、4、6または8で示されるアミノ酸配列からなる重鎖可変領域をコードするポリヌクレオチドである。 The polynucleotide encoding the heavy chain variable region of the present invention includes CDR1 consisting of positions 31 to 35, CDR2 consisting of positions 50 to 66, and positions 98 of the amino acid sequence shown in SEQ ID NO: 2 or 4. A polynucleotide encoding a heavy chain variable region comprising CDR3 consisting of position 109, more preferably a polynucleotide encoding a heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 2, 4, 6 or 8 It is.
 配列番号2で示されるアミノ酸配列からなる重鎖可変領域をコードするポリヌクレオチドとしては、配列番号10で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号4で示されるアミノ酸配列からなる重鎖可変領域をコードするポリヌクレオチドとしては、配列番号12で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号6で示されるアミノ酸配列からなる重鎖可変領域をコードするポリヌクレオチドとしては、配列番号14で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号8で示されるアミノ酸配列からなる重鎖可変領域をコードするポリヌクレオチドとしては、配列番号16で示される塩基配列からなるポリヌクレオチドが挙げられるが、いずれも限定されるものではない。 Examples of the polynucleotide encoding the heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 2 include the polynucleotide consisting of the base sequence shown in SEQ ID NO: 10, and the heavy chain consisting of the amino acid sequence shown in SEQ ID NO: 4. Examples of the polynucleotide encoding the variable region include a polynucleotide comprising the base sequence represented by SEQ ID NO: 12, and the polynucleotide encoding the heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 6 includes SEQ ID NO: And a polynucleotide encoding the heavy chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 8 is a polynucleotide consisting of the base sequence shown in SEQ ID NO: 16. However, any of them is not limited.
 本発明の軽鎖可変領域をコードするポリヌクレオチドとしては、配列番号3または5で示されるアミノ酸配列の第24位-第33位からなるCDR1、第49位-第55位からなるCDR2および第88位-第96位からなるCDR3を含む軽鎖可変領域をコードするポリヌクレオチドが好ましく、より好ましくは、配列番号3、5、7または9で示されるアミノ酸配列からなる軽鎖可変領域をコードするポリヌクレオチドである。 The polynucleotide encoding the light chain variable region of the present invention includes CDR1 consisting of positions 24 to 33, CDR2 consisting of positions 49 to 55, and 88 of the amino acid sequence shown in SEQ ID NO: 3 or 5. A polynucleotide encoding a light chain variable region comprising CDR3 consisting of position 96 is preferred, more preferably a polynucleotide encoding a light chain variable region consisting of the amino acid sequence represented by SEQ ID NO: 3, 5, 7 or 9 It is a nucleotide.
 配列番号3で示されるアミノ酸配列からなる軽鎖可変領域をコードするポリヌクレオチドとしては、配列番号11で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号5で示されるアミノ酸配列からなる軽鎖可変領域をコードするポリヌクレオチドとしては、配列番号13で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号7で示されるアミノ酸配列からなる軽鎖可変領域をコードするポリヌクレオチドとしては、配列番号15で示される塩基配列からなるポリヌクレオチドが挙げられ、配列番号9で示されるアミノ酸配列からなる軽鎖可変領域をコードするポリヌクレオチドとしては、配列番号17で示される塩基配列からなるポリヌクレオチドが挙げられるが、いずれも限定されるものではない。 Examples of the polynucleotide encoding the light chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 3 include the polynucleotide consisting of the base sequence shown in SEQ ID NO: 11, and the light chain consisting of the amino acid sequence shown in SEQ ID NO: 5. Examples of the polynucleotide encoding the variable region include a polynucleotide comprising the base sequence represented by SEQ ID NO: 13, and the polynucleotide encoding the light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 7 include SEQ ID NO: And a polynucleotide encoding a light chain variable region consisting of the amino acid sequence shown in SEQ ID NO: 9 includes a polynucleotide consisting of the base sequence shown in SEQ ID NO: 17. However, any of them is not limited.
 本発明のポリヌクレオチドを取得する方法としては、PCR等の増幅手段を用いる方法を挙げることができる。例えば、配列番号10で示される塩基配列の5’側および3’側の配列(またはその相補配列)に基づいてそれぞれプライマーを設計し、これらプライマーを用いてハイブリドーマ36-1のRNAから調製したcDNA等を鋳型にしてPCR等を行い、両プライマー間に挟まれるDNA領域を増幅することで、本発明のポリペプチドをコードするポリヌクレオチドを含むDNA断片を大量に取得することができる。 Examples of the method for obtaining the polynucleotide of the present invention include a method using amplification means such as PCR. For example, cDNAs prepared from RNA of hybridoma 36-1 by designing primers based on the 5 ′ side and 3 ′ side sequences (or their complementary sequences) of the nucleotide sequence shown in SEQ ID NO: 10, respectively. PCR is performed using the above as a template, and a DNA region sandwiched between both primers is amplified, whereby a large amount of DNA fragments containing a polynucleotide encoding the polypeptide of the present invention can be obtained.
〔発現ベクター〕
 本発明は、上記本発明のポリヌクレオチドを含む発現ベクターを提供する。本発明の発現ベクターは、上記本発明の抗体や当該抗体の機能的断片を製造するために使用することができる。本発明の発現ベクターは、上述した本発明のポリヌクレオチドを含むものであれば特に限定されないが、RNAポリメラーゼの認識配列を有するプラスミドベクターが好ましい。また、本発明の抗体を製造するために使用する発現ベクターの場合、重鎖可変領域をコードするポリヌクレオチドおよび軽鎖可変領域をコードするポリヌクレオチドの他に、重鎖定常領域をコードするポリヌクレオチドおよび軽鎖定常領域をコードするポリヌクレオチドを含むことが好ましい。具体的には、重鎖可変領域をコードするポリヌクレオチドと重鎖定常領域をコードするポリヌクレオチドとが結合した重鎖をコードするポリヌクレオチドと、軽鎖可変領域をコードするポリヌクレオチドと軽鎖定常領域をコードするポリヌクレオチドとが結合した軽鎖をコードするポリヌクレオチドとを含むことが好ましい。
[Expression vector]
The present invention provides an expression vector comprising the polynucleotide of the present invention. The expression vector of the present invention can be used for producing the antibody of the present invention or a functional fragment of the antibody. The expression vector of the present invention is not particularly limited as long as it contains the above-described polynucleotide of the present invention, but a plasmid vector having an RNA polymerase recognition sequence is preferred. In the case of the expression vector used for producing the antibody of the present invention, in addition to the polynucleotide encoding the heavy chain variable region and the polynucleotide encoding the light chain variable region, the polynucleotide encoding the heavy chain constant region And a polynucleotide encoding the light chain constant region. Specifically, a polynucleotide encoding a heavy chain in which a polynucleotide encoding a heavy chain variable region and a polynucleotide encoding a heavy chain constant region are combined, a polynucleotide encoding a light chain variable region, and a light chain constant It is preferable to include a polynucleotide encoding a light chain bound to a polynucleotide encoding a region.
 組換え発現ベクターの作製方法としては、プラスミド、ファージ、またはコスミドなどを用いる方法が挙げられるが特に限定されない。発現ベクターの具体的な種類は特に限定されず、宿主細胞中で発現可能なベクターを適宜選択することができる。すなわち、宿主細胞の種類に応じて、確実に本発明のポリヌクレオチドを発現させるために適宜プロモーター配列を選択し、これと本発明のポリヌクレオチドを各種プラスミド等に組み込んだベクターを発現ベクターとして用いればよい。また、少なくとも1つの選択マーカーを含むことが好ましい。このようなマーカーとしては、宿主が真核生物細胞の場合はジヒドロ葉酸レダクターゼまたはネオマイシン耐性遺伝子、宿主が大腸菌または他の細菌の場合はテトラサイクリン耐性遺伝子またはアンピシリン耐性遺伝子が挙げられる。上記選択マーカーを用いれば、本発明に係るポリヌクレオチドが宿主細胞に導入されたか否か、さらには宿主細胞中で確実に発現しているか否かを確認することができる。 A method for producing a recombinant expression vector includes, but is not particularly limited to, a method using a plasmid, phage, cosmid or the like. The specific type of expression vector is not particularly limited, and a vector that can be expressed in a host cell can be appropriately selected. That is, if a promoter sequence is appropriately selected according to the type of host cell to ensure expression of the polynucleotide of the present invention, and a vector in which this and the polynucleotide of the present invention are incorporated into various plasmids or the like is used as an expression vector. Good. It is also preferable to include at least one selectable marker. Such markers include dihydrofolate reductase or neomycin resistance genes when the host is a eukaryotic cell, and tetracycline resistance genes or ampicillin resistance genes when the host is E. coli or other bacteria. By using the above selection marker, it can be confirmed whether or not the polynucleotide according to the present invention has been introduced into the host cell, and whether or not it is reliably expressed in the host cell.
〔細胞〕
 本発明は、上記本発明の発現ベクターが導入された細胞を提供する。本発明の細胞としては、宿主細胞として公知の各種微生物、植物または動物の細胞を用いることができる。具体的には、例えば、大腸菌(Escherichia coli)等の細菌、酵母(出芽酵母Saccharomyces cerevisiae、***酵母Schizosaccharomyces pombe)、アフリカツメガエル卵母細胞、昆虫細胞、動物細胞(例えば、CHO細胞、COS細胞等)などが挙げられる。動物細胞において大量発現を目的とする場合にはCHO細胞が好ましい。
〔cell〕
The present invention provides a cell into which the expression vector of the present invention has been introduced. As the cells of the present invention, various microorganisms, plant or animal cells known as host cells can be used. Specifically, for example, bacteria such as Escherichia coli, yeast (budding yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe), Xenopus oocytes, insect cells, animal cells (eg, CHO cells, COS cells, etc.) Etc. CHO cells are preferred for the purpose of mass expression in animal cells.
