WO2011058811A1 - Sliding nozzle plate - Google Patents

Sliding nozzle plate Download PDF

Info

Publication number
WO2011058811A1
WO2011058811A1 PCT/JP2010/065283 JP2010065283W WO2011058811A1 WO 2011058811 A1 WO2011058811 A1 WO 2011058811A1 JP 2010065283 W JP2010065283 W JP 2010065283W WO 2011058811 A1 WO2011058811 A1 WO 2011058811A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
surface roughness
thermal expansion
plate
nozzle plate
Prior art date
Application number
PCT/JP2010/065283
Other languages
French (fr)
Japanese (ja)
Inventor
経一郎 赤峰
勝美 森川
丈記 吉富
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Publication of WO2011058811A1 publication Critical patent/WO2011058811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • B22D41/30Manufacturing or repairing thereof
    • B22D41/32Manufacturing or repairing thereof characterised by the materials used therefor

Definitions

  • the present invention relates to a sliding nozzle plate (hereinafter referred to as “SN plate”) which is a plate brick used in a sliding nozzle device (hereinafter referred to as “SN device”) for controlling the flow rate of molten steel.
  • SN plate sliding nozzle plate
  • SN device sliding nozzle device
  • an SN device In steel production, an SN device is used to control the flow rate of molten steel discharged from a molten metal container such as a ladle or tundish.
  • a molten metal container such as a ladle or tundish.
  • an SN plate having two or three refractory nozzle holes is used. The SN plate is superposed under a restrained condition and is slid with a surface pressure applied, and the flow rate of the molten steel is adjusted by adjusting the opening of the nozzle hole.
  • the SN plate has mechanical strength that can withstand use under restraint conditions, resistance to spalling against thermal stress during casting, corrosion resistance to components and slag in molten steel, oxidation resistance, Characteristics such as “surface roughness resistance” against “surface roughness” in which the sliding surface serving as the working surface is worn are required.
  • an alumina carbon refractory is used for the SN plate.
  • a refractory raw material such as zirconia mullite or alumina zirconia having a low thermal expansion coefficient is used.
  • the use of high-purity and dense raw materials such as fused alumina that does not easily react with slag, and the optimization of the type and content of carbon are being studied.
  • techniques such as making the structure denser and strengthening by optimizing the particle size composition of the raw materials used, and further improving the polishing accuracy of the sliding surface are implemented.
  • antioxidants such as silicon carbide, boron carbide, and aluminum nitride, and metals such as silicon and aluminum are used as the sintered material.
  • Patent Document 1 3 to 40% by mass of a carbonaceous raw material and 0.5% of aluminum oxycarbide are used for the purpose of improving the oxidation resistance, corrosion resistance, and spalling resistance of an alumina carbon refractory. It is proposed to add up to 15% by mass.
  • Patent Document 2 discloses a refractory material containing an electro-fused refractory aggregate containing alumina-aluminum oxycarbide as a main component and containing 0.5 to 3.0% by mass of carbon. Yes.
  • the elements required for the SN plate include “surface roughness resistance” indicating resistance to sliding surface wear, so-called “surface roughness”, in addition to oxidation resistance, corrosion resistance, and spalling resistance. .
  • surface roughness resistance is not taken into consideration, and it has been difficult to obtain an SN plate having excellent “surface roughness resistance” based on the description of these documents.
  • the problem to be solved by the present invention is to provide an SN plate which is excellent in “surface roughness resistance” in addition to oxidation resistance, corrosion resistance and spalling resistance.
  • the SN plate of the present invention is characterized by containing 5 to 95% by mass of Al 4 O 4 C as a mineral phase.
  • the SN plate of the present invention contains a specific amount of Al 4 O 4 C which is aluminum oxycarbide.
  • Al 4 O 4 C Al 2 OC is known as the aluminum oxycarbide, but the present invention specifies Al 4 O 4 C among the aluminum oxycarbides. This is because Al 4 O 4 C can produce a more industrially stable quality than Al 2 OC, and the effect of stably improving the characteristics of the SN plate is high. is there.
  • Al 4 O 4 C reacts with CO gas generated by oxidation of carbon in the refractory with FeO or the like to precipitate alumina and carbon, thereby densifying the structure. Therefore, the effect of suppressing the oxidation of brick is known. Moreover, since Al 4 O 4 C reacts with carbon in the refractory as shown in formula (2) to produce aluminum gas, this aluminum gas reacts with CO gas as shown in formula (3). Then, it has the effect of precipitating alumina and carbon and densifying the structure. Further, in terms of operation, as shown in the formula (4), the aluminum gas reacts with FeO in the steel and precipitates alumina, so that an oxidation resistance effect is obtained similarly.
  • Al 4 O 4 C does not become a cavity like metallic aluminum, but precipitates alumina and carbon, as shown by formulas (1), (3), and (4). It is known that
  • the present inventors tried to evaluate “surface roughness resistance”, which is an important characteristic for the SN plate, by using the (oxidation resistance) evaluation method described in JP-A-2009-204594. That is, using the induction furnace shown in FIG. 1, the value obtained by indexing the thickness of the decarburized layer of the steel bath portion caused by the reaction between the molten steel and the sample refractory (with the base material as 100), and these refractories are actual machines The relationship with “surface roughness”, which is the wear of the sliding surface used and received, was investigated.
  • FIG. 2 shows the relationship between the decarburized layer thickness index of the steel bath and the stroke digestion speed, which is an index of “surface roughness resistance”.
  • the stroke digestion speed refers to the wear speed of damage to the sliding surface and “surface roughness”, and is an index representing “surface roughness resistance” of the SN plate. That is, the smaller the stroke digestion rate, the better the “surface roughness resistance”.
  • FIG. 2 there is a good correlation between the thickness of the decarburized layer in the steel bath and the “surface roughness resistance”. The smaller the decarburized layer thickness index of the steel bath, the smaller the stroke digestion rate and the “surface roughness resistance”. Can be confirmed to be good. From this, it can be understood that the evaluation method shown in FIG. 1 is effective as an evaluation method of “surface roughness resistance”.
  • the “surface roughness resistance” of the refractory to which Al 4 O 4 C was applied was evaluated by this evaluation method. As a result, it was confirmed that the refractory to which Al 4 O 4 C was applied formed a dense alumina layer, which is a thin decarburized layer, only on the working surface of the iron bath, and from this, application of Al 4 O 4 C was confirmed. It is estimated that is effective as a means for improving the “surface roughness resistance”.
  • alumina and carbon are precipitated by Formula (1) and Formulas (3) and (4) to provide oxidation resistance. It is considered that the dense alumina layer, which is a thin decarburized layer, is provided with sliding wear resistance against sliding and an effect on “surface roughness resistance” can be obtained. In addition, since the reaction of Al 4 O 4 C is very slight and maintained inside the working surface, the feature of low thermal expansion coefficient is also maintained, and the spalling resistance effect can be maintained.
