WO2011062137A1 - ウレタン変性ポリイミド系難燃樹脂組成物 - Google Patents

ウレタン変性ポリイミド系難燃樹脂組成物 Download PDF

Info

Publication number
WO2011062137A1
WO2011062137A1 PCT/JP2010/070282 JP2010070282W WO2011062137A1 WO 2011062137 A1 WO2011062137 A1 WO 2011062137A1 JP 2010070282 W JP2010070282 W JP 2010070282W WO 2011062137 A1 WO2011062137 A1 WO 2011062137A1
Authority
WO
WIPO (PCT)
Prior art keywords
urethane
flame retardant
modified polyimide
resin composition
acid
Prior art date
Application number
PCT/JP2010/070282
Other languages
English (en)
French (fr)
Inventor
知裕 青山
良輔 神田
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to CN201080052655.3A priority Critical patent/CN102639640B/zh
Priority to KR1020127011114A priority patent/KR101738193B1/ko
Priority to JP2010546986A priority patent/JP5768372B2/ja
Publication of WO2011062137A1 publication Critical patent/WO2011062137A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/345Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4808Mixtures of two or more polyetherdiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4879Polyethers containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a urethane-modified polyimide resin composition having excellent heat resistance and flexibility and suitable for a coating method such as a printing press, a dispenser or a spin coater.
  • the urethane-modified polyimide resin composition of the present invention is useful for a solder resist layer, a surface protective layer, an interlayer insulating layer, or an adhesive layer of a flexible printed wiring board of an electronic component.
  • flexible printed wiring boards are electronic device parts that require flexibility and small space, for example, device mounting boards for display devices such as liquid crystal displays and plasma displays, and boards for mobile phones, digital cameras, portable game machines, etc. Widely used for relay cables, operation switch board, etc.
  • polyimide resins are generally hard with a high elastic modulus, when laminated on a substrate such as a film or a copper foil, warping or the like occurs due to a difference in elastic modulus, which causes a problem in the subsequent process.
  • the cured film lacks flexibility and has a problem of poor flexibility.
  • a polysiloxane-modified polyimide resin has been proposed as a polyimide resin that is soluble in a non-nitrogen solvent and imparts low warpage and flexibility by making the resin flexible and low elastic modulus. (See Patent Documents 1 and 2).
  • polysiloxane-modified polyimide resins use expensive diamine having a dimethylsiloxane bond as a starting material in order to lower the elastic modulus, and have a problem of poor economic efficiency.
  • polysiloxane copolymerization amount increases, there is a problem that adhesion, solvent resistance, and chemical resistance decrease.
  • compositions using a polycarbonate-modified polyimide resin have been proposed (see Patent Documents 3 to 5).
  • polycarbonate-modified polyimide resins have improved defects derived from polysiloxane and have good printability.
  • a polyimide resin polycarbonate is used to reduce warpage. It was necessary to increase the amount of modification, and the heat resistance tended to decrease. Moreover, varnish stability was low and the varnish sometimes solidified within a few days during storage. Furthermore, in general, when a low elastic modulus component is introduced in order to obtain low warpage, the flame retardancy often decreases in contradiction. The coating film obtained from the composition proposed here could not obtain sufficient flame retardancy.
  • polycarbonate-modified polyimide resin compositions have low warpage, flexibility and flame retardancy, but when introducing a low elastic modulus component to reduce warpage, the heat resistance and flame retardancy are contradictory. Often decreases.
  • the proposed composition is intended for tape carrier package (TAB, COF) applications using relatively thick polyimide film substrates, and flexible printed wiring using thin polyimide film substrates of 1 mil (25 ⁇ m) or less.
  • TAB tape carrier package
  • FPC substrate
  • Patent Document 9 contains at least one component selected from the group consisting of polyether, polyester, polyacrylonitrile-butadiene copolymer, polycarbonate diol, and dimer acid as a copolymer component, and an isophorone residue.
  • a polyimide resin having an essential component as a component is proposed.
  • Patent Document 10 discloses a polyimide resin containing a polyether as a copolymer component, trimellitic acid as an acid component, and cyclohexanedicarboxylic acid, and a composition comprising the same. Proposed.
  • polyimide resins are expected to be excellent in solubility in non-nitrogen solvents, but they did not satisfy low warpage, solder heat resistance and printability at the same time as flexible printed wiring board applications.
  • any of the polyimide resins is a non-nitrogen reaction solvent, the varnish stability is low, the resin is likely to precipitate over time, and for the purpose of use, it is further re-precipitated to a highly soluble low-boiling solvent. The total replacement of was performed, and it was inferior in economic efficiency.
  • these proposed compositions mainly consist of alicyclic components, sufficient flame retardancy cannot be obtained.
  • Patent Document 11 proposes a composition using a polyimide resin containing a polyalkylene oxide adduct of bisphenol A. Although this polyimide resin composition is excellent in heat resistance, it is not soluble in non-nitrogen solvents, it cannot be said that it has low warpage and flexibility, and flame retardancy was not obtained. .
  • Patent Document 12 proposes a polyimide composition in which a hydrated metal compound, a phosphorus compound, and a nitrogen compound as non-halogen flame retardants are used as fillers in a polysiloxane-modified polyimide resin.
  • This polyimide-based resin composition is expected to satisfy the flame retardance standards according to UL standards in addition to properties such as solder heat resistance and printability for flexible printed circuit board applications. There was a problem due to copolymerization of siloxane compounds. Further, as in Patent Documents 7 to 8, when a large amount of a hydrated metal compound having a low flame retardant effect is contained, there is a problem that the elastic modulus is increased and low warpage and flexibility are lowered.
  • Patent Document 13 proposes a siloxane diamine-modified polyimide resin composition using a special monomer in order to improve the above-mentioned drawbacks.
  • This polyimide-based resin composition does not contain an inorganic flame retardant, and is expected not to impair the low warpage.
  • an expensive monomer since an expensive monomer is used, it is inferior in economic efficiency and has adhesiveness caused by a siloxane compound. There was a problem.
  • Patent Document 14 proposes a polyurethane resin composition and a polyimide resin composition using a dialkyl phosphinate metal salt as a non-halogen flame retardant.
  • This polyurethane-based resin composition is expected to satisfy the standards of flame retardancy according to UL standards in addition to properties such as solder heat resistance and printability for flexible printed circuit board applications. Since they are not compatible with each other and are blended in a large amount as a filler, flexibility and low warpage are not always sufficient.
  • the present invention was devised in order to solve the above-mentioned problems of the prior art, and its purpose is (1) non-nitrogen solvent solubility and varnish stability, (2) low temperature drying / curing property, (3) Low warpage, (4) Flexibility, (5) Printability, (6) Excellent flame retardancy, suppresses bleed out of flame retardant, heat resistance, chemical resistance, electrical properties, workability and An object of the present invention is to provide a urethane-modified polyimide-based flame retardant resin composition excellent in economy and an electronic component obtained by using the composition.
  • the present invention comprises the following configurations (1) to (12).
  • (1) (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, (b) a diol compound, and (c) an aliphatic polyamine residue derivative and / or an aromatic polyamine residue derivative A urethane-modified polyimide resin having a urethane bond produced as an essential component, (B) an epoxy resin having two or more epoxy groups per molecule; (C) inorganic or organic filler, and (D) non-halogen flame retardant, A urethane-modified polyimide flame retardant resin composition containing (D) A non-halogen flame retardant comprises two components: a component (D-1) having a weight loss rate of 50% to 90% at 350 ° C.
  • a urethane-modified polyimide-based flame retardant resin composition characterized by comprising (2) The weight reduction rate of component (D-1) is 60% or more and 85% or less, and the weight reduction rate of component (D-2) is 0% or more and 15% or less (1)
  • the component (D-1) contains a 9,10-dihydro-9-oxa-10-phenanthrene-10-oxide derivative, and the component (D-2) contains a phenoxyphosphazene compound (1) )
  • a urethane-modified polyimide flame retardant resin composition To (3), a urethane-modified polyimide flame retardant resin composition.
  • the urethane-modified polyimide-based flame retardant resin composition according to any one of (1) to (3) or (5), which comprises the reaction product of (In Formula [I] and Formula [II], R 1 and R 2 may be the same or different from each other, and linear or branched C 1 -C 10 alkyl and / or cycloalkyl and / or Aryl and / or aralkyl, R 1 and R 2 may be bonded to each other to form a ring with an adjacent phosphorus atom, R 3 is linear or branche
  • the (b) diol compound contains (b-1) polyoxyalkylene glycol and / or (b-2) a polyalkylene oxide adduct of bisphenol represented by the following general formula [III]
  • the urethane-modified polyimide flame retardant resin composition according to any one of (1) to (7).
  • R 1 is a C 1 -C 20 alkylene group
  • R 2 and R 3 may be the same or different from each other, and represent hydrogen or a C 1 -C 4 alkyl group.
  • a urethane-modified polyimide resin is obtained by reaction in at least one organic solvent selected from the group consisting of ether solvents, ester solvents, ketone solvents, and aromatic hydrocarbon solvents.
  • the present invention (1) non-nitrogen solvent solubility and varnish stability, (2) low temperature drying / curing properties, (3) low warpage, and (4) bending, which have been difficult to satisfy at the same time.
  • a resin composition can be provided. Therefore, the urethane-modified polyimide flame retardant resin composition of the present invention is useful as a film forming material for overcoat inks for various electronic parts such as flexible printed wiring boards, solder resist inks, interlayer insulating films, and paints. It can be used in a wide range of electronic equipment as coating agents, adhesives, etc.
  • the urethane-modified polyimide flame retardant resin composition of the present invention is (A) (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group, (b) a diol compound, (c) an aliphatic polyamine residue derivative and / or an aromatic polyamine residue derivative A urethane-modified polyimide resin having a urethane bond produced as an essential component; (B) an epoxy resin having two or more epoxy groups per molecule; (C) inorganic or organic filler, and (D) non-halogen flame retardant, Containing (D) A non-halogen flame retardant comprises two components: a component (D-1) having a weight loss of 50% to 90% at 350 ° C. in an air atmosphere and a component (D-2) having a component weight of 0% to 20%. Is contained as an essential component.
  • a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group constituting the component (A) generally reacts with an isocyanate component or an amine component to form a polyimide resin.
  • the polycarboxylic acid derivative any of aromatic, aliphatic and alicyclic can be used.
  • the copolymerization amount of the component (a) is preferably 30 mol% or more and 90 mol% or less, and 35 mol% or more and 85 mol% or less, in a molar ratio with respect to 100 mol% of all polyamine residue derivatives to be reacted. Is more preferable. If the copolymerization amount is less than the above range, flame retardancy, mechanical properties and heat resistance cannot be obtained. If the copolymerization amount is more than the above range, the component (b) described later cannot be copolymerized in a sufficient amount. And solubility in non-nitrogen solvents may be reduced.
  • aromatic polycarboxylic acid derivatives include trimellitic anhydride, pyromellitic dianhydride, ethylene glycol bisan hydrotrimellitate, propylene glycol bisan hydrotrimellitate, 1,4-butanediol bisan.
  • Alkylene glycol bisanhydro trimellitates such as hydrotrimellitate, hexamethylene glycol bisanhydro trimellitate, polyethylene glycol bisan hydrotrimellitate, polypropylene glycol bisan hydrotrimellitate, hydroquinone bisan hydrotrimellitate , Hydroquinone bisethylene oxide adduct dianhydrotrimellitate, 4,4'-biphenylenebisanhydrotrimellitate, 3,3 ', 4,4'-benzophenone tetracarbo Acid dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic Acid dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3 ', 4,
  • Examples of the aliphatic or alicyclic polycarboxylic acid derivatives include butane-1,2,3,4-tetracarboxylic dianhydride and pentane-1,2,4,5-tetracarboxylic dianhydride.
  • polycarboxylic acid derivatives may be used alone or in combination of two or more.
  • polycarboxylic acid derivatives are pyromellitic dianhydride, trimellitic anhydride, ethylene glycol bisanhydro trimellitate, 3, 3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis [4- (2,3- or 3, 4-dicarboxyphenoxy) phenyl] propane dianhydride is preferred, trimellitic anhydride, and ethylene glycol bisanhydro trimellitate are more preferred.
  • the (b) diol compound constituting the component (A) is copolymerized as a flexible component that imparts flexibility, low warpage, solubility and the like to the polyimide resin.
  • the elastic modulus of the resin decreases, and the solubility (varnish) stability in the non-nitrogen solvent used as the polymerization solvent increases.
  • the amount of copolymerization of component (b) is preferably 10 mol% or more and 70 mol% or less, and 15 mol% or more and 65 mol% or less in terms of a molar ratio to 100 mol% of all polyamine residue derivatives to be reacted. Is more preferable. If the amount of copolymerization is more than the above range, flame retardancy, mechanical properties and heat resistance cannot be obtained, and if it is less than the above range, low warpage and solubility in non-nitrogen solvents may be reduced.
  • the molecular weight of the component (b) is preferably a number average molecular weight of 500 or more and 3000 or less, more preferably 800 or more and 2000 or less. When the molecular weight is less than the above range, the heat resistance, flexibility and low warpage are insufficient, and when it exceeds the above range, the modification reaction does not proceed and the solubility may be lowered.
  • diol compound examples include polyalkylene glycol, polyoxyalkylene glycol, polyalkylene oxide adduct of bisphenol, aliphatic / aromatic polyester diols, aliphatic / aromatic polycarbonate diols, polycaprolactone diols, and polybutadiene polyols. , Hydrogenated polybutadiene polyols, hydrogenated polyisoprene polyol, polydimethylsiloxane diol, polymethylphenylsiloxane diol, and the like.
  • polyoxyalkylene glycols polyalkylene oxide adducts of bisphenol, aliphatic / aromatic polyester diols, and aliphatic / aromatic polycarbonate diols
  • polyoxyalkylene glycols ((b- 1) Component), a polyalkylene oxide adduct of bisphenol represented by the general formula [III] (component (b-2)).
  • Other diol compounds include bisphenols such as bisphenol A and bisphenol F, but these are not preferred because the urethane bond dissociates during heating.
  • Aliphatic / aromatic polyester diols include those obtained by dehydration condensation of dicarboxylic acid and diol or transesterification of lower alcohol ester of dicarboxylic acid with diol, and ring-opening polymerization of lactone compounds using diol as an initiator. Or obtained by a condensation reaction between a diol and a hydroxyalkanoic acid.
  • dicarboxylic acid component examples include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, brassylic acid, tetradecanedioic acid, eicosanedioic acid, and 2-methylsuccinic acid.
  • diol component examples include ethylene glycol, propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, and 1,5-pentane.
  • Diol 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, trimethylpentanediol, 2-ethyl-1,3-hexanediol, 1,8-octanediol, 2 -Methyl-1,8-octanediol, 1,9-nonanediol, 2,4-diethyl-1,5-pentanediol, 1,10-decanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol, diethylene glycol, triethyleneglycol Aliphatic diols such as eicosan diol and neopentyl glycol hydroxypivalate, alicyclic diols such as 1,4-cyclohexanedimethanol and
  • hydroxyalkanoic acid component examples include 3-hydroxybutanoic acid, 4-hydroxypentanoic acid, 5-hydroxyhexanoic acid and the like.
  • lactone examples include ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, 3-n-propyl- ⁇ -valerolactone, 6 , 6-dimethyl- ⁇ -valerolactone, glycolide, lactide and the like.
  • Aliphatic / aromatic polycarbonate diols obtained by transesterification of diol and carbonate compound, obtained by ring-opening polymerization of cyclic carbonate compound, or obtained by reaction of diol and chloroformate or phosgene It is.
  • 50 mol% or more of the alkylene chain contained is preferably an alkylene group having 6 or more carbon atoms, and 90 mol% or more is an alkylene group having 6 or more carbon atoms. Further preferred. Most preferably, it is a polycarbonate diol in which 50 mol% or more of the alkylene chain contained is an alkylene group having 8 or more carbon atoms.
  • the aliphatic / aromatic polycarbonate diol is preferably a polycarbonate diol having a plurality of types of alkylene groups in its skeleton. Similarly, a polycarbonate diol having an alkylene group containing a side chain is preferred.
  • polyoxyalkylene glycol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (neopentyl glycol / tetramethylene glycol), and the like.
  • the copolymerization amount of the component (b-1) is preferably such that the mass of the polyurethane comprising the component (b-1) and the polyamine residue derivative is 5% by mass or more and 70% by mass or less of the urethane-modified polyimide resin. More preferably, it is 10 mass% or more and 40 mass% or less. If the copolymerization amount is less than the above range, the elastic modulus does not decrease sufficiently, warping occurs when laminated, and the solubility in non-nitrogen solvents decreases. May be deposited. This tendency is particularly noticeable when ⁇ -butyrolactone, glymes and cyclohexanone preferably used in the present invention are used as a solvent. On the other hand, when the above range is exceeded, flame retardancy, mechanical properties, and heat resistance may deteriorate.
  • the polyalkylene oxide adduct of bisphenol is represented by the following general formula [III], and imparts non-nitrogen solvent solubility and flexibility to the modified polyimide resin.
  • the polyalkylene oxide include polyethylene oxide, polypropylene oxide, and polytetramethylene oxide. Preferably, those having a number average molecular weight of 200 or more and 2000 or less are used. Specific examples include a polyethylene oxide adduct of bisphenol A and a polypropylene oxide adduct of bisphenol A.
  • R 1 represents a C 1 -C 20 alkylene group
  • R 2 and R 3 represent hydrogen or a carbon C 1 -C 4 alkyl group, which may be the same or different from each other
  • m is an integer of 1 or more
  • n is an integer of 1 or more.
  • the copolymerization amount of the component (b-2) is preferably such that the mass of the polyurethane comprising the component (b-2) and the polyamine residue derivative is 10% by mass or more and 75% by mass or less of the urethane-modified polyimide resin. More preferably, it is 20 mass% or more and 70 mass% or less. If the copolymerization amount is less than the above range, the solubility in a non-nitrogen solvent decreases, and therefore the resin may precipitate within 5 months at 5 to 30 ° C. This tendency is particularly noticeable when ⁇ -butyrolactone, glymes and cyclohexanone preferably used in the present invention are used as a solvent. On the other hand, when the above range is exceeded, flame retardancy, mechanical properties, and heat resistance may deteriorate.
  • aliphatic polyisocyanate and aliphatic polyamine are used as the (c) aliphatic polyamine residue derivative constituting the component (A).
  • aliphatic polyisocyanate examples include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate. Hexamethylene diisocyanate is preferred.
  • aliphatic polyamine examples include hexamethylene diamine, 2,2,4-trimethylhexamethylene diamine, and lysine diamine. Hexamethylenediamine is preferred.