 本発明の発現ベクターを宿主細胞に導入する方法、すなわち形質転換法も特に限定されるものではなく、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の従来公知の方法を好適に用いることができる。本発明の細胞は、本発明のポリヌクレオチドがコードするタンパク質を安定的に発現することが好ましいが、一過性に発現してもよい。 A method for introducing the expression vector of the present invention into a host cell, that is, a transformation method is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method is preferably used. Can do. The cell of the present invention preferably stably expresses the protein encoded by the polynucleotide of the present invention, but may be expressed transiently.
〔検出方法〕
 本発明は、H5亜型インフルエンザウイルスの検出方法を提供する。本発明の検出方法は、上記本発明の抗体またはその機能的断片(以下「本発明の抗体等」という。)を被験試料に接触させる工程を包含するものであればよい。被験試料は、H5亜型インフルエンザウイルスが含まれる可能性のある試料であればよく、特に限定されない。動物および植物の生体構成成分を含む生体由来試料であることが好ましく、ヒトを含む動物由来の試料であることがより好ましい。ヒトを含む動物由来の試料としては、例えば、血液、組織液、リンパ液、脳脊髄液、膿、粘液、鼻水、喀痰、尿、糞便、腹水等の体液類、皮膚、肺、腎、粘膜、各種臓器、骨等の組織、鼻腔、気管支、皮膚、各種臓器、骨等を洗浄した後の洗浄液などが挙げられる。また、生物の体から採取した細胞を培養した際の培養液など、被検試料から二次的に得られる試料も被検試料として好適である。
[Detection method]
The present invention provides a method for detecting H5 subtype influenza virus. The detection method of the present invention only needs to include a step of bringing the antibody of the present invention or a functional fragment thereof (hereinafter referred to as “the antibody of the present invention”) into contact with a test sample. The test sample is not particularly limited as long as it may contain H5 subtype influenza virus. A sample derived from a living body including biological components of animals and plants is preferable, and a sample derived from an animal including humans is more preferable. Examples of samples derived from animals including humans include body fluids such as blood, tissue fluid, lymph fluid, cerebrospinal fluid, pus, mucus, runny nose, sputum, urine, feces, ascites, skin, lung, kidney, mucous membrane, various organs. And a washing solution after washing tissues such as bones, nasal cavity, bronchi, skin, various organs, bones and the like. A sample obtained secondarily from the test sample, such as a culture solution obtained by culturing cells collected from the body of an organism, is also suitable as the test sample.
 本発明の抗体等を被験試料に接触させることにより、被験試料中にH5亜型インフルエンザウイルスが存在すれば、本発明の抗体等がH5亜型インフルエンザウイルスのヘマグルチニンに特異的に結合し、複合体を形成する。この複合体を検出することにより、H5亜型インフルエンザウイルスを検出することができる。当該複合体の検出には、公知の免疫学的方法を好適に用いることができる。具体的には、例えば、ラジオイムノアッセイ、エンザイムイムノアッセイ、蛍光イムノアッセイ、発光イムノアッセイ、免疫沈降法、免疫比濁法などが挙げられ、エンザイムイムノアッセイ、特にELISA法が好ましい。 When the H5 subtype influenza virus is present in the test sample by bringing the antibody of the present invention into contact with the test sample, the antibody of the present invention specifically binds to the hemagglutinin of the H5 subtype influenza virus, and the complex Form. By detecting this complex, H5 subtype influenza virus can be detected. A known immunological method can be suitably used for detecting the complex. Specific examples include radioimmunoassay, enzyme immunoassay, fluorescent immunoassay, luminescence immunoassay, immunoprecipitation method, immunoturbidimetric method, and the like, and enzyme immunoassay, particularly ELISA method is preferred.
 ELISA法は、当業者に周知の方法で実施することができる。例えば、本発明の抗体等をマイクロプレートのウェルやプラスチックチューブなどの固相に結合させ、これに被験試料を添加し、洗浄後、酵素標識した二次抗体を添加する。未結合の二次抗体を洗浄、除去したのち、発色基質を添加して生成した発色物質の量を分光光度計で吸光度を測定する方法が挙げられる。 The ELISA method can be performed by a method well known to those skilled in the art. For example, the antibody of the present invention is bound to a solid phase such as a well of a microplate or a plastic tube, a test sample is added thereto, and after washing, an enzyme-labeled secondary antibody is added. An example is a method in which after the unbound secondary antibody is washed and removed, the absorbance is measured with a spectrophotometer for the amount of the chromogenic material produced by adding a chromogenic substrate.
 本発明の検出方法において、被験試料以外に対照試料を用いることが好ましい。対照試料としては、H5亜型インフルエンザウイルスを含まない陰性対照試料、H5亜型インフルエンザウイルスを含む陽性対照試料が挙げられる。被験試料で得られた結果を陰性対照試料および陽性対照試料で得られた結果と比較することにより、被験試料中のH5亜型インフルエンザウイルスの存在を正確に検出することができる。また、被験試料の結果および対照試料の結果を数値データとして取得すれば、被験試料中のH5亜型インフルエンザウイルスを定量的に検出することが可能となる。 In the detection method of the present invention, it is preferable to use a control sample in addition to the test sample. Examples of the control sample include a negative control sample not containing H5 subtype influenza virus and a positive control sample containing H5 subtype influenza virus. By comparing the results obtained with the test sample with the results obtained with the negative control sample and the positive control sample, the presence of the H5 subtype influenza virus in the test sample can be accurately detected. Moreover, if the result of the test sample and the result of the control sample are acquired as numerical data, it becomes possible to quantitatively detect the H5 subtype influenza virus in the test sample.
〔検出キット〕
 本発明は、H5亜型インフルエンザウイルスの検出キットを提供する。本発明の検出キットは、本発明の抗体等を含むものであればよい。本発明の抗体等以外のキットの構成については特に限定されるものではなく、他に必要な試薬や器具等を適宜選択してキットの構成とすればよい。例えば、ELISA用検出キットとして実施する場合には、標識された二次抗体、発色用試薬、洗浄用緩衝液、ELISA用プレート、使用説明書などを含むことが好ましい。本発明のキットを用いることにより、上記本発明の検出方法を簡便かつ迅速に実施することができる。
[Detection kit]
The present invention provides a detection kit for H5 subtype influenza virus. The detection kit of the present invention only needs to contain the antibody of the present invention. The configuration of the kit other than the antibody and the like of the present invention is not particularly limited, and other necessary reagents and instruments may be appropriately selected to form the kit. For example, when implemented as an ELISA detection kit, it preferably contains a labeled secondary antibody, a coloring reagent, a washing buffer, an ELISA plate, instructions for use, and the like. By using the kit of the present invention, the detection method of the present invention can be carried out simply and rapidly.
〔H5亜型インフルエンザウイルス感染疾患の予防または治療薬〕
 本発明は、本発明の抗体等を有効成分として含むH5亜型インフルエンザウイルス感染疾患の予防または治療薬を提供する。本発明の抗体等はH5亜型インフルエンザウイルスの感染性を低濃度で中和することができるので、H5亜型インフルエンザウイルス感染疾患の予防または治療に有用である。
[Preventive or therapeutic agent for H5 influenza virus infection]
The present invention provides a preventive or therapeutic agent for H5 subtype influenza virus infection diseases comprising the antibody of the present invention as an active ingredient. Since the antibody of the present invention can neutralize the infectivity of H5 subtype influenza virus at a low concentration, it is useful for the prevention or treatment of H5 subtype influenza virus infection diseases.
 本発明の予防または治療薬は、経口投与または非経口投与で、ヒトまたはヒト以外の動物に投与することができる。また、投与経路に応じて適当な剤形とすることができる。具体的には顆粒剤、錠剤、丸剤、カプセル剤、シロップ剤、乳剤、懸濁剤、注射剤、点滴剤、外用剤、坐剤などの各種製剤形態に調製することができる。これらの各種製剤は、通常用いられている賦形剤、増量剤、結合剤、浸潤剤、崩壊剤、表面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、着色料、香味剤、安定化剤などを用いて常法により製造することができる。 The preventive or therapeutic agent of the present invention can be administered orally or parenterally to humans or non-human animals. Moreover, it can be set as a suitable dosage form according to an administration route. Specifically, it can be prepared in various preparation forms such as granules, tablets, pills, capsules, syrups, emulsions, suspensions, injections, drops, external preparations, suppositories and the like. These various preparations are commonly used excipients, extenders, binders, wetting agents, disintegrants, surfactants, lubricants, dispersants, buffers, preservatives, solubilizers, preservatives. , And can be produced by conventional methods using colorants, flavoring agents, stabilizers and the like.
 賦形剤としては、例えば乳糖、果糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロース、滅菌水、エタノール、グリセロール、生理食塩水、緩衝液などが挙げられる。崩壊剤としては、例えば澱粉、アルギン酸ナトリウム、ゼラチン、炭酸カルシウム、クエン酸カルシウム、デキストリン、炭酸マグネシウム、合成ケイ酸マグネシウムなどが挙げられる。結合剤としては、例えばメチルセルロース、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロース、ポリビニルピロリドンなどが挙げられる。滑沢剤としては、タルク、ステアリン酸マグネシウム、ポリエチレングリコール、硬化植物油などが挙げられる。安定化剤としては、例えばアルギニン、ヒスチジン、リジン、メチオニンなどのアミノ酸、ヒト血清アルブミン、ゼラチン、デキストラン40、メチルセルロース、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどが挙げられる。その他の添加剤としては、シロップ、ワセリン、グリセリン、エタノール、プロピレングリコール、クエン酸、塩化ナトリウム、亜硝酸ソーダ、リン酸ナトリウムなどが挙げられる。 Examples of the excipient include lactose, fructose, glucose, corn starch, sorbit, crystalline cellulose, sterilized water, ethanol, glycerol, physiological saline, and buffer solution. Examples of the disintegrant include starch, sodium alginate, gelatin, calcium carbonate, calcium citrate, dextrin, magnesium carbonate, and synthetic magnesium silicate. Examples of the binder include methyl cellulose, ethyl cellulose, gum arabic, gelatin, hydroxypropyl cellulose, polyvinyl pyrrolidone and the like. Examples of the lubricant include talc, magnesium stearate, polyethylene glycol, hydrogenated vegetable oil, and the like. Examples of the stabilizer include amino acids such as arginine, histidine, lysine, and methionine, human serum albumin, gelatin, dextran 40, methylcellulose, sodium sulfite, and sodium metasulfite. Examples of other additives include syrup, petrolatum, glycerin, ethanol, propylene glycol, citric acid, sodium chloride, sodium nitrite, and sodium phosphate.