  • Al 2 OC which is the same aluminum oxycarbide, but Al 2 OC is stable only at high temperatures as shown in the Al 2 O 3 -Al 4 C 3 phase diagram of FIG. At normal temperature, it exists as a normal stable phase. For this reason, it is difficult to stably produce an Al 2 OC composition by a melting method using an electric furnace in particular, and it is difficult to control the characteristics and quality of Al 2 OC. On the other hand, since Al 4 O 4 C exists as a stable phase at normal temperature, it is possible to industrially produce a raw material having a stable quality.
  • an SN plate having excellent surface roughness resistance in addition to oxidation resistance, corrosion resistance, and spalling resistance.
  • FIG. 3 is an Al 2 O 3 —Al 4 C 3 system phase diagram.
  • Al 4 O 4 C used in the present invention can be produced by a sintering method in which a carbonaceous raw material and an alumina raw material are heat-treated in a firing furnace, or a melting method in which melting is performed in an arc furnace.
  • a blend of a carbonaceous raw material having a mesh size of 50 mesh or less and an alumina raw material having a mesh size of 100 mesh or less is allowed to have a variation of C component within ⁇ 10%.
  • High purity Al 4 O 4 C can be produced by uniformly mixing the mixture and melting the mixture in an arc furnace.
  • the SN plate of the present invention is obtained by mixing and molding Al 4 O 4 C and other refractory raw materials at a predetermined ratio and then firing. You may impregnate pitch after baking as needed.
  • the SN plate of the present invention contains 5 to 95% by mass of Al 4 O 4 C as a mineral phase.
  • the content of Al 4 O 4 C is preferably 40 to 95% by mass, and more preferably 70 to 95% by mass.
  • the SN plate of the present invention preferably has a thermal expansion coefficient of 8 ⁇ 10 ⁇ 6 / K or less.
  • the thermal expansion coefficient exceeds 8 ⁇ 10 ⁇ 6 / K, wear due to thermal stress such as radial cracks from the nozzle holes and edge cracks in the nozzle holes increases.
  • the nozzle inner hole portion expands at a high temperature at the time of casting, so that not only edge chipping occurs, but also air enters between the SN plate surfaces and becomes a factor that promotes oxidation and wear of the sliding surface.
  • the thermal expansion coefficient is preferably 8 ⁇ 10 ⁇ 6 / K or less.
  • the SN plate of the present invention preferably has a bending strength at room temperature of 10 MPa or more and 60 MPa or less.
  • the SN plate is used under conditions of being attached to the SN device and restrained. For this reason, if it does not have sufficient strength with respect to the restraining force, a peculiar crack is generated and becomes a cause of trouble.
  • the spalling resistance was judged as good or bad from the state of cracks after being immersed in molten steel at 1600 ° C for 3 minutes.
  • indicates that cracks are slight and good
  • indicates that small cracks are generated
  • indicates that large cracks are generated and defects are not achieved.
  • Thermal expansion coefficient is effective as an evaluation index for SN chip edge chipping. That is, the smaller the thermal expansion coefficient, the lower the thermal stress is because the expansion of the nozzle hole that becomes hot due to the molten steel flow is suppressed, and the edge chipping is less likely to occur.
  • the coefficient of thermal expansion was calculated from the coefficient of thermal expansion at 1500 ° C. measured according to JIS R2207.
  • the amount of erosion was evaluated by performing a erosion test at 1600 ° C. for 2 hours using molten iron and iron oxide powder in an induction furnace.
  • the amount of erosion of Comparative Example 1 is indexed as 100, and the smaller the index, the better the corrosion resistance.
  • Chemical components were subjected to chemical analysis by X-ray diffraction and refractory analysis methods defined in JIS R2212, 2216. Specifically, Al 4 O 4 C is first quantified from the X-ray diffraction result by the internal standard method, and Al 2 O 3 corresponding to the quantified Al 4 O 4 C amount is determined from the analysis results prescribed in JIS R2212, 2216. The ZrO 2 , Al 2 O 3 , and C contents of the remainder were calculated except for the amount and C amount. If the total of chemical components is less than 100%, the balance is a metal such as aluminum or silicon, or the reactants such as carbide, oxynitride, nitride, carbide, boride and other antioxidants. Ingredients included.
  • Table 1 shows the case where the content of Al 4 O 4 C is changed.
  • Examples 1 to 4 have an Al 4 O 4 C content within the range of the present invention, and are excellent in “surface roughness resistance” and spalling resistance. The coefficient of thermal expansion tends to decrease as the Al 4 O 4 C content increases.
  • Comparative Examples 1 and 2 have a content of Al 4 O 4 C that is less than the range of the present invention, and are inferior in “surface roughness resistance” and spalling resistance. The coefficient of thermal expansion is higher than that of the example, and the effect of improving edge chipping is small.
  • Comparative Example 3 since the content of Al 4 O 4 C was larger than the range of the present invention, cracks occurred due to the volume change of Al 4 O 4 C during firing.
  • the coefficient of thermal expansion is zirconia-based materials such as alumina zirconia and zirconia mullite, which are aggregate materials having a low coefficient of thermal expansion, SiO 2 -containing aggregates such as mullite and fused silica, silicon carbide and boron carbide, and silicon nitride and aluminum nitride. It is possible to adjust by the addition amount of carbides and nitrides such as carbon, addition amount of carbon, firing temperature, firing time and the like. In Table 2, the thermal expansion coefficient was changed by adjusting the Al 4 O 4 C and alumina zirconia raw materials that are low thermal expansion aggregates within the scope of the present invention, the amount of carbon added, and the firing temperature.
  • Example 5 the thermal expansion coefficient was as high as 8.1 ⁇ 10 ⁇ 6 / K, and the spalling resistance was evaluated by thermal expansion. This is inferior to Examples 6 to 9 having a coefficient of 8.0 ⁇ 10 ⁇ 6 / K or less. Therefore, when the thermal expansion coefficient is 8.0 ⁇ 10 ⁇ 6 / K or more, wear due to thermal stress may be a problem.
  • Table 3 shows the case where the bending strength at normal temperature is changed. Flexural strength at room temperature can be adjusted by adding metal as a sintered material such as aluminum and silicon, firing conditions such as firing temperature and firing time, filling density and particle size composition of mixed refractory raw material composition It is.
  • the bending strength at room temperature was changed by adjusting the metal addition amount and the particle size constitution within the scope of the present invention. In both cases, a sufficient effect has been obtained with respect to “surface roughness resistance”, but in Example 10, the bending strength at room temperature is 10 MPa or less and the strength is low. May occur.
  • Example 14 the bending strength at room temperature is as high as 60 Mpa or more, and in the spalling resistance test, it is inferior to Examples 11 to 13, and the thermal stress in the actual machine such as a nozzle hole edge defect. There is concern about wear and tear. In Examples 11 to 13, sufficient bending strength can be obtained, and “surface roughness resistance” is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is a sliding nozzle plate with superior resistance to surface roughening, in addition to resistance to oxidation, corrosion, and spalling. The sliding nozzle plate includes 5 to 95 mass% of Al4O4C as a mineral phase, and has a thermal expansion coefficient of no more than 8×10-6/K and a flexural strength at room temperature in the range of 10 MPa to 60 MPa.

Description

スライディングノズルプレートSliding nozzle plate
 本発明は、溶鋼の流量を制御するスライディングノズル装置(以下「SN装置」という。)に用いられるプレートれんがである、スライディングノズルプレート(以下「SNプレート」という。)に関する。 The present invention relates to a sliding nozzle plate (hereinafter referred to as “SN plate”) which is a plate brick used in a sliding nozzle device (hereinafter referred to as “SN device”) for controlling the flow rate of molten steel.
 鋼の製造において、取鍋やタンディッシュ等の溶融金属容器から排出される溶鋼の流量を制御するために、SN装置が使用される。このSN装置には2枚もしくは3枚の耐火物製のノズル孔を持つSNプレートが使用される。このSNプレートは拘束された条件下、重ね合わせられ、さらに面圧が付加された状態で摺動され、ノズル孔の開度を調整することで溶鋼の流量が調整される。 In steel production, an SN device is used to control the flow rate of molten steel discharged from a molten metal container such as a ladle or tundish. In this SN device, an SN plate having two or three refractory nozzle holes is used. The SN plate is superposed under a restrained condition and is slid with a surface pressure applied, and the flow rate of the molten steel is adjusted by adjusting the opening of the nozzle hole.
 このことから、SNプレートには、拘束条件下での使用に耐えうる機械的強度、鋳造時の熱応力に対する耐スポーリング性、溶鋼中の成分やスラグなどに対する耐食性、耐酸化性、さらには、稼動面となる摺動面が損耗を受ける「面荒れ」に対する「耐面荒れ性」などの特性が要求される。 From this, the SN plate has mechanical strength that can withstand use under restraint conditions, resistance to spalling against thermal stress during casting, corrosion resistance to components and slag in molten steel, oxidation resistance, Characteristics such as “surface roughness resistance” against “surface roughness” in which the sliding surface serving as the working surface is worn are required.
 SNプレートには、一般的に、アルミナカーボン質耐火物が使用されており、例えば耐スポーリング性を向上させるために、低熱膨張率であるジルコニアムライトやアルミナジルコニア等の耐火原料が使用されている。また、耐食性を向上するためには、スラグと反応しにくい電融アルミナ等の高純度で緻密な原料の使用、さらにカーボンの種類やカーボン含有量の適正化等が検討されている。摺動による耐摩耗性を向上するためには、使用する原料の粒度構成の適正化等により組織を緻密化し高強度化する、さらには摺動面の研磨精度を向上させるなどの手法が実施されている。また、酸化防止のためには炭化珪素、炭化硼素、窒化アルミ等の酸化防止剤や、シリコンやアルミニウムなどの金属が焼結材として用いられている。 In general, an alumina carbon refractory is used for the SN plate. For example, in order to improve the spalling resistance, a refractory raw material such as zirconia mullite or alumina zirconia having a low thermal expansion coefficient is used. . In order to improve corrosion resistance, the use of high-purity and dense raw materials such as fused alumina that does not easily react with slag, and the optimization of the type and content of carbon are being studied. In order to improve the abrasion resistance due to sliding, techniques such as making the structure denser and strengthening by optimizing the particle size composition of the raw materials used, and further improving the polishing accuracy of the sliding surface are implemented. ing. In order to prevent oxidation, antioxidants such as silicon carbide, boron carbide, and aluminum nitride, and metals such as silicon and aluminum are used as the sintered material.
 一方で、特許文献1には、アルミナカーボン質耐火物の耐酸化性、耐食性及び耐スポーリング性を向上させることを目的として、炭素質原料を3~40質量%とアルミニウムオキシカーバイドを0.5~15質量%配合することが提案されている。また、特許文献2には、アルミナ-アルミニウムオキシカーバイドを主成分とし、含有炭素量が0.5~3.0質量%である電融された耐火物骨材を配合した耐火物が示されている。 On the other hand, in Patent Document 1, 3 to 40% by mass of a carbonaceous raw material and 0.5% of aluminum oxycarbide are used for the purpose of improving the oxidation resistance, corrosion resistance, and spalling resistance of an alumina carbon refractory. It is proposed to add up to 15% by mass. Patent Document 2 discloses a refractory material containing an electro-fused refractory aggregate containing alumina-aluminum oxycarbide as a main component and containing 0.5 to 3.0% by mass of carbon. Yes.
 しかしながら、SNプレートに求められる要素としては、上述のとおり、耐酸化性、耐食性及び耐スポーリング性以外に、摺動面の損耗、いわゆる「面荒れ」に対する抵抗を示す「耐面荒れ性」がある。特許文献1、2では、「耐面荒れ性」が考慮されておらず、これらの文献の記載に基づいて、「耐面荒れ性」に優れたSNプレートを得ることは困難であった。 However, as described above, the elements required for the SN plate include “surface roughness resistance” indicating resistance to sliding surface wear, so-called “surface roughness”, in addition to oxidation resistance, corrosion resistance, and spalling resistance. . In Patent Documents 1 and 2, “surface roughness resistance” is not taken into consideration, and it has been difficult to obtain an SN plate having excellent “surface roughness resistance” based on the description of these documents.
特開平9-295857号公報Japanese Patent Laid-Open No. 9-295857 特開昭55-60067号公報Japanese Patent Laid-Open No. 55-60067
 本発明が解決しようとする課題は、耐酸化性、耐食性及び耐スポーリング性に加え、「耐面荒れ性」にも優れたSNプレートを提供することにある。 The problem to be solved by the present invention is to provide an SN plate which is excellent in “surface roughness resistance” in addition to oxidation resistance, corrosion resistance and spalling resistance.
 本発明のSNプレートは、鉱物相としてAlCを5~95質量%含有することを特徴とする。 The SN plate of the present invention is characterized by containing 5 to 95% by mass of Al 4 O 4 C as a mineral phase.
 このように本発明のSNプレートは、アルミニウムオキシカーバイドであるAlCを特定量含有する。アルミニウムオキシカーバイドとしては、AlCのほかにAlOCが知られているが、本発明はアルミニウムオキシカーバイドのうちAlCに特定している。これは、AlOCに対して、AlCの方が工業的に安定した品質のものを製造することが可能であり、SNプレートの特性を安定して向上させる効果が高いからである。 Thus, the SN plate of the present invention contains a specific amount of Al 4 O 4 C which is aluminum oxycarbide. In addition to Al 4 O 4 C, Al 2 OC is known as the aluminum oxycarbide, but the present invention specifies Al 4 O 4 C among the aluminum oxycarbides. This is because Al 4 O 4 C can produce a more industrially stable quality than Al 2 OC, and the effect of stably improving the characteristics of the SN plate is high. is there.
 すなわち、AlCは、式(1)に示すとおり、耐火物中のカーボンがFeO等により酸化されて生じたCOガスと反応してアルミナとカーボンを析出し、組織を緻密化することから、れんがの酸化を抑制する効果が知れられている。また、AlCは、式(2)に示すとおり、耐火物中のカーボンと反応しアルミニウムガスを生成することから、このアルミニウムガスが式(3)に示すとおり、同じくCOガスと反応し、アルミナとカーボンを析出し、組織を緻密化する効果がある。さらに稼動面では、式(4)に示すとおり、アルミニウムガスが鋼中のFeOと反応し、アルミナを析出することから、同様に耐酸化性効果が得られる。 That is, as shown in the formula (1), Al 4 O 4 C reacts with CO gas generated by oxidation of carbon in the refractory with FeO or the like to precipitate alumina and carbon, thereby densifying the structure. Therefore, the effect of suppressing the oxidation of brick is known. Moreover, since Al 4 O 4 C reacts with carbon in the refractory as shown in formula (2) to produce aluminum gas, this aluminum gas reacts with CO gas as shown in formula (3). Then, it has the effect of precipitating alumina and carbon and densifying the structure. Further, in terms of operation, as shown in the formula (4), the aluminum gas reacts with FeO in the steel and precipitates alumina, so that an oxidation resistance effect is obtained similarly.
 AlC(s)+2CO(g)=2Al(s)+3C(s) …(1)
 AlC(s)+3C(s)=4Al(g)+ 4CO(g) …(2)
 2Al(g)+3CO(g)=Al(s)+ 3C(s)  …(3)
 2Al(g)+3FeO(l)=Al(s)+ Fe(s) …(4)
Al 4 O 4 C (s) + 2CO (g) = 2Al 2 O 3 (s) + 3C (s) (1)
Al 4 O 4 C (s) + 3C (s) = 4Al (g) + 4CO (g) (2)
2Al (g) + 3CO (g) = Al 2 O 3 (s) + 3C (s) (3)
2Al (g) + 3FeO (l) = Al 2 O 3 (s) + Fe (s) (4)
 このようにAlCは、式(1)及び式(3)、(4)で示されるように、金属アルミニウムのように空洞とはならずに、アルミナとカーボンを析出し組織を緻密化することが知られている。 In this way, Al 4 O 4 C does not become a cavity like metallic aluminum, but precipitates alumina and carbon, as shown by formulas (1), (3), and (4). It is known that
 本発明者らは、SNプレートにとって重要な特性である「耐面荒れ性」の評価を、特開2009-204594号公報に記載の(耐酸化性の)評価方法を用いて試みた。すなわち、図1に示す誘導炉を用い溶鋼とサンプルである耐火物の反応により生じた鋼浴部の脱炭層厚みを(ベース材質を100として)指数化した値と、これらの耐火物が実機で使用され、受けた摺動面の損耗である「面荒れ」との関係を調査した。 The present inventors tried to evaluate “surface roughness resistance”, which is an important characteristic for the SN plate, by using the (oxidation resistance) evaluation method described in JP-A-2009-204594. That is, using the induction furnace shown in FIG. 1, the value obtained by indexing the thickness of the decarburized layer of the steel bath portion caused by the reaction between the molten steel and the sample refractory (with the base material as 100), and these refractories are actual machines The relationship with “surface roughness”, which is the wear of the sliding surface used and received, was investigated.
 図2は、鋼浴部の脱炭層厚み指数と「耐面荒れ性」の指標であるストローク消化速度との関係を示す。ストローク消化速度とは、摺動面の損傷、「面荒れ」の損耗速度のことで、SNプレートの「耐面荒れ性」を表す指標である。すなわちストローク消化速度が小さいほど、「耐面荒れ性」が良好である。図2に示すように、鋼浴部の脱炭層厚みと「耐面荒れ性」には良い相関が認められ、鋼浴部の脱炭層厚み指数が小さいほど、ストローク消化速度も小さく「耐面荒れ性」が良好であることが確認できる。このことから図1に示す評価方法が「耐面荒れ性」の評価方法として有効であることがわかる。 FIG. 2 shows the relationship between the decarburized layer thickness index of the steel bath and the stroke digestion speed, which is an index of “surface roughness resistance”. The stroke digestion speed refers to the wear speed of damage to the sliding surface and “surface roughness”, and is an index representing “surface roughness resistance” of the SN plate. That is, the smaller the stroke digestion rate, the better the “surface roughness resistance”. As shown in FIG. 2, there is a good correlation between the thickness of the decarburized layer in the steel bath and the “surface roughness resistance”. The smaller the decarburized layer thickness index of the steel bath, the smaller the stroke digestion rate and the “surface roughness resistance”. Can be confirmed to be good. From this, it can be understood that the evaluation method shown in FIG. 1 is effective as an evaluation method of “surface roughness resistance”.
 よって、この評価方法によりAlCを適用した耐火物の「耐面荒れ性」を評価した。その結果、AlCを適用した耐火物は、鉄浴部の稼動表面のみに薄い脱炭層である緻密なアルミナ層を形成することが確認され、このことからAlCの適用が「耐面荒れ性」を向上させる手段として有効であることが推定された。 Therefore, the “surface roughness resistance” of the refractory to which Al 4 O 4 C was applied was evaluated by this evaluation method. As a result, it was confirmed that the refractory to which Al 4 O 4 C was applied formed a dense alumina layer, which is a thin decarburized layer, only on the working surface of the iron bath, and from this, application of Al 4 O 4 C was confirmed. It is estimated that is effective as a means for improving the “surface roughness resistance”.
 稼動面となる摺動面では、従来報告されていたように、式(1)および式(3)、(4)により、アルミナとカーボンを析出し、耐酸化性が付与されるが、それと同時に形成された薄い脱炭層である緻密なアルミナ層により、摺動に対する耐摺動磨耗性も付与され、「耐面荒れ性」に対する効果が得られると考えられる。また、稼動面内部ではAlCの反応は極僅かであり保持されることから、低熱膨張率という特徴も維持され、耐スポーリング性効果も持続することができる。 On the sliding surface as the working surface, as previously reported, alumina and carbon are precipitated by Formula (1) and Formulas (3) and (4) to provide oxidation resistance. It is considered that the dense alumina layer, which is a thin decarburized layer, is provided with sliding wear resistance against sliding and an effect on “surface roughness resistance” can be obtained. In addition, since the reaction of Al 4 O 4 C is very slight and maintained inside the working surface, the feature of low thermal expansion coefficient is also maintained, and the spalling resistance effect can be maintained.
 金属アルミニウムにも同様の効果が期待できるが、金属アルミニウムの場合、反応後に空洞を形成する他、融点が低いことから摺動面内部でも反応が進行し、炭化アルミニウム或いは炭化アルミニウムを経由してアルミナを生成する。このことから、AlCと比較して、酸化防止効果の持続性が乏しく、さらに焼結により組織が過度に緻密化され耐スポーリング性を低下させる。 The same effect can be expected for metal aluminum, but in the case of metal aluminum, in addition to forming cavities after the reaction, the reaction also proceeds inside the sliding surface due to the low melting point, and alumina is transmitted via aluminum carbide or aluminum carbide. Is generated. Therefore, as compared with the Al 4 O 4 C, poor persistence of anti-oxidant effect, further tissue is excessively densified by sintering reduces the spalling resistance.
 以上のことから、AlCを適用すれば、「面荒れ」の要因の一つと考えられている、熱衝撃による組織の緩みも緩和され、さらに高い「耐面荒れ性」の効果を得ることができる。 From the above, if Al 4 O 4 C is applied, loosening of the structure due to thermal shock, which is considered to be one of the factors of “surface roughness”, is alleviated, and an even higher “surface roughness resistance” effect is obtained. be able to.
 同じアルミニウムオキシカーバイドであるAlOCでも同様の効果が期待できるが、AlOCは、図3のAl-Al系状態図に示されるように高温域でのみ安定であり、常温では順安定相として存在する。このことからAlOC組成物を、とくに電気炉を用いた溶融法によって安定して製造することは困難であり、AlOCの特性や品質をコントロールすることが困難である。これに対して、AlCは、常温で安定相として存在することから、安定した品質の原料を工業的に製造することが可能である。 A similar effect can be expected with Al 2 OC, which is the same aluminum oxycarbide, but Al 2 OC is stable only at high temperatures as shown in the Al 2 O 3 -Al 4 C 3 phase diagram of FIG. At normal temperature, it exists as a normal stable phase. For this reason, it is difficult to stably produce an Al 2 OC composition by a melting method using an electric furnace in particular, and it is difficult to control the characteristics and quality of Al 2 OC. On the other hand, since Al 4 O 4 C exists as a stable phase at normal temperature, it is possible to industrially produce a raw material having a stable quality.
 本発明によれば、耐酸化性、耐食性及び耐スポーリング性に加え、耐面荒れ性にも優れたSNプレートを得ることができる。 According to the present invention, it is possible to obtain an SN plate having excellent surface roughness resistance in addition to oxidation resistance, corrosion resistance, and spalling resistance.
耐面荒れ性を評価するための液相酸化試験の装置を示す。An apparatus for a liquid phase oxidation test for evaluating surface roughness resistance is shown. 液相酸化試験による鋼浴部の脱炭層厚みとストローク消化速度(耐面荒れ性)との関係を示す。The relationship between the thickness of the decarburized layer in the steel bath part and the stroke digestion rate (surface roughness resistance) by the liquid phase oxidation test is shown. Al-Al系状態図である。FIG. 3 is an Al 2 O 3 —Al 4 C 3 system phase diagram.
 本発明で使用するAlCは、炭素質原料とアルミナ原料とを焼成炉で熱処理する焼結法、あるいはアーク炉で溶融する溶融法によって製造することができる。とくに本出願人が特願2009-82729で提案したように、50メッシュ以下の炭素質原料と100メッシュ以下のアルミナ質原料とからなる配合物を、C成分のばらつきが±10%以内となるように均一に混合し、この混合物をアーク炉で溶融することによって、高純度のAlCを製造することができる。 Al 4 O 4 C used in the present invention can be produced by a sintering method in which a carbonaceous raw material and an alumina raw material are heat-treated in a firing furnace, or a melting method in which melting is performed in an arc furnace. In particular, as proposed by the present applicant in Japanese Patent Application No. 2009-82729, a blend of a carbonaceous raw material having a mesh size of 50 mesh or less and an alumina raw material having a mesh size of 100 mesh or less is allowed to have a variation of C component within ± 10%. High purity Al 4 O 4 C can be produced by uniformly mixing the mixture and melting the mixture in an arc furnace.
 このAlCと、他の耐火原料とを所定の割合で混合し成形した後に焼成することで、本発明のSNプレートが得られる。必要に応じて焼成後に、ピッチ含浸してもよい。 The SN plate of the present invention is obtained by mixing and molding Al 4 O 4 C and other refractory raw materials at a predetermined ratio and then firing. You may impregnate pitch after baking as needed.
 本発明のSNプレートは、鉱物相としてAlCを5~95質量%含有する。AlCの含有量が5質量%未満では、「耐面荒れ性」及び耐スポーリング性に関して十分な効果を得ることができない。一方、95質量%を超えると、AlCの反応に起因した体積変化により焼成亀裂が生じ、SNプレートを製造することができない。AlCの含有量は、好ましくは40~95質量%であり、さらに好ましくは70~95質量%である。 The SN plate of the present invention contains 5 to 95% by mass of Al 4 O 4 C as a mineral phase. When the content of Al 4 O 4 C is less than 5% by mass, sufficient effects cannot be obtained with respect to “surface roughness resistance” and spalling resistance. On the other hand, if it exceeds 95% by mass, firing cracks occur due to the volume change caused by the reaction of Al 4 O 4 C, and the SN plate cannot be manufactured. The content of Al 4 O 4 C is preferably 40 to 95% by mass, and more preferably 70 to 95% by mass.
 また、本発明のSNプレートは、熱膨張係数が8×10-6/K以下であることが好ましい。熱膨張係数が8×10-6/Kを超えると、ノズル孔からの放射状亀裂、ノズル孔のエッジ欠け等、熱応力に起因した損耗が大きくなる。さらに、ノズル内孔部は鋳造時、高温となり膨張することからエッジ欠けが生じるだけでなく、SNプレート面間からエアーが進入し、摺動面の酸化及び損耗を促進する要因となる。よって熱膨張係数としては8×10-6/K以下であることが好ましい。 Further, the SN plate of the present invention preferably has a thermal expansion coefficient of 8 × 10 −6 / K or less. When the thermal expansion coefficient exceeds 8 × 10 −6 / K, wear due to thermal stress such as radial cracks from the nozzle holes and edge cracks in the nozzle holes increases. Furthermore, the nozzle inner hole portion expands at a high temperature at the time of casting, so that not only edge chipping occurs, but also air enters between the SN plate surfaces and becomes a factor that promotes oxidation and wear of the sliding surface. Accordingly, the thermal expansion coefficient is preferably 8 × 10 −6 / K or less.
 また、本発明のSNプレートは、常温での曲げ強さが10MPa以上60Mpa以下であることが好ましい。SNプレートは、SN装置に装着され拘束された条件下で使用される。このことから、拘束力に対して十分な強度を持たない場合は、特異な亀裂を生じトラブルの要因となる。また、強度と弾性率には相関関係があり、強度が高くなるほど弾性率は高くなる傾向がある。このことから、強度が過剰にある場合は耐スポーリング性が低下し、例えば、エッジ欠け等により耐用性を低下させる要因となる。 Further, the SN plate of the present invention preferably has a bending strength at room temperature of 10 MPa or more and 60 MPa or less. The SN plate is used under conditions of being attached to the SN device and restrained. For this reason, if it does not have sufficient strength with respect to the restraining force, a peculiar crack is generated and becomes a cause of trouble. Further, there is a correlation between the strength and the elastic modulus, and the elastic modulus tends to increase as the strength increases. For this reason, when the strength is excessive, the spalling resistance is lowered, and for example, the durability is lowered due to edge chipping or the like.
 AlC、アルミナ骨材原料、ジルコニア系原料、焼結材としてアルミニウム及び/又はシリコン、並びにカーボンを主として、所定の割合で配合した耐火原料配合物に、フェノール樹脂を所定の割合で添加し、混合、成形した後に所定の条件で焼成し、さらにピッチ含浸、コーキングすることにより製造されたれんがの特性を評価した(表1~3)。具体的には、耐スポーリング性、熱膨張率及び「耐面荒れ性」及び耐食性を評価した。 Addition of phenolic resin at a predetermined ratio to a refractory raw material mixture containing Al 4 O 4 C, alumina aggregate raw material, zirconia-based raw material, aluminum and / or silicon as a sintered material, and carbon mainly at a predetermined ratio Then, after mixing and forming, firing was performed under predetermined conditions, and further, the characteristics of bricks produced by pitch impregnation and coking were evaluated (Tables 1 to 3). Specifically, spalling resistance, thermal expansion coefficient, “surface roughness resistance” and corrosion resistance were evaluated.
 耐スポーリング性は、1600℃の溶鋼に3分浸漬した後の亀裂の状況から良否を判断した。表1~3中、○は亀裂が軽微であり良好、△は小さい亀裂が発生、×は大きい亀裂が生じ不良であることを示す。 The spalling resistance was judged as good or bad from the state of cracks after being immersed in molten steel at 1600 ° C for 3 minutes. In Tables 1 to 3, ◯ indicates that cracks are slight and good, Δ indicates that small cracks are generated, and × indicates that large cracks are generated and defects are not achieved.
 熱膨張係数は、SNプレートのエッジ欠けの評価指標として有効である。すなわち、熱膨張係数が小さいほど、溶鋼流により高温となるノズル内孔部の膨張が抑えられることから熱応力は低く、エッジ欠けは生じにくい。熱膨張係数は、JISR2207によって測定した1500℃での熱膨張率から算出した。 熱 Thermal expansion coefficient is effective as an evaluation index for SN chip edge chipping. That is, the smaller the thermal expansion coefficient, the lower the thermal stress is because the expansion of the nozzle hole that becomes hot due to the molten steel flow is suppressed, and the edge chipping is less likely to occur. The coefficient of thermal expansion was calculated from the coefficient of thermal expansion at 1500 ° C. measured according to JIS R2207.
 また、SNプレートにとって重要な特性である「耐面荒れ性」に関して、図1に示す誘導炉を用いた液相酸化試験において溶鋼と耐火物(サンプル)の反応により生じた鋼浴部の脱炭層厚みを、ベース材質である比較例1の厚みを100として指数化して評価した。鋼浴部の脱炭層厚み指数が小さいほど「耐面荒れ性」が良好である。 In addition, regarding “surface roughness resistance”, which is an important characteristic for SN plates, the thickness of the decarburized layer in the steel bath caused by the reaction between the molten steel and the refractory (sample) in the liquid phase oxidation test using the induction furnace shown in FIG. Was evaluated by indexing the thickness of Comparative Example 1 as a base material to 100. The smaller the decarburized layer thickness index of the steel bath, the better the “surface roughness resistance”.
 また、耐食性については、誘導炉において溶鉄と酸化鉄粉を用い、1600℃で2時間溶損試験を行い溶損量を評価した。表1~3では、比較例1の溶損量を100として指数化しており、指数が小さいほど耐食性に優れる。 Moreover, about corrosion resistance, the amount of erosion was evaluated by performing a erosion test at 1600 ° C. for 2 hours using molten iron and iron oxide powder in an induction furnace. In Tables 1 to 3, the amount of erosion of Comparative Example 1 is indexed as 100, and the smaller the index, the better the corrosion resistance.
 化学成分は、X線回折及びJISR2212、2216に規定の耐火物の分析法により化学分析を行った。具体的には、内部標準法によるX線回折結果により先ずAlCを定量化し、JISR2212、2216に規定の分析結果から、定量化したAlC量に相当するAl量及びC量を除き、残部のZrO、Al、C含有量を算出した。化学成分の合計が100%に満たないものは、残部に、アルミニウムやシリコンなどの金属或いは、これらの反応物である炭化物、酸窒化物、窒化物、さらに炭化物、硼化物などの酸化防止剤の成分が含まれる。 Chemical components were subjected to chemical analysis by X-ray diffraction and refractory analysis methods defined in JIS R2212, 2216. Specifically, Al 4 O 4 C is first quantified from the X-ray diffraction result by the internal standard method, and Al 2 O 3 corresponding to the quantified Al 4 O 4 C amount is determined from the analysis results prescribed in JIS R2212, 2216. The ZrO 2 , Al 2 O 3 , and C contents of the remainder were calculated except for the amount and C amount. If the total of chemical components is less than 100%, the balance is a metal such as aluminum or silicon, or the reactants such as carbide, oxynitride, nitride, carbide, boride and other antioxidants. Ingredients included.
 表1は、AlCの含有量を変化させた場合を示す。表1中、実施例1~4はAlCの含有量が本発明の範囲内にあり、「耐面荒れ性」及び耐スポーリング性に優れている。熱膨張率は、AlCの含有量が多いほど低下する傾向にある。これに対して、比較例1及び2はAlCの含有量が本発明の範囲より少なく、「耐面荒れ性」及び耐スポーリング性に劣る。熱膨張率は、実施例と比較して高く、エッジ欠けを改善する効果が小さい。また、比較例3はAlCの含有量が本発明の範囲よりも多いことから、焼成時のAlCの体積変化により亀裂が生じた。 Table 1 shows the case where the content of Al 4 O 4 C is changed. In Table 1, Examples 1 to 4 have an Al 4 O 4 C content within the range of the present invention, and are excellent in “surface roughness resistance” and spalling resistance. The coefficient of thermal expansion tends to decrease as the Al 4 O 4 C content increases. In contrast, Comparative Examples 1 and 2 have a content of Al 4 O 4 C that is less than the range of the present invention, and are inferior in “surface roughness resistance” and spalling resistance. The coefficient of thermal expansion is higher than that of the example, and the effect of improving edge chipping is small. In Comparative Example 3, since the content of Al 4 O 4 C was larger than the range of the present invention, cracks occurred due to the volume change of Al 4 O 4 C during firing.
 表2は熱膨張係数を変化させた場合を示す。熱膨張係数は、低熱膨張率の骨材原料であるアルミナジルコニアやジルコニアムライトなどのジルコニア系原料、ムライトや溶融シリカなどのSiO含有骨材、炭化珪素や炭化硼素さらには、窒化珪素、窒化アルミニウム等の炭化物、窒化物の添加量、さらにはカーボン添加量、焼成温度、焼成時間などで調整することが可能である。表2では、本発明の範囲内で低熱膨張率骨材であるAlC及びアルミナジルコニア原料、カーボンの添加量、並びに焼成温度を調整し、熱膨張係数を変化させた。いずれも「耐面荒れ性」に関しては十分な効果が得られているが、実施例5は、熱膨張係数が8.1×10-6/Kと高く、耐スポーリング性の評価は、熱膨張係数が8.0×10-6/K以下である実施例6~9と比較して劣る。したがって、熱膨張係数が8.0×10-6/K以上では、熱応力による損耗が問題になる場合がある。 Table 2 shows the case where the thermal expansion coefficient is changed. The coefficient of thermal expansion is zirconia-based materials such as alumina zirconia and zirconia mullite, which are aggregate materials having a low coefficient of thermal expansion, SiO 2 -containing aggregates such as mullite and fused silica, silicon carbide and boron carbide, and silicon nitride and aluminum nitride. It is possible to adjust by the addition amount of carbides and nitrides such as carbon, addition amount of carbon, firing temperature, firing time and the like. In Table 2, the thermal expansion coefficient was changed by adjusting the Al 4 O 4 C and alumina zirconia raw materials that are low thermal expansion aggregates within the scope of the present invention, the amount of carbon added, and the firing temperature. In all cases, a sufficient effect was obtained with respect to “surface roughness resistance”, but in Example 5, the thermal expansion coefficient was as high as 8.1 × 10 −6 / K, and the spalling resistance was evaluated by thermal expansion. This is inferior to Examples 6 to 9 having a coefficient of 8.0 × 10 −6 / K or less. Therefore, when the thermal expansion coefficient is 8.0 × 10 −6 / K or more, wear due to thermal stress may be a problem.
 表3は常温での曲げ強さを変化させた場合を示す。常温での曲げ強さはアルミニウムやシリコンなど焼結材としての金属の添加量、焼成温度や焼成時間などの焼成条件、混合した耐火原料配合物の充填密度や粒度構成などにより調整することが可能である。表3では、本発明の範囲内で金属添加量及び粒度構成を調整することで常温での曲げ強さを変化させた。いずれも「耐面荒れ性」に関しては十分な効果が得られているが、実施例10は、常温での曲げ強さが10MPa以下と強度が低いため、実機使用において摺動面に特異な亀裂が生じるおそれがある。また、実施例14は、常温での曲げ強さが60Mpa以上と高強度であり、耐スポーリング性試験において、実施11~13と比較して劣り、ノズル孔エッジ欠損等の実機での熱応力による損耗が懸念される。実施例11~13は、十分な曲げ強さを得ることができており、「耐面荒れ性」も良好である。 Table 3 shows the case where the bending strength at normal temperature is changed. Flexural strength at room temperature can be adjusted by adding metal as a sintered material such as aluminum and silicon, firing conditions such as firing temperature and firing time, filling density and particle size composition of mixed refractory raw material composition It is. In Table 3, the bending strength at room temperature was changed by adjusting the metal addition amount and the particle size constitution within the scope of the present invention. In both cases, a sufficient effect has been obtained with respect to “surface roughness resistance”, but in Example 10, the bending strength at room temperature is 10 MPa or less and the strength is low. May occur. In Example 14, the bending strength at room temperature is as high as 60 Mpa or more, and in the spalling resistance test, it is inferior to Examples 11 to 13, and the thermal stress in the actual machine such as a nozzle hole edge defect. There is concern about wear and tear. In Examples 11 to 13, sufficient bending strength can be obtained, and “surface roughness resistance” is also good.
 以上説明した実施例及び比較例のうち、実施例2、実施例5、実施例12及び比較例2について、実形状のSNプレートを作製し、実機テストを行った。本発明の実施例はいずれも比較例2と比較して摺動面の損傷である「面荒れ」が軽微であり、耐用性が向上した。 Among the examples and comparative examples described above, real-shaped SN plates were produced for Example 2, Example 5, Example 12, and Comparative Example 2, and were tested. In each of the examples of the present invention, the “surface roughness”, which is damage to the sliding surface, was minor compared with Comparative Example 2, and the durability was improved.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  鉱物相としてAlCを5~95質量%含有するスライディングノズルプレート。 A sliding nozzle plate containing 5 to 95% by mass of Al 4 O 4 C as a mineral phase.
  2.  熱膨張係数が8×10-6/K以下である請求項1に記載のスライディングノズルプレート。 The sliding nozzle plate according to claim 1, wherein the thermal expansion coefficient is 8 × 10 −6 / K or less.
  3.  常温での曲げ強さが10MPa以上60Mpa以下である請求項1又は2に記載のスライディングノズルプレート。 The sliding nozzle plate according to claim 1 or 2, wherein the bending strength at normal temperature is 10 MPa or more and 60 MPa or less.
PCT/JP2010/065283 2009-11-12 2010-09-07 Sliding nozzle plate WO2011058811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-259063 2009-11-12
JP2009259063A JP2011104596A (en) 2009-11-12 2009-11-12 Sliding nozzle plate

Publications (1)

Publication Number Publication Date
WO2011058811A1 true WO2011058811A1 (en) 2011-05-19

Family

ID=43991473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065283 WO2011058811A1 (en) 2009-11-12 2010-09-07 Sliding nozzle plate

Country Status (3)

Country Link
JP (1) JP2011104596A (en)
TW (1) TW201125660A (en)
WO (1) WO2011058811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031435A1 (en) * 2011-09-02 2013-03-07 黒崎播磨株式会社 Aluminum oxycarbide composition and process for producing same, and refractory
JP2015193512A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154146A (en) * 2016-02-29 2017-09-07 黒崎播磨株式会社 Refractory for casting, and plate for sliding nozzle device
WO2018061731A1 (en) * 2016-09-27 2018-04-05 黒崎播磨株式会社 Fire-resistant plating for sliding nozzle, and method of manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560067A (en) * 1978-10-28 1980-05-06 Tsurumi Goseirozai Co Ltd Refractories
JPH02503423A (en) * 1988-03-11 1990-10-18 ペシネ・エレクトロメタルルジ Electrofused multiphase materials based on alumina and aluminum oxycarbide and oxynitride
JPH09253835A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd Method for fixing sliding gate refractory
JPH09295857A (en) * 1996-04-26 1997-11-18 Kyushu Refract Co Ltd Carbon-containing brick containing aluminum oxycarbide
JPH1157957A (en) * 1997-08-19 1999-03-02 Kawasaki Refract Co Ltd Sliding nozzle plate and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560067A (en) * 1978-10-28 1980-05-06 Tsurumi Goseirozai Co Ltd Refractories
JPH02503423A (en) * 1988-03-11 1990-10-18 ペシネ・エレクトロメタルルジ Electrofused multiphase materials based on alumina and aluminum oxycarbide and oxynitride
JPH09253835A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd Method for fixing sliding gate refractory
JPH09295857A (en) * 1996-04-26 1997-11-18 Kyushu Refract Co Ltd Carbon-containing brick containing aluminum oxycarbide
JPH1157957A (en) * 1997-08-19 1999-03-02 Kawasaki Refract Co Ltd Sliding nozzle plate and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031435A1 (en) * 2011-09-02 2013-03-07 黒崎播磨株式会社 Aluminum oxycarbide composition and process for producing same, and refractory
JP2013053034A (en) * 2011-09-02 2013-03-21 Kurosaki Harima Corp Aluminum oxycarbide composition, production method therefor, and refractory material
CN103649009A (en) * 2011-09-02 2014-03-19 黑崎播磨株式会社 Aluminum oxycarbide composition and process for producing same, and refractory
JP2015193512A (en) * 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
US20170088469A1 (en) * 2014-03-31 2017-03-30 Krosakiharima Corporation Refractory for casting, nozzle for casting and sliding nozzle plate using same
US9815741B2 (en) * 2014-03-31 2017-11-14 Krosakiharima Corporation Refractory for casting, nozzle for casting and sliding nozzle plate using same

Also Published As

Publication number Publication date
JP2011104596A (en) 2011-06-02
TW201125660A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US8349752B2 (en) Plate brick and production method therefor
RU2637196C2 (en) Refractory material and nozzle
JP4681456B2 (en) Low carbon magnesia carbon brick
JP5016609B2 (en) High durability sleeve brick
WO2014112493A1 (en) Magnesia-carbon brick
EP3112054B1 (en) Refractory for steel casting, plate for sliding nozzle device, and method for producing refractory for steel casting
JP5565908B2 (en) Plate brick manufacturing method and plate brick
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
Thethwayo et al. A review of carbon-based refractory materials and their applications
WO2011058811A1 (en) Sliding nozzle plate
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
JP6154772B2 (en) Alumina-silicon carbide-carbon brick
JP5331077B2 (en) Carbon-containing refractories
JP6036796B2 (en) Slide plate and manufacturing method thereof
JP2014156389A (en) Magnesia-carbon brick
JP2012192430A (en) Alumina carbon-based slide gate plate
JP6860805B1 (en) Method for manufacturing carbon-containing slide plate refractory
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
JP2002362969A (en) Plate brick
JP7389352B2 (en) Spinel-magnesia-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
JP7469667B2 (en) Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
JP6744555B2 (en) Sliding gate type plate refractory
JP2018012618A (en) Manufacturing method of magnesia-chromium brick and use method
JP2022129790A (en) Method for producing carbon-containing slide plate refractory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829771

Country of ref document: EP

Kind code of ref document: A1