  • Aromatic polyisocyanates include, for example, diphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5, 3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5 2,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4
  • aromatic polyisocyanates are diphenylmethane-4,4′-diisocyanate, tolylene-2,4-diisocyanate, m-xylylene diisocyanate, 3,3 ′.
  • 2,2′-dimethylbiphenyl-4,4′-diisocyanate is preferable, and diphenylmethane-4,4′-diisocyanate and tolylene-2,4-diisocyanate are more preferable.
  • aromatic polyamines examples include diphenylmethane-2,4'-diamine, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5,2'- or 5,3. '-Or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diamine, 3,2'- or 3,3'- or 4,2'- or 4,3'- or 5, 2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diamine, 3,2'- or 3,3'- or 4,2'- or 4 , 3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4'-diamine, diphenylmethane-4,4'-diamine, diphenylmethane-3 , 3'-diamine, diphenylmethane-3,4'-diamine, diphenyl
  • the aromatic polyamine is diphenylmethane-4,4′-diamine, tolylene-2,4-diamine, m-xylylenediamine, 3,3 ′ or 2,2'-dimethylbiphenyl-4,4'-diamine is preferred, and diphenylmethane-4,4'-diamine and tolylene-2,4-diamine are more preferred.
  • the aliphatic polyamine residue derivative and / or the aromatic polyamine residue derivative may be used alone or in combination of two or more.
  • the ratio of the aliphatic polyamine residue derivative and / or the aromatic polyamine residue derivative is not particularly limited, and is appropriately set within the range where the solubility and low warpage are not impaired in consideration of the amount of the diol compound (b). I do not care.
  • the alicyclic in addition to the aliphatic polyamine residue derivative and the aromatic polyamine residue derivative, the alicyclic may be further added as necessary as long as the low warpage, heat resistance, and flame retardancy are not impaired.
  • a group polyamine residue derivative may be copolymerized.
  • examples of the alicyclic polyamine residue derivative include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, transcyclohexane-1,4-diisocyanate, hydrogenated m-xylylene diisocyanate, and norbornylene diisocyanate.
  • alicyclic polyisocyanates such as Considering heat resistance, adhesion, solubility, cost, etc., isophorone diisocyanate and 4,4′-dicyclohexylmethane diisocyanate are preferable.
  • a polyamine residue derivative having three or more functional groups may be used, or one stabilized with a blocking agent necessary for avoiding changes over time may be used.
  • the trifunctional or higher functional polyamine residue derivative is a trifunctional or higher functional polyisocyanate
  • examples of the blocking agent include alcohol, phenol, and oxime, but there is no particular limitation. These trifunctional or higher functional polyisocyanates may be used alone or in combination of two or more.
  • the isocyanate group at the end of the resin can be blocked with a blocking agent such as alcohols, lactams or oximes after completion of the polymerization.
  • aliphatic, alicyclic, and aromatic dicarboxylic acids may be further copolymerized as necessary as long as the target performance is not impaired.
  • the aliphatic dicarboxylic acid include succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedioic acid, dodecanedioic acid, eicosanedioic acid, 2-methylsuccinic acid, 2-methyladipic acid, 3 -Methyladipic acid, 3-methylpentanedicarboxylic acid, 2-methyloctanedicarboxylic acid, 3,8-dimethyldecanedicarboxylic acid, 3,7-dimethyldecanedicarboxylic acid, 9,12-dimethyleicosane diacid, fumaric acid, Maleic acid, dimer acid, hydrogenated dimer acid and the like.
  • alicyclic dicarboxylic acid examples include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4, 4'-dicyclohexyl dicarboxylic acid and the like
  • aromatic dicarboxylic acids include Example, if isophthalic acid, terephthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, oxydibenzoic acid, stilbene dicarboxylic acid and the like. These dicarboxylic acids may be used alone or in combination of two or more. In view of heat resistance, adhesion, solubility, cost, etc., the dicarboxylic acids are preferably sebacic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, and isophthalic acid.
  • a urethane-modified polyimide resin is a method of producing by decarboxylation from a polycarboxylic acid component having an acid anhydride group and an isocyanate component (isocyanate method), or reacting a polycarboxylic acid component having an acid anhydride group with an amine. It is produced by a known method such as a method (direct method) of ring-closing after making it into an amic acid. Industrially, an isocyanate method capable of urethane modification is advantageous.
  • (A) In the case of producing a urethane-modified polyimide resin by an isocyanate method, (a) a trivalent and / or tetravalent polycarboxylic acid derivative having an acid anhydride group as a component and a diol compound as a component (b)
  • the polymerization reaction of the urethane-modified polyimide resin is preferably carried out in the presence of at least one organic solvent selected from ether solvents, ester solvents, ketone solvents, and aromatic hydrocarbon solvents, for example, isocyanate.
  • organic solvent selected from ether solvents, ester solvents, ketone solvents, and aromatic hydrocarbon solvents, for example, isocyanate.
  • carbon dioxide gas that is liberated and generated is removed from the reaction system by heat condensation.
  • ether solvent examples include glymes such as diethylene glycol dimethyl ether (diglyme), diethylene glycol diethyl ether (ethyl diglyme), triethylene glycol dimethyl ether (triglyme), and triethylene glycol diethyl ether (ethyl triglyme).
  • solvent examples include ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate (butyl cellosolve acetate), ethylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate (ethyl carbitol acetate).
  • Diethylene glycol examples include butyl ether acetate, 3-methoxybutyl acetate, dipropylene glycol methyl ether acetate, propylene glycol diacetate, methyl benzoate, and ethyl benzoate.
  • ketone solvents include methyl isobutyl ketone, cyclopentanone, cyclohexanone, and isophorone.
  • aromatic hydrocarbon solvent examples include toluene, xylene, and solvesso. These may be used alone or in combination of two or more.
  • (A) In order to produce a varnish of a urethane-modified polyimide resin, it is preferable to select and use a solvent that dissolves the urethane-modified polyimide resin to be produced so that it can be used as it is as a varnish after polymerization. In this case, complicated operations such as solvent replacement are eliminated, and it becomes possible to manufacture at low cost.
  • the boiling point of the solvent is preferably 140 ° C. or higher and 230 ° C. or lower. If the temperature is lower than 140 ° C., the solvent may be volatilized during the polymerization reaction. For example, when screen printing is performed, the solvent may volatilize quickly and the plate may be clogged.
  • ⁇ -butyrolactone, cyclohexanone, diglyme, triglyme, ethyl carbitol are relatively high volatility, can provide low temperature drying / curing properties, have excellent varnish stability, and perform reaction efficiently and uniformly.
  • Acetate is preferred.
  • the amount of the solvent used is preferably 0.8 to 5.0 times (mass ratio) of the urethane-modified polyimide resin to be produced, and more preferably 0.9 to 2.0 times. If the amount used is less than the above range, the viscosity at the time of synthesis is too high, and the synthesis tends to be difficult due to the inability to stir, and if it exceeds the above range, the reaction rate tends to decrease.
  • component and / or (b) component is added and reacted to obtain a urethane-modified polyimide resin, (3) excess (a) component and / or (b) component, and (c) )
  • the component (c) is added and reacted to obtain a urethane-modified polyimide resin. Law, and the like.
  • the reaction temperature is preferably 60 to 200 ° C, more preferably 100 to 180 ° C.
  • the reaction time becomes too long, and when it exceeds the above range, the monomer component may be decomposed during the reaction. In addition, a three-dimensional reaction occurs and gelation is likely to occur.
  • the reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, particularly the reaction concentration.
  • the logarithmic viscosity of the urethane-modified polyimide resin is preferably from 0.1 dl / g to 2.0 dl / g, more preferably from 0.2 dl / g to 1.8 dl / g.
  • the logarithmic viscosity is less than the above range, the heat resistance may be lowered or the coating film may be brittle.
  • the tackiness of the paste is strong and the separation of the plate is poor.
  • it is larger than the above range it will be difficult to dissolve in the solvent and it will be insoluble during the polymerization.
  • the viscosity of a varnish becomes high and handling becomes difficult or adhesiveness with a base material falls.
  • the nonvolatile content concentration of the paste cannot be increased, and it becomes difficult to form a thick film.
  • the polymerization conditions such as the monomer ratio and the polymerization temperature, a urethane-modified polyimide resin having a logarithmic viscosity in this range can be obtained.
  • the glass transition temperature of the urethane-modified polyimide resin is preferably 20 ° C. or higher, more preferably 60 ° C. or higher. If it is less than the said temperature, heat resistance may run short and there exists a possibility that resin may block. Although an upper limit is not specifically limited, 300 degrees C or less is preferable from a solvent solubility viewpoint. By appropriately adjusting the polymerization conditions such as the monomer ratio, a urethane-modified polyimide resin having a glass transition temperature in this range can be obtained.
  • the urethane-modified polyimide-based flame retardant resin composition of the present invention is (B) by curing two or more urethane-modified polyimide-based resins for the purpose of improving film properties after film formation.
  • An epoxy resin having an epoxy group is contained.
  • component (B) epoxy resin examples include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, phenol novolac type epoxy resin, and o-cresol novolac.
  • Type epoxy resin flexible epoxy resin, epoxidized polybutadiene, polyfunctional epoxy resin, amine type epoxy resin, heterocycle-containing epoxy resin, alicyclic epoxy resin, bisphenol S type epoxy resin, triglycidyl isocyanurate, bixylenol type Examples include epoxy resins, bisphenol-type epoxy resins, naphthalene-type epoxy resins, dicyclopentadiene-type epoxy resins, phosphorus-containing epoxy resins, etc., and these may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin having more than two epoxy groups in one molecule, o-cresol novolac type epoxy resin, amine type epoxy resin are It is a non-halogen type, and is preferred in terms of compatibility with the urethane-modified polyimide resin of component (A), solvent resistance, chemical resistance, and moisture resistance.
  • the amount of the epoxy resin used is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, and particularly preferably 3 to 30 parts by mass with respect to 100 parts by mass of the urethane-modified polyimide resin. If the amount of the epoxy resin is less than the above range, solder heat resistance, solvent resistance, chemical resistance, and moisture resistance tend to decrease. If the amount exceeds the above range, low warpage, mechanical properties, heat resistance, varnish stability And compatibility with urethane-modified polyimide resin tends to decrease.
  • the combined use amount of the component (A) and the component (B) is preferably 40 to 90% by mass when the nonvolatile content of the urethane-modified polyimide resin composition is 100% by mass. More preferably, it is 45 to 80% by mass.
  • the epoxy resin may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
  • epoxy resin As an addition method of the epoxy resin, it may be added after dissolving the epoxy resin added in advance in the same solvent as that contained in the urethane-modified polyimide resin, or directly to the urethane-modified polyimide resin. It may be added.
  • the urethane-modified polyimide flame retardant resin composition of the present invention contains (C) an inorganic or organic filler in order to improve the workability during coating and printing and the film properties after film formation.
  • the inorganic or organic filler is not particularly limited as long as it can be dispersed in the urethane-modified polyimide resin and can impart thixotropic properties.
  • examples of such inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 ).
  • the inorganic filler those having an average particle size of 50 ⁇ m or less and a maximum particle size of 100 ⁇ m or less are preferable, an average particle size of 20 ⁇ m or less is more preferable, and an average particle size of 10 ⁇ m or less is most preferable.
  • the average particle diameter (median diameter) here is determined on a volume basis using a laser diffraction / scattering particle size distribution measuring apparatus. When the average particle diameter exceeds 50 ⁇ m, it becomes difficult to obtain a composition having sufficient thixotropy, and the flexibility of the resulting coating film decreases. When the maximum particle diameter exceeds 100 ⁇ m, the appearance and adhesion of the coating film tend to be insufficient.
  • any organic filler may be used as long as it can be dispersed in the above urethane-modified polyimide resin solution to impart thixotropy, and examples thereof include polyimide resin particles, benzoguanamine resin particles, and epoxy resin particles.
  • the amount of the inorganic or organic filler used is preferably 0.5 to 25% by mass when the entire nonvolatile content of the urethane-modified polyimide resin composition is 100% by mass. More preferably, it is 2 to 15% by mass, and particularly preferably 3 to 12% by mass. If the blending amount of the inorganic or organic filler is less than 0.5% by mass, the printability tends to be lowered, and if it exceeds 25% by mass, the mechanical properties such as the flexibility of the coating film and the transparency tend to be lowered. .
  • the urethane-modified polyimide flame retardant resin composition of the present invention contains (D) a non-halogen flame retardant in order to have flame retardancy.
  • the non-halogen flame retardant is composed of two components: a component (D-1) having a weight loss rate of 50% or more and 90% or less at 350 ° C in an air atmosphere and a component (D-2) having a proportion of 0% or more and 20% or less Is contained as an essential component.
  • the weight reduction rate of the component (D-1) is preferably 60% to 85%, and the weight reduction rate of the component (D-2) is preferably 0% to 15%.
  • the weight reduction rate is determined by heating from room temperature to 100 ° C. at a heating rate of 10 ° C./min and holding for 30 minutes in an air atmosphere by TGA (thermogravimetric analysis), and then at a heating rate of 10 ° C. / The weight reduction rate from 150 ° C. to 350 ° C. when heated on an aluminum pan to 600 ° C. per minute.
  • TGA thermogravimetric analysis
  • non-halogen flame retardant is not particularly limited, but (A) preferably contains a phosphorus flame retardant that is compatible with the urethane-modified polyimide resin.
  • a plasticizer for the urethane-modified polyimide resin By acting as a plasticizer for the urethane-modified polyimide resin, the low warpage of the coating film can be improved.
  • the phosphorus-based flame retardant that is compatible with the urethane-modified polyimide resin is, for example, a lower Tg of the blended composition than the Tg (glass transition temperature) of the urethane-modified polyimide meter resin alone.
  • the behavior can be grasped by, for example, the change of the calorimetric displacement position of DSC (Differential Scanning Calorimetry) and the peak position of the loss tangent in DMA (Dynamic Viscoelasticity Measurement).
  • such a (D) non-halogen flame retardant includes a urethane-modified polyimide resin and a filler-type non-halogen flame retardant that is incompatible with the solvent.
  • a filler-type flame retardant By blending a filler-type flame retardant, the heat resistance of the coating film, particularly physical heat resistance such as blocking during heating, and the bleed-out of the flame retardant can be improved.
  • Examples of the filler-type non-halogen flame retardant include a phosphinic acid metal salt represented by the following general formula [I], a diphosphinic acid metal salt represented by the following general formula [II], and a cyanamide derivative having at least one amino group. And a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid.
  • non-halogen flame retardants include 9,10-dihydro-9-oxa-10-phenanthrene-10-oxide from the viewpoints of flame retardancy, hydrolysis resistance, heat resistance and surface bleed out suppression.
  • the reaction product is preferably a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid, and the component (D-1) is a 9,10-dihydro-9-oxa-10-phenanthrene-10-oxide derivative.
  • the component (D-2) is a phenoxyphosphazene compound, a phosphinic acid metal salt represented by the following general formula [I], A diphosphinic acid metal salt represented by [II], a reaction product of a cyanamide derivative having at least one amino group and phosphoric acid, a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid Is more preferable.
  • R 1 and R 2 may be the same or different from each other, and linear or branched C 1 -C 10 alkyl and / or cycloalkyl and / or Aryl and / or aralkyl, R 1 and R 2 may be bonded to each other to form a ring with an adjacent phosphorus atom, R 3 is linear or branched C 1 -C 10 alkylene, C 6 arylene cycloalkylene, C 6 ⁇ C 10 of ⁇ C 10, aryl alkylene alkylarylene or C 6 ⁇ C 10 of C 6 ⁇ C 10, M is, Mg, Ca, Al, Sb , Sn, Ge, A cation selected from at least one member selected from the group consisting of Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K or a protonated nitrogen base, and m is an integer of 1 to 4 Yes, Is an integer of 1-4, x is an integer of 1 to 4 Yes, Is an integer
  • 9,10-dihydro-9-oxa-10-phenanthrene-10-oxide derivatives examples include HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) from Sanko Co., Ltd.
  • HCA-HQ (10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), SANKO-BCA (10-benzyl-9,10-dihydro- 9-oxa-10-phosphaphenanthrene-10-oxide), 10- (2,5-dihydroxy-6-methylphenyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxy-2-naphthyl) -9,10-dihydro-9-oxa-10-phosphaf Nanthrene-10-oxide, 2- (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-10-yl) methylsuccinic acid bis (2-hydroxyethyl) ester, 10-methyl-9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-
  • 9,10-dihydro-9-oxa-10-phenanthrene-10-oxide derivatives those which are compatible with (A) urethane-modified polyimide resin are preferred, and SANKO-BCA (10-benzyl-9,10 -Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) is more preferred.
  • HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), HCA-HQ (10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa-10- Phosphaphenanthrene-10-oxide) has reactivity with epoxy resins, but tends to cause bleed on the surface, compatibility with urethane-modified polyimide resins, and poor solubility in non-nitrogen solvents. For this reason, it is appropriately selected in consideration of performance such as low warpage.
  • phenoxyphosphazene compound examples include cyclic phenoxyphosphazenes such as trade names SPE-100 and SPB-100L manufactured by Otsuka Chemical Co., Ltd., and cyclic cyanophenoxyphosphazenes such as trade names FP-300 manufactured by Fushimi Pharmaceutical Co., Ltd. Cyclic hydroxyphenoxyphosphazenes such as the trade name SPH-100 manufactured by Otsuka Chemical Co., Ltd., and other chain phenoxyphosphazenes, cross-linked phenoxyphosphazenes, etc. are mentioned. Since chain phosphazenes have substituents at the molecular ends, they are generally cyclic.
  • phosphazenes are preferable, and cyclic trimers and / or tetrameric phosphazenes are more preferable.
  • a reactive phosphazene having a functional group that reacts with a urethane-modified polyimide resin such as SPH-100 is used, it is incorporated into a curing system, so that it does not cause bleeding on the surface, which is preferable.
  • phosphazene when using non-reactive phosphazene that does not have a functional group that reacts with urethane-modified polyimide resin, the crystalline one may bleed on the surface over time or may be affected by hydrolysis under severe conditions. In this case, free phosphorus may be eluted and the insulating properties may be degraded by decomposition products. Therefore, it is preferable to use phosphazene that is liquid under conditions of 25 ° C. and 1013.25 hPa, such as SPB-100L. Is preferred.
  • phosphinic acid metal salts include Al dimethylphosphinic acid Al, methylethylphosphinic acid Al, diethylphosphinic acid Al, and other dialkylphosphinic acid Al salts, phenylphosphinic acid Al, diphenylphosphinic acid Al, and other arylphosphinic acid Al salts, methyl Alkylarylphosphinic acid Al salt such as phenylphosphinic acid Al, 1-hydroxy-1H-phosphorane-1-oxide Al salt, 2-carboxy-1-hydroxy-1H-phosphorane-1-oxide Al salt, etc.
  • Examples include Al salts of alkylenephosphinic acid that may be used, Zn salts corresponding to these Al salts, Ca salts, and other metals.
  • diphosphinic acid salt examples include alkane bis (phosphinic acid) Al salt such as ethane-1,2-bis (phosphinic acid) Al salt, ethane-1,2-bis (methylphosphinic acid) Al salt, and the like.
  • alkanebis (alkylphosphinic acid) Al salts examples include alkanebis (alkylphosphinic acid) Al salts, Zn salts corresponding to these Al salts, Ca salts, and other metal salts.
  • R 1 and R 2 may be the same or different from each other, and may be a linear or branched C 1 to C 10 alkyl group and And / or a cycloalkyl group and / or an aryl group and / or an aralkyl group, particularly preferably mutually the same or different, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group , Tert-butyl group, n-pentyl group or phenyl group.
  • the ring formed by combining R 1 and R 2 together with the adjacent phosphorus atom is a heterocycle having the phosphorus atom as a hetero atom constituting the ring, and is usually a 4- to 20-membered heterocyclic ring, preferably a 5- to 16-membered ring.
  • a heterocycle is mentioned.
  • the heterocyclic ring having a phosphorus atom may be a bicyclo ring or may have a substituent.
  • R 3 represents a linear or branched C 1 to C 10 alkylene group, a C 6 to C 10 cycloalkylene group, a C 6 to C 10 arylene group, a C 6 to C 10 alkylarylene group, or a C 6.
  • C 10 arylalkylene group and preferable alkylene groups are methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, tert-butylene group, n-pentylene group, n-octylene.
  • n-dodecylene group and cycloalkylene group are cyclohexylene group, cyclohexadimethylene group, arylene group is phenylene group or naphthylene group, and alkylarylene group is methylphenylene group, ethylphenylene group, tert- Butylphenylene group, methylnaphthylene group, ethylnaphthylene group, or ter Examples of the t-butylnaphthylene group and arylalkylene group include a phenylmethylene group, a phenylethylene group, a phenylpropylene group, and a phenylbutylene group.
  • M is at least one selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K, or a protonated nitrogen base. Cations selected, preferably Mg, Ca, Al, Ti, Zn ions.
  • the phosphinic acid salt and diphosphinic acid salt include polyvalent salts of these phosphinic acids and / or polymers or condensates of the polyvalent salts of diphosphinic acids.
  • the average particle size of the phosphinates is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle diameter exceeds 10 ⁇ m, the amount used for developing sufficient flame retardancy increases, which is economically disadvantageous. In addition, insulation reliability, flexibility, adhesion, appearance and the like are deteriorated.
  • Specific examples of such preferred phosphinic acid salts include aluminum diethylphosphinate, which is commercially available from Clariant Japan Co., Ltd. under the trade names Exolite OP935 and OP930.
  • the average particle diameter (median diameter) of the phosphinates can be determined on a volume basis using a laser diffraction / scattering particle size distribution analyzer.
  • a reaction product of a cyanamide derivative having at least one amino group and phosphoric acid, a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid, and a cyanamide derivative having at least one amino group are amino And a group having a unit represented by —N ⁇ C ⁇ N— or —N ⁇ C (—N ⁇ ) 2 , and amino group-containing triazines (melamine, melam, melem, melon, guanamine, acetoguanamine, Amino group-containing 1,3,5-triazines such as benzoguanamine, amino group-containing 1,2,4-triazines such as 3-amino-1,2,4-triazine), amino group-containing triazoles (2, Cycyanamides such as amino group-containing 1,3,4-triazoles such as 5-diamino-1,3,4-triazole) And acyclic cyanamide derivatives such as derivatives and guanidines (guanidine, guanidine derivatives
  • the phosphoric acid to be reacted with the cyanamide derivative is non-condensed phosphoric acid (orthophosphoric acid, metaphosphoric acid, phosphorous acid (phosphonic acid), hypophosphorous acid (phosphinic acid), etc.), inorganic phosphoric acid such as polyphosphoric acid.
  • Polyphosphoric acid includes condensed phosphoric acids such as pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid.
  • reaction product of a cyanamide derivative having at least one amino group and phosphoric acid and as a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid is a condensation product of melamine, melamine or melamine Containing at least one of a condensation product and phosphoric acid reaction product, a melamine or melamine condensation product and phosphoric acid condensate reaction product, and a melamine or melamine condensation product and cyanuric acid reaction product More preferred are melamine polyphosphate, melem polyphosphate, melam polyphosphate, dimelamine pyrophosphate, melamine cyanurate, and most preferred is a longer condensation degree of 2 or more, especially 10 or more and 50 or less. Melamine polyphosphate and melamine with chain length It is an isocyanurate. These may be used alone or in combination of two or more.
  • the average particle size of the reaction product of the cyanamide derivative having at least one amino group and phosphoric acid, the reaction product of the cyanamide derivative having at least one amino group and cyanuric acid is preferably 10 ⁇ m or less, and more preferably Is 8 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the average particle diameter exceeds 10 ⁇ m, the amount used for developing sufficient flame retardancy increases, which is economically disadvantageous. In addition, insulation reliability, flexibility, adhesion, appearance, and the like are deteriorated.
  • reaction product of a cyanamide derivative having at least one amino group and phosphoric acid and a reaction product of a cyanamide derivative having at least one amino group and cyanuric acid include, for example, Ciba Specialty Trade names MELAPURE 200, MC25, manufactured by Tea Chemical Co., Ltd., trade names PHOSMEL-200, manufactured by Nissan Chemical Industries, Ltd., trade names MPP-A, manufactured by Sanwa Chemical Co., Ltd., trade names STABIACE MC-5F, MC-5S, MC manufactured by Sakai Chemical Industries -2010N and the like.
  • the phosphorus content in the urethane-modified polyimide flame retardant resin composition of the present invention is preferably 1.4 to 7.0% by mass, and the addition amount of the component (D) is adjusted so as to be in this range. Preferably they are 1.6 mass% or more and 4.8 mass% or less, More preferably, they are 2.0 mass% or more and 4.0 mass% or less. If the phosphorus content is less than the above range, good flame retardancy cannot be obtained, and if it exceeds the above range, the mechanical properties, heat resistance, adhesion and insulation properties of the coating film may be lowered.
  • the blending ratio of the component (D-1) and the component (D-2) is not particularly limited as long as the phosphorus content in the urethane-modified polyimide flame retardant resin composition and the required flame retardancy can be achieved.
  • non-halogen flame retardants may be used in combination, or these may be used alone or in combination of two or more. You may set suitably in the range by which various physical properties, such as an electrical property of a coating film, heat resistance, and environmental suitability, are not impaired.
  • the urethane-modified polyimide flame retardant resin composition of the present invention can further contain (E) a curing accelerator in order to further improve the properties such as adhesion, chemical resistance and heat resistance.
  • the curing accelerator is not particularly limited as long as it can accelerate the curing reaction between the urethane-modified polyimide resin, epoxy resin and non-halogen flame retardant.
  • epoxy resin curing agent examples include, for example, imidazole derivatives, guanamines such as acetoguanamine, benzoguanamine, diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives.
  • guanamines such as acetoguanamine, benzoguanamine, diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives.
  • Organic phosphines such as tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide, hexadecyltributylphosphonium chloride, tetraphenylphosphonium tetraphenylboroate, benzyltrimethylammonium chloride, Quaternary ammonium salts such as phenyltributylammonium chloride, the above polycarboxylic acid anhydrides, diphenyliodonium tetrafluoroboroate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate, Irgacure 261 (manufactured by Ciba Specialty Chemicals), Optoma-SP-170 (manufactured by ADEKA Co., Ltd.) And an equimolar reaction product of organic poly
  • a curing accelerator having latent curability and examples thereof include DBU, DBN organic acid salts and / or tetraphenylboronate, and a photocationic polymerization catalyst.
  • the amount of curing accelerator used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (A) urethane-modified polyimide resin. If it exceeds 20 parts by mass, the storage stability of the urethane-modified polyimide-based flame retardant resin composition and the heat resistance of the coating film are likely to be reduced, and if it is less than 0.1 parts by mass, the curability may be reduced.
  • the urethane-modified polyimide flame retardant resin composition of the present invention can contain (F) an ion catcher in order to further improve the insulation reliability under high temperature and high humidity.
  • the impure ions and hydrolyzable chlorine present in the order of ppm are captured in the cured coating film of the urethane-modified polyimide flame retardant resin composition to reduce the insulation failure of the flexible printed circuit board,
  • organic ion exchange resin, inorganic ion exchanger zeolite, zirconium phosphate, hydrated bismuth nitrate, antimony oxide, magnesium aluminum hydrotalcite, hydroxy Apatite. You may use these individually or in combination of 2 or more types. In view of heat resistance and chemical resistance, it is preferable to use an inorganic ion exchanger.
  • ions to be captured include both cations and anions
  • an ion exchange type inorganic ion exchanger is used, or a cation exchange type inorganic ion exchanger and an anion exchange type inorganic ion exchanger are used. It is desirable to use together.
  • an antimony-bismuth type or a zirconium-bismuth type can be used.
  • Non-antimony-bismuth type materials are also included.
  • a zirconium-based one or an antimony-based one can be used.
  • a bismuth type or a magnesium-aluminum type can be used.
  • those not containing heavy metals such as antimony and bismuth are more preferable because they have high ion exchange capacity and high environmental harmony.
  • the compounding amount of the ion exchanger is preferably in the range of 1.0 to 15.0% by weight with respect to the total amount of the composition. If the blending amount of the inorganic ion exchanger is less than 1.0% by weight, the ion trapping rate may be 50% or less, and a sufficient effect due to blending of the inorganic ion exchanger may not be obtained. In addition, when the blending amount of the inorganic ion exchanger is about 15.0% by weight, the ion trapping rate becomes 80% or more, but even if the blending amount of the inorganic ion exchanger is further increased, the ion trapping rate does not increase.
  • the ratio of the cation exchange type to the anion exchange type ion scavenger is in the range of 20:80 to 60:40 by weight. It is preferable to set to.
  • the urethane-modified polyimide flame retardant resin composition of the present invention further includes a color pigment, a dye, a polymerization inhibitor, a thickener, an antifoaming agent, a leveling agent, a coupling agent / adhesion imparting agent, Known and commonly used heat stabilizers, antioxidants, lubricants, UV absorbers, light stabilizers, light-shielding agents, quenchers, metal deactivators, antistatic agents, anti-aging agents, plasticizers, compatibilizers, etc. Additives can be added.
  • the urethane-modified polyimide flame retardant resin composition of the present invention includes the components (A), (B), (C), (D), (E), and (F) described above, and other blending components as necessary. And is uniformly mixed with a roll mill, a bead mill, a mixer or the like. The mixing method is not particularly limited as long as sufficient dispersion of each component can be obtained. Multiple kneading with three rolls is preferred.
  • the viscosity with a B-type viscometer described later is preferably in the range of 50 dPa ⁇ s to 2000 dPa ⁇ s at 25 ° C., and more preferably in the range of 100 dPa ⁇ s to 800 dPa ⁇ s. preferable.
  • the viscosity is less than 50 dPa ⁇ s, there is a tendency for the paste to flow out after printing and the film thickness to be reduced.
  • the viscosity exceeds 2000 Pa ⁇ s, the transferability of the paste to the base material is reduced during printing, and there is a tendency for voids and pinholes in the printed film to increase.
  • the degree of thixotropy is also important, and the urethane-modified polyimide flame retardant resin composition of the present invention preferably has a degree of throttling of 1.1 or more, more preferably 1.8 or more, in the measurement method described later.
  • the upper limit is preferably 10.0 or less, and more preferably 9.0 or less. If the degree of change is less than 1.1, the flow of paste after printing increases and the film thickness tends to be reduced. If it exceeds 10.0, the paste tends not to flow.
  • the degree of change can be adjusted by the amount of component (C) added as a change degree imparting agent.
  • the urethane-modified polyimide flame retardant resin composition of the present invention is cured, for example, as a solder resist as follows to obtain a cured product. That is, on printed wiring boards, flexible printed wiring boards (FPC), chip-on-films (COF), etc., by screen printing, spray coating, roll coating, electrostatic coating, curtain coating, dip coating, etc.
  • the composition of the present invention is applied to a thickness of 5 to 80 ⁇ m, and the coating film is pre-dried at 60 to 120 ° C. and then dried at 120 to 200 ° C. Drying may be in air or in an inert atmosphere.
  • the urethane-modified polyimide flame-retardant resin composition of the present invention thus obtained is useful as a film forming material for semiconductor elements and overcoat inks for various electronic components, solder resist inks, interlayer insulating films, It can also be used as a paint, coating agent, adhesive or the like.
  • ⁇ 350 ° C weight loss rate About 15 mg each of flame retardant alone and urethane-modified polyimide resin were sampled and heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere (20 ml / min) and held for 30 minutes, and then the heating rate It heated on the aluminum pan to 10 degreeC / 600 to 600 degreeC, and calculated
  • a sample obtained by curing a urethane-modified polyimide flame retardant resin composition at 165 ° C. for 2 hours is weighed into an Erlenmeyer flask in an appropriate amount according to the phosphorus concentration in the sample, 3 ml of sulfuric acid, 0.5 ml of perchloric acid Then, 3.5 ml of nitric acid was added, and the mixture was gradually decomposed by heating with an electric heater over a half day.
  • the obtained laminated film having a thickness of 15 ⁇ m was evaluated for flame retardancy according to the UL94 standard.
  • the flame retardancy is preferably VTM-2 or higher according to UL standards, and most preferably VTM-0.
  • the laminated film obtained using the polyimide film as a base material was evaluated according to JIS-K5400.
  • the diameter of the mandrel was 2 mm, and the presence or absence of cracks was confirmed.
  • a comb-shaped pattern with a line spacing of 50 ⁇ m was formed on a two-layer CCL (trade name Viroflex) manufactured by Toyobo, washed with 1% sulfuric acid, and then washed with water and dried. The entire surface of the paste was printed on the circuit, and the obtained solder resist layer was heated and cured at 160 ° C. for 120 minutes. The insulation resistance between lines when a DC voltage of 100 V was applied was measured. 10 8 or more is preferable.
  • the laminated film obtained using the copper foil as a base material was evaluated according to JIS-K5400.
  • the pencil hardness is preferably 2H or higher, and more preferably 3H or higher.
  • Production Examples 2-5 Polymerization was conducted in the same manner as in Example 1 using the raw materials listed in Table 1, and then cooled to room temperature to obtain dark brown urethane-modified polyimide resin solutions A-2 to A-5 having a nonvolatile content of 40% by mass. .
  • Production Examples 7-8 Polymerization was conducted in the same manner as in Example 6 using the raw materials shown in Table 1, and then cooled to room temperature to obtain dark brown urethane-modified polyimide resin solutions A-7 to A-8 having a nonvolatile content of 40% by mass. .
  • Example 1 Based on 48.8 parts by mass of the resin content of the urethane-modified polyimide resin solution A-1 obtained in Production Example 1, jER152 (trade name of phenol novolac type epoxy resin manufactured by Japan Epoxy Resin Co., Ltd.) 7.2 masses Part was added and diluted with diglyme.
  • jER152 trade name of phenol novolac type epoxy resin manufactured by Japan Epoxy Resin Co., Ltd.
  • Aerosil # 300 hydrophilic silica fine particles manufactured by Nippon Aerosil Co., Ltd.
  • SANKO-BCA manufactured by Sanko Co., Ltd.
  • SPE -100 Otsuka Chemical Co., Ltd.
  • Ucat5002 San Apro Co., Ltd.
  • Floren AC-326F Kyoeisha Chemical Co., Ltd.
  • BYK-358 by Big Chemie Co., Ltd.
  • a paste made of a urethane-modified polyimide flame retardant resin composition having a uniformly dispersed filler and thixotropic properties was obtained.
  • the viscosity was adjusted with diglyme, the solution viscosity was 130 poise and the throttling was 2.5.
  • the paste made of the obtained urethane-modified polyimide flame retardant resin composition was applied to the glossy surface of an electrolytic copper foil having a thickness of 18 ⁇ m so as to have a thickness of 15 ⁇ m after drying. After drying with hot air at 80 ° C. for 10 minutes, a laminated film was obtained by heating at 150 ° C. for 120 minutes in an air atmosphere.
  • the film was obtained by carrying out the etching removal of the copper foil of the obtained laminated
  • Examples 2-18 Using the raw materials described in Tables 2 and 3, a urethane-modified polyimide flame retardant resin composition and a laminated film were obtained in the same manner as in Example 1. Tables 2 and 3 show details and evaluation results of the obtained compositions and laminated films.
  • a paste made of a polyimide resin composition was printed on a SUS mesh plate (Murakami Co., Ltd. 150 mesh, emulsion thickness 30 ⁇ m) at a printing speed of 5 cm / sec and dried at 80 ° C. for 6 minutes in an air atmosphere.
  • the flexible printed wiring board which gave the coverlay (coating) which consists of a urethane-modified polyimide resin composition was obtained by heat-curing for 60 minutes at 165 degreeC.
  • the thickness of the coating was 15 ⁇ m.
  • the obtained flexible printed wiring board was excellent in flexibility and flexibility.
  • Comparative Examples 1-7 A urethane-modified polyimide flame retardant resin composition and a laminated film were obtained in the same manner as in Example 1 except that the raw materials listed in Table 4 were used. Table 4 shows details and evaluation results of the obtained composition and laminated film.
  • the cured coating films formed from the urethane-modified polyimide flame retardant resin compositions of Examples 1 to 18 of the present invention can be cured at low temperature, have no warpage, are flexible, and have difficulty. Excellent in flame resistance, heat resistance, chemical resistance, electrical properties, and adhesion to the substrate.
  • Comparative Examples 1 to 3, 5 to 7, the characteristics and blending amount of the flame retardant are out of the scope of the present invention, and in Comparative Example 4, the urethane-modified polyimide resin is out of the scope of the present invention. Therefore, the cured coating film formed from these urethane-modified polyimide resin flame retardant resin compositions was inferior in each characteristic.
  • the urethane-modified polyimide flame retardant resin composition of the present invention is useful as a film forming material for overcoat inks for various electronic parts such as flexible printed wiring boards, solder resist inks, interlayer insulating films, paints, and coating agents. It can be used as an adhesive in a wide range of electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Epoxy Resins (AREA)

Abstract

 非窒素系溶媒溶解性とワニス安定性、低温乾燥/硬化性、低反り性、屈曲性、印刷適性、難燃性に優れ、かつ耐熱性、耐薬品性、電気特性、作業性及び経済性に優れるウレタン変性ポリイミド系難燃樹脂組成物を提供する。本発明のウレタン変性ポリイミド系難燃樹脂組成物は、(A)(a)酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体、(b)ジオール化合物、及び(c)脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体を必須の成分として生成されるウレタン結合を有するウレタン変性ポリイミド系樹脂、(B)1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、(C)無機あるいは有機フィラー、及び(D)非ハロゲン系難燃剤を含有し、(D)非ハロゲン系難燃剤が、空気雰囲気下350℃における重量減少率が50%以上90%以下の成分(D-1)と0%以上20%以下の成分(D-2)の2成分を必須の成分として含むことを特徴とする。

Description

ウレタン変性ポリイミド系難燃樹脂組成物
 本発明は、優れた耐熱性、柔軟性を有し、印刷機、ディスペンサー又はスピンコーターなどの塗布方法に適したウレタン変性ポリイミド系樹脂組成物に関する。本発明のウレタン変性ポリイミド系樹脂組成物は、電子部品のフレキシブルプリント配線基板のソルダーレジスト層、表面保護層、層間絶縁層又は接着層などに有用なものである。
 現在、フレキシブルプリント配線基板は、柔軟性や小スペース性を要する電子機器部品、例えば、液晶ディスプレイ、プラズマディスプレイなどの表示装置用デバイス実装基板や、携帯電話、デジタルカメラ、携帯型ゲーム機などの基板間中継ケーブル、操作スイッチ部基板等に広く使用されている。
 ところで、フレキシブルプリント配線基板の構成要素であるソルダーレジスト層、表面保護層、層間絶縁層又は接着層は、溶液形態で塗布、印刷される場合が多いため、その材料として、溶媒可溶な閉環型ポリイミド系樹脂からなる組成物が提案されている。
 しかしながら、従来、ポリイミド系樹脂のワニス化のための溶媒としては、N-メチル-2-ピロリドン等の高沸点窒素系極性溶媒が用いられているため、乾燥/硬化時には200℃以上の高温長時間の硬化工程が必要となり、電子部材の熱劣化が生じる問題があった。また、基材へワニスを塗布した後、長期間放置すると、高沸点窒素系溶媒の吸湿によるインキ、塗膜の白化及びボイドが生じる場合があり、作業条件の設定が煩雑になる問題があった。さらに、ポリイミド系樹脂は一般的に高弾性率で硬いため、フィルム、銅箔などの基材に積層した場合、弾性率の差から反り等が発生するため、後工程上問題があった。また、硬化膜は柔軟性に欠け、屈曲性に劣る問題があった。
 一方、電子部品には難燃性が求められる場合が多いが、従来難燃剤として使用されてきたデカブロムエーテルに代表されるハロゲン含有化合物や三酸化アンチモンのような重金属化合物は規制の動きが高まっている。ポリイミド系樹脂はそれ自体比較的難燃性が高いが、さらにUL規格のような高い難燃性が求められる場合には、リン化合物、窒素化合物、水和金属化合物(水酸化アルミニウム、水酸化マグネシウム)などの非ハロゲン系難燃剤が使用される。しかしながら、これらの難燃剤はハロゲン系に比較して難燃性が十分でなく、また、リン酸エステルに代表されるリン系の難燃剤は耐加水分解性や耐熱性に劣る問題があった。
 非窒素系溶媒に可溶であり、樹脂を可撓化及び低弾性率化することにより低反り及び柔軟性を付与したポリイミド系樹脂としては、例えば、ポリシロキサン変性ポリイミド系樹脂が提案されている(特許文献1,2参照)。
 これらのポリシロキサン変性ポリイミド系樹脂は、低弾性率化のために高価なジメチルシロキサン結合を有するジアミンを出発原料として用いており、経済性に劣る問題があった。また、ポリシロキサン共重合量の増加に伴い、密着性、耐溶剤性、耐薬品性が低下する問題があった。
 これらの欠点を改良するために、例えば、ポリカーボネート変性ポリイミド系樹脂を用いた組成物が提案されている(特許文献3~5参照)。
 これらのポリカーボネート変性ポリイミド系樹脂は、ポリシロキサンに由来する欠点が改良されており、かつ良好な印刷適性を有するが、この樹脂から得られる組成物では、反りを低減するためにポリイミド系樹脂のポリカーボネート変性量を多くする必要があり、耐熱性が低下する傾向にあった。また、ワニス安定性が低く、保管中数日でワニスが固化する場合があった。さらに、一般に低反り性を得るために低弾性率化成分を導入する場合、相反して難燃性が低下する場合が多い。ここに提案されている組成物から得られる塗膜も十分な難燃性が得られなかった。
 非窒素系溶媒に可溶であり、樹脂を可撓化及び低弾性率化することにより低反り及び柔軟性を有し、かつUL規格による難燃性の基準を満足するポリイミド系樹脂組成物としては、例えば、ポリカーボネート変性ポリイミド系樹脂に水和金属化合物を加えた組成物が提案されている(特許文献6~8参照)。
 これらのポリカーボネート変性ポリイミド系樹脂組成物は、低反り性、屈曲性及び難燃性を有するが、反りを低減するために低弾性率化成分を導入する場合、相反して耐熱性及び難燃性が低下する場合が多い。
 ここに提案されている組成物は比較的厚いポリイミドフィルム基材を使用するテープキャリアーパッケージ(TAB、COF)用途向けであり、1ミル(25μm)以下の薄いポリイミドフィルム基材を使用するフレキシブルプリント配線基板(FPC)用途向けでは、十分な難燃性が得られなかった。また、薄いポリイミドフィルム基材を使用した場合、低反り性も十分なものではなかった。
 一方、特許文献9には、共重合成分として、ポリエーテル、ポリエステル、ポリアクリロニトリル-ブタジエン共重合体、ポリカーボネートジオールおよびダイマー酸からなる群から選択される少なくとも1種の成分を含有し、イソホロン残基を有するモノマーを必須成分とするポリイミド系樹脂が提案され、特許文献10には、共重合成分としてポリエーテル、酸成分としてトリメリット酸、シクロヘキサンジカルボン酸を含有するポリイミド系樹脂とそれからなる組成物が提案されている。
 これらのポリイミド系樹脂は、非窒素系溶媒への溶解性に優れることが予想されるが、フレキシブルプリント配線基板用途として、低反り性、半田耐熱性や印刷適性を同時に満足するものではなかった。また、いずれのポリイミド系樹脂も非窒素系反応溶媒のままではワニス安定性が低く、経時で樹脂が析出しやすく、使用上の目的からも、さらに再沈殿を経て溶解性の高い低沸点溶媒への全置換が行われており、経済性に劣っていた。さらに、これらの提案された組成物は、脂環族成分が主になるため、十分な難燃性が得られなかった。
 特許文献11には、ビスフェノールAのポリアルキレンオキサイド付加体を含むポリイミド系樹脂を用いた組成物が提案されている。このポリイミド系樹脂組成物は耐熱性に優れたものであるが、非窒素系溶媒に可溶ではなく、低反り及び柔軟性を有するものとは言い難く、また、難燃性も得られなかった。
 特許文献12には、ポリシロキサン変性ポリイミド系樹脂に、非ハロゲン系難燃剤としての水和金属化合物、リン化合物、窒素化合物をフィラーとして使用したポリイミド系組成物が提案されている。このポリイミド系樹脂組成物は、フレキシブルプリント配線基板用途として、半田耐熱性や印刷適性などの特性に加え、UL規格による難燃性の基準を満足することが期待されるが、上述したようにポリシロキサン化合物を共重合することによる問題があった。また、特許文献7~8と同様、難燃効果の低い水和金属化合物が多量に含まれることにより、弾性率が高くなり、低反り性、屈曲性が低下してしまう問題があった。
 特許文献13には、上記の欠点を改良するために、特殊なモノマーを使用したシロキサンジアミン変性ポリイミド系樹脂組成物が提案されている。このポリイミド系樹脂組成物は、無機難燃剤を含まず、低反り性を損なわないことが期待されるが、高価なモノマーを使用するため経済性に劣るとともに、シロキサン化合物に起因する密着性等の問題があった。
 特許文献14には、非ハロゲン系難燃剤としてジアルキルホスフィネート金属塩を使用したポリウレタン系樹脂組成物およびポリイミド系樹脂組成物が提案されている。このポリウレタン系樹脂組成物は、フレキシブルプリント配線基板用途として、半田耐熱性や印刷適性などの特性に加え、UL規格による難燃性の基準を満足することが期待されるが、難燃剤は樹脂に相溶せずフィラーとして多量に配合されるため、屈曲性、低反り性は必ずしも十分なものではなかった。
 これらの欠点を改良するために、例えば、ポリイミド系樹脂に非ハロゲン系難燃剤であり、ポリイミド系樹脂に溶解するホスファゼンを配合した組成物が提案されている(特許文献15~17参照)。これらのポリイミド系樹脂組成物は、フレキシブルプリント配線基板用として、半田耐熱性や印刷適性などの特性に加え、難燃性、低反り性をも満足することが期待されるが、ホスファゼン系難燃剤単独で高度な難燃性を発揮させるには、多量の添加が必要になり、難燃剤のブリードが生じる問題があった。
 上記のように、これまでの従来技術では、(1)非窒素系溶媒溶解性とワニス安定性、(2)低温乾燥/硬化性、(3)低反り性、(4)屈曲性、(5)印刷適性、(6)難燃性を同時に満足するソルダーレジスト層、表面保護層、層間絶縁層又は接着層として適用可能なポリイミド系樹脂組成物は得られていなかった。
特開平7-304950号公報 特開平8-333455号公報 特開2001-302795号公報 特開2003-138015号公報 特開2007-84652号公報 特開2008-133418号公報 特開2009-96915号公報 特開2009-185200号公報 特開2003-289594号公報 特開平9-328550号公報 特開平11-293218号公報 WO2005-116152号公報 特開2009-275076号公報 特開2007-270137号公報 特開2005-47995号公報 特開2002-235001号公報 特開2008-297388号公報
 本発明は、上記の従来技術の問題点を解消するために創案されたものであり、その目的は、(1)非窒素系溶媒溶解性とワニス安定性、(2)低温乾燥/硬化性、(3)低反り性、(4)屈曲性、(5)印刷適性、(6)難燃性に優れ、難燃剤のブリードアウトを抑制し、耐熱性、耐薬品性、電気特性、作業性及び経済性に優れるウレタン変性ポリイミド系難燃樹脂組成物、及び該組成物を使用して得られる電子部品を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究した結果、遂に本発明を完成するに至った。すなわち、本発明は、以下の(1)~(12)の構成からなるものである。
(1)(a)酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体、(b)ジオール化合物、及び(c)脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体を必須の成分として生成されるウレタン結合を有するウレタン変性ポリイミド系樹脂、
(B)1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、
(C)無機あるいは有機フィラー、及び
(D)非ハロゲン系難燃剤、
を含有するウレタン変性ポリイミド系難燃樹脂組成物であって、
(D)非ハロゲン系難燃剤が、空気雰囲気下350℃における重量減少率が50%以上90%以下の成分(D-1)と0%以上20%以下の成分(D-2)の2成分を必須の成分として含むことを特徴とするウレタン変性ポリイミド系難燃樹脂組成物。
(2)(D-1)成分の重量減少率が60%以上85%以下であり、(D-2)成分の重量減少率が0%以上15%以下であることを特徴とする(1)に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(3)(D)非ハロゲン系難燃剤が、(A)ウレタン変性ポリイミド系樹脂に相溶するリン系難燃剤を含むことを特徴とする(1)又は(2)に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(4)(D-1)成分が9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体を含み、(D-2)成分がフェノキシホスファゼン化合物を含むことを特徴とする(1)から(3)のいずれかに記載のウレタン変性ポリイミド系難燃樹脂組成物。
(5)(D)非ハロゲン系難燃剤がフィラー型の非ハロゲン系難燃剤を含むことを特徴とする(1)から(3)のいずれかに記載のウレタン変性ポリイミド系難燃樹脂組成物。
(6)(D-1)成分が9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体を含み、(D-2)成分が下記一般式[I]で表されるホスフィン酸金属塩、下記一般式[II]で表されるジホスフィン酸金属塩、少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、又は少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物を含むことを特徴とする(1)~(3)又は(5)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
Figure JPOXMLDOC01-appb-I000003
(式[I]及び式[II]中、R及びRは互いに同じであっても異なってもよく、線状又は分岐状のC~C10のアルキル及び/又はシクロアルキル及び/又はアリール及び/又はアラルキルであり、R及びRは互いに結合して隣接するリン原子とともに環を形成しても良い。Rは線状又は分岐状のC~C10のアルキレン、C~C10のシクロアルキレン、C~C10のアリーレン、C~C10のアルキルアリーレン又はC~C10のアリールアルキレンであり、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、K又はプロトン化した窒素塩基からなる群の少なくとも1種から選択されるカチオンであり、mは1~4の整数であり、nは1~4の整数であり、xは1~4の整数である。)
(7)(D-2)成分が、25℃、1013.25hPaの条件下で液体であるフェノキシホスファゼン化合物を含むことを特徴とする(1)から(6)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(8)(b)ジオール化合物が、(b-1)ポリオキシアルキレングリコール、及び/又は(b-2)下記一般式[III]で表されるビスフェノールのポリアルキレンオキサイド付加体を含むことを特徴とする(1)から(7)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
Figure JPOXMLDOC01-appb-I000004
(式[III]中、RはC~C20のアルキレン基であり、R及びRは互いに同じであっても異なってもよく、水素またはC~Cのアルキル基を表し、mは1以上の整数であり、nは1以上の整数である。)
(9)(E)硬化促進剤をさらに含有することを特徴とする(1)から(8)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(10)(F)イオンキャッチャーをさらに含有することを特徴とする(1)から(9)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(11)(A)ウレタン変性ポリイミド系樹脂が、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、及び芳香族炭化水素系溶媒からなる群から選ばれる少なくとも1種の有機溶媒中で反応させて得られるものであることを特徴とする(1)から(10)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(12)揺変度で1.1以上のチクソトロピー性を有することを特徴とする(1)から(11)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
(13)ソルダーレジスト層、表面保護層、層間絶縁層又は接着剤層を有する電子部品であって、前記層が(1)から(12)のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物を乾燥硬化して得られるものであることを特徴とする電子部品。
 本発明によれば、従来同時に満足することが困難であった(1)非窒素系溶媒溶解性とワニス安定性、(2)低温乾燥/硬化性、(3)低反り性、(4)屈曲性、(5)印刷適性、(6)難燃性に優れ、難燃剤のブリードアウトを抑制し、かつ耐熱性、耐薬品性、電気特性、作業性及び経済性に優れるウレタン変性ポリイミド系難燃樹脂組成物を提供することができる。従って、本発明のウレタン変性ポリイミド系難燃性樹脂組成物は、被膜形成材料として、フレキシブルプリント配線基板などの各種電子部品用オーバーコートインキ、ソルダーレジストインキ、層間絶縁膜に有用である他、塗料、コーティング剤、接着剤等として電子機器の幅広い分野で使用できる。
 以下、本発明を詳しく説明する。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、
(A)(a)酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体、(b)ジオール化合物、(c)脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体を必須の成分として生成されるウレタン結合を有するウレタン変性ポリイミド系樹脂、
(B)1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、
(C)無機あるいは有機フィラー、及び
(D)非ハロゲン系難燃剤、
を含有し、
(D)非ハロゲン系難燃剤が、空気雰囲気下350℃における重量減少量が50%以上90%以下の成分(D-1)と0%以上20%以下の成分(D-2)の2成分を必須の成分として含むことを特徴とする。
 (A)成分を構成する(a)酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体は、一般にイソシアネート成分やアミン成分と反応してポリイミド系樹脂を形成する。ポリカルボン酸誘導体は、芳香族、脂肪族、脂環族のいずれのものも使用できる。
 (a)成分の共重合量は、反応対象の全ポリアミン残基誘導体100モル%に対するモル比で30モル%以上90モル%以下であることが好ましく、35モル%以上85モル%以下であることが更に好ましい。共重合量が上記範囲未満では、難燃性、機械特性、耐熱性が得られず、上記範囲より多いと、後述する(b)成分を十分な量で共重合することができないため、低反り性や非窒素系溶媒への溶解性が低下するおそれがある。
 芳香族ポリカルボン酸誘導体としては、例えば、トリメリット酸無水物、ピロメリット酸二無水物、エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、1,4-ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレングリコールビスアンヒドロトリメリテート等のアルキレングリコールビスアンヒドロトリメリテート、ハイドロキノンビスアンヒドロトリメリテート、ハイドロキノンビスエチレンオキサイド付加物ジアンヒドロトリメリテート、4,4′-ビフェニレンビスアンヒドロトリメリテート、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、3,3′,4,4′-ジフェニルスルホンテトラカルボン酸二無水物、m-ターフェニル-3,3′,4,4′-テトラカルボン酸二無水物、4,4′-オキシジフタル酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス[4-(2,3-又は3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス[4-(2,3-又は3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3′,4,4′-テトラカルボン酸二無水物、2,3,3′,4-ビフェニルテトラカルボン酸二無水物等が挙げられる。
 また、脂肪族あるいは脂環族ポリカルボン酸誘導体としては、例えば、ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、ヘキサヒドロピロメリット酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサン-3-(1,2),5,6-テトラカルボン酸二無水物、1-メチル-3-エチルシクロヘキサ-1-エン-3-(1,2),5,6-テトラカルボン酸二無水物、1-エチルシクロヘキサン-1-(1,2),3,4-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3′,4′-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、1-プロピルシクロヘキサン-1-(2,3),3,4-テトラカルボン酸二無水物、1,3-ジプロピルシクロヘキサン-1-(2,3),3-(2,3)-テトラカルボン酸二無水物、ジシクロヘキシル-3,4,3′,4′-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ヘキサヒドロトリメリット酸無水物等が挙げられる。
 これらの3価又は4価のポリカルボン酸誘導体は、単独でも二種以上を組み合わせて用いても構わない。耐熱性、透明性、密着性、溶解性、コスト面などを考慮すれば、ポリカルボン酸誘導体は、ピロメリット酸二無水物、トリメリット酸無水物、エチレングリコールビスアンヒドロトリメリテート、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、2,2-ビス[4-(2,3-又は3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物が好ましく、トリメリット酸無水物、エチレングリコールビスアンヒドロトリメリテートが更に好ましい。
 (A)成分を構成する(b)ジオール化合物は、ポリイミド系樹脂に屈曲性、低反り性、溶解性等を付与する可撓性成分として共重合される。(b)成分を共重合することで、樹脂の弾性率が低下するとともに、重合溶媒として用いた非窒素系溶媒への溶解(ワニス)安定性が増大する。
 (b)成分の共重合量は、反応対象の全ポリアミン残基誘導体100モル%に対するモル比で10モル%以上70モル%以下であることが好ましく、15モル%以上65モル%以下であることが更に好ましい。共重合量が上記範囲より多いと、難燃性、機械特性、耐熱性が得られず、上記範囲未満では、低反り性や非窒素系溶媒への溶解性が低下するおそれがある。
 (b)成分の分子量は、好ましくは数平均分子量が500以上3000以下のものが用いられ、更に好ましくは800以上2000以下である。分子量が上記範囲未満になると、耐熱性、屈曲性や低反り性が不十分となり、上記範囲より大きくなると、変性反応が進行せず、溶解性が低下する場合がある。
 ジオール化合物としては、例えば、ポリアルキレングリコール、ポリオキシアルキレングリコール、ビスフェノールのポリアルキレンオキサイド付加体、脂肪族/芳香族ポリエステルジオール類、脂肪族/芳香族ポリカーボネートジオール類、ポリカプロラクトンジオール類、ポリブタジエンポリオール類、水添ポリブタジエンポリオール類、水添ポリイソプレンポリオール、ポリジメチルシロキサンジオール、ポリメチルフェニルシロキサンジオール等が挙げられる。好ましくは、ポリオキシアルキレングリコール、ビスフェノールのポリアルキレンオキサイド付加体、脂肪族/芳香族ポリエステルジオール類、脂肪族/芳香族ポリカーボネートジオール類であり、更に好ましくは、後述するポリオキシアルキレングリコール((b-1)成分)、一般式[III]で表されるビスフェノールのポリアルキレンオキサイド付加体((b-2)成分)である。その他のジオール化合物としては、ビスフェノールAやビスフェノールF等のビスフェノール類が挙げられるが、これらは加熱時にウレタン結合が解離するため、好ましくない。
 脂肪族/芳香族ポリエステルジオール類としては、ジカルボン酸及びジオールを脱水縮合またはジカルボン酸の低級アルコールエステル化物とジオールとのエステル交換反応により得られるものや、ジオールを開始剤としてラクトン化合物を開環重合させて得られるもの、またはジオールとヒドロキシアルカン酸との縮合反応により得られるものである。
 ジカルボン酸成分としては、具体的には、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ブラシル酸、テトラデカン二酸、エイコサン二酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタンジカルボン酸、2-メチルオクタンジカルボン酸、3,8-ジメチルデカンジカルボン酸、3,7-ジメチルデカンジカルボン酸、ダイマー酸、水添ダイマー酸や、オクテニルコハク酸、ドデセニルコハク酸、オクタデセニルコハク酸のようなアルケニルコハク酸、フマル酸、マレイン酸、イタコン酸といった脂肪族ジカルボン酸およびそれらのエステル形成性誘導体、テレフタル酸、イソフタル酸、オルソフタル酸、1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸およびそれらのエステル形成性誘導体、1,4-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキセンジカルボン酸などの脂環族ジカルボン酸およびそれらのエステル形成性誘導体等が挙げられる。
 ジオール成分としては、具体的には、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール,1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、トリメチルペンタンジオール、2-エチル-1,3-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、エイコサンジオール、ネオペンチルグリコールヒドロキシピバレート等の脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール等の脂環式ジオール、ビスフェノールAまたはビスフェノールSのエチレンオキサイド付加物あるいはプロピレンオキサイド付加物等の芳香環含有ジオール、ダイマー酸の還元物等が挙げられる。
 ヒドロキシアルカン酸成分としては、具体的には、3-ヒドロキシブタン酸、4-ヒドロキシペンタン酸、5-ヒドロキシヘキサン酸等が挙げられる。
 ラクトンとしては、γ-バレロラクトン、δ-バレロラクトン、ε-カプロラクトン、α-メチル-β-プロピオラクトン、β-メチル-β-プロピオラクトン、3-n-プロピル-δ-バレロラクトン、6,6-ジメチル-δ-バレロラクトン、グリコリド、ラクタイド等が挙げられる。
 脂肪族/芳香族ポリカーボネートジオール類としては、ジオールとカーボネート化合物とのエステル交換反応、環状炭酸エステル化合物を開環重合させて得られるもの、またはジオールとクロロ蟻酸エステル又はホスゲンとの反応により得られるものである。
 脂肪族/芳香族ポリカーボネートジオール類としては、含まれるアルキレン鎖の50モル%以上が炭素数6以上のアルキレン基であることが好ましく、90モル%以上が炭素数6以上のアルキレン基であることが更に好ましい。最も好ましくは、含まれるアルキレン鎖の50モル%以上が炭素数8以上のアルキレン基であるポリカーボネートジオールである。
 得られるウレタン変性ポリイミド系樹脂の結晶化抑制や溶解性の観点から、前記の脂肪族/芳香族ポリカーボネートジオール類は、その骨格中に複数種のアルキレン基を有するポリカーボネートジオールが好ましい。同様に、側鎖を含むアルキレン基を有するポリカーボネートジオールが好ましい。
 (b-1)ポリオキシアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(ネオペンチルグリコール/テトラメチレングリコール)等が挙げられる。
 (b-1)成分の共重合量は、(b-1)成分とポリアミン残基誘導体からなるポリウレタンとしての質量がウレタン変性ポリイミド系樹脂の5質量%以上70質量%以下とすることが好ましく、10質量%以上40質量%以下とすることが更に好ましい。共重合量が上記範囲未満では弾性率が充分に低下せず、積層した場合に反りが発生したり、非窒素系溶媒への溶解性が低下するため5℃~30℃において1ヶ月以内に樹脂が析出してくるおそれがある。この傾向は特に、本発明で好ましく用いられるγ-ブチロラクトン、グライム類やシクロヘキサノンを溶媒として用いた場合に顕著である。一方、上記範囲を超えると、難燃性、機械特性、耐熱性が低下する場合がある。
 (b-2)ビスフェノールのポリアルキレンオキサイド付加体は、下記一般式[III]で表されるものであり、変性ポリイミド系樹脂に、非窒素系溶媒溶解性、可撓性を付与する。ポリアルキレンオキサイドとしては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリテトラメチレンオキサイド等が挙げられる。好ましくは数平均分子量が200以上2000以下のものが用いられる。具体的にはビスフェノールAのポリエチレンオキサイド付加体、ビスフェノールAのポリプロピレンオキサイド付加体などが挙げられる。
Figure JPOXMLDOC01-appb-I000005
(式[III]中、RはC~C20のアルキレン基、R及びRは水素または炭C~Cのアルキル基を表し、互いに同じであっても異なってもよく、mは1以上の整数であり、nは1以上の整数である。)
 (b-2)成分の共重合量は、(b-2)成分とポリアミン残基誘導体からなるポリウレタンとしての質量がウレタン変性ポリイミド系樹脂の10質量%以上75質量%以下とすることが好ましく、20質量%以上70質量%以下とすることが更に好ましい。共重合量が上記範囲未満では、非窒素系溶媒への溶解性が低下するため、5℃~30℃において1ヶ月以内に樹脂が析出してくるおそれがある。この傾向は特に、本発明で好ましく用いられるγ-ブチロラクトン、グライム類やシクロヘキサノンを溶媒として用いた場合に顕著である。一方、上記範囲を超えると、難燃性、機械特性、耐熱性が低下する場合がある。
 (A)成分を構成する(c)脂肪族ポリアミン残基誘導体としては、脂肪族ポリイソシアネート、脂肪族ポリアミンが用いられる。脂肪族ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等が挙げられる。好ましくはヘキサメチレンジイソシアネートである。脂肪族ポリアミンとしては、ヘキサメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、リジンジアミン等が挙げられる。好ましくはヘキサメチレンジアミンである。
 (A)成分を構成する(c)芳香族ポリアミン残基誘導体としては、芳香族ポリイソシアネート、芳香族ポリアミンが用いられる。芳香族ポリイソシアネートとしては、例えば、ジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジエチルジフェニルメタン-2,4′-ジイソシアネート、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメトキシジフェニルメタン-2,4′-ジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、ジフェニルメタン-3,3′-ジイソシアネート、ジフェニルメタン-3,4′-ジイソシアネート、ジフェニルエーテル-4,4′-ジイソシアネート、ベンゾフェノン-4,4′-ジイソシアネート、ジフェニルスルホン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4′-[2,2ビス(4-フェノキシフェニル)プロパン]ジイソシアネート、3,3′または2,2′-ジメチルビフェニル-4,4′-ジイソシアネート、3,3′-または2,2′-ジエチルビフェニル-4,4′-ジイソシアネート、3,3′-ジメトキシビフェニル-4,4′-ジイソシアネート、3,3′-ジエトキシビフェニル-4,4′-ジイソシアネート等が挙げられる。耐熱性、密着性、溶解性、コスト面などを考慮すれば、芳香族ポリイソシアネートは、ジフェニルメタン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネート、m-キシリレンジイソシアネート、3,3′または2,2′-ジメチルビフェニル-4,4′-ジイソシアネートが好ましく、ジフェニルメタン-4,4′-ジイソシアネート、トリレン-2,4-ジイソシアネートが更に好ましい。
 芳香族ポリアミンとしては、例えば、ジフェニルメタン-2,4′-ジアミン、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメチルジフェニルメタン-2,4′-ジアミン、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジエチルジフェニルメタン-2,4′-ジアミン、3,2′-又は3,3′-又は4,2′-又は4,3′-又は5,2′-又は5,3′-又は6,2′-又は6,3′-ジメトキシジフェニルメタン-2,4′-ジアミン、ジフェニルメタン-4,4′-ジアミン、ジフェニルメタン-3,3′-ジアミン、ジフェニルメタン-3,4′-ジアミン、ジフェニルエーテル-4,4′-ジアミン、ベンゾフェノン-4,4′-ジアミン、ジフェニルスルホン-4,4′-ジアミン、トリレン-2,4-ジアミン、トリレン-2,6-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、ナフタレン-2,6-ジアミン、4,4′-[2,2ビス(4-フェノキシフェニル)プロパン]ジアミン、3,3′または2,2′-ジメチルビフェニル-4,4′-ジアミン、3,3′-または2,2′-ジエチルビフェニル-4,4′-ジアミン、3,3′-ジメトキシビフェニル-4,4′-ジアミン、3,3′-ジエトキシビフェニル-4,4′-ジアミン等が挙げられる。耐熱性、密着性、溶解性、コスト面などを考慮すれば、芳香族ポリアミンは、ジフェニルメタン-4,4′-ジアミン、トリレン-2,4-ジアミン、m-キシリレンジアミン、3,3′または2,2′-ジメチルビフェニル-4,4′-ジアミンが好ましく、ジフェニルメタン-4,4′-ジアミン、トリレン-2,4-ジアミンが更に好ましい。
 (c)脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体は、単独でも二種以上を組み合わせて用いても構わない。脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体の比率は特に制限はなく、(b)ジオール化合物量との兼ね合いで、溶解性、低反り性が損なわれない範囲で適宜設定して構わない。
 (A)ウレタン変性ポリイミド系樹脂においては、脂肪族ポリアミン残基誘導体、芳香族ポリアミン残基誘導体のほかに、低反り性、耐熱性、難燃性を損なわない範囲で必要に応じ、さらに脂環族ポリアミン残基誘導体を共重合しても構わない。具体的には、脂環族ポリアミン残基誘導体としては、例えば、イソホロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、水添m-キシリレンジイソシアネート、ノルボヌレンジイソシアネート等の脂環族ポリイソシアネートが挙げられる。耐熱性、密着性、溶解性、コスト面などを考慮すれば、イソホロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネートが好ましい。
 さらに、3官能以上のポリアミン残基誘導体を用いてもよく、経日変化を避けるために必要なブロック剤で安定化したものを使用してもよい。3官能以上のポリアミン残基誘導体が3官能以上のポリイソシアネートである場合、ブロック剤としては、アルコール、フェノール、オキシム等があるが、特に制限はない。これらの3官能以上のポリイソシアネートは単独でも二種以上を組み合わせて用いても構わない。イソシアネート過剰で重合した場合、重合終了後に樹脂末端のイソシアネート基をアルコール類、ラクタム類、オキシム類等のブロック剤でブロックすることもできる。
 なお、(A)成分においては、目的とする性能を損なわない範囲で必要に応じ、さらに脂肪族、脂環族、芳香族ジカルボン酸類を共重合しても構わない。脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸、ドデカン二酸、エイコサン二酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタンジカルボン酸、2-メチルオクタンジカルボン酸、3,8-ジメチルデカンジカルボン酸、3,7-ジメチルデカンジカルボン酸、9,12-ジメチルエイコサン二酸、フマル酸、マレイン酸、ダイマー酸、水添ダイマー酸等が挙げられ、脂環族ジカルボン酸としては、例えば1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、4,4′-ジシクロヘキシルジカルボン酸等が挙げられ、芳香族ジカルボン酸としては、例えばイソフタル酸、テレフタル酸、オルソフタル酸、ナフタレンジカルボン酸、オキシジ安息香酸、スチルベンジカルボン酸等が挙げられる。これらのジカルボン酸類は、単独でも二種以上を組み合わせて用いても構わない。耐熱性、密着性、溶解性、コスト面などを考慮すれば、ジカルボン酸類は、セバシン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸、イソフタル酸が好ましい。
 (A)ウレタン変性ポリイミド系樹脂は、酸無水物基を有するポリカルボン酸成分とイソシアネート成分から脱炭酸により生成する方法(イソシアネート法)、または酸無水物基を有するポリカルボン酸成分とアミンを反応させアミック酸にした後、閉環させる方法(直接法)などの公知の方法で製造される。工業的には、ウレタン変性が可能なイソシアネート法が有利である。
 (A)ウレタン変性ポリイミド系樹脂をイソシアネート法で製造する場合、(a)成分の酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体と、(b)成分のジオール化合物の配合量は、イソシアネート基数/(酸無水物基数+カルボン酸基数+水酸基数)=0.80~1.20となるようにすることが好ましい。前記範囲を外れると、ウレタン変性ポリイミド系樹脂の分子量を高くすることが困難になり、耐熱性、屈曲性が低下したり、塗膜が脆い場合がある。
 (A)ウレタン変性ポリイミド系樹脂の重合反応は、好ましくはエーテル系溶媒、エステル系溶媒、ケトン系溶媒、及び芳香族炭化水素系溶媒から選ばれる少なくとも1種の有機溶媒の存在下に、例えばイソシアネート法では遊離発生してくる炭酸ガスを反応系より除去しながら加熱縮合させることにより行う。
 エーテル系溶媒としては、例えば、ジエチレングリコールジメチルエーテル(ジグライム)、ジエチレングリコールジエチルエーテル(エチルジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、トリエチレングリコールジエチルエーテル(エチルトリグライム)等のグライム類が挙げられ、エステル系溶媒としては、例えば、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート(ブチルセロソルブアセテート)、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート(エチルカルビトールアセテート)、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールジアセテート、メチルベンゾエート、エチルベンゾエート等が挙げられ、ケトン系溶媒としては、例えば、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等が挙げられ、芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、ソルベッソ等が挙げられる。これらは単独でも二種以上を組み合わせて用いても構わない。
 (A)ウレタン変性ポリイミド系樹脂のワニスを製造するには、重合後、そのままワニスとして用いることができるように、生成するウレタン変性ポリイミド系樹脂を溶解する溶媒を選択して用いることが好ましい。この場合、溶媒置換などの煩雑な操作が無くなり、安価に製造することが可能となる。溶媒の沸点は140℃以上230℃以下であることが好ましい。140℃未満では、重合反応中に溶媒が揮発するおそれがある他、例えば、スクリーン印刷を行う場合、溶媒の揮発が早く版詰まりをおこす可能性がある。230℃を超えると、低温乾燥/硬化性を付与することが困難になる。比較的高揮発性であって、低温乾燥/硬化性を付与でき、かつワニス安定性に優れ、効率良く均一系で反応を行うためには、γ-ブチロラクトン、シクロヘキサノン、ジグライム、トリグライム、エチルカルビトールアセテートが好ましい。
 溶媒の使用量は、生成するウレタン変性ポリイミド系樹脂の0.8~5.0倍(質量比)とすることが好ましく、0.9倍~2.0倍とすることがより好ましい。使用量が上記範囲未満では、合成時の粘度が高すぎて、攪拌不能により合成が困難となる傾向があり、上記範囲を超えると、反応速度が低下する傾向がある。
 (A)ウレタン変性ポリイミド系樹脂の製造方法としては、イソシアネート法の場合、例えば(1)(a)成分、(b)成分、及び(c)成分を一度に使用し、一括して反応させて、ウレタン変性ポリイミド系樹脂を得る方法、(2)(a)成分及び/又は(b)成分と、過剰量の(c)成分とを反応させて末端にイソシアネート基を有するウレタン変性オリゴマーを合成した後、(a)成分及び/又は(b)成分を追加して反応させてウレタン変性ポリイミド系樹脂を得る方法、(3)過剰量の(a)成分及び/又は(b)成分と、(c)成分を反応させて末端にカルボン酸基及び/又は酸無水物基及び/又は水酸基を有するウレタン変性オリゴマーを合成した後、(c)成分を追加して反応させてウレタン変性ポリイミド系樹脂を得る方法が挙げられる。
 イソシアネート法の場合、反応温度は60~200℃とすることが好ましく、100~180℃とすることがより好ましい。反応温度が上記範囲未満では、反応時間が長くなり過ぎ、上記範囲を超えると、反応中に、モノマー成分の分解が生じる場合がある。また、三次元化反応が生じてゲル化が起こり易い。反応温度は多段階で行ってもよい。反応時間は、バッチの規模、採用される反応条件、特に反応濃度により適宜選択することができる。
 イソシアネート法の場合、反応を促進するためにトリエチルアミン、ルチジン、ピコリン、ウンデセン、トリエチレンジアミン(1,4-ジアザビシクロ[2.2.2]オクタン)、DBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)等のアミン類、リチウムメチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムブトキサイド、フッ化カリウム、フッ化ナトリウム等のアルカリ金属、アルカリ土類金属化合物あるいはチタン、コバルト、スズ、亜鉛、アルミニウムなどの金属、半金属化合物などの触媒の存在下に行ってもよい。
 (A)ウレタン変性ポリイミド系樹脂の対数粘度は、好ましくは0.1dl/g以上2.0dl/g以下であり、更に好ましくは0.2dl/g以上1.8dl/g以下である。対数粘度が上記範囲未満では、耐熱性が低下したり、塗膜が脆い場合がある。またペーストのタック性が強く版離れが悪くなる。一方、上記範囲より大きいと、溶媒に溶解しにくくなり、重合中に不溶化しやすい。また、ワニスの粘度が高くなり、ハンドリングが困難になったり、基材との密着性が低下する。さらに、ペーストの不揮発分濃度を高くすることができなくなり、厚膜形成が困難になる。モノマー比、重合温度といった重合条件を適宜調整することで、この範囲の対数粘度のウレタン変性ポリイミド系樹脂を得ることができる。
 (A)ウレタン変性ポリイミド系樹脂のガラス転移温度は、好ましくは20℃以上であり、更に好ましくは60℃以上である。上記温度未満では、耐熱性が不足し、また樹脂がブロッキングするおそれがある。上限は特に限定されないが、溶剤溶解性の観点から300℃以下が好ましい。モノマー比などの重合条件を適宜調整することで、この範囲のガラス転移温度のウレタン変性ポリイミド系樹脂を得ることができる。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、(A)ウレタン変性ポリイミド系樹脂を硬化させることにより、被膜形成後の膜特性を向上させる目的で、(B)1分子あたり2個以上のエポキシ基を有するエポキシ樹脂を含有する。
 (B)成分のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、可撓性エポキシ樹脂、エポキシ化ポリブタジエン、多官能エポキシ樹脂、アミン型エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂、ビスフェノールS型エポキシ樹脂、トリグリシジルイソシアヌレート、ビキシレノール型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、リン含有エポキシ樹脂等が挙げられ、これらを単独で又は2種類以上組み合わせて用いても構わない。
 これらのエポキシ樹脂のうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、1分子中にエポキシ基を2個より多く有するフェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、アミン型エポキシ樹脂は、非ハロゲン系であり、(A)成分のウレタン変性ポリイミド系樹脂との相溶性、耐溶剤性、耐薬品性、耐湿性の向上の点で好ましい。
 (B)エポキシ樹脂の使用量は、ウレタン変性ポリイミド系樹脂100質量部に対して1~50質量部が好ましく、2~40質量部が更に好ましく、3~30質量部が特に好ましい。エポキシ樹脂の配合量が上記範囲未満では、半田耐熱性、耐溶剤性、耐薬品性、耐湿性が低下する傾向にあり、上記範囲を超えると、低反り性、機械特性、耐熱性、ワニス安定性及びウレタン変性ポリイミド系樹脂との相溶性が低下する傾向にある。
 (A)成分に(B)成分を加えた合算使用量は、ウレタン変性ポリイミド系樹脂組成物の不揮発分全体を100質量%とした場合、好ましくは40~90質量%である。更に好ましくは45~80質量%である。
 (B)エポキシ樹脂には、希釈剤として、1分子中にエポキシ基を1個だけ有するエポキシ化合物をさらに含んでいても構わない。
 (B)エポキシ樹脂の添加方法としては、あらかじめ添加するエポキシ樹脂をウレタン変性ポリイミド系樹脂に含まれる溶媒と同一の溶媒に溶解してから添加してもよく、また直接、ウレタン変性ポリイミド系樹脂に添加してもよい。
 なお、本発明においては、エポキシ樹脂の他に、ポリイソシアネート、シアネートエステル,オキセタン、アクリレートといった公知慣用の硬化系を併用しても構わない。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、塗工、印刷時の作業性及び被膜形成後の膜特性を向上させるため、(C)無機あるいは有機フィラーを含有する。
 (C)無機あるいは有機フィラーとしては、上記のウレタン変性ポリイミド系樹脂中に分散してチキソトロピー性を付与できるものであればよく、特に制限はない。このような無機フィラーとしては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化硅素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al・5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO-Al)、イットリア含有ジルコニア(Y-ZrO)、硅酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、硫酸バリウム(BaSO)、有機ベントナイト、カーボン(C)などを使用することができ、これらは単独でも二種以上を組み合わせて用いても構わない。得られるペーストの色調、透明性、機械特性、チキソトロピー性付与の点から、シリカ微粒子が好ましい。
 無機フィラーとしては、平均粒子径50μm以下、最大粒子径100μm以下の粒子径を持つものが好ましく、平均粒子径20μm以下が更に好ましく、平均粒子径10μm以下が最も好ましい。ここでいう平均粒子径(メジアン径)は、レ-ザ回析・散乱式粒度分布測定装置を用いて、体積基準で求められる。平均粒子径が50μmを超えると、十分なチキソトロピー性を有する組成物が得られにくくなり、得られる塗膜の屈曲性が低下する。最大粒子径が100μmを超えると、塗膜の外観、密着性が不十分となる傾向にある。
 有機フィラーとしては、上記したウレタン変性ポリイミド系樹脂溶液中に分散してチキソトロピー性を付与できるものであればよく、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、エポキシ樹脂粒子等が挙げられる。
 (C)無機あるいは有機フィラーの使用量は、ウレタン変性ポリイミド系樹脂組成物の不揮発分全体を100質量%とした場合、好ましくは0.5~25質量%である。更に好ましくは2~15質量%、特に好ましくは3~12質量%である。無機あるいは有機フィラーの配合量が0.5質量%未満では、印刷性が低下する傾向にあり、25質量%を超えると、塗膜の屈曲性などの機械特性、透明性が低下する傾向にある。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、難燃性を持つために、(D)非ハロゲン系難燃剤を含有する。(D)非ハロゲン系難燃剤は、空気雰囲気下350℃における重量減少率が50%以上90%以下の成分(D-1)と0%以上20%以下の成分(D-2)の2成分を必須の成分と含有することを特徴とする。(D-1)成分の重量減少率は60%以上85%以下が好ましく、(D-2)成分の重量減少率は0%以上15%以下が好ましい。
 上記の重量減少率は、具体的には、TGA(熱重量分析)による空気雰囲気下、昇温速度10℃/分で常温から100℃まで加熱し30分保持した後、昇温速度10℃/分で600℃まで、アルミニウムパン上で加熱した場合の、150℃から350℃における重量減少率を言う。このように重量減少率が大きい難燃剤と重量減少率が小さい難燃剤を非ハロゲン系難燃剤として配合することにより、極めて少ない添加量で高い難燃性を達成することができる。この理由は、ウレタン変性ポリイミド系樹脂より重量減少率の高い難燃剤が揮発することで不燃性雰囲気を作り出すとともに、表面にチャーを形成し樹脂分解ガス発生を抑制する効果と、重量減少率の低い難燃剤と樹脂との反応や、表面断熱構造の形成などが複合して効率的な難燃性が得られるためであると推測される。そして、その結果、ウレタン変性ポリイミド系難燃樹脂組成物からなる塗膜の耐熱性、屈曲性、ブリードアウト(ジューシング)などの他特性に難燃剤が与える影響を抑制することができる。
 このような(D)非ハロゲン系難燃剤としては、特に限定はされないが、(A)ウレタン変性ポリイミド系樹脂に相溶するリン系難燃剤を含むことが好ましい。ウレタン変性ポリイミド系樹脂の可塑剤として作用することにより、塗膜の低反り性を改良することができる。
 なお、本発明において、ウレタン変性ポリイミド系樹脂に相溶するリン系難燃剤とは、例えば、ウレタン変性ポリイミド計樹脂単独のTg(ガラス転移温度)に対して、配合された組成物のTgが低下するものであり、その挙動は例えば、DSC(示差走査熱量測定)の熱量変位位置や、DMA(動的粘弾性測定)における損失正接のピーク位置の変化で把握することができる。
 さらに、このような(D)非ハロゲン系難燃剤としては、ウレタン変性ポリイミド系樹脂及び溶媒に相溶しないフィラー型の非ハロゲン系難燃剤を含むことが好ましい。フィラー型の難燃剤が配合されることにより、塗膜の耐熱性、特に加熱時ブロッキング等の物理的耐熱性や難燃剤のブリードアウトを改良することができる。
 フィラー型の非ハロゲン系難燃剤としては、下記一般式[I]で表されるホスフィン酸金属塩、下記一般式[II]で表されるジホスフィン酸金属塩、少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、又は少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物が挙げられる。
 また、(D)非ハロゲン系難燃剤としては、難燃性、耐加水分解性、耐熱性や表面ブリードアウト抑制の点から、9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキサイド誘導体、フェノキシホスファゼン化合物、下記一般式[I]で表されるホスフィン酸金属塩、下記一般式[II]で表されるジホスフィン酸金属塩、少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物が好ましく、(D-1)成分が9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体を含み、(D-2)成分がフェノキシホスファゼン化合物、下記一般式[I]で表されるホスフィン酸金属塩、下記一般式[II]で表されるジホスフィン酸金属塩、少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物を含むことが更に好ましい。
Figure JPOXMLDOC01-appb-I000006
(式[I]及び式[II]中、R及びRは互いに同じであっても異なってもよく、線状又は分岐状のC~C10のアルキル及び/又はシクロアルキル及び/又はアリール及び/又はアラルキルであり、R及びRは互いに結合して隣接するリン原子とともに環を形成しても良い。Rは線状又は分岐状のC~C10のアルキレン、C~C10のシクロアルキレン、C~C10のアリーレン、C~C10のアルキルアリーレン又はC~C10のアリールアルキレンであり、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、K又はプロトン化した窒素塩基からなる群の少なくとも1種から選択されるカチオンであり、mは1~4の整数であり、nは1~4の整数であり、xは1~4の整数である。)
 9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体としては、例えば三光(株)のHCA(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)、HCA-HQ(10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)、SANKO-BCA(10-ベンジル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)、10-(2,5-ジヒドロキシ-6-メチルフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロキシ-2-ナフチル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、2-(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド-10-イル)メチルコハク酸ビス(2-ヒドロキシエチル)エステル、10-メチル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-フェニル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、エチル(3-(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド-10-イル)メチル)-2,5-ピロリジンジオン等が挙げられる。
 これらの9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体のうち、(A)ウレタン変性ポリイミド系樹脂に相溶するものが好ましく、SANKO-BCA(10-ベンジル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)が更に好ましい。HCA(9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)、HCA-HQ(10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド)等はエポキシ樹脂との反応性を有するが、表面にブリードを生じたり、ウレタン変性ポリイミド系樹脂との相溶性、非窒素系溶媒への溶解性に劣る傾向にあるため、低そり性等の性能も考慮して適宜選択する。
 フェノキシホスファゼン化合物としては、例えば、大塚化学(株)製の商品名SPE-100、SPB-100L等の環状フェノキシホスファゼン、(株)伏見製薬所製の商品名FP-300等の環状シアノフェノキシホスファゼン、大塚化学(株)製の商品名SPH-100等の環状ヒドロキシフェノキシホスファゼン、その他、鎖状フェノキシホスファゼン、架橋フェノキシホスファゼン等が挙げられるが、鎖状ホスファゼンは分子末端に置換基を有するため、一般に環状ホスファゼンに比較してリン含有量が低下する。したがって本発明においては、環状ホスファゼンが好ましく、環状三量体及び/又は四量体ホスファゼンが更に好ましい。SPH-100等のウレタン変性ポリイミド系樹脂と反応する官能基を有する反応性のホスファゼンを使用する場合、硬化系に組み込まれるため、表面へのブリードが生じず、好ましい。
 また、ウレタン変性ポリイミド系樹脂と反応する官能基を有しない非反応性のホスファゼンを使用する場合、結晶性のものは経時で表面にブリードを生じたり、過酷な使用条件下で加水分解などの影響を受けて遊離のリンを溶出したり、分解物により絶縁特性が低下する場合があるため、好ましくは、SPB-100L等の、25℃、1013.25hPaの条件下で液体であるホスファゼンを使用するのが好ましい。
 ホスフィン酸金属塩としては、例えば、ジメチルホスフィン酸Al、メチルエチルホスフィン酸Al、ジエチルホスフィン酸Alなどのジアルキルホスフィン酸Al塩、フェニルホスフィン酸Al、ジフェニルホスフィン酸Alなどのアリールホスフィン酸Al塩、メチルフェニルホスフィン酸Alなどのアルキルアリールホスフィン酸Al塩、1-ヒドロキシ-1H-ホスホラン-1-オキシドAl塩、2-カルボキシ-1-ヒドロキシ-1H-ホスホラン-1-オキシドAl塩などの置換基を有していてもよいアルキレンホスフィン酸のAl塩、これらのAl塩に対応するZn塩、Ca塩の他、他の金属等などが挙げられる。
 ジホスフィン酸塩の具体例としては、例えば、エタン-1,2-ビス(ホスフィン酸)Al塩などのアルカンビス(ホスフィン酸)Al塩、エタン-1,2-ビス(メチルホスフィン酸)Al塩などのアルカンビス(アルキルホスフィン酸)Al塩、これらのAl塩に対応するZn塩、Ca塩の他、他の金属塩等が挙げられる。
 すなわち、一般式[I]、一般式[II]において、R及びRは、好ましくは互いに同じであっても異なってもよく、線状もしくは分岐状のC~C10のアルキル基及び/又はシクロアルキル基及び/又はアリール基及び/又はアラルキル基であり、特に好ましくは互いに同じであっても異なってもよく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基又はフェニル基である。
 R及びRが結合して隣接するリン原子とともに形成する環は、環を構成するヘテロ原子として前記リン原子を有するヘテロ環であり、通常4~20員ヘテロ環、好ましくは5~16員ヘテロ環が挙げられる。前記リン原子を有するヘテロ環はビシクロ環であっても良く、また置換基を有していても良い。
 Rは、線状又は分岐状のC~C10のアルキレン基、C~C10のシクロアルキレン基、C~C10のアリーレン基、C~C10のアルキルアリーレン基又はC~C10のアリールアルキレン基であり、好ましくは、アルキレン基としてはメチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、tert-ブチレン基、n-ペンチレン基、n-オクチレン基、n-ドデシレン基、シクロアルキレン基としては、シクロヘキシレン基、シクロヘキサジメチレン基、アリーレン基としては、フェニレン基、又はナフチレン基、アルキルアリーレン基としては、メチルフェニレン基、エチルフェニレン基、tert-ブチルフェニレン基、メチルナフチレン基、エチルナフチレン基、又はtert-ブチルナフチレン基、アリールアルキレン基としては、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、又はフェニルブチレン基等が挙げられる。
 Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、K又はプロトン化した窒素塩基からなる群の少なくとも1種から選択されるカチオンであり、好ましくは、Mg、Ca、Al、Ti、Znイオンである。
 ホスフィン酸塩、ジホスフィン酸塩には、これらのホスフィン酸の多価塩及び/又はジホスフィン酸の多価塩の重合物又は縮合物も含まれる。
 ホスフィン酸塩類の平均粒子径は10μm以下であることが好ましく、より好ましくは8μm以下、更に好ましくは5μm以下である。平均粒子径が10μmを超えると十分な難燃性を発現するための使用量が増加し、経済的に不利となる。また絶縁信頼性、屈曲性、密着性、外観等が悪化する原因となる。このような好ましいホスフィン酸塩類としては、具体的には例えば、クラリアントジャパン社製、商品名エクソリットOP935、OP930として市販されている、ジエチルホスフィン酸アルミニウムが挙げられる。
 ホスフィン酸塩類の平均粒子径(メジアン径)は、レ-ザ回析・散乱式粒度分布測定装置を用いて、体積基準で求められる。
 少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物において、少なくとも1つのアミノ基を有するシアナミド誘導体とは、アミノ基と-N=C=N-又は-N=C(-N<)で表されるユニットを有する化合物であり、アミノ基含有トリアジン類(メラミン、メラム、メレム、メロン、グアナミン、アセトグアナミン、ベンゾグアナミン等のアミノ基含有1,3,5-トリアジン類、3-アミノ-1,2,4-トリアジン等のアミノ基含有1,2,4-トリアジン類等)、アミノ基含有トリアゾール類(2,5-ジアミノ-1,3,4-トリアゾール等のアミノ基含有1,3,4-トリアゾール類など)等の環状シアナミド誘導体、グアニジン類(グアニジン、グアニジン誘導体(ジシアンジアミド、グアニル尿素等))等の非環状シアナミド誘導体などが挙げられる。好ましいシアナミド誘導体は、アミノ基含有1,3,5-トリアジン類、グアニジン又はその誘導体であり、特にメラミン又はメラミンの縮合生成物である。これらは単独でも二種以上を組み合わせて用いても構わない。
 上記シアナミド誘導体と反応させるリン酸類とは、非縮合リン酸(オルトリン酸、メタリン酸、亜リン酸(ホスホン酸)、次亜リン酸(ホスフィン酸)など)、ポリリン酸などの無機リン酸である。ポリリン酸としては、ピロリン酸、三リン酸、四リン酸などの縮合リン酸類が含まれる。
 少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物として好ましいのは、メラミンの縮合生成物、メラミン又はメラミンの縮合生成物とリン酸の反応生成物、メラミン又はメラミンの縮合生成物とリン酸縮合物の反応生成物及びメラミン又はメラミンの縮合生成物とシアヌル酸の反応生成物のうちの少なくとも1種を含むものであり、更に好ましくは、メラミンポリホスフェート、メレムポリホスフェート、メラムポリホスフェート、ジメラミンピロホスフェート、メラミンシアヌレートであり、最も好ましいのは、縮合度が2以上、特に10以上50以下のより長い鎖長を有するメラミンポリホスフェート及びメラミンシアヌレートである。これらは単独でも二種以上を組み合わせて用いても構わない。
 少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物の平均粒子径は10μm以下であることが好ましく、より好ましくは8μm以下、更に好ましくは5μm以下である。平均粒子径が10μmを超えると、十分な難燃性を発現するための使用量が増加し、経済的に不利となる。また、絶縁信頼性、屈曲性、密着性、外観等が悪化する原因となる。このような好ましい少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物としては、具体的には例えば、チバスペシャリティーケミカル社製商品名MELAPURE 200、MC25、日産化学工業社製商品名PHOSMEL-200、三和ケミカル社製商品名MPP-A、堺化学工業社製商品名STABIACE MC-5F、MC-5S、MC-2010N等が挙げられる。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物中のリン含有率は1.4~7.0質量%であることが望ましく、この範囲になるように(D)成分の添加量を調節する。好ましくは1.6質量%以上4.8質量%以下であり、更に好ましくは2.0質量%以上4.0質量%以下である。リン含有率が上記範囲未満では、良好な難燃性が得られず、また、上記範囲を越えると、塗膜の機械特性、耐熱性、密着性や絶縁特性が低下する可能性がある。
 (D-1)成分と(D-2)成分の配合割合については、ウレタン変性ポリイミド系難燃樹脂組成物中のリン含有率及び必要とする難燃性が達成できれば、特に限定はされないが、質量比で(D-1):(D-2)=80:20~40:60の範囲で用いるのが好ましい。(D-1)成分が全(D)成分の80質量%を超えると、塗膜の耐熱性が損なわれやすく、40質量%未満では、低反り性が得られず、また(D-2)成分にフェノキシホスファゼンを使用した場合、ブリードアウトが生じる懸念がある。
 本発明においては、難燃性をより向上させる目的で、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリエチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、クレジルビス(2,6-キシレニル)ホスフェート、2-エチルヘキシルホスフェート、ジメチルメチルホスフェート、レゾルシノールビス(ジフェノールAビス(ジクレジル)ホスフェート、ジエチル-N,N―ビス(2-ヒドロキシエチル)アミノメチルホスフェート、ジエチルホスフィネート、フェニルホスフィネート、ジフェニルホスフィネート、有機ホスフィンオキサイド、リン酸アミド、赤燐等のリン系難燃剤、ポリリン酸アンモニウム、トリアジン、サクシノグアナミン、トリグアナミン、メレム、メラム、トリス(β-シアノエチル)イソシアヌレート、アセトグアナミン、硫酸グアニルメラミン、硫酸メレム、硫酸メラム等の窒素系難燃剤、ジフェニルスルホン-3-スルホン酸カリウム、芳香族スルホンイミド金属塩、ポリスチレンスルホン酸アルカリ金属塩等の金属塩系難燃剤、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニウム、酸化スズ等の水和金属系難燃剤、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化アンチモン、酸化ニッケル、酸化銅、酸化タングステン、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、スズ酸亜鉛等無機系難燃剤/難燃助剤、シリコーンパウダー等の難燃剤/難燃助剤等の非ハロゲン系難燃剤を併用しても構わない。これらを単独で又は2種類以上組み合わせて用いても構わない。具体的な使用量については、得られるウレタン変性ポリイミド系樹脂組成物やその硬化塗膜の電気特性、耐熱性、環境適性等の諸物性が損なわれない範囲で、適宜設定して構わない。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物には、密着性、耐薬品性、耐熱性等の特性をより一層向上するため、(E)硬化促進剤をさらに含有することができる。
 (E)硬化促進剤は、上記のウレタン変性ポリイミド系樹脂、エポキシ樹脂及び非ハロゲン系難燃剤の間の硬化反応を促進できるものであればよく、特に制限はない。
 (E)エポキシ樹脂硬化剤の具体例としては、例えば、イミダゾール誘導体、アセトグアナミン、ベンゾグアナミン等のグアナミン類、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類、これらの有機酸塩および/またはエポキシアダクト、三フッ化ホウ素のアミン錯体、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン,2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4,3,0]-5-ノネン)等の三級アミン類、これらの有機酸塩及び/又はテトラフェニルボロエート、ポリビニルフェノール、ポリビニルフェノール臭素化物、トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボロエート等の四級ホスホニウム塩類、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の四級アンモニウム塩類、前記ポリカルボン酸無水物、ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート、イルガキュアー261(チバ・スペシャルティ・ケミカルズ(株)製)、オプトマ-SP-170(ADEKA(株)製)等の光カチオン重合触媒、スチレン-無水マレイン酸樹脂、フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物等が挙げられる。これらを単独で又は2種類以上組み合わせて用いても構わない。好ましくは潜在硬化性を有する硬化促進剤であり、DBU、DBNの有機酸塩及び/又はテトラフェニルボロエートや、光カチオン重合触媒等が挙げられる。
 (E)硬化促進剤の使用量は、(A)ウレタン変性ポリイミド系樹脂100質量部に対して、0.1~20質量部が好ましい。20質量部を超えると、ウレタン変性ポリイミド系難燃樹脂組成物の保存安定性や塗膜の耐熱性が低下しやすく、0.1質量部未満では、硬化性が低下する場合がある。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物には、高温高湿度下の絶縁信頼性をより一層向上するため、(F)イオンキャッチャーを含有することができる。
 (F)イオンキャッチャーとしては、ウレタン変性ポリイミド系難燃樹脂組成物の硬化塗膜中にppmオーダーで存在する不純イオンや加水分解性塩素を捕捉してフレキシブルプリント配線基板の絶縁不良を低減させ、その絶縁信頼性を向上するものであれば特に制限はなく、例えば、有機系イオン交換樹脂、無機イオン交換体(ゼオライト、リン酸ジルコニウム、水和硝酸ビスマス、酸化アンチモン、マグネシウムアルミニウムハイドロタルサイト、ヒドロキシアパタイト等)が挙げられる。これらを単独で又は2種類以上組み合わせて用いても構わない。耐熱性や耐薬品性等を考慮すると無機イオン交換体を用いるのが好ましい。また、捕捉するべきイオンは陽イオンも陰イオンもあるので、両イオン交換タイプの無機イオン交換体を用いるか、あるいは陽イオン交換タイプの無機イオン交換体と陰イオン交換タイプの無機イオン交換体を併用するのが望ましい。
 両イオン交換タイプの無機イオン交換体としては、アンチモン-ビスマス系のものやジルコニウム-ビスマス系のものを用いることができる。また非アンチモン-ビスマス系のものが挙げられる。陽イオン交換タイプの無機イオン交換体としては、ジルコニウム系のものやアンチモン系のものを用いることができる。陰イオン交換タイプの無機イオン交換体としては、ビスマス系のものやマグネシウム-アルミニウム系のものを用いることができる。陰イオン交換タイプの無機イオン交換体のなかでも、アンチモンやビスマスといった重金属類を含まないものは、イオン交換能も高く環境調和性が高いため更に好ましい。
 イオン交換体の配合量は、組成物全量に対して1.0~15.0重量%の範囲が好ましい。無機イオン交換体の配合量が1.0重量%未満であると、イオン捕捉率が50%以下になって無機イオン交換体の配合による十分な効果を得られなくなるおそれがある。また、無機イオン交換体の配合量が15.0重量%程度になると、イオン捕捉率は80%以上になるが、無機イオン交換体の配合量をこれ以上増量してもイオン捕捉率は高まらず、コストに問題が生じると共に、耐熱性、耐薬品性、低反り性や屈曲性に問題が生じるおそれがある。また、陽イオン交換タイプのものと陰イオン交換タイプのものとを併用する場合、陽イオン交換タイプと陰イオン交換タイプのイオン捕捉剤の比率は、20:80~60:40の重量比の範囲に設定するのが好ましい。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物には、更に必要に応じて、着色顔料、染料、重合禁止剤、増粘剤、消泡剤、レベリング剤、カップリング剤/密着性付与剤、熱安定剤、酸化防止剤、滑剤、紫外線吸収剤、光安定剤、遮光剤、消光剤、金属不活性化剤、帯電防止剤、老化防止剤、可塑剤、相溶化剤のような公知慣用の添加剤類を添加することができる。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、前述した(A)、(B)、(C)、(D)、(E)、(F)の成分、さらに必要に応じその他の配合成分を配合し、ロールミル、ビーズミル、ミキサー等で均一に混合することにより得られる。各成分の十分な分散が得られる限り、混合方法に特に制限はない。3本ロールによる複数回の混練が好ましい。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、後述するB型粘度計での粘度が25℃で50dPa・s~2000dPa・sの範囲が好ましく、100dPa・s~800dPa・sの範囲が更に好ましい。粘度が50dPa・s未満であると、印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。粘度が2000Pa・sを超えると、印刷の際、ペーストの基材への転写性が低下しカスレが発生するとともに、印刷膜中のボイド及びピンホールが増加する傾向がある。
 揺変度(チキソトロピー性)も重要であり、本発明のウレタン変性ポリイミド系難燃樹脂組成物は、揺変度が後述する測定方法において1.1以上が好ましく、1.8以上が更に好ましい。上限は10.0以下が好ましく、9.0以下が更に好ましい。揺変度が1.1未満では、印刷後のペーストの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。10.0を超えると、ペーストがフローしなくなる傾向にある。揺変度は、揺変度付与剤としての(C)成分の添加量で調整することができる。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、例えば、ソルダーレジストとしては次のようにして硬化し、硬化物を得る。即ち、プリント配線板、フレキシブルプリント配線板(FPC)、チップオンフィルム(COF)などに、スクリーン印刷法、スプレーコート法、ロールコート法、静電塗装法、カーテンコート、ディップコート法等の方法により5~80μmの膜厚で本発明の組成物を塗布し、塗膜を60~120℃で予備乾燥させた後、120~200℃で本乾燥させる。乾燥は空気中でも不活性雰囲気中でもよい。
 このようにして得られた本発明のウレタン変性ポリイミド系難燃樹脂組成物は、被膜形成材料として、半導体素子や各種電子部品用オーバーコートインキ、ソルダーレジストインキ、層間絶縁膜に有用である他、塗料、コーティング剤、接着剤等としても使用できる。
 本発明の効果を示すために以下に実施例を挙げるが、本発明はこれらに何ら限定されるものではない。なお、実施例に記載された特性値は以下の方法によって測定されたものである。
<対数粘度>
 ウレタン変性ポリイミド系樹脂を、ポリマー濃度が0.5g/dlとなるようにN-メチル-2-ピロリドンに溶解し、30℃にてウベローデ型粘度管により溶液粘度を測定した。対数粘度は以下の式により定義した。
 (対数粘度)=(lnηrel)/C
 ln:自然対数
 ηrel:溶媒落下時間測定による純溶媒に対する溶液の粘度比(-)
 C:溶液の濃度(g/dl)
<350℃重量減少率>
 難燃剤単独およびウレタン変性ポリイミド系樹脂を、それぞれ約15mg採取し、空気雰囲気下(20ml/分)、昇温速度10℃/分で常温から100℃まで加熱し30分保持した後、昇温速度10℃/分で600℃まで、アルミニウムパン上で加熱し、150℃から350℃における重量減少率を求めた。
 使用装置;島津製作所製示差熱・熱重量同時測定装置DTG-60
<連続印刷性>
 ウレタン変性ポリイミド系難燃樹脂組成物を、実施例19に記載の方法で30分連続スクリーン印刷した際の、ペーストからの樹脂析出、粘度上昇を以下の判定基準に基づいて評価した。
 (判定)○:かすれ、樹脂析出、インク粘度上昇認められず
     ×:かすれ、樹脂析出、インク粘度上昇あり
<揺変度>
 ブルックフィールドBH型回転粘度計を用いて、次の手順で測定した。広口型遮光瓶(100ml)にウレタン変性ポリイミド系難燃樹脂組成物からなるペーストを入れ、恒温水槽を用いて液温を25℃±0.5℃に調整した。次いで、ガラス棒を用いて12~15秒かけて40回撹拌した後、所定のローターを設置して、5分静置した後、20rpmで3分回転させたときの目盛りを読み取った。粘度は、この目盛りに換算表の係数をかけて算出した。同じく25℃、2rpmで測定した粘度も算出し、これらの値から次式に従って揺変度を計算した。
 揺変度=粘度(2rpm)/粘度(20rpm)
<インクのポットライフ>
 ウレタン変性ポリイミド系難燃樹脂組成物を、密閉下、25℃×1ヶ月放置した後、樹脂の析出やゲル化の有無を以下の判定基準に基づいて評価した。
 (判定)○:異常なし
     △:析出物あり
     ×:固化
<リン含有率>
 湿式分解・モリブデンブルー比色法により測定した。ウレタン変性ポリイミド系難燃樹脂組成物を165℃×2時間硬化させて得られた試料を、試料中のリン濃度にあわせて適当量、三角フラスコに量りとり、硫酸3ml、過塩素酸0.5mlおよび硝酸3.5mlを加え、電熱器で半日かけて徐々に加熱分解した。溶液が透明になったら、さらに加熱して硫酸白煙を生じさせ、室温まで放冷し、この分解液を50mlメスフラスコに移し、2%モリブデン酸アンモニウム溶液5mlおよび0.2%硫酸ヒドラジン溶液2mlを加え、純水にてメスアップし、内容物をよく混合した。沸騰水浴中に10分間フラスコをつけて加熱発色した後、室温まで水冷し、超音波にて脱気し、溶液を吸収セル10mmに採り、分光光度計(波長830nm)にて空試験液を対照にして吸光度を測定した。先に作成しておいた検量線からリン含有量を求めた。
<難燃性>
 厚さ25μmのポリイミドフィルムを基材として、得られた15μm厚みの積層フィルムについて、UL94規格に従い難燃性を評価した。難燃性はUL規格でVTM-2以上が好ましく、VTM-0が最も好ましい。
<ブリードアウト>
 ポリイミドフィルムを基材として得られた積層フィルムを10cm×10cmに切り出した。25℃、65%で24時間調湿したサンプルをポリエチレン製袋に入れ密封して25℃の恒温槽に1週間~1ヶ月放置し、目視と表面を指触してタック感の有無を以下の判定基準に基づいて評価した。
 (判定)◎:3ヶ月後もブリード物、タック感なし
     ○:1ヶ月後もブリード物、タック感なし
     △:1ヶ月後にわずかにブリード物、タック感がある
     ×:1週間後に顕著なブリード物、タック感がある
<低反り性>
 ポリイミドフィルムを基材として得られた積層フィルムを10cm×10cmに切り出した。25℃、65%で24時間調湿したサンプルを下に凸の状態で水平なガラス板に載せ、四隅の高さの平均を以下の判定基準に基づいて評価した。
 (判定)○:高さ2mm未満
     △:高さ10mm未満
     ×:高さ10mm以上
<屈曲性>
 ポリイミドフィルムを基材として得られた積層フィルムについて、JIS-K5400に準じて評価を行った。心棒の直径は2mmとし、クラック発生の有無を確認した。
<線間絶縁抵抗>
 東洋紡製2層CCL(商品名バイロフレックス)上に線間50μmの櫛型パターンを作成し、1%硫酸洗浄した後、水洗乾燥した。回路上にペーストを全面印刷し、得られたソルダーレジスト層を160℃、120分の条件で加熱硬化させた。直流電圧100V印加時の線間絶縁抵抗を測定した。10の8乗以上が好ましい。
<半田耐熱性>
 銅箔を基材として得られた積層フィルムを、JIS-C6481に準じて260℃の半田浴に30秒間浸漬し、剥がれや膨れ等の外観異常の有無を以下の判定基準に基づいて評価した。
 (判定)○:外観異常なし
     △:わずかに外観異常あり
     ×:全面外観異常あり
<密着性>
 銅箔を基材として得られた積層フィルムに、JIS-K5600に準じて、1mmの碁盤目を100ヶ所作り、セロテープ(登録商標)による剥離試験を行い、碁盤目の剥離状態を観察した。ポリイミドフィルムを基材として得られた積層フィルムについても同様に剥離試験を行い、碁盤目の剥離状態を以下の判定基準に基づいて評価した。
 (判定)○:100/100で剥離なし
     △:70~99/100
     ×:0~70/100
<鉛筆硬度>
 銅箔を基材として得られた積層フィルムについて、JIS-K5400に準じて評価した。鉛筆硬度は2H以上が好ましく、3H以上がさらに好ましい。
<耐PCT性>
 ポリイミドフィルムを基材として得られた積層フィルムを、121℃、2atmの雰囲気下に48時間放置し、剥がれや溶解等の外観異常の有無を以下の判定基準に基づいて評価した。
 (判定)○:外観異常なし
     △:わずかに外観異常あり
     ×:全面外観異常あり
<耐薬品性>
 ポリイミドフィルムを基材として得られた積層フィルムを、10%HCl、10%NaOH、イソプロパノール、メチルエチルケトンの各溶媒に10秒間浸漬し、剥がれや溶解等の外観異常の有無を以下の判定基準に基づいて評価した。
 (判定)○:全ての溶媒に浸漬しても外観異常なし
     △:少なくとも一種の溶媒に浸漬した場合にわずかに外観異常
       あり
     ×:少なくとも一種の溶媒に浸漬した場合に全面外観異常あり
製造例1
 攪拌機、冷却管、窒素導入管及び温度計を備えた4ツ口2リットルセパラブルフラスコに、トリメリット酸無水物(純度99.9%、トリメリット酸含有量0.1%)166.0質量部、ビスフェノールAのポリプロピレンオキサイド付加体(三洋化成工業(株)製の商品名ニューポールBP-5P、分子量533)86.3質量部、ポリプロピレングリコール(三洋化成工業(株)製の商品名サンニックスPPG2000、分子量2000)108質量部、ヘキサメチレンジイソシアネート84.1質量部、ジフェニルメタン-4,4′-ジイソシアネート125.1質量部、γ-ブチロラクトン493.5質量部、及び触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセン1.5質量部を仕込み、窒素気流下、液内温30℃から160℃まで昇温し5時間反応させた後、ジグライムを246.8質量部加えて希釈し、室温まで冷却することで不揮発分40質量%の濃褐色ウレタン変性ポリイミド系樹脂溶液A-1を得た。
製造例2~5
 表1に記載した原料を使用し、実施例1と同様に重合した後、室温まで冷却することで不揮発分40質量%の濃褐色ウレタン変性ポリイミド系樹脂溶液A-2~A-5を得た。
製造例6
 攪拌機、冷却管、窒素導入管及び温度計を備えた4ツ口2リットルセパラブルフラスコに、トリメリット酸無水物(純度99.9%、トリメリット酸含有量0.1%)86.3質量部、エチレングリコールビスアンヒドロトリメリテート184.4質量部、ポリカプロラクトンジオール(ダイセル化学工業(株)製の商品名PLACCEL220、分子量2000)342.4質量部、ジフェニルメタン-4,4′-ジイソシアネート250.3質量部、γ-ブチロラクトン784.3質量部、及び触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセン1.5質量部を仕込み、窒素気流下、液内温30℃から120℃まで昇温し5時間反応させた後、ジグライムを392.1質量部加えて希釈し、室温まで冷却することで不揮発分40質量%の濃褐色ウレタン変性ポリイミド系樹脂溶液A-6を得た。
製造例7~8
 表1に記載した原料を使用し、実施例6と同様に重合した後、室温まで冷却することで不揮発分40質量%の濃褐色ウレタン変性ポリイミド系樹脂溶液A-7~A-8を得た。
Figure JPOXMLDOC01-appb-T000007
実施例1
 製造例1で得られたウレタン変性ポリイミド系樹脂溶液A-1の樹脂分48.8質量部に対して、jER152(ジャパンエポキシレジン(株)製フェノールノボラック型エポキシ樹脂の商品名)7.2質量部を加え、ジグライムで希釈した。さらに、フィラーとしてアエロジル#300(日本アエロジル(株)製親水性シリカ微粒子)を3.2質量部、非ハロゲン系難燃剤としてSANKO-BCA(三光(株)製)を19.1質量部、SPE-100(大塚化学(株)製)を19.2質量部、硬化促進剤としてUcat5002(サンアプロ(株)製)を0.5質量部、消泡剤としてフローレンAC-326F(共栄社化学(株)製)を1.5質量部、レベリング剤としてBYK-358(ビックケミー(株)製)を0.5質量部加え、まず粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散しチキソトロピー性を有するウレタン変性ポリイミド系難燃樹脂組成物からなるペーストを得た。ジグライムで粘度を調整したところ、溶液粘度が130ポイズ、揺変度は2.5であった。次に、厚さ18μmの電解銅箔の光沢面に、得られたウレタン変性ポリイミド系難燃樹脂組成物からなるペーストを乾燥後の厚さ15μmになるよう塗布した。80℃で10分熱風乾燥した後、空気雰囲気下、150℃で120分加熱して積層フィルムを得た。また、得られた積層フィルムの銅箔を塩化第二鉄溶液でエッチング除去することにより、フィルムを得た。同様に厚さ25μのポリイミドフィルム(カネカ製アピカルNPI)に塗布、乾燥加熱し、積層フィルムを得た。得られた組成物、積層フィルムの詳細と評価結果を表2に示す。
実施例2~18
 表2及び表3に記載した原料を使用し、実施例1と同様にウレタン変性ポリイミド系難燃樹脂組成物、積層フィルムを得た。得られた組成物、積層フィルムの詳細と評価結果を表2及び表3に示す。
実施例19
 東洋紡製2層CCL(商品名バイロフレックス、銅箔18μm、基材20μm)からサブトラクティブ法で得られた銅回路(L/S=50/50)上に、実施例5で得られたウレタン変性ポリイミド系樹脂組成物からなるペーストをSUSメッシュ版(株式会社ムラカミ製150メッシュ、乳剤厚30μm)で、印刷速度5cm/秒にて所定パターンを印刷し、空気雰囲気中で80℃で6分間乾燥した後、165℃にて60分加熱硬化することで、ウレタン変性ポリイミド系樹脂組成物からなるカバーレイ(被膜)を施したフレキシブルプリント配線板を得た。被膜の厚みは15μmであった。得られたフレキシブルプリント配線板は、柔軟性、屈曲性に優れたものであった。
比較例1~7
 表4に記載した原料を使用したほかは、実施例1と同様な操作でウレタン変性ポリイミド系難燃樹脂組成物、積層フィルムを得た。得られた組成物、積層フィルムの詳細と評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表2~4から明らかなように、実施例1~18の本発明のウレタン変性ポリイミド系難燃樹脂組成物から形成した硬化塗膜は、低温硬化可能であり、反りがなく、屈曲性、難燃性、耐熱性、耐薬品性、電気特性、基材への密着性に優れていた。これに対して、比較例1~3、5~7では、難燃剤の特性、配合量が本発明の範囲を外れており、比較例4ではウレタン変性ポリイミド系樹脂が本発明の範囲を外れているため、これらのウレタン変性ポリイミド系樹脂難燃樹脂組成物から形成した硬化塗膜は、各特性において劣るものであった。
 本発明のウレタン変性ポリイミド系難燃樹脂組成物は、被膜形成材料として、フレキシブルプリント配線基板などの各種電子部品用オーバーコートインキ、ソルダーレジストインキ、層間絶縁膜に有用である他、塗料、コーティング剤、接着剤等として電子機器の幅広い分野で使用することができる。

Claims (13)

  1. (A)(a)酸無水物基を有する3価及び/又は4価のポリカルボン酸誘導体、(b)ジオール化合物、及び(c)脂肪族ポリアミン残基誘導体及び/又は芳香族ポリアミン残基誘導体を必須の成分として生成されるウレタン結合を有するウレタン変性ポリイミド系樹脂、
    (B)1分子あたり2個以上のエポキシ基を有するエポキシ樹脂、
    (C)無機あるいは有機フィラー、及び
    (D)非ハロゲン系難燃剤、
    を含有するウレタン変性ポリイミド系難燃樹脂組成物であって、
    (D)非ハロゲン系難燃剤が、空気雰囲気下350℃における重量減少率が50%以上90%以下の成分(D-1)と0%以上20%以下の成分(D-2)の2成分を必須の成分として含むことを特徴とするウレタン変性ポリイミド系難燃樹脂組成物。
  2. (D-1)成分の重量減少率が60%以上85%以下であり、(D-2)成分の重量減少率が0%以上15%以下であることを特徴とする請求項1に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  3. (D)非ハロゲン系難燃剤が、(A)ウレタン変性ポリイミド系樹脂に相溶するリン系難燃剤を含むことを特徴とする請求項1又は2に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  4. (D-1)成分が9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体を含み、(D-2)成分がフェノキシホスファゼン化合物を含むことを特徴とする請求項1から3のいずれかに記載のウレタン変性ポリイミド系難燃樹脂組成物。
  5. (D)非ハロゲン系難燃剤がフィラー型の非ハロゲン系難燃剤を含むことを特徴とする請求項1から3のいずれかに記載のウレタン変性ポリイミド系難燃樹脂組成物。
  6. (D-1)成分が9,10-ジヒドロ-9-オキサ-10-フェナントレン-10-オキシド誘導体を含み、(D-2)成分が下記一般式[I]で表されるホスフィン酸金属塩、下記一般式[II]で表されるジホスフィン酸金属塩、少なくとも1つのアミノ基を有するシアナミド誘導体とリン酸類との反応生成物、又は少なくとも1つのアミノ基を有するシアナミド誘導体とシアヌル酸類との反応生成物を含むことを特徴とする請求項1~3又は5のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式[I]及び式[II]中、R及びRは互いに同じであっても異なってもよく、線状又は分岐状のC~C10のアルキル及び/又はシクロアルキル及び/又はアリール及び/又はアラルキルであり、R及びRは互いに結合して隣接するリン原子とともに環を形成しても良い。Rは線状又は分岐状のC~C10のアルキレン、C~C10のシクロアルキレン、C~C10のアリーレン、C~C10のアルキルアリーレン又はC~C10のアリールアルキレンであり、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Zn、Fe、Zr、Ce、Bi、Sr、Mn、Li、Na、K又はプロトン化した窒素塩基からなる群の少なくとも1種から選択されるカチオンであり、mは1~4の整数であり、nは1~4の整数であり、xは1~4の整数である。)
  7. (D-2)成分が、25℃、1013.25hPaの条件下で液体であるフェノキシホスファゼン化合物を含むことを特徴とする請求項1から6のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  8. (b)ジオール化合物が、(b-1)ポリオキシアルキレングリコール、及び/又は(b-2)下記一般式[III]で表されるビスフェノールのポリアルキレンオキサイド付加体を含むことを特徴とする請求項1から7のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
    Figure JPOXMLDOC01-appb-I000002
    (式[III]中、RはC~C20のアルキレン基であり、R及びRは互いに同じであっても異なってもよく、水素またはC~Cのアルキル基を表し、mは1以上の整数であり、nは1以上の整数である。)
  9. (E)硬化促進剤をさらに含有することを特徴とする請求項1から8のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  10. (F)イオンキャッチャーをさらに含有することを特徴とする請求項1から9のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  11. (A)ウレタン変性ポリイミド系樹脂が、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、及び芳香族炭化水素系溶媒からなる群から選ばれる少なくとも1種の有機溶媒中で反応させて得られるものであることを特徴とする請求項1から10のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  12.  揺変度で1.1以上のチクソトロピー性を有することを特徴とする請求項1から11のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物。
  13.  ソルダーレジスト層、表面保護層、層間絶縁層又は接着剤層を有する電子部品であって、前記層が請求項1から12のいずれか一項に記載のウレタン変性ポリイミド系難燃樹脂組成物を乾燥硬化して得られるものであることを特徴とする電子部品。
PCT/JP2010/070282 2009-11-19 2010-11-15 ウレタン変性ポリイミド系難燃樹脂組成物 WO2011062137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080052655.3A CN102639640B (zh) 2009-11-19 2010-11-15 氨基甲酸酯改性聚酰亚胺系阻燃树脂组合物
KR1020127011114A KR101738193B1 (ko) 2009-11-19 2010-11-15 우레탄 변성 폴리이미드계 난연 수지 조성물
JP2010546986A JP5768372B2 (ja) 2009-11-19 2010-11-15 ウレタン変性ポリイミド系難燃樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263541 2009-11-19
JP2009263541 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062137A1 true WO2011062137A1 (ja) 2011-05-26

Family

ID=44059615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070282 WO2011062137A1 (ja) 2009-11-19 2010-11-15 ウレタン変性ポリイミド系難燃樹脂組成物

Country Status (5)

Country Link
JP (1) JP5768372B2 (ja)
KR (1) KR101738193B1 (ja)
CN (1) CN102639640B (ja)
TW (1) TWI462953B (ja)
WO (1) WO2011062137A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144672A (ja) * 2011-01-14 2012-08-02 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2012176806A1 (ja) * 2011-06-21 2012-12-27 三菱瓦斯化学株式会社 難燃化された脂環式ポリイミド樹脂組成物およびその薄肉成型体
WO2013021895A1 (ja) * 2011-08-05 2013-02-14 積水化学工業株式会社 導電材料及び接続構造体
WO2014065367A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
WO2014065365A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
WO2014065366A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
JPWO2013125086A1 (ja) * 2012-02-24 2015-07-30 日立化成株式会社 半導体用接着剤、フラックス剤、半導体装置の製造方法及び半導体装置
JP2015530452A (ja) * 2012-09-25 2015-10-15 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 難燃性ポリマー組成物および物品
JP2016121201A (ja) * 2014-12-24 2016-07-07 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
US9425120B2 (en) 2012-02-24 2016-08-23 Hitachi Chemical Company, Ltd Semiconductor device and production method therefor
JP6070911B1 (ja) * 2015-08-11 2017-02-01 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
WO2017026174A1 (ja) * 2015-08-11 2017-02-16 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
WO2019181721A1 (ja) * 2018-03-20 2019-09-26 積水化学工業株式会社 硬化性樹脂組成物、接着剤、接着フィルム、カバーレイフィルム、及び、フレキシブル銅張積層板
CN111295344A (zh) * 2017-11-20 2020-06-16 朗盛德国有限责任公司 含有二碳酸二酯的铝容器
JP2020132679A (ja) * 2019-02-13 2020-08-31 味の素株式会社 樹脂組成物
WO2024101296A1 (ja) * 2022-11-08 2024-05-16 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897395A (zh) * 2014-03-28 2014-07-02 哈尔滨工程大学 水滑石与聚酰亚胺复合泡沫材料的制备方法
JP6882263B2 (ja) * 2016-04-22 2021-06-02 日本ポリテック株式会社 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜
WO2018235756A1 (ja) * 2017-06-22 2018-12-27 大京化学株式会社 ポリエステル系合成繊維構造物の難燃加工
JP6844570B2 (ja) * 2018-03-29 2021-03-17 信越化学工業株式会社 シリコーンゴム−シリコーン変性ポリイミド樹脂積層体
CN113754696A (zh) * 2020-06-01 2021-12-07 华中师范大学 磷杂菲衍生物、制备及阻燃应用
CN111621260B (zh) * 2020-06-18 2022-01-25 株洲时代新材料科技股份有限公司 一种聚酰胺酸涂层胶及其制备方法
KR102200259B1 (ko) * 2020-07-24 2021-01-11 와이제이종합건설 주식회사 차열성 및 난연성을 향상시킨 콘크리트 구조물에 대한 폴리우레아 방수 공법
CN112227965B (zh) * 2020-12-09 2021-04-06 东营市金亿来石油机械有限公司 一种耐高温包覆抽油杆
CN117603529B (zh) * 2024-01-18 2024-03-22 汕头市嘉祥塑料制品厂有限公司 一种抑菌性奶粉盖及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129033A (ja) * 2000-10-31 2002-05-09 Otsuka Chem Co Ltd 難燃性樹脂組成物及びその成形体
JP2002235001A (ja) * 2001-02-09 2002-08-23 Toyobo Co Ltd 耐熱性組成物
JP2005047995A (ja) * 2003-07-30 2005-02-24 Kaneka Corp 難燃性を向上させた耐熱性樹脂組成物およびその利用
JP2007270137A (ja) * 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
JP2008297388A (ja) * 2007-05-30 2008-12-11 Toyobo Co Ltd 変性ポリイミド系樹脂組成物、該組成物を含有するペースト及び該ペーストから得られる電子部品
JP2009096915A (ja) * 2007-10-18 2009-05-07 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いたフレキシブル基板及び電子部品
JP2009185200A (ja) * 2008-02-07 2009-08-20 Hitachi Chem Co Ltd 樹脂組成物及びこれらを用いたフレキシブル配線板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251715A (ja) * 2005-03-14 2006-09-21 Kaneka Corp 難燃性を有する感光性樹脂組成物及び感光性ドライフィルムレジスト
EP2129744B1 (en) * 2007-04-03 2016-01-13 Basf Se Dopo flame retardant compositions
US8362103B2 (en) * 2007-05-11 2013-01-29 Mitsui Chemicals, Inc. Resin composition, dry film, and processed product made using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129033A (ja) * 2000-10-31 2002-05-09 Otsuka Chem Co Ltd 難燃性樹脂組成物及びその成形体
JP2002235001A (ja) * 2001-02-09 2002-08-23 Toyobo Co Ltd 耐熱性組成物
JP2005047995A (ja) * 2003-07-30 2005-02-24 Kaneka Corp 難燃性を向上させた耐熱性樹脂組成物およびその利用
JP2007270137A (ja) * 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
JP2008297388A (ja) * 2007-05-30 2008-12-11 Toyobo Co Ltd 変性ポリイミド系樹脂組成物、該組成物を含有するペースト及び該ペーストから得られる電子部品
JP2009096915A (ja) * 2007-10-18 2009-05-07 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いたフレキシブル基板及び電子部品
JP2009185200A (ja) * 2008-02-07 2009-08-20 Hitachi Chem Co Ltd 樹脂組成物及びこれらを用いたフレキシブル配線板

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144672A (ja) * 2011-01-14 2012-08-02 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
EP2725067A4 (en) * 2011-06-21 2015-01-14 Mitsubishi Gas Chemical Co FIRE-RESISTANT ALICYCLIC POLYIMIDE RESIN COMPOSITION AND THIN-WALLED FORM BODY THEREOF
WO2012176806A1 (ja) * 2011-06-21 2012-12-27 三菱瓦斯化学株式会社 難燃化された脂環式ポリイミド樹脂組成物およびその薄肉成型体
JPWO2012176806A1 (ja) * 2011-06-21 2015-02-23 三菱瓦斯化学株式会社 難燃化された脂環式ポリイミド樹脂組成物およびその薄肉成型体
EP2725067A1 (en) * 2011-06-21 2014-04-30 Mitsubishi Gas Chemical Company, Inc. Flameproofed alicyclic polyimide resin composition and thin-walled molded body of same
JP5162728B1 (ja) * 2011-08-05 2013-03-13 積水化学工業株式会社 導電材料及び接続構造体
WO2013021895A1 (ja) * 2011-08-05 2013-02-14 積水化学工業株式会社 導電材料及び接続構造体
US9425120B2 (en) 2012-02-24 2016-08-23 Hitachi Chemical Company, Ltd Semiconductor device and production method therefor
JPWO2013125086A1 (ja) * 2012-02-24 2015-07-30 日立化成株式会社 半導体用接着剤、フラックス剤、半導体装置の製造方法及び半導体装置
JP2015530452A (ja) * 2012-09-25 2015-10-15 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 難燃性ポリマー組成物および物品
WO2014065365A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
WO2014065366A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
WO2014065367A1 (ja) * 2012-10-26 2014-05-01 日東電工株式会社 ポリアミドイミド樹脂組成物
JP2016121201A (ja) * 2014-12-24 2016-07-07 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
JP6070911B1 (ja) * 2015-08-11 2017-02-01 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
WO2017026174A1 (ja) * 2015-08-11 2017-02-16 東洋紡株式会社 ウレタン変性ポリイミド系樹脂溶液
KR20180039580A (ko) * 2015-08-11 2018-04-18 도요보 가부시키가이샤 우레탄 변성 폴리이미드계 수지 용액
KR102533436B1 (ko) 2015-08-11 2023-05-17 도요보 엠씨 가부시키가이샤 우레탄 변성 폴리이미드계 수지 용액
CN111295344A (zh) * 2017-11-20 2020-06-16 朗盛德国有限责任公司 含有二碳酸二酯的铝容器
WO2019181721A1 (ja) * 2018-03-20 2019-09-26 積水化学工業株式会社 硬化性樹脂組成物、接着剤、接着フィルム、カバーレイフィルム、及び、フレキシブル銅張積層板
JPWO2019181721A1 (ja) * 2018-03-20 2021-02-04 積水化学工業株式会社 硬化性樹脂組成物、接着剤、接着フィルム、カバーレイフィルム、及び、フレキシブル銅張積層板
JP7265474B2 (ja) 2018-03-20 2023-04-26 積水化学工業株式会社 硬化性樹脂組成物、接着剤、接着フィルム、カバーレイフィルム、及び、フレキシブル銅張積層板
JP2020132679A (ja) * 2019-02-13 2020-08-31 味の素株式会社 樹脂組成物
JP7135919B2 (ja) 2019-02-13 2022-09-13 味の素株式会社 樹脂組成物
WO2024101296A1 (ja) * 2022-11-08 2024-05-16 富士フイルム株式会社 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Also Published As

Publication number Publication date
KR20120105438A (ko) 2012-09-25
TW201125897A (en) 2011-08-01
CN102639640B (zh) 2014-06-11
KR101738193B1 (ko) 2017-05-19
JPWO2011062137A1 (ja) 2013-04-04
TWI462953B (zh) 2014-12-01
CN102639640A (zh) 2012-08-15
JP5768372B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5768372B2 (ja) ウレタン変性ポリイミド系難燃樹脂組成物
JP5743042B1 (ja) ポリウレタン樹脂組成物およびこれを用いた接着剤組成物、積層体、プリント配線板
JP5224204B1 (ja) 熱硬化性樹脂組成物
JP2012144653A (ja) ウレタン変性ポリイミド系難燃樹脂組成物
US7935752B2 (en) Thermosetting resin composition and uses thereof
KR102285047B1 (ko) 폴리카보네이트이미드계 수지 페이스트 및 상기 페이스트를 경화하여 얻어지는 솔더 레지스트층, 표면 보호층, 층간 절연층 또는 접착층을 갖는 전자 부품
JP5223458B2 (ja) ウレタン変性ポリイミド系樹脂組成物、該組成物からなるペースト及び該ペーストから得られる電子部品
JP2008297388A (ja) 変性ポリイミド系樹脂組成物、該組成物を含有するペースト及び該ペーストから得られる電子部品
JP5610301B2 (ja) 熱硬化性樹脂組成物
KR102422913B1 (ko) 폴리카보네이트이미드 수지 및 그것을 포함하는 수지 조성물
CN107922615B (zh) 聚碳酸酯酰亚胺树脂和使用了其的糊剂
JP7310808B2 (ja) ポリカーボネートイミド樹脂、およびこれを用いたペースト

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052655.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010546986

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127011114

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831531

Country of ref document: EP

Kind code of ref document: A1