WO2011062050A1 - Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element - Google Patents

Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element Download PDF

Info

Publication number
WO2011062050A1
WO2011062050A1 PCT/JP2010/069409 JP2010069409W WO2011062050A1 WO 2011062050 A1 WO2011062050 A1 WO 2011062050A1 JP 2010069409 W JP2010069409 W JP 2010069409W WO 2011062050 A1 WO2011062050 A1 WO 2011062050A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric
layer
substrate
piezoelectric thin
Prior art date
Application number
PCT/JP2010/069409
Other languages
French (fr)
Japanese (ja)
Inventor
松田 伸也
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011541870A priority Critical patent/JPWO2011062050A1/en
Publication of WO2011062050A1 publication Critical patent/WO2011062050A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type

Definitions

  • the present invention relates to a method for manufacturing a piezoelectric thin film, a piezoelectric thin film, and a piezoelectric element.
  • piezoelectric materials such as PZT have been used as mechanical and electrical conversion elements such as drive elements and sensors.
  • MEMS devices Micro Electro Mechanical Systems
  • Si substrate Si substrate
  • the piezoelectric thin film enables easy manufacture of a large number of piezoelectric elements by batch processing on a large-area wafer, the cost reduction, the improvement of the electromechanical conversion efficiency, the drive element Advantages such as contributing to improvement of characteristics and sensor sensitivity occur.
  • a piezoelectric material such as PZT on a substrate such as Si
  • chemical methods such as CVD
  • physical methods such as sputtering and ion plating
  • liquid phase growth methods such as sol-gel.
  • a piezoelectric material such as PZT generally exhibits a good piezoelectric effect when the crystal has a perovskite structure with an ABO 3 type oxide.
  • This crystal structure can be controlled by the temperature at the time of film formation, and the relationship between the substrate temperature (film formation temperature) and the generated phase (crystal structure) when PZT is formed by sputtering or the like is shown in FIG. 1, p.145 FIG.
  • a represents amorphous
  • Flu represents fluorite phase
  • Py represents pyrochlore phase
  • Per represents perovskite phase.
  • the manufacturing method is a sputtering method (Sputter), a PLD method (Pulsed Laser Deposition), a CSD method (Chemical Solution Deposition), and a MOCVD method (Metal Organic Chemical Deposition) in order from the top.
  • sputtering method Sputter
  • PLD method Pulsed Laser Deposition
  • CSD Chemical Solution Deposition
  • MOCVD method Metal Organic Chemical Deposition
  • FIG. 6 shows the relationship between the substrate temperature of PZT and the lead composition ratio (Non-patent Document 1, p.146, FIG. 4).
  • the horizontal axis represents a substrate temperature (° C.)
  • the vertical axis represents a value normalized with a lead composition ratio of 1 when the substrate temperature for PZT film formation is 550 ° C.
  • the lead composition ratio decreases as the substrate temperature increases.
  • the temperature range in which the perovskite structure shown in FIG. 5 is obtained is very close to the temperature at which the constituent element lead is sublimated. In this temperature range, the lead composition ratio decreases as shown in FIG. For this reason, when PZT is formed at a preferred substrate temperature in order to obtain a good perovskite structure, lead deficiency occurs, leading to a decrease in crystallinity and a decrease in piezoelectric characteristics. On the other hand, when the lead is excessive, lead oxide remains in the thin film, and the insulation properties deteriorate.
  • Patent Document 1 a substrate temperature is set when a ferroelectric thin film (Pb x La 1-x Ti 1-x / 4 O 3 (0 ⁇ x ⁇ 0.25)) is formed by using a high-frequency magnetron sputtering method.
  • a ferroelectric thin film Pb x La 1-x Ti 1-x / 4 O 3 (0 ⁇ x ⁇ 0.25)
  • PbO powder is mixed when forming a target.
  • Patent Document 1 Although the amount of lead deposited on the substrate can be relatively increased by increasing the composition ratio of lead contained in the target, since the substrate temperature is high, it is once deposited on the substrate. A part of the lead will evaporate. For this reason, it is difficult to stably obtain a desired crystal structure by changing the lead composition ratio of the formed ferroelectric thin film, but this is not described in Patent Document 1.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a piezoelectric thin film having a desired crystal structure and a good element configuration, a piezoelectric thin film, and It is to provide a piezoelectric element.
  • the second substrate temperature is a temperature at which the composition ratio of a plurality of elements forming the piezoelectric material of the latter layer is closer to the stoichiometric composition ratio than the composition ratio of the initial layer.
  • the piezoelectric body is an oxide containing lead, 2.
  • a piezoelectric thin film in which a piezoelectric thin film having a predetermined crystal structure of a plurality of elements is formed on a substrate, The piezoelectric thin film has an initial layer and a late layer, A piezoelectric thin film characterized in that a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
  • a substrate A piezoelectric thin film having a predetermined crystal structure formed of a plurality of elements formed on the substrate;
  • the piezoelectric thin film has an initial layer and a late layer,
  • the piezoelectric element wherein a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
  • a piezoelectric thin film manufacturing method a piezoelectric thin film, and a piezoelectric element having a desired crystal structure and a good element structure.
  • FIG. 1 shows an example of a piezoelectric element 100 according to the present invention.
  • the piezoelectric element 100 has a thermal oxide film (SiO 2 ) 120, a lower electrode 130, a piezoelectric thin film 140, and an upper electrode 150 formed in order on a Si substrate 110.
  • the piezoelectric thin film 140 has an initial layer 140a formed on the lower electrode 130 and a late layer 140b formed continuously on the initial layer 140a.
  • the piezoelectric element 100 having the above configuration will be described below together with a method for manufacturing the piezoelectric element 100.
  • the piezoelectric thin film 140 is formed on the Si substrate 110 by a high-frequency magnetron sputtering method.
  • the piezoelectric thin film 140 is made of lead zirconate titanate (PZT).
  • FIG. 2 schematically shows a piezoelectric thin film manufacturing apparatus 200 (hereinafter referred to as manufacturing apparatus 200) for forming the piezoelectric thin film 140 and the like by the sputtering method.
  • manufacturing apparatus 200 a target 2 having a PZT raw material and a Si substrate 110 to be formed are disposed in a vacuum chamber 1.
  • the target 2 is held by a target dish 3 that also serves as an electrode, and the Si substrate 110 is held by a substrate holder 10 that also serves as an electrode.
  • the edge of the target dish 3 is covered with a cover 4, and the target dish 3 is disposed on the magnet 5, and the magnet 5 and the high-frequency electrode 6 below it are insulated from the vacuum chamber 1 by an insulator 7.
  • the high frequency electrode 6 is connected to a high frequency power source 8.
  • the substrate holder 10 includes a substrate heater 11 for heating the Si substrate 110 therein, and is connected to a rotating shaft 9 so that a film can be uniformly formed on the Si substrate 110.
  • the shaft 9 is connected to a motor 15, which is a rotation driving unit, provided outside the vacuum chamber 1 through a bearing 16 with a seal.
  • the vacuum chamber 1 is provided with a nozzle 14 for introducing a sputtering gas and an exhaust port A connected to an exhaust device (not shown).
  • the sputtering gas introduced from the nozzle 14 is a mixed gas of Ar gas supplied from the supply port B via the valve 12 and O 2 gas supplied from the supply port C via the valve 13.
  • FIG. 3 is a flowchart showing a process of forming a piezoelectric thin film on a Si substrate using the manufacturing apparatus 200 shown in FIG.
  • the target 2 is produced by mixing, firing, and pulverizing the PZT material powder prepared in a predetermined composition ratio, filling the target dish 3 and pressurizing.
  • the target dish 3 is set on the magnet 5 and the cover 4 is set thereon.
  • the composition ratio of the PZT material of the target 2 may be equivalent to a desired composition ratio (stoichiometric composition ratio) that can form a crystal structure in which the thin film after film formation exhibits good piezoelectric characteristics, and is known in the art.
  • the Si substrate 110 uses a Si single crystal plate oriented in ⁇ 100>, a thermal oxide film 120 is formed on the surface thereof, and platinum is preferentially oriented in ⁇ 100> as a lower electrode 130 on one side in advance. (Pt) is formed to a predetermined thickness by sputtering.
  • the thickness of the Si substrate 110 varies depending on the desired configuration of the piezoelectric element, but is generally about 300 to 500 ⁇ m.
  • the thermal oxide film 120 is formed for the purpose of protection and insulation, and is formed by heating the Si substrate at about 1500 ° C., and its thickness is generally about 0.1 ⁇ m.
  • the thickness of the lower electrode 130 is generally about 0.1 ⁇ m.
  • the Si substrate 110 having the thermal oxide film 120 and the lower electrode 130 is held by the substrate holder 10 with the lower electrode 130 facing downward, the vacuum chamber 1 is evacuated, and the Si substrate 110 is removed by the substrate heater 11.
  • the maintained first substrate temperature T1 is the substrate temperature during film formation, and as can be seen from FIG. 5, when forming the PZT thin film, the perovskite structure in which the thin film exhibits good piezoelectric characteristics. This is a temperature at which a crystal having can be easily formed.
  • the first substrate temperature T1 is the crystal structure of the initial layer when the initial layer is formed at the first substrate temperature T1
  • the second substrate temperature T2 The temperature at which the initial layer is formed so as to be closer to the perovskite structure than the crystal structure of the initial layer.
  • the Si substrate 110 while maintaining the above temperature, open the valve 12 and 13, a mixed gas of Ar gas and O 2 gas are mixed in a predetermined ratio is sputter gas was introduced into the vacuum chamber 1 from the nozzle 14 However, the degree of vacuum in the vacuum chamber 1 is maintained at a predetermined value. With the degree of vacuum maintained at a predetermined value, high frequency power is applied to the target 2 from the high frequency power supply 8 to generate plasma, and an initial layer 140a is formed on the Si substrate 110 (first step).
  • the initial layer 140a has a thickness of 0.01 ⁇ m to 10% or less of the thickness of the piezoelectric thin film 140 including the initial layer 140a, preferably 0.01 ⁇ m. To stop sputtering.
  • the initial layer 140a can form a crystal structure.
  • the crystal structure to be formed can be a substantially complete perovskite structure based on the substrate temperature set at the time of film formation with platinum preferentially oriented to ⁇ 100> as a base.
  • the initial layer 140a has a good perovskite structure, but the substrate temperature at the time of film formation is high. Therefore, a defect occurs in a part of the vapor pressure of lead, which is a constituent element, and the polarization changes due to this defect. Therefore, it does not have sufficient piezoelectric characteristics.
  • the thickness of the initial layer 140a By limiting the thickness of the initial layer 140a to 10% or less of the thickness of the piezoelectric thin film 140 formed on the Si substrate 110, the piezoelectric characteristics of the later layer 140b formed subsequently on the initial layer 140a are not significantly hindered. Thus, sufficient piezoelectric characteristics can be exhibited within a practical range.
  • the initial layer 140a is sufficiently thin as described above and close to the Si substrate 110 that is difficult to be displaced, the influence of insufficient piezoelectric characteristics is negligible.
  • the substrate heater 11 is controlled to set and maintain the temperature of the Si substrate 110 from 540 ° C. to 570 ° C., preferably 550 ° C.
  • the late layer 140b formed at the maintained second substrate temperature T2 has a lead composition as compared with the first substrate temperature T1 on which the initial layer 140a is formed.
  • the ratio can be improved and can be close to a desired composition ratio (stoichiometric composition ratio) that can form a crystal structure exhibiting better piezoelectric characteristics.
  • the Si substrate 110 In a state where the Si substrate 110 is maintained at the above temperature, high frequency power is again applied to the target 2 from the high frequency power source 8, and the late layer 140b is continuously formed on the initial layer 140a until a desired film thickness is obtained. (Second step).
  • the thickness of the latter layer 140b may be determined as appropriate according to the displacement, force, etc. required by the specifications. For example, in the case of an actuator, it is generally about 1 ⁇ m to 10 ⁇ m.
  • the late layer 140b Since the late layer 140b has a lower substrate temperature than that of the initial layer 140a, defects of lead, which is a constituent element, are less likely to occur compared to the initial layer 140a. On the other hand, because the substrate temperature is low, the late layer 140b is unlikely to form a perovskite structure, but actually forms a nearly perfect perovskite structure. This is because the initial layer 140a has an almost perfect perovskite structure, and the late layer 140b continuously formed on the initial layer 140a as a base is also helped by the same composition. It is presumed that the perovskite structure almost completely follows the lattice constant of the base.
  • the late layer 140b has an almost complete perovskite structure equivalent to that of the initial layer 140a, and in the constituent elements, lead deficiency is suppressed as compared with the initial layer 140a, and a more desirable composition is obtained. It has a good composition of elements close to the ratio (stoichiometric composition ratio).
  • the late layer 140b has good piezoelectric characteristics, and can adequately cope with the displacement, force, etc. required by the specifications by appropriately determining its thickness.
  • the late layer 140b exists at a position away from the Si substrate 110 that is difficult to be displaced, it is advantageous in obtaining necessary characteristics as a sensor and an actuator.
  • the piezoelectric element 100 is completed by providing the upper electrode 150 with Pt or Al on the latter layer 140b.
  • FIG. 4 shows an example of a piezoelectric element 300 in which the piezoelectric thin film described in this embodiment is applied to a diaphragm.
  • a part of the Si substrate 210 is removed in a circular shape to form a depression 210a, and a thin plate-like member is left on the upper part, and this member forms a diaphragm 210b.
  • a circular initial layer 140a and a late layer 140b corresponding to the shape of the recess 210a are formed on the surface of the diaphragm 210b opposite to the recess 210a.
  • a Pt film is formed as the upper electrode 150 on the latter layer 140b by sputtering or the like.
  • the piezoelectric thin film 140 expands and contracts in the left-right direction, and the diaphragm 210b can be bent up and down by the bimetal effect.
  • the piezoelectric element 300 can be applied as an actuator such as a pump if the recess 210a can be filled with gas or liquid, for example.
  • the piezoelectric element 300 when the diaphragm 210b is vibrated by sound waves or ultrasonic waves, the piezoelectric element 300 generates a voltage between the upper electrode 150 and the lower electrode 130 due to an effect opposite to the above, and the frequency and magnitude of the voltage are reduced. By being detected, it can be applied as a sound wave sensor.
  • the material of the piezoelectric thin film described so far is not limited to PZT, and may be one obtained by adding Nb (niobium), La (lanthanum), Mn (manganese), or the like to PZT.
  • a material containing lead such as PNT (lead niobate titanate), PMN-PT (lead magnesium niobate titanate), or PZNT (lead zinc niobate titanate) may be used.
  • Piezoelectric thin films formed of the materials listed above have the perovskite structure described by taking PZT as an example, and there is no change in that lead deficiency is suppressed, and all show good piezoelectric characteristics that are not inferior to PZT. .
  • the substrate temperature and the composition ratio of the elements constituting the piezoelectric body when the temperature is high, not only the lead listed in the example of the present embodiment, but part of the constituent elements may be lost.
  • the present invention can be applied to a piezoelectric thin film that does not contain lead.
  • the manufacturing apparatus 200 can perform the PLD method, the CSD method, and the MOCVD method.
  • the piezoelectric element 100 shown in FIG. 1 was manufactured according to the flowchart shown in FIG. 3 using the manufacturing apparatus 200 shown in FIG.
  • a Si single crystal plate (thickness 350 ⁇ m) oriented in ⁇ 100> was used as a Si substrate 110, and a thermal oxide film 120 (thickness 0.1 ⁇ m) and a lower electrode 130 (Pt, thickness 0.1 ⁇ m) were prepared on the Si substrate 110.
  • a target 2 made of a PZT material having a composition of Pb (Zr 0.52 Ti 0.48 ) O 3 was prepared.
  • the prepared Si substrate 110 and target 2 were arranged in the manufacturing apparatus 200 shown in FIG.
  • the Si substrate 110 was heated and set so that the first substrate temperature T1 was 600 ° C. After the temperature of the Si substrate 110 reached 600 ° C., while maintaining this temperature, a mixed gas of Ar and O 2 was introduced into the vacuum chamber 1 to form an initial layer 140 a having a thickness of 0.01 ⁇ m.
  • the temperature of the Si substrate 110 was changed, and the second substrate temperature T2 was set to 550 ° C. After the temperature of the Si substrate 110 reaches 550 ° C., while maintaining this temperature, a mixed gas of Ar and O 2 was introduced into the vacuum chamber 1 to form a late layer 140b having a thickness of 2 [mu] m.
  • the late layer 140b had an almost perfect perovskite structure. Further, as a result of measurement using a fluorescent X-ray composition analyzer, it was confirmed that the composition of the late layer 140b was almost the same as the composition ratio of the target 2 and there was almost no deficiency of lead.
  • a Pt film (thickness: 0.1 ⁇ m) was provided as the upper electrode 150 to obtain the piezoelectric element 100.
  • the piezoelectric constant d31 ⁇ 150 pm / V and the relative permittivity were 700, respectively, and it was confirmed that the piezoelectric element functioned sufficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed is a method of manufacturing a piezoelectric thin film having the desired crystal structure and a favorable element composition. Specifically disclosed is a piezoelectric thin film manufacturing method for forming, on a substrate, a thin film of a piezoelectric substance having a predetermined crystal structure including a plurality of elements, said piezoelectric thin film manufacturing method comprising a first step for forming an initial layer of the piezoelectric substance on the substrate at a first substrate temperature, and a second step for forming a subsequent layer of the piezoelectric substance contiguous with the initial layer at a second substrate temperature, wherein the first substrate temperature is such that the crystal structure of the initial layer, which is formed at the first substrate temperature, more closely resembles the predetermined crystal structure than would be the case if the initial layer were formed at the second substrate temperature, and wherein the second substrate temperature is such that the composition ratio of the plurality of elements constituting the piezoelectric substance of the subsequent layer is closer to a stoichiometric composition ratio than is the composition ratio of the initial layer.

Description

圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子Method for manufacturing piezoelectric thin film, piezoelectric thin film, and piezoelectric element
 本発明は、圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子に関する。 The present invention relates to a method for manufacturing a piezoelectric thin film, a piezoelectric thin film, and a piezoelectric element.
 従来から、PZTなどの圧電体は、駆動素子やセンサなどの機械電気変換素子として用いられている。また近年、装置の小型化、高密度化、低コスト化などの要求に応えて、Si基板を用いたMEMS素子(Micro Electro Mechanical Systems:微小電気機械素子)が増加している。 Conventionally, piezoelectric materials such as PZT have been used as mechanical and electrical conversion elements such as drive elements and sensors. In recent years, MEMS devices (Micro Electro Mechanical Systems) using a Si substrate have been increasing in response to demands for downsizing, high density, and low cost of devices.
 圧電体をMEMS素子に応用するには、圧電体の薄膜化が望ましく、薄膜化により、成膜、フォトリソグラフィーなど半導体プロセス技術を用いた高精度な加工を適用することができ、MEMS素子の小型化、高密度化が実現できる。また、圧電体の薄膜化は、大面積のウェハに一括加工することによる圧電素子の多数個の製造を容易に可能とするものであるため、コスト低減、機械電気変換効率の向上、駆動素子の特性やセンサの感度の向上に寄与するなどの利点が生じる。 In order to apply a piezoelectric body to a MEMS element, it is desirable to reduce the thickness of the piezoelectric body. By thinning the film, high-precision processing using semiconductor process technology such as film formation and photolithography can be applied. And higher density can be realized. In addition, since the piezoelectric thin film enables easy manufacture of a large number of piezoelectric elements by batch processing on a large-area wafer, the cost reduction, the improvement of the electromechanical conversion efficiency, the drive element Advantages such as contributing to improvement of characteristics and sensor sensitivity occur.
 PZTなどの圧電体をSiなどの基板上に成膜するには、CVD法など化学的な方法、スパッタ法やイオンプレーティング法など物理的な方法、ゾルゲル法など液相での成長法がある。 To form a piezoelectric material such as PZT on a substrate such as Si, there are chemical methods such as CVD, physical methods such as sputtering and ion plating, and liquid phase growth methods such as sol-gel. .
 PZTなどの圧電体は、一般的にABO型の酸化物で結晶がペロブスカイト型構造を持つときに良好な圧電効果を発現する。この結晶構造は成膜時の温度により制御でき、PZTをスパッタ法等で成膜する場合の基板温度(成膜温度)と生成相(結晶構造)との関係を図5に示す(非特許文献1、p.145 図3)。 A piezoelectric material such as PZT generally exhibits a good piezoelectric effect when the crystal has a perovskite structure with an ABO 3 type oxide. This crystal structure can be controlled by the temperature at the time of film formation, and the relationship between the substrate temperature (film formation temperature) and the generated phase (crystal structure) when PZT is formed by sputtering or the like is shown in FIG. 1, p.145 FIG.
 図5において、aは非晶質、Fluはフルオライト相、Pyはパイロクロア相、Perはペロブスカイト相を表している。また、製造方法は、上段から順にスパッタ法(Sputter)、PLD法(Pulsed Laser Deposition)、CSD法(Chemical Solution Deposition)及びMOCVD法(Metal Organic Chemical Vapor Deposition)である。図5のスパッタ法の場合を例にすると、基板温度が600℃前後において、成膜の結晶構造がペロブスカイト型構造となるが、その温度域以外の低温側及び高温側の何れにおいても、ペロブスカイト型とは異なる結晶構造や非晶質の部分が発生し圧電特性が低下する。 In FIG. 5, a represents amorphous, Flu represents fluorite phase, Py represents pyrochlore phase, and Per represents perovskite phase. In addition, the manufacturing method is a sputtering method (Sputter), a PLD method (Pulsed Laser Deposition), a CSD method (Chemical Solution Deposition), and a MOCVD method (Metal Organic Chemical Deposition) in order from the top. Taking the case of the sputtering method of FIG. 5 as an example, when the substrate temperature is around 600 ° C., the crystal structure of the film formation becomes a perovskite type structure. A crystal structure or an amorphous part different from that is generated, and the piezoelectric characteristics are deteriorated.
 PZTの構成元素であるPbの蒸気圧は、他の元素であるTiやZrと比較して高い(1Pa時の昇華温度はPbが705℃、Tiが1709℃、Zrが2366℃)。PZTの基板温度と鉛組成比との関係を図6に示す(非特許文献1、p.146 図4)。図6において、横軸は基板温度(℃)、縦軸はPZT成膜の基板温度が550℃における鉛組成比を1として規格化した値である。図6が示すように、基板温度が高くなるに従い鉛組成比が減少する。 The vapor pressure of Pb, which is a constituent element of PZT, is higher than Ti and Zr, which are other elements (sublimation temperatures at 1 Pa are Pb of 705 ° C., Ti of 1709 ° C., and Zr of 2366 ° C.). FIG. 6 shows the relationship between the substrate temperature of PZT and the lead composition ratio (Non-patent Document 1, p.146, FIG. 4). In FIG. 6, the horizontal axis represents a substrate temperature (° C.), and the vertical axis represents a value normalized with a lead composition ratio of 1 when the substrate temperature for PZT film formation is 550 ° C. As shown in FIG. 6, the lead composition ratio decreases as the substrate temperature increases.
 図5で示すペロブスカイト構造が得られる温度域は、構成元素である鉛の昇華する温度が非常に近く、この温度域においては、図6で示すように鉛組成比は減少する。このため、良好なペロブスカイト構造を得るために好ましい基板温度でPZTを成膜すると鉛の欠損が生じ、結晶性の低下を招き、圧電特性が低下する。一方、鉛の過剰は、薄膜に酸化鉛が残存し、絶縁性が低下する。 The temperature range in which the perovskite structure shown in FIG. 5 is obtained is very close to the temperature at which the constituent element lead is sublimated. In this temperature range, the lead composition ratio decreases as shown in FIG. For this reason, when PZT is formed at a preferred substrate temperature in order to obtain a good perovskite structure, lead deficiency occurs, leading to a decrease in crystallinity and a decrease in piezoelectric characteristics. On the other hand, when the lead is excessive, lead oxide remains in the thin film, and the insulation properties deteriorate.
 特許文献1には、高周波マグネトロンスパッタ法を用いて強誘電体薄膜(PbLa1-xTi1-x/4(0≦x≦0.25))を形成する際、基板温度を600℃とし、鉛の不足を防止するため、ターゲットを作成する際に過剰のPbO粉末を混合することが開示されている。 In Patent Document 1, a substrate temperature is set when a ferroelectric thin film (Pb x La 1-x Ti 1-x / 4 O 3 (0 ≦ x ≦ 0.25)) is formed by using a high-frequency magnetron sputtering method. In order to prevent lead shortage at 600 ° C., it is disclosed that excessive PbO powder is mixed when forming a target.
特開平6-260018号公報JP-A-6-260018
 しかしながら、特許文献1においては、ターゲットに含まれる鉛の組成比を高めにすることで、基板に堆積する鉛の量を比較的多くすることができるものの、基板温度が高いため、一度基板に堆積した鉛の一部が蒸発してしまう。このため、形成された強誘電体薄膜の鉛組成比が変動して所望の結晶構造を安定して得ることが困難であるが、これらに関して、特許文献1には記載されていない。 However, in Patent Document 1, although the amount of lead deposited on the substrate can be relatively increased by increasing the composition ratio of lead contained in the target, since the substrate temperature is high, it is once deposited on the substrate. A part of the lead will evaporate. For this reason, it is difficult to stably obtain a desired crystal structure by changing the lead composition ratio of the formed ferroelectric thin film, but this is not described in Patent Document 1.
 本発明は、上記の課題を鑑みてなされたものであって、その目的とするところは、所望の結晶構造で、且つ、元素の良好な構成を有する圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a piezoelectric thin film having a desired crystal structure and a good element configuration, a piezoelectric thin film, and It is to provide a piezoelectric element.
 上記の課題は、以下の構成により解決される。 The above problem is solved by the following configuration.
 1.複数の元素による所定の結晶構造を有する圧電体の薄膜を基板の上に形成する圧電体薄膜の製造方法において、
 前記基板の上に、第1の基板温度で前記圧電体の初期層を形成する第1工程と、
 前記初期層に連続して、第2の基板温度で前記圧電体の後期層を形成する第2工程と、を含み、
 前記第1の基板温度は、前記第1の基板温度で前記初期層を形成した場合の初期層の結晶構造が、前記第2の基板温度で前記初期層を形成した場合の初期層の結晶構造よりも、前記所定の結晶構造に近くなるように形成される温度であり、
 前記第2の基板温度は、該後期層の圧電体を形成する複数の元素の組成比が、前記初期層の組成比より、化学量論的組成比に近くなるように形成される温度であることを特徴とする圧電体薄膜の製造方法。
1. In a piezoelectric thin film manufacturing method for forming a piezoelectric thin film having a predetermined crystal structure with a plurality of elements on a substrate,
A first step of forming an initial layer of the piezoelectric body on the substrate at a first substrate temperature;
Forming a second layer of the piezoelectric body at a second substrate temperature in succession to the initial layer, and
As for the first substrate temperature, the crystal structure of the initial layer when the initial layer is formed at the first substrate temperature is the crystal structure of the initial layer when the initial layer is formed at the second substrate temperature. Rather than the predetermined crystal structure.
The second substrate temperature is a temperature at which the composition ratio of a plurality of elements forming the piezoelectric material of the latter layer is closer to the stoichiometric composition ratio than the composition ratio of the initial layer. A method for producing a piezoelectric thin film, comprising:
 2.前記所定の結晶構造は、ペロブスカイト型結晶構造であることを特徴とする前記1に記載の圧電体薄膜の製造方法。 2. 2. The method for manufacturing a piezoelectric thin film according to 1 above, wherein the predetermined crystal structure is a perovskite crystal structure.
 3.前記圧電体は、鉛を含む酸化物であり、
 前記第1の基板温度は、前記第2の基板温度より高いことを特徴とする前記1に記載の圧電体薄膜の製造方法。
3. The piezoelectric body is an oxide containing lead,
2. The method for manufacturing a piezoelectric thin film according to 1 above, wherein the first substrate temperature is higher than the second substrate temperature.
 4.前記後期層の厚みは、前記初期層の厚みより厚いことを特徴とする前記1に記載の圧電体薄膜の製造方法。 4. 2. The method for manufacturing a piezoelectric thin film according to 1 above, wherein the thickness of the latter layer is larger than the thickness of the initial layer.
 5.前記初期層及び前記後期層の前記圧電体は、スパッタリング法を用いて形成されることを特徴とする前記1に記載の圧電体薄膜の製造方法。 5. 2. The method of manufacturing a piezoelectric thin film according to 1 above, wherein the piezoelectric bodies of the initial layer and the late layer are formed using a sputtering method.
 6.複数の元素による所定の結晶構造を有する圧電体の薄膜が基板の上に形成されている圧電体薄膜において、
 前記圧電体薄膜は、初期層と後期層とを有し、
 前記後期層の圧電体を形成する複数の元素の組成比は、前記初期層の組成比より化学量論的組成比に近いことを特徴とする圧電体薄膜。
6). In a piezoelectric thin film in which a piezoelectric thin film having a predetermined crystal structure of a plurality of elements is formed on a substrate,
The piezoelectric thin film has an initial layer and a late layer,
A piezoelectric thin film characterized in that a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
 7.前記所定の結晶構造は、ペロブスカイト型結晶構造であることを特徴とする前記6に記載の圧電体薄膜。 7. 7. The piezoelectric thin film as described in 6 above, wherein the predetermined crystal structure is a perovskite crystal structure.
 8.前記圧電体は、鉛を含む酸化物であることを特徴とする前記6に記載の圧電体薄膜。 8. 7. The piezoelectric thin film as described in 6 above, wherein the piezoelectric body is an oxide containing lead.
 9.前記後期層の厚みは、前記初期層の厚みより厚いことを特徴とする前記6に記載の圧電体薄膜。 9. 7. The piezoelectric thin film as described in 6 above, wherein the thickness of the latter layer is larger than the thickness of the initial layer.
 10.基板と、
 前記基板上に形成された、複数の元素による所定の結晶構造を有する圧電体薄膜とを有し、
 前記圧電体薄膜は、初期層と後期層とを有し、
 前記後期層の圧電体を形成する複数の元素の組成比は、前記初期層の組成比より化学量論的組成比に近いことを特徴とする圧電体素子。
10. A substrate,
A piezoelectric thin film having a predetermined crystal structure formed of a plurality of elements formed on the substrate;
The piezoelectric thin film has an initial layer and a late layer,
The piezoelectric element, wherein a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
 本発明によれば、所望の結晶構造で、且つ、元素の良好な構成を有する圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子を提供することができる。 According to the present invention, it is possible to provide a piezoelectric thin film manufacturing method, a piezoelectric thin film, and a piezoelectric element having a desired crystal structure and a good element structure.
本発明の圧電体薄膜を有する圧電体素子の例を示す図である。It is a figure which shows the example of the piezoelectric element which has a piezoelectric material thin film of this invention. 圧電体薄膜をスパッタリング法で成膜する製造装置の例を示す図である。It is a figure which shows the example of the manufacturing apparatus which forms a piezoelectric material thin film by sputtering method. 基板上に圧電体薄膜を形成する工程を示すフロー図である。It is a flowchart which shows the process of forming a piezoelectric material thin film on a board | substrate. 本発明の圧電体薄膜をダイヤフラムに応用した圧電体素子の例を示す図である。It is a figure which shows the example of the piezoelectric element which applied the piezoelectric material thin film of this invention to the diaphragm. PZT薄膜を成膜する場合、製造方法と、それぞれの製造方法における基板温度と生成相との関係を示す図である。When forming a PZT thin film, it is a figure which shows the relationship between a manufacturing method and the substrate temperature in each manufacturing method, and a production | generation phase. PZT薄膜の基板温度と鉛組成比との関係を示す図である。It is a figure which shows the relationship between the substrate temperature of a PZT thin film, and a lead composition ratio.
 本発明を実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。 Although the present invention will be described based on the embodiment, the present invention is not limited to the embodiment.
 図1は、本発明に係る圧電体素子100の例を示す。図1において、圧電体素子100は、Si基板110の上に、順に、熱酸化膜(SiO)120、下部電極130、圧電体薄膜140及び上部電極150が形成されている。圧電体薄膜140は、下部電極130上に形成されている初期層140a、初期層140a上に連続して形成されている後期層140bを有している。 FIG. 1 shows an example of a piezoelectric element 100 according to the present invention. In FIG. 1, the piezoelectric element 100 has a thermal oxide film (SiO 2 ) 120, a lower electrode 130, a piezoelectric thin film 140, and an upper electrode 150 formed in order on a Si substrate 110. The piezoelectric thin film 140 has an initial layer 140a formed on the lower electrode 130 and a late layer 140b formed continuously on the initial layer 140a.
 上記構成の圧電体素子100に関して、圧電体素子100の製造方法と共に以下に説明する。圧電体薄膜140は、高周波マグネトロンスパッタリング法によりSi基板110の上に成膜され、本実施の形態では、圧電体薄膜140は、チタン酸ジルコン酸鉛(PZT)とする。 The piezoelectric element 100 having the above configuration will be described below together with a method for manufacturing the piezoelectric element 100. The piezoelectric thin film 140 is formed on the Si substrate 110 by a high-frequency magnetron sputtering method. In this embodiment, the piezoelectric thin film 140 is made of lead zirconate titanate (PZT).
 図2は、圧電体薄膜140等を上記のスパッタリング法で成膜する圧電体薄膜の製造装置200(以下、製造装置200)を模式的に示す。図2に示す製造装置200において、真空チャンバー1の中に、PZTの原料を有するターゲット2及び成膜されるSi基板110が配置されている。 FIG. 2 schematically shows a piezoelectric thin film manufacturing apparatus 200 (hereinafter referred to as manufacturing apparatus 200) for forming the piezoelectric thin film 140 and the like by the sputtering method. In the manufacturing apparatus 200 shown in FIG. 2, a target 2 having a PZT raw material and a Si substrate 110 to be formed are disposed in a vacuum chamber 1.
 ターゲット2は電極を兼ねたターゲット皿3により保持され、Si基板110は電極を兼ねた基板ホルダー10により保持されている。ターゲット皿3の縁はカバー4で覆われ、ターゲット皿3はマグネット5上に配置され、マグネット5とその下にある高周波電極6は、絶縁体7によって真空チャンバー1から絶縁されている。高周波電極6は、高周波電源8に接続されている。 The target 2 is held by a target dish 3 that also serves as an electrode, and the Si substrate 110 is held by a substrate holder 10 that also serves as an electrode. The edge of the target dish 3 is covered with a cover 4, and the target dish 3 is disposed on the magnet 5, and the magnet 5 and the high-frequency electrode 6 below it are insulated from the vacuum chamber 1 by an insulator 7. The high frequency electrode 6 is connected to a high frequency power source 8.
 基板ホルダー10は、内部にSi基板110を加熱するための基板加熱ヒーター11を備え、Si基板110上に均一に成膜できるように回転する軸9に接続されている。軸9は、シール付きベアリング16を通して真空チャンバー1の外部に設けてある回転駆動部であるモータ15に接続されている。 The substrate holder 10 includes a substrate heater 11 for heating the Si substrate 110 therein, and is connected to a rotating shaft 9 so that a film can be uniformly formed on the Si substrate 110. The shaft 9 is connected to a motor 15, which is a rotation driving unit, provided outside the vacuum chamber 1 through a bearing 16 with a seal.
 真空チャンバー1には、スパッタガスを導入するノズル14及び図示しない排気装置に接続されている排気口Aが設けられている。ノズル14から導入されるスパッタガスは、バルブ12を介して供給口Bから供給されるArガスとバルブ13を介して供給口Cから供給されるOガスの混合ガスである。 The vacuum chamber 1 is provided with a nozzle 14 for introducing a sputtering gas and an exhaust port A connected to an exhaust device (not shown). The sputtering gas introduced from the nozzle 14 is a mixed gas of Ar gas supplied from the supply port B via the valve 12 and O 2 gas supplied from the supply port C via the valve 13.
 図3は、図2に示す製造装置200を用いて圧電体薄膜をSi基板上に形成する工程を示すフローチャートである。 FIG. 3 is a flowchart showing a process of forming a piezoelectric thin film on a Si substrate using the manufacturing apparatus 200 shown in FIG.
 所定の組成比に調合したPZT材料の粉末を混合、焼成、粉砕し、ターゲット皿3に充填して加圧することによりターゲット2を作製する。ターゲット皿3を、マグネット5上に設置し、その上にカバー4を設置する。ターゲット2のPZT材料の組成比は、成膜後の薄膜が良好な圧電特性を示す結晶構造をなし得る所望の組成比(化学量論的組成比)と同等で良く、従来知られているような、成膜の際に認められる鉛不足を補うような特別な組成比にする必要はない。 The target 2 is produced by mixing, firing, and pulverizing the PZT material powder prepared in a predetermined composition ratio, filling the target dish 3 and pressurizing. The target dish 3 is set on the magnet 5 and the cover 4 is set thereon. The composition ratio of the PZT material of the target 2 may be equivalent to a desired composition ratio (stoichiometric composition ratio) that can form a crystal structure in which the thin film after film formation exhibits good piezoelectric characteristics, and is known in the art. In addition, it is not necessary to use a special composition ratio that compensates for the lead shortage observed during film formation.
 Si基板110は、<100>に配向したSi単結晶板を用い、その表面には熱酸化膜120が形成されており、更に片面に、予め下部電極130として、<100>に優先配向した白金(Pt)がスパッタリング法により、所定の厚さだけ形成してある。 The Si substrate 110 uses a Si single crystal plate oriented in <100>, a thermal oxide film 120 is formed on the surface thereof, and platinum is preferentially oriented in <100> as a lower electrode 130 on one side in advance. (Pt) is formed to a predetermined thickness by sputtering.
 Si基板110の厚みは、所望の圧電体素子の構成により異なるが、一般的に300~500μm程度である。熱酸化膜120は保護及び絶縁が目的で形成されており、Si基板を1500℃程度で加熱することにより形成され、その厚みは一般的に0.1μm程度である。下部電極130の厚みは一般的に0.1μm程度である。 The thickness of the Si substrate 110 varies depending on the desired configuration of the piezoelectric element, but is generally about 300 to 500 μm. The thermal oxide film 120 is formed for the purpose of protection and insulation, and is formed by heating the Si substrate at about 1500 ° C., and its thickness is generally about 0.1 μm. The thickness of the lower electrode 130 is generally about 0.1 μm.
 次に、熱酸化膜120及び下部電極130を備えたSi基板110を、下部電極130を下向きにして基板ホルダー10に保持させ、真空チャンバー1内を排気し、基板加熱ヒーター11によってSi基板110を600℃から650℃、好ましくは600℃前後にまで加熱し、維持する。維持されている上記の第1の基板温度T1は、成膜時の基板温度であって、図5から分かるように、PZT薄膜を形成する際、薄膜が良好な圧電特性を発現するペロブスカイト型構造を有する結晶を容易に形成することができる温度である。 Next, the Si substrate 110 having the thermal oxide film 120 and the lower electrode 130 is held by the substrate holder 10 with the lower electrode 130 facing downward, the vacuum chamber 1 is evacuated, and the Si substrate 110 is removed by the substrate heater 11. Heat and maintain from 600 ° C to 650 ° C, preferably around 600 ° C. The maintained first substrate temperature T1 is the substrate temperature during film formation, and as can be seen from FIG. 5, when forming the PZT thin film, the perovskite structure in which the thin film exhibits good piezoelectric characteristics. This is a temperature at which a crystal having can be easily formed.
 また、後述する第2の基板温度T2との比較において、第1の基板温度T1は、第1の基板温度T1で初期層を形成した場合の初期層の結晶構造が、第2の基板温度T2で初期層を形成した場合の初期層の結晶構造よりも、ペロブスカイト型構造に近くなるように形成される温度である。 Further, in comparison with the second substrate temperature T2, which will be described later, the first substrate temperature T1 is the crystal structure of the initial layer when the initial layer is formed at the first substrate temperature T1, and the second substrate temperature T2 The temperature at which the initial layer is formed so as to be closer to the perovskite structure than the crystal structure of the initial layer.
 Si基板110を上記の温度に維持した状態で、バルブ12及び13を開け、スパッタガスであるArガスとOガスを所定の割合に混合した混合ガスをノズル14より真空チャンバー1内に導入しながら、真空チャンバー1内の真空度を所定値に維持する。真空度を所定値に維持した状態で、ターゲット2に、高周波電源8より高周波電力を投入し、プラズマを発生させ、Si基板110上に初期層140aを成膜する(第1工程)。 The Si substrate 110 while maintaining the above temperature, open the valve 12 and 13, a mixed gas of Ar gas and O 2 gas are mixed in a predetermined ratio is sputter gas was introduced into the vacuum chamber 1 from the nozzle 14 However, the degree of vacuum in the vacuum chamber 1 is maintained at a predetermined value. With the degree of vacuum maintained at a predetermined value, high frequency power is applied to the target 2 from the high frequency power supply 8 to generate plasma, and an initial layer 140a is formed on the Si substrate 110 (first step).
 初期層140aの厚みは、0.01μmから初期層140aを含めた圧電体薄膜140の厚みの10%以下、好ましくは0.01μmになるまで成膜を行い、初期層140aの成膜後一旦電力を切り、スパッタリングを停止する。 The initial layer 140a has a thickness of 0.01 μm to 10% or less of the thickness of the piezoelectric thin film 140 including the initial layer 140a, preferably 0.01 μm. To stop sputtering.
 初期層140aの厚みを0.01μm以上とすることにより、初期層140aは結晶構造を形成することができる。形成される結晶構造は、<100>に優先配向した白金を下地とし、成膜する際に設定されている基板温度から、ほぼ完全なペロブスカイト型構造とすることができる。 By setting the thickness of the initial layer 140a to 0.01 μm or more, the initial layer 140a can form a crystal structure. The crystal structure to be formed can be a substantially complete perovskite structure based on the substrate temperature set at the time of film formation with platinum preferentially oriented to <100> as a base.
 初期層140aは、良好なペロブスカイト型構造を有する一方で、成膜時の基板温度が高いため、構成元素である鉛の蒸気圧からその一部に欠損が生じ、この欠損により分極の状態が変化するため、十分な圧電特性を有していない。初期層140aの厚みをSi基板110上に形成する圧電体薄膜140の厚みの10%以内に抑えることにより、初期層140a上に引き続いて形成する後期層140bが有する圧電特性を大きく妨げることが無く、実用的な範囲で十分な圧電特性を示すことができる。また、初期層140aは、上記の通り十分に薄いことと共に、変位し難いSi基板110に近いため、圧電特性が十分でないことの影響は軽微である。 The initial layer 140a has a good perovskite structure, but the substrate temperature at the time of film formation is high. Therefore, a defect occurs in a part of the vapor pressure of lead, which is a constituent element, and the polarization changes due to this defect. Therefore, it does not have sufficient piezoelectric characteristics. By limiting the thickness of the initial layer 140a to 10% or less of the thickness of the piezoelectric thin film 140 formed on the Si substrate 110, the piezoelectric characteristics of the later layer 140b formed subsequently on the initial layer 140a are not significantly hindered. Thus, sufficient piezoelectric characteristics can be exhibited within a practical range. In addition, since the initial layer 140a is sufficiently thin as described above and close to the Si substrate 110 that is difficult to be displaced, the influence of insufficient piezoelectric characteristics is negligible.
 次に、基板加熱ヒーター11を制御して、Si基板110の温度を540℃から570℃、好ましくは550℃に設定し維持させる。図6から分かるように、この維持されている上記の第2の基板温度T2で形成される後期層140bは、先の初期層140aを形成した第1の基板温度T1と比較して鉛の組成比が改善され、より良好な圧電特性を示す結晶構造をなし得る所望の組成比(化学量論的組成比)に近いものとなることができる。 Next, the substrate heater 11 is controlled to set and maintain the temperature of the Si substrate 110 from 540 ° C. to 570 ° C., preferably 550 ° C. As can be seen from FIG. 6, the late layer 140b formed at the maintained second substrate temperature T2 has a lead composition as compared with the first substrate temperature T1 on which the initial layer 140a is formed. The ratio can be improved and can be close to a desired composition ratio (stoichiometric composition ratio) that can form a crystal structure exhibiting better piezoelectric characteristics.
 Si基板110を上記の温度に維持した状態で、ターゲット2に、高周波電源8より高周波電力を再度投入し、初期層140aの上に連続して後期層140bを所望の膜厚になるまで成膜を行う(第2工程)。後期層140bの厚みは、仕様により必要とされる変位、力等により適宜定めればよく、例えばアクチュエータとする場合は一般的に1μmから10μm程度である。 In a state where the Si substrate 110 is maintained at the above temperature, high frequency power is again applied to the target 2 from the high frequency power source 8, and the late layer 140b is continuously formed on the initial layer 140a until a desired film thickness is obtained. (Second step). The thickness of the latter layer 140b may be determined as appropriate according to the displacement, force, etc. required by the specifications. For example, in the case of an actuator, it is generally about 1 μm to 10 μm.
 後期層140bは、その基板温度を初期層140aの場合より低くしているため、初期層140aと比較して構成元素である鉛の欠損が生じ難い。一方、その基板温度が低いため、後期層140bが、ペロブスカイト型構造を形成するとは考え難いが、実際には、ほぼ完全なペロブスカイト型構造を形成する。これは、初期層140aがほぼ完全なペロブスカイト構造を有しているため、初期層140aを下地として、この上に連続して形成される後期層140bは、組成が同様であることにも助けられ、下地の格子定数に一致するように倣って、ほぼ完全にペロブスカイト構造となるものと推定される。 Since the late layer 140b has a lower substrate temperature than that of the initial layer 140a, defects of lead, which is a constituent element, are less likely to occur compared to the initial layer 140a. On the other hand, because the substrate temperature is low, the late layer 140b is unlikely to form a perovskite structure, but actually forms a nearly perfect perovskite structure. This is because the initial layer 140a has an almost perfect perovskite structure, and the late layer 140b continuously formed on the initial layer 140a as a base is also helped by the same composition. It is presumed that the perovskite structure almost completely follows the lattice constant of the base.
 このため、後期層140bは、初期層140aと同等のほぼ完全なペロブスカイト型構造を有すると伴に、その構成元素においては、初期層140aと比較して鉛の欠損が抑えられ、より所望の組成比(化学量論的組成比)に近い、元素の良好な構成を有するものとなっている。 Therefore, the late layer 140b has an almost complete perovskite structure equivalent to that of the initial layer 140a, and in the constituent elements, lead deficiency is suppressed as compared with the initial layer 140a, and a more desirable composition is obtained. It has a good composition of elements close to the ratio (stoichiometric composition ratio).
 従って、後期層140bは、良好な圧電特性を有し、その厚みを適宜定めることにより、仕様により必要とされる変位、力等に十分に対応出来るものである。また、後期層140bは、変位し難いSi基板110から離れた位置に存在するため、センサ、アクチュエータとしての必要な特性を得る上で有利である。 Therefore, the late layer 140b has good piezoelectric characteristics, and can adequately cope with the displacement, force, etc. required by the specifications by appropriately determining its thickness. In addition, since the late layer 140b exists at a position away from the Si substrate 110 that is difficult to be displaced, it is advantageous in obtaining necessary characteristics as a sensor and an actuator.
 最後に、後期層140b上にPt又はAl等で上部電極150を設けることにより圧電体素子100が完成する。 Finally, the piezoelectric element 100 is completed by providing the upper electrode 150 with Pt or Al on the latter layer 140b.
 図4に本実施の形態で説明した圧電体薄膜をダイヤフラムに応用した圧電体素子300の例を示す。Si基板210の一部が円形に除去され窪み210aが形成され、上部に薄い板状の部材が残され、この部材がダイヤフラム210bを成している。 FIG. 4 shows an example of a piezoelectric element 300 in which the piezoelectric thin film described in this embodiment is applied to a diaphragm. A part of the Si substrate 210 is removed in a circular shape to form a depression 210a, and a thin plate-like member is left on the upper part, and this member forms a diaphragm 210b.
 ダイヤフラム210bの窪み210a側と反対側の面上に、窪み210aの形状に対応した円形状の初期層140a、後期層140bを形成する。後期層140b上に上部電極150としてPt膜がスパッタ法などで成膜されている。 A circular initial layer 140a and a late layer 140b corresponding to the shape of the recess 210a are formed on the surface of the diaphragm 210b opposite to the recess 210a. A Pt film is formed as the upper electrode 150 on the latter layer 140b by sputtering or the like.
 上部電極150と下部電極130と間に所定の電圧を加えると、圧電体薄膜140が左右方向に伸縮し、バイメタルの効果によりダイヤフラム210bを上下に湾曲させることができる。圧電体素子300は、例えば窪み210aに気体や液体を充填できるようにすると、ポンプなどのアクチュエータとして応用できる。 When a predetermined voltage is applied between the upper electrode 150 and the lower electrode 130, the piezoelectric thin film 140 expands and contracts in the left-right direction, and the diaphragm 210b can be bent up and down by the bimetal effect. The piezoelectric element 300 can be applied as an actuator such as a pump if the recess 210a can be filled with gas or liquid, for example.
 また、圧電体素子300は、音波や超音波によりダイヤフラム210bが振動させられると、上記と反対の効果により上部電極150と下部電極130と間に電圧を発生し、この電圧の周波数や大きさを検出されるようにすることによって音波センサとして応用できる。 In addition, when the diaphragm 210b is vibrated by sound waves or ultrasonic waves, the piezoelectric element 300 generates a voltage between the upper electrode 150 and the lower electrode 130 due to an effect opposite to the above, and the frequency and magnitude of the voltage are reduced. By being detected, it can be applied as a sound wave sensor.
 これまで説明した圧電体薄膜の材料は、PZTに限定されることはなく、PZTにNb(ニオブ)、La(ランタン)、Mn(マンガン)などを添加したものでも良い。また、PZTの代わりに、PNT(ニオブ酸チタン酸鉛)、PMN-PT(マグネシウムニオブ酸チタン酸鉛)、PZNT(亜鉛ニオブ酸チタン酸鉛)など、鉛を含む材料でも良い。 The material of the piezoelectric thin film described so far is not limited to PZT, and may be one obtained by adding Nb (niobium), La (lanthanum), Mn (manganese), or the like to PZT. Instead of PZT, a material containing lead such as PNT (lead niobate titanate), PMN-PT (lead magnesium niobate titanate), or PZNT (lead zinc niobate titanate) may be used.
 上記に挙げた材料により形成される圧電体薄膜は、PZTを例に説明したペロブスカイト構造を取り、鉛の欠損が押さえられることには変わりはなく、何れもPZTに劣らず良好な圧電特性を示す。また、一般的に基板温度と圧電体を構成する元素の組成比との関係において、温度が高くなると、本実施の形態の例に挙げた鉛に限らず構成元素の一部が欠損することが考えられ、本発明は鉛を有しない圧電体薄膜においても適用できる。 Piezoelectric thin films formed of the materials listed above have the perovskite structure described by taking PZT as an example, and there is no change in that lead deficiency is suppressed, and all show good piezoelectric characteristics that are not inferior to PZT. . In general, in the relationship between the substrate temperature and the composition ratio of the elements constituting the piezoelectric body, when the temperature is high, not only the lead listed in the example of the present embodiment, but part of the constituent elements may be lost. The present invention can be applied to a piezoelectric thin film that does not contain lead.
 また、製造装置200は、スパッタ法を行うものとして説明したが、PLD法、CSD法及びMOCVD法を行うものとすることができる。 In addition, although the manufacturing apparatus 200 has been described as performing the sputtering method, the manufacturing apparatus 200 can perform the PLD method, the CSD method, and the MOCVD method.
 図1に示す圧電体素子100を、図2に示す製造装置200を用い、図3に示すフローチャートに従って製造した。 The piezoelectric element 100 shown in FIG. 1 was manufactured according to the flowchart shown in FIG. 3 using the manufacturing apparatus 200 shown in FIG.
 <100>に配向したSi単結晶板(厚み350μm)をSi基板110とし、このSi基板110に熱酸化膜120(厚み0.1μm)及び下部電極130(Pt、厚み0.1μm)を準備した。また、ターゲット2として、組成がPb(Zr0.52Ti0.48)OとするPZT材料からなるものを準備した。 A Si single crystal plate (thickness 350 μm) oriented in <100> was used as a Si substrate 110, and a thermal oxide film 120 (thickness 0.1 μm) and a lower electrode 130 (Pt, thickness 0.1 μm) were prepared on the Si substrate 110. . In addition, a target 2 made of a PZT material having a composition of Pb (Zr 0.52 Ti 0.48 ) O 3 was prepared.
 準備した上記のSi基板110及びターゲット2を図2で示した製造装置200内に配置した。 The prepared Si substrate 110 and target 2 were arranged in the manufacturing apparatus 200 shown in FIG.
 真空チャンバー1内を真空にした後、Si基板110を加熱し、第1の基板温度T1が600℃となるように設定した。Si基板110の温度が600℃に達した後、この温度を維持した状態で、ArとOの混合ガスを真空チャンバー1内に導入し、厚み0.01μmの初期層140aを形成した。 After the vacuum chamber 1 was evacuated, the Si substrate 110 was heated and set so that the first substrate temperature T1 was 600 ° C. After the temperature of the Si substrate 110 reached 600 ° C., while maintaining this temperature, a mixed gas of Ar and O 2 was introduced into the vacuum chamber 1 to form an initial layer 140 a having a thickness of 0.01 μm.
 次に、Si基板110の温度を変更し、第2の基板温度T2が550℃となるように設定した。Si基板110の温度が550℃に達した後、この温度を維持した状態で、ArとOの混合ガスを真空チャンバー1内に導入し、厚み2μmの後期層140bを形成した。 Next, the temperature of the Si substrate 110 was changed, and the second substrate temperature T2 was set to 550 ° C. After the temperature of the Si substrate 110 reaches 550 ° C., while maintaining this temperature, a mixed gas of Ar and O 2 was introduced into the vacuum chamber 1 to form a late layer 140b having a thickness of 2 [mu] m.
 製造した圧電体薄膜140は、X線回折装置による結晶構造解析の結果、後期層140bがほぼ完全なペロブスカイト構造であることが確認できた。また、蛍光X線組成分析装置による測定の結果、後期層140bの組成はターゲット2の組成比とほぼ同一であって、鉛の欠損がほとんど無いことが確認できた。 As a result of crystal structure analysis by the X-ray diffractometer, it was confirmed that the late layer 140b had an almost perfect perovskite structure. Further, as a result of measurement using a fluorescent X-ray composition analyzer, it was confirmed that the composition of the late layer 140b was almost the same as the composition ratio of the target 2 and there was almost no deficiency of lead.
 この後、上部電極150として、Pt膜(厚み0.1μm)を設け、圧電体素子100とした。 Thereafter, a Pt film (thickness: 0.1 μm) was provided as the upper electrode 150 to obtain the piezoelectric element 100.
 圧電体素子100の圧電定数、比誘電率を測定した結果、それぞれ圧電定数d31=-150pm/V、比誘電率が700であって、圧電素子として十分に機能することが確認できた。 As a result of measuring the piezoelectric constant and relative permittivity of the piezoelectric element 100, the piezoelectric constant d31 = −150 pm / V and the relative permittivity were 700, respectively, and it was confirmed that the piezoelectric element functioned sufficiently.
 100 圧電体素子
 110 Si基板
 120 熱酸化膜
 130 下部電極
 140 圧電体薄膜
 140a 初期層
 140b 後期層
 150 上部電極
DESCRIPTION OF SYMBOLS 100 Piezoelectric element 110 Si substrate 120 Thermal oxide film 130 Lower electrode 140 Piezoelectric thin film 140a Initial layer 140b Late layer 150 Upper electrode

Claims (10)

  1.  複数の元素による所定の結晶構造を有する圧電体の薄膜を基板の上に形成する圧電体薄膜の製造方法において、
     前記基板の上に、第1の基板温度で前記圧電体の初期層を形成する第1工程と、
     前記初期層に連続して、第2の基板温度で前記圧電体の後期層を形成する第2工程と、を含み、
     前記第1の基板温度は、前記第1の基板温度で前記初期層を形成した場合の初期層の結晶構造が、前記第2の基板温度で前記初期層を形成した場合の初期層の結晶構造よりも、前記所定の結晶構造に近くなるように形成される温度であり、
     前記第2の基板温度は、該後期層の圧電体を形成する複数の元素の組成比が、前記初期層の組成比より、化学量論的組成比に近くなるように形成される温度であることを特徴とする圧電体薄膜の製造方法。
    In a piezoelectric thin film manufacturing method for forming a piezoelectric thin film having a predetermined crystal structure with a plurality of elements on a substrate,
    A first step of forming an initial layer of the piezoelectric body on the substrate at a first substrate temperature;
    Forming a latter layer of the piezoelectric body at a second substrate temperature in succession to the initial layer, and
    As for the first substrate temperature, the crystal structure of the initial layer when the initial layer is formed at the first substrate temperature is the crystal structure of the initial layer when the initial layer is formed at the second substrate temperature. Rather than the predetermined crystal structure.
    The second substrate temperature is a temperature at which the composition ratio of a plurality of elements forming the piezoelectric material of the latter layer is closer to the stoichiometric composition ratio than the composition ratio of the initial layer. A method for producing a piezoelectric thin film, comprising:
  2.  前記所定の結晶構造は、ペロブスカイト型結晶構造であることを特徴とする請求項1に記載の圧電体薄膜の製造方法。 2. The method for manufacturing a piezoelectric thin film according to claim 1, wherein the predetermined crystal structure is a perovskite crystal structure.
  3.  前記圧電体は、鉛を含む酸化物であり、
     前記第1の基板温度は、前記第2の基板温度より高いことを特徴とする請求項1に記載の圧電体薄膜の製造方法。
    The piezoelectric body is an oxide containing lead,
    2. The method for manufacturing a piezoelectric thin film according to claim 1, wherein the first substrate temperature is higher than the second substrate temperature.
  4.  前記後期層の厚みは、前記初期層の厚みより厚いことを特徴とする請求項1に記載の圧電体薄膜の製造方法。 The method for manufacturing a piezoelectric thin film according to claim 1, wherein the thickness of the latter layer is larger than the thickness of the initial layer.
  5.  前記初期層及び前記後期層の前記圧電体は、スパッタリング法を用いて形成されることを特徴とする請求項1に記載の圧電体薄膜の製造方法。 2. The method for manufacturing a piezoelectric thin film according to claim 1, wherein the piezoelectric bodies of the initial layer and the late layer are formed by a sputtering method.
  6.  複数の元素による所定の結晶構造を有する圧電体の薄膜が基板の上に形成されている圧電体薄膜において、
     前記圧電体薄膜は、初期層と後期層とを有し、
     前記後期層の圧電体を形成する複数の元素の組成比は、前記初期層の組成比より化学量論的組成比に近いことを特徴とする圧電体薄膜。
    In a piezoelectric thin film in which a piezoelectric thin film having a predetermined crystal structure of a plurality of elements is formed on a substrate,
    The piezoelectric thin film has an initial layer and a late layer,
    A piezoelectric thin film characterized in that a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
  7.  前記所定の結晶構造は、ペロブスカイト型結晶構造であることを特徴とする請求項6に記載の圧電体薄膜。 The piezoelectric thin film according to claim 6, wherein the predetermined crystal structure is a perovskite crystal structure.
  8.  前記圧電体は、鉛を含む酸化物であることを特徴とする請求項6に記載の圧電体薄膜。 The piezoelectric thin film according to claim 6, wherein the piezoelectric body is an oxide containing lead.
  9.  前記後期層の厚みは、前記初期層の厚みより厚いことを特徴とする請求項6に記載の圧電体薄膜。 The piezoelectric thin film according to claim 6, wherein the thickness of the latter layer is larger than the thickness of the initial layer.
  10.  基板と、
     前記基板上に形成された、複数の元素による所定の結晶構造を有する圧電体薄膜とを有し、
     前記圧電体薄膜は、初期層と後期層とを有し、
     前記後期層の圧電体を形成する複数の元素の組成比は、前記初期層の組成比より化学量論的組成比に近いことを特徴とする圧電体素子。
    A substrate,
    A piezoelectric thin film having a predetermined crystal structure formed of a plurality of elements formed on the substrate;
    The piezoelectric thin film has an initial layer and a late layer,
    The piezoelectric element, wherein a composition ratio of a plurality of elements forming the piezoelectric layer of the latter layer is closer to a stoichiometric composition ratio than a composition ratio of the initial layer.
PCT/JP2010/069409 2009-11-17 2010-11-01 Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element WO2011062050A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011541870A JPWO2011062050A1 (en) 2009-11-17 2010-11-01 Method for manufacturing piezoelectric thin film, piezoelectric thin film, and piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-261620 2009-11-17
JP2009261620 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011062050A1 true WO2011062050A1 (en) 2011-05-26

Family

ID=44059533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069409 WO2011062050A1 (en) 2009-11-17 2010-11-01 Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element

Country Status (2)

Country Link
JP (1) JPWO2011062050A1 (en)
WO (1) WO2011062050A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065948A (en) * 1992-06-22 1994-01-14 Rohm Co Ltd Manufacture of ferroelectric thin film
JPH09256139A (en) * 1996-03-22 1997-09-30 Fuji Electric Co Ltd Production of zinc oxide film
JP2000169297A (en) * 1998-09-29 2000-06-20 Sharp Corp Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JP2004096050A (en) * 2002-09-04 2004-03-25 Seiko Epson Corp Manufacturing method for ferroelectric device, ferroelectric memory using the same, piezoelectric element, ink jet head, and ink jet printer
JP2005333108A (en) * 2004-04-02 2005-12-02 Matsushita Electric Ind Co Ltd Piezoelectric element, ink jet head, angular rate sensor, and ink jet type recording device
JP2005354026A (en) * 2004-05-10 2005-12-22 Matsushita Electric Ind Co Ltd Piezoelectric element, ink jet head, and manufacturing method of these, and ink jet type recorder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049220A (en) * 2007-08-21 2009-03-05 Panasonic Corp Piezoelectric thin film element, method of manufacturing piezoelectric thin film element, ink jet head, and ink jet type recording apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065948A (en) * 1992-06-22 1994-01-14 Rohm Co Ltd Manufacture of ferroelectric thin film
JPH09256139A (en) * 1996-03-22 1997-09-30 Fuji Electric Co Ltd Production of zinc oxide film
JP2000169297A (en) * 1998-09-29 2000-06-20 Sharp Corp Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JP2004096050A (en) * 2002-09-04 2004-03-25 Seiko Epson Corp Manufacturing method for ferroelectric device, ferroelectric memory using the same, piezoelectric element, ink jet head, and ink jet printer
JP2005333108A (en) * 2004-04-02 2005-12-02 Matsushita Electric Ind Co Ltd Piezoelectric element, ink jet head, angular rate sensor, and ink jet type recording device
JP2005354026A (en) * 2004-05-10 2005-12-22 Matsushita Electric Ind Co Ltd Piezoelectric element, ink jet head, and manufacturing method of these, and ink jet type recorder

Also Published As

Publication number Publication date
JPWO2011062050A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2846370B1 (en) Piezoelectric element
US8310135B2 (en) Piezoelectric thin film element and piezoelectric thin film device including the same
US9246080B2 (en) Ferroelectric thin film and method for producing same
WO2015194458A1 (en) Multilayer film and method for manufacturing same
JP5728890B2 (en) Piezoelectric element and manufacturing method thereof
JP6367331B2 (en) Multilayer film and manufacturing method thereof
JP2013004707A (en) Piezoelectric film element and piezoelectric film device
JP4998652B2 (en) Ferroelectric thin film, ferroelectric thin film manufacturing method, piezoelectric element manufacturing method
US9157378B2 (en) Method for manufacturing piezoelectric element and piezoelectric element manufactured using same
JP2012169400A (en) Manufacturing method of ferroelectric film and ferroelectric element using the same
JP5861404B2 (en) Piezoelectric element and manufacturing method thereof
JP2012018944A (en) Method for producing ferroelectric film and ferroelectric element using the same
WO2011062050A1 (en) Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element
US9853203B2 (en) Piezoelectric element with underlying layer to control crystallinity of a piezoelectric layer, and piezoelectric device, inkjet head, and inkjet printer including such piezoelectric element
JP2003212545A (en) Pzt film and manufacturing method for pzt film
CN112928200B (en) Lead zirconate titanate piezoelectric film and preparation method and application thereof
JP2007188954A (en) Piezoelectric thin film element
WO2011118093A1 (en) Piezoelectric thin-film element and piezoelectric thin-film device equipped with same
KANG et al. Fabrication of PZT Thick Film on Silicon Wafer by Powder Electrophoretic Deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831445

Country of ref document: EP

Kind code of ref document: A1