 好ましい投与経路は非経口投与であり、好ましい剤形としては、注射剤、経鼻投与剤、経肺投与剤、経皮投与剤などが挙げられる。注射剤は、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与することができる。また、患者の年齢、症状により適宜投与方法を選択することができる。本発明の予防または治療薬の投与量としては、例えば、1回につき体重1kgあたり0.0001mgから1000mgの範囲で選択することが可能であるが、限定されるものでははい。投与量、投与方法は、患者の体重や年齢、症状などにより変動し、当業者は適宜選択することが可能である。 A preferred route of administration is parenteral administration, and preferred dosage forms include injections, nasal administration agents, pulmonary administration agents, transdermal administration agents, and the like. The injection can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like. The administration method can be appropriately selected depending on the age and symptoms of the patient. The dose of the prophylactic or therapeutic agent of the present invention can be selected, for example, within the range of 0.0001 mg to 1000 mg per kg of body weight at one time, but is not limited. The dose and administration method vary depending on the patient's weight, age, symptoms, etc., and can be appropriately selected by those skilled in the art.
 本発明は、さらに上記本発明の抗体等を用いるH5亜型インフルエンザウイルス感染疾患の予防または治療方法を包含する。本発明のH5亜型インフルエンザウイルス感染疾患の予防または治療方法は、上記本発明の予防または治療薬の薬学的有効量を投与する工程を含むものである。 The present invention further includes a method for preventing or treating an H5 subtype influenza virus-infected disease using the antibody of the present invention. The method for preventing or treating an H5 subtype influenza virus-infected disease of the present invention includes a step of administering a pharmaceutically effective amount of the preventive or therapeutic agent of the present invention.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
〔実施例1.抗インフルエンザウイルスH5亜型マウスモノクローナル抗体の作製〕
 インフルエンザウイルスA/Vietnam/1194/04(H5N1)株を抗原としてマウスを免疫し、定法に従って当該抗原に対するモノクローナル抗体を産生するハイブリドーマを作製した。すなわち、ウイルス液と等量のフロイント完全アジュバントとを混合し、マウス(BALB/c)に3回免疫し、その脾細胞を細胞融合に用いた。採取した脾細胞とマウスミエローマ細胞Sp2/0とを、ポリエチレングリコール法にて細胞融合し、HAT培地で培養することにより、上記抗原ウイルスに対するモノクローナル抗体を産生するハイブリドーマを得た。
[Example 1. Preparation of anti-influenza virus H5 subtype mouse monoclonal antibody]
Mice were immunized using the influenza virus A / Vietnam / 1194/04 (H5N1) strain as an antigen, and a hybridoma producing a monoclonal antibody against the antigen was prepared according to a standard method. That is, the virus solution and an equal volume of Freund's complete adjuvant were mixed, and the mouse (BALB / c) was immunized three times, and the splenocytes were used for cell fusion. The collected spleen cells and mouse myeloma cells Sp2 / 0 were cell-fused by the polyethylene glycol method and cultured in a HAT medium to obtain a hybridoma producing a monoclonal antibody against the antigen virus.
 得られた15種類のハイブリドーマ由来のモノクローナル抗体と各種ウイルスとの反応性をELISA法で評価した。表1に示すように、4種類ハイブリドーマ(クローン名:36-1、61-2-1、25、64)由来のマウスモノクローナル抗体(以下、それぞれ「マウス36-1抗体」、「マウス61抗体」、「マウス25抗体」および「マウス64抗体」という。)がA/swan/Hokkaido/67(H5N3)に結合活性を有していた。さらに、マウス36-1抗体およびマウス61抗体は患者から分離したウイルスを弱毒化したA/rgViet Num/1194ΔHA/2004(H5N1)株に高い反応性を示したが、マウス25抗体およびマウス64抗体は同株に対する反応性が低いことが判明した。また、マウス36-1抗体およびマウス61抗体が比較的低濃度でA/Hong Kong/483/K/(H5N1)株を中和できることを確認した(実施例5参照)。なお、ハイブリドーマ36-1は受託番号NITE BP-832として、ハイブリドーマ61-2-1は受託番号NITE BP-833として、それぞれ独立行政法人製品評価技術基盤機構特許微生物寄託センターに国際寄託済みである(受託日:2009年10月30日)。 The reactivity of the obtained 15 types of hybridoma-derived monoclonal antibodies with various viruses was evaluated by ELISA. As shown in Table 1, mouse monoclonal antibodies derived from four types of hybridomas (clone names: 36-1, 61-2-1, 25, 64) (hereinafter referred to as “mouse 36-1 antibody” and “mouse 61 antibody”, respectively) , "Mouse 25 antibody" and "mouse 64 antibody") had binding activity on A / swan / Hokaido / 67 (H5N3). Furthermore, the mouse 36-1 antibody and mouse 61 antibody showed high reactivity to the A / rgViet Num / 1194ΔHA / 2004 (H5N1) strain attenuated from the virus isolated from the patient, while the mouse 25 antibody and mouse 64 antibody were The reactivity to the same strain was found to be low. It was also confirmed that the mouse 36-1 antibody and mouse 61 antibody can neutralize the A / Hong / Kong / 483 / K / (H5N1) strain at a relatively low concentration (see Example 5). The hybridoma 36-1 has been deposited internationally with the Patent Microorganism Depositary of the National Institute of Technology and Evaluation of Product Evaluation Technology under the accession number NITE BP-832 and the hybridoma 61-2-1 has the accession number NITE BP-833. (Contract date: October 30, 2009).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例2.抗体遺伝子の解析〕
 ハイブリドーマ36-1および61-2-1から、RNeasy(登録商標)Mini(QIAGEN)を用いてトータルRNAを抽出した。このトータルRNAを鋳型として、GeneRacerキット(Invitrogen)を用いて逆転写反応を行い、cDNAを得た。得られたcDNAを鋳型として、以下のプライマーを用いてPCRを行い、それぞれの重鎖および軽鎖をコードする遺伝子断片を増幅させた。
・センスプライマー:CGACTGGAGCACGAGGACACTGA(配列番号18、GeneRacerキットに付属)
・重鎖用アンチセンスプライマー:TTGGGCAGCAGATCCAGGGGCC(配列番号19)
・軽鎖用アンチセンスプライマー:CACCTCCAGATGTTAACTGCTCAC(配列番号20)
[Example 2. Analysis of antibody genes)
Total RNA was extracted from the hybridomas 36-1 and 61-2-1 using RNeasy (registered trademark) Mini (QIAGEN). Using this total RNA as a template, reverse transcription reaction was performed using GeneRacer kit (Invitrogen) to obtain cDNA. PCR was carried out using the obtained cDNA as a template and the following primers, and gene fragments encoding the respective heavy and light chains were amplified.
Sense primer: CGACTGGAGCACGAGGACACTGA (SEQ ID NO: 18, attached to GeneRacer kit)
-Antisense primer for heavy chain: TTGGGCAGCAGATCCAGGGGCC (SEQ ID NO: 19)
-Antisense primer for light chain: CACCTCCAGATGTTAACTGCTCAC (SEQ ID NO: 20)
 得られた遺伝子断片を、pT7Blue T-Vector(Novagen社製)にクローニングし、定法に従い塩基配列を決定した。マウス36-1抗体の重鎖可変領域のcDNAの塩基配列を配列番号10に、軽鎖可変領域のcDNAの塩基配列を配列番号11に示した。また、マウス61抗体の重鎖可変領域のcDNAの塩基配列を配列番号12に、軽鎖可変領域のcDNAの塩基配列を配列番号13に示した。これらの塩基配列を哺乳動物のコドンを基準にアミノ酸配列に変換し、マウス抗体のドメイン構造を参考にしてフレームワーク領域(FWR1~4)と相補性決定領域(CDR1~3)に区分した。マウス36-1抗体の重鎖可変領域のアミノ酸配列を配列番号2に、軽鎖可変領域のアミノ酸配列を配列番号3に示し、マウス61抗体の重鎖可変領域のアミノ酸配列を配列番号4に、軽鎖可変領域のアミノ酸配列を配列番号5に示した。 The obtained gene fragment was cloned into pT7Blue T-Vector (manufactured by Novagen), and the base sequence was determined according to a conventional method. The nucleotide sequence of the heavy chain variable region cDNA of the mouse 36-1 antibody is shown in SEQ ID NO: 10, and the nucleotide sequence of the light chain variable region cDNA is shown in SEQ ID NO: 11. The nucleotide sequence of the heavy chain variable region cDNA of mouse 61 antibody is shown in SEQ ID NO: 12, and the nucleotide sequence of the light chain variable region cDNA is shown in SEQ ID NO: 13. These nucleotide sequences were converted into amino acid sequences based on mammalian codons, and divided into framework regions (FWR1 to 4) and complementarity determining regions (CDR1 to 3) with reference to the domain structure of the mouse antibody. The amino acid sequence of the heavy chain variable region of the mouse 36-1 antibody is shown in SEQ ID NO: 2, the amino acid sequence of the light chain variable region is shown in SEQ ID NO: 3, the amino acid sequence of the heavy chain variable region of the mouse 61 antibody is shown in SEQ ID NO: 4, The amino acid sequence of the light chain variable region is shown in SEQ ID NO: 5.
 図1に、マウス36-1抗体およびマウス61抗体の重鎖可変領域のアミノ酸配列を対比して示した。図2に、マウス36-1抗体およびマウス61抗体の軽鎖可変領域のアミノ酸配列を対比して示した。H5HA特異的なマウス36-1抗体とマウス61抗体のフレームワーク領域は非常に類似性が高く、同一のジャームライン配列に由来するものと考えられた。また、マウス36-1抗体とマウス61抗体では、軽鎖のアミノ酸配列および重鎖のアミノ酸配列ともに非常によく保存されていたことから、これら2つの抗体を産生する細胞は一つの細胞が体細胞突然変異により分化したものである可能性が考えられた。 FIG. 1 shows a comparison of the amino acid sequences of the heavy chain variable regions of mouse 36-1 antibody and mouse 61 antibody. In FIG. 2, the amino acid sequences of the light chain variable regions of mouse 36-1 antibody and mouse 61 antibody are shown in comparison. The framework regions of the H5HA-specific mouse 36-1 antibody and mouse 61 antibody were very similar and were thought to be derived from the same germline sequence. In addition, in the mouse 36-1 antibody and the mouse 61 antibody, both the amino acid sequence of the light chain and the amino acid sequence of the heavy chain were very well conserved, so that one cell is the somatic cell that produces these two antibodies. There was a possibility that it was differentiated by mutation.
〔実施例3.キメラ抗体またはヒト化抗体発現ベクターおよび産生細胞の作製〕
 表2に記載の塩基配列からなる合成オリゴヌクレオチドを連結して二本鎖DNAを形成させることにより、コドンをCHO細胞に最適化したヒトκ鎖の定常領域遺伝子を含むDNA断片を人工合成した。得られた遺伝子断片をCHO細胞用高発現ベクターに挿入することにより、軽鎖発現用基本ベクターpDN11-cohCkを完成させた(図3参照)。合成したDNA断片中のヒトκ鎖定常領域cDNAの塩基配列を配列番号21に示し、コードするアミノ酸配列を配列番号22に示した。
[Example 3. Preparation of chimeric antibody or humanized antibody expression vector and production cell]
A DNA fragment containing a human κ chain constant region gene whose codon was optimized for CHO cells was artificially synthesized by linking synthetic oligonucleotides having the base sequences shown in Table 2 to form double-stranded DNA. The obtained gene fragment was inserted into a high expression vector for CHO cells to complete a basic vector pDN11-cohCk for light chain expression (see FIG. 3). The base sequence of human κ chain constant region cDNA in the synthesized DNA fragment is shown in SEQ ID NO: 21, and the encoded amino acid sequence is shown in SEQ ID NO: 22.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 同様に、表3に記載の塩基配列からなる合成オリゴヌクレオチドを連結して二本鎖DNAを形成させることにより、コドンをCHO細胞に最適化したヒトIgG1鎖定常領域遺伝子を含むDNA断片を人工合成した。得られた遺伝子断片をCHO細胞用高発現ベクターに挿入することにより、重鎖発現用基本ベクターpUCBR-SPyhCg1cを完成させた(図4参照)。合成したDNA断片中のヒトκ鎖定常領域cDNAの塩基配列を配列番号23に示し、コードするアミノ酸配列を配列番号24に示した。 Similarly, DNA fragments containing human IgG1 chain constant region genes whose codons are optimized for CHO cells are artificially synthesized by linking synthetic oligonucleotides having the base sequences shown in Table 3 to form double-stranded DNA. did. The obtained gene fragment was inserted into a high expression vector for CHO cells to complete a heavy chain expression basic vector pUCBR-SPyhCg1c (see FIG. 4). The nucleotide sequence of human κ chain constant region cDNA in the synthesized DNA fragment is shown in SEQ ID NO: 23, and the encoded amino acid sequence is shown in SEQ ID NO: 24.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、マウス36-1抗体、マウス61抗体の重鎖および軽鎖の可変領域をコードするDNA断片をPCRにより増幅した。PCRには以下のプライマーを用いた。
・重鎖可変領域用プライマー(両抗体共通)
 m36-1VH-F:TCTTAAGCCAGGTCCAATTGCAGCAGCC(配列番号44)
 m36-1VH-R:TGCTAGCTGAGGAGACTGTGAGAGTGG(配列番号45)
・軽鎖可変領域用プライマー(両抗体共通)
 m36-1VL-F:TCCGCGGCGCCCGCCAAATTGTTCTCTCCCAGTC(配列番号46)
 m36-1VL-R:CCGTACGTTTGATTTCCAGCTTGGTGC(配列番号47)
Next, DNA fragments encoding the variable regions of the heavy and light chains of mouse 36-1 antibody and mouse 61 antibody were amplified by PCR. The following primers were used for PCR.
-Primer for heavy chain variable region (common to both antibodies)
m36-1VH-F: TCTTAAGCCAGGTCCAATTGCAGCAGCC (SEQ ID NO: 44)
m36-1VH-R: TGCTAGCTGAGGAGACTGTGAGAGTGG (SEQ ID NO: 45)
・ Light chain variable region primer (common to both antibodies)
m36-1VL-F: TCCGCGGCGCCCGCCAAATTGTTCTCTCCCAGTC (SEQ ID NO: 46)
m36-1VL-R: CCGTACGTTTGATTTCCAGCTTGGTGC (SEQ ID NO: 47)
 さらに、コンピューターを用いた構造予測により、マウス36-1抗体およびマウス61抗体に基づいて、軽鎖可変領域および重鎖可変領域をそれぞれヒト化したアミノ酸配列をデザインした。デザインに当たっては、A.パドランらのフランケンシュタイン・プロトコールを採用した。具体的には、マウス36-1抗体およびマウス61抗体の可変領域のアミノ酸配列のうち、FWR1、2、3、4に最も類似したアミノ酸配列をそれぞれ個別にヒト抗体ジャームライン配列データベースより抽出して、これにそれぞれの抗体のCDR1、2、3を埋め込んでデザインした。また、抗原との反応性の低下を押さえるためにヒト抗体FWRのうちCDR近傍のアミノ酸を当該マウス抗体のアミノ酸に置換した。 Furthermore, amino acid sequences in which the light chain variable region and the heavy chain variable region were humanized were designed based on the mouse 36-1 antibody and mouse 61 antibody by structure prediction using a computer. In designing, A. Adopted the Frankenstein protocol by Padran et al. Specifically, among the amino acid sequences of the variable regions of mouse 36-1 antibody and mouse 61 antibody, the amino acid sequences most similar to FWR1, 2, 3, 4 were individually extracted from the human antibody germline sequence database. This was designed by embedding CDRs 1, 2 and 3 of the respective antibodies. Further, in order to suppress a decrease in reactivity with the antigen, amino acids near the CDRs in the human antibody FWR were substituted with amino acids of the mouse antibody.
 マウス36-1抗体に基づくヒト化抗体(以下、「ヒト化36-1抗体」という。)のデザインを図5に示した。また、マウス61抗体に基づくヒト化抗体(以下、「ヒト化61抗体」という。)のデザインを図6に示した。図5および図6において、上段にマウス抗体のアミノ酸配列を示し、中段にマウス抗体のアミノ酸配列に基づいてヒト抗体ジャームライン配列データベースより抽出されたヒト抗体FWRのアミノ酸配列を示し、下段にフランケンシュタイン・プロトコールにてデザインされたヒト化抗体のアミノ酸配列を示した。下段のヒト化抗体のアミノ酸配列中、薄い文字がマウス抗体配列由来のアミノ酸を示す。 The design of a humanized antibody based on the mouse 36-1 antibody (hereinafter referred to as “humanized 36-1 antibody”) is shown in FIG. The design of a humanized antibody based on the mouse 61 antibody (hereinafter referred to as “humanized 61 antibody”) is shown in FIG. 5 and 6, the upper part shows the amino acid sequence of the mouse antibody, the middle part shows the amino acid sequence of the human antibody FWR extracted from the human antibody germline sequence database based on the amino acid sequence of the mouse antibody, and the lower part shows Frankenstein. -The amino acid sequence of the humanized antibody designed by the protocol is shown. In the amino acid sequence of the lower humanized antibody, the light letter indicates the amino acid derived from the mouse antibody sequence.
