WO2011063582A1 - 太阳能、风力发电场并网发电*** - Google Patents

太阳能、风力发电场并网发电*** Download PDF

Info

Publication number
WO2011063582A1
WO2011063582A1 PCT/CN2010/000144 CN2010000144W WO2011063582A1 WO 2011063582 A1 WO2011063582 A1 WO 2011063582A1 CN 2010000144 W CN2010000144 W CN 2010000144W WO 2011063582 A1 WO2011063582 A1 WO 2011063582A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
solar
grid
support frame
power generation
Prior art date
Application number
PCT/CN2010/000144
Other languages
English (en)
French (fr)
Inventor
张富全
Original Assignee
包头市汇全稀土实业(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 包头市汇全稀土实业(集团)有限公司 filed Critical 包头市汇全稀土实业(集团)有限公司
Publication of WO2011063582A1 publication Critical patent/WO2011063582A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a power generation system, and more particularly to a solar power and wind farm grid-connected power generation system interconnected with a grid-connected wind power generator. Background technique
  • the use of solar energy is mainly divided into several aspects: small-scale solar power plants for household use, large-scale grid-connected power stations, building integrated photovoltaic glass curtain walls, solar street lamps, wind-solar complementary street lamps, and wind and solar hybrid power supply systems.
  • the main application method is building integration. And wind and solar complementary systems.
  • the object of the present invention is to provide a solar power and wind farm grid-connected power generation system that does not require additional land occupation, saves investment, and can feed wind power and photovoltaic power into the power grid to realize integration of wind energy and solar energy.
  • the present invention comprises a grid-connected wind turbine, in which solar power generation equipment is installed on a tower of each wind turbine that constitutes a grid-connected wind turbine, and at least one solar module support frame is installed on the tower.
  • a plurality of solar panels are arranged on each support frame, and an output end of the solar panel is connected to the controller, and the controller is connected to the grid through an inverter and a transformer.
  • the support frame of the fixed structure is fixed on one end of the wind turbine tower, the other end is connected with the pillar on the ground, or one end of the support frame is fixed on the wind turbine tower. The other end is suspended.
  • the support frame of the rotary structure and the solar power generation equipment installed on the tower are integrated with the tower by a rotating mechanism.
  • the rotating mechanism includes: a slewing bearing, a bearing inner ring, an outer ring, a reducer, a slewing bearing on the outer surface of the tower, a bearing inner cymbal coupled with the wind turbine tower, an outer cymbal and a support frame, and a reducer output shaft and
  • the outer ring is connected, the motor is fixed on the reducer; or the outer casing is connected to the hydraulic motor.
  • the rotating mechanism includes: a slewing bearing, a bearing inner cymbal, an outer cymbal, a reducer, a support wheel, a slewing support bearing on the outer surface of the tower, a bearing inner cymbal coupled with the wind turbine tower, an outer cymbal and a support frame, and a support wheel Connected to the output shaft of the reducer, the motor is fixed on the reducer, the reducer is connected to the support frame; or the support wheel is connected to the hydraulic motor.
  • the support frame is composed of a frame for placing solar panels and a support rod, and the support rod is fixed or adjustable.
  • the material of the support frame is made of steel, aluminum alloy and glass steel resin.
  • the solar panels installed on the wind turbine tower can be placed in parallel, or they can be placed in series, or they can be placed in series or in parallel.
  • the solar panel support frame mounted on the wind tower can be a fixed structure: The support frame is fixedly coupled to the tower according to a certain azimuth and inclination angle. It can also be a rotary structure: The support frame can be rotated about the tower axis by a rotating mechanism.
  • the solar panels mounted on the tower in a fixed structure are coupled to the tower of the generator set by a support frame at a certain azimuth and inclination angle and cannot be rotated.
  • the support frame for the fixed solar panels can be suspended and fixed to the wind turbine tower, or the solar panels can be supported by the pillars fixed to the ground.
  • the rotating structure tower is provided with a rotating mechanism, and the rotating mechanism is connected with the support frame.
  • the rotating mechanism is provided with a slewing support bearing on the outer surface of the tower, and the inner cymbal of the slewing bearing is coupled with the tower of the generator set.
  • the outer cymbal is coupled with the support frame.
  • the drive unit is a motor drive It can be hydraulically driven.
  • the driving device drives the slewing bearing to rotate, the slewing bearing is coupled with the solar panel support frame, or the driving device drives the support frame to rotate, so that the solar panel can also rotate around the axis of the tower, and the sunlight can be tracked according to the illumination angle of the morning and evening sunlight. Maximize the use of light energy.
  • the invention is characterized in that at least one supporting frame is arranged on the wind turbine tower, and a plurality of solar panels are arranged on the supporting frame, and the solar grid-connected system and the wind power generating field are combined, so that the electricity generated by the photovoltaic solar battery does not pass through the battery.
  • Energy storage a wind-light integrated power generation system consisting of a power generation system directly connected to the grid through a grid-connected inverter. It can be used as a small wind or light power station in a single unit, or multiple units can be used simultaneously to form a large-scale wind and light unit. Chemical farm.
  • the application of integrated wind power generation system has great economic, social and environmental benefits for promoting the development of energy conservation and environmental protection in China and promoting the construction of a resource-saving and environment-friendly society.
  • the solar power station is naturally built, does not occupy the land, does not require additional land acquisition procedures, does not need to newly build a substation, does not need to re-lay cables, and builds a solar power station while constructing a wind farm
  • the wind farm shares the booster station and other facilities, and is maintained together with the wind farm to save labor costs and form a large-scale integrated wind farm.
  • the power station can still transmit electricity to the grid during the windless period, ensuring the balance of the grid. Grid security.
  • the solar energy grid-connected system can peak the utility grid.
  • the solar panels are mounted at high altitude to avoid damage from other factors.
  • the invention also solves the problem that the wind turbine is out of control caused by sudden power failure of the power grid, and the power generated by the solar energy can still ensure the safety control of the wind power generator, and ensure the smooth communication system and the signal transmission system; the wind power generation field can be effectively solved.
  • Low voltage ride through "problem, the low voltage ride through is: When the power grid fails, the voltage falls behind. At low voltage, if the wind turbines are disconnected from the network, the system will be transiently unstable, and may cause local or even system. Fully defamatory, so People began to pay attention to the grid connection of wind turbines and put forward the requirements of low voltage ride through.
  • Figure 1 is a side view of the rotary structure of the present invention
  • Figure 2 is a front elevational view of the rotary structure of the present invention
  • Figure 3 is a partial enlarged view of Figure 1;
  • Figure 4 is a partial enlarged view of Figure 3.
  • Figure 5 is a schematic view showing the structure of the fixed structure of the present invention.
  • FIG. 6 is a schematic structural view of an embodiment of a fixed structure according to the present invention
  • FIG. 7 is a schematic structural view of an embodiment of a rotary structure according to the present invention.
  • Figure 10 is a schematic view showing the structure of another embodiment of the rotary structure of the present invention. detailed description
  • the solar panel 3 is mounted on the support frame 1, and one end of the support frame 1 is fixedly coupled to the genset tower 2, and the other end of the support frame 1 is suspended.
  • the solar panel 3 is assembled at a certain inclination angle to the ground.
  • the solar panel 3 can be installed in one layer (row) or can be installed in multiple layers (rows) as needed.
  • the energy from the solar panel 3 is integrated into the grid through the controller and inverter.
  • the solar panel 3 is mounted on the support frame 1, and the support frame 1 is fixedly coupled to the genset tower 2, and one end of the rear support column 9 is coupled to the support frame 1 and the other end is supported on the ground.
  • the solar panel 3 is assembled at a certain inclination angle to the ground, and the solar panel 3 can be installed with a layer (row) or Need to install multiple layers (rows).
  • the electrical energy emitted by the solar panel 3 is integrated into the grid through the controller and the inverter.
  • the solar panel 3 is mounted on the support frame 1, and the support frame 1 is coupled to the genset tower 2 via a slewing bearing 6, and the inner slewing bearing 6 is fixed to the tower.
  • the outer cymbal of the slewing bearing 6 is coupled to the support frame 1.
  • the motor drives the outer cymbal of the slewing bearing 6 through the reducer 4, and drives the support frame 1 and the solar panel 3 to rotate around the axis of the tower 2, so that the solar panel 3 can track the sunlight according to the angle of the morning and evening sunlight, ensuring maximum Limit the use of solar energy.
  • the solar panel 3 is installed at a certain inclination angle to the ground.
  • the solar panel 3 can be installed in one layer (row) or can be installed in multiple layers (rows) as needed.
  • the energy emitted by the solar panel 3 is integrated into the grid through the controller and the inverter.
  • the solar panel 3 is mounted on the support frame 1, and the support frame 1 is coupled to the genset tower 2 via a slewing bearing 11, and the slewing bearing 11 is rotatable around the tower 2.
  • the motor 12 is mounted on the gearbox 14, the gearbox 14 is coupled to the support frame 1, and the output shaft of the gearbox 14 drives the support wheel 13 to rotate.
  • the support wheel 13 can be circularly moved around the tower 2 on the ground, the support frame 1 and the solar energy.
  • the panel 3 is rotated about the axis of the tower 2, so that the solar panel 3 can track the sunlight according to the angle of the morning and evening sunlight, thereby ensuring maximum use of solar energy.
  • the solar panel 3 is mounted at a certain angle to the ground.
  • the electrical energy emitted by the solar panel 3 is integrated into the grid through the controller and the inverter.
  • the solar panel 3 is mounted on the support frame 1, and the support frame 1 is coupled to the genset tower 2 via the yaw bearing 6, and the inner cymbal of the slewing bearing 6 is fixed to the tower 2, yaw
  • the outer ring of the bearing 6 is coupled to the support frame 1.
  • the hydraulic drive motor drives the outer cymbal of the yaw bearing 6, and drives the support frame 1 and the solar panel 3 to rotate around the axis of the tower 2, so that the solar panel 3 can track the sunlight according to the different angles of the morning and evening sunlight, ensuring maximum Use solar energy.
  • the solar panel 3 is installed at a certain inclination angle to the ground.
  • the solar panel 3 can be installed in one layer (row) or can be installed in multiple layers (rows) as needed.
  • the electrical energy emitted by the solar panel 3 is integrated into the grid through the controller and the inverter.
  • the solar panel 3 is mounted on a support frame 1, and the support frame 1 is coupled to the genset tower 2 via a slewing bearing 11, and the slewing bearing 11 is rotatable around the tower 2.
  • the motor 12 is mounted on a gearbox 14 that is coupled to the support frame 1.
  • the output shaft of the gearbox 14 drives the support wheel 13 to rotate, and the support wheel rotates around the tower 2 on the ground to drive the support frame 1 and the solar panel 3 to rotate around the axis of the tower 2.
  • the realization of the solar panel 3 can track the sunlight according to the angle of the morning and evening sunlight, and ensure the maximum use of solar energy.
  • the solar panel 3 is mounted at a certain oblique angle to the ground.
  • the electrical energy emitted by the solar panel 3 is integrated into the grid through the controller and the inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Description

太阳能、 风力发电场并网发电*** 技术领域
本发明涉及发电***, 特别是涉及一种与并网型风力发电 机互联的太阳能、 风力发电场并网发电***。 背景技术
太阳能的使用主要分为几个方面:家庭用小型太阳能电站、 大型并网电站、 建筑一体化光伏玻璃幕墙、 太阳能路灯、 风光 互补路灯、 风光互补供电***等, 现在主要的应用方式为建筑 一体化和风光互补***。
现有的风光互补***都局限在小功率发电, 用于路灯、 哨 所、 家用或一幢建筑使用; 现有的并网型太阳能电站投资大, 占用较多土地, 要建变电站等设施, 还要建输电线路, 要有专 人维护运营, 而且并网型的大型太阳能电站没有和风资源互补。 发明内容
本发明的目的在于提供一种不需要另外占用土地, 节约投 资, 并能够将风力发电和光伏发电馈入电网, 实现风能、 太阳 能一体化的太阳能、 风力发电场并网发电***。
技术解决方案: 本发明包括并网型风力发电机组, 在组成 并网型风力发电机组的每一个风力发电机的塔架上均安装太阳 能发电设备, 塔架上至少安装有一层太阳能组件支撑架, 每层 支撑架上设置有多个太阳能电池板, 太阳能电池板上的输出端 与控制器连接, 控制器通过逆变器、 变压器与电网连接。
固定式结构的支撑架一端固定于风电机组塔架上, 另一端 与地面上的支柱连接, 或支撑架一端固定于风电机组塔架上, 另一端悬空设置。
旋转式结构的支撑架和安装在塔架上的太阳能发电设备是 通过旋转机构与塔架连接为一体。
旋转机构包括: 回转支撑轴承、 轴承内圈, 外圈、 减速机, 塔架外表面设有回转支撑轴承, 轴承内圏与风电机组塔筒联结, 外圏与支撑架连接, 减速机输出轴与外圈连接, 电机固定在减 速机上; 或外圏与液压马达连接。
旋转机构包括, 回转支撑轴承、轴承内圏,外圏,减速机, 支撑轮, 塔架外表面设有回转支撑轴承, 轴承内圏与风电机组 塔筒联结, 外圏与支撑架连接, 支撑轮与减速机输出轴连接, 电机固定在减速机上, 减速机与支撑架连接; 或支撑轮与液压 马达连接。
支撑架由放置太阳能电池板的框架、 支撑杆组成, 支撑杆 为固定式或可调的伸缩式。
支撑架的材料采用钢材、 铝合金、 玻璃钢树脂。
安装与风电塔筒上的太阳能电池板可以并联放置, 也可以 串联放置, 或者是先串联、 再并联放置。
安装与风电塔架上的太阳能电池板支撑架可以是固定式结 构: 支撑架按照一定的方位角和倾斜角与塔筒固定联结。 也可 以是旋转式结构: 支撑架通过旋转机构可以围绕塔筒轴线旋转。
固定式结构安装在塔架上的太阳能电池板通过支撑架以一 定的方位角和倾斜角与发电机组的塔架联结, 不能转动。 固定 太阳能电池板的支撑架可以悬空固定于风电机组塔架上, 也可 以使用固定在地面上的支柱支撑太阳能电池板。
旋转式结构塔架上设有旋转机构,旋转机构与支承架连接。 旋转机构为塔架外表面设有回转支撑轴承, 回转轴承内圏与发 电机组塔筒联结., 外圏与支承架联结。 驱动装置是电机驱动也 可以是液压驱动。 驱动装置带动回转轴承转动, 回转轴承与太 阳能电池板支撑架联结, 或者驱动装置带动支撑架转动, 使得 太阳能电池板也可以围绕塔架轴线转动, 可以根据早晚阳光的 照射角度不同跟踪太阳光, 实现最大限度的利用光能。
本发明由于在风力发电机塔架上至少安装有一层支承架, 支承架上设置有多个太阳能电池板, 将太阳能并网***和风力 发电场结合起来, 使光伏太阳能电池产生的电不经过蓄电池储 能, 通过并网逆变器直接馈入电网的发电***组成的风光一体 化发电场, 可以单台机组使用组成一个小型风、 光发电站, 也 可以多台机组同时使用组成一个大型风光一体化发电场。 一体 化风光发电***的应用, 对于推动我国节能环保事业的发展, 促进资源节约型和环境友好型社会的建设, 具有巨大的经济、 社会和环保效益。
本发明的风电场建在哪里, 太阳能电站自然就建到哪里, 不占用土地, 不用另外办征地手续, 不用新建变电站, 不用重 新敷设电缆, 在建设风电场的同时, 也建设了太阳能电站, 与 风力发电场共用升压站及其它设施, 与风力发电场一起维护, 节约人力成本, 形成大规模的风光一体化发电场, 该发电场在 无风期仍可以向电网输电, 保证电网的平衡和电网安全。 太阳 能并网***可以对公用电网起到调峰作用。 太阳能电池板架设 在高空, 可以避免其它因素造成的损坏。
本发明同时还解决了风力发电场遇到电网突然故障造成的 风机失控, 太阳能发的电仍然可以保证风力发电机的安全控制, 保证通讯***、 信号传输***畅通; 可以有效地解决风力发电 场"低电压穿越"问题, 所述的低电压穿越是: 当电网出现故障 导致电压跌落后, 在低电压下风力发电机组如果纷纷脱网会带 来***暂态不稳定, 并可能造成局部甚至是***全面瘫痪, 故 人们开始关注风力发电机并网并相应提出了低电压穿越的要 求。 附图说明
图 1为本发明旋转式结构侧视图;
图 2为本发明旋转式结构主视图;
图 3为图 1的局部放大图;
图 4为图 3的局部放大图。
图 5为本发明固定式结构示意图;
图 6为本发明固定式结构的一种实施方式结构示意图; 图 7为本发明旋转式结构的一种实施方式结构示意图; 图 8、 图 9为本发明旋转式结构液压驱动实施方式结构示 意图;
图 10为本发明旋转式结构的另一种实施方式结构示意图。 具体实施方式
实施例 1
参照图 5, 太阳能电池板 3安装在支撑架 1上, 支撑架 1 的一端与发电机组塔架 2 固定联结, 支撑架 1的另一端悬空。 太阳能电池板 3 与地面呈一定的倾斜角组装, 太阳能电池板 3 可以安装一层 (排) , 也可以根据需要安装多层 (排) 。 太阳 能电池板 3发出的电能通过控制器、 逆变器并入电网。
实施例 2
参照图 6, 太阳能电池板 3安装在支撑架 1上, 支撑架 1 与发电机组塔架 2固定联结, 后支撑立柱 9一端与支撑架 1联 结, 另一端支撑在地面上。 太阳能电池板 3 与地面呈一定的倾 斜角组装, 太阳能电池板 3可以安装一层 (排) , 也可以根据 需要安装多层(排) 。 太阳能电池板 3发出的电能通过控制器、 逆变器并入电网。
实施例 3
参照图 1、 图 2、 图 3、 图 4, 太阳能电池板 3安装在支撑 架 1上, 支撑架 1通过回转支承轴承 6与发电机组塔架 2联结, 回转支撑轴承 6的内圏固定在塔架 2上, 回转支撑轴承 6的外 圏与支撑架 1联结。 电机通过减速机 4驱动回转支撑轴承 6的 外圏, 带动支撑架 1和太阳能电池板 3围绕塔架 2的轴线旋转, 实现太阳能电池板 3 能够根据早晚太阳光照射角度的不同跟踪 阳光, 保证最大限度的利用太阳能。 太阳能电池板 3 与地面呈 一定的倾斜角安装, 太阳能电池板 3, 可以安装一层(排), 也 可以根据需要安装多层 (排) 。 太阳能电池板 3发出的电能通 过控制器、 逆变器并入电网。
实施例 4
参照图 7, 太阳能电池板 3安装在支撑架 1上, 支撑架 1 通过回转轴承 11与发电机组塔架 2联结, 回转轴承 11可以绕 塔架 2旋转。 电机 12安装在齿轮箱 14上, 齿轮箱 14与支撑架 1联结, 齿轮箱 14输出轴带动支撑车轮 13转动, 实现支撑车轮 13可以在地面上绕塔筒 2做圆周运动, 支撑架 1和太阳能电池 板 3围绕塔架 2的轴线旋转, 实现太阳能电池板 3能够根据早 晚太阳光照射角度的不同跟踪阳光, 保证最大限度的利用太阳 能。 太阳能电池板 3 与地面呈一定的倾斜角安装。 太阳能电池 板 3发出的电能通过控制器、 逆变器并入电网。
实施例 5
参照图 8、 图 9, 太阳能电池板 3安装在支撑架 1上, 支撑 架 1通过偏航轴承 6与发电机组塔架 2联结, 回转支撑轴承 6 的内圏固定在塔架 2上, 偏航轴承 6的外圈与支撑架 1联结。 液压驱动马达驱动偏航轴承 6的外圏, 带动支撑架 1和太阳能 电池板 3围绕塔架 2的轴线旋转, 实现太阳能电池板 3能够根 据早晚太阳光照射角度的不同跟踪阳光, 保证最大限度的利用 太阳能。 太阳能电池板 3 与地面呈一定的倾斜角安装, 太阳能 电池板 3,可以安装一层(排),也可以根据需要安装多层(排)。 太阳能电池板 3发出的电能通过控制器、 逆变器并入电网。
实施例 6
参照图 10, 太阳能电池板 3安装在支撑架 1上, 支撑架 1 通过回转轴承 11与发电机組塔架 2联结, 回转轴承 11可以绕 塔架 2旋转。 电机 12安装在齿轮箱 14上, 齿轮箱 14与支撑架 1联结。 齿轮箱 14输出轴带动支撑轮 13转动, 支撑车轮在地面 上绕塔筒 2做圆周运动, 从而带动支撑架 1和太阳能电池板 3 围绕塔架 2的轴线旋转。 实现太阳能电池板 3能够根据早晚太 阳光照射角度的不同跟踪阳光, 保证最大限度的利用太阳能。 太阳能电池板 3 与地面呈一定的倾斜角安装。 太阳能电池板 3 发出的电能通过控制器、 逆变器并入电网。

Claims

权 利 要 求
1. 太阳能、 风力发电场并网发电***, 包括并网型风力发 电机组, 其特征在于, 在组成并网型风力发电机组的每一个风 力发电机的塔架上均安装有太阳能发电设备, 风电机组塔架上 至少安装有一层太阳能组件支撑架, 每层支撑架上设置有多个 太阳能电池板, 太阳能电池板上发出的电能通过导线接入控制 器, 再通过逆变器、 变压器与电网连接。
2. 根据权利要求 1所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 太阳能电池板根据地域情况设置方位角和倾 斜角。
3. 根据权利要求 1所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 支撑架与塔架连接采用固定式结构或旋转式 结构。
4. 根据权利要求 3所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 固定式结构的支撑架一端固定于风电机组塔 架上, 另一端与地面上的支柱连接, 或支撑架一端固定于风电 机組塔架上, 另一端悬空设置。
5. 根据权利要求 3所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 旋转式结构的支撑架和安装在塔架上的太阳 能发电设备是通过旋转机构与塔架连接为一体。
6. 根据权利要求 5所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 旋转机构包括: 回转支撑轴承、 轴承内圏, 外圈、 减速机, 塔架外表面设有回转支撑轴承, 轴承内圈与风 电机组塔筒联结, 外圏与支撑架连接, 减速机输出轴与外圏连 接, 电机固定在减速机上; 或外圈与液压马达连接。
7. 根据权利要求 5所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 旋转机构包括, 回转支撑轴承、 轴承内圈, 外圏, 减速机, 支撑轮, 塔架外表面设有回转支撑轴承, 轴承 内圏与风电机组塔筒联结, 外圏与支撑架连接, 支撑轮与减速 机输出轴连接, 电机固定在减速机上, 减速机与支撑架连接; 或支撑轮与液压马达连接。
8. 根据权利要求 1、 2、 3、 4、 5、 6或 7所述的太阳能、 风力发电场并网发电***, 其特征在于, 支撑架由放置太阳能 电池板的框架、 支撑杆组成, 支撑杆为固定式或可调的伸缩式。
9. 根据权利要求 1所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 支撑架的材料采用钢材、 铝合金、 玻璃钢树 脂。
10. 根据权利要求 1所述的太阳能、 风力发电场并网发电系 统, 其特征在于, 太阳能电池板串联放置或并联放置, 或太阳 能电池板串联、 并联放置。
PCT/CN2010/000144 2009-11-27 2010-02-02 太阳能、风力发电场并网发电*** WO2011063582A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200920271146 2009-11-27
CN200910249834 2009-11-27
CN200910249834.5 2009-11-27
CN200920271146.4 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011063582A1 true WO2011063582A1 (zh) 2011-06-03

Family

ID=44065828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000144 WO2011063582A1 (zh) 2009-11-27 2010-02-02 太阳能、风力发电场并网发电***

Country Status (1)

Country Link
WO (1) WO2011063582A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332727A (zh) * 2011-09-26 2012-01-25 重庆大学 一种利用直流侧飞轮储能单元平滑永磁直驱风力发电***输出有功功率的方法
WO2012116428A1 (en) * 2011-03-01 2012-09-07 Peck Gordon Methods, systems, and apparatus for natural power collection and distribution
CN103956767A (zh) * 2014-02-21 2014-07-30 国家电网公司 一种考虑尾流效应的风电场并网稳定性分析方法
CN110768614A (zh) * 2019-11-11 2020-02-07 广州供电局有限公司 用于电力铁塔的太阳能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2038559U (zh) * 1988-04-15 1989-05-31 北京工业大学 风电—光电互补装置
DE9316862U1 (de) * 1993-11-04 1994-01-20 Villinger, Franz, Dipl.-Ing., 73104 Börtlingen Vorrichtung zum Umwandeln erneuerbarer Energie in elektrische Energie
DE29900391U1 (de) * 1999-01-13 1999-06-24 Nell, Hans-Werner, Dipl.-Ing. (FH), 35753 Greifenstein Solar-Nachführsystem
CN1837606A (zh) * 2006-04-25 2006-09-27 翟星红 并联式风力发电机***
US20070090653A1 (en) * 2005-10-04 2007-04-26 Martelon David R Hover Installed Renewable Energy Tower
CN201113476Y (zh) * 2007-08-02 2008-09-10 徐剑雄 分散式风光互补发电***
CN201273507Y (zh) * 2008-06-23 2009-07-15 刘旭 风光互补发电配合高效电光源的露天照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2038559U (zh) * 1988-04-15 1989-05-31 北京工业大学 风电—光电互补装置
DE9316862U1 (de) * 1993-11-04 1994-01-20 Villinger, Franz, Dipl.-Ing., 73104 Börtlingen Vorrichtung zum Umwandeln erneuerbarer Energie in elektrische Energie
DE29900391U1 (de) * 1999-01-13 1999-06-24 Nell, Hans-Werner, Dipl.-Ing. (FH), 35753 Greifenstein Solar-Nachführsystem
US20070090653A1 (en) * 2005-10-04 2007-04-26 Martelon David R Hover Installed Renewable Energy Tower
CN1837606A (zh) * 2006-04-25 2006-09-27 翟星红 并联式风力发电机***
CN201113476Y (zh) * 2007-08-02 2008-09-10 徐剑雄 分散式风光互补发电***
CN201273507Y (zh) * 2008-06-23 2009-07-15 刘旭 风光互补发电配合高效电光源的露天照明装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116428A1 (en) * 2011-03-01 2012-09-07 Peck Gordon Methods, systems, and apparatus for natural power collection and distribution
CN102332727A (zh) * 2011-09-26 2012-01-25 重庆大学 一种利用直流侧飞轮储能单元平滑永磁直驱风力发电***输出有功功率的方法
CN103956767A (zh) * 2014-02-21 2014-07-30 国家电网公司 一种考虑尾流效应的风电场并网稳定性分析方法
CN110768614A (zh) * 2019-11-11 2020-02-07 广州供电局有限公司 用于电力铁塔的太阳能装置

Similar Documents

Publication Publication Date Title
CN101777774A (zh) 太阳能、风力发电场并网发电***
CN201781288U (zh) 太阳能、风力发电场并网发电***
WO2016169297A1 (zh) 一种风光组合发电装置
KR20150117804A (ko) 이동식 발전 시스템
CN102447264A (zh) 风光一体化发电***
WO2011063582A1 (zh) 太阳能、风力发电场并网发电***
KR20120000584U (ko) 풍력과 태양광을 이용한 혼합 발전 장치
CN211266722U (zh) 倍速垂直轴风力发电***
KR20120109889A (ko) 건물형 태양광 및 풍력에너지 발전장치
CN204557227U (zh) 一种风光组合发电装置
CN203684766U (zh) 环保节能型便携式基站
CA2975109C (en) Solar and wind energy collection system and method
CN212584856U (zh) 一种改进型新能源路灯
CN206517336U (zh) 一种风光储发电树***
CN210041699U (zh) 一种基于风力机塔筒的智能太阳能光伏发电装置
CN108449008B (zh) 一种应用于景观灯的风光互补发电装置及其控制***
CN201696224U (zh) 风光电互补供电装置
CN102269127B (zh) 双面多轴式的大功率风力发电机组
CN201221445Y (zh) 高层楼顶上风力发电
KR101549067B1 (ko) 수직축형 풍력발전기의 설치구조
CN203951420U (zh) 仰角调节装置及太阳能支架
CN200999698Y (zh) 塔式风力发电装置
US11035341B1 (en) System and method for restarting a wind turbine
CN204316403U (zh) 一种带有光伏板的风机塔筒装置
CN106712659A (zh) 一种风光储发电树***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832489

Country of ref document: EP

Kind code of ref document: A1