WO2011055750A1 - Rotation actuator - Google Patents

Rotation actuator Download PDF

Info

Publication number
WO2011055750A1
WO2011055750A1 PCT/JP2010/069612 JP2010069612W WO2011055750A1 WO 2011055750 A1 WO2011055750 A1 WO 2011055750A1 JP 2010069612 W JP2010069612 W JP 2010069612W WO 2011055750 A1 WO2011055750 A1 WO 2011055750A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
rotating structure
rotation
rotary actuator
rotary
Prior art date
Application number
PCT/JP2010/069612
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 青木
Original Assignee
株式会社キッツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キッツ filed Critical 株式会社キッツ
Priority to JP2011539380A priority Critical patent/JPWO2011055750A1/en
Priority to CN2010800506403A priority patent/CN102597537A/en
Publication of WO2011055750A1 publication Critical patent/WO2011055750A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/025Actuating devices; Operating means; Releasing devices electric; magnetic actuated by thermo-electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like

Definitions

  • the present invention relates to a rotary actuator that is used, for example, for automation of an apparatus in a production facility or the like and is operated by a driving energy source such as air pressure or electricity.
  • actuators such as piston cylinders and motors are known as actuators used for device automation.
  • actuators that have mechanical parts such as cams, links, and gears as internal mechanisms, and convert them into linear motions, rotational motions, and the like by the internal mechanisms.
  • an actuator whose output side is in rotational motion is used, for example, in a valve.
  • an output portion that transmits power to a driven body is generally shaped like a shaft. .
  • the rotational motion converted by the internal mechanism is transmitted to the outside as the shaft body rotates. That is, in this conversion mechanism, both end portions of the output shaft that is the same shaft body are always in the same rotational direction.
  • Actuators equipped with this type of mechanical component conversion mechanism may cause heat loss due to friction between mechanical components, deterioration due to intrusion of foreign objects between the components, generation of scratches, etc. It is easy for the operating characteristics to deteriorate due to the occurrence of hysteresis due to wear during the operation.
  • lubricating oil may be added or the selection of materials for machine parts may be optimized. In these cases, there is a problem that costs increase.
  • an elastic body is operated using operating energy such as air pressure and converted into a rotational motion by the elastic body. In this case, since the machine parts are hardly used, the above-described problem is hardly caused.
  • Patent Document 1 a torque actuator disclosed in Patent Document 1 is known as an actuator using an elastic body.
  • This torque actuator has an elastic body that converts fluid pressure into axial rotational force, and generates rotational torque by utilizing the bulging deformation of this elastic body.
  • Patent Document 2 is a torque actuator configured to generate forward and reverse rotational torque by deforming an elastic body.
  • the torque actuators of Patent Documents 1 and 2 are so-called torsional rotation operations, and the other end side rotates when one end side of the output shaft that is the same shaft body is fixed.
  • the fluid-operated rotary drive device of Patent Literature 3 has two head pieces and a hose body extending between the head pieces.
  • the rotary drive device is driven by allowing the relative rotational movement of the two head pieces while preventing the relative movement of the head pieces in the axial direction when fluid acts on the internal space of the hose body. It is intended to gain power.
  • the rotation drive device of the same literature 3 is also an actuator by so-called torsional rotation operation. However, this actuator is configured such that both ends of the output shaft, which is the same shaft body, rotate in opposite directions.
  • the present invention has been developed as a result of intensive studies in view of the above-described circumstances, and the object of the present invention is to control rotation with high accuracy while maintaining high torque characteristics, and in particular, various valves.
  • An object of the present invention is to provide a rotation actuator suitable for rotation control.
  • the invention according to claim 1 is a state in which a rotating structure having a twist angle in the axial direction is rotatably provided via a driving energy source, and the rotating structure is constrained in the axial direction. It is a rotary actuator which is arranged in the above and converts the stress generated at both ends of the structure into a rotational force and transmits it to the output shaft.
  • a power transmission mechanism is provided between the rotating structure and the output shaft body, and the power transmission mechanism is provided on the output shaft body when rotating in one direction due to the stress generated by the rotating structure.
  • This is a rotary actuator that is a mechanism for transmitting rotation and stopping rotation transmission to the output shaft when the rotating structure rotates in the reverse direction and returns to its original state.
  • the rotating structure has a cylindrical elastic body and a plurality of wires having twist angles in the axial direction of the elastic body, and pressure is applied from the inside of the elastic body.
  • This is a rotary actuator that is a structure that generates axial torsional rotation by a wire.
  • a fluid supply / discharge region serving as a sealed space inside the rotary structure, and the supply and discharge of appropriate fluid as driving energy is repeatedly performed in the fluid supply / discharge region to rotate the rotary structure.
  • a rotary actuator that transmits the rotation of the motor to the output shaft body.
  • the invention according to claim 5 is a rotary actuator in which fluid supply / discharge means for applying a fluid of a predetermined pressure in a pulse shape to a fluid supply / discharge region is connected as a drive energy source.
  • the invention according to claim 6 is a substantially cylindrical structure in which the rotating structure has a twist angle in the axial direction and appropriately includes a plurality of metal wires made of a shape memory alloy whose length is reduced when a voltage is applied. Is a rotary actuator.
  • the invention according to claim 7 is a rotary actuator in which a voltage applying means is provided as a driving energy source in the rotating structure, and the rotation of the rotating structure is repeatedly transmitted to the output shaft body by repeatedly applying a voltage by the voltage applying means. .
  • the invention according to claim 8 is a rotary actuator, wherein the voltage applying means is an applying means having a function of applying a voltage in a pulsed manner.
  • the power transmission mechanism has a cylindrical portion provided on the outer peripheral side of the output shaft body, and is mounted on the outer peripheral side of the cylindrical portion so as to be movable in the axial direction, and has a transmission surface on the inner and outer peripheral sides.
  • a transmission member and a cylindrical casing disposed on the outer peripheral side of the transmission member are coaxially provided, and a driving energy source is supplied from one side while holding both ends of the rotating structure with the transmission member.
  • the transmission member engages with the cylindrical part while engaging with the casing at one side of the rotating structure, and engages with the cylindrical part while disengaging with the casing at the other side.
  • the rotary actuator is a mechanism that applies torsional rotation to the rotating structure while rotating the rotating structure to rotate the other side, and transmits this rotational torque to the output shaft through the cylindrical portion.
  • a heat-shrinkable tube is fixed to the outer peripheral surfaces of both ends of the rotating structure by heat shrinking, and both ends of the rotating structure to which the heat-shrinkable tube is fixed are connected to the inner transmission forming a transmission member.
  • the rotary actuator is fixed and held by screwing the member and the outer transmission member.
  • the invention according to claim 11 is a rotary actuator in which at least one bamboo shoot part is formed on the outer peripheral surface of the inner transmission member, and this bamboo shoot part is bitten into the inner peripheral surfaces of both ends of the rotary structure.
  • the invention according to claim 12 is a rotary actuator in which a valve such as a rotary valve or a lift valve is connected to the output shaft body.
  • the rotational torque of the output shaft body can be secured substantially constant.
  • the rotation angle when the output shaft body rotates at a time high-precision resolution can be exhibited.
  • the rotation at a small rotation angle of the rotating structure can be continuously transmitted to the output shaft body, smooth rotation control is possible, and it can be used for rotation control of various valves. In these cases, the rotation direction can be changed by alternately switching the restraint state. Further, for example, as in the case of an electric actuator, a stepping motor or a dedicated control circuit is not required, so that the structure can be made compact without complicating the structure.
  • the output shaft body when the drive energy is supplied or stopped from the drive energy source, the output shaft body can be rotated every time the drive energy is supplied. For this reason, the output shaft body can be continuously rotated by repeatedly supplying driving energy to the rotating structure. Thereby, the rotation of the output shaft body can be controlled with stable torque characteristics. Furthermore, if this power transmission mechanism is provided on the opposite rotation side of the output shaft body, the output shaft can be controlled to rotate in different rotational directions.
  • the output shaft body can be continuously rotated little by little by repeatedly supplying or discharging a fluid having a predetermined pressure to the inside of the rotating structure.
  • the rotation can be controlled to a predetermined angle while ensuring a certain torque characteristic.
  • air when air is used as the fluid, the supply and discharge to the inside of the elastic body can be performed quickly and smoothly, so that the output shaft body can be controlled to rotate more smoothly.
  • the output shaft body is rotated little by little by repeatedly applying pulsed air of a predetermined pressure to the fluid supply / discharge region, and the output shaft body is controlled to rotate while exhibiting a substantially constant rotational torque. This makes it possible to exhibit stable torque characteristics.
  • the output shaft body can be continuously rotated little by little by repeatedly applying or stopping application of voltage to the rotating structure, and the output shaft body has a constant torque characteristic.
  • the rotation can be controlled to a predetermined angle while ensuring.
  • the voltage application means can be downsized to make the entire equipment compact