 ヒト化36-1抗体の重鎖可変領域のアミノ酸配列に基づいて、哺乳動物細胞にコドンを最適化したDNA配列をデザインし、表4に示す6種類の合成オリゴヌクレオチドをつなぎ合わせ、得られたDNA断片を鋳型として以下のプライマーを用いてPCRを行い、ヒト化36-1抗体の重鎖可変領域をコードするDNA断片を合成した。
 hz36-1VH-F:TCTTAAGTCAGGTGCAGCTGGTG(配列番号48)
 hz36-1VH-R:TGCTAGCGCTGCTCACGGTC(配列番号49)
Based on the amino acid sequence of the heavy chain variable region of the humanized 36-1 antibody, a DNA sequence with optimized codons was designed in mammalian cells, and 6 types of synthetic oligonucleotides shown in Table 4 were joined together. PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the heavy chain variable region of the humanized 36-1 antibody.
hz36-1VH-F: TCTTAAGTCAGGTGCAGCTGGTG (SEQ ID NO: 48)
hz36-1VH-R: TGCTAGCGCTGCTCACGGTC (SEQ ID NO: 49)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ヒト化36-1抗体の軽鎖可変領域のアミノ酸配列に基づいて、哺乳動物細胞にコドンを最適化したDNA配列をデザインし、表5に示す6種類の合成オリゴヌクレオチドをつなぎ合わせ、得られたDNA断片を鋳型として以下のプライマーを用いてPCRを行い、ヒト化36-1抗体の軽鎖可変領域をコードするDNA断片を合成した。
 hz36-1VL-F:TCCGCGGTGCTAGACAGATC(配列番号56)
 hz36-1VL-R:CCGTACGCTTGATCTCCAGC(配列番号57)
Based on the amino acid sequence of the light chain variable region of the humanized 36-1 antibody, a DNA sequence with optimized codons was designed for mammalian cells and obtained by joining the 6 synthetic oligonucleotides shown in Table 5 PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the light chain variable region of the humanized 36-1 antibody.
hz36-1VL-F: TCCGCGGTGCTAGACAGATC (SEQ ID NO: 56)
hz36-1VL-R: CCGTACGCTTGATCTCCAGC (SEQ ID NO: 57)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ヒト化61抗体の重鎖可変領域のアミノ酸配列に基づいて、哺乳動物細胞にコドンを最適化したDNA配列をデザインし、表6に示す6種類の合成オリゴヌクレオチドをつなぎ合わせ、得られたDNA断片を鋳型として以下のプライマーを用いてPCRを行い、ヒト化36-1抗体の重鎖可変領域をコードするDNA断片を合成した。
 hz61VH-F:TCTTAAGTCAGGTGCAGCTGGTG(hz36-1VH-Fと同じ、配列番号48)
 hz61VH-R:TGCTAGCGCTGCTCACGGTC(hz36-1VH-Rと同じ、配列番号49)
Based on the amino acid sequence of the heavy chain variable region of the humanized 61 antibody, a DNA sequence with a codon optimized for mammalian cells was designed, and the six synthetic oligonucleotides shown in Table 6 were joined together, and the resulting DNA fragment PCR was carried out using the following primers as a template to synthesize a DNA fragment encoding the heavy chain variable region of the humanized 36-1 antibody.
hz61VH-F: TCTTAAGTCAGGTGCAGCTGGTG (same as hz36-1VH-F, SEQ ID NO: 48)
hz61VH-R: TGCTAGCGCTGCTCACGGTC (same as hz36-1VH-R, SEQ ID NO: 49)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ヒト化36-1抗体の軽鎖可変領域のアミノ酸配列に基づいて、哺乳動物細胞にコドンを最適化したDNA配列をデザインし、表7に示す6種類の合成オリゴヌクレオチドをつなぎ合わせ、得られたDNA断片を鋳型として以下のプライマーを用いてPCRを行い、ヒト化36-1抗体の軽鎖可変領域をコードするDNA断片を合成した。
 hz61VL-F:TCCGCGGTGCTAGACAGATC(hz36-1VL-Fと同じ、配列番号56)
 hz61VL-R:CCGTACGCTTGATCTCCAG(配列番号70)
Based on the amino acid sequence of the light chain variable region of the humanized 36-1 antibody, a DNA sequence with optimized codons was designed for mammalian cells and obtained by joining the 6 synthetic oligonucleotides shown in Table 7 PCR was performed using the following primers with the DNA fragment as a template to synthesize a DNA fragment encoding the light chain variable region of the humanized 36-1 antibody.
hz61VL-F: TCCGCGGTGCTAGACAGATC (same as hz36-1VL-F, SEQ ID NO: 56)
hz61VL-R: CCGTACGCTTGATCTCCAG (SEQ ID NO: 70)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図7に示すように、マウス36-1抗体の軽鎖可変領域をコードするDNA断片を軽鎖発現用基本ベクターpDN11-cohCkに挿入し、キメラ36-1抗体の軽鎖発現ベクターを完成させた。また、マウス36-1抗体の重鎖可変領域をコードするDNA断片を重鎖発現用基本ベクターpUCBR-SPyhCg1cに挿入し、キメラ36-1抗体の重鎖発現ベクターを完成させた。同様に、キメラ61抗体の軽鎖発現ベクターおよびキメラ61抗体の重鎖発現ベクターを完成させた。さらに、ヒト化36-1抗体の軽鎖可変領域をコードするDNA断片を軽鎖発現用基本ベクターpDN11-cohCkに挿入し、ヒト化36-1抗体の軽鎖発現ベクターを完成させた。また、ヒト化36-1抗体の重鎖可変領域をコードするDNA断片を重鎖発現用基本ベクターpUCBR-SPyhCg1cに挿入し、ヒト化36-1抗体の重鎖発現ベクターを完成させた。同様に、ヒト化61抗体の軽鎖発現ベクターおよびヒト化61抗体の重鎖発現ベクターを完成させた。 As shown in FIG. 7, the DNA fragment encoding the light chain variable region of the mouse 36-1 antibody was inserted into the basic vector pDN11-cohCk for light chain expression to complete the light chain expression vector of the chimeric 36-1 antibody. . In addition, a DNA fragment encoding the heavy chain variable region of mouse 36-1 antibody was inserted into basic vector for heavy chain expression pUCBR-SPyhCg1c to complete the heavy chain expression vector of chimeric 36-1 antibody. Similarly, a chimeric 61 antibody light chain expression vector and a chimeric 61 antibody heavy chain expression vector were completed. Furthermore, the DNA fragment encoding the light chain variable region of the humanized 36-1 antibody was inserted into the light chain expression basic vector pDN11-cohCk to complete the light chain expression vector of the humanized 36-1 antibody. In addition, a DNA fragment encoding the heavy chain variable region of the humanized 36-1 antibody was inserted into the basic vector pUCBR-SPyhCg1c for heavy chain expression to complete the heavy chain expression vector of the humanized 36-1 antibody. Similarly, a humanized 61 antibody light chain expression vector and a humanized 61 antibody heavy chain expression vector were completed.
 各軽鎖発現ベクターをSmaIおよびEcoRIで処理し断片を得た。また、各重鎖発現ベクターをEcoRVおよびEcoRIで処理し断片を得た。図8に示すように、対応する軽鎖および重鎖の断片を連結して抗体発現ベクターを構築した。LipofectAmine2000(Invitrogen)の説明書に従い、各抗体発現ベクターをCHO細胞にトランスフェクションし、各抗体産生細胞の高発現クローンを得た。 Each light chain expression vector was treated with SmaI and EcoRI to obtain fragments. Each heavy chain expression vector was treated with EcoRV and EcoRI to obtain fragments. As shown in FIG. 8, an antibody expression vector was constructed by ligating the corresponding light and heavy chain fragments. According to the instructions of LipofectAmine2000 (Invitrogen), each antibody expression vector was transfected into CHO cells to obtain high expression clones of each antibody-producing cell.
〔実施例4.H5亜型インフルエンザウイルスに対する結合性の評価〕
 H5亜型インフルエンザウイルスのA/rgViet Num/1194ΔHA/2004(H5N1)株に対する結合性をELISA法で評価した。抗体には、キメラ36-1抗体およびキメラ61抗体と、それぞれ対応するマウス36-1抗体およびマウス61抗体の4種類を用いた。各キメラ抗体は、実施例3で作製したキメラ36-1抗体産生細胞およびキメラ61抗体産生細胞を無タンパク培地で培養した後、プロテインGアガロースカラムにて精製したものを使用した。具体的には、以下の手順で実験を行った。
(i) 20μg/mL(in PBS)に希釈したA/rgViet Num/1194ΔHA/2004(H5N1)のウイルス液を、96wellのプレートに50μLずつ分注し、4℃で20時間インキュベーションした。
(ii) PBST(300μL/well)で3回wellを洗浄した後、PBSTを用いて各濃度(0、0.015625、0.03125、0.0625、0.125、0.25、0.5、1 μg/mL)に希釈した各抗体を100μL/wellずつ分注し、室温で1時間インキュベーションした。
(iii) PBST(300μL/well)で3回wellを洗浄した後、PBSTを用いて0.1μg/mLに希釈した2次抗体(ペルオキシダーゼ標識抗ヒト定常領域抗体、またはペルオキシダーゼ標識抗マウス定常領域抗体)を100μL/wellずつ分注し、室温で1時間インキュベーションした。
[Example 4. Evaluation of binding to H5 subtype influenza virus]
The binding of H5 subtype influenza virus to A / rgViet Num / 1194ΔHA / 2004 (H5N1) strain was evaluated by ELISA. Four types of antibodies were used: chimeric 36-1 antibody and chimeric 61 antibody, and the corresponding mouse 36-1 antibody and mouse 61 antibody, respectively. As each chimeric antibody, the chimeric 36-1 antibody-producing cells and chimeric 61 antibody-producing cells prepared in Example 3 were cultured in a protein-free medium and then purified using a protein G agarose column. Specifically, the experiment was performed according to the following procedure.
(i) A / rgViet Num / 1194ΔHA / 2004 (H5N1) virus solution diluted to 20 μg / mL (in PBS) was dispensed in 50 μL aliquots onto a 96-well plate and incubated at 4 ° C. for 20 hours.
(ii) After washing the well three times with PBST (300 μL / well), each antibody diluted to each concentration (0, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1 μg / mL) using PBST 100 μL / well was dispensed and incubated at room temperature for 1 hour.
(iii) A secondary antibody (peroxidase-labeled anti-human constant region antibody or peroxidase-labeled anti-mouse constant region antibody) diluted with PBST (300 μL / well) three times and then diluted to 0.1 μg / mL with PBST ) Was dispensed at 100 μL / well and incubated at room temperature for 1 hour.
 結果を図9に示した。(A)はマウス36-1抗体およびキメラ36-1抗体の結果であり、(B)はマウス61抗体およびキメラ61抗体の結果である。2次抗体(抗ヒト定常領域抗体または抗マウス定常領域抗体)の反応性の違いにより、いずれの結果もマウス抗体の方が低い吸光度を示しているが、親和性(解離常数(Kd))を計算したところ、マウス36-1抗体が約0.4nM、キメラ36-1抗体が約0.3nM、マウス61抗体が約0.3nM、キメラ61抗体が約0.2nMであり、いずれの抗体もほぼ同一の数値を示した。これらの結果から、キメラ36-1抗体およびキメラ61抗体は、抗体はH5亜型インフルエンザウイルスに対して高い親和性を有することが明らかとなった。現在実用化されている治療用抗体における抗原との親和性の範囲が0.1nMから10nMであることから判断して、キメラ36-1抗体およびキメラ61抗体はH5亜型インフルエンザウイルス感染に対する予防または治療薬として応用できるものと考えられた。 The results are shown in FIG. (A) shows the results of the mouse 36-1 antibody and the chimeric 36-1 antibody, and (B) shows the results of the mouse 61 antibody and the chimeric 61 antibody. Due to the difference in reactivity of the secondary antibody (anti-human constant region antibody or anti-mouse constant region antibody), the mouse antibody shows a lower absorbance in all results, but the affinity (dissociation constant (Kd)) As a result, the mouse 36-1 antibody was about 0.4 nM, the chimera 36-1 antibody was about 0.3 nM, the mouse 61 antibody was about 0.3 nM, and the chimera 61 antibody was about 0.2 nM. Almost the same numerical value was shown. From these results, it was revealed that the chimeric 36-1 antibody and the chimeric 61 antibody have high affinity for the H5 subtype influenza virus. Judging from the fact that the range of affinity for antigen in therapeutic antibodies currently in practical use is 0.1 nM to 10 nM, chimeric 36-1 antibody and chimeric 61 antibody are effective in preventing against H5 subtype influenza virus infection or It was thought that it could be applied as a therapeutic agent.
〔実施例5.H5亜型インフルエンザウイルスに対する中和活性の評価〕
 実施例4と同様に、キメラ36-1抗体およびキメラ61抗体と、それぞれ対応するマウス36-1抗体およびマウス61抗体の4種類を用い、対象ウイルスにヒト感染者から分離されたH5N1型インフルエンザウイルス株(A/Hong Kong/483/1977(H5N1)、A/Viet Nam/1194/2004(H5N1))を選定して、以下の手順で実験を行った。
(i) MDCK細胞を12wellプレートに播き、10%血清入りDMEM培地で37℃、2日間培養してコンフルエントな状態にした。
(ii) 各濃度(0、0.125、0.25、0.5、1、2 μg/mL)に希釈した各抗体と、200PFU/0.1mLに希釈した各ウイルス溶液を混合し、室温で1時間中和反応を行った。
(iii) 抗体とウイルスの混合溶液をMDCK細胞に感染させた後、寒天培地を入れて固めた。
(iv) 35℃で2日間培養した後、プラークの数をカウントした。
[Example 5. Evaluation of neutralizing activity against H5 subtype influenza virus]
In the same manner as in Example 4, H5N1 influenza virus isolated from a human infected subject using four types of chimeric 36-1 antibody and chimeric 61 antibody and corresponding mouse 36-1 antibody and mouse 61 antibody, respectively. Strains (A / Hong Kong / 483/1977 (H5N1), A / Viet Nam / 1194/2004 (H5N1)) were selected, and experiments were performed according to the following procedure.
(i) MDCK cells were seeded on a 12-well plate and cultured in a DMEM medium containing 10% serum at 37 ° C. for 2 days to obtain a confluent state.
(ii) Each antibody diluted to each concentration (0, 0.125, 0.25, 0.5, 1, 2 μg / mL) and each virus solution diluted to 200 PFU / 0.1 mL were mixed and neutralized for 1 hour at room temperature. Went.
(iii) MDCK cells were infected with a mixed solution of antibody and virus, and then agar medium was added and hardened.
(iv) After culturing at 35 ° C. for 2 days, the number of plaques was counted.
 A/Hong Kong/483/1977(H5N1)株の結果を図10に示し、A/Viet Nam/1194/2004(H5N1)株の結果を図11に示した。いずれも(A)はマウス36-1抗体およびキメラ36-1抗体の結果であり、(B)はマウス61抗体およびキメラ61抗体の結果である。図10および図11から明らかなように、キメラ36-1抗体およびキメラ61抗体は、マウス36-1抗体およびマウス61抗体と同様に対象ウイルスの感染価を中和する活性を有していた。プラーク数を50%減少させるのに必要な抗体濃度は、抗体およびウイルスにより異なっていたが、いずれの抗体も0.5μg/mL以下の低濃度で十分な中和活性を示していた。これらの結果から、キメラ36-1抗体およびキメラ61抗体のどちらもH5亜型インフルエンザウイルス予防または治療薬として有望であるものと考えられた。 The results for the A / Hong Kong / 483/1977 (H5N1) strain are shown in FIG. 10, and the results for the A / Viet Nam / 1194/2004 (H5N1) strain are shown in FIG. In both cases, (A) shows the results of the mouse 36-1 antibody and the chimeric 36-1 antibody, and (B) shows the results of the mouse 61 antibody and the chimeric 61 antibody. As is clear from FIGS. 10 and 11, the chimeric 36-1 antibody and the chimeric 61 antibody had an activity to neutralize the infectious titer of the target virus in the same manner as the mouse 36-1 antibody and the mouse 61 antibody. The antibody concentration required to reduce the number of plaques by 50% was different depending on the antibody and virus, but both antibodies showed sufficient neutralizing activity at a low concentration of 0.5 μg / mL or less. From these results, it was considered that both the chimeric 36-1 antibody and the chimeric 61 antibody are promising as preventive or therapeutic agents for the H5 subtype influenza virus.
〔実施例6.感染マウスを用いた有効性の評価〕
 培養試験により十分にキメラ36-1抗体、キメラ61抗体のどちらにも高い感染価中和活性が認められたことから、実際の感染動物における予防・治療効果が期待されたため、マウスを対象とした感染実験によりキメラ36-1抗体およびキメラ61抗体の有効性を評価した。マウスは、BALB/c、雌、6週齢(実験開始時)を用いた。H5亜型インフルエンザウイルスとして、A/Hong Kong/483/1977(H5N1)株を用いた。
[Example 6. Evaluation of efficacy using infected mice)
Since the infectious titer neutralizing activity was sufficiently observed in both the chimeric 36-1 antibody and the chimeric 61 antibody in the culture test, the prevention and treatment effect in the actual infected animal was expected. The effectiveness of chimeric 36-1 antibody and chimeric 61 antibody was evaluated by infection experiments. The mice used were BALB / c, female, and 6 weeks old (at the start of the experiment). The A / Hong Kong / 483/1977 (H5N1) strain was used as the H5 subtype influenza virus.
(6-1)予防効果の評価
 第1の実験として、ウイルス感染1日前に100μgの抗体(キメラ36-1抗体、マウス36-1抗体、キメラ61抗体、マウス61抗体)またはPBS(陰性対照群)を腹腔内に投与した後、ウイルスを50PFU/マウスで経鼻感染させ(感染後0日)、感染後19日まで生存率と体重の増減をモニターした。
 結果を図12に示した。(A)は生存率の結果であり、(B)は平均体重の結果である。図12(A)および(B)から明らかなように、抗体を投与した4群のマウスは全例が生存し、体重減少も観察されなかった。一方、陰性対照群のマウスは9日目までに全例が死亡した。この結果から、キメラ36-1抗体、マウス36-1抗体、キメラ61抗体、マウス61抗体はいずれもインフルエンザ感染予防効果を有することが明らかとなった。
(6-1) Evaluation of preventive effect As a first experiment, 100 μg of antibody (chimera 36-1, antibody 36-1, antibody 61, mouse 61) or PBS (negative control group) one day before virus infection ) Was administered intraperitoneally, the virus was infected nasally with 50 PFU / mouse (0 days after infection), and the increase and decrease in survival rate and body weight were monitored until 19 days after infection.
The results are shown in FIG. (A) is the result of survival rate, and (B) is the result of average body weight. As is clear from FIGS. 12A and 12B, all of the four groups of mice administered with the antibody survived and no weight loss was observed. On the other hand, all mice in the negative control group died by day 9. From these results, it was clarified that the chimeric 36-1 antibody, mouse 36-1 antibody, chimeric 61 antibody, and mouse 61 antibody all have the effect of preventing influenza infection.
(6-2)治療効果の評価1
 第2の実験として、ウイルスを50PFU/マウスで経鼻感染させ(感染後0日)、ウイルス感染1日後に100μgの抗体(キメラ36-1抗体、マウス36-1抗体、キメラ61抗体、マウス61抗体)またはPBS(陰性対照群)を腹腔内に投与し、感染後19日まで生存率と体重の増減をモニターした。
 結果を図13に示した。(A)は生存率の結果であり、(B)は平均体重の結果である。図13(A)および(B)から明らかなように、抗体を投与した4群のマウスは、わずかな体重減少が観察されたが全例が生存した。一方、陰性対照群のマウスは9日目までに全例が死亡した。この結果から、キメラ36-1抗体、マウス36-1抗体、キメラ61抗体、マウス61抗体は、いずれもインフルエンザ感染の初期に投与すれば、症状の緩和に役立つことが示唆された。
(6-2) Evaluation of therapeutic effect 1
As a second experiment, the virus was infected nasally with 50 PFU / mouse (day 0 after infection), and 100 μg of antibody (chimeric 36-1, antibody 36-1, antibody 61, mouse 61) one day after virus infection. Antibody) or PBS (negative control group) was administered intraperitoneally, and the increase and decrease in survival rate and body weight were monitored until 19 days after infection.
The results are shown in FIG. (A) is the result of survival rate, and (B) is the result of average body weight. As is clear from FIGS. 13 (A) and 13 (B), in the four groups of mice administered with the antibody, a slight weight loss was observed, but all cases survived. On the other hand, all mice in the negative control group died by day 9. From these results, it was suggested that the chimeric 36-1 antibody, mouse 36-1 antibody, chimeric 61 antibody, and mouse 61 antibody are all useful for alleviating symptoms if administered at the early stage of influenza infection.
(6-3)治療効果の評価2
 第3の実験として、ウイルスを50PFU/マウスで経鼻感染させ(感染後0日)、ウイルス感染3日後に100μgの抗体(キメラ36-1抗体、マウス36-1抗体、キメラ61抗体、マウス61抗体)またはPBS(陰性対照群)を腹腔内に投与し、感染後19日まで生存率と体重の増減をモニターした。
 結果を図14に示した。(A)は生存率の結果であり、(B)は平均体重の結果である。図14(A)および(B)から明らかなように、いずれの群のマウスも著しい体重減少が観察され、陰性対照群は12日目までに全例が死亡した。抗体投与群の生存率は、マウス36-1抗体投与群が40%、キメラ36-1抗体投与群が20%、マウス61抗体投与群が40%であったが、キメラ61抗体投与群は80%と良好であった。
(6-3) Evaluation of therapeutic effect 2
In a third experiment, the virus was infected nasally with 50 PFU / mouse (0 days after infection), and 100 μg of antibody (chimeric 36-1, antibody 36-1, antibody 61, mouse 61, 3 days after virus infection). Antibody) or PBS (negative control group) was administered intraperitoneally, and the increase and decrease in survival rate and body weight were monitored until 19 days after infection.
The results are shown in FIG. (A) is the result of survival rate, and (B) is the result of average body weight. As is clear from FIGS. 14 (A) and (B), significant weight loss was observed in all groups of mice, and all cases in the negative control group died by day 12. The survival rate of the antibody administration group was 40% for the mouse 36-1 antibody administration group, 20% for the chimera 36-1 antibody administration group, and 40% for the mouse 61 antibody administration group. % And good.
 以上の結果から、本発明の抗体は、H5亜型インフルエンザウイルス感染の予防および治療に有効であることが明らかとなった。 From the above results, it has been clarified that the antibody of the present invention is effective for the prevention and treatment of H5 subtype influenza virus infection.
〔実施例7.エピトープの同定〕
 マウス36-1抗体およびマウス61抗体のエピトープを以下の手順で決定した。ウイルスとしてA/Viet Nam/1194/2004(H5N1)を感染させた鶏漿尿液を用いた。
(i) ウイルスの10倍階段希釈列を作製した。
(ii) マウス36-1抗体およびマウス61抗体の精製抗体をそれぞれ培地(MEM)で20μg/mLに希釈し、小試験管に100μLずつ分注した。コントロールとして培地のみを小試験管に100μLずつ分注した。
(iii) 抗体を分注した小試験管に10-1~10-6までのウイルスを100μLずつ加え、時々混和しながら室温で1時間反応させた。
(iv) 6wellプレートでコンフルエントな状態のMDCK細胞を、血清を含まないMEM培地で洗浄し、(iii)の反応液を0.2mLずつ各ウェルに接種して、プレートを10~15分ごとに振とうしながら35℃で1時間吸着させた。
(v) 2×MEM/BSAと2%Bact Agar液をウォーターバスで約42℃に温めてから、両液を等量混合した。これにアセチルトリプシン0.0005%濃度になるように重層直前に添加した。また、ハイブリドーマ36-1またはハイブリドーマ61-2-1を腹腔内に接種したBALB/cマウスから得た腹水を、最終濃度が1:1000になるように添加した。
(vi) (v)の溶液を(iv)のMDCK細胞に重層し、35℃、5%CO存在下で2~3日間培養し、プラークが確認できることを観察した。
(vii) プラークを採取し、1mLのMEM/BSAに加え、よく混和した。
(viii) (vii)のウイルス液を用いて(i)~(vii)の操作を行い、エスケープミュータント株であることを確認した。
(ix) エスケープミュータントのウイルス培養液からViral RNA Extraction Kit(QIAGEN)を用いてRNAを抽出し、RT-PCRによりヘマグルチニン遺伝子を増幅した。
(x) ヘマグルチニン遺伝子のシークエンスを行い、マウス36-1抗体およびマウス61抗体の結合に必須のアミノ酸を同定した。シークエンスには、マウス36-1抗体に対するエスケープミュータント10株、マウス61抗体に対するエスケープミュータント10株を供した。
[Example 7. (Identification of epitope)
The epitopes of mouse 36-1 antibody and mouse 61 antibody were determined by the following procedure. As a virus, chicken chorioallantoic fluid infected with A / Viet Nam / 1194/2004 (H5N1) was used.
(i) A 10-fold serial dilution series of virus was prepared.
(ii) Purified antibodies of mouse 36-1 antibody and mouse 61 antibody were each diluted with a medium (MEM) to 20 μg / mL, and dispensed in 100 μL each into a small test tube. As a control, 100 μL of the medium alone was dispensed into small test tubes.
(iii) 100 μL of 10 −1 to 10 −6 virus was added to each small test tube into which the antibody was dispensed, and allowed to react at room temperature for 1 hour with occasional mixing.
(iv) MDCK cells in a confluent state on a 6-well plate are washed with MEM medium without serum, and 0.2 ml of the reaction solution of (iii) is inoculated into each well, and the plate is inoculated every 10 to 15 minutes. The sample was adsorbed at 35 ° C. for 1 hour with shaking.
(v) 2 × MEM / BSA and 2% Bact Agar solution were warmed to about 42 ° C. in a water bath, and then equal amounts of both solutions were mixed. To this, acetyltrypsin was added immediately before the overlay so that the concentration was 0.0005%. In addition, ascites obtained from BALB / c mice inoculated intraperitoneally with hybridoma 36-1 or hybridoma 61-2-1 was added to a final concentration of 1: 1000.
(vi) The solution of (v) was layered on the MDCK cells of (iv) and cultured at 35 ° C. in the presence of 5% CO 2 for 2 to 3 days, and it was observed that plaques could be confirmed.
(vii) Plaque was collected and added to 1 mL of MEM / BSA and mixed well.
(viii) The operations of (i) to (vii) were performed using the virus solution of (vii) to confirm that it was an escape mutant strain.
(ix) RNA was extracted from the escape mutant virus culture solution using the Virtual RNA Extraction Kit (QIAGEN), and the hemagglutinin gene was amplified by RT-PCR.
(x) The hemagglutinin gene was sequenced to identify amino acids essential for the binding of mouse 36-1 antibody and mouse 61 antibody. For the sequence, 10 strains of escape mutant against mouse 36-1 antibody and 10 strains of escape mutant against mouse 61 antibody were provided.
 マウス36-1抗体に対するエスケープミュータント株、およびマウス61抗体に対するエスケープミュータント株は、いずれもA/Viet Nam/1194/2004(H5N1)株のヘマグルチニンのアミノ酸配列(配列番号1)における第177位のリジンおよび第205位のリジンの少なくとも一方が他のアミノ酸に変異していた。この結果から、マウス36-1抗体およびマウス61抗体は、A/Viet Nam/1194/2004(H5N1)株のヘマグルチニンのアミノ酸配列(配列番号1)における第177位のリジンおよび第205位のリジンを含むエピトープを認識する抗体であることが明らかとなった。 The escape mutant strain for the mouse 36-1 antibody and the escape mutant strain for the mouse 61 antibody are both lysine at position 177 in the amino acid sequence of hemagglutinin (SEQ ID NO: 1) of the A / Viet Nam / 1194/2004 (H5N1) strain. And at least one of lysine at position 205 was mutated to another amino acid. From this result, the mouse 36-1 antibody and the mouse 61 antibody were prepared by lysing the lysine at position 177 and lysine at position 205 in the amino acid sequence (SEQ ID NO: 1) of hemagglutinin of the A / Viet Nam / 1194/2004 (H5N1) strain. It was revealed that the antibody recognizes the contained epitope.
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.
[規則26に基づく補充 10.02.2011] 
Figure WO-DOC-RO134
[Supplement under rule 26 10.02.2011]
Figure WO-DOC-RO134

Claims (14)

  1.  H5亜型インフルエンザウイルスのヘマグルチニンと特異的に結合し、H5亜型インフルエンザウイルスの感染性を中和する抗体であって、配列番号1で示されるアミノ酸配列からなるヘマグルチニンの第177位のリジンおよび第205位のリジンを含むエピトープを認識することを特徴とする抗体。 An antibody that specifically binds to hemagglutinin of H5 subtype influenza virus and neutralizes infectivity of H5 subtype influenza virus, the lysine at position 177 of hemagglutinin consisting of the amino acid sequence shown in SEQ ID NO: 1 and An antibody characterized by recognizing an epitope containing lysine at position 205.
  2.  以下の(a)および(b)を含むことを特徴とする請求項1に記載の抗体。
    (a)配列番号2または4で示されるアミノ酸配列の第31位-第35位からなるCDR1、第50位-第66位からなるCDR2および98位-第109位からなるCDR3を含む重鎖可変領域
    (b)配列番号3または5で示されるアミノ酸配列の第24位-第33位からなるCDR1、第49位-第55位からなるCDR2および第88位-第96位からなるCDR3を含む軽鎖可変領域
    The antibody according to claim 1, comprising the following (a) and (b):
    (A) Heavy chain variable comprising CDR1 consisting of positions 31 to 35, CDR2 consisting of positions 50 to 66, and CDR3 consisting of positions 98 to 109 of the amino acid sequence shown in SEQ ID NO: 2 or 4 Region (b) a light chain comprising CDR1 consisting of positions 24 to 33, CDR2 consisting of positions 49 to 55 and CDR3 consisting of positions 88 to 96 of the amino acid sequence shown in SEQ ID NO: 3 or 5 Chain variable region
  3.  配列番号2または4で示されるアミノ酸配列からなる重鎖可変領域と、配列番号3または5で示されるアミノ酸配列からなる軽鎖可変領域とを含むことを特徴とする請求項2に記載の抗体。 The antibody according to claim 2, comprising a heavy chain variable region comprising the amino acid sequence represented by SEQ ID NO: 2 or 4, and a light chain variable region comprising the amino acid sequence represented by SEQ ID NO: 3 or 5.
  4.  配列番号6または8で示されるアミノ酸配列からなる重鎖可変領域と、配列番号7または9で示されるアミノ酸配列からなる軽鎖可変領域とを含むことを特徴とする請求項2に記載の抗体。 The antibody according to claim 2, comprising a heavy chain variable region consisting of the amino acid sequence shown by SEQ ID NO: 6 or 8, and a light chain variable region consisting of the amino acid sequence shown by SEQ ID NO: 7 or 9.
  5.  ハイブリドーマ36-1(受託番号NITE BP-832)またはハイブリドーマ61-2-1(受託番号NITE BP-833)によって産生されることを特徴とする請求項3に記載の抗体。 4. The antibody according to claim 3, which is produced by hybridoma 36-1 (Accession No. NITE BP-832) or hybridoma 61-2-1 (Accession No. NITE BP-833).
  6.  ハイブリドーマ36-1(受託番号NITE BP-832)またはハイブリドーマ61-2-1(受託番号NITE BP-833)。 Hybridoma 36-1 (Accession Number NITE BP-832) or Hybridoma 61-2-1 (Accession Number NITE BP-833).
  7.  請求項1~5のいずれかに記載の抗体の機能的断片。 A functional fragment of the antibody according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかに記載の抗体の重鎖可変領域をコードするポリヌクレオチド。 A polynucleotide encoding the heavy chain variable region of the antibody according to any one of claims 1 to 5.
  9.  請求項1~5のいずれかに記載の抗体の軽鎖可変領域をコードするポリヌクレオチド。 A polynucleotide encoding the light chain variable region of the antibody according to any one of claims 1 to 5.
  10.  請求項8および/または9に記載のポリヌクレオチドを含む発現ベクター。 An expression vector comprising the polynucleotide according to claim 8 and / or 9.
  11.  請求項10に記載の発現ベクターが導入された細胞。 A cell into which the expression vector according to claim 10 has been introduced.
  12.  請求項1~5のいずれかに記載の抗体または請求項7に記載の機能的断片を被験試料に接触させる工程を包含することを特徴とするH5亜型インフルエンザウイルスの検出方法。 A method for detecting an H5 subtype influenza virus, comprising a step of bringing the antibody according to any one of claims 1 to 5 or the functional fragment according to claim 7 into contact with a test sample.
  13.  請求項1~5のいずれかに記載の抗体または請求項7に記載の機能的断片を含むことを特徴とするH5亜型インフルエンザウイルスの検出キット。 A detection kit for an H5 subtype influenza virus comprising the antibody according to any one of claims 1 to 5 or the functional fragment according to claim 7.
  14.  請求項1~5のいずれかに記載の抗体または請求項7に記載の機能的断片を有効成分として含むことを特徴とするH5亜型インフルエンザウイルス感染疾患の予防または治療薬。 A preventive or therapeutic agent for an H5 subtype influenza virus infection disease comprising the antibody according to any one of claims 1 to 5 or the functional fragment according to claim 7 as an active ingredient.
PCT/JP2010/071539 2009-12-03 2010-12-02 Antibody against influenza virus subtype h5 and use thereof WO2011068143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-275367 2009-12-03
JP2009275367 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011068143A1 true WO2011068143A1 (en) 2011-06-09

Family

ID=44114989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071539 WO2011068143A1 (en) 2009-12-03 2010-12-02 Antibody against influenza virus subtype h5 and use thereof

Country Status (1)

Country Link
WO (1) WO2011068143A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087069A (en) * 2011-10-17 2013-05-13 Toyobo Co Ltd Monoclonal antibody specifically recognizing h5 subtype influenza virus
WO2014097762A1 (en) * 2012-12-20 2014-06-26 国立大学法人熊本大学 Antibody to highly pathogenic avian influenza
US8877200B2 (en) 2012-05-10 2014-11-04 Visterra, Inc. HA binding agents
US10513553B2 (en) 2015-11-13 2019-12-24 Visterra, Inc. Compositions and methods for treating and preventing influenza
US11230593B2 (en) 2019-03-25 2022-01-25 Visterra, Inc. Compositions and methods for treating and preventing influenza

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104450A (en) * 2006-09-29 2008-05-08 Osaka Industrial Promotion Organization Monoclonal antibody to highly pathogenic avian influenza virus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104450A (en) * 2006-09-29 2008-05-08 Osaka Industrial Promotion Organization Monoclonal antibody to highly pathogenic avian influenza virus

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN Y. ET AL: "Broad cross-protection against H5N1 avian influenza virus infection by means of monoclonal antibodies that map to conserved viral epitopes", J.INFECT.DIS., vol. 199, no. 1, 2009, pages 49 - 58, XP055023361, DOI: doi:10.1086/594374 *
HOSCHLER K. ET AL: "Cross-neutralisation of antibodies elicited by an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine in healthy adults against H5N1 clade 2 strains", INFLUENZA OTHER RESPI.VIRUSES, vol. 1, no. 5-6, 2007, pages 199 - 206, XP055062168, DOI: doi:10.1111/j.1750-2659.2007.00033.x *
HUANG H. ET AL: "Different neutralization efficiency of neutralizing monoclonal antibodies against avian influenza H5N1 virus to virus strains from different hosts", MOL. IMMUNOL., vol. 44, no. 5, 2007, pages 1052 - 1055, XP005663427, DOI: doi:10.1016/j.molimm.2005.07.031 *
PRABAKARAN M. ET AL: "Combination therapy using chimeric monoclonal antibodies protects mice from lethal H5N1 infection and prevents formation of escape mutants", PLOS ONE, vol. 4, no. 5, 2009, pages E5672 *
WU W.L. ET AL: "Antigenic profile of avian H5N1 viruses in Asia from 2002 to 2007", J.VIROL., vol. 82, no. 4, 2008, pages 1798 - 1807, XP055081991, DOI: doi:10.1128/JVI.02256-07 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087069A (en) * 2011-10-17 2013-05-13 Toyobo Co Ltd Monoclonal antibody specifically recognizing h5 subtype influenza virus
US8877200B2 (en) 2012-05-10 2014-11-04 Visterra, Inc. HA binding agents
US9096657B2 (en) 2012-05-10 2015-08-04 Visterra, Inc. HA binding agents
US9969794B2 (en) 2012-05-10 2018-05-15 Visterra, Inc. HA binding agents
US10800835B2 (en) 2012-05-10 2020-10-13 Visterra, Inc. HA binding agents
WO2014097762A1 (en) * 2012-12-20 2014-06-26 国立大学法人熊本大学 Antibody to highly pathogenic avian influenza
JPWO2014097762A1 (en) * 2012-12-20 2017-01-12 国立大学法人 熊本大学 Antibodies against highly pathogenic avian influenza
US10513553B2 (en) 2015-11-13 2019-12-24 Visterra, Inc. Compositions and methods for treating and preventing influenza
US11230593B2 (en) 2019-03-25 2022-01-25 Visterra, Inc. Compositions and methods for treating and preventing influenza

Similar Documents

Publication Publication Date Title
WO2021196268A1 (en) Antibody having neutralizing activity against coronavirus, and use thereof
US9340603B2 (en) Neutralizing anti-influenza A virus antibodies and uses thereof
CN113544156B (en) anti-Claudin18.2 antibody and application thereof
TWI758558B (en) Cd96 antibody, antigen-binding fragment and pharmaceutical uses thereof
WO2020098599A1 (en) Anti-cd73 antibody, antigen-binding fragment thereof and application thereof
JP5512824B2 (en) Human antibodies that specifically bind to hepatitis B virus surface antigen
Chao et al. SYN023, a novel humanized monoclonal antibody cocktail, for post-exposure prophylaxis of rabies
CN111333723B (en) Monoclonal antibody aiming at rabies virus G protein and application thereof
CN112513087B (en) anti-CD 38 antibodies, antigen-binding fragments thereof and medical uses
WO2018153366A1 (en) Tim-3 antibody, antigen binding fragment thereof, and medicinal uses thereof
WO2011068143A1 (en) Antibody against influenza virus subtype h5 and use thereof
CN115260311B (en) Antibodies to IL-11 and uses thereof
CN107922939B (en) Monoclonal antibodies neutralizing infectivity of all kinds of ebola viruses
CN111196849B (en) Anti-sclerostin antibodies, antigen-binding fragments thereof, and medical uses thereof
JP2023510787A (en) Anti-ANGPTL3 antibody and application thereof
CN113817052A (en) Anti SARS-CoV-2 nucleocapsid protein monoclonal antibody and its preparation method and use
US10822418B2 (en) Fibrosis suppression by inhibiting integrin α-8 β-1 function
WO2021238854A1 (en) Monoclonal antibody against sars-cov-2 spike protein, preparation method therefor, and application thereof
WO2021190553A1 (en) ANTI-IL-1β ANTIBODY, AND PHARMACEUTICAL COMPOSITION CONTAINING SAME, AND USE THEREOF
TW202206455A (en) Monoclonal antibody against new coronavirus and use thereof
TWI804099B (en) Antibody specifically binding to glycosylated CEACAM5 and preparation method thereof
WO2024016842A1 (en) Anti-respiratory syncytial virus neutralizing antibody and use thereof
WO2024016843A1 (en) Recombination system for expressing fab fragment library
WO2022037002A1 (en) Antibody specifically bound to glycosylated ceacam5
WO2023108936A1 (en) Neutralizing antibody capable of binding to sars-cov-2 virus and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP