WO2011061983A1 - Radiation image capturing system and console - Google Patents

Radiation image capturing system and console Download PDF

Info

Publication number
WO2011061983A1
WO2011061983A1 PCT/JP2010/064579 JP2010064579W WO2011061983A1 WO 2011061983 A1 WO2011061983 A1 WO 2011061983A1 JP 2010064579 W JP2010064579 W JP 2010064579W WO 2011061983 A1 WO2011061983 A1 WO 2011061983A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
defective pixel
pixel
defective
pixels
Prior art date
Application number
PCT/JP2010/064579
Other languages
French (fr)
Japanese (ja)
Inventor
智紀 儀同
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Publication of WO2011061983A1 publication Critical patent/WO2011061983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures

Definitions

  • the present invention relates to a radiographic image capturing system and a console.
  • a so-called direct type radiographic imaging apparatus that generates a charge in a detection element in accordance with a dose of irradiated radiation such as X-rays and converts it into an electrical signal, or irradiated radiation
  • irradiated radiation So-called indirect radiation in which a scintillator or the like converts it into an electromagnetic wave of other wavelengths such as visible light, and then generates a charge in a photoelectric conversion element such as a photodiode in accordance with the energy of the converted electromagnetic wave to convert it into an electrical signal
  • a photoelectric conversion element such as a photodiode
  • This type of radiographic imaging device is usually provided with a sensor panel in which a plurality of image sensors are arranged in a two-dimensional manner, and is known as an FPD (Flat Panel Detector).
  • FPD Full Panel Detector
  • the sensor panel is integrally formed on the support base (see, for example, Patent Document 1), but in recent years, a portable radiographic imaging apparatus has been developed in which the sensor panel is housed in a housing and can be carried. (For example, refer to Patent Document 2).
  • abnormal image data is output constantly or with a certain probability, for example, when impurities are mixed in an image sensor when the image sensor is laminated on a sensor panel.
  • a pixel hereinafter referred to as “defective pixel”
  • Defective pixels that occur due to such a cause are usually in a state where they exist in isolation from each other in a plurality of image pickup devices that are two-dimensionally arranged on the sensor panel (that is, a so-called point defect state). There are many cases (see, for example, Patent Document 3).
  • a plurality of image pickup devices arranged two-dimensionally on the sensor panel are usually formed so as to be connected to one signal line for each column (or row). Due to disconnection or the like, there may be a state in which defective pixels are linearly present on the sensor panel (that is, a so-called line defect (or line defect) state).
  • the two-dimensional cluster shape is a two-dimensional shape excluding a state in which a defective pixel exists in one linear shape (a state of a line defect) in a state in which a plurality of continuous defective pixels exist. I mean.
  • image data captured using the radiation image capturing apparatus is transmitted (transferred) to the console.
  • the console performs predetermined image processing on the image data, displays a preview image for confirming the positioning of the subject in radiographic imaging, prints a diagnostic image used at the time of diagnosis, and the like. Therefore, the data is output to an external device such as an imager.
  • the console since the image data transmitted from the radiographic imaging apparatus may include image data of defective pixels as described above, the console also performs defective pixel correction processing as predetermined image processing. (See, for example, Patent Document 4).
  • the preview image is only used for confirming the positioning of the subject in radiographic imaging, it does not have to be as high in quality as the diagnostic image. Nevertheless, conventional consoles always use image data created by performing a certain defective pixel correction process when displaying a preview image and when outputting diagnostic image data to an external device. ing. Therefore, it takes time to display the preview image, and there is a problem that confirmation of the positioning of the subject in radiographic imaging cannot be performed immediately.
  • the present invention has been made in view of the above problems, and can create preview image data at high speed and promptly display a preview image based on the preview image data, and appropriately create a diagnostic image.
  • An object of the present invention is to provide a radiographic imaging system and a console that can be used.
  • the radiographic imaging system of the present invention includes: A radiographic imaging apparatus that performs radiographic imaging, and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging apparatus,
  • the radiographic image capturing apparatus includes: A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner; A readout circuit for reading out image data from each of the image sensors; Communication means for transmitting image data read by the read circuit to the console,
  • the console is Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel; Creating means for creating diagnostic image data and preview image data based on the image data transmitted from the radiographic apparatus, When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, a
  • the radiographic imaging system of the present invention is A radiographic imaging apparatus that performs radiographic imaging, and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging apparatus
  • the radiographic image capturing apparatus includes: A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner; An imaging device-side storage unit that stores defective pixel information regarding a defective pixel among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel; A readout circuit for reading out image data from each of the image sensors; An imaging device side creation means for creating preview image data based on the image data read by the readout circuit; Communication means for transmitting the preview image data created by the photographing apparatus side creating means to the console,
  • the console is Console-side storage means for storing the defective pixel information; Console-side creation means for creating diagnostic image data based on the preview image data transmitted from the radiographic imaging device, The console side creation means creates the
  • the console of the present invention A radiographic imaging apparatus comprising: a sensor panel in which a plurality of imaging elements that generate charges according to the dose of irradiated radiation are arranged in a two-dimensional manner; and a readout circuit that reads image data from each of the imaging elements.
  • Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel; Creating means for creating diagnostic image data and preview image data based on the image data transmitted by the radiographic apparatus, When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, a second defective pixel correction process simpler than the first defective pixel correction process is performed on the image data based on the defective pixel information stored in the storage unit.
  • the radiographic imaging system and console of the system of the present invention when creating diagnostic image data, as defective pixel correction processing, highly accurate defective pixel correction processing, that is, first defective pixel correction processing, When creating preview image data, a defective pixel correction process that is simpler than the first defective pixel correction process, that is, a second defective pixel correction process is performed as the defective pixel correction process.
  • the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data, and the defective pixel correction processing suitable for each case is performed. Is possible.
  • the second defective pixel correction process that is simpler than the first defective pixel correction process is performed as the defective pixel correction process, so that the preview image data is created at high speed. And a preview image can be displayed promptly based on this. Since the preview image is promptly displayed, it is possible for the operator to promptly confirm the positioning of whether or not the subject is captured at an appropriate position in radiographic image capturing.
  • the first defective pixel correction process with high accuracy is performed as the defective pixel correction processing, whereby the image data output from the defective pixel is corrected with high accuracy, and the diagnostic image is obtained.
  • Data can be created, and a diagnostic image can be appropriately created based on the data. Then, it becomes possible for the doctor to appropriately determine the presence or absence of the lesioned part of the patient and its state by looking at it.
  • FIG. 3 is a sectional view taken along line XX in FIG. 2. It is an enlarged view which shows the example of the scintillator which has a columnar crystal structure. It is a top view which shows the structure of the board
  • FIG. 6 is an enlarged view showing a configuration of an image pickup element including a radiation detection element and a thin film transistor formed in a small region on the substrate of FIG. 5.
  • FIG. 7 is a cross-sectional view taken along line YY in FIG.
  • FIG. 1 It is a side view explaining the sensor panel to which a COF, a PCB board, etc. were attached. It is an expanded sectional view of the image sensor concerning a 1st embodiment. It is a figure showing the equivalent circuit schematic of the radiographic imaging apparatus which concerns on 1st Embodiment.
  • (A) is a diagram showing an example of a plurality of defective pixels distributed linearly on a sensor panel, and (b) to (g) an example of a first defective pixel correction process for the defective pixels (gradient-oriented defective pixels) It is a figure for demonstrating a correction process.
  • (A) is a diagram illustrating an example of a plurality of defective pixels distributed in a dot pattern on a sensor panel, and (b) to (f) are examples of a first defective pixel correction process for the defective pixels (gradient-oriented defective pixels). It is a figure for demonstrating a correction process.
  • (A) It is a figure which shows an example of the some defective pixel distributed in the two-dimensional cluster form on a sensor panel, (b)-(f) An example of the 1st defective pixel correction process with respect to the said defective pixel (Gradient emphasis) It is a figure for demonstrating a type defect pixel correction process.
  • (A), (b) It is a figure which shows the other example of the some defective pixel distributed on a sensor panel in the shape of a two-dimensional cluster.
  • (A), (b) It is a figure which shows the other example of how to arrange pixel A1-A3 and pixel B1-B3 shown in FIG.12 (d).
  • (A) It is a figure which shows an example of the some defective pixel distributed linearly on a sensor panel, (b)-(g) Other examples (gradient average type
  • (A) is a diagram showing an example of a plurality of defective pixels distributed in a dot pattern on the sensor panel, and (b) to (f) another example of the first defective pixel correction process for the defective pixels (gradient average type) It is a figure for demonstrating a defective pixel correction process.
  • (A) is a diagram showing an example of a plurality of defective pixels distributed in a two-dimensional cluster on the sensor panel, and (b) to (f) another example of the first defective pixel correction process for the defective pixel ( It is a figure for demonstrating gradient average type defective pixel correction processing. It is a flowchart for demonstrating the process regarding the display of a preview image and the output of diagnostic image data in the radiographic imaging system which concerns on 1st Embodiment.
  • the radiographic imaging apparatus is portable.
  • the present invention is not limited to this case, and is applicable to, for example, a radiographic imaging apparatus formed integrally with a support base. can do.
  • the radiographic imaging apparatus includes a scintillator and the like, converts the emitted radiation into electromagnetic waves of other wavelengths such as visible light, and irradiates them, and converts them into image data that is electrical signals by the radiation detection element.
  • the so-called indirect type radiographic imaging apparatus will be described.
  • the present invention can also be applied to a so-called direct type radiographic imaging apparatus that directly detects radiation with a radiation detection element without using a scintillator or the like. it can.
  • FIG. 1 is a diagram illustrating an overall configuration of a radiographic image capturing system 100 according to the present embodiment.
  • the radiographic imaging system 100 is a system that assumes radiographic imaging performed in, for example, a hospital or a clinic, and can be employed as a system that captures medical diagnostic images as radiographic images.
  • the radiographic image capturing system 100 is configured to be able to communicate with a radiographic image capturing device 1 that performs radiographic image capturing and the radiographic image capturing device 1. And a console 101 that performs predetermined image processing on the image data of the radiographic image captured by the above.
  • the radiographic image capturing apparatus 1 is provided, for example, in a radiographing room R1 that irradiates a subject and captures a subject that is a part of the patient M, that is, a region to be imaged of the patient M. It is provided corresponding to the chamber R1.
  • radiographing room R1 is provided in the radiographic image capturing system 100 and three radiographic image capturing apparatuses 1 are arranged in the radiographing room R1 will be described as an example.
  • the number of chambers R1 and the number of radiographic image capturing devices 1 provided in each imaging chamber R1 are not particularly limited.
  • the console 101 does not have to be provided corresponding to each shooting room R1, and even if one console 101 is associated with the plurality of shooting rooms R1. good.
  • the radiographic imaging device 1 is configured to be loadable.
  • a bucky device 110 including a cassette holding unit 111 for holding the loaded radiographic imaging device 1 in a predetermined position, and a subject
  • a radiation generator 112 including a radiation source (not shown) such as an X-ray tube that irradiates radiation, and the like are provided.
  • a bucky device 110a for standing position photography and a bucky device 110b for standing position photography are provided as the bucky device 110.
  • the bucky device 110 for example, it is possible to appropriately adjust the position of the bucky device 110 or the height of the cassette holding unit 111 with respect to the bucky device main body, as in the known bucky device. .
  • a case where a bucky device 110a for standing position shooting and a bucky device 110b for standing position shooting are each provided in the shooting room R1 is illustrated.
  • the number of the bucky devices 110 provided inside is not particularly limited.
  • the radiographic image capturing apparatus 1 can be used in a so-called single state that is not loaded in the bucky apparatus 110. That is, the radiographic imaging device 1 is arranged in a single state, for example, on a support base provided in the radiographing room R1 or a bucky device 110a for supine imaging, and is placed on the radiation incident surface R (described later). It can be used by placing a hand, a leg, or the like, which is a region to be imaged, or by inserting it between a bed and a waist or leg of a patient lying on the bed.
  • the direction of the radiation generator 112 provided in association with the Bucky device 110 is changed (adjusted) so that radiation is emitted to the radiation image capturing device 1 through the subject, and radiation image capturing is performed. To be done.
  • the radiation generator 112 is set up according to an instruction from the operation device 114 described later, and is moved to a predetermined position by a moving means (not shown) so that the direction of the radiation is adjusted so that the irradiation direction of the radiation faces a predetermined direction. It has become.
  • an exposure instruction signal for instructing radiation exposure is transmitted from the operation device 114 to the radiation generator 112.
  • the radiation generator 112 emits predetermined radiation at a predetermined timing for a predetermined time according to the exposure instruction signal.
  • the radiation generating device 112 associated with the bucky device 110a for standing position imaging the radiation generating device 112 associated with the standing position photographing bucky device 110b, Is provided.
  • the configuration in which one radiation generation device 112 is provided corresponding to each of the bucky devices 110 is illustrated, but the present invention is not limited to this.
  • radiation is provided in the imaging room R1.
  • One generation device 112 is provided, and one radiation generation device 112 corresponds to a plurality of the bucky devices 110 and is shared by appropriately moving the position or changing the radiation irradiation direction. May be.
  • the case where the radiation generation device 112 associated with the bucky device 110 is provided is illustrated, but the present invention is not limited to this.
  • a portable radiation generator that is not associated with the bucky device 110 may be provided.
  • this portable radiation generating apparatus can be carried to any location in the photographing room R1 and can irradiate radiation in any direction.
  • this portable radiation generator may be configured to be set up in accordance with an instruction from the operation device 114 described later, as with the radiation generator 112.
  • the operator may set up manually, or may be set up by transmitting a radio signal from the radiographic imaging apparatus 1 to the portable radiation generating apparatus.
  • radiographing room R1 is shielded with lead or the like so that radiation does not leak outside, radio waves for wireless communication are also blocked. Therefore, when the radiographic imaging device 1 and the bucky device 110 installed in the imaging room R1 communicate with the console 101 installed outside the imaging room R1 in the imaging room R1, these communications are performed.
  • a wireless access point (base station) 113 or the like is provided.
  • the wireless access point 113 and the bucky device 110 are configured to be wirelessly connected.
  • the present invention is not limited to this.
  • the wireless access point 113 and the bucky device 110 are connected by a cable or the like. Then, it may be configured such that communication between the Bucky device 110 or the radiographic imaging device 1 loaded therein and the console 101 or the like can be performed in a wired manner.
  • a front room R2 is provided adjacent to the photographing room R1.
  • an operator such as a radiologist or doctor controls the radiation applied to the subject, that is, controls the tube voltage, tube current, irradiation field stop, etc. of the radiation generator 112 that irradiates the subject with radiation.
  • An operation device 114 for performing various operations is arranged.
  • the operating device 114 includes a computer having a general-purpose CPU (Central Processing Unit), a computer having a dedicated processor, or the like.
  • a general-purpose CPU Central Processing Unit
  • a computer having a dedicated processor or the like.
  • the operation device 114 is provided with various operation buttons and the like.
  • the operation button When the operation button is operated by the operator, the operation device 114 transmits, for example, an exposure instruction signal for instructing the radiation generation device 112 to perform radiation exposure.
  • the operation device 114 is connected to the radiation generation device 112 and also to the console 101.
  • a control signal for controlling the radiation irradiation condition of the radiation generator 112 is transmitted from the console 101 to the operation device 114.
  • the radiation irradiation condition of the radiation generator 112 is transmitted to the operation device 114. It is set according to the control signal from the console 101. Examples of radiation irradiation conditions include exposure start / end timing, radiation tube current value, radiation tube voltage value, filter type, and the like.
  • FIG. 2 is an external perspective view of the radiographic image capturing apparatus 1 according to the present embodiment
  • FIG. 3 is a cross-sectional view taken along line XX in FIG.
  • the radiographic image capturing apparatus 1 is configured by housing a sensor panel 40 including a scintillator 3, a substrate 4, and the like in a housing 2.
  • the housing 2 includes a so-called rectangular tube-shaped housing body 2 a and so-called lid members 2 b and 2 b that cover and close the openings at both ends of the housing body 2 a. It is formed in a monocoque shape.
  • the housing main body 2a is provided with a radiation receiving surface R (hereinafter referred to as "radiation incidence surface R"), and is formed of a material such as a carbon plate or plastic that transmits radiation.
  • the housing 2 can be a so-called lunch box type formed of a frame plate and a back plate.
  • One lid member 2b includes a power switch 36, a terminal 37 for connecting the radiographic image capturing apparatus 1 and another apparatus by wire, an indicator 38 for displaying various operation statuses, and the like. Is provided.
  • the lid member 2b is embedded with an antenna device 39 that is a communication means for the radiographic imaging device 1 to transmit and receive data and signals to and from other devices such as the console 101 in a wireless manner. It has been.
  • the location where the antenna device 39 is provided is not limited to one lid member 2b of the housing 2 as in the present embodiment, but may be provided at other positions. Further, the number of antenna devices 39 is not necessarily limited to one, and a necessary number is appropriately provided.
  • a sensor panel 40 is housed inside the housing 2.
  • the sensor panel 40 includes a substrate 4 and a scintillator 3 laminated thereon, and a glass substrate 35 for protecting them is disposed on the substrate 4 and the radiation incident surface R side of the scintillator 3. .
  • a base 31 is disposed below the substrate 4 via a lead thin plate (not shown).
  • the scintillator 3 is formed on a support 3 b formed of various polymer materials (polymers) such as a cellulose acetate film, a polyester film, and a polyethylene terephthalate film. It is formed by growing columnar crystals of the phosphor 3a by vapor phase growth methods such as sputtering and chemical vapor deposition (CVD).
  • the support 3b of the scintillator 3 is affixed and fixed to the glass substrate 35 described above.
  • the scintillator 3 is, for example, one that converts and outputs an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when receiving radiation.
  • the acute-angled tip end Pa side of the columnar crystal of the phosphor 3 a is bonded to a detection unit P described later of the substrate 4.
  • the substrate 4 is formed of a glass substrate. As shown in FIG. 5, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. In each small region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4, radiation detection elements 7 are respectively provided.
  • the radiation detection elements 7 are two-dimensionally arranged on the substrate 4 of the sensor panel 40, and are indicated by the entire region r in which the plurality of radiation detection elements 7 are provided, that is, a one-dot chain line in FIG.
  • the region is the detection unit P of the sensor panel 40.
  • a photodiode is used as the radiation detection element 7 that generates charges in accordance with the amount of electromagnetic waves output from the radiation incident surface R that is converted by the scintillator 3.
  • a phototransistor or the like can be used.
  • each radiation detection element 7 is connected to a source electrode 8s of a thin film transistor (hereinafter referred to as “TFT”) 8 which is a switching element, as shown in the enlarged views of FIG. 5 and FIG.
  • TFT thin film transistor
  • FIG. 7 is a cross-sectional view taken along line YY in FIG.
  • a gate electrode 8g of a TFT 8 made of Al, Cr, or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a).
  • An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiN x ) or the like is connected to the first electrode 74 of the radiation detection element 7 via a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like.
  • the formed source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
  • the source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both electrodes 8s and 8d from above.
  • a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both electrodes 8s and 8d from above.
  • ohmic contact layers 84a and 84b formed in an n-type by doping a hydrogenated amorphous silicon with a group VI element are laminated.
  • the TFT 8 is formed as described above.
  • an auxiliary electrode 72 is formed by laminating Al, Cr or the like on an insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4.
  • a first electrode 74 made of Al, Cr, Mo, or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween.
  • the first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.
  • a p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed.
  • a second electrode 78 made of a transparent electrode such as ITO is laminated on the p layer 77, and the irradiated electromagnetic wave reaches the i layer 76 or the like.
  • the radiation detection element 7 is formed as described above.
  • the radiation detection element 7 is not limited to such a pin type.
  • a bias line 9 for applying a reverse bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78.
  • the second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are A second passivation layer 79 made of silicon nitride (SiN x ) or the like is covered from above.
  • one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other.
  • each bias line 9 is bound to one connection 10 at a position outside the detection portion P of the substrate 4.
  • each scanning line 5, each signal line 6, and the connection 10 of the bias line 9 are connected to an input / output terminal (also referred to as a pad) 11 provided near the edge of the substrate 4, respectively.
  • each input / output terminal 11 has a COF (Chip On Film) 12 in which a chip such as an IC 12a is incorporated. It is connected via an anisotropic conductive adhesive material 13 such as Conductive Paste).
  • the COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 described above on the back surface 4b side.
  • the portion where the radiation detection elements 7 on the surface 4a of the substrate 4 are arranged that is, the detection portion P is flattened by applying a transparent resin or the like to protect the radiation detection elements 7 and form a flat surface.
  • Layer 7a is formed.
  • the scintillator 3 is bonded to the planarization layer 7a.
  • the sensor panel 40 of the radiographic image capturing apparatus 1 is formed in this way.
  • one image sensor 41 is formed.
  • the radiation detection element 7 is shown in a simplified manner.
  • FIG. 10 is an equivalent circuit diagram of the sensor panel 40 of the radiographic image capturing apparatus 1 according to the present embodiment.
  • the radiation detection element 7 of each imaging element 41 of the sensor panel 40 has the second electrode 78 connected to the bias line 9, and each bias line 9 is bound to the connection line 10 to be bias power supply 14. It is connected to the.
  • the bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9.
  • the bias power source 14 is connected to a control unit 22 described later, and the control unit 22 controls a bias voltage applied to each radiation detection element 7 from the bias power source 14.
  • the bias line 9 is connected via the second electrode 78 to the p-layer 77 side (see FIG. 7) of the radiation detection element 7
  • the radiation from the bias power source 14 A voltage lower than the voltage applied to the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage) is applied to the second electrode 78 of the detection element 7 as a bias voltage via the bias line 9. Yes.
  • the first electrode 74 of each radiation detection element 7 is connected to the source electrode 8s (denoted as S in FIG. 10) of the TFT 8, and the gate electrode 8g of each TFT 8 (denoted as G in FIG. 10). Are connected to the lines L1 to Lx of the scanning line 5 extending from the gate driver 15b of the scanning driving means 15 to be described later. Further, the drain electrode 8d (denoted as D in FIG. 10) of each TFT 8 is connected to each signal line 6.
  • the scanning drive unit 15 includes a power supply circuit 15a that supplies an on voltage and an off voltage to the gate driver 15b, and a voltage applied to each of the lines L1 to Lx of the scanning line 5 between the on voltage and the off voltage. And a gate driver 15b that switches between the on state and the off state of each TFT 8 by switching between them.
  • Each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16. Note that a predetermined number of read circuits 17 are provided in the read IC 16, and by providing a plurality of read ICs 16, the read circuits 17 corresponding to the number of signal lines 6 are provided.
  • the readout circuit 17 includes an amplification circuit 18, a correlated double sampling circuit 19, an analog multiplexer 21, and an A / D converter 20.
  • one amplification circuit 18 and one correlated double sampling circuit 19 are provided for each signal line 6, but there are a plurality of analog multiplexers 21 and A / D converters 20. This is common to all circuits.
  • the correlated double sampling circuit 19 is represented as CDS in FIG.
  • radiographic image capturing radiation is irradiated in a state where an imaging target site such as a chest or a leg of a patient is disposed as a subject on the radiation incident surface R of the housing 2 of the radiographic image capturing apparatus 1.
  • the gate electrode 8g of the TFT 8 of each image sensor 41 is turned off and the gate is closed.
  • the radiation transmitted through the subject is irradiated, the radiation transmitted through the radiation incident surface R enters the scintillator 3 (not shown in FIG. 10), and the scintillator 3 converts the radiation into electromagnetic waves.
  • An electromagnetic wave is incident on the radiation detection element 7 of the image sensor 41.
  • an electron-hole pair is generated according to the amount of the electromagnetic wave incident in the i layer 76, that is, the radiation dose.
  • a predetermined potential gradient formed in the radiation detection element 7 by application of the bias voltage one of the generated electrons and holes (in this embodiment, a hole) moves to the second electrode 78 side, The other charge (electrons in this embodiment) moves to the first electrode 74 side and is accumulated near the first electrode 74.
  • the reading operation is started.
  • a signal readout voltage is applied from the scanning drive means 15 to the gate electrode 8g of the TFT 8 of each image sensor 41 via the scanning line 5, the gate of the TFT 8 is turned on, and the radiation of the image sensor 41 is turned on.
  • the charge accumulated in the detection element 7 is emitted from the drain electrode 8d to the signal line 6 through the source electrode 8s of the TFT 8.
  • each correlated double sampling circuit 19 sequentially converts the image data obtained by subtracting the noise of each radiation detecting element 7 when no radiation is applied from the image data via the analog multiplexer 21 into an A / D converter. 20 is converted to a digital value sequentially by the A / D converter 20 and read out.
  • the control means 22 includes a microcomputer including a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), an FPGA (Field Programmable Gate Array), and the like, and a predetermined program stored in the ROM.
  • a microcomputer including a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), an FPGA (Field Programmable Gate Array), and the like, and a predetermined program stored in the ROM.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • FPGA Field Programmable Gate Array
  • ROM and RAM may be provided not in the control means 22 but in the storage means 23 connected to the control means 22.
  • control unit 22 controls the bias power supply 14 to control the reverse bias voltage applied to the radiation detection element 7 of each image sensor 41 or applies a signal readout voltage from the scanning drive unit 15.
  • Image data is read from each image sensor 41 by switching the scanning line 5 or controlling the amplification circuit 18 and the correlated double sampling circuit 19 in each readout circuit 17.
  • Each image data read from each image sensor 41 is stored in the image storage area of the storage unit 23 in accordance with an instruction of a memory controller (not shown) controlled by the control unit 22.
  • the above-described antenna device 39 is connected to the control means 22, and data and signals are transmitted / received to / from other devices via the antenna device 39.
  • control means 22 controls the supply of electric power from the battery 24 built in the apparatus to each member such as each image sensor 41.
  • a connection terminal (not shown) for charging the battery 24 by supplying power from another device is attached to the battery 24.
  • control unit 22 first reads out image data from the image sensor 41 by the readout circuit 17, performs a predetermined compression process on the image data, and passes through the antenna device 39 as a communication unit. The data is transmitted to the console 101.
  • the console 101 communicates between the control unit 101a, the storage unit 101b including an HDD (Hard Disk Drive), and other devices such as the operation device 114 and the wireless access point 113.
  • a computer configured to include a communication unit 101c for performing communication, a display unit 101d such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), an input unit (not shown) such as a keyboard or a mouse, and the like It is.
  • the communication unit 101 c is an output unit, and via the network N, from the console 101, a HIS (Hospital Information System) 121 or RIS (Radiology Information System) 121 that provides imaging order information of an inspection object related to imaging to the console 101.
  • a PACS (Picture Archiving and Communication System) server 122 that stores the output image data, an external such as an imager 123 that records and outputs a radiographic image on an image recording medium such as a film based on the image data output from the console 101 Connected to the device.
  • the console 101 is installed outside the photographing room R1 or the front room R2 is illustrated, but the present invention is not limited to this.
  • the console 101 is installed in the front room R2 or the like. It is also possible to configure so as to.
  • the control unit 101a includes a CPU, a ROM, a RAM, and the like (not shown), reads a predetermined program stored in the ROM, develops it in the work area of the RAM, executes various processes according to the program, and performs radiographic imaging.
  • the entire system 100 is controlled.
  • ROM and RAM may be provided in the storage means 101b instead of the control means 101a.
  • control means 101a is used for confirming diagnostic image data that is image data of a diagnostic image used at the time of diagnosis, positioning of a subject in radiographic imaging, and the like. It functions as a creation means for creating preview image data that is image data of a preview image.
  • the control unit 101a when creating the diagnostic image data, the control unit 101a performs a first defective pixel correction process, which is a highly accurate defective pixel correction process, on the image data transmitted from the radiation image capturing apparatus 1, and a preview.
  • a second defective pixel correction process which is a defective pixel correction process simpler than the first defective pixel correction process, is performed on the image data transmitted from the radiation image capturing apparatus 1. ing.
  • the control unit 101a when creating the preview image data, the control unit 101a thins out pixels at a predetermined rate from the image data (raw data) transmitted from the radiation image capturing apparatus 1, and the data amount is, for example, Thinned-out image data reduced to be about 1/16 of the raw data is generated.
  • the control unit 101a performs a predetermined decompression process on the compressed image data, and then Offset correction and gain correction are performed and stored in, for example, the storage unit 101b.
  • control means 22 of the radiographic image capturing apparatus 1 detects the dark read value output from each imaging element 41 of the sensor panel 40 in a state where the radiation image radiographing apparatus 1 is not irradiated with radiation, and uses this dark read value.
  • the dark reading value and the offset correction value are transmitted together with the image data by calculating the offset correction value based on this.
  • control unit 101a of the console 101 performs offset correction based on the offset correction value transmitted from the radiation image capturing apparatus 1, and reads out the gain correction value stored in advance in the storage unit 101b to obtain the gain correction value. Based on this, gain correction is performed.
  • control unit 101a performs thinning processing on the image data that has been subjected to offset correction and gain correction, and generates thinned image data.
  • control unit 101a performs a second defective pixel correction process on the thinned image data based on defective pixel information (described later) stored in the storage unit 101b to create preview image data.
  • control unit 101a causes the display unit 101d to display a preview image based on the preview image data.
  • control unit 101a acquires, for example, image data stored in the storage unit 101b, that is, image data that has been subjected to offset correction and gain correction, and the image data is stored in the storage unit 101b.
  • a first defective pixel correction process is performed based on defective pixel information (described later) to create diagnostic image data.
  • diagnostic image data After creating the preview image data and displaying the preview image based on the preview image data, the diagnostic image data is automatically created.
  • diagnostic image data may be created when an operator operates an input means (not shown) included in the console 101 to instruct to create diagnostic image data.
  • the control unit 101a displays a diagnostic image based on the diagnostic image data on the display unit 101d.
  • the diagnostic image data is displayed or output to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c which is an output unit.
  • the thinning process when creating preview image data, is performed after performing the offset correction and the gain correction.
  • the present invention is not limited to this, and the thinning process may include, for example, gain correction. It may be performed before performing or may be performed before performing offset correction. Further, the thinning process is not necessarily performed.
  • offset correction and gain correction are performed on the console 101 side.
  • the present invention is not limited to this.
  • at least offset correction and gain correction on the radiographic imaging apparatus 1 side are performed.
  • the image data subjected to at least offset correction may be transmitted to the console 101.
  • each image sensor 41 of the sensor panel 40 usually includes one that outputs abnormal image data constantly or with a certain probability. Therefore, a state in which pixels (that is, defective pixels) corresponding to the image pickup element 41 that outputs abnormal image data are isolated from each other on the sensor panel 40 (that is, a so-called point defect state), and a sensor panel. 40 may exist in at least one of a state existing linearly on 40 (that is, a so-called line defect state) and a state existing two-dimensionally on the sensor panel 40. is there.
  • the two-dimensional cluster form means a plurality of defective pixels that are continuous in at least one of the row direction, the column direction, and the direction inclined by 45 degrees with respect to the row direction (or column direction).
  • This is a two-dimensional shape excluding a state where a defective pixel exists in a single line shape (line defect state).
  • defective pixel information related to defective pixels among the pixels corresponding to the plurality of imaging elements 41 arranged two-dimensionally on the sensor panel 40 is grasped in advance, for example, when the radiographic image capturing apparatus 1 is manufactured. It has come to be.
  • the defective pixel information is stored in advance in the storage unit 101b of the console 101 together with identification information for identifying the corresponding radiographic image capturing apparatus 1.
  • the defective pixel information stored in the storage unit 101b is information including the pixel position of the defective pixel on the sensor panel 40, for example.
  • both the first defective pixel correction process and the second defective pixel correction process are based on the same information, that is, the defective pixel information stored in the storage unit 101b. Can be done.
  • FIGS. 11A to 11G and FIGS. This will be described with reference to FIGS. 12 (f) and 13 (a) to 13 (f).
  • FIGS. 12 (f) and 13 (a) to 13 (f) Each of these figures is a diagram showing a part on the sensor panel 40, and a pixel indicated by hatching in the figure is a defective pixel. Further, the vertical direction in the figure is the column direction, and the horizontal direction in the figure is the row direction.
  • the gradient emphasis type defective pixel correction process calculates an image gradient G that is a gradient of image data in each of a plurality of predetermined directions centered on one defective pixel, and the calculated image gradient G is in the smallest direction.
  • the corrected image data is calculated using the image data of the normal pixel closest to the one defective pixel among the normal pixels, and the image data of the one defective pixel is replaced with the calculated corrected image data. This processing is performed on each defective pixel.
  • a defective pixel surrounded by a thick frame in FIG. 11A for example, a defective pixel at a pixel position (m, n), hereinafter referred to as “defective pixel dp (m, n)”).
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center.
  • Line La1 is rotated by +45 degrees
  • line La (La2) line La1 is rotated by +60 degrees
  • line La (La3) line La1 is rotated by +120 degrees
  • line La (La4) and line La1 is rotated by +135 degrees
  • a line La (La5) is drawn.
  • the pixel A2 intersects the line La1 at the approximate center and is located on the left side of the defective pixel dp (m, n), and the pixel on one line of the pixel A2 is the pixel A1.
  • the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3.
  • the pixel at the pixel position (m ⁇ 1, n ⁇ 1) is the pixel A1
  • the pixel at the pixel position (m, n ⁇ 1) is the pixel A2
  • the pixel of (n-1) is specified as the pixel A3.
  • a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2, and a pixel that is on one line of the pixel B2 is a pixel B1.
  • the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3.
  • the pixel at the pixel position (m ⁇ 1, n + 1) is the pixel B1
  • the pixel at the pixel position (m, n + 1) is the pixel B2, and the pixel at the pixel position (m + 1, n + 1). Is identified as pixel B3.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La3.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La4.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La5.
  • each defective pixel to be configured is stored in advance in the storage unit 101b.
  • the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • Image data of .about.A3 and pixels B1 to B3 are specified, and an image gradient G expressed by the following equation (1) is calculated using the specified image data.
  • D A1 is the image data of the pixel A1
  • D A2 is the image data of the pixel A2
  • D A3 is the image data of the pixel A3
  • D B1 is the image data of the pixel B1
  • D B2 is the pixel data B2 image data
  • D B3 is image data of the pixel B3.
  • the image gradient G is calculated for the lines La2 to La5.
  • the corrected image data F is calculated by performing, for example, linear interpolation using the pixel positions of the two pixels (hereinafter referred to as “pixel A” and “pixel B”) and the image data. That is, for example, corrected image data F represented by the following equation (2) is calculated.
  • d Amin is the distance from the defective pixel dp (m, n) to the pixel A (that is, the number of pixels from the defective pixel dp (m, n) to the pixel A), and D Amin is the image data of the pixel A
  • D Bmin is the distance from the defective pixel dp (m, n) to the pixel B (that is, the number of pixels from the defective pixel dp (m, n) to the pixel B)
  • D Bmin is the image data of the pixel B .
  • the pixel A is the pixel at the pixel position (m + 1, n ⁇ 1) (that is, in FIG. 11D).
  • pixel A2) and pixel B are pixels at pixel position (m ⁇ 1, n + 1) (that is, pixel B2 in FIG. 11D)
  • d Amin is “1”
  • D Amin is the pixel position
  • the image data of the pixel at m + 1, n ⁇ 1), d Bmin is “1”
  • D Bmin is the image data of the pixel at pixel position (m ⁇ 1, n + 1).
  • the position is preliminarily stored in the storage unit 101b as defective pixel information for each defective pixel constituting the line defect.
  • the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
  • a defective pixel for example, defective pixel dp (m, n)
  • a thick frame in FIG. 12A is corrected among the plurality of defective pixels.
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center.
  • a line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
  • a pixel that intersects the line La1 substantially at the center and is on the left side of the defective pixel dp (m, n) is a pixel A2
  • a pixel that is on one row of the pixel A2 is a pixel A1.
  • the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3.
  • a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2
  • a pixel that is on one line of the pixel B2 is a pixel B1.
  • the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
  • a pixel that intersects with the line La3 at the approximate center and is lower than the defective pixel dp (m, n) is a pixel A2
  • a pixel that is on the left of one column of the pixel A2 is a pixel.
  • the pixels A1 to A3 are all normal pixels, and the uppermost pixel is specified as the pixels A1 to A3.
  • a pixel that intersects the line La3 substantially at the center and is above the defective pixel dp (m, n) is a pixel B2
  • a pixel that is one column left of the pixel B2 is a pixel B1.
  • the pixels B1 to B3 are all normal pixels, and the lowermost pixel is specified as the pixels B1 to B3.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La4.
  • the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1 to La4 centering on the defective pixel are defined as defective pixel information. Assume that each defective pixel to be configured is stored in advance in the storage unit 101b.
  • the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • Image data of .about.A3 and pixels B1 to B3 are specified, and the image gradient G represented by the above equation (1) is calculated using the specified image data.
  • the image gradient G is calculated for the lines La2 to La4.
  • the line La having the smallest image gradient G is specified, and the normal pixels closest to the defective pixel dp (m, n) among the normal pixels in the direction of the specified line La are specified.
  • the corrected image data F represented by, for example, the above equation (2) is calculated using the pixel positions of the two pixels (pixel A and pixel B) and the image data.
  • the pixel A is the pixel at the pixel position (m + 1, n ⁇ 1) (that is, in FIG. 12D).
  • pixel A2) and pixel B are pixels at pixel position (m ⁇ 1, n + 1) (ie, pixel B2 in FIG. 12D)
  • d Amin is “1”
  • D Amin is the pixel position
  • the image data of the pixel at m + 1, n ⁇ 1), d Bmin is “1”
  • D Bmin is the image data of the pixel at pixel position (m ⁇ 1, n + 1).
  • the pixel A is the pixel at the pixel position (m + 1, n) (that is, in FIG. 12E).
  • pixel A2) and pixel B are pixels at pixel position (m ⁇ 1, n) (ie, pixel B2 in FIG. 12E)
  • d Amin is “1”
  • D Amin is the pixel position ( The image data of the pixel at m + 1, n), d Bmin is “1”, and D Bmin is the image data of the pixel at the pixel position (m ⁇ 1, n).
  • the position is preliminarily stored as defective pixel information in the storage unit 101b for each defective pixel constituting the point defect.
  • the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
  • a defective pixel for example, defective pixel dp (m, n)
  • a thick frame in FIG. 13A is corrected among the plurality of defective pixels.
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center.
  • a line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
  • a pixel that intersects the line La1 substantially at the center and is on the left side of the defective pixel dp (m, n) is a pixel A2
  • a pixel that is on one row of the pixel A2 is a pixel A1.
  • the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3.
  • a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2
  • a pixel that is on one row of the pixel B2 is a pixel B1.
  • the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3.
  • the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
  • a pixel that intersects the line La3 substantially at the center and is below the defective pixel dp (m, n) is a pixel A2
  • a pixel that is on the left side of the pixel A2 is a pixel
  • the pixels A1 to A3 are all normal pixels, and the uppermost pixel is specified as the pixels A1 to A3.
  • a pixel that intersects the line La3 substantially at the center and is above the defective pixel dp (m, n) is a pixel B2
  • a pixel that is one column left of the pixel B2 is a pixel B1.
  • the pixels B1 to B3 are all normal pixels, and the lowermost pixel is specified as the pixels B1 to B3.
  • the pixels A1 to A3 and the pixels B1 to B3 are also specified for the line La4.
  • the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1 to La4 around the defective pixel are used as the defective pixel information as the cluster-like defect. It is assumed that each defective pixel that constitutes is previously stored in the storage unit 101b.
  • the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • Image data of .about.A3 and pixels B1 to B3 are specified, and the image gradient G represented by the above equation (1) is calculated using the specified image data.
  • the image gradient G is calculated for the lines La2 to La4.
  • the line La having the smallest image gradient G is specified, and the normal pixels closest to the defective pixel dp (m, n) among the normal pixels in the direction of the specified line La are specified.
  • the corrected image data F represented by, for example, the above equation (2) is calculated using the pixel positions of the two pixels (pixel A and pixel B) and the image data.
  • the pixel A is the pixel at the pixel position (m + 2, n ⁇ 2) (that is, in FIG. 13D).
  • Pixel A2) and pixel B is the pixel at the pixel position (m ⁇ 2, n + 2) (that is, the pixel adjacent to the left side of the pixel B3 in FIG. 13D ), so d Amin is “2”, D Amin is the image data of the pixel at the pixel position (m + 2, n ⁇ 2), d Bmin is “2”, and D Bmin is the image data of the pixel at the pixel position (m ⁇ 2, n + 2).
  • the pixel A is the pixel at the pixel position (m + 2, n) (that is, in FIG. 13E).
  • the pixel B is the pixel at the pixel position (m ⁇ 3, n) (that is, the pixel below the pixel B2 in FIG. 13E)
  • the pixel B is the pixel adjacent to the pixel A2.
  • Amin is “2”
  • D Amin is the image data of the pixel at the pixel position (m + 2, n)
  • d Bmin is “3”
  • D Bmin is the image data of the pixel at the pixel position (m ⁇ 3, n).
  • the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
  • each defective pixel constituting the cluster defect is corrected like a defective pixel constituting the point defect.
  • a cluster defect includes a line defect or, for example, as shown in FIG. 14B, a plurality of line defects are connected to form a cluster defect.
  • each defective pixel constituting the line defect portion may be corrected like each defective pixel constituting the line defect. That is, for each defective pixel constituting the part of the line defect, a line La1 that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center.
  • the correction process may be performed by drawing lines La2 to La5 obtained by rotating the line La1 by +45 degrees, +60 degrees, +120 degrees, and +135 degrees.
  • the pixels A1 to A3 and the pixels B1 to B3 related to the line La2 (that is, the line La obtained by rotating the line La1 by +45 degrees)
  • the pixels A1 to A3 and the pixels B1 to B3 related to the line La2 may be arranged in the row direction, or, for example, orthogonal to the line La2 as shown in FIG. 15B. You may line up in the direction to do.
  • the pixels A1 to A3 and the pixels B1 to B3 related to the line La4 that is, the line La obtained by rotating the line La1 by +135 degrees).
  • a line La1 that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n)
  • the lines La2 to La5 obtained by rotating the line La1 about +45 degrees, +60 degrees, +120 degrees, and +135 degrees are drawn, but the rotation angle when the line La1 is rotated to obtain the lines La2, La3,. Is not limited to +45 degrees, +60 degrees, +120 degrees, and +135 degrees, and is arbitrary.
  • the number of lines La is not limited to five of lines La1 to La5, and may be any number as long as it is plural.
  • lines La2 to La4 obtained by rotating the line La1 by +45 degrees, +90 degrees, and +135 degrees around the defective pixel dp (m, n) are drawn, but the line La1 is rotated and the lines La2 and La4 are rotated.
  • the rotation angle for obtaining La3,... Is not limited to +45 degrees, +90 degrees, and +135 degrees, and is arbitrary.
  • the number of lines La is not limited to four of lines La1 to La4, and may be any number as long as it is plural.
  • the corrected image data F is calculated by the linear interpolation method in the gradient-oriented defect pixel correction processing.
  • the present invention is not limited to this, and the method of calculating the corrected image data F is not limited to this. Any method can be used as long as it is calculated using image data of both normal pixels closest to the defective pixel among normal pixels in the direction in which the image gradient G is the smallest.
  • the gradient-oriented defective pixel correction process is exemplified as the first defective pixel correction process.
  • the first defective pixel correction process is a highly accurate defective pixel correction suitable for creating diagnostic image data. Any processing may be used, and for example, a gradient average type defective pixel correction process described later may be used, or a known defective pixel correction process such as a defective pixel correction process using a spline curve may be used.
  • FIGS. 16 (a) to 16 (g) is another example of the first defective pixel correction process
  • FIGS. 18 (a) to 18 (f) is a diagram showing a part on the sensor panel 40, and a pixel indicated by hatching in the figure is a defective pixel. Further, the vertical direction in the figure is the column direction, and the horizontal direction in the figure is the row direction.
  • the gradient average type defective pixel correction process calculates corrected image data using image data of normal pixels closest to the one defective pixel in each of a plurality of predetermined directions centered on the one defective pixel, In this process, the image data of the one defective pixel is replaced with the average value of the calculated corrected image data for each defective pixel.
  • a defective pixel for example, defective pixel dp (m, n)
  • a thick frame in FIG. 16A is corrected among the plurality of defective pixels.
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is centered.
  • Line La1 is rotated by +45 degrees
  • line La (La2) line La1 is rotated by +60 degrees
  • line La (La3) line La1 is rotated by +120 degrees
  • line La (La4) and line La1 is rotated by +135 degrees
  • a line La (La5) is drawn.
  • the normal pixel on the rightmost side is the pixel.
  • A is specified.
  • the normal pixel on the leftmost side among the normal pixels that intersect with the line La1 at substantially the center and is on the right side of the defective pixel dp (m, n) is the pixel.
  • B is specified.
  • the pixel A and the pixel B are specified for the line La2.
  • the pixel A and the pixel B are specified for the line La3.
  • the pixel A and the pixel B are specified for the line La4.
  • the pixel A and the pixel B are specified for the line La5.
  • the pixel positions of the pixel A and the pixel B related to the lines La1 to La5 around the defective pixel (that is, the defective pixel dp (m, n) is the center).
  • the pixel positions of both normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1 to La5 drawn as are stored as defective pixel information for each defective pixel constituting the line defect. It is assumed that it is stored in advance in the means 101b.
  • the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • the image data of the pixel B is specified, and the corrected image data is subjected to, for example, linear interpolation using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b.
  • F is calculated. That is, for example, corrected image data F represented by the following equation (3) is calculated.
  • d A is the distance from the defective pixel dp (m, n) to the pixel A
  • D A is the image data of the pixel A
  • d B is the distance from the defective pixel dp (m, n) to the pixel B
  • D B is the image data of the pixel B.
  • the corrected image data F is calculated for the lines La2 to La5.
  • an average value is calculated by, for example, performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 on at least two of the corrected image data F on the lines La1 to La5.
  • the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
  • a defective pixel for example, defective pixel dp (m, n)
  • a thick frame in FIG. 17A is corrected among the plurality of defective pixels.
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is centered.
  • a line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
  • the normal pixel on the rightmost side is the pixel.
  • A is specified.
  • the normal pixel on the leftmost side is the pixel.
  • B is specified.
  • the pixel A and the pixel B are specified for the line La2.
  • the uppermost normal pixel that intersects the line La1 at the approximate center and is below the defective pixel dp (m, n) is selected.
  • the pixel A is specified.
  • the normal pixel located at the lowermost side among the normal pixels that intersect with the line La1 at the approximate center and that are above the defective pixel dp (m, n).
  • the pixel B is specified.
  • the pixel A and the pixel B are specified for the line La4.
  • the pixel positions of the pixel A and the pixel B with respect to each of the lines La1 to La4 centering on the defective pixel are the defective pixels constituting the point defect as the defective pixel information. It is assumed that it is stored in advance in the storage means 101b every time.
  • the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • the image data of the pixel B are specified, and the above-described expression (3) is used, for example, using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b.
  • the corrected image data F to be calculated is calculated.
  • the corrected image data F is calculated for the lines La2 to La4.
  • At least two of the corrected image data F on the lines La1 to La4 are simply averaged or weighted averaged according to the characteristics of the sensor panel 40 or the like to calculate an average value.
  • the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
  • a defective pixel for example, defective pixel dp (m, n)
  • a thick frame in FIG. 18A is corrected among the plurality of defective pixels.
  • a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center.
  • a line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
  • the normal pixel on the rightmost side is the pixel.
  • A is specified.
  • the normal pixel on the leftmost side is the pixel.
  • B is specified.
  • the pixel A and the pixel B are specified for the line La2.
  • the normal pixel on the uppermost side among the normal pixels that intersect with the line La1 substantially at the center and is below the defective pixel dp (m, n) is displayed.
  • the pixel A is specified.
  • the normal pixel located at the lowermost side among the normal pixels that intersect with the line La1 at approximately the center and are above the defective pixel dp (m, n) is displayed.
  • the pixel B is specified.
  • the pixel A and the pixel B are specified also for the line La4.
  • the pixel positions of the pixel A and the pixel B with respect to each of the lines La1 to La4 centered on the defective pixel are the defective pixel information. It is assumed that each pixel is stored in advance in the storage unit 101b.
  • the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction).
  • the image data of the pixel B are specified, and the above-described expression (3) is used, for example, using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b.
  • the corrected image data F to be calculated is calculated.
  • the corrected image data F is calculated for the lines La2 to La4.
  • At least two of the corrected image data F on the lines La1 to La4 are simply averaged or weighted averaged according to the characteristics of the sensor panel 40 or the like to calculate an average value.
  • the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
  • each defective pixel constituting the cluster defect is corrected like a defective pixel constituting a point defect.
  • a line defect is included in the cluster defect (see FIG. 14A), or when a plurality of line defects are connected to form a cluster defect (see FIG. 14B), You may correct
  • the rotation angles when the lines La1, La3,... Are obtained by rotating the line La1 are +45 degrees, +60 degrees, +120 degrees, +135 degrees. It is not limited to, but is arbitrary. Further, the number of the lines La is not limited to five of the lines La1 to La5, and may be arbitrary as long as it is plural.
  • the number of lines La is not limited to four of lines La1 to La4, and may be any number as long as it is plural.
  • the corrected image data F is calculated by the linear interpolation method.
  • the present invention is not limited to this, and the method of calculating the corrected image data F is not limited to this. Any method can be used as long as it is calculated using image data of both normal pixels closest to the defective pixel among normal pixels in a plurality of predetermined directions.
  • the immediately preceding replacement defective pixel correction process is a process in which the image data of one defective pixel is replaced with the image data of the immediately preceding pixel adjacent to the one defective pixel for each defective pixel.
  • the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n ⁇ 1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
  • the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n ⁇ 1)).
  • the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n ⁇ 1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
  • the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n ⁇ 1)).
  • a defective pixel (defective pixel dp (m, n)) surrounded by a thick frame in FIG. 18A is corrected among the plurality of defective pixels.
  • the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n ⁇ 1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
  • the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n ⁇ 1)).
  • the pixel immediately before the defective pixel dp (m, n) is a defective pixel.
  • the image data of the pixel immediately before is defective pixel dp (m, n). It is assumed that it has already been corrected at the time of correcting. Therefore, the corrected image data is specified as the image data of the pixel immediately before the defective pixel dp (m, n), and the image data of the defective pixel dp (m, n) is replaced with the corrected image data. Will be. That is, in FIG.
  • the defective pixel dp (m, n-2), the defective pixel dp (m, n-1), the defective pixel dp (m, n), and the defective pixel dp (m, n + 1) are respectively Then, the image data of the pixel immediately before the defective pixel dp (m, n ⁇ 2) (the pixel at the pixel position (m, n ⁇ 3)) is replaced.
  • the immediately preceding pixel (pixel at the pixel position (m, n ⁇ 1)) adjacent in the row direction is exemplified as the immediately preceding pixel adjacent to the defective pixel dp (m, n).
  • the immediately preceding pixel adjacent to the defective pixel dp (m, n) may be, for example, the immediately preceding pixel adjacent to the column direction (pixel at the pixel position (m ⁇ 1, n)). Also in this case, it is assumed that the image data of the immediately preceding pixel has already been corrected when the defective pixel dp (m, n) is corrected.
  • the immediately preceding replacement defective pixel correction process is exemplified as the second defective pixel correction process, but the second defective pixel correction process is simpler defective pixel correction than the first defective pixel correction process.
  • Any processing can be used, and for example, adjacent average type defective pixel correction processing described later may be used, or other known defective pixel correction processing may be used.
  • each defective pixel is subjected to a process of replacing the image data of one defective pixel with the average value of each image data of a plurality of adjacent pixels adjacent to the one defective pixel. It is processing.
  • the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Each image data at a pixel position of a plurality of adjacent pixels adjacent to the defective pixel dp (m, n) is specified.
  • the adjacent pixels of the defective pixel dp (m, n) are eight pixels surrounding the defective pixel dp (m, n) (that is, the pixel at the pixel position (m ⁇ 1, n ⁇ 1), the pixel position ( m-1, n), pixel position (m-1, n + 1), pixel position (m, n-1), pixel position (m, n + 1), pixel position (m + 1, n- 1), the pixel at the pixel position (m + 1, n), and the pixel at the pixel position (m + 1, n + 1)).
  • the corrected image data is also used as the image data of the adjacent pixel. It can be specified. In other words, when a defective pixel is included in the eight pixels surrounding the pixel to be corrected, if the image data of the defective pixel is not yet corrected, the image data of the defective pixel is the image data of the adjacent pixel. Not to be specified as.
  • the pixel at the pixel position (m ⁇ 1, n) and the pixel position (m + 1) , N) is a defective pixel.
  • the image data of the defective pixel at the pixel position (m ⁇ 1, n) is already corrected, whereas the pixel position (m + 1, n) is corrected.
  • Image data of defective pixels has not been corrected yet. Therefore, of the eight pixels surrounding the defective pixel dp (m, n), seven pixels other than the defective pixel at the pixel position dp (m + 1, n) can be adjacent pixels.
  • an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
  • the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Identify each image data at the pixel position of a plurality of adjacent pixels (at least two of the eight pixels surrounding the defective pixel dp (m, n)) adjacent to the defective pixel dp (m, n) To do.
  • an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
  • the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
  • image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Identify each image data at the pixel position of a plurality of adjacent pixels (at least two of the eight pixels surrounding the defective pixel dp (m, n)) adjacent to the defective pixel dp (m, n) To do.
  • the corrected image data is also It can be specified as image data of adjacent pixels.
  • an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
  • FIG. 19 is a flowchart for explaining processing relating to display of a preview image and output of diagnostic image data in the radiographic image capturing system 100 according to the present embodiment.
  • a cause of defective pixels being distributed in a linear shape as shown in FIGS. 11A to 11G on the sensor panel 40 for example, a cause such as disconnection of a signal line is given. Can be mentioned.
  • an image sensor on the sensor panel 40 may be used. This may be caused by impurities being mixed into the image sensor 41 when 41 is laminated.
  • the cause of defective pixels that are distributed in a two-dimensional cluster form as shown in FIGS. 13A to 13F on the sensor panel 40 is, for example, the radiation detection element 7.
  • the radiation detector 7 and the columnar crystal phosphor 3 a of the scintillator 3 are mechanically formed with a relatively wide area corresponding to a two-dimensional cluster distribution.
  • stress may be applied, or the planarization layer 7a formed by applying a resin or the like on the radiation detection element 7 may be contaminated in a relatively large area.
  • the housing body 2a of the housing 2 is formed in a rectangular tube shape, and has a relatively large area such as 14 inches ⁇ 17 inches as shown in FIG.
  • the sensor panel 40 is inserted and stored in the rectangular tube-shaped housing main body 2a.
  • a cushioning material 2c or the like is provided inside the housing body 2a.
  • the sensor panel 40 When the sensor panel 40 is inserted into the housing body 2a, it may be necessary to push it in with a relatively large pressing force. In such a case, stress is applied to the flat sensor panel 40 in the direction in which it is pressed or curved, and the image sensor 41 is damaged over a relatively large area, resulting in a cluster defect. There is also.
  • the value of each image data output from each image sensor 41 is obtained. Analysis is performed to inspect whether a defective pixel is generated on the sensor panel 40.
  • abnormal image data may be constantly output from the defective pixel, but abnormal image data may be output with a certain probability, so radiation is irradiated multiple times. It is desirable to perform inspection.
  • the defective pixel information (that is, for example, the pixel position of the defective pixel and the pixels A1 to A3 relating to the lines La1, La2,.
  • the pixel positions of the pixels B1 to B3, and the pixel positions of both normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1, La2,. Etc.) is stored in advance in the storage means 101b of the console 101 together with identification information for identifying the corresponding radiographic imaging apparatus 1.
  • the control means 22 of the radiographic image capturing apparatus 1 reads out the image data from the image sensor 41 by the readout circuit 17, and the image data is transmitted to the antenna device 39 as a communication means.
  • the console 101 To the console 101 (step S1).
  • the control unit 101a of the console 101 performs offset correction on the image data (step S2) and gain. Correction is performed (step S3).
  • control unit 101a performs a thinning process for generating thinned image data from the image data subjected to offset correction and gain correction (step S4), and the defect stored in the storage unit 101b for the thinned image data.
  • the second defective pixel correction process is performed based on the defective pixel information stored together with the identification information of the radiographic image capturing apparatus 1 that has transmitted the image data in step S1, and preview image data is created. (Step S5).
  • control unit 101a performs a predetermined display process on the preview image data (step S6), and causes the display unit 101d to display a preview image based on the preview image data (step S7).
  • the defective pixel correction process can be performed at high speed. Thereby, the preview image is immediately displayed on the display unit 101d.
  • control means 101a transmits the image data in step S1 out of the defective pixel information stored in the storage means 101b to the image data that has been subjected to the offset correction and gain correction in steps S2 and S3.
  • the first defective pixel correction process or the like is performed to create diagnostic image data (step S ⁇ b> 8).
  • the first defective pixel correction process with higher accuracy is performed to correct the image data. It is possible to create diagnostic image data corrected with high accuracy.
  • control unit 101a performs predetermined output processing on the diagnostic image data (step S9), and the diagnostic image data is transmitted to the PACS server 122, the imager 123, and the like via the communication unit 101c that is an output unit. Output (transmit) to the external device (step S10), and the process is terminated.
  • the control unit 101a which is a generating unit of the console 101 of the radiographic image capturing system 100, stores the diagnostic image data.
  • high-precision defective pixel correction processing that is, first defective pixel correction processing is performed on the image data transmitted from the radiographic image capturing apparatus 1 to generate preview image data.
  • a defective pixel correction process that is simpler than the first defective pixel correction process on the image data transmitted from the radiation image capturing apparatus 1, that is, the second A defective pixel correction process is performed.
  • the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data while using the same defective pixel information, and is suitable for each case.
  • the defective pixel correction process can be performed.
  • the second defective pixel correction process that is simpler than the first defective pixel correction process is performed as the defective pixel correction process, so that the preview image data is created at high speed. And a preview image can be displayed promptly based on this. Since the preview image is promptly displayed, it is possible for the operator to promptly confirm the positioning of whether or not the subject is captured at an appropriate position in radiographic image capturing.
  • the first defective pixel correction process with high accuracy is performed as the defective pixel correction processing, whereby the image data output from the defective pixel is corrected with high accuracy, and the diagnostic image is obtained.
  • Data can be created, and a diagnostic image can be appropriately created based on the data. Then, it becomes possible for the doctor to appropriately determine the presence or absence of the lesioned part of the patient and its state by looking at it.
  • the preview image is displayed before the diagnostic image data is generated by performing the first defective pixel correction process with high accuracy as in the present embodiment, a simple second defective pixel correction process is performed. Since the preview image based on the preview image data generated by performing the above can be promptly displayed on the display means 101d, it is possible to immediately confirm the positioning of the subject in the radiographic image capturing.
  • the defective pixel image data is replaced with the image data of the immediately preceding pixel adjacent to the defective pixel, the defective pixel image Since data can be easily corrected, preview image data can be created at high speed.
  • the image data of the defective pixel is the normal pixel closest to the defective pixel among the normal pixels in the direction where the image gradient G is the smallest. If the image data of both pixels is replaced with the corrected image data calculated using the image data, the image data of the defective pixel can be corrected with high accuracy. High quality.
  • the second defective pixel correction process is performed on the thinned image data as in the present embodiment, the number of defective pixels to be subjected to the second defective pixel correction process is reduced, and the defective pixel correction process is performed. Therefore, preview image data can be created at high speed.
  • the second defective pixel correction process is performed on the radiation image capturing apparatus 1A side to create preview image data
  • the first defective pixel correction process is performed on the console 101A side for diagnosis.
  • image data is created. Therefore, only different parts will be described, and other common parts will be denoted by the same reference numerals and description thereof will be omitted.
  • the radiographic image capturing system 100A is configured to be communicable with a radiographic image capturing device 1A that performs radiographic image capturing and the radiographic image capturing device 1A.
  • a console 101A that performs predetermined image processing on image data of an image, and the like are configured.
  • the radiographic image capturing apparatus 1A of the second embodiment includes, for example, a control unit 22A and a storage unit 23A as shown in FIG. 22, and the other components are the radiations of the first embodiment.
  • the same members as those of the image capturing apparatus 1 are provided.
  • the storage unit 23A stores defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements 41 arranged in a two-dimensional manner on the sensor panel 40 as the imaging device side storage unit.
  • the defective pixel information stored in the storage unit 23A includes, for example, the pixel position of the defective pixel and the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1, La2,. , And the pixel positions of the normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1, La2,. It is. Note that it is assumed that only the defective pixel information corresponding to the radiographic image capturing apparatus 1A including the storage unit 23A is stored in the storage unit 23A.
  • the control unit 22A creates preview image data based on the image data read by the readout circuit 17 as a photographing device side creation unit.
  • control unit 22A performs the second defective pixel correction process such as the immediately preceding replacement defective pixel correction process or the adjacent average defective pixel correction process described above as the defective pixel correction process, and creates preview image data. It is like that.
  • control means 22A first reads out image data from the image sensor 41 by the readout circuit 17, and performs offset correction and gain correction on the image data.
  • control unit 22A performs a second defective pixel correction process on the image data subjected to the offset correction and the gain correction based on the defective pixel information stored in the storage unit 23A, thereby creating preview image data. To do.
  • the control unit 22A performs a predetermined compression process on the preview image data and transmits the preview image data to the console 101A via the antenna device 39 which is a communication unit.
  • the console 101A according to the second embodiment includes a control unit 101aA, and the other members are the same as those of the console 101 according to the first embodiment. ing.
  • the control unit 101aA creates diagnostic image data based on the preview image data transmitted from the radiographic image capturing apparatus 1A as a console side creation unit.
  • control unit 101aA performs the first defective pixel correction process such as the above-described gradient-oriented defect pixel correction process or gradient average defective pixel correction process as the defective pixel correction process, and creates diagnostic image data. It has become.
  • the control unit 101aA performs a predetermined decompression process on the preview image data, for example, in the storage unit 101b.
  • control unit 101aA causes the display unit 101d to display a preview image based on the preview image data on which the decompression process has been performed.
  • control unit 101aA acquires, for example, the preview image data stored in the storage unit 101b, that is, the preview image data subjected to the decompression process, and the storage unit that is a console-side storage unit for the preview image.
  • a first defective pixel correction process is performed based on the defective pixel information stored in 101b to create diagnostic image data.
  • diagnostic image data is automatically created.
  • diagnostic image data may be created when an operator operates an input means (not shown) included in the console 101 to instruct to create diagnostic image data.
  • the control unit 101aA displays a diagnostic image based on the diagnostic image data on the display unit 101d.
  • the diagnostic image data is displayed or output to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c which is an output unit.
  • the thinning process is not performed.
  • the present invention is not limited to this.
  • the thinning process may be performed when the preview image data is created on the radiation image capturing apparatus 1A side.
  • diagnostic image data is created based on the preview image data that has been subjected to the thinning process, the quality of the diagnostic image is degraded.
  • Transmit image data before creating image data that is, image data for which neither offset correction nor gain correction has been performed, or image data for which at least offset correction of offset correction or gain correction has been performed
  • the console 101A may create diagnostic image data based on the image data.
  • FIG. 23 is a flowchart for explaining processing relating to display of a preview image and output of diagnostic image data in the radiographic imaging system 100A according to the present embodiment.
  • the radiographic imaging apparatus 1A After manufacturing the radiographic imaging apparatus 1A, for example, at the time of shipment from the factory, an inspection is performed to determine whether a defective pixel has occurred on the sensor panel 40.
  • the defect image information is stored in advance in the storage unit 101b of the console 101A together with the identification information for identifying the corresponding radiographic image capture device 1A. Let me.
  • control unit 22A of the radiographic image capturing apparatus 1A reads out image data from the image sensor 41 by the readout circuit 17, and performs offset correction on the image data. (Step S21), gain correction is performed (Step S22).
  • control unit 22A performs a second defective pixel correction process on the image data subjected to the offset correction and the gain correction based on the defective pixel information stored in the storage unit 23A, thereby creating preview image data. (Step S23).
  • control means 22A transmits the preview image data to the console 101A via the antenna device 39 which is a communication means (step S24).
  • the control unit 101aA of the console 101A performs a predetermined display process on the preview image data (step S24).
  • S25 A preview image based on the preview image data is displayed on the display means 101d (step S26).
  • the defective pixel correction process can be performed at high speed. Thereby, the preview image is immediately displayed on the display unit 101d.
  • the control unit 101aA identifies the radiographic imaging apparatus 1A that has transmitted the preview image data out of the defective pixel information stored in the storage unit 101b. Based on the defective pixel information associated with the information, a first defective pixel correction process or the like is performed to create diagnostic image data (step S27).
  • diagnostic image data which is data for creating a diagnostic image
  • the first defective pixel correction process with high accuracy is performed as described above to correct the image data.
  • diagnostic image data that has been corrected.
  • control unit 101aA performs a predetermined output process on the diagnostic image data (step S28), and outputs the diagnostic image data to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c. (Send) (step S29), and this process is terminated.
  • the control unit 101aA that is the console side creation unit of the console 101A of the radiographic image capturing system 100A has the defective pixel information stored in the storage unit 101b.
  • the diagnostic image data is generated by performing highly accurate defective pixel correction processing, that is, first defective pixel correction processing, on the preview image data, and the radiographic imaging device 1A imaging apparatus of the radiographic imaging system 100A
  • the control means 22A that is the side creation means, based on the defective pixel information stored in the storage means 23A, corrects defective pixel correction that is simpler than the first defective pixel correction processing on the image data read by the read circuit 17.
  • Process, that is, the second defective pixel correction process is performed to create a preview image. To have.
  • the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data while using the same defective pixel information, and is suitable for each case.
  • the defective pixel correction process can be performed.
  • the radiographic image capturing apparatus 1A transmits preview image data that is image data on which defective pixel correction processing has been performed. This improves the compression rate in the compression processing performed before transmission and shortens the transmission (transfer) time of the image data compared to the case of transmitting image data that has not been subjected to defective pixel correction processing. Images can be displayed at higher speed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

A radiation image capturing system (100) is provided with a radiation image capturing device (1) and a console (101) which performs predetermined image processing on image data relating to a radiation image captured by the radiation image capturing device (1), the console (101) is provided with a creation means (control means (101a)) which creates diagnostic image data and preview image data on the basis of the image data transmitted from the radiation image capturing device (1), and the creation means performs first defective pixel correction processing on the image data when the diagnostic image data is created, and performs second defective pixel correction processing simpler than the first defective pixel correction processing on the image data when the preview image data is created.

Description

放射線画像撮影システムおよびコンソールRadiographic imaging system and console
 本発明は、放射線画像撮影システムおよびコンソールに関するものである。 The present invention relates to a radiographic image capturing system and a console.
 病気診断等を目的として、X線画像に代表される放射線を用いて撮影された放射線画像が広く用いられている。こうした医療用の放射線画像は、従来からスクリーンフィルムを用いて撮影されていたが、放射線画像のデジタル化を図るために輝尽性蛍光体シートを用いたCR(Computed Radiography)装置が開発され、最近では、照射された放射線を、二次元状に配置された放射線検出素子で検出して、デジタル画像データとして取得する放射線画像撮影装置が開発されている。 For the purpose of disease diagnosis and the like, radiation images taken using radiation represented by X-ray images are widely used. Conventionally, such medical radiographic images have been taken using a screen film. In order to digitize radiographic images, CR (Computed Radiography) devices using stimulable phosphor sheets have been developed. Then, a radiation image capturing apparatus has been developed in which irradiated radiation is detected by a radiation detection element arranged in a two-dimensional form and acquired as digital image data.
 このような放射線画像撮影装置としては、照射されたX線等の放射線の線量に応じて検出素子で電荷を発生させて電気信号に変換するいわゆる直接型の放射線画像撮影装置や、照射された放射線をシンチレータ等で可視光等の他の波長の電磁波に変換した後、変換された電磁波のエネルギに応じてフォトダイオード等の光電変換素子で電荷を発生させて電気信号に変換するいわゆる間接型の放射線画像撮影装置が種々開発されている。なお、本発明では、直接型の放射線画像撮影装置における検出素子や、間接型の放射線画像撮影装置における光電変換素子を、あわせて放射線検出素子という。 As such a radiographic imaging apparatus, a so-called direct type radiographic imaging apparatus that generates a charge in a detection element in accordance with a dose of irradiated radiation such as X-rays and converts it into an electrical signal, or irradiated radiation So-called indirect radiation in which a scintillator or the like converts it into an electromagnetic wave of other wavelengths such as visible light, and then generates a charge in a photoelectric conversion element such as a photodiode in accordance with the energy of the converted electromagnetic wave to convert it into an electrical signal Various image photographing apparatuses have been developed. In the present invention, the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.
 このタイプの放射線画像撮影装置は、通常、複数の撮像素子が二次元状に配列されたセンサパネルを備えており、FPD(Flat Panel Detector)として知られている。従来は、センサパネルが支持台に一体的に形成されていたが(例えば特許文献1参照)、近年、センサパネルをハウジングに収納して持ち運びできるようにした可搬型の放射線画像撮影装置が開発されている(例えば特許文献2参照)。 This type of radiographic imaging device is usually provided with a sensor panel in which a plurality of image sensors are arranged in a two-dimensional manner, and is known as an FPD (Flat Panel Detector). Conventionally, the sensor panel is integrally formed on the support base (see, for example, Patent Document 1), but in recent years, a portable radiographic imaging apparatus has been developed in which the sensor panel is housed in a housing and can be carried. (For example, refer to Patent Document 2).
 FPD型の放射線画像撮影装置では、センサパネル上に撮像素子を積層して製造する際に撮像素子中に不純物が混入する等して、恒常的に或いは一定の確率で異常な画像データを出力する画素(以下「欠陥画素」という。)が生じる場合がある。このような原因で発生する欠陥画素は、通常、センサパネル上に二次元状に配列された複数の撮像素子の中に点々と孤立して存在する状態(すなわち、いわゆる点欠陥の状態)となる場合が多い(例えば特許文献3参照)。 In an FPD type radiographic imaging apparatus, abnormal image data is output constantly or with a certain probability, for example, when impurities are mixed in an image sensor when the image sensor is laminated on a sensor panel. A pixel (hereinafter referred to as “defective pixel”) may occur. Defective pixels that occur due to such a cause are usually in a state where they exist in isolation from each other in a plurality of image pickup devices that are two-dimensionally arranged on the sensor panel (that is, a so-called point defect state). There are many cases (see, for example, Patent Document 3).
 また、センサパネル上に二次元状に配列された複数の撮像素子は、通常、列(または行)毎に1本の信号線に接続されるように形成されるが、その際、信号線が断線する等の原因で、欠陥画素がセンサパネル上で線状に存在する状態(すなわち、いわゆる線欠陥(またはライン欠陥)の状態)となる場合もある。 In addition, a plurality of image pickup devices arranged two-dimensionally on the sensor panel are usually formed so as to be connected to one signal line for each column (or row). Due to disconnection or the like, there may be a state in which defective pixels are linearly present on the sensor panel (that is, a so-called line defect (or line defect) state).
 また、センサパネルの製造の際に、センサパネルに物がぶつかる等して機械的な破壊が生じたり、平板状のセンサパネルに当該センサパネルを湾曲させるような力が加わったりする等の原因で、欠陥画素がセンサパネル上で二次元のクラスター状に存在する状態となる場合もある。 In addition, when manufacturing a sensor panel, mechanical damage may occur due to an object hitting the sensor panel, or a force that causes the sensor panel to bend is applied to a flat sensor panel. In some cases, defective pixels exist in a two-dimensional cluster form on the sensor panel.
 ここで、二次元のクラスター状とは、連続する複数の欠陥画素が存在する状態のうちの、欠陥画素が1本の線状に存在する状態(線欠陥の状態)を除く二次元状の形状のことをいう。 Here, the two-dimensional cluster shape is a two-dimensional shape excluding a state in which a defective pixel exists in one linear shape (a state of a line defect) in a state in which a plurality of continuous defective pixels exist. I mean.
 ところで、放射線画像撮影装置を用いて撮影された画像データは、コンソールに送信(転送)されるようになっている。そして、コンソールは、当該画像データに対して所定の画像処理を行って、放射線画像撮影における被写体のポジショニング等を確認するためのプレビュー画像を表示したり、診断時に使用される診断画像をプリント等するためにイメージャ等の外部装置に出力したりするようになっている。その際、放射線画像撮影装置から送信される画像データには、上述したように欠陥画素の画像データが含まれている場合があるため、コンソールは、所定の画像処理として、欠陥画素補正処理も行うようになっている(例えば特許文献4参照)。 By the way, image data captured using the radiation image capturing apparatus is transmitted (transferred) to the console. Then, the console performs predetermined image processing on the image data, displays a preview image for confirming the positioning of the subject in radiographic imaging, prints a diagnostic image used at the time of diagnosis, and the like. Therefore, the data is output to an external device such as an imager. At that time, since the image data transmitted from the radiographic imaging apparatus may include image data of defective pixels as described above, the console also performs defective pixel correction processing as predetermined image processing. (See, for example, Patent Document 4).
特開平9-73144号公報JP-A-9-73144 特開平7-246199号公報JP 7-246199 A 特開2002-197450号公報JP 2002-197450 A 特開2002-191586号公報JP 2002-191586 A
 しかしながら、プレビュー画像は放射線画像撮影における被写体のポジショニングの確認等を行うために使用されるだけであるため、診断画像ほど高品質である必要はない。それにも関わらず、従来のコンソールでは、プレビュー画像を表示する際も、診断画像データを外部装置に出力する際も、常に一定の欠陥画素補正処理を行って作成した画像データを使用するようになっている。そのため、プレビュー画像の表示に時間がかかり、放射線画像撮影における被写体のポジショニングの確認等をすぐに行うことができないという問題がある。 However, since the preview image is only used for confirming the positioning of the subject in radiographic imaging, it does not have to be as high in quality as the diagnostic image. Nevertheless, conventional consoles always use image data created by performing a certain defective pixel correction process when displaying a preview image and when outputting diagnostic image data to an external device. ing. Therefore, it takes time to display the preview image, and there is a problem that confirmation of the positioning of the subject in radiographic imaging cannot be performed immediately.
 本発明は、上記の問題点を鑑みてなされたものであり、プレビュー画像データを高速に作成して当該プレビュー画像データに基づくプレビュー画像を速やかに表示することができるとともに、診断画像を適切に作成することが可能な放射線画像撮影システムおよびコンソールを提供することを目的とする。 The present invention has been made in view of the above problems, and can create preview image data at high speed and promptly display a preview image based on the preview image data, and appropriately create a diagnostic image. An object of the present invention is to provide a radiographic imaging system and a console that can be used.
 前記の問題を解決するために、本発明の放射線画像撮影システムは、
 放射線画像撮影を行う放射線画像撮影装置と、前記放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソールと、を備え、
 前記放射線画像撮影装置は、
 照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、
 前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、
 前記読み出し回路により読み出された画像データを前記コンソールに送信する通信手段と、を備え、
 前記コンソールは、
 前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する記憶手段と、
 前記放射線画像撮影装置から送信された画像データに基づいて、診断画像データおよびプレビュー画像データを作成する作成手段と、を備え、
 前記作成手段は、前記診断画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して第1の欠陥画素補正処理を行い、前記プレビュー画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことを特徴とする。
In order to solve the above-described problem, the radiographic imaging system of the present invention includes:
A radiographic imaging apparatus that performs radiographic imaging, and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging apparatus,
The radiographic image capturing apparatus includes:
A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner;
A readout circuit for reading out image data from each of the image sensors;
Communication means for transmitting image data read by the read circuit to the console,
The console is
Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
Creating means for creating diagnostic image data and preview image data based on the image data transmitted from the radiographic apparatus,
When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, a second defective pixel correction process simpler than the first defective pixel correction process is performed on the image data based on the defective pixel information stored in the storage unit.
 また、本発明の放射線画像撮影システムは、
 放射線画像撮影を行う放射線画像撮影装置と、前記放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソールと、を備え、
 前記放射線画像撮影装置は、
 照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、
 前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する撮影装置側記憶手段と、
 前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、
 前記読み出し回路により読み出された画像データに基づいて、プレビュー画像データを作成する撮影装置側作成手段と、
 前記撮影装置側作成手段により作成されたプレビュー画像データを前記コンソールに送信する通信手段と、を備え、
 前記コンソールは、
 前記欠陥画素情報を記憶するコンソール側記憶手段と、
 前記放射線画像撮影装置から送信されたプレビュー画像データに基づいて、診断画像データを作成するコンソール側作成手段と、を備え、
 前記コンソール側作成手段は、前記コンソール側記憶手段に記憶された欠陥画素情報に基づき、前記プレビュー画像データに対して第1の欠陥画素補正処理を行って前記診断画像データを作成し、
 前記撮影装置側作成手段は、前記撮影装置側記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行って前記プレビュー画像データを作成することを特徴とする。
Moreover, the radiographic imaging system of the present invention is
A radiographic imaging apparatus that performs radiographic imaging, and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging apparatus,
The radiographic image capturing apparatus includes:
A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner;
An imaging device-side storage unit that stores defective pixel information regarding a defective pixel among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
A readout circuit for reading out image data from each of the image sensors;
An imaging device side creation means for creating preview image data based on the image data read by the readout circuit;
Communication means for transmitting the preview image data created by the photographing apparatus side creating means to the console,
The console is
Console-side storage means for storing the defective pixel information;
Console-side creation means for creating diagnostic image data based on the preview image data transmitted from the radiographic imaging device,
The console side creation means creates the diagnostic image data by performing a first defective pixel correction process on the preview image data based on the defective pixel information stored in the console side storage means,
The imaging apparatus side creation means performs a second defective pixel correction process that is simpler than the first defective pixel correction process on the image data based on the defective pixel information stored in the imaging apparatus side storage means. And generating the preview image data.
 また、本発明のコンソールは、
 照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、を備えた放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行い、
 前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する記憶手段と、
 前記放射線画像撮影装置により送信された画像データに基づいて、診断画像データおよびプレビュー画像データを作成する作成手段と、を備え、
 前記作成手段は、前記診断画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して第1の欠陥画素補正処理を行い、前記プレビュー画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことを特徴とする。
The console of the present invention
A radiographic imaging apparatus comprising: a sensor panel in which a plurality of imaging elements that generate charges according to the dose of irradiated radiation are arranged in a two-dimensional manner; and a readout circuit that reads image data from each of the imaging elements. Perform predetermined image processing on the image data of the captured radiographic image,
Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
Creating means for creating diagnostic image data and preview image data based on the image data transmitted by the radiographic apparatus,
When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, a second defective pixel correction process simpler than the first defective pixel correction process is performed on the image data based on the defective pixel information stored in the storage unit.
 本発明のような方式の放射線画像撮影システムおよびコンソールによれば、診断画像データを作成する際、欠陥画素補正処理として、高精度な欠陥画素補正処理、すなわち第1の欠陥画素補正処理を行い、プレビュー画像データを作成する際、欠陥画素補正処理として、第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理、すなわち第2の欠陥画素補正処理を行うようになっている。 According to the radiographic imaging system and console of the system of the present invention, when creating diagnostic image data, as defective pixel correction processing, highly accurate defective pixel correction processing, that is, first defective pixel correction processing, When creating preview image data, a defective pixel correction process that is simpler than the first defective pixel correction process, that is, a second defective pixel correction process is performed as the defective pixel correction process.
 このように、本発明では、プレビュー画像データを作成する場合と診断画像データを作成する場合とで欠陥画素補正処理の方法を適切に切り替えて、それぞれの場合に適した欠陥画素補正処理を行うことが可能となる。 Thus, in the present invention, the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data, and the defective pixel correction processing suitable for each case is performed. Is possible.
 そして、プレビュー画像データを作成する場合には、欠陥画素補正処理として、第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことで、プレビュー画像データを高速に作成することが可能となり、それに基づいてプレビュー画像を速やかに表示することが可能となる。そして、プレビュー画像が速やかに表示されるため、操作者が放射線画像撮影において被写体が適切な位置に撮像されているか否かのポジショニングの確認等を速やかに行うことが可能となる。 When the preview image data is created, the second defective pixel correction process that is simpler than the first defective pixel correction process is performed as the defective pixel correction process, so that the preview image data is created at high speed. And a preview image can be displayed promptly based on this. Since the preview image is promptly displayed, it is possible for the operator to promptly confirm the positioning of whether or not the subject is captured at an appropriate position in radiographic image capturing.
 また、診断画像データを作成する場合には、欠陥画素補正処理として高精度な第1の欠陥画素補正処理を行うことで、欠陥画素から出力された画像データを高精度に補正処理して診断画像データを作成することが可能となり、それに基づいて診断画像を適切に作成することが可能となる。そして、医師がそれを見て、患者の病変部の有無やその状態を適切に判断することが可能となる。 When creating diagnostic image data, the first defective pixel correction process with high accuracy is performed as the defective pixel correction processing, whereby the image data output from the defective pixel is corrected with high accuracy, and the diagnostic image is obtained. Data can be created, and a diagnostic image can be appropriately created based on the data. Then, it becomes possible for the doctor to appropriately determine the presence or absence of the lesioned part of the patient and its state by looking at it.
第1の実施の形態に係る放射線画像撮影システムの全体構成を示す図である。It is a figure which shows the whole structure of the radiographic imaging system which concerns on 1st Embodiment. 第1の実施の形態に係る放射線画像撮影装置を示す斜視図である。It is a perspective view which shows the radiographic imaging apparatus which concerns on 1st Embodiment. 図2におけるX-X線に沿う断面図である。FIG. 3 is a sectional view taken along line XX in FIG. 2. 柱状結晶構造を有するシンチレータの例を示す拡大図である。It is an enlarged view which shows the example of the scintillator which has a columnar crystal structure. 第1の実施の形態に係るセンサパネルの基板の構成を示す平面図である。It is a top view which shows the structure of the board | substrate of the sensor panel which concerns on 1st Embodiment. 図5の基板上の小領域に形成された放射線検出素子と薄膜トランジスタ等からなる撮像素子の構成を示す拡大図である。FIG. 6 is an enlarged view showing a configuration of an image pickup element including a radiation detection element and a thin film transistor formed in a small region on the substrate of FIG. 5. 図6におけるY-Y線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line YY in FIG. COFやPCB基板などが取り付けられたセンサパネルを説明する側面図である。It is a side view explaining the sensor panel to which a COF, a PCB board, etc. were attached. 第1の実施の形態に係る撮像素子の拡大断面図である。It is an expanded sectional view of the image sensor concerning a 1st embodiment. 第1の実施の形態に係る放射線画像撮影装置の等価回路図を表す図である。It is a figure showing the equivalent circuit schematic of the radiographic imaging apparatus which concerns on 1st Embodiment. (a) センサパネル上に線状に分布する複数の欠陥画素の一例を示す図であり、(b)~(g) 当該欠陥画素に対する第1の欠陥画素補正処理の一例(勾配重視型欠陥画素補正処理)を説明するための図である。(A) is a diagram showing an example of a plurality of defective pixels distributed linearly on a sensor panel, and (b) to (g) an example of a first defective pixel correction process for the defective pixels (gradient-oriented defective pixels) It is a figure for demonstrating a correction process. (a) センサパネル上に点状に分布する複数の欠陥画素の一例を示す図であり、(b)~(f) 当該欠陥画素に対する第1の欠陥画素補正処理の一例(勾配重視型欠陥画素補正処理)を説明するための図である。(A) is a diagram illustrating an example of a plurality of defective pixels distributed in a dot pattern on a sensor panel, and (b) to (f) are examples of a first defective pixel correction process for the defective pixels (gradient-oriented defective pixels). It is a figure for demonstrating a correction process. (a) センサパネル上に二次元のクラスター状に分布する複数の欠陥画素の一例を示す図であり、(b)~(f) 当該欠陥画素に対する第1の欠陥画素補正処理の一例(勾配重視型欠陥画素補正処理)を説明するための図である。(A) It is a figure which shows an example of the some defective pixel distributed in the two-dimensional cluster form on a sensor panel, (b)-(f) An example of the 1st defective pixel correction process with respect to the said defective pixel (Gradient emphasis) It is a figure for demonstrating a type defect pixel correction process. (a),(b) センサパネル上に二次元のクラスター状に分布する複数の欠陥画素の他の例を示す図である。(A), (b) It is a figure which shows the other example of the some defective pixel distributed on a sensor panel in the shape of a two-dimensional cluster. (a),(b) 図12(d)に示す画素A1~A3および画素B1~B3の並べ方の他の例を示す図である。(A), (b) It is a figure which shows the other example of how to arrange pixel A1-A3 and pixel B1-B3 shown in FIG.12 (d). (a) センサパネル上に線状に分布する複数の欠陥画素の一例を示す図であり、(b)~(g) 当該欠陥画素に対する第1の欠陥画素補正処理の他の一例(勾配平均型欠陥画素補正処理)を説明するための図である。(A) It is a figure which shows an example of the some defective pixel distributed linearly on a sensor panel, (b)-(g) Other examples (gradient average type | mold) of the 1st defective pixel correction process with respect to the said defective pixel It is a figure for demonstrating a defective pixel correction process. (a) センサパネル上に点状に分布する複数の欠陥画素の一例を示す図であり、(b)~(f) 当該欠陥画素に対する第1の欠陥画素補正処理の他の一例(勾配平均型欠陥画素補正処理)を説明するための図である。(A) is a diagram showing an example of a plurality of defective pixels distributed in a dot pattern on the sensor panel, and (b) to (f) another example of the first defective pixel correction process for the defective pixels (gradient average type) It is a figure for demonstrating a defective pixel correction process. (a) センサパネル上に二次元のクラスター状に分布する複数の欠陥画素の一例を示す図であり、(b)~(f) 当該欠陥画素に対する第1の欠陥画素補正処理の他の一例(勾配平均型欠陥画素補正処理)を説明するための図である。(A) is a diagram showing an example of a plurality of defective pixels distributed in a two-dimensional cluster on the sensor panel, and (b) to (f) another example of the first defective pixel correction process for the defective pixel ( It is a figure for demonstrating gradient average type defective pixel correction processing. 第1の実施の形態に係る放射線画像撮影システムにおける、プレビュー画像の表示および診断画像データの出力に関する処理について説明するためのフローチャートである。It is a flowchart for demonstrating the process regarding the display of a preview image and the output of diagnostic image data in the radiographic imaging system which concerns on 1st Embodiment. センサパネルが角筒状のハウジング本体部に挿入されることを説明する斜視図である。It is a perspective view explaining that a sensor panel is inserted in a rectangular tube-shaped housing main-body part. 第2の実施の形態に係る放射線画像撮影システムの全体構成を示す図である。It is a figure which shows the whole structure of the radiographic imaging system which concerns on 2nd Embodiment. 第2の実施の形態に係る放射線画像撮影装置の等価回路図を表す図である。It is a figure showing the equivalent circuit schematic of the radiographic imaging apparatus which concerns on 2nd Embodiment. 第2の実施の形態に係る放射線画像撮影システムにおける、プレビュー画像の表示および診断画像データの出力に関する処理について説明するためのフローチャートである。It is a flowchart for demonstrating the process regarding the display of a preview image and the output of diagnostic image data in the radiographic imaging system which concerns on 2nd Embodiment.
 以下、図を参照して、本発明の実施の形態を詳細に説明する。ただし、発明の範囲は、図示例に限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the scope of the invention is not limited to the illustrated examples.
 なお、以下では、放射線画像撮影装置が可搬型である場合について説明するが、本発明はその場合に限定されず、例えば、支持台と一体的に形成された放射線画像撮影装置に対しても適用することができる。 In the following, the case where the radiographic imaging apparatus is portable will be described. However, the present invention is not limited to this case, and is applicable to, for example, a radiographic imaging apparatus formed integrally with a support base. can do.
 また、以下では、放射線画像撮影装置として、シンチレータ等を備え、放射された放射線を可視光等の他の波長の電磁波に変換して照射し、放射線検出素子で電気信号である画像データに変換する、いわゆる間接型の放射線画像撮影装置について説明するが、本発明は、シンチレータ等を介さずに放射線を放射線検出素子で直接検出する、いわゆる直接型の放射線画像撮影装置に対しても適用することができる。 In the following description, the radiographic imaging apparatus includes a scintillator and the like, converts the emitted radiation into electromagnetic waves of other wavelengths such as visible light, and irradiates them, and converts them into image data that is electrical signals by the radiation detection element. The so-called indirect type radiographic imaging apparatus will be described. However, the present invention can also be applied to a so-called direct type radiographic imaging apparatus that directly detects radiation with a radiation detection element without using a scintillator or the like. it can.
 [第1の実施の形態]
 まず、第1の実施の形態に係る放射線画像撮影システム100およびコンソール101について説明する。
[First Embodiment]
First, the radiographic image capturing system 100 and the console 101 according to the first embodiment will be described.
 [放射線画像撮影システム]
 まず、本実施形態に係る放射線画像撮影システム100について説明する。図1は、本実施形態に係る放射線画像撮影システム100の全体構成を示す図である。
[Radiation imaging system]
First, the radiographic image capturing system 100 according to the present embodiment will be described. FIG. 1 is a diagram illustrating an overall configuration of a radiographic image capturing system 100 according to the present embodiment.
 放射線画像撮影システム100は、例えば、病院や医院内で行われる放射線画像撮影を想定したシステムであり、放射線画像として医療用の診断画像を撮影するシステムとして採用することができる。 The radiographic imaging system 100 is a system that assumes radiographic imaging performed in, for example, a hospital or a clinic, and can be employed as a system that captures medical diagnostic images as radiographic images.
 具体的には、放射線画像撮影システム100は、例えば、図1に示すように、放射線画像撮影を行う放射線画像撮影装置1と、放射線画像撮影装置1と通信可能に構成され、放射線画像撮影装置1により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソール101と、等を備えて構成される。 Specifically, for example, as shown in FIG. 1, the radiographic image capturing system 100 is configured to be able to communicate with a radiographic image capturing device 1 that performs radiographic image capturing and the radiographic image capturing device 1. And a console 101 that performs predetermined image processing on the image data of the radiographic image captured by the above.
 放射線画像撮影装置1は、例えば、放射線を照射して患者Mの一部である被写体、すなわち患者Mの撮影対象部位等の撮影を行う撮影室R1に設けられており、コンソール101は、この撮影室R1に対応して設けられている。 The radiographic image capturing apparatus 1 is provided, for example, in a radiographing room R1 that irradiates a subject and captures a subject that is a part of the patient M, that is, a region to be imaged of the patient M. It is provided corresponding to the chamber R1.
 なお、本実施形態では、放射線画像撮影システム100内に1つの撮影室R1が設けられて、撮影室R1内に3つの放射線画像撮影装置1が配置されている場合を例として説明するが、撮影室R1の個数、各撮影室R1に設けられる放射線画像撮影装置1の個数は、特に限定されない。 In the present embodiment, a case where one radiographing room R1 is provided in the radiographic image capturing system 100 and three radiographic image capturing apparatuses 1 are arranged in the radiographing room R1 will be described as an example. The number of chambers R1 and the number of radiographic image capturing devices 1 provided in each imaging chamber R1 are not particularly limited.
 また、撮影室R1が複数ある場合に、コンソール101は各撮影室R1に対応して設けられていなくても良く、複数の撮影室R1に対して1台のコンソール101が対応付けられていても良い。 Further, when there are a plurality of shooting rooms R1, the console 101 does not have to be provided corresponding to each shooting room R1, and even if one console 101 is associated with the plurality of shooting rooms R1. good.
 撮影室R1内には、放射線画像撮影装置1が装填可能に構成され、その装填された放射線画像撮影装置1を所定の位置に保持するためのカセッテ保持部111を備えるブッキー装置110と、被写体に放射線を照射するX線管球等の放射線源(図示省略)を備える放射線発生装置112と、等が設けられている。 In the imaging room R1, the radiographic imaging device 1 is configured to be loadable. A bucky device 110 including a cassette holding unit 111 for holding the loaded radiographic imaging device 1 in a predetermined position, and a subject A radiation generator 112 including a radiation source (not shown) such as an X-ray tube that irradiates radiation, and the like are provided.
 本実施形態においては、ブッキー装置110として、臥位撮影用のブッキー装置110aと、立位撮影用のブッキー装置110bと、が設けられていることとする。ここで、ブッキー装置110において、例えばそれら自体の位置調整やブッキー装置本体に対するカセッテ保持部111の高さ調整などを適宜行うこと等が可能とされていることは、公知のブッキー装置と同様である。 In this embodiment, it is assumed that a bucky device 110a for standing position photography and a bucky device 110b for standing position photography are provided as the bucky device 110. Here, in the bucky device 110, for example, it is possible to appropriately adjust the position of the bucky device 110 or the height of the cassette holding unit 111 with respect to the bucky device main body, as in the known bucky device. .
 なお、本実施形態では、撮影室R1内に臥位撮影用のブッキー装置110aと立位撮影用のブッキー装置110bとがそれぞれ1つずつ設けられている場合を例示しているが、撮影室R1内に設けられるブッキー装置110の個数は特に限定されない。 In the present embodiment, a case where a bucky device 110a for standing position shooting and a bucky device 110b for standing position shooting are each provided in the shooting room R1 is illustrated. The number of the bucky devices 110 provided inside is not particularly limited.
 また、放射線画像撮影装置1は、ブッキー装置110に装填されない、いわば単独の状態で用いることもできるようになっている。すなわち、放射線画像撮影装置1を単独の状態で、例えば撮影室R1内に設けられた支持台や臥位撮影用のブッキー装置110aなどに配置してその放射線入射面R(後述)上に患者の撮影対象部位である手や脚などを載置したり、或いは、例えばベッド上に横臥した患者の腰や脚などとベッドとの間に差し込んだりして用いることもできるようになっている。この場合、被写体を介して放射線画像撮影装置1に放射線が照射されるように、例えばブッキー装置110に対応付けて設けられた放射線発生装置112の向きが変更(調整)されて、放射線画像撮影が行われるようになっている。 Further, the radiographic image capturing apparatus 1 can be used in a so-called single state that is not loaded in the bucky apparatus 110. That is, the radiographic imaging device 1 is arranged in a single state, for example, on a support base provided in the radiographing room R1 or a bucky device 110a for supine imaging, and is placed on the radiation incident surface R (described later). It can be used by placing a hand, a leg, or the like, which is a region to be imaged, or by inserting it between a bed and a waist or leg of a patient lying on the bed. In this case, for example, the direction of the radiation generator 112 provided in association with the Bucky device 110 is changed (adjusted) so that radiation is emitted to the radiation image capturing device 1 through the subject, and radiation image capturing is performed. To be done.
 放射線発生装置112は、後述する操作装置114からの指示に従ってセットアップされ、図示しない移動手段により所定の位置にまで移動され、放射線の照射方向が所定の方向を向くようにその向きが調整されるようになっている。 The radiation generator 112 is set up according to an instruction from the operation device 114 described later, and is moved to a predetermined position by a moving means (not shown) so that the direction of the radiation is adjusted so that the irradiation direction of the radiation faces a predetermined direction. It has become.
 また、放射線発生装置112には、操作装置114から放射線の曝射を指示する曝射指示信号が送信されるようになっている。そして、放射線発生装置112は、この曝射指示信号に従って所定の放射線を所定時間、所定のタイミングで照射するようになっている。 Further, an exposure instruction signal for instructing radiation exposure is transmitted from the operation device 114 to the radiation generator 112. The radiation generator 112 emits predetermined radiation at a predetermined timing for a predetermined time according to the exposure instruction signal.
 本実施形態においては、放射線発生装置112として、臥位撮影用のブッキー装置110aに対応付けられた放射線発生装置112と、立位撮影用のブッキー装置110bに対応付けられた放射線発生装置112と、が設けられていることとする。 In the present embodiment, as the radiation generating device 112, the radiation generating device 112 associated with the bucky device 110a for standing position imaging, the radiation generating device 112 associated with the standing position photographing bucky device 110b, Is provided.
 なお、本実施形態では、各ブッキー装置110に対応して1つずつ放射線発生装置112が設けられている構成を例示しているが、これに限ることはなく、例えば、撮影室R1内に放射線発生装置112を1つ備え、複数のブッキー装置110に対して1つの放射線発生装置112が対応し、適宜位置を移動させたり、放射線照射方向を変更したりする等して、共用するようになっていても良い。 In the present embodiment, the configuration in which one radiation generation device 112 is provided corresponding to each of the bucky devices 110 is illustrated, but the present invention is not limited to this. For example, radiation is provided in the imaging room R1. One generation device 112 is provided, and one radiation generation device 112 corresponds to a plurality of the bucky devices 110 and is shared by appropriately moving the position or changing the radiation irradiation direction. May be.
 また、本実施形態では、ブッキー装置110に対応付けられた放射線発生装置112が設けられている場合を例示しているが、これに限ることはなく、例えば、このような放射線発生装置112に加えて、ブッキー装置110に対応付けられていないポータブルの放射線発生装置を設けるようにしても良い。このポータブルの放射線発生装置は、例えば、撮影室R1内の任意の場所に持ち運びでき、任意の方向に放射線を照射できるようになっている。 Further, in the present embodiment, the case where the radiation generation device 112 associated with the bucky device 110 is provided is illustrated, but the present invention is not limited to this. For example, in addition to such a radiation generation device 112, A portable radiation generator that is not associated with the bucky device 110 may be provided. For example, this portable radiation generating apparatus can be carried to any location in the photographing room R1 and can irradiate radiation in any direction.
 また、ポータブルの放射線発生装置を設ける場合に、このポータブルの放射線発生装置は、放射線発生装置112と同様、後述する操作装置114からの指示に従ってセットアップされるように構成しても良いし、その他にも、例えば、操作者が手動でセットアップしたり、放射線画像撮影装置1からポータブルの放射線発生装置に無線信号を送信してセットアップしたりするように構成しても良い。 In the case where a portable radiation generator is provided, this portable radiation generator may be configured to be set up in accordance with an instruction from the operation device 114 described later, as with the radiation generator 112. Alternatively, for example, the operator may set up manually, or may be set up by transmitting a radio signal from the radiographic imaging apparatus 1 to the portable radiation generating apparatus.
 また、撮影室R1は、放射線が外部に漏れないように鉛等でシールドされているため、無線通信用の電波も遮断される。そのため、撮影室R1内には、撮影室R1内に設置された放射線画像撮影装置1やブッキー装置110などと、撮影室R1外に設置されたコンソール101等と、が通信する際にこれらの通信を中継する無線アクセスポイント(基地局)113等が設けられている。 In addition, since the radiographing room R1 is shielded with lead or the like so that radiation does not leak outside, radio waves for wireless communication are also blocked. Therefore, when the radiographic imaging device 1 and the bucky device 110 installed in the imaging room R1 communicate with the console 101 installed outside the imaging room R1 in the imaging room R1, these communications are performed. A wireless access point (base station) 113 or the like is provided.
 なお、本実施形態では、無線アクセスポイント113とブッキー装置110とを無線接続するように構成したが、これに限ることはなく、例えば、無線アクセスポイント113とブッキー装置110とをケーブル等で有線接続して、ブッキー装置110やそれに装填された放射線画像撮影装置1と、コンソール101等と、の通信を有線方式でも行うことができるように構成しても良い。 In the present embodiment, the wireless access point 113 and the bucky device 110 are configured to be wirelessly connected. However, the present invention is not limited to this. For example, the wireless access point 113 and the bucky device 110 are connected by a cable or the like. Then, it may be configured such that communication between the Bucky device 110 or the radiographic imaging device 1 loaded therein and the console 101 or the like can be performed in a wired manner.
 また、本実施形態では、撮影室R1に隣接して前室R2が設けられている。前室R2には、放射線技師や医師などの操作者が、被写体に照射する放射線の制御、すなわち被写体に放射線を照射する放射線発生装置112の管電圧、管電流、照射野絞り等の制御等の各種操作を行うための操作装置114が配置されている。 In this embodiment, a front room R2 is provided adjacent to the photographing room R1. In the anterior chamber R2, an operator such as a radiologist or doctor controls the radiation applied to the subject, that is, controls the tube voltage, tube current, irradiation field stop, etc. of the radiation generator 112 that irradiates the subject with radiation. An operation device 114 for performing various operations is arranged.
 操作装置114は、汎用のCPU(Central Processing Unit)を備えるコンピュータや専用のプロセッサ(processor)を備えるコンピュータなどで構成されている。 The operating device 114 includes a computer having a general-purpose CPU (Central Processing Unit), a computer having a dedicated processor, or the like.
 また、操作装置114には、各種操作ボタン等が設けられている。そして、操作装置114は、操作者により操作ボタンが操作されると、例えば、放射線発生装置112に放射線の曝射を指示する曝射指示信号等を送信するようになっている。 In addition, the operation device 114 is provided with various operation buttons and the like. When the operation button is operated by the operator, the operation device 114 transmits, for example, an exposure instruction signal for instructing the radiation generation device 112 to perform radiation exposure.
 本実施形態においては、操作装置114は、放射線発生装置112と接続されているとともに、コンソール101とも接続されていることとする。 In this embodiment, it is assumed that the operation device 114 is connected to the radiation generation device 112 and also to the console 101.
 そして、操作装置114には、コンソール101から放射線発生装置112の放射線照射条件を制御する制御信号が送信されるようになっており、放射線発生装置112の放射線照射条件は、操作装置114に送信されたコンソール101からの制御信号に応じて設定される。放射線照射条件としては、例えば、曝射開始/終了タイミング、放射線管電流の値、放射線管電圧の値、フィルタ種等がある。 A control signal for controlling the radiation irradiation condition of the radiation generator 112 is transmitted from the console 101 to the operation device 114. The radiation irradiation condition of the radiation generator 112 is transmitted to the operation device 114. It is set according to the control signal from the console 101. Examples of radiation irradiation conditions include exposure start / end timing, radiation tube current value, radiation tube voltage value, filter type, and the like.
 [放射線画像撮影装置]
 次に、本実施形態に係る放射線画像撮影装置1について説明する。図2は、本実施形態に係る放射線画像撮影装置1の外観斜視図であり、図3は、図2におけるX-X線に沿う断面図である。
[Radiation imaging equipment]
Next, the radiographic image capturing apparatus 1 according to the present embodiment will be described. 2 is an external perspective view of the radiographic image capturing apparatus 1 according to the present embodiment, and FIG. 3 is a cross-sectional view taken along line XX in FIG.
 放射線画像撮影装置1は、例えば、図2および図3に示すように、筐体状のハウジング2内にシンチレータ3や基板4などで構成されるセンサパネル40が収納されて構成されている。 For example, as shown in FIGS. 2 and 3, the radiographic image capturing apparatus 1 is configured by housing a sensor panel 40 including a scintillator 3, a substrate 4, and the like in a housing 2.
 図2に示すように、ハウジング2は、角筒状に形成されたハウジング本体部2aと、ハウジング本体部2aの両端の開口部を覆って閉塞する蓋部材2b,2bと、を備えた、いわゆるモノコック型に形成されている。 As shown in FIG. 2, the housing 2 includes a so-called rectangular tube-shaped housing body 2 a and so-called lid members 2 b and 2 b that cover and close the openings at both ends of the housing body 2 a. It is formed in a monocoque shape.
 ハウジング本体部2aには、放射線の照射を受ける側の面R(以下「放射線入射面R」という。)が設けられており、放射線を透過するカーボン板やプラスチックなどの材料で形成されている。 The housing main body 2a is provided with a radiation receiving surface R (hereinafter referred to as "radiation incidence surface R"), and is formed of a material such as a carbon plate or plastic that transmits radiation.
 なお、ハウジング2の構成、形状等は、ここに例示したものに限定されない。例えば、ハウジング2を、フレーム板とバック板とで形成された、いわゆる弁当箱型とすることも可能である。 Note that the configuration, shape, and the like of the housing 2 are not limited to those illustrated here. For example, the housing 2 can be a so-called lunch box type formed of a frame plate and a back plate.
 また、一方の蓋部材2bには、電源スイッチ36と、放射線画像撮影装置1と他の装置とを有線で接続するための端子37と、各種の操作状況等を表示するインジケータ38と、等が設けられている。 One lid member 2b includes a power switch 36, a terminal 37 for connecting the radiographic image capturing apparatus 1 and another apparatus by wire, an indicator 38 for displaying various operation statuses, and the like. Is provided.
 また、蓋部材2bには、放射線画像撮影装置1がコンソール101等の他の装置との間でデータや信号などの送受信を無線方式で行うための通信手段であるアンテナ装置39が埋め込まれて設けられている。 The lid member 2b is embedded with an antenna device 39 that is a communication means for the radiographic imaging device 1 to transmit and receive data and signals to and from other devices such as the console 101 in a wireless manner. It has been.
 なお、アンテナ装置39を設ける箇所は、本実施形態のようにハウジング2の1つの蓋部材2bに限定されず、他の位置に設けることも可能である。また、アンテナ装置39の個数は必ずしも1つに限定されず、必要な数だけ適宜設けられる。 In addition, the location where the antenna device 39 is provided is not limited to one lid member 2b of the housing 2 as in the present embodiment, but may be provided at other positions. Further, the number of antenna devices 39 is not necessarily limited to one, and a necessary number is appropriately provided.
 図3に示すように、ハウジング2の内部には、センサパネル40が収納されている。センサパネル40は、基板4とこれに積層されるシンチレータ3とを備えており、基板4やシンチレータ3の放射線入射面R側には、それらを保護するためのガラス基板35が配設されている。 As shown in FIG. 3, a sensor panel 40 is housed inside the housing 2. The sensor panel 40 includes a substrate 4 and a scintillator 3 laminated thereon, and a glass substrate 35 for protecting them is disposed on the substrate 4 and the radiation incident surface R side of the scintillator 3. .
 また、基板4の下方側には図示しない鉛の薄板等を介して基台31が配置され、基台31には、電子部品32等が配設されたPCB基板33や緩衝部材34などが取り付けられている。 A base 31 is disposed below the substrate 4 via a lead thin plate (not shown). A PCB substrate 33 on which electronic components 32 and the like are disposed, a buffer member 34, and the like are attached to the base 31. It has been.
 シンチレータ3は、図4の拡大図に示すように、例えば、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレートフィルム等の各種高分子材料(ポリマー)により形成された支持体3bの上に、例えば蒸着法、スパッタ法、化学蒸着(CVD:chemical vapor deposition)法等の気相成長法により蛍光体3aの柱状結晶を成長させて形成されている。また、シンチレータ3の支持体3bが前述したガラス基板35に貼付されて固定されている。 As shown in the enlarged view of FIG. 4, for example, the scintillator 3 is formed on a support 3 b formed of various polymer materials (polymers) such as a cellulose acetate film, a polyester film, and a polyethylene terephthalate film. It is formed by growing columnar crystals of the phosphor 3a by vapor phase growth methods such as sputtering and chemical vapor deposition (CVD). The support 3b of the scintillator 3 is affixed and fixed to the glass substrate 35 described above.
 また、シンチレータ3は、例えば、放射線の入射を受けると300~800nmの波長の電磁波、すなわち可視光線を中心とした電磁波に変換して出力するものが用いられる。シンチレータ3は、蛍光体3aの柱状結晶の鋭角状の先端Pa側が、基板4の後述する検出部Pに貼り合わされるようになっている。 The scintillator 3 is, for example, one that converts and outputs an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when receiving radiation. In the scintillator 3, the acute-angled tip end Pa side of the columnar crystal of the phosphor 3 a is bonded to a detection unit P described later of the substrate 4.
 基板4は、本実施形態では、ガラス基板で構成されており、図5に示すように、基板4のシンチレータ3に対向する側の面4a上には、複数の走査線5と複数の信号線6とが互いに交差するように配設されている。基板4の面4a上の複数の走査線5と複数の信号線6により区画された各小領域rには、放射線検出素子7がそれぞれ設けられている。 In the present embodiment, the substrate 4 is formed of a glass substrate. As shown in FIG. 5, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. In each small region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4, radiation detection elements 7 are respectively provided.
 このように、放射線検出素子7は、センサパネル40の基板4上に二次元状に配列されており、複数の放射線検出素子7が設けられた領域r全体、すなわち図5に一点鎖線で示される領域がセンサパネル40の検出部Pとされている。 As described above, the radiation detection elements 7 are two-dimensionally arranged on the substrate 4 of the sensor panel 40, and are indicated by the entire region r in which the plurality of radiation detection elements 7 are provided, that is, a one-dot chain line in FIG. The region is the detection unit P of the sensor panel 40.
 本実施形態では、放射線入射面Rから入射した放射線がシンチレータ3で変換されて出力される電磁波の光量に応じて電荷を発生させる放射線検出素子7としてフォトダイオードが用いられているが、この他にも、例えばフォトトランジスタ等を用いることも可能である。 In the present embodiment, a photodiode is used as the radiation detection element 7 that generates charges in accordance with the amount of electromagnetic waves output from the radiation incident surface R that is converted by the scintillator 3. Alternatively, for example, a phototransistor or the like can be used.
 また、各放射線検出素子7は、図5や図6の拡大図に示すように、スイッチ素子である薄膜トランジスタ(Thin Film Transistor。以下「TFT」という。)8のソース電極8sに接続されている。また、TFT8のドレイン電極8dは信号線6に接続されている。 Further, each radiation detection element 7 is connected to a source electrode 8s of a thin film transistor (hereinafter referred to as “TFT”) 8 which is a switching element, as shown in the enlarged views of FIG. 5 and FIG. The drain electrode 8 d of the TFT 8 is connected to the signal line 6.
 そして、TFT8は、オン状態とされることにより、すなわちゲート電極8gに信号読み出し用の電圧が印加されてTFT8のゲートが開かれることにより、放射線検出素子7に蓄積された電荷を信号線6に放出させるようになっている。ここで、本実施形態における放射線検出素子7やTFT8の構造について、図7に示す断面図を用いて簡単に説明する。図7は、図6におけるY-Y線に沿う断面図である。 When the TFT 8 is turned on, that is, when a voltage for signal readout is applied to the gate electrode 8g and the gate of the TFT 8 is opened, the charge accumulated in the radiation detection element 7 is applied to the signal line 6. It is supposed to be released. Here, the structure of the radiation detection element 7 and the TFT 8 in this embodiment will be briefly described with reference to a cross-sectional view shown in FIG. FIG. 7 is a cross-sectional view taken along line YY in FIG.
 基板4の面4a上に、AlやCrなどからなるTFT8のゲート電極8gが走査線5と一体的に積層されて形成されており、ゲート電極8g上および面4a上に積層された窒化シリコン(SiN)等からなるゲート絶縁層81上のゲート電極8gの上方部分に、水素化アモルファスシリコン(a-Si)等からなる半導体層82を介して、放射線検出素子7の第1電極74と接続されたソース電極8sと、信号線6と一体的に形成されるドレイン電極8dとが積層されて形成されている。 A gate electrode 8g of a TFT 8 made of Al, Cr, or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a). An upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiN x ) or the like is connected to the first electrode 74 of the radiation detection element 7 via a semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like. The formed source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.
 ソース電極8sとドレイン電極8dとは、窒化シリコン(SiN)等からなる第1パッシベーション層83によって分割されており、さらに第1パッシベーション層83は両電極8s,8dを上側から被覆している。また、半導体層82とソース電極8sやドレイン電極8dとの間には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたオーミックコンタクト層84a,84bがそれぞれ積層されている。以上のようにしてTFT8が形成されている。 The source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both electrodes 8s and 8d from above. Between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, ohmic contact layers 84a and 84b formed in an n-type by doping a hydrogenated amorphous silicon with a group VI element are laminated. The TFT 8 is formed as described above.
 また、放射線検出素子7の部分では、基板4の面4a上にゲート絶縁層81と一体的に形成される絶縁層71の上にAlやCrなどが積層されて補助電極72が形成されており、補助電極72上に第1パッシベーション層83と一体的に形成される絶縁層73を挟んでAlやCr、Moなどからなる第1電極74が積層されている。第1電極74は、第1パッシベーション層83に形成されたホールHを介してTFT8のソース電極8sに接続されている。 In the radiation detection element 7, an auxiliary electrode 72 is formed by laminating Al, Cr or the like on an insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4. A first electrode 74 made of Al, Cr, Mo, or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween. The first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.
 第1電極74の上には、水素化アモルファスシリコンにVI族元素をドープしてn型に形成されたn層75、水素化アモルファスシリコンで形成された変換層であるi層76、水素化アモルファスシリコンにIII族元素をドープしてp型に形成されたp層77が下方から順に積層されて形成されている。なお、p層77、i層76、n層75の積層の順番は上下逆であっても良い。 On the first electrode 74, an n layer 75 formed in an n-type by doping a hydrogenated amorphous silicon with a group VI element, an i layer 76 which is a conversion layer formed of hydrogenated amorphous silicon, and a hydrogenated amorphous A p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed.
 p層77の上には、ITO等の透明電極とされた第2電極78が積層されて形成されており、照射された電磁波がi層76等に到達するように構成されている。以上のようにして放射線検出素子7が形成されている。 A second electrode 78 made of a transparent electrode such as ITO is laminated on the p layer 77, and the irradiated electromagnetic wave reaches the i layer 76 or the like. The radiation detection element 7 is formed as described above.
 なお、本実施形態では、上記のように、放射線検出素子7としてp層77、i層76、n層75が積層されて形成された、いわゆるpin型の放射線検出素子を用いる場合を説明したが、放射線検出素子7は、このようなpin型に限定されない。 In the present embodiment, as described above, the case where a so-called pin-type radiation detection element formed by stacking the p layer 77, the i layer 76, and the n layer 75 is used as the radiation detection element 7 has been described. The radiation detection element 7 is not limited to such a pin type.
 また、放射線検出素子7の第2電極78の上面には、第2電極78を介して放射線検出素子7に逆バイアス電圧を印加するバイアス線9が接続されている。なお、放射線検出素子7の第2電極78やバイアス線9、TFT8側に延出された第1電極74、TFT8の第1パッシベーション層83等、すなわち放射線検出素子7とTFT8の上面部分は、その上方側から窒化シリコン(SiN)等からなる第2パッシベーション層79で被覆されている。 A bias line 9 for applying a reverse bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78. The second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are A second passivation layer 79 made of silicon nitride (SiN x ) or the like is covered from above.
 図5や図6に示すように、本実施形態では、それぞれ列状に配置された複数の放射線検出素子7に1本のバイアス線9が接続されており、各バイアス線9はそれぞれ信号線6に平行に配設されている。また、各バイアス線9は、基板4の検出部Pの外側の位置で1本の結線10に結束されている。 As shown in FIGS. 5 and 6, in the present embodiment, one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other. In addition, each bias line 9 is bound to one connection 10 at a position outside the detection portion P of the substrate 4.
 本実施形態では、各走査線5や各信号線6、バイアス線9の結線10は、それぞれ基板4の端縁部付近に設けられた入出力端子(パッドともいう)11に接続されている。各入出力端子11には、図8に示すように、IC12a等のチップが組み込まれたCOF(Chip On Film)12が異方性導電接着フィルム(Anisotropic Conductive Film)や異方性導電ペースト(Anisotropic Conductive Paste)などの異方性導電性接着材料13を介して接続されている。また、COF12は、基板4の裏面4b側に引き回され、裏面4b側で前述したPCB基板33に接続されるようになっている。 In this embodiment, each scanning line 5, each signal line 6, and the connection 10 of the bias line 9 are connected to an input / output terminal (also referred to as a pad) 11 provided near the edge of the substrate 4, respectively. As shown in FIG. 8, each input / output terminal 11 has a COF (Chip On Film) 12 in which a chip such as an IC 12a is incorporated. It is connected via an anisotropic conductive adhesive material 13 such as Conductive Paste). The COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 described above on the back surface 4b side.
 また、基板4の面4a上の放射線検出素子7が配列された部分、すなわち検出部Pには、放射線検出素子7を保護し平坦面を形成するために透明な樹脂等が塗布されて平坦化層7aが形成されている。そして、シンチレータ3がその平坦化層7aに貼り合わされるようになっている。 Further, the portion where the radiation detection elements 7 on the surface 4a of the substrate 4 are arranged, that is, the detection portion P is flattened by applying a transparent resin or the like to protect the radiation detection elements 7 and form a flat surface. Layer 7a is formed. The scintillator 3 is bonded to the planarization layer 7a.
 本実施形態では、このようにして、放射線画像撮影装置1のセンサパネル40が形成されている。なお、図9の拡大断面図に示すように、本実施形態では、1つの放射線検出素子7とその上方のシンチレータ3の蛍光体3a部分、および図9では図示が省略されている1つのTFT8等で1つの撮像素子41が形成されている。なお、図9では、放射線検出素子7が簡略化されて示されている。 In the present embodiment, the sensor panel 40 of the radiographic image capturing apparatus 1 is formed in this way. As shown in the enlarged sectional view of FIG. 9, in this embodiment, one radiation detection element 7 and the phosphor 3a portion of the scintillator 3 thereabove, one TFT 8 not shown in FIG. Thus, one image sensor 41 is formed. In FIG. 9, the radiation detection element 7 is shown in a simplified manner.
 ここで、放射線画像撮影装置1のセンサパネル40の回路構成について説明する。図10は、本実施形態に係る放射線画像撮影装置1のセンサパネル40の等価回路図である。 Here, the circuit configuration of the sensor panel 40 of the radiation image capturing apparatus 1 will be described. FIG. 10 is an equivalent circuit diagram of the sensor panel 40 of the radiographic image capturing apparatus 1 according to the present embodiment.
 前述したように、センサパネル40の各撮像素子41の放射線検出素子7は、その第2電極78がそれぞれバイアス線9に接続されており、各バイアス線9は結線10に結束されてバイアス電源14に接続されている。バイアス電源14は、結線10および各バイアス線9を介して各放射線検出素子7の第2電極78にそれぞれバイアス電圧を印加するようになっている。また、バイアス電源14は、後述する制御手段22に接続されており、制御手段22は、バイアス電源14から各放射線検出素子7に印加するバイアス電圧を制御するようになっている。 As described above, the radiation detection element 7 of each imaging element 41 of the sensor panel 40 has the second electrode 78 connected to the bias line 9, and each bias line 9 is bound to the connection line 10 to be bias power supply 14. It is connected to the. The bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9. The bias power source 14 is connected to a control unit 22 described later, and the control unit 22 controls a bias voltage applied to each radiation detection element 7 from the bias power source 14.
 本実施形態においては、放射線検出素子7のp層77側(図7参照)に第2電極78を介してバイアス線9が接続されていることからも分かるように、バイアス電源14からは、放射線検出素子7の第2電極78にバイアス線9を介してバイアス電圧として放射線検出素子7の第1電極74側にかかる電圧以下の電圧(すなわち、いわゆる逆バイアス電圧)が印加されるようになっている。 In this embodiment, as can be seen from the fact that the bias line 9 is connected via the second electrode 78 to the p-layer 77 side (see FIG. 7) of the radiation detection element 7, the radiation from the bias power source 14 A voltage lower than the voltage applied to the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage) is applied to the second electrode 78 of the detection element 7 as a bias voltage via the bias line 9. Yes.
 各放射線検出素子7の第1電極74はそれぞれTFT8のソース電極8s(図10中ではSと表記されている。)に接続されており、各TFT8のゲート電極8g(図10中ではGと表記されている。)は、後述する走査駆動手段15のゲートドライバ15bから延びる走査線5の各ラインL1~Lxにそれぞれ接続されている。また、各TFT8のドレイン電極8d(図10中ではDと表記されている。)は、各信号線6にそれぞれ接続されている。 The first electrode 74 of each radiation detection element 7 is connected to the source electrode 8s (denoted as S in FIG. 10) of the TFT 8, and the gate electrode 8g of each TFT 8 (denoted as G in FIG. 10). Are connected to the lines L1 to Lx of the scanning line 5 extending from the gate driver 15b of the scanning driving means 15 to be described later. Further, the drain electrode 8d (denoted as D in FIG. 10) of each TFT 8 is connected to each signal line 6.
 走査駆動手段15は、本実施形態においては、ゲートドライバ15bにオン電圧とオフ電圧を供給する電源回路15aと、走査線5の各ラインL1~Lxに印加する電圧をオン電圧とオフ電圧との間で切り替えて各TFT8のオン状態とオフ状態とを切り替えるゲートドライバ15bと、を備えている。 In this embodiment, the scanning drive unit 15 includes a power supply circuit 15a that supplies an on voltage and an off voltage to the gate driver 15b, and a voltage applied to each of the lines L1 to Lx of the scanning line 5 between the on voltage and the off voltage. And a gate driver 15b that switches between the on state and the off state of each TFT 8 by switching between them.
 各信号線6は、読み出しIC16内に形成された各読み出し回路17にそれぞれ接続されている。なお、読み出しIC16には所定個数の読み出し回路17が設けられており、読み出しIC16が複数設けられることによって、信号線6の本数分の読み出し回路17が設けられるようになっている。 Each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16. Note that a predetermined number of read circuits 17 are provided in the read IC 16, and by providing a plurality of read ICs 16, the read circuits 17 corresponding to the number of signal lines 6 are provided.
 読み出し回路17は、増幅回路18と、相関二重サンプリング(Correlated Double Sampling)回路19と、アナログマルチプレクサ21と、A/D変換器20と、で構成されている。 The readout circuit 17 includes an amplification circuit 18, a correlated double sampling circuit 19, an analog multiplexer 21, and an A / D converter 20.
 本実施形態においては、増幅回路18と相関二重サンプリング回路19とは、1本の信号線6毎に1つずつ設けられているが、アナログマルチプレクサ21とA/D変換器20とは、複数の回路で共通とされている。なお、相関二重サンプリング回路19は、図10中ではCDSと表記されている。 In the present embodiment, one amplification circuit 18 and one correlated double sampling circuit 19 are provided for each signal line 6, but there are a plurality of analog multiplexers 21 and A / D converters 20. This is common to all circuits. The correlated double sampling circuit 19 is represented as CDS in FIG.
 放射線画像撮影時には、放射線画像撮影装置1のハウジング2の放射線入射面Rに、例えば患者の胸部や脚などの撮影対象部位が被写体として配置された状態で、放射線が照射される。その際、各撮像素子41のTFT8のゲート電極8gはオフ状態とされ、ゲートが閉じられた状態とされる。その状態で、被写体を透過した放射線が照射されると、放射線入射面Rを透過した放射線が図10では図示が省略されているシンチレータ3に入射し、シンチレータ3で放射線が電磁波に変換され、その電磁波が撮像素子41の放射線検出素子7に入射する。 At the time of radiographic image capturing, radiation is irradiated in a state where an imaging target site such as a chest or a leg of a patient is disposed as a subject on the radiation incident surface R of the housing 2 of the radiographic image capturing apparatus 1. At that time, the gate electrode 8g of the TFT 8 of each image sensor 41 is turned off and the gate is closed. In this state, when the radiation transmitted through the subject is irradiated, the radiation transmitted through the radiation incident surface R enters the scintillator 3 (not shown in FIG. 10), and the scintillator 3 converts the radiation into electromagnetic waves. An electromagnetic wave is incident on the radiation detection element 7 of the image sensor 41.
 そして、入射した電磁波が放射線検出素子7のi層76(図7参照)に到達すると、i層76内で入射した電磁波の光量、すなわち放射線の線量に応じて電子正孔対が発生し、逆バイアス電圧の印加により放射線検出素子7内に形成された所定の電位勾配に従って、発生した電子と正孔のうちの一方の電荷(本実施形態では正孔)は第2電極78側に移動し、他方の電荷(本実施形態では電子)は第1電極74側に移動して第1電極74付近に蓄積される。 When the incident electromagnetic wave reaches the i layer 76 (see FIG. 7) of the radiation detection element 7, an electron-hole pair is generated according to the amount of the electromagnetic wave incident in the i layer 76, that is, the radiation dose. According to a predetermined potential gradient formed in the radiation detection element 7 by application of the bias voltage, one of the generated electrons and holes (in this embodiment, a hole) moves to the second electrode 78 side, The other charge (electrons in this embodiment) moves to the first electrode 74 side and is accumulated near the first electrode 74.
 そして、放射線の照射が停止されて放射線画像撮影が終了すると、読み出し動作が開始されるようになっている。読み出し動作では、走査線5を介して走査駆動手段15から各撮像素子41のTFT8のゲート電極8gに信号読み出し用の電圧が印加され、TFT8のゲートがオン状態とされて、撮像素子41の放射線検出素子7に蓄積された電荷がTFT8のソース電極8sを介してドレイン電極8dから信号線6に放出されるようになっている。 Then, when the radiation irradiation is stopped and the radiographic image capturing is finished, the reading operation is started. In the readout operation, a signal readout voltage is applied from the scanning drive means 15 to the gate electrode 8g of the TFT 8 of each image sensor 41 via the scanning line 5, the gate of the TFT 8 is turned on, and the radiation of the image sensor 41 is turned on. The charge accumulated in the detection element 7 is emitted from the drain electrode 8d to the signal line 6 through the source electrode 8s of the TFT 8.
 そして、読み出し回路17では、撮像素子41から信号線6を通じて放射線検出素子7に蓄積された電荷が放出されると、撮像素子41毎に電荷を電荷電圧変換して増幅する等して画像データに変換した後、各相関二重サンプリング回路19で、画像データから放射線が照射されていない時の各放射線検出素子7のノイズを差し引いた画像データを、アナログマルチプレクサ21を介して順次A/D変換器20に送信し、A/D変換器20で順次デジタル値に変換して読み出すようになっている。 In the readout circuit 17, when the charge accumulated in the radiation detection element 7 is released from the image sensor 41 through the signal line 6, the charge is converted into charge voltage for each image sensor 41 and amplified into image data. After the conversion, each correlated double sampling circuit 19 sequentially converts the image data obtained by subtracting the noise of each radiation detecting element 7 when no radiation is applied from the image data via the analog multiplexer 21 into an A / D converter. 20 is converted to a digital value sequentially by the A / D converter 20 and read out.
 制御手段22は、CPU、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピュータや、FPGA(Field Programmable Gate Array)などによって構成されており、ROMに格納される所定のプログラムを読み出してRAMの作業領域に展開し、当該プログラムに従って各種処理を実行して、放射線画像撮影装置1の各部材の動作等を制御するようになっている。 The control means 22 includes a microcomputer including a CPU, a ROM (Read Only Memory), a RAM (Random Access Memory), an FPGA (Field Programmable Gate Array), and the like, and a predetermined program stored in the ROM. Are expanded in the work area of the RAM, and various processes are executed in accordance with the program to control the operation of each member of the radiographic image capturing apparatus 1.
 なお、ROMやRAMは、制御手段22ではなく、制御手段22に接続された記憶手段23に備えられていても良い。 Note that the ROM and RAM may be provided not in the control means 22 but in the storage means 23 connected to the control means 22.
 前述したように、制御手段22は、バイアス電源14を制御して各撮像素子41の放射線検出素子7に印加する逆バイアス電圧を制御したり、走査駆動手段15から信号読み出し用の電圧を印加する走査線5を切り替えたり、或いは、各読み出し回路17内の増幅回路18や相関二重サンプリング回路19などを制御して、各撮像素子41からの画像データの読み出しを行うようになっている。 As described above, the control unit 22 controls the bias power supply 14 to control the reverse bias voltage applied to the radiation detection element 7 of each image sensor 41 or applies a signal readout voltage from the scanning drive unit 15. Image data is read from each image sensor 41 by switching the scanning line 5 or controlling the amplification circuit 18 and the correlated double sampling circuit 19 in each readout circuit 17.
 なお、各撮像素子41から読み出された各画像データは、制御手段22により制御される図示しないメモリコントローラの指示に従って記憶手段23の画像記憶領域に保存されるようになっている。 Each image data read from each image sensor 41 is stored in the image storage area of the storage unit 23 in accordance with an instruction of a memory controller (not shown) controlled by the control unit 22.
 また、制御手段22には、前述したアンテナ装置39が接続されており、アンテナ装置39を介して他の装置との間でデータや信号などの送受信を行うようになっている。 In addition, the above-described antenna device 39 is connected to the control means 22, and data and signals are transmitted / received to / from other devices via the antenna device 39.
 さらに、制御手段22は、装置に内蔵されたバッテリ24から各撮像素子41等の各部材への電力の供給を制御するようになっている。バッテリ24には、他の装置から電力を供給してバッテリ24を充電する際の接続端子(図示省略)が取り付けられている。 Furthermore, the control means 22 controls the supply of electric power from the battery 24 built in the apparatus to each member such as each image sensor 41. A connection terminal (not shown) for charging the battery 24 by supplying power from another device is attached to the battery 24.
 具体的には、制御手段22は、まず、読み出し回路17によって撮像素子41からそれぞれ画像データを読み出し、当該画像データに対して所定の圧縮処理を行って、通信手段であるアンテナ装置39を介してコンソール101に送信するようになっている。 Specifically, the control unit 22 first reads out image data from the image sensor 41 by the readout circuit 17, performs a predetermined compression process on the image data, and passes through the antenna device 39 as a communication unit. The data is transmitted to the console 101.
 [コンソール]
 次に、本実施形態に係るコンソール101について説明する。
[console]
Next, the console 101 according to the present embodiment will be described.
 コンソール101は、例えば、図1に示すように、制御手段101aと、HDD(Hard Disk Drive)等からなる記憶手段101bと、操作装置114や無線アクセスポイント113などの他の装置との間で通信を行うための通信手段101cと、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)などからなる表示手段101dと、キーボードやマウスなどからなる図示しない入力手段と、等を備えて構成されるコンピュータである。 For example, as shown in FIG. 1, the console 101 communicates between the control unit 101a, the storage unit 101b including an HDD (Hard Disk Drive), and other devices such as the operation device 114 and the wireless access point 113. A computer configured to include a communication unit 101c for performing communication, a display unit 101d such as a CRT (Cathode Ray Tube) or an LCD (Liquid Crystal Display), an input unit (not shown) such as a keyboard or a mouse, and the like It is.
 また、通信手段101cは、出力手段であり、ネットワークNを介して、撮影に関する検査対象の撮影オーダ情報をコンソール101に提供するHIS(Hospital Information System)/RIS(Radiology Information System)121、コンソール101から出力された画像データを保存するPACS(Picture Archiving and Communication System)サーバ122、コンソール101から出力された画像データに基づいて放射線画像をフィルムなどの画像記録媒体に記録して出力するイメージャ123等の外部装置と接続されている。 The communication unit 101 c is an output unit, and via the network N, from the console 101, a HIS (Hospital Information System) 121 or RIS (Radiology Information System) 121 that provides imaging order information of an inspection object related to imaging to the console 101. A PACS (Picture Archiving and Communication System) server 122 that stores the output image data, an external such as an imager 123 that records and outputs a radiographic image on an image recording medium such as a film based on the image data output from the console 101 Connected to the device.
 なお、本実施形態では、コンソール101が撮影室R1や前室R2の外に設置されている場合を例示しているが、これに限ることはなく、例えば、コンソール101を前室R2等に設置するように構成することも可能である。 In this embodiment, the case where the console 101 is installed outside the photographing room R1 or the front room R2 is illustrated, but the present invention is not limited to this. For example, the console 101 is installed in the front room R2 or the like. It is also possible to configure so as to.
 制御手段101aは、図示しないCPU、ROM、RAM等を備えており、ROMに格納される所定のプログラムを読み出してRAMの作業領域に展開し、当該プログラムに従って各種処理を実行して、放射線画像撮影システム100全体の制御を行うようになっている。 The control unit 101a includes a CPU, a ROM, a RAM, and the like (not shown), reads a predetermined program stored in the ROM, develops it in the work area of the RAM, executes various processes according to the program, and performs radiographic imaging. The entire system 100 is controlled.
 なお、ROMやRAMは、制御手段101aではなく、記憶手段101bに備えられていても良い。 Note that the ROM and RAM may be provided in the storage means 101b instead of the control means 101a.
 制御手段101aは、放射線画像撮影装置1から送信された画像データに基づいて、診断時に使用される診断画像の画像データである診断画像データと、放射線画像撮影における被写体のポジショニング等を確認するためのプレビュー画像の画像データであるプレビュー画像データと、を作成する作成手段として機能する。 Based on the image data transmitted from the radiographic imaging apparatus 1, the control means 101a is used for confirming diagnostic image data that is image data of a diagnostic image used at the time of diagnosis, positioning of a subject in radiographic imaging, and the like. It functions as a creation means for creating preview image data that is image data of a preview image.
 ここで、制御手段101aは、診断画像データを作成する際、放射線画像撮影装置1から送信された画像データに対して高精度な欠陥画素補正処理である第1の欠陥画素補正処理を行い、プレビュー画像データを作成する際、放射線画像撮影装置1から送信された画像データに対して第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理である第2の欠陥画素補正処理を行うようになっている。 Here, when creating the diagnostic image data, the control unit 101a performs a first defective pixel correction process, which is a highly accurate defective pixel correction process, on the image data transmitted from the radiation image capturing apparatus 1, and a preview. When creating image data, a second defective pixel correction process, which is a defective pixel correction process simpler than the first defective pixel correction process, is performed on the image data transmitted from the radiation image capturing apparatus 1. ing.
 なお、第1および第2の欠陥画素補正処理の具体例については、後で説明する。 A specific example of the first and second defective pixel correction processing will be described later.
 また、本実施形態においては、制御手段101aは、プレビュー画像データを作成する際、放射線画像撮影装置1から送信された画像データ(rawデータ)から、所定の割合で画素を間引き、データ量が例えばrawデータの1/16程度となるように減少させた間引き画像データを生成するようになっている。 In the present embodiment, when creating the preview image data, the control unit 101a thins out pixels at a predetermined rate from the image data (raw data) transmitted from the radiation image capturing apparatus 1, and the data amount is, for example, Thinned-out image data reduced to be about 1/16 of the raw data is generated.
 具体的には、制御手段101aは、放射線画像撮影装置1から送信された圧縮された画像データを通信手段101cが受信すると、当該圧縮された画像データに対して所定の伸長処理を行い、その後、オフセット補正およびゲイン補正を行って、例えば記憶手段101bに記憶させる。 Specifically, when the communication unit 101c receives the compressed image data transmitted from the radiation image capturing apparatus 1, the control unit 101a performs a predetermined decompression process on the compressed image data, and then Offset correction and gain correction are performed and stored in, for example, the storage unit 101b.
 ここで、放射線画像撮影装置1の制御手段22は、放射線画像撮影装置1に放射線を照射しない状態でセンサパネル40の各撮像素子41から出力されるダーク読取値を検出し、このダーク読取値に基づいてオフセット補正値を算出する等して、ダーク読取値やオフセット補正値を画像データとともに送信するようになっている。 Here, the control means 22 of the radiographic image capturing apparatus 1 detects the dark read value output from each imaging element 41 of the sensor panel 40 in a state where the radiation image radiographing apparatus 1 is not irradiated with radiation, and uses this dark read value. The dark reading value and the offset correction value are transmitted together with the image data by calculating the offset correction value based on this.
 そして、コンソール101の制御手段101aは、放射線画像撮影装置1から送信されたオフセット補正値に基づきオフセット補正を行うとともに、記憶手段101bに予め記憶されているゲイン補正値を読み出して当該ゲイン補正値に基づきゲイン補正を行うようになっている。 Then, the control unit 101a of the console 101 performs offset correction based on the offset correction value transmitted from the radiation image capturing apparatus 1, and reads out the gain correction value stored in advance in the storage unit 101b to obtain the gain correction value. Based on this, gain correction is performed.
 次いで、制御手段101aは、オフセット補正およびゲイン補正が行われた画像データに対して間引き処理を行って間引き画像データを生成する。 Next, the control unit 101a performs thinning processing on the image data that has been subjected to offset correction and gain correction, and generates thinned image data.
 次いで、制御手段101aは、当該間引き画像データに対して、記憶手段101bに記憶された欠陥画素情報(後述)に基づき第2の欠陥画素補正処理を行って、プレビュー画像データを作成する。 Next, the control unit 101a performs a second defective pixel correction process on the thinned image data based on defective pixel information (described later) stored in the storage unit 101b to create preview image data.
 次いで、制御手段101aは、当該プレビュー画像データに基づくプレビュー画像を表示手段101dに表示させる。 Next, the control unit 101a causes the display unit 101d to display a preview image based on the preview image data.
 次いで、制御手段101aは、例えば記憶手段101bに記憶しておいた画像データ、すなわちオフセット補正およびゲイン補正が行われた画像データを取得し、当該画像データに対して、記憶手段101bに記憶された欠陥画素情報(後述)に基づき第1の欠陥画素補正処理を行って、診断画像データを作成する。 Next, the control unit 101a acquires, for example, image data stored in the storage unit 101b, that is, image data that has been subjected to offset correction and gain correction, and the image data is stored in the storage unit 101b. A first defective pixel correction process is performed based on defective pixel information (described later) to create diagnostic image data.
 なお、プレビュー画像データを作成して当該プレビュー画像データに基づくプレビュー画像を表示した後、自動的に診断画像データを作成するようにしたが、これに限ることはなく、プレビュー画像を表示した後、例えば操作者によりコンソール101が備える入力手段(図示省略)が操作されて診断画像データを作成するよう指示された場合に、診断画像データを作成するようにしても良い。 After creating the preview image data and displaying the preview image based on the preview image data, the diagnostic image data is automatically created. However, the present invention is not limited to this, and after displaying the preview image, For example, diagnostic image data may be created when an operator operates an input means (not shown) included in the console 101 to instruct to create diagnostic image data.
 そして、制御手段101aは、例えば操作者によりコンソール101が備える入力手段(図示省略)が操作されて診断画像データを出力するよう指示されると、当該診断画像データに基づく診断画像を表示部101dに表示させたり、当該診断画像データを出力手段である通信手段101cを介してPACSサーバ122やイメージャ123などの外部装置に出力したりするようになっている。 Then, for example, when an operator operates an input unit (not shown) included in the console 101 and instructs to output diagnostic image data, the control unit 101a displays a diagnostic image based on the diagnostic image data on the display unit 101d. The diagnostic image data is displayed or output to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c which is an output unit.
 なお、本実施形態では、プレビュー画像データを作成する際、オフセット補正およびゲイン補正を行った後に、間引き処理を行うようにしたが、これに限ることはなく、間引き処理は、例えば、ゲイン補正を行う前に行っても良いし、オフセット補正を行う前に行っても良い。また、間引き処理は必ずしも行う必要はない。 In the present embodiment, when creating preview image data, the thinning process is performed after performing the offset correction and the gain correction. However, the present invention is not limited to this, and the thinning process may include, for example, gain correction. It may be performed before performing or may be performed before performing offset correction. Further, the thinning process is not necessarily performed.
 また、本実施形態では、コンソール101側でオフセット補正およびゲイン補正を行うようにしたが、これに限ることはなく、例えば、放射線画像撮影装置1側でオフセット補正およびゲイン補正のうちの少なくともオフセット補正を行い、そして、当該少なくともオフセット補正が行われた画像データをコンソール101に送信するようにしても良い。 In this embodiment, offset correction and gain correction are performed on the console 101 side. However, the present invention is not limited to this. For example, at least offset correction and gain correction on the radiographic imaging apparatus 1 side are performed. The image data subjected to at least offset correction may be transmitted to the console 101.
 ところで、前述したように、センサパネル40の各撮像素子41には、通常、恒常的に或いは一定の確率で異常な画像データを出力するものが含まれる。したがって、異常な画像データを出力する撮像素子41に対応する画素(すなわち、欠陥画素)が、センサパネル40上で点々と孤立して存在する状態(すなわち、いわゆる点欠陥の状態)と、センサパネル40上で線状に存在する状態(すなわち、いわゆる線欠陥の状態)と、センサパネル40上で二次元のクラスター状に存在する状態と、のうちの少なくとも1つの状態で存在している場合がある。 By the way, as described above, each image sensor 41 of the sensor panel 40 usually includes one that outputs abnormal image data constantly or with a certain probability. Therefore, a state in which pixels (that is, defective pixels) corresponding to the image pickup element 41 that outputs abnormal image data are isolated from each other on the sensor panel 40 (that is, a so-called point defect state), and a sensor panel. 40 may exist in at least one of a state existing linearly on 40 (that is, a so-called line defect state) and a state existing two-dimensionally on the sensor panel 40. is there.
 ここで、二次元のクラスター状とは、行方向と、列方向と、行方向(または列方向)に対して45度傾いた方向と、のうちの少なくとも1つの方向に連続する複数の欠陥画素が存在する状態のうちの、欠陥画素が1本の線状に存在する状態(線欠陥の状態)を除く二次元状の形状のことをいう。 Here, the two-dimensional cluster form means a plurality of defective pixels that are continuous in at least one of the row direction, the column direction, and the direction inclined by 45 degrees with respect to the row direction (or column direction). This is a two-dimensional shape excluding a state where a defective pixel exists in a single line shape (line defect state).
 本実施形態においては、センサパネル40上に二次元状に配列された複数の撮像素子41に対応する各画素のうちの欠陥画素に関する欠陥画素情報が、例えば放射線画像撮影装置1の製造時に予め把握されるようになっている。そして、この欠陥画素情報は、対応する放射線画像撮影装置1を識別するための識別情報とともに、コンソール101の記憶手段101bに予め記憶されていることとする。 In the present embodiment, defective pixel information related to defective pixels among the pixels corresponding to the plurality of imaging elements 41 arranged two-dimensionally on the sensor panel 40 is grasped in advance, for example, when the radiographic image capturing apparatus 1 is manufactured. It has come to be. The defective pixel information is stored in advance in the storage unit 101b of the console 101 together with identification information for identifying the corresponding radiographic image capturing apparatus 1.
 ここで、記憶手段101bに記憶された欠陥画素情報は、例えば、欠陥画素のセンサパネル40上での画素位置を含む情報である。 Here, the defective pixel information stored in the storage unit 101b is information including the pixel position of the defective pixel on the sensor panel 40, for example.
 そして、上述したように、本実施形態においては、第1の欠陥画素補正処理も、第2の欠陥画素補正処理も、同一の情報、すなわち記憶手段101bに記憶されている欠陥画素情報に基づいて行うことができるようになっている。 As described above, in the present embodiment, both the first defective pixel correction process and the second defective pixel correction process are based on the same information, that is, the defective pixel information stored in the storage unit 101b. Can be done.
 [第1の欠陥画素補正処理の一例:勾配重視型欠陥画素補正処理]
 ここで、高精度な欠陥画素補正処理である第1の欠陥画素補正処理の一例としての勾配重視型欠陥画素補正処理について、図11(a)~図11(g)、図12(a)~図12(f)、図13(a)~図13(f)を参照して説明する。なお、これら各図は、センサパネル40上の一部を示す図であり、図中における斜線を付して表した画素が欠陥画素である。また、図中における上下方向が列方向であり、図中における左右方向が行方向である。
[Example of First Defect Pixel Correction Process: Gradient Emphasis Type Defect Pixel Correction Process]
Here, with regard to the gradient-oriented defect pixel correction process as an example of the first defective pixel correction process which is a highly accurate defective pixel correction process, FIGS. 11A to 11G and FIGS. This will be described with reference to FIGS. 12 (f) and 13 (a) to 13 (f). Each of these figures is a diagram showing a part on the sensor panel 40, and a pixel indicated by hatching in the figure is a defective pixel. Further, the vertical direction in the figure is the column direction, and the horizontal direction in the figure is the row direction.
 勾配重視型欠陥画素補正処理は、一の欠陥画素を中心とした所定の複数の方向それぞれにおいて画像データの勾配である画像勾配Gを算出し、当該算出された画像勾配Gが最も小さい方向にある正常な画素の中で当該一の欠陥画素に最も近接する正常な画素の画像データを用いて補正画像データを算出し、当該一の欠陥画素の画像データを、当該算出された補正画像データで置換する処理を、各欠陥画素に対して行う処理である。 The gradient emphasis type defective pixel correction process calculates an image gradient G that is a gradient of image data in each of a plurality of predetermined directions centered on one defective pixel, and the calculated image gradient G is in the smallest direction. The corrected image data is calculated using the image data of the normal pixel closest to the one defective pixel among the normal pixels, and the image data of the one defective pixel is replaced with the calculated corrected image data. This processing is performed on each defective pixel.
 <線欠陥に対する勾配重視型欠陥画素補正処理>
 まず、線欠陥に対する勾配重視型欠陥画素補正処理について、図11(a)~図11(g)を参照して説明する。
<Gradient-oriented defect pixel correction processing for line defects>
First, gradient-oriented defect pixel correction processing for line defects will be described with reference to FIGS. 11 (a) to 11 (g).
 具体的には、例えば、センサパネル40上に、図11(a)に示すような1本の線状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図11(a)において太枠で囲った欠陥画素(例えば、画素位置(m,n)の欠陥画素。以下「欠陥画素dp(m,n)」という。)を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a single line as shown in FIG. 11A on the sensor panel 40. Among the plurality of defective pixels, a defective pixel surrounded by a thick frame in FIG. 11A (for example, a defective pixel at a pixel position (m, n), hereinafter referred to as “defective pixel dp (m, n)”). ) Will be described.
 まず、図11(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+60度回転させた線La(La3)、線La1を+120度回転させた線La(La4)、線La1を+135度回転させた線La(La5)を引く。 First, as shown in FIG. 11B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center. Line La1 is rotated by +45 degrees, line La (La2), line La1 is rotated by +60 degrees, line La (La3), line La1 is rotated by +120 degrees, line La (La4), and line La1 is rotated by +135 degrees A line La (La5) is drawn.
 次いで、図11(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある画素を画素A2、画素A2の一行上にある画素を画素A1、画素A2の一行下にある画素を画素A3とした場合、画素A1~A3が全て正常な画素であり、かつ、最も右側にある画素を画素A1~A3と特定する。具体的には、図11(c)においては、画素位置(m-1,n-1)の画素が画素A1、画素位置(m,n-1)の画素が画素A2、画素位置(m+1,n-1)の画素が画素A3と特定されている。 Next, as shown in FIG. 11C, the pixel A2 intersects the line La1 at the approximate center and is located on the left side of the defective pixel dp (m, n), and the pixel on one line of the pixel A2 is the pixel A1. When the pixel A2 is one pixel below the pixel A2, the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3. Specifically, in FIG. 11C, the pixel at the pixel position (m−1, n−1) is the pixel A1, the pixel at the pixel position (m, n−1) is the pixel A2, and the pixel position (m + 1, n−1). The pixel of (n-1) is specified as the pixel A3.
 また、図11(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある画素を画素B2、画素B2の一行上にある画素を画素B1、画素B2の一行下にある画素を画素B3とした場合、画素B1~B3が全て正常な画素であり、かつ、最も左側にある画素を画素B1~B3と特定する。具体的には、図11(c)においては、画素位置(m-1,n+1)の画素が画素B1、画素位置(m,n+1)の画素が画素B2、画素位置(m+1,n+1)の画素が画素B3と特定されている。 Further, as shown in FIG. 11C, a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2, and a pixel that is on one line of the pixel B2 is a pixel B1. When the pixel B2 is the pixel B3 below, the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3. Specifically, in FIG. 11C, the pixel at the pixel position (m−1, n + 1) is the pixel B1, the pixel at the pixel position (m, n + 1) is the pixel B2, and the pixel at the pixel position (m + 1, n + 1). Is identified as pixel B3.
 同様にして、図11(d)に示すように、線La2に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 11D, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
 また、同様にして、図11(e)に示すように、線La3に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 11E, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La3.
 また、同様にして、図11(f)に示すように、線La4に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 11F, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La4.
 また、同様にして、図11(g)に示すように、線La5に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 11G, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La5.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La5それぞれに関する画素A1~A3および画素B1~B3の画素位置が、欠陥画素情報として、線欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In this embodiment, along with the pixel position of the defective pixel, the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1 to La5 around the defective pixel are used as defective pixel information. Assume that each defective pixel to be configured is stored in advance in the storage unit 101b.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素A1~A3および画素B1~B3の画像データを特定し、当該特定された画像データを用いて、下記の式(1)で表される画像勾配Gを算出する。 Next, the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). Image data of .about.A3 and pixels B1 to B3 are specified, and an image gradient G expressed by the following equation (1) is calculated using the specified image data.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、DA1は、画素A1の画像データ、DA2は、画素A2の画像データ、DA3は、画素A3の画像データであり、DB1は、画素B1の画像データ、DB2は、画素B2の画像データ、DB3は、画素B3の画像データである。 Here, D A1 is the image data of the pixel A1, D A2 is the image data of the pixel A2, D A3 is the image data of the pixel A3, D B1 is the image data of the pixel B1, and D B2 is the pixel data B2 image data, D B3 is image data of the pixel B3.
 同様にして、線La2~La5においても、画像勾配Gを算出する。 Similarly, the image gradient G is calculated for the lines La2 to La5.
 次いで、線La1~La5のうち、画像勾配Gが最も小さい線Laを特定し、当該特定された線Laの方向にある正常な画素の中で欠陥画素dp(m,n)に最も近接する正常な両画素(以下、「画素A」、「画素B」という。)の画素位置および画像データを用いて、例えば線形補間を行って補正画像データFを算出する。すなわち、例えば下記の式(2)で表される補正画像データFを算出する。 Next, among the lines La1 to La5, the line La having the smallest image gradient G is identified, and the normal pixels closest to the defective pixel dp (m, n) among the normal pixels in the direction of the identified line La are identified. The corrected image data F is calculated by performing, for example, linear interpolation using the pixel positions of the two pixels (hereinafter referred to as “pixel A” and “pixel B”) and the image data. That is, for example, corrected image data F represented by the following equation (2) is calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、dAminは、欠陥画素dp(m,n)から画素Aまでの距離(すなわち、欠陥画素dp(m,n)から画素Aまでの画素数)、DAminは、画素Aの画像データ、dBminは、欠陥画素dp(m,n)から画素Bまでの距離(すなわち、欠陥画素dp(m,n)から画素Bまでの画素数)、DBminは、画素Bの画像データである。 Here, d Amin is the distance from the defective pixel dp (m, n) to the pixel A (that is, the number of pixels from the defective pixel dp (m, n) to the pixel A), and D Amin is the image data of the pixel A , D Bmin is the distance from the defective pixel dp (m, n) to the pixel B (that is, the number of pixels from the defective pixel dp (m, n) to the pixel B), and D Bmin is the image data of the pixel B .
 例えば、図11(a)~図11(g)において、線La2における画像勾配Gが最も小さい場合、画素Aは、画素位置(m+1,n-1)の画素(すなわち、図11(d)における画素A2)であり、画素Bは、画素位置(m-1,n+1)の画素(すなわち、図11(d)における画素B2)であるため、dAminは「1」、DAminは画素位置(m+1,n-1)の画素の画像データ、dBminは「1」、DBminは画素位置(m-1,n+1)の画素の画像データとなる。 For example, in FIGS. 11A to 11G, when the image gradient G on the line La2 is the smallest, the pixel A is the pixel at the pixel position (m + 1, n−1) (that is, in FIG. 11D). Since pixel A2) and pixel B are pixels at pixel position (m−1, n + 1) (that is, pixel B2 in FIG. 11D), d Amin is “1”, and D Amin is the pixel position ( The image data of the pixel at m + 1, n−1), d Bmin is “1”, and D Bmin is the image data of the pixel at pixel position (m−1, n + 1).
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La5それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置が、欠陥画素情報として、線欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In the present embodiment, the normal pixel pixels closest to the defective pixel among the normal pixels in the directions of the lines La1 to La5 centered on the defective pixel, together with the pixel position of the defective pixel. The position is preliminarily stored in the storage unit 101b as defective pixel information for each defective pixel constituting the line defect.
 次いで、欠陥画素dp(m,n)の画像データを、算出された補正画像データFで置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
 そして、上記処理を、線欠陥を構成する各欠陥画素に対して行い、当該線欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the line defect to correct the line defect.
 <点欠陥に対する勾配重視型欠陥画素補正処理>
 次に、点欠陥に対する勾配重視型欠陥画素補正処理について、図12(a)~図12(f)を参照して説明する。
<Gradient-oriented defect pixel correction processing for point defects>
Next, gradient-oriented defect pixel correction processing for point defects will be described with reference to FIGS. 12 (a) to 12 (f).
 具体的には、例えば、センサパネル40上に、図12(a)に示すような点々と孤立して分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図12(a)において太枠で囲った欠陥画素(例えば、欠陥画素dp(m,n))を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed on the sensor panel 40 in an isolated manner as shown in FIG. A case will be described in which a defective pixel (for example, defective pixel dp (m, n)) surrounded by a thick frame in FIG. 12A is corrected among the plurality of defective pixels.
 まず、図12(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+90度回転させた線La(La3)、線La1を+135度回転させた線La(La4)を引く。 First, as shown in FIG. 12B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center. A line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
 次いで、図12(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある画素を画素A2、画素A2の一行上にある画素を画素A1、画素A2の一行下にある画素を画素A3とした場合、画素A1~A3が全て正常な画素であり、かつ、最も右側にある画素を画素A1~A3と特定する。 Next, as shown in FIG. 12C, a pixel that intersects the line La1 substantially at the center and is on the left side of the defective pixel dp (m, n) is a pixel A2, and a pixel that is on one row of the pixel A2 is a pixel A1. When the pixel A2 is one pixel below the pixel A2, the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3.
 また、図12(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある画素を画素B2、画素B2の一行上にある画素を画素B1、画素B2の一行下にある画素を画素B3とした場合、画素B1~B3が全て正常な画素であり、かつ、最も左側にある画素を画素B1~B3と特定する。 Further, as shown in FIG. 12C, a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2, and a pixel that is on one line of the pixel B2 is a pixel B1. When the pixel B2 is the pixel B3 below, the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3.
 同様にして、図12(d)に示すように、線La2に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 12D, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
 また、図12(e)に示すように、線La3と略中央で交差して欠陥画素dp(m,n)よりも下側にある画素を画素A2、画素A2の一列左にある画素を画素A1、画素A2の一列右にある画素を画素A3とした場合、画素A1~A3が全て正常な画素であり、かつ、最も上側にある画素を画素A1~A3と特定する。 Further, as shown in FIG. 12E, a pixel that intersects with the line La3 at the approximate center and is lower than the defective pixel dp (m, n) is a pixel A2, and a pixel that is on the left of one column of the pixel A2 is a pixel. When the pixel A3 is a pixel on the right side of A1 and the pixel A2, the pixels A1 to A3 are all normal pixels, and the uppermost pixel is specified as the pixels A1 to A3.
 また、図12(e)に示すように、線La3と略中央で交差して欠陥画素dp(m,n)よりも上側にある画素を画素B2、画素B2の一列左にある画素を画素B1、画素B2の一列右にある画素を画素B3とした場合、画素B1~B3が全て正常な画素であり、かつ、最も下側にある画素を画素B1~B3と特定する。 Further, as shown in FIG. 12E, a pixel that intersects the line La3 substantially at the center and is above the defective pixel dp (m, n) is a pixel B2, and a pixel that is one column left of the pixel B2 is a pixel B1. When the pixel B2 on the right side of the pixel B2 is the pixel B3, the pixels B1 to B3 are all normal pixels, and the lowermost pixel is specified as the pixels B1 to B3.
 また、線La1や線La2の場合と同様にして、図12(f)に示すように、線La4に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly to the case of the line La1 and the line La2, as shown in FIG. 12 (f), the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La4.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれに関する画素A1~A3および画素B1~B3の画素位置が、欠陥画素情報として、点欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In this embodiment, along with the pixel position of the defective pixel, the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1 to La4 centering on the defective pixel are defined as defective pixel information. Assume that each defective pixel to be configured is stored in advance in the storage unit 101b.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素A1~A3および画素B1~B3の画像データを特定し、当該特定された画像データを用いて、上記の式(1)で表される画像勾配Gを算出する。 Next, the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). Image data of .about.A3 and pixels B1 to B3 are specified, and the image gradient G represented by the above equation (1) is calculated using the specified image data.
 同様にして、線La2~La4においても、画像勾配Gを算出する。 Similarly, the image gradient G is calculated for the lines La2 to La4.
 次いで、線La1~La4のうち、画像勾配Gが最も小さい線Laを特定し、当該特定された線Laの方向にある正常な画素の中で欠陥画素dp(m,n)に最も近接する正常な両画素(画素A、画素B)の画素位置および画像データを用いて、例えば上記の式(2)で表される補正画像データFを算出する。 Next, among the lines La1 to La4, the line La having the smallest image gradient G is specified, and the normal pixels closest to the defective pixel dp (m, n) among the normal pixels in the direction of the specified line La are specified. The corrected image data F represented by, for example, the above equation (2) is calculated using the pixel positions of the two pixels (pixel A and pixel B) and the image data.
 例えば、図12(a)~図12(f)において、線La2における画像勾配Gが最も小さい場合、画素Aは、画素位置(m+1,n-1)の画素(すなわち、図12(d)における画素A2)であり、画素Bは、画素位置(m-1,n+1)の画素(すなわち、図12(d)における画素B2)であるため、dAminは「1」、DAminは画素位置(m+1,n-1)の画素の画像データ、dBminは「1」、DBminは画素位置(m-1,n+1)の画素の画像データとなる。 For example, in FIGS. 12A to 12F, when the image gradient G on the line La2 is the smallest, the pixel A is the pixel at the pixel position (m + 1, n−1) (that is, in FIG. 12D). Since pixel A2) and pixel B are pixels at pixel position (m−1, n + 1) (ie, pixel B2 in FIG. 12D), d Amin is “1”, and D Amin is the pixel position ( The image data of the pixel at m + 1, n−1), d Bmin is “1”, and D Bmin is the image data of the pixel at pixel position (m−1, n + 1).
 また、例えば、図12(a)~図12(f)において、線La3における画像勾配Gが最も小さい場合、画素Aは、画素位置(m+1,n)の画素(すなわち、図12(e)における画素A2)であり、画素Bは、画素位置(m-1,n)の画素(すなわち、図12(e)における画素B2)であるため、dAminは「1」、DAminは画素位置(m+1,n)の画素の画像データ、dBminは「1」、DBminは画素位置(m-1,n)の画素の画像データとなる。 Also, for example, in FIGS. 12A to 12F, when the image gradient G on the line La3 is the smallest, the pixel A is the pixel at the pixel position (m + 1, n) (that is, in FIG. 12E). Since pixel A2) and pixel B are pixels at pixel position (m−1, n) (ie, pixel B2 in FIG. 12E), d Amin is “1”, and D Amin is the pixel position ( The image data of the pixel at m + 1, n), d Bmin is “1”, and D Bmin is the image data of the pixel at the pixel position (m−1, n).
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置が、欠陥画素情報として、点欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In the present embodiment, the normal pixel pixels closest to the defective pixel among the normal pixels in the directions of the lines La1 to La4 centering on the defective pixel, together with the pixel position of the defective pixel. The position is preliminarily stored as defective pixel information in the storage unit 101b for each defective pixel constituting the point defect.
 次いで、欠陥画素dp(m,n)の画像データを、算出された補正画像データFで置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
 そして、上記処理を、各点欠陥を構成する欠陥画素に対して行い、当該各点欠陥を補正する。 Then, the above process is performed on the defective pixels constituting each point defect, and each point defect is corrected.
 <クラスター状欠陥に対する勾配重視型欠陥画素補正処理>
 次に、二次元のクラスター状に分布するクラスター状欠陥に対する勾配重視型欠陥画素補正処理について、図13(a)~図13(f)を参照して説明する。
<Gradient-oriented defect pixel correction processing for cluster defects>
Next, gradient-oriented defect pixel correction processing for cluster-like defects distributed in a two-dimensional cluster will be described with reference to FIGS. 13 (a) to 13 (f).
 具体的には、例えば、センサパネル40上に、図13(a)に示すような二次元のクラスター状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図13(a)において太枠で囲った欠陥画素(例えば、欠陥画素dp(m,n))を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a two-dimensional cluster as shown in FIG. 13A on the sensor panel 40. A case will be described in which a defective pixel (for example, defective pixel dp (m, n)) surrounded by a thick frame in FIG. 13A is corrected among the plurality of defective pixels.
 まず、図13(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+90度回転させた線La(La3)、線La1を+135度回転させた線La(La4)を引く。 First, as shown in FIG. 13B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center. A line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
 次いで、図13(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある画素を画素A2、画素A2の一行上にある画素を画素A1、画素A2の一行下にある画素を画素A3とした場合、画素A1~A3が全て正常な画素であり、かつ、最も右側にある画素を画素A1~A3と特定する。 Next, as shown in FIG. 13C, a pixel that intersects the line La1 substantially at the center and is on the left side of the defective pixel dp (m, n) is a pixel A2, and a pixel that is on one row of the pixel A2 is a pixel A1. When the pixel A2 is one pixel below the pixel A2, the pixels A1 to A3 are all normal pixels, and the rightmost pixel is specified as the pixels A1 to A3.
 また、図13(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある画素を画素B2、画素B2の一行上にある画素を画素B1、画素B2の一行下にある画素を画素B3とした場合、画素B1~B3が全て正常な画素であり、かつ、最も左側にある画素を画素B1~B3と特定する。 Further, as shown in FIG. 13C, a pixel that intersects the line La1 substantially at the center and is on the right side of the defective pixel dp (m, n) is a pixel B2, and a pixel that is on one row of the pixel B2 is a pixel B1. When the pixel B2 is the pixel B3 below, the pixels B1 to B3 are all normal pixels, and the leftmost pixel is specified as the pixels B1 to B3.
 同様にして、図13(d)に示すように、線La2に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly, as shown in FIG. 13D, the pixels A1 to A3 and the pixels B1 to B3 are specified for the line La2.
 また、図13(e)に示すように、線La3と略中央で交差して欠陥画素dp(m,n)よりも下側にある画素を画素A2、画素A2の一列左にある画素を画素A1、画素A2の一列右にある画素を画素A3とした場合、画素A1~A3が全て正常な画素であり、かつ、最も上側にある画素を画素A1~A3と特定する。 Further, as shown in FIG. 13E, a pixel that intersects the line La3 substantially at the center and is below the defective pixel dp (m, n) is a pixel A2, and a pixel that is on the left side of the pixel A2 is a pixel When the pixel A3 is a pixel on the right side of A1 and the pixel A2, the pixels A1 to A3 are all normal pixels, and the uppermost pixel is specified as the pixels A1 to A3.
 また、図13(e)に示すように、線La3と略中央で交差して欠陥画素dp(m,n)よりも上側にある画素を画素B2、画素B2の一列左にある画素を画素B1、画素B2の一列右にある画素を画素B3とした場合、画素B1~B3が全て正常な画素であり、かつ、最も下側にある画素を画素B1~B3と特定する。 Further, as shown in FIG. 13E, a pixel that intersects the line La3 substantially at the center and is above the defective pixel dp (m, n) is a pixel B2, and a pixel that is one column left of the pixel B2 is a pixel B1. When the pixel B2 on the right side of the pixel B2 is the pixel B3, the pixels B1 to B3 are all normal pixels, and the lowermost pixel is specified as the pixels B1 to B3.
 また、線La1や線La2の場合と同様にして、図13(f)に示すように、線La4に関しても、画素A1~A3、画素B1~B3を特定する。 Similarly to the case of the line La1 and the line La2, as shown in FIG. 13 (f), the pixels A1 to A3 and the pixels B1 to B3 are also specified for the line La4.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれに関する画素A1~A3および画素B1~B3の画素位置が、欠陥画素情報として、クラスター状欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In this embodiment, together with the pixel position of the defective pixel, the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1 to La4 around the defective pixel are used as the defective pixel information as the cluster-like defect. It is assumed that each defective pixel that constitutes is previously stored in the storage unit 101b.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素A1~A3および画素B1~B3の画像データを特定し、当該特定された画像データを用いて、上記の式(1)で表される画像勾配Gを算出する。 Next, the pixel A1 related to the line La1 from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). Image data of .about.A3 and pixels B1 to B3 are specified, and the image gradient G represented by the above equation (1) is calculated using the specified image data.
 同様にして、線La2~La4においても、画像勾配Gを算出する。 Similarly, the image gradient G is calculated for the lines La2 to La4.
 次いで、線La1~La4のうち、画像勾配Gが最も小さい線Laを特定し、当該特定された線Laの方向にある正常な画素の中で欠陥画素dp(m,n)に最も近接する正常な両画素(画素A、画素B)の画素位置および画像データを用いて、例えば上記の式(2)で表される補正画像データFを算出する。 Next, among the lines La1 to La4, the line La having the smallest image gradient G is specified, and the normal pixels closest to the defective pixel dp (m, n) among the normal pixels in the direction of the specified line La are specified. The corrected image data F represented by, for example, the above equation (2) is calculated using the pixel positions of the two pixels (pixel A and pixel B) and the image data.
 例えば、図13(a)~図13(f)において、線La2における画像勾配Gが最も小さい場合、画素Aは、画素位置(m+2,n-2)の画素(すなわち、図13(d)における画素A2)であり、画素Bは、画素位置(m-2,n+2)の画素(すなわち、図13(d)における画素B3の左隣にある画素)であるため、dAminは「2」、DAminは画素位置(m+2,n-2)の画素の画像データ、dBminは「2」、DBminは画素位置(m-2,n+2)の画素の画像データとなる。 For example, in FIGS. 13A to 13F, when the image gradient G on the line La2 is the smallest, the pixel A is the pixel at the pixel position (m + 2, n−2) (that is, in FIG. 13D). Pixel A2) and pixel B is the pixel at the pixel position (m−2, n + 2) (that is, the pixel adjacent to the left side of the pixel B3 in FIG. 13D ), so d Amin is “2”, D Amin is the image data of the pixel at the pixel position (m + 2, n−2), d Bmin is “2”, and D Bmin is the image data of the pixel at the pixel position (m−2, n + 2).
 また、例えば、図13(a)~図13(f)において、線La3における画像勾配Gが最も小さい場合、画素Aは、画素位置(m+2,n)の画素(すなわち、図13(e)における画素A2の上隣にある画素)であり、画素Bは、画素位置(m-3,n)の画素(すなわち、図13(e)における画素B2の下隣にある画素)であるため、dAminは「2」、DAminは画素位置(m+2,n)の画素の画像データ、dBminは「3」、DBminは画素位置(m-3,n)の画素の画像データとなる。 Further, for example, in FIGS. 13A to 13F, when the image gradient G on the line La3 is the smallest, the pixel A is the pixel at the pixel position (m + 2, n) (that is, in FIG. 13E). Since the pixel B is the pixel at the pixel position (m−3, n) (that is, the pixel below the pixel B2 in FIG. 13E), the pixel B is the pixel adjacent to the pixel A2. Amin is “2”, D Amin is the image data of the pixel at the pixel position (m + 2, n), d Bmin is “3”, and D Bmin is the image data of the pixel at the pixel position (m−3, n).
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置が、欠陥画素情報として、クラスター状欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In the present embodiment, the normal pixel pixels closest to the defective pixel among the normal pixels in the directions of the lines La1 to La4 centering on the defective pixel, together with the pixel position of the defective pixel. It is assumed that the position is stored in advance in the storage unit 101b as defective pixel information for each defective pixel constituting the cluster defect.
 次いで、欠陥画素dp(m,n)の画像データを、算出された補正画像データFで置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated corrected image data F.
 そして、上記処理を、クラスター状欠陥を構成する各欠陥画素に対して行い、当該クラスター状欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the cluster defect, and the cluster defect is corrected.
 なお、本実施形態では、クラスター状欠陥に対する勾配重視型欠陥画素補正処理において、クラスター状欠陥を構成する各欠陥画素を、点欠陥を構成する欠陥画素のように補正するようにしたが、例えば、図14(a)に示すように、クラスター状欠陥に線欠陥が含まれている場合、或いは、例えば、図14(b)に示すように、複数の線欠陥が連なってクラスター状欠陥を形成している場合は、当該線欠陥の部分を構成する各欠陥画素は、線欠陥を構成する各欠陥画素のように補正しても良い。すなわち、当該線欠陥の部分を構成する各欠陥画素については、欠陥画素dp(m,n)と交差して行方向に平行な線La1を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度、+60度、+120度、+135度回転させた線La2~La5を引いて、補正処理を行うようにしても良い。 In the present embodiment, in the gradient-oriented defect pixel correction processing for the cluster defect, each defective pixel constituting the cluster defect is corrected like a defective pixel constituting the point defect. As shown in FIG. 14A, when a cluster defect includes a line defect or, for example, as shown in FIG. 14B, a plurality of line defects are connected to form a cluster defect. In such a case, each defective pixel constituting the line defect portion may be corrected like each defective pixel constituting the line defect. That is, for each defective pixel constituting the part of the line defect, a line La1 that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center. The correction process may be performed by drawing lines La2 to La5 obtained by rotating the line La1 by +45 degrees, +60 degrees, +120 degrees, and +135 degrees.
 また、本実施形態では、点欠陥に対する勾配重視型欠陥画素補正処理において、線La2(すなわち、線La1を+45度回転させて得た線La)に関する画素A1~A3および画素B1~B3は、列方向に並ぶものに限ることはなく、例えば、図15(a)に示すように、行方向に並ぶものであっても良いし、例えば、図15(b)に示すように、線La2に直交する方向に並ぶものであっても良い。線La4(すなわち、線La1を+135度回転させて得た線La)に関する画素A1~A3および画素B1~B3についても同様である。また、クラスター状欠陥に対する勾配重視型欠陥画素補正処理における、線La2に関する画素A1~A3および画素B1~B3、線La4に関する画素A1~A3および画素B1~B3についても同様である。 In this embodiment, in the gradient-oriented defect pixel correction processing for point defects, the pixels A1 to A3 and the pixels B1 to B3 related to the line La2 (that is, the line La obtained by rotating the line La1 by +45 degrees) For example, as shown in FIG. 15A, it may be arranged in the row direction, or, for example, orthogonal to the line La2 as shown in FIG. 15B. You may line up in the direction to do. The same applies to the pixels A1 to A3 and the pixels B1 to B3 related to the line La4 (that is, the line La obtained by rotating the line La1 by +135 degrees). The same applies to the pixels A1 to A3 and the pixels B1 to B3 related to the line La2 and the pixels A1 to A3 and the pixels B1 to B3 related to the line La4 in the gradient-oriented defect pixel correction processing for the cluster defects.
 また、本実施形態では、線欠陥に対する勾配重視型欠陥画素補正処理において、欠陥画素dp(m,n)と交差して行方向に平行な線La1を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度、+60度、+120度、+135度回転させた線La2~La5を引くようにしたが、線La1を回転させて線La2,La3,…を得る際の回転角度は、+45度、+60度、+120度、+135度に限ることはなく任意である。また、線Laの本数は、線La1~La5の5本に限ることはなく、複数であれば任意である。 In the present embodiment, in the gradient-oriented defect pixel correction process for the line defect, a line La1 that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) The lines La2 to La5 obtained by rotating the line La1 about +45 degrees, +60 degrees, +120 degrees, and +135 degrees are drawn, but the rotation angle when the line La1 is rotated to obtain the lines La2, La3,. Is not limited to +45 degrees, +60 degrees, +120 degrees, and +135 degrees, and is arbitrary. Further, the number of lines La is not limited to five of lines La1 to La5, and may be any number as long as it is plural.
 また、本実施形態では、点欠陥に対する勾配重視型欠陥画素補正処理およびクラスター状欠陥に対する勾配重視型欠陥画素補正処理において、欠陥画素dp(m,n)と交差して行方向に平行な線La1を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度、+90度、+135度回転させた線La2~La4を引くようにしたが、線La1を回転させて線La2,La3,…を得る際の回転角度は、+45度、+90度、+135度に限ることはなく任意である。また、線Laの本数は、線La1~La4の4本に限ることはなく、複数であれば任意である。 In the present embodiment, in the gradient-oriented defect pixel correction processing for point defects and the gradient-oriented defect pixel correction processing for cluster defects, a line La1 that intersects the defective pixel dp (m, n) and is parallel to the row direction. In addition, lines La2 to La4 obtained by rotating the line La1 by +45 degrees, +90 degrees, and +135 degrees around the defective pixel dp (m, n) are drawn, but the line La1 is rotated and the lines La2 and La4 are rotated. The rotation angle for obtaining La3,... Is not limited to +45 degrees, +90 degrees, and +135 degrees, and is arbitrary. Further, the number of lines La is not limited to four of lines La1 to La4, and may be any number as long as it is plural.
 また、本実施形態では、勾配重視型欠陥画素補正処理において、線形補間の手法で、補正画像データFを算出するようにしたが、これに限ることはなく、補正画像データFを算出する手法は、画像勾配Gが最も小さい方向にある正常な画素の中で欠陥画素に最も近接する正常な両画素の画像データを用いて算出する手法であれば任意である。 In the present embodiment, the corrected image data F is calculated by the linear interpolation method in the gradient-oriented defect pixel correction processing. However, the present invention is not limited to this, and the method of calculating the corrected image data F is not limited to this. Any method can be used as long as it is calculated using image data of both normal pixels closest to the defective pixel among normal pixels in the direction in which the image gradient G is the smallest.
 また、本実施形態では、第1の欠陥画素補正処理として勾配重視型欠陥画素補正処理を例示したが、第1の欠陥画素補正処理は、診断画像データの作成に適した高精度な欠陥画素補正処理であれば任意であり、例えば、後述する勾配平均型欠陥画素補正処理であっても良いし、スプライン曲線を用いた欠陥画素補正処理等の公知の欠陥画素補正処理であっても良い。 In the present embodiment, the gradient-oriented defective pixel correction process is exemplified as the first defective pixel correction process. However, the first defective pixel correction process is a highly accurate defective pixel correction suitable for creating diagnostic image data. Any processing may be used, and for example, a gradient average type defective pixel correction process described later may be used, or a known defective pixel correction process such as a defective pixel correction process using a spline curve may be used.
 [第1の欠陥画素補正処理の他の一例:勾配平均型欠陥画素補正処理]
 ここで、第1の欠陥画素補正処理の他の一例である、勾配平均型欠陥画素補正処理について、図16(a)~図16(g)、図17(a)~図17(f)、図18(a)~図18(f)を参照して説明する。なお、これら各図は、センサパネル40上の一部を示す図であり、図中における斜線を付して表した画素が欠陥画素である。また、図中における上下方向が列方向であり、図中における左右方向が行方向である。
[Another example of first defective pixel correction processing: gradient average type defective pixel correction processing]
Here, with respect to the gradient average type defective pixel correction process, which is another example of the first defective pixel correction process, FIGS. 16 (a) to 16 (g), FIGS. 17 (a) to 17 (f), This will be described with reference to FIGS. 18 (a) to 18 (f). Each of these figures is a diagram showing a part on the sensor panel 40, and a pixel indicated by hatching in the figure is a defective pixel. Further, the vertical direction in the figure is the column direction, and the horizontal direction in the figure is the row direction.
 勾配平均型欠陥画素補正処理は、一の欠陥画素を中心とした所定の複数の方向それぞれにおいて、当該一の欠陥画素に最も近接する正常な画素の画像データを用いて補正画像データを算出し、当該一の欠陥画素の画像データを、当該算出された各補正画像データの平均値で置換する処理を、各欠陥画素に対して行う処理である。 The gradient average type defective pixel correction process calculates corrected image data using image data of normal pixels closest to the one defective pixel in each of a plurality of predetermined directions centered on the one defective pixel, In this process, the image data of the one defective pixel is replaced with the average value of the calculated corrected image data for each defective pixel.
 <線欠陥に対する勾配平均型欠陥画素補正処理>
 まず、線欠陥に対する勾配平均型欠陥画素補正処理について、図16(a)~図16(g)を参照して説明する。
<Gradient average defect pixel correction processing for line defects>
First, the gradient average type defective pixel correction processing for line defects will be described with reference to FIGS. 16 (a) to 16 (g).
 具体的には、例えば、センサパネル40上に、図16(a)に示すような1本の線状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図16(a)において太枠で囲った欠陥画素(例えば、欠陥画素dp(m,n))を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a single line as shown in FIG. A case will be described in which a defective pixel (for example, defective pixel dp (m, n)) surrounded by a thick frame in FIG. 16A is corrected among the plurality of defective pixels.
 まず、図16(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+60度回転させた線La(La3)、線La1を+120度回転させた線La(La4)、線La1を+135度回転させた線La(La5)を引く。 First, as shown in FIG. 16B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is centered. Line La1 is rotated by +45 degrees, line La (La2), line La1 is rotated by +60 degrees, line La (La3), line La1 is rotated by +120 degrees, line La (La4), and line La1 is rotated by +135 degrees A line La (La5) is drawn.
 次いで、図16(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある正常な画素の中で、最も右側にある正常な画素を画素Aと特定する。 Next, as shown in FIG. 16C, among the normal pixels on the left side of the defective pixel dp (m, n) crossing the line La1 at the approximate center, the normal pixel on the rightmost side is the pixel. A is specified.
 また、図16(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある正常な画素の中で、最も左側にある正常な画素を画素Bと特定する。 Further, as shown in FIG. 16C, the normal pixel on the leftmost side among the normal pixels that intersect with the line La1 at substantially the center and is on the right side of the defective pixel dp (m, n) is the pixel. B is specified.
 同様にして、図16(d)に示すように、線La2に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 16D, the pixel A and the pixel B are specified for the line La2.
 また、同様にして、図16(e)に示すように、線La3に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 16E, the pixel A and the pixel B are specified for the line La3.
 また、同様にして、図16(f)に示すように、線La4に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 16F, the pixel A and the pixel B are specified for the line La4.
 また、同様にして、図16(g)に示すように、線La5に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 16G, the pixel A and the pixel B are specified for the line La5.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La5それぞれに関する画素Aおよび画素Bの画素位置(すなわち、当該欠陥画素dp(m,n)を中心として引いた線La1~La5それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置)が、欠陥画素情報として、線欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In this embodiment, together with the pixel position of the defective pixel, the pixel positions of the pixel A and the pixel B related to the lines La1 to La5 around the defective pixel (that is, the defective pixel dp (m, n) is the center). The pixel positions of both normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1 to La5 drawn as are stored as defective pixel information for each defective pixel constituting the line defect. It is assumed that it is stored in advance in the means 101b.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素Aおよび画素Bの画像データを特定し、当該特定された画像データと、記憶手段101bに予め記憶されている画素Aおよび画素Bの画素位置と、を用いて、例えば線形補間を行って補正画像データFを算出する。すなわち、例えば下記の式(3)で表される補正画像データFを算出する。 Next, the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). And the image data of the pixel B is specified, and the corrected image data is subjected to, for example, linear interpolation using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b. F is calculated. That is, for example, corrected image data F represented by the following equation (3) is calculated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、dは、欠陥画素dp(m,n)から画素Aまでの距離、Dは、画素Aの画像データ、dは、欠陥画素dp(m,n)から画素Bまでの距離、Dは画素Bの画像データである。 Here, d A is the distance from the defective pixel dp (m, n) to the pixel A, D A is the image data of the pixel A, and d B is the distance from the defective pixel dp (m, n) to the pixel B. , D B is the image data of the pixel B.
 同様にして、線La2~La5においても、補正画像データFを算出する。 Similarly, the corrected image data F is calculated for the lines La2 to La5.
 次いで、線La1~La5における各補正画像データFのうちの少なくとも2つを、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、平均値を算出する。 Next, an average value is calculated by, for example, performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 on at least two of the corrected image data F on the lines La1 to La5.
 次いで、欠陥画素dp(m,n)の画像データを、算出された平均値で置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
 そして、上記処理を、線欠陥を構成する各欠陥画素に対して行い、当該線欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the line defect to correct the line defect.
 <点欠陥に対する勾配平均型欠陥画素補正処理>
 次に、点欠陥に対する勾配平均型欠陥画素補正処理について、図17(a)~図17(f)を参照して説明する。
<Gradient average type defect pixel correction processing for point defects>
Next, the gradient average type defect pixel correction process for the point defect will be described with reference to FIGS. 17 (a) to 17 (f).
 具体的には、例えば、センサパネル40上に、図17(a)に示すような点々と孤立して分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図17(a)において太枠で囲った欠陥画素(例えば、欠陥画素dp(m,n))を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed on the sensor panel 40 in an isolated manner as shown in FIG. A case will be described in which a defective pixel (for example, defective pixel dp (m, n)) surrounded by a thick frame in FIG. 17A is corrected among the plurality of defective pixels.
 まず、図17(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+90度回転させた線La(La3)、線La1を+135度回転させた線La(La4)を引く。 First, as shown in FIG. 17B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is centered. A line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
 次いで、図17(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある正常な画素の中で、最も右側にある正常な画素を画素Aと特定する。 Next, as shown in FIG. 17C, among the normal pixels on the left side of the defective pixel dp (m, n) crossing the line La1 at the approximate center, the normal pixel on the rightmost side is the pixel. A is specified.
 また、図17(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある正常な画素の中で、最も左側にある正常な画素を画素Bと特定する。 In addition, as shown in FIG. 17C, among the normal pixels on the right side of the defective pixel dp (m, n) crossing the line La1 at the approximate center, the normal pixel on the leftmost side is the pixel. B is specified.
 同様にして、図17(d)に示すように、線La2に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 17D, the pixel A and the pixel B are specified for the line La2.
 また、図17(e)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも下側にある正常な画素の中で、最も上側にある正常な画素を画素Aと特定する。 Further, as shown in FIG. 17E, the uppermost normal pixel that intersects the line La1 at the approximate center and is below the defective pixel dp (m, n) is selected. The pixel A is specified.
 また、図17(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも上側にある正常な画素の中で、最も下側にある正常な画素を画素Bと特定する。 Further, as shown in FIG. 17C, the normal pixel located at the lowermost side among the normal pixels that intersect with the line La1 at the approximate center and that are above the defective pixel dp (m, n). The pixel B is specified.
 また、線La1や線La2の場合と同様にして、図17(f)に示すように、線La4に関しても、画素A、画素Bを特定する。 Similarly to the case of the line La1 and the line La2, as shown in FIG. 17 (f), the pixel A and the pixel B are specified for the line La4.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれに関する画素Aおよび画素Bの画素位置が、欠陥画素情報として、点欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In this embodiment, together with the pixel position of the defective pixel, the pixel positions of the pixel A and the pixel B with respect to each of the lines La1 to La4 centering on the defective pixel are the defective pixels constituting the point defect as the defective pixel information. It is assumed that it is stored in advance in the storage means 101b every time.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素Aおよび画素Bの画像データを特定し、当該特定された画像データと、記憶手段101bに予め記憶されている画素Aおよび画素Bの画素位置と、を用いて、例えば上記の式(3)で表される補正画像データFを算出する。 Next, the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). And the image data of the pixel B are specified, and the above-described expression (3) is used, for example, using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b. The corrected image data F to be calculated is calculated.
 同様にして、線La2~La4においても、補正画像データFを算出する。 Similarly, the corrected image data F is calculated for the lines La2 to La4.
 次いで、線La1~La4における各補正画像データFのうちの少なくとも2つを、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、平均値を算出する。 Next, at least two of the corrected image data F on the lines La1 to La4 are simply averaged or weighted averaged according to the characteristics of the sensor panel 40 or the like to calculate an average value.
 次いで、欠陥画素dp(m,n)の画像データを、算出された平均値で置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
 そして、上記処理を、各点欠陥を構成する欠陥画素に対して行い、当該各点欠陥を補正する。 Then, the above process is performed on the defective pixels constituting each point defect, and each point defect is corrected.
 <クラスター状欠陥に対する勾配平均型欠陥画素補正処理>
 次に、クラスター状欠陥に対する勾配平均型欠陥画素補正処理について、図18(a)~図18(f)を参照して説明する。
<Gradient average defect pixel correction processing for cluster defects>
Next, the gradient average type defect pixel correction process for the cluster-like defect will be described with reference to FIGS. 18 (a) to 18 (f).
 具体的には、例えば、センサパネル40上に、図18(a)に示すような二次元のクラスター状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図18(a)において太枠で囲った欠陥画素(例えば、欠陥画素dp(m,n))を補正する場合について説明する。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a two-dimensional cluster as shown in FIG. A case will be described in which a defective pixel (for example, defective pixel dp (m, n)) surrounded by a thick frame in FIG. 18A is corrected among the plurality of defective pixels.
 まず、図18(b)に示すように、欠陥画素dp(m,n)と交差して行方向に平行な線La(La1)を引くとともに、欠陥画素dp(m,n)を中心として、線La1を+45度回転させた線La(La2)、線La1を+90度回転させた線La(La3)、線La1を+135度回転させた線La(La4)を引く。 First, as shown in FIG. 18B, a line La (La1) that intersects the defective pixel dp (m, n) and is parallel to the row direction is drawn, and the defective pixel dp (m, n) is the center. A line La (La2) obtained by rotating the line La1 by +45 degrees, a line La (La3) obtained by rotating the line La1 by +90 degrees, and a line La (La4) obtained by rotating the line La1 by +135 degrees are drawn.
 次いで、図18(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも左側にある正常な画素の中で、最も右側にある正常な画素を画素Aと特定する。 Next, as shown in FIG. 18C, among the normal pixels on the left side of the defective pixel dp (m, n) crossing the line La1 at the approximate center, the normal pixel on the rightmost side is the pixel. A is specified.
 また、図18(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも右側にある正常な画素の中で、最も左側にある正常な画素を画素Bと特定する。 Further, as shown in FIG. 18C, among the normal pixels that intersect the line La1 at approximately the center and are on the right side of the defective pixel dp (m, n), the normal pixel on the leftmost side is the pixel. B is specified.
 同様にして、図18(d)に示すように、線La2に関しても、画素A、画素Bを特定する。 Similarly, as shown in FIG. 18D, the pixel A and the pixel B are specified for the line La2.
 また、図18(e)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも下側にある正常な画素の中で、最も上側にある正常な画素を画素Aと特定する。 Further, as shown in FIG. 18E, the normal pixel on the uppermost side among the normal pixels that intersect with the line La1 substantially at the center and is below the defective pixel dp (m, n) is displayed. The pixel A is specified.
 また、図18(c)に示すように、線La1と略中央で交差して欠陥画素dp(m,n)よりも上側にある正常な画素の中で、最も下側にある正常な画素を画素Bと特定する。 Further, as shown in FIG. 18C, the normal pixel located at the lowermost side among the normal pixels that intersect with the line La1 at approximately the center and are above the defective pixel dp (m, n) is displayed. The pixel B is specified.
 また、線La1や線La2の場合と同様にして、図18(f)に示すように、線La4に関しても、画素A、画素Bを特定する。 Further, similarly to the case of the line La1 and the line La2, as shown in FIG. 18F, the pixel A and the pixel B are specified also for the line La4.
 なお、本実施形態においては、欠陥画素の画素位置とともに、当該欠陥画素を中心とした線La1~La4それぞれに関する画素Aおよび画素Bの画素位置が、欠陥画素情報として、クラスター状欠陥を構成する欠陥画素毎に記憶手段101bに予め記憶されていることとする。 In the present embodiment, together with the pixel position of the defective pixel, the pixel positions of the pixel A and the pixel B with respect to each of the lines La1 to La4 centered on the defective pixel are the defective pixel information. It is assumed that each pixel is stored in advance in the storage unit 101b.
 次いで、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、線La1に関する画素Aおよび画素Bの画像データを特定し、当該特定された画像データと、記憶手段101bに予め記憶されている画素Aおよび画素Bの画素位置と、を用いて、例えば上記の式(3)で表される補正画像データFを算出する。 Next, the pixel A related to the line La1 is selected from the image data transmitted from the radiation image capturing apparatus 1 (specifically, image data transmitted from the radiation image capturing apparatus 1 and subjected to offset correction and gain correction). And the image data of the pixel B are specified, and the above-described expression (3) is used, for example, using the specified image data and the pixel positions of the pixel A and the pixel B stored in advance in the storage unit 101b. The corrected image data F to be calculated is calculated.
 同様にして、線La2~La4においても、補正画像データFを算出する。 Similarly, the corrected image data F is calculated for the lines La2 to La4.
 次いで、線La1~La4における各補正画像データFのうちの少なくとも2つを、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、平均値を算出する。 Next, at least two of the corrected image data F on the lines La1 to La4 are simply averaged or weighted averaged according to the characteristics of the sensor panel 40 or the like to calculate an average value.
 次いで、欠陥画素dp(m,n)の画像データを、算出された平均値で置換する。 Next, the image data of the defective pixel dp (m, n) is replaced with the calculated average value.
 そして、上記処理を、クラスター状欠陥を構成する各欠陥画素に対して行い、当該クラスター状欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the cluster defect, and the cluster defect is corrected.
 なお、本実施形態では、クラスター状欠陥に対する勾配平均型欠陥画素補正処理において、クラスター状欠陥を構成する各欠陥画素を、点欠陥を構成する欠陥画素のように補正するようにしたが、例えば、クラスター状欠陥に線欠陥が含まれている場合(図14(a)参照)、或いは、複数の線欠陥が連なってクラスター状欠陥を形成している場合(図14(b)参照)は、当該線欠陥の部分を構成する各欠陥画素は、線欠陥を構成する各欠陥画素のように補正しても良い。 In the present embodiment, in the gradient average defect pixel correction processing for cluster defects, each defective pixel constituting the cluster defect is corrected like a defective pixel constituting a point defect. When a line defect is included in the cluster defect (see FIG. 14A), or when a plurality of line defects are connected to form a cluster defect (see FIG. 14B), You may correct | amend each defective pixel which comprises the part of a line defect like each defective pixel which comprises a line defect.
 また、本実施形態では、線欠陥に対する勾配平均型欠陥画素補正処理において、線La1を回転させて線La2,La3,…を得る際の回転角度は、+45度、+60度、+120度、+135度に限ることはなく任意である。また、線Laの本数は、線La1~La5の5本に限ることはなく、複数であれば任意である。 In the present embodiment, in the gradient average defect pixel correction processing for line defects, the rotation angles when the lines La1, La3,... Are obtained by rotating the line La1 are +45 degrees, +60 degrees, +120 degrees, +135 degrees. It is not limited to, but is arbitrary. Further, the number of the lines La is not limited to five of the lines La1 to La5, and may be arbitrary as long as it is plural.
 また、本実施形態では、点欠陥に対する勾配平均型欠陥画素補正処理およびクラスター状欠陥に対する勾配平均型欠陥画素補正処理において、線La1を回転させて線La2,La3,…を得る際の回転角度は、+45度、+90度、+135度に限ることはなく任意である。また、線Laの本数は、線La1~La4の4本に限ることはなく、複数であれば任意である。 In the present embodiment, in the gradient average defect pixel correction process for point defects and the gradient average defect pixel correction process for cluster defects, the rotation angle when the line La1 is rotated to obtain the lines La2, La3,. , +45 degrees, +90 degrees, and +135 degrees, and are arbitrary. Further, the number of lines La is not limited to four of lines La1 to La4, and may be any number as long as it is plural.
 また、本実施形態では、勾配平均型欠陥画素補正処理において、線形補間の手法で、補正画像データFを算出するようにしたが、これに限ることはなく、補正画像データFを算出する手法は、所定の複数の方向にある正常な画素の中で欠陥画素に最も近接する正常な両画素の画像データを用いて算出する手法であれば任意である。 In this embodiment, in the gradient average type defective pixel correction process, the corrected image data F is calculated by the linear interpolation method. However, the present invention is not limited to this, and the method of calculating the corrected image data F is not limited to this. Any method can be used as long as it is calculated using image data of both normal pixels closest to the defective pixel among normal pixels in a plurality of predetermined directions.
 [第2の欠陥画素補正処理の一例:直前置換型欠陥画素補正処理]
 次に、第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理である第2の欠陥画素補正処理の一例としての直前置換型欠陥画素補正処理について説明する。
[Example of Second Defect Pixel Correction Process: Immediate Replacement Type Defect Pixel Correction Process]
Next, a previous replacement defective pixel correction process as an example of a second defective pixel correction process, which is a defective pixel correction process simpler than the first defective pixel correction process, will be described.
 直前置換型欠陥画素補正処理は、一の欠陥画素の画像データを、当該一の欠陥画素に隣接する直前画素の画像データで置換する処理を、各欠陥画素に対して行う処理である。 The immediately preceding replacement defective pixel correction process is a process in which the image data of one defective pixel is replaced with the image data of the immediately preceding pixel adjacent to the one defective pixel for each defective pixel.
 <線欠陥に対する直前置換型欠陥画素補正処理>
 まず、線欠陥に対する直前置換型欠陥画素補正処理について説明する。
<Previous Replacement Type Defect Pixel Correction Processing for Line Defect>
First, the immediately preceding replacement type defective pixel correction process for a line defect will be described.
 具体的には、例えば、センサパネル40上に、1本の線状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうちの欠陥画素dp(m,n)を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a line on the sensor panel 40. A case where the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する直前画素の画素位置(m,n-1)における画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n−1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
 次いで、当該特定された欠陥画素dp(m,n)の画像データを、当該特定された直前画素(画素位置(m,n-1)の画素)の画像データで置換する。 Next, the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n−1)).
 そして、上記処理を、線欠陥を構成する各欠陥画素に対して行い、当該線欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the line defect to correct the line defect.
 <点欠陥に対する直前置換型欠陥画素補正処理>
 次に、点欠陥に対する直前置換型欠陥画素補正処理について説明する。
<Previous Replacement Type Defect Pixel Correction Processing for Point Defect>
Next, the immediately previous replacement type defective pixel correction process for the point defect will be described.
 具体的には、例えば、センサパネル40上に、点々と孤立して分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうちの欠陥画素dp(m,n)を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed on the sensor panel 40 in an isolated manner. A case where the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する直前画素の画素位置(m,n-1)における画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n−1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
 次いで、当該特定された欠陥画素dp(m,n)の画像データを、当該特定された直前画素(画素位置(m,n-1)の画素)の画像データで置換する。 Next, the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n−1)).
 そして、上記処理を、各点欠陥を構成する欠陥画素に対して行い、当該各点欠陥を補正する。 Then, the above process is performed on the defective pixels constituting each point defect, and each point defect is corrected.
 <クラスター状欠陥に対する直前置換型欠陥画素補正処理>
 次に、クラスター状欠陥に対する直前置換型欠陥画素補正処理について説明する。
<Previous replacement type defective pixel correction processing for cluster defects>
Next, the immediately preceding replacement type defective pixel correction process for the cluster defect will be described.
 具体的には、例えば、センサパネル40上に、図18(a)に示すような二次元のクラスター状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうち、図18(a)において太枠で囲った欠陥画素(欠陥画素dp(m,n))を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a two-dimensional cluster as shown in FIG. Then, a case will be described in which a defective pixel (defective pixel dp (m, n)) surrounded by a thick frame in FIG. 18A is corrected among the plurality of defective pixels. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する直前画素の画素位置(m,n-1)における画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and The image data at the pixel position (m, n−1) of the immediately preceding pixel adjacent to the defective pixel dp (m, n) is specified.
 次いで、当該特定された欠陥画素dp(m,n)の画像データを、当該特定された直前画素(画素位置(m,n-1)の画素)の画像データで置換する。 Next, the image data of the specified defective pixel dp (m, n) is replaced with the image data of the specified immediately preceding pixel (pixel at the pixel position (m, n−1)).
 ここで、図18(a)において、欠陥画素dp(m,n)の直前画素は欠陥画素であるが、本実施形態においては、当該直前画素の画像データは、欠陥画素dp(m,n)を補正する時点で、既に補正されていることとする。したがって、欠陥画素dp(m,n)の直前画素の画像データとしては、当該補正後の画像データが特定され、欠陥画素dp(m,n)の画像データは、当該補正後の画像データで置換されることになる。すなわち、図18(a)において、欠陥画素dp(m,n-2)、欠陥画素dp(m,n-1)、欠陥画素dp(m,n)および欠陥画素dp(m,n+1)はそれぞれ、欠陥画素dp(m,n-2)の直前画素(画素位置(m,n-3)の画素)の画像データで置換されることになる。 Here, in FIG. 18A, the pixel immediately before the defective pixel dp (m, n) is a defective pixel. In this embodiment, the image data of the pixel immediately before is defective pixel dp (m, n). It is assumed that it has already been corrected at the time of correcting. Therefore, the corrected image data is specified as the image data of the pixel immediately before the defective pixel dp (m, n), and the image data of the defective pixel dp (m, n) is replaced with the corrected image data. Will be. That is, in FIG. 18A, the defective pixel dp (m, n-2), the defective pixel dp (m, n-1), the defective pixel dp (m, n), and the defective pixel dp (m, n + 1) are respectively Then, the image data of the pixel immediately before the defective pixel dp (m, n−2) (the pixel at the pixel position (m, n−3)) is replaced.
 そして、上記処理を、クラスター状欠陥を構成する各欠陥画素に対して行い、当該クラスター状欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the cluster defect, and the cluster defect is corrected.
 なお、本実施形態では、欠陥画素dp(m,n)に隣接する直前画素として、行方向に隣接する直前の画素(画素位置(m,n-1)の画素)を例示したが、これに限ることはなく、欠陥画素dp(m,n)に隣接する直前画素は、例えば、列方向に隣接する直前の画素(画素位置(m-1,n)の画素)であっても良い。この場合も、当該直前画素の画像データは、欠陥画素dp(m,n)を補正する時点で、既に補正されていることとする。 In the present embodiment, the immediately preceding pixel (pixel at the pixel position (m, n−1)) adjacent in the row direction is exemplified as the immediately preceding pixel adjacent to the defective pixel dp (m, n). Without being limited thereto, the immediately preceding pixel adjacent to the defective pixel dp (m, n) may be, for example, the immediately preceding pixel adjacent to the column direction (pixel at the pixel position (m−1, n)). Also in this case, it is assumed that the image data of the immediately preceding pixel has already been corrected when the defective pixel dp (m, n) is corrected.
 また、本実施形態では、第2の欠陥画素補正処理として直前置換型欠陥画素補正処理を例示したが、第2の欠陥画素補正処理は、第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理であれば任意であり、例えば、後述する隣接平均型欠陥画素補正処理であっても良いし、その他の公知の欠陥画素補正処理であっても良い。 In this embodiment, the immediately preceding replacement defective pixel correction process is exemplified as the second defective pixel correction process, but the second defective pixel correction process is simpler defective pixel correction than the first defective pixel correction process. Any processing can be used, and for example, adjacent average type defective pixel correction processing described later may be used, or other known defective pixel correction processing may be used.
 [第2の欠陥画素補正処理の他の一例:隣接平均型欠陥画素補正処理]
 ここで、第2の欠陥画素補正処理の他の一例である、隣接平均型欠陥画素補正処理について説明する。
[Another Example of Second Defect Pixel Correction Process: Adjacent Average Type Defect Pixel Correction Process]
Here, an adjacent average type defective pixel correction process, which is another example of the second defective pixel correction process, will be described.
 隣接平均型欠陥画素補正処理は、一の欠陥画素の画像データを、当該一の欠陥画素に隣接する複数の隣接画素の各画像データの平均値で置換する処理を、各欠陥画素に対して行う処理である。 In the adjacent average defective pixel correction process, each defective pixel is subjected to a process of replacing the image data of one defective pixel with the average value of each image data of a plurality of adjacent pixels adjacent to the one defective pixel. It is processing.
 <線欠陥に対する隣接平均型欠陥画素補正処理>
 まず、線欠陥に対する隣接平均型欠陥画素補正処理について説明する。
<Adjacent average defect pixel correction processing for line defects>
First, the adjacent average defective pixel correction process for line defects will be described.
 具体的には、例えば、センサパネル40上に、1本の線状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうちの欠陥画素dp(m,n)を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed in a line on the sensor panel 40. A case where the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する複数の隣接画素の画素位置における各画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Each image data at a pixel position of a plurality of adjacent pixels adjacent to the defective pixel dp (m, n) is specified.
 ここで、欠陥画素dp(m,n)の隣接画素とは、欠陥画素dp(m,n)を取り囲む8つの画素(すなわち、画素位置(m-1,n-1)の画素、画素位置(m-1,n)の画素、画素位置(m-1,n+1)の画素、画素位置(m,n-1)の画素、画素位置(m,n+1)の画素、画素位置(m+1,n-1)の画素、画素位置(m+1,n)の画素および画素位置(m+1,n+1)の画素)のうちの少なくとも2つ以上のことである。 Here, the adjacent pixels of the defective pixel dp (m, n) are eight pixels surrounding the defective pixel dp (m, n) (that is, the pixel at the pixel position (m−1, n−1), the pixel position ( m-1, n), pixel position (m-1, n + 1), pixel position (m, n-1), pixel position (m, n + 1), pixel position (m + 1, n- 1), the pixel at the pixel position (m + 1, n), and the pixel at the pixel position (m + 1, n + 1)).
 また、補正する画素を取り囲む8つの画素の中に欠陥画素が含まれる場合、当該欠陥画素の画像データが既に補正されているのであれば、その補正後の画像データも、隣接画素の画像データとして特定可能となっている。言い換えれば、補正する画素を取り囲む8つの画素の中に欠陥画素が含まれる場合、当該欠陥画素の画像データがまだ補正されていないのであれば、その欠陥画素の画像データは、隣接画素の画像データとして特定されないようになっている。 Further, when a defective pixel is included in the eight pixels surrounding the pixel to be corrected, if the image data of the defective pixel has already been corrected, the corrected image data is also used as the image data of the adjacent pixel. It can be specified. In other words, when a defective pixel is included in the eight pixels surrounding the pixel to be corrected, if the image data of the defective pixel is not yet corrected, the image data of the defective pixel is the image data of the adjacent pixel. Not to be specified as.
 すなわち、線欠陥を構成する欠陥画素dp(m,n)においては、欠陥画素dp(m,n)を取り囲む8つの画素のうち、画素位置(m-1,n)の画素および画素位置(m+1,n)の画素は欠陥画素である。本実施形態では、欠陥画素dp(m,n)を補正する時点では、画素位置(m-1,n)の欠陥画素の画像データは既に補正されているのに対し、画素位置(m+1,n)の欠陥画素の画像データはまだ補正されていない。したがって、欠陥画素dp(m,n)を取り囲む8つの画素のうちの画素位置dp(m+1,n)の欠陥画素を除く7つの画素が、隣接画素となり得る。 That is, in the defective pixel dp (m, n) constituting the line defect, out of the eight pixels surrounding the defective pixel dp (m, n), the pixel at the pixel position (m−1, n) and the pixel position (m + 1) , N) is a defective pixel. In the present embodiment, when the defective pixel dp (m, n) is corrected, the image data of the defective pixel at the pixel position (m−1, n) is already corrected, whereas the pixel position (m + 1, n) is corrected. ) Image data of defective pixels has not been corrected yet. Therefore, of the eight pixels surrounding the defective pixel dp (m, n), seven pixels other than the defective pixel at the pixel position dp (m + 1, n) can be adjacent pixels.
 次いで、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、当該特定された複数の隣接画素の各画像データの平均値を算出し、当該特定された欠陥画素dp(m,n)の画像データを、当該算出された平均値で置換する。 Next, an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
 そして、上記処理を、線欠陥を構成する各欠陥画素に対して行い、当該線欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the line defect to correct the line defect.
 <点欠陥に対する隣接平均型欠陥画素補正処理>
 次に、点欠陥に対する隣接平均型欠陥画素補正処理について説明する。
<Adjacent average type defective pixel correction processing for point defects>
Next, adjacent average type defective pixel correction processing for point defects will be described.
 具体的には、例えば、センサパネル40上に、点々と孤立して分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうちの欠陥画素dp(m,n)を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that there are a plurality of defective pixels distributed on the sensor panel 40 in an isolated manner. A case where the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する複数の隣接画素(欠陥画素dp(m,n)を取り囲む8つの画素のうちの少なくとも2つ以上の画素)の画素位置における各画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Identify each image data at the pixel position of a plurality of adjacent pixels (at least two of the eight pixels surrounding the defective pixel dp (m, n)) adjacent to the defective pixel dp (m, n) To do.
 次いで、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、当該特定された複数の隣接画素の各画像データの平均値を算出し、当該特定された欠陥画素dp(m,n)の画像データを、当該算出された平均値で置換する。 Next, an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
 そして、上記処理を、各点欠陥を構成する欠陥画素に対して行い、当該各点欠陥を補正する。 Then, the above process is performed on the defective pixels constituting each point defect, and each point defect is corrected.
 <クラスター状欠陥に対する隣接平均型欠陥画素補正処理>
 次に、クラスター状欠陥に対する隣接平均型欠陥画素補正処理について説明する。
<Adjacent average type defective pixel correction processing for cluster defects>
Next, adjacent average type defective pixel correction processing for cluster defects will be described.
 具体的には、例えば、センサパネル40上に、二次元のクラスター状に分布する複数の欠陥画素が存在しているものとする。そして、この複数の欠陥画素のうちの欠陥画素dp(m,n)を補正する場合について説明する。なお、間引き処理を行った画像データに対して第2の欠陥画素補正処理を行う場合、当該説明において例示する画素は、間引き処理後に残った画素を指す。 Specifically, for example, it is assumed that a plurality of defective pixels distributed in a two-dimensional cluster form exist on the sensor panel 40. A case where the defective pixel dp (m, n) among the plurality of defective pixels is corrected will be described. Note that in the case where the second defective pixel correction process is performed on the image data that has been subjected to the thinning process, the pixel exemplified in the description refers to a pixel remaining after the thinning process.
 まず、記憶手段101bに記憶された欠陥画素情報に含まれる欠陥画素dp(m,n)の画素位置(m,n)に基づいて、放射線画像撮影装置1から送信された画像データ(具体的には、放射線画像撮影装置1から送信されて、オフセット補正およびゲイン補正が行われた画像データ)の中から、欠陥画素dp(m,n)の画素位置(m,n)における画像データと、当該欠陥画素dp(m,n)に隣接する複数の隣接画素(欠陥画素dp(m,n)を取り囲む8つの画素のうちの少なくとも2つ以上の画素)の画素位置における各画像データと、を特定する。 First, based on the pixel position (m, n) of the defective pixel dp (m, n) included in the defective pixel information stored in the storage unit 101b, image data (specifically, transmitted from the radiographic image capturing apparatus 1). Is the image data at the pixel position (m, n) of the defective pixel dp (m, n) out of the image data transmitted from the radiographic imaging device 1 and subjected to offset correction and gain correction, and Identify each image data at the pixel position of a plurality of adjacent pixels (at least two of the eight pixels surrounding the defective pixel dp (m, n)) adjacent to the defective pixel dp (m, n) To do.
 ここで、欠陥画素dp(m,n)を取り囲む8つの画素の中に欠陥画素が含まれる場合、当該欠陥画素の画像データが既に補正されているのであれば、その補正後の画像データも、隣接画素の画像データとして特定可能となっている。 Here, when a defective pixel is included in the eight pixels surrounding the defective pixel dp (m, n), if the image data of the defective pixel has already been corrected, the corrected image data is also It can be specified as image data of adjacent pixels.
 次いで、単純平均したり、センサパネル40の特性等に従って重み付け平均したりする等して、当該特定された複数の隣接画素の各画像データの平均値を算出し、当該特定された欠陥画素dp(m,n)の画像データを、当該算出された平均値で置換する。 Next, an average value of each image data of the specified plurality of adjacent pixels is calculated by performing simple averaging or weighted averaging according to the characteristics of the sensor panel 40 and the like, and the specified defective pixel dp ( The image data of m, n) is replaced with the calculated average value.
 そして、上記処理を、クラスター状欠陥を構成する各欠陥画素に対して行い、当該クラスター状欠陥を補正する。 Then, the above processing is performed on each defective pixel constituting the cluster defect, and the cluster defect is corrected.
 次に、本実施形態に係る放射線画像撮影システム100およびコンソール101の作用について説明する。図19は、本実施形態に係る放射線画像撮影システム100における、プレビュー画像の表示および診断画像データの出力に関する処理について説明するためのフローチャートである。 Next, operations of the radiation image capturing system 100 and the console 101 according to the present embodiment will be described. FIG. 19 is a flowchart for explaining processing relating to display of a preview image and output of diagnostic image data in the radiographic image capturing system 100 according to the present embodiment.
 欠陥画素がセンサパネル40上で、図11(a)~図11(g)等に示したような線状に分布する状態で発生する原因としては、例えば、信号線が断線する等の原因が挙げられる。 As a cause of defective pixels being distributed in a linear shape as shown in FIGS. 11A to 11G on the sensor panel 40, for example, a cause such as disconnection of a signal line is given. Can be mentioned.
 また、欠陥画素がセンサパネル40上で、図12(a)~図12(f)等に示したような点状に分布する状態で発生する原因としては、例えば、センサパネル40上に撮像素子41を積層して製造する際に撮像素子41中に不純物が混入する等の原因が挙げられる。 Further, as a cause of defective pixels that are distributed in a dot shape as shown in FIGS. 12A to 12F on the sensor panel 40, for example, an image sensor on the sensor panel 40 may be used. This may be caused by impurities being mixed into the image sensor 41 when 41 is laminated.
 また、欠陥画素がセンサパネル40上で、図13(a)~図13(f)等に示したような二次元のクラスター状に分布する状態で発生する原因としては、例えば、放射線検出素子7の積層工程や、シンチレータ3の製造段階で、放射線検出素子7やシンチレータ3の柱状結晶の蛍光体3aに対して、二次元のクラスター状の分布に相当する程度の比較的広い面積で機械的なストレスが加わったり、放射線検出素子7上に樹脂等が塗布されて形成される平坦化層7aが比較的広い面積で汚染されていたりする等の原因が挙げられる。 Further, the cause of defective pixels that are distributed in a two-dimensional cluster form as shown in FIGS. 13A to 13F on the sensor panel 40 is, for example, the radiation detection element 7. In the laminating process or the manufacturing stage of the scintillator 3, the radiation detector 7 and the columnar crystal phosphor 3 a of the scintillator 3 are mechanically formed with a relatively wide area corresponding to a two-dimensional cluster distribution. For example, stress may be applied, or the planarization layer 7a formed by applying a resin or the like on the radiation detection element 7 may be contaminated in a relatively large area.
 また、シンチレータ3と平坦化層7aとの貼り合わせ工程で、シンチレータ3と平坦化層7aとの間に比較的大きな異物が混入したり、シンチレータ3の柱状結晶の蛍光体3aが、結晶成長方向に対し直交方向から外力等を受け、比較的広い範囲でその先端Paが破損したりした場合にも、クラスター状欠陥は発生し得る。 Further, in the bonding process between the scintillator 3 and the flattening layer 7a, relatively large foreign matter is mixed between the scintillator 3 and the flattening layer 7a, or the columnar crystal phosphor 3a of the scintillator 3 is in the crystal growth direction. On the other hand, a cluster-like defect can also occur when the tip Pa is damaged in a relatively wide range due to an external force or the like from an orthogonal direction.
 さらに、本実施形態では、前述したように、ハウジング2のハウジング本体部2aは角筒状に形成されており、図20に示すように、例えば14インチ×17インチ等の比較的大きな面積を有するセンサパネル40を、その角筒状のハウジング本体部2a内に挿入して収納する。そして、その際、ハウジング本体部2aに収納されたセンサパネル40を外力から保護しセンサパネル40が損傷されないようにするために、ハウジング本体部2aの内側に緩衝材2c等が設けられており、センサパネル40をハウジング本体部2aに挿入する際に、比較的大きな押圧力で押し込まなければならない場合がある。そのような場合に、平板状のセンサパネル40に対して、それを押圧する方向や湾曲させる方向にストレスがかかり、比較的広い面積で撮像素子41が損傷されて、クラスター状欠陥が発生する場合もある。 Further, in the present embodiment, as described above, the housing body 2a of the housing 2 is formed in a rectangular tube shape, and has a relatively large area such as 14 inches × 17 inches as shown in FIG. The sensor panel 40 is inserted and stored in the rectangular tube-shaped housing main body 2a. At that time, in order to protect the sensor panel 40 housed in the housing body 2a from external force and prevent the sensor panel 40 from being damaged, a cushioning material 2c or the like is provided inside the housing body 2a. When the sensor panel 40 is inserted into the housing body 2a, it may be necessary to push it in with a relatively large pressing force. In such a case, stress is applied to the flat sensor panel 40 in the direction in which it is pressed or curved, and the image sensor 41 is damaged over a relatively large area, resulting in a cluster defect. There is also.
 また、連続する信号線が断線する等して線欠陥が連続して発生した場合や、連続する撮像素子41中に不純物が混入する等して点欠陥が連続して発生した場合も、クラスター状欠陥は発生し得る。 Further, when line defects are continuously generated due to disconnection of continuous signal lines, or when point defects are continuously generated due to impurities mixed into the continuous image pickup element 41 or the like, a cluster shape is also obtained. Defects can occur.
 そこで、放射線画像撮影装置1を製造した後、例えば工場からの出荷時点で、実際に放射線画像撮影装置1に放射線を照射する等して、各撮像素子41から出力された各画像データの値を解析して、センサパネル40上で欠陥画素が発生しているか検査が行われる。 Therefore, after manufacturing the radiographic image capturing apparatus 1, for example, when the radiographic image capturing apparatus 1 is actually irradiated at the time of shipment from the factory, the value of each image data output from each image sensor 41 is obtained. Analysis is performed to inspect whether a defective pixel is generated on the sensor panel 40.
 その際、前述したように、欠陥画素からは恒常的に異常な画像データが出力される場合もあるが、一定の確率で異常な画像データが出力される場合もあるため、放射線を複数回照射して検査を行うことが望ましい。 At that time, as described above, abnormal image data may be constantly output from the defective pixel, but abnormal image data may be output with a certain probability, so radiation is irradiated multiple times. It is desirable to perform inspection.
 そして、欠陥画素が発生している場合には、その欠陥画素情報(すなわち、例えば、欠陥画素の画素位置と、当該欠陥画素を中心として引いた線La1,La2,…それぞれに関する画素A1~A3および画素B1~B3の画素位置と、当該欠陥画素を中心として引いた線La1,La2,…それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置と、等が対応付けられた情報)を、対応する放射線画像撮影装置1を識別するための識別情報とともに、コンソール101の記憶手段101bに予め記憶させておく。 If a defective pixel has occurred, the defective pixel information (that is, for example, the pixel position of the defective pixel and the pixels A1 to A3 relating to the lines La1, La2,. The pixel positions of the pixels B1 to B3, and the pixel positions of both normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1, La2,. Etc.) is stored in advance in the storage means 101b of the console 101 together with identification information for identifying the corresponding radiographic imaging apparatus 1.
 そして、図19のフローチャートに示すように、まず、放射線画像撮影装置1の制御手段22は、読み出し回路17によって撮像素子41からそれぞれ画像データを読み出し、当該画像データを、通信手段であるアンテナ装置39を介してコンソール101に送信する(ステップS1)。 Then, as shown in the flowchart of FIG. 19, first, the control means 22 of the radiographic image capturing apparatus 1 reads out the image data from the image sensor 41 by the readout circuit 17, and the image data is transmitted to the antenna device 39 as a communication means. To the console 101 (step S1).
 ステップS1で送信された画像データをコンソール101(具体的には、通信手段101c)が受信すると、コンソール101の制御手段101aは、当該画像データに対してオフセット補正を行うとともに(ステップS2)、ゲイン補正を行う(ステップS3)。 When the console 101 (specifically, the communication unit 101c) receives the image data transmitted in step S1, the control unit 101a of the console 101 performs offset correction on the image data (step S2) and gain. Correction is performed (step S3).
 次いで、制御手段101aは、オフセット補正およびゲイン補正が行われた画像データから間引き画像データを生成する間引き処理を行い(ステップS4)、当該間引き画像データに対して、記憶手段101bに記憶された欠陥画素情報のうちの、ステップS1で画像データを送信してきた放射線画像撮影装置1の識別情報とともに記憶されている欠陥画素情報に基づき第2の欠陥画素補正処理等を行って、プレビュー画像データを作成する(ステップS5)。 Next, the control unit 101a performs a thinning process for generating thinned image data from the image data subjected to offset correction and gain correction (step S4), and the defect stored in the storage unit 101b for the thinned image data. Of the pixel information, the second defective pixel correction process is performed based on the defective pixel information stored together with the identification information of the radiographic image capturing apparatus 1 that has transmitted the image data in step S1, and preview image data is created. (Step S5).
 次いで、制御手段101aは、当該プレビュー画像データに対して所定の表示処理を行って(ステップS6)、当該プレビュー画像データに基づくプレビュー画像を表示手段101dに表示させる(ステップS7)。 Next, the control unit 101a performs a predetermined display process on the preview image data (step S6), and causes the display unit 101d to display a preview image based on the preview image data (step S7).
 前述したように、第2の欠陥画素補正処理は、簡易に行うことができるため、欠陥画素補正処理を高速に行うことが可能となる。また、それにより、プレビュー画像は即座に表示部101dに表示される。 As described above, since the second defective pixel correction process can be easily performed, the defective pixel correction process can be performed at high speed. Thereby, the preview image is immediately displayed on the display unit 101d.
 次いで、制御手段101aは、ステップS2およびステップS3でオフセット補正およびゲイン補正が行われた画像データに対して、記憶手段101bに記憶された欠陥画素情報のうちの、ステップS1で画像データを送信してきた放射線画像撮影装置1の識別情報に対応付けられた欠陥画素情報に基づき第1の欠陥画素補正処理等を行って、診断画像データを作成する(ステップS8)。 Next, the control means 101a transmits the image data in step S1 out of the defective pixel information stored in the storage means 101b to the image data that has been subjected to the offset correction and gain correction in steps S2 and S3. Based on the defective pixel information associated with the identification information of the radiographic image capturing apparatus 1, the first defective pixel correction process or the like is performed to create diagnostic image data (step S <b> 8).
 このように、診断画像を作成するためのデータである診断画像データの作成の際には、前述したように、より高精度な第1の欠陥画素補正処理を行って画像データを補正するため、高精度に補正された診断画像データを作成することが可能となる。 Thus, when creating diagnostic image data that is data for creating a diagnostic image, as described above, the first defective pixel correction process with higher accuracy is performed to correct the image data. It is possible to create diagnostic image data corrected with high accuracy.
 次いで、制御手段101aは、当該診断画像データに対して所定の出力処理を行って(ステップS9)、当該診断画像データを、出力手段である通信手段101cを介してPACSサーバ122やイメージャ123などの外部装置に出力(送信)し(ステップS10)、本処理を終了する。 Next, the control unit 101a performs predetermined output processing on the diagnostic image data (step S9), and the diagnostic image data is transmitted to the PACS server 122, the imager 123, and the like via the communication unit 101c that is an output unit. Output (transmit) to the external device (step S10), and the process is terminated.
 以上説明した第1の実施の形態に係る放射線画像撮影システム100およびコンソール101によれば、放射線画像撮影システム100のコンソール101の作成手段である制御手段101aは、診断画像データを作成する際、記憶手段101bに記憶された欠陥画素情報に基づき、放射線画像撮影装置1から送信された画像データに対して高精度な欠陥画素補正処理、すなわち第1の欠陥画素補正処理を行い、プレビュー画像データを作成する際、記憶手段101bに記憶された欠陥画素情報に基づき、放射線画像撮影装置1から送信された画像データに対して第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理、すなわち第2の欠陥画素補正処理を行うようになっている。 According to the radiographic image capturing system 100 and the console 101 according to the first embodiment described above, the control unit 101a, which is a generating unit of the console 101 of the radiographic image capturing system 100, stores the diagnostic image data. Based on the defective pixel information stored in the means 101b, high-precision defective pixel correction processing, that is, first defective pixel correction processing is performed on the image data transmitted from the radiographic image capturing apparatus 1 to generate preview image data. In this case, based on the defective pixel information stored in the storage unit 101b, a defective pixel correction process that is simpler than the first defective pixel correction process on the image data transmitted from the radiation image capturing apparatus 1, that is, the second A defective pixel correction process is performed.
 このように、本発明では、同じ欠陥画素情報を用いながら、プレビュー画像データを作成する場合と診断画像データを作成する場合とで欠陥画素補正処理の方法を適切に切り替えて、それぞれの場合に適した欠陥画素補正処理を行うことが可能となる。 As described above, according to the present invention, the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data while using the same defective pixel information, and is suitable for each case. The defective pixel correction process can be performed.
 そして、プレビュー画像データを作成する場合には、欠陥画素補正処理として、第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことで、プレビュー画像データを高速に作成することが可能となり、それに基づいてプレビュー画像を速やかに表示することが可能となる。そして、プレビュー画像が速やかに表示されるため、操作者が放射線画像撮影において被写体が適切な位置に撮像されているか否かのポジショニングの確認等を速やかに行うことが可能となる。 When the preview image data is created, the second defective pixel correction process that is simpler than the first defective pixel correction process is performed as the defective pixel correction process, so that the preview image data is created at high speed. And a preview image can be displayed promptly based on this. Since the preview image is promptly displayed, it is possible for the operator to promptly confirm the positioning of whether or not the subject is captured at an appropriate position in radiographic image capturing.
 また、診断画像データを作成する場合には、欠陥画素補正処理として高精度な第1の欠陥画素補正処理を行うことで、欠陥画素から出力された画像データを高精度に補正処理して診断画像データを作成することが可能となり、それに基づいて診断画像を適切に作成することが可能となる。そして、医師がそれを見て、患者の病変部の有無やその状態を適切に判断することが可能となる。 When creating diagnostic image data, the first defective pixel correction process with high accuracy is performed as the defective pixel correction processing, whereby the image data output from the defective pixel is corrected with high accuracy, and the diagnostic image is obtained. Data can be created, and a diagnostic image can be appropriately created based on the data. Then, it becomes possible for the doctor to appropriately determine the presence or absence of the lesioned part of the patient and its state by looking at it.
 また、本実施形態のように、高精度な第1の欠陥画素補正処理を行って診断画像データを作成する前に、プレビュー画像を表示するよう構成すれば、簡易な第2の欠陥画素補正処理を行って作成したプレビュー画像データに基づくプレビュー画像を速やかに表示手段101dに表示できるため、放射線画像撮影における被写体のポジショニングの確認等をすぐに行うことが可能となる。 Further, if the preview image is displayed before the diagnostic image data is generated by performing the first defective pixel correction process with high accuracy as in the present embodiment, a simple second defective pixel correction process is performed. Since the preview image based on the preview image data generated by performing the above can be promptly displayed on the display means 101d, it is possible to immediately confirm the positioning of the subject in the radiographic image capturing.
 また、本実施形態のように、第2の欠陥画素補正処理を行う際、欠陥画素の画像データを、当該欠陥画素に隣接する直前画素の画像データで置換するよう構成すれば、欠陥画素の画像データを簡易に補正することができるため、プレビュー画像データを高速に作成することができる。 In addition, when performing the second defective pixel correction process as in the present embodiment, if the defective pixel image data is replaced with the image data of the immediately preceding pixel adjacent to the defective pixel, the defective pixel image Since data can be easily corrected, preview image data can be created at high speed.
 或いは、本実施形態のように、第2の欠陥画素補正処理を行う際、欠陥画素の画像データを、当該欠陥画素に隣接する隣接画素の各画像データの平均値で置換するよう構成すれば、欠陥画素の画像データを簡易に補正することができるため、プレビュー画像データを高速に作成することが可能となる。 Alternatively, as in the present embodiment, when performing the second defective pixel correction process, if the image data of the defective pixel is replaced with the average value of each image data of adjacent pixels adjacent to the defective pixel, Since image data of defective pixels can be easily corrected, preview image data can be created at high speed.
 また、本実施形態のように、第1の欠陥画素補正処理を行う際、欠陥画素の画像データを、画像勾配Gが最も小さい方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画像データを用いて算出された補正画像データで置換するよう構成すれば、欠陥画素の画像データを高精度に補正することができるため、作成された診断画像データに基づく診断画像が高品質なものとなる。 Further, as in the present embodiment, when the first defective pixel correction process is performed, the image data of the defective pixel is the normal pixel closest to the defective pixel among the normal pixels in the direction where the image gradient G is the smallest. If the image data of both pixels is replaced with the corrected image data calculated using the image data, the image data of the defective pixel can be corrected with high accuracy. High quality.
 また、本実施形態のように、間引き画像データに対して第2の欠陥画素補正処理を行うよう構成すれば、第2の欠陥画素補正処理を行う欠陥画素の個数が少なくなり、欠陥画素補正処理をより短縮化できるため、プレビュー画像データを高速に作成することが可能となる。 Further, if the second defective pixel correction process is performed on the thinned image data as in the present embodiment, the number of defective pixels to be subjected to the second defective pixel correction process is reduced, and the defective pixel correction process is performed. Therefore, preview image data can be created at high speed.
 [第2の実施の形態]
 次に、第2の実施の形態に係る放射線画像撮影システム100Aについて説明する。
[Second Embodiment]
Next, a radiographic imaging system 100A according to the second embodiment will be described.
 なお、第2の実施の形態においては、放射線画像撮影装置1A側で第2の欠陥画素補正処理を行ってプレビュー画像データを作成し、コンソール101A側で第1の欠陥画素補正処理を行って診断画像データを作成する点が第1の実施の形態と異なる。したがって、異なる箇所のみについて説明し、その他の共通する部分は同一符号を付して説明は省略する。 In the second embodiment, the second defective pixel correction process is performed on the radiation image capturing apparatus 1A side to create preview image data, and the first defective pixel correction process is performed on the console 101A side for diagnosis. The difference from the first embodiment is that image data is created. Therefore, only different parts will be described, and other common parts will be denoted by the same reference numerals and description thereof will be omitted.
 [放射線画像撮影システム]
 放射線画像撮影システム100Aは、例えば、図21に示すように、放射線画像撮影を行う放射線画像撮影装置1Aと、放射線画像撮影装置1Aと通信可能に構成され、放射線画像撮影装置1Aにより撮影された放射線画像の画像データに対して所定の画像処理を行うコンソール101Aと、等を備えて構成される。
[Radiation imaging system]
For example, as shown in FIG. 21, the radiographic image capturing system 100A is configured to be communicable with a radiographic image capturing device 1A that performs radiographic image capturing and the radiographic image capturing device 1A. A console 101A that performs predetermined image processing on image data of an image, and the like are configured.
 [放射線画像撮影装置]
 第2の実施の形態の放射線画像撮影装置1Aにおいては、例えば、図22に示すように、制御手段22Aおよび記憶手段23Aを備えており、その他の各部材については第1の実施の形態の放射線画像撮影装置1と同一の部材を備えている。
[Radiation imaging equipment]
The radiographic image capturing apparatus 1A of the second embodiment includes, for example, a control unit 22A and a storage unit 23A as shown in FIG. 22, and the other components are the radiations of the first embodiment. The same members as those of the image capturing apparatus 1 are provided.
 記憶手段23Aは、撮影装置側記憶手段として、センサパネル40上に二次元状に配列された複数の撮像素子41に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶している。 The storage unit 23A stores defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements 41 arranged in a two-dimensional manner on the sensor panel 40 as the imaging device side storage unit.
 記憶手段23Aに記憶されている欠陥画素情報は、例えば、欠陥画素の画素位置と、当該欠陥画素を中心として引いた線La1,La2,…それぞれに関する画素A1~A3および画素B1~B3の画素位置と、当該欠陥画素を中心として引いた線La1,La2,…それぞれの方向にある正常な画素の中で当該欠陥画素に最も近接する正常な両画素の画素位置と、等が対応付けられた情報である。なお、記憶手段23Aには、当該記憶手段23Aを備える放射線画像撮影装置1Aに対応する欠陥画素情報のみが記憶されていることとする。 The defective pixel information stored in the storage unit 23A includes, for example, the pixel position of the defective pixel and the pixel positions of the pixels A1 to A3 and the pixels B1 to B3 with respect to the lines La1, La2,. , And the pixel positions of the normal pixels closest to the defective pixel among the normal pixels in the directions of the lines La1, La2,. It is. Note that it is assumed that only the defective pixel information corresponding to the radiographic image capturing apparatus 1A including the storage unit 23A is stored in the storage unit 23A.
 制御手段22Aは、撮影装置側作成手段として、読み出し回路17により読み出された画像データに基づいて、プレビュー画像データを作成する。 The control unit 22A creates preview image data based on the image data read by the readout circuit 17 as a photographing device side creation unit.
 ここで、制御手段22Aは、欠陥画素補正処理として、上述した直前置換型欠陥画素補正処理や隣接平均型欠陥画素補正処理などの第2の欠陥画素補正処理を行って、プレビュー画像データを作成するようになっている。 Here, the control unit 22A performs the second defective pixel correction process such as the immediately preceding replacement defective pixel correction process or the adjacent average defective pixel correction process described above as the defective pixel correction process, and creates preview image data. It is like that.
 具体的には、制御手段22Aは、まず、読み出し回路17によって撮像素子41からそれぞれ画像データを読み出し、当該画像データに対してオフセット補正およびゲイン補正を行う。 Specifically, the control means 22A first reads out image data from the image sensor 41 by the readout circuit 17, and performs offset correction and gain correction on the image data.
 次いで、制御手段22Aは、オフセット補正およびゲイン補正が行われた画像データに対して、記憶手段23Aに記憶された欠陥画素情報に基づき第2の欠陥画素補正処理を行って、プレビュー画像データを作成する。 Next, the control unit 22A performs a second defective pixel correction process on the image data subjected to the offset correction and the gain correction based on the defective pixel information stored in the storage unit 23A, thereby creating preview image data. To do.
 そして、制御手段22Aは、当該プレビュー画像データに対して所定の圧縮処理を行って、通信手段であるアンテナ装置39を介してコンソール101Aに送信するようになっている。 The control unit 22A performs a predetermined compression process on the preview image data and transmits the preview image data to the console 101A via the antenna device 39 which is a communication unit.
 [コンソール]
 第2の実施の形態のコンソール101Aにおいては、例えば、図21に示すように、制御手段101aAを備えており、その他の各部材については第1の実施の形態のコンソール101と同一の部材を備えている。
[console]
For example, as shown in FIG. 21, the console 101A according to the second embodiment includes a control unit 101aA, and the other members are the same as those of the console 101 according to the first embodiment. ing.
 制御手段101aAは、コンソール側作成手段として、放射線画像撮影装置1Aから送信されたプレビュー画像データに基づいて、診断画像データを作成する。 The control unit 101aA creates diagnostic image data based on the preview image data transmitted from the radiographic image capturing apparatus 1A as a console side creation unit.
 ここで、制御手段101aAは、欠陥画素補正処理として、上述した勾配重視型欠陥画素補正処理や勾配平均型欠陥画素補正処理など第1の欠陥画素補正処理を行って、診断画像データを作成するようになっている。 Here, the control unit 101aA performs the first defective pixel correction process such as the above-described gradient-oriented defect pixel correction process or gradient average defective pixel correction process as the defective pixel correction process, and creates diagnostic image data. It has become.
 具体的には、制御手段101aAは、通信手段101cが放射線画像撮影装置1から送信されたプレビュー画像データを受信すると、当該プレビュー画像データに対して所定の伸長処理を行って、例えば記憶手段101bに記憶させる。 Specifically, when the communication unit 101c receives the preview image data transmitted from the radiation image capturing apparatus 1, the control unit 101aA performs a predetermined decompression process on the preview image data, for example, in the storage unit 101b. Remember.
 次いで、制御手段101aAは、伸長処理が行われたプレビュー画像データに基づくプレビュー画像を表示手段101dに表示させる。 Next, the control unit 101aA causes the display unit 101d to display a preview image based on the preview image data on which the decompression process has been performed.
 次いで、制御手段101aAは、例えば記憶手段101bに記憶しておいたプレビュー画像データ、すなわち伸長処理が行われたプレビュー画像データを取得し、当該プレビュー画像に対して、コンソール側記憶手段である記憶手段101bに記憶された欠陥画素情報に基づき第1の欠陥画素補正処理を行って、診断画像データを作成する。 Next, the control unit 101aA acquires, for example, the preview image data stored in the storage unit 101b, that is, the preview image data subjected to the decompression process, and the storage unit that is a console-side storage unit for the preview image. A first defective pixel correction process is performed based on the defective pixel information stored in 101b to create diagnostic image data.
 なお、プレビュー画像データを受信して当該プレビュー画像データに基づくプレビュー画像を表示した後、自動的に診断画像データを作成するようにしたが、これに限ることはなく、プレビュー画像を表示した後、例えば操作者によりコンソール101が備える入力手段(図示省略)が操作されて診断画像データを作成するよう指示された場合に、診断画像データを作成するようにしても良い。 In addition, after receiving the preview image data and displaying the preview image based on the preview image data, the diagnostic image data is automatically created. However, the present invention is not limited to this, and after displaying the preview image, For example, diagnostic image data may be created when an operator operates an input means (not shown) included in the console 101 to instruct to create diagnostic image data.
 そして、制御手段101aAは、例えば操作者によりコンソール101が備える入力手段(図示省略)が操作されて診断画像データを出力するよう指示されると、当該診断画像データに基づく診断画像を表示部101dに表示させたり、当該診断画像データを出力手段である通信手段101cを介してPACSサーバ122やイメージャ123などの外部装置に出力したりするようになっている。 Then, for example, when an operator operates an input unit (not shown) included in the console 101 and instructs to output diagnostic image data, the control unit 101aA displays a diagnostic image based on the diagnostic image data on the display unit 101d. The diagnostic image data is displayed or output to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c which is an output unit.
 なお、本実施形態では、間引き処理を行わないようにしたが、これに限ることはなく、例えば、放射線画像撮影装置1A側でプレビュー画像データを作成する際に、間引き処理を行っても良い。この場合、間引き処理が行われたプレビュー画像データに基づいて診断画像データを作成すると、診断画像の品質が低下するため、放射線画像撮影装置1Aは、間引き処理が行われたプレビュー画像データとともに、プレビュー画像データを作成する前の画像データ(すなわち、オフセット補正およびゲイン補正の何れも行われていない画像データ、或いは、オフセット補正およびゲイン補正のうちの少なくともオフセット補正が行われた画像データ)を送信して、コンソール101Aは、当該画像データに基づいて診断画像データを作成するようにしても良い。 In this embodiment, the thinning process is not performed. However, the present invention is not limited to this. For example, the thinning process may be performed when the preview image data is created on the radiation image capturing apparatus 1A side. In this case, if diagnostic image data is created based on the preview image data that has been subjected to the thinning process, the quality of the diagnostic image is degraded. Transmit image data before creating image data (that is, image data for which neither offset correction nor gain correction has been performed, or image data for which at least offset correction of offset correction or gain correction has been performed) Thus, the console 101A may create diagnostic image data based on the image data.
 次に、本実施形態に係る放射線画像撮影システム100Aおよびコンソール101Aの作用について説明する。図23は、本実施形態に係る放射線画像撮影システム100Aにおける、プレビュー画像の表示および診断画像データの出力に関する処理について説明するためのフローチャートである。 Next, the operation of the radiation image capturing system 100A and the console 101A according to this embodiment will be described. FIG. 23 is a flowchart for explaining processing relating to display of a preview image and output of diagnostic image data in the radiographic imaging system 100A according to the present embodiment.
 放射線画像撮影装置1Aを製造した後、例えば工場からの出荷時点で、センサパネル40上で欠陥画素が発生しているか検査を行い、欠陥画素が発生している場合には、その欠陥画素情報を、当該放射線画像撮影装置1Aの記憶手段23Aに予め記憶させておくとともに、その欠陥画素情報を、対応する放射線画像撮影装置1Aを識別するための識別情報とともに、コンソール101Aの記憶手段101bに予め記憶させておく。 After manufacturing the radiographic imaging apparatus 1A, for example, at the time of shipment from the factory, an inspection is performed to determine whether a defective pixel has occurred on the sensor panel 40. The defect image information is stored in advance in the storage unit 101b of the console 101A together with the identification information for identifying the corresponding radiographic image capture device 1A. Let me.
 そして、図23のフローチャートに示すように、まず、放射線画像撮影装置1Aの制御手段22Aは、読み出し回路17によって撮像素子41からそれぞれ画像データを読み出し、当該画像データに対して、オフセット補正を行うとともに(ステップS21)、ゲイン補正を行う(ステップS22)。 Then, as shown in the flowchart of FIG. 23, first, the control unit 22A of the radiographic image capturing apparatus 1A reads out image data from the image sensor 41 by the readout circuit 17, and performs offset correction on the image data. (Step S21), gain correction is performed (Step S22).
 次いで、制御手段22Aは、オフセット補正およびゲイン補正が行われた画像データに対して、記憶手段23Aに記憶された欠陥画素情報に基づき第2の欠陥画素補正処理を行って、プレビュー画像データを作成する(ステップS23)。 Next, the control unit 22A performs a second defective pixel correction process on the image data subjected to the offset correction and the gain correction based on the defective pixel information stored in the storage unit 23A, thereby creating preview image data. (Step S23).
 次いで、制御手段22Aは、当該プレビュー画像データを、通信手段であるアンテナ装置39を介してコンソール101Aに送信する(ステップS24)。 Next, the control means 22A transmits the preview image data to the console 101A via the antenna device 39 which is a communication means (step S24).
 ステップS24で送信されたプレビュー画像データをコンソール101A(具体的には、通信手段101c)が受信すると、コンソール101Aの制御手段101aAは、当該プレビュー画像データに対して所定の表示処理を行って(ステップS25)、当該プレビュー画像データに基づくプレビュー画像を表示手段101dに表示させる(ステップS26)。 When the console 101A (specifically, the communication unit 101c) receives the preview image data transmitted in step S24, the control unit 101aA of the console 101A performs a predetermined display process on the preview image data (step S24). (S25) A preview image based on the preview image data is displayed on the display means 101d (step S26).
 前述したように、第2の欠陥画素補正処理は、簡易に行うことができるため、欠陥画素補正処理を高速に行うことが可能となる。また、それにより、プレビュー画像は即座に表示部101dに表示される。 As described above, since the second defective pixel correction process can be easily performed, the defective pixel correction process can be performed at high speed. Thereby, the preview image is immediately displayed on the display unit 101d.
 次いで、制御手段101aAは、通信手段101cにより受信されたプレビュー画像データに対して、記憶手段101bに記憶された欠陥画素情報のうちの、当該プレビュー画像データを送信してきた放射線画像撮影装置1Aの識別情報に対応付けられた欠陥画素情報に基づき第1の欠陥画素補正処理等を行って、診断画像データを作成する(ステップS27)。 Next, for the preview image data received by the communication unit 101c, the control unit 101aA identifies the radiographic imaging apparatus 1A that has transmitted the preview image data out of the defective pixel information stored in the storage unit 101b. Based on the defective pixel information associated with the information, a first defective pixel correction process or the like is performed to create diagnostic image data (step S27).
 このように、診断画像を作成するためのデータである診断画像データの作成の際には、前述したように高精度な第1の欠陥画素補正処理を行って画像データを補正するため、高精度に補正された診断画像データを作成することが可能となる。 Thus, when creating diagnostic image data, which is data for creating a diagnostic image, the first defective pixel correction process with high accuracy is performed as described above to correct the image data. Thus, it is possible to create diagnostic image data that has been corrected.
 次いで、制御手段101aAは、当該診断画像データに対して所定の出力処理を行って(ステップS28)、当該診断画像データを、通信手段101cを介してPACSサーバ122やイメージャ123などの外部装置に出力(送信)し(ステップS29)、本処理を終了する。 Next, the control unit 101aA performs a predetermined output process on the diagnostic image data (step S28), and outputs the diagnostic image data to an external device such as the PACS server 122 or the imager 123 via the communication unit 101c. (Send) (step S29), and this process is terminated.
 なお、この他の点は第1の実施の形態で示したものと同様であるので、その説明は省略する。 Since other points are the same as those shown in the first embodiment, the description thereof is omitted.
 以上説明した第2の実施の形態に係る放射線画像撮影システム100Aによれば、放射線画像撮影システム100Aのコンソール101Aのコンソール側作成手段である制御手段101aAは、記憶手段101bに記憶された欠陥画素情報に基づき、プレビュー画像データに対して高精度な欠陥画素補正処理、すなわち第1の欠陥画素補正処理を行って、診断画像データを作成し、放射線画像撮影システム100Aの放射線画像撮影装置1Aの撮影装置側作成手段である制御手段22Aは、記憶手段23Aに記憶された欠陥画素情報に基づき、読み出し回路17により読み出された画像データに対して第1の欠陥画素補正処理よりも簡易な欠陥画素補正処理、すなわち第2の欠陥画素補正処理を行って、プレビュー画像を作成するようになっている。 According to the radiographic image capturing system 100A according to the second embodiment described above, the control unit 101aA that is the console side creation unit of the console 101A of the radiographic image capturing system 100A has the defective pixel information stored in the storage unit 101b. The diagnostic image data is generated by performing highly accurate defective pixel correction processing, that is, first defective pixel correction processing, on the preview image data, and the radiographic imaging device 1A imaging apparatus of the radiographic imaging system 100A The control means 22A that is the side creation means, based on the defective pixel information stored in the storage means 23A, corrects defective pixel correction that is simpler than the first defective pixel correction processing on the image data read by the read circuit 17. Process, that is, the second defective pixel correction process is performed to create a preview image. To have.
 このように、本発明では、同じ欠陥画素情報を用いながら、プレビュー画像データを作成する場合と診断画像データを作成する場合とで欠陥画素補正処理の方法を適切に切り替えて、それぞれの場合に適した欠陥画素補正処理を行うことが可能となる。 As described above, according to the present invention, the defective pixel correction processing method is appropriately switched between the case of creating the preview image data and the case of creating the diagnostic image data while using the same defective pixel information, and is suitable for each case. The defective pixel correction process can be performed.
 さらに、放射線画像撮影装置1Aは、欠陥画素補正処理が行われた画像データであるプレビュー画像データを送信するようになっている。これにより、欠陥画素補正処理が行われていない画像データを送信する場合と比較して、送信前に行う圧縮処理における圧縮率が向上し、画像データの送信(転送)時間が短くなるため、プレビュー画像をより高速に表示することが可能となる。 Furthermore, the radiographic image capturing apparatus 1A transmits preview image data that is image data on which defective pixel correction processing has been performed. This improves the compression rate in the compression processing performed before transmission and shortens the transmission (transfer) time of the image data compared to the case of transmitting image data that has not been subjected to defective pixel correction processing. Images can be displayed at higher speed.
 なお、本発明が、上記の実施形態や変形例に限定されず、適宜変更可能であることは言うまでもない。 Needless to say, the present invention is not limited to the above-described embodiments and modifications, and can be changed as appropriate.
 1,1A 放射線画像撮影装置
 17 読み出し回路
 22A 制御手段(撮影装置側作成手段)
 23A 記憶手段(撮影装置側記憶手段)
 39 アンテナ装置(通信手段)
 40 センサパネル
 41 撮像素子
 100,100A 放射線画像撮影システム
 101,101A コンソール
 101b 記憶手段(コンソール側記憶手段)
 101a 制御手段(作成手段)
 101aA 制御手段(コンソール側作成手段)
 101c 通信手段(出力手段)
 101d 表示手段
 122 PACSサーバ(外部装置)
 123 イメージャ(外部装置)
 dp 欠陥画素
1, 1A Radiation imaging device 17 Reading circuit 22A Control means (imaging device side creation means)
23A storage means (photographing device side storage means)
39 Antenna device (communication means)
40 sensor panel 41 imaging device 100, 100A radiation image capturing system 101, 101A console 101b storage means (console side storage means)
101a Control means (creating means)
101aA Control means (console side creation means)
101c Communication means (output means)
101d Display means 122 PACS server (external device)
123 Imager (external device)
dp defective pixel

Claims (8)

  1.  放射線画像撮影を行う放射線画像撮影装置と、前記放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソールと、を備える放射線画像撮影システムにおいて、
     前記放射線画像撮影装置は、
     照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、
     前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、
     前記読み出し回路により読み出された画像データを前記コンソールに送信する通信手段と、を備え、
     前記コンソールは、
     前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する記憶手段と、
     前記放射線画像撮影装置から送信された画像データに基づいて、診断画像データおよびプレビュー画像データを作成する作成手段と、を備え、
     前記作成手段は、前記診断画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して第1の欠陥画素補正処理を行い、前記プレビュー画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことを特徴とする放射線画像撮影システム。
    In a radiographic imaging system comprising: a radiographic imaging device that performs radiographic imaging; and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging device;
    The radiographic image capturing apparatus includes:
    A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner;
    A readout circuit for reading out image data from each of the image sensors;
    Communication means for transmitting image data read by the read circuit to the console,
    The console is
    Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
    Creating means for creating diagnostic image data and preview image data based on the image data transmitted from the radiographic apparatus,
    When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, the radiographic imaging is characterized in that a second defective pixel correction process simpler than the first defective pixel correction process is performed on the image data based on the defective pixel information stored in the storage means. system.
  2.  前記コンソールは、
     前記作成手段により作成されたプレビュー画像データに基づくプレビュー画像を表示する表示手段と、
     前記作成手段により作成された診断画像データを、当該コンソールに接続された外部装置に出力する出力手段と、を備え、
     前記作成手段は、前記画像データに対して前記第2の欠陥画素補正処理を行って前記プレビュー画像データを作成し、前記表示手段により当該プレビュー画像データに基づくプレビュー画像が表示された後に、前記画像データに対して前記第1の欠陥画素補正処理を行って前記診断画像データを作成することを特徴とする請求項1に記載の放射線画像撮影システム。
    The console is
    Display means for displaying a preview image based on the preview image data created by the creating means;
    Output the diagnostic image data created by the creating means to an external device connected to the console,
    The creation means creates the preview image data by performing the second defective pixel correction process on the image data, and after the preview image based on the preview image data is displayed by the display means, the image The radiographic image capturing system according to claim 1, wherein the diagnostic image data is generated by performing the first defective pixel correction process on the data.
  3.  前記欠陥画素情報は、前記欠陥画素の前記センサパネル上での画素位置を含み、
     前記作成手段は、前記記憶手段に記憶された欠陥画素情報に含まれる欠陥画素の画素位置に基づいて、前記画像データの中から、前記欠陥画素の画素位置における画像データと、当該欠陥画素に隣接する直前画素の画素位置における画像データと、を特定し、当該特定された欠陥画素の画像データを、当該特定された直前画素の画像データで置換することによって、前記第2の欠陥画素補正処理を行うことを特徴とする請求項1または2に記載の放射線画像撮影システム。
    The defective pixel information includes a pixel position of the defective pixel on the sensor panel,
    The creation means is based on the pixel position of the defective pixel included in the defective pixel information stored in the storage means, and is adjacent to the image data at the pixel position of the defective pixel and the defective pixel from the image data. The second defective pixel correction process is performed by specifying the image data at the pixel position of the immediately preceding pixel and replacing the image data of the specified defective pixel with the image data of the specified immediately preceding pixel. The radiation image capturing system according to claim 1, wherein the radiation image capturing system is performed.
  4.  前記欠陥画素情報は、前記欠陥画素の前記センサパネル上での画素位置を含み、
     前記作成手段は、前記記憶手段に記憶された欠陥画素情報に含まれる欠陥画素の画素位置に基づいて、前記画像データの中から、前記欠陥画素の画素位置における画像データと、当該欠陥画素に隣接する複数の隣接画素の画素位置における各画像データと、を特定し、当該特定された複数の隣接画素の各画像データの平均値を算出し、当該特定された前記欠陥画素の画像データを、当該算出された平均値で置換することによって、前記第2の欠陥画素補正処理を行うことを特徴とする請求項1または2に記載の放射線画像撮影システム。
    The defective pixel information includes a pixel position of the defective pixel on the sensor panel,
    The creation means is based on the pixel position of the defective pixel included in the defective pixel information stored in the storage means, and is adjacent to the image data at the pixel position of the defective pixel and the defective pixel from the image data. Each image data at pixel positions of a plurality of adjacent pixels to be calculated, an average value of each image data of the specified plurality of adjacent pixels is calculated, and the image data of the specified defective pixel is The radiation image capturing system according to claim 1, wherein the second defective pixel correction process is performed by replacing the calculated average value.
  5.  前記作成手段は、前記記憶手段に記憶された欠陥画素情報に基づいて、前記欠陥画素を中心とした所定の複数の方向それぞれにおいて画像データの勾配を算出し、当該算出された画像データの勾配が最も小さい方向にある正常な画素の中で当該欠陥画素に最も近接する正常な画素の画像データを用いて補正画像データを算出し、当該欠陥画素の画像データを、当該算出された補正画像データで置換することによって、前記第1の欠陥画素補正処理を行うことを特徴とする請求項1~4の何れか一項に記載の放射線画像撮影システム。 The creating unit calculates a gradient of image data in each of a plurality of predetermined directions centering on the defective pixel based on the defective pixel information stored in the storage unit, and the calculated gradient of the image data is calculated. The corrected image data is calculated using the image data of the normal pixel closest to the defective pixel among the normal pixels in the smallest direction, and the image data of the defective pixel is calculated using the calculated corrected image data. The radiographic imaging system according to any one of claims 1 to 4, wherein the first defective pixel correction process is performed by replacement.
  6.  前記作成手段は、前記放射線画像撮影装置から送信された画像データから間引き画像データを生成した後、当該生成された間引き画像データに対して前記第2の欠陥画素補正処理を行うことを特徴とする請求項1~5の何れか一項に記載の放射線画像撮影システム。 The creation unit generates the thinned image data from the image data transmitted from the radiation image capturing apparatus, and then performs the second defective pixel correction process on the generated thinned image data. The radiographic imaging system according to any one of claims 1 to 5.
  7.  放射線画像撮影を行う放射線画像撮影装置と、前記放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソールと、を備える放射線画像撮影システムにおいて、
     前記放射線画像撮影装置は、
     照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、
     前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する撮影装置側記憶手段と、
     前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、
     前記読み出し回路により読み出された画像データに基づいて、プレビュー画像データを作成する撮影装置側作成手段と、
     前記撮影装置側作成手段により作成されたプレビュー画像データを前記コンソールに送信する通信手段と、を備え、
     前記コンソールは、
     前記欠陥画素情報を記憶するコンソール側記憶手段と、
     前記放射線画像撮影装置から送信されたプレビュー画像データに基づいて、診断画像データを作成するコンソール側作成手段と、を備え、
     前記コンソール側作成手段は、前記コンソール側記憶手段に記憶された欠陥画素情報に基づき、前記プレビュー画像データに対して第1の欠陥画素補正処理を行って前記診断画像データを作成し、
     前記撮影装置側作成手段は、前記撮影装置側記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行って前記プレビュー画像データを作成することを特徴とする放射線画像撮影システム。
    In a radiographic imaging system comprising: a radiographic imaging apparatus that performs radiographic imaging; and a console that performs predetermined image processing on image data of the radiographic image captured by the radiographic imaging apparatus,
    The radiographic image capturing apparatus includes:
    A sensor panel in which a plurality of image sensors for generating electric charges according to the dose of irradiated radiation are arranged in a two-dimensional manner;
    An imaging device-side storage unit that stores defective pixel information related to a defective pixel among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
    A readout circuit for reading out image data from each of the image sensors;
    An imaging device side creation means for creating preview image data based on the image data read by the readout circuit;
    Communication means for transmitting the preview image data created by the photographing apparatus side creating means to the console,
    The console is
    Console-side storage means for storing the defective pixel information;
    Console-side creation means for creating diagnostic image data based on the preview image data transmitted from the radiographic imaging device,
    The console side creation means creates the diagnostic image data by performing a first defective pixel correction process on the preview image data based on the defective pixel information stored in the console side storage means,
    The imaging apparatus side creation means performs a second defective pixel correction process that is simpler than the first defective pixel correction process on the image data based on the defective pixel information stored in the imaging apparatus side storage means. A radiographic imaging system characterized in that the preview image data is generated.
  8.  照射された放射線の線量に応じて電荷を発生させる複数の撮像素子が二次元状に配列されたセンサパネルと、前記撮像素子からそれぞれ画像データを読み出す読み出し回路と、を備えた放射線画像撮影装置により撮影された放射線画像の画像データに対して所定の画像処理を行うコンソールにおいて、
     前記センサパネル上に二次元状に配列された前記複数の撮像素子に対応する各画素のうちの欠陥画素に関する欠陥画素情報を記憶する記憶手段と、
     前記放射線画像撮影装置から送信された画像データに基づいて、診断画像データおよびプレビュー画像データを作成する作成手段と、を備え、
     前記作成手段は、前記診断画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して第1の欠陥画素補正処理を行い、前記プレビュー画像データを作成する際、前記記憶手段に記憶された欠陥画素情報に基づき、前記画像データに対して前記第1の欠陥画素補正処理よりも簡易な第2の欠陥画素補正処理を行うことを特徴とするコンソール。
    A radiographic imaging apparatus comprising: a sensor panel in which a plurality of imaging elements that generate charges according to the dose of irradiated radiation are arranged two-dimensionally; and a readout circuit that reads out image data from each of the imaging elements. In a console that performs predetermined image processing on the image data of the captured radiographic image,
    Storage means for storing defective pixel information relating to defective pixels among the pixels corresponding to the plurality of imaging elements arranged two-dimensionally on the sensor panel;
    Creating means for creating diagnostic image data and preview image data based on the image data transmitted from the radiographic apparatus,
    When creating the diagnostic image data, the creation means performs a first defective pixel correction process on the image data based on the defective pixel information stored in the storage means to create the preview image data In this case, the console performs a second defective pixel correction process that is simpler than the first defective pixel correction process on the image data based on the defective pixel information stored in the storage unit.
PCT/JP2010/064579 2009-11-18 2010-08-27 Radiation image capturing system and console WO2011061983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009262472 2009-11-18
JP2009-262472 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011061983A1 true WO2011061983A1 (en) 2011-05-26

Family

ID=44059468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064579 WO2011061983A1 (en) 2009-11-18 2010-08-27 Radiation image capturing system and console

Country Status (1)

Country Link
WO (1) WO2011061983A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236093A (en) * 1994-02-21 1995-09-05 Toshiba Medical Eng Co Ltd Image pickup device
JP2005286824A (en) * 2004-03-30 2005-10-13 Canon Inc Apparatus and method for correcting defective pixel
JP2008236491A (en) * 2007-03-22 2008-10-02 Fujifilm Corp Method of processing image sensor image
JP2008229194A (en) * 2007-03-23 2008-10-02 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2009172078A (en) * 2008-01-23 2009-08-06 Konica Minolta Medical & Graphic Inc Radiation image photographing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236093A (en) * 1994-02-21 1995-09-05 Toshiba Medical Eng Co Ltd Image pickup device
JP2005286824A (en) * 2004-03-30 2005-10-13 Canon Inc Apparatus and method for correcting defective pixel
JP2008236491A (en) * 2007-03-22 2008-10-02 Fujifilm Corp Method of processing image sensor image
JP2008229194A (en) * 2007-03-23 2008-10-02 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2009172078A (en) * 2008-01-23 2009-08-06 Konica Minolta Medical & Graphic Inc Radiation image photographing system

Similar Documents

Publication Publication Date Title
US7476027B2 (en) Radiation imaging system and driving method thereof
WO2014050747A1 (en) Radiographic image capturing device, method for acquiring correction data, and program
JP2012100807A (en) Radiation image detecting device and method for driving and controlling the same
US8785871B2 (en) Radiographic-image capturing device and radiographic-image capturing system
JP2007049122A (en) Conversion apparatus, radiation detector, and radiation detecting system
JP2005006979A (en) Device, method and program for radiation imaging
JP2012075099A (en) Digital x-ray detector with increased dynamic range
JP2011193306A (en) Apparatus and system for photographing radiation image
JP2012045044A (en) Radiation image detection device
JP2010112866A (en) Portable type radiographic image photographing apparatus, and radiographic image photographing system
JP2010124025A (en) Portable radiographing apparatus and radiographing system
JP5396814B2 (en) Radiation imaging system
WO2011013390A1 (en) Radiation image capturing device
JP2011172606A (en) Radiographic apparatus and radiographic system
JP2011133302A (en) Radiographic imaging device and radiographic imaging system
WO2010100969A1 (en) Radiograph capturing device and radiograph capturing system
WO2011061983A1 (en) Radiation image capturing system and console
JP2006128644A (en) Imaging apparatus, radiation imaging apparatus, and radiation imaging system
JP5660871B2 (en) Radiation image detection apparatus and radiation irradiation start detection method
JP2012134781A (en) Defective pixel map generation method, defective pixel map generation system, console, and radioactive ray image photographing device
JP6186477B2 (en) Radiation image detection apparatus and radiation irradiation start detection method
JP5964931B2 (en) Radiation image detection apparatus and radiation irradiation start detection method
JP2011185800A (en) Radiographic image photographing apparatus and radiographic image photographing system
JP2010213848A (en) Radiographic apparatus and radiation image generation system
JP2010207516A (en) Radiation image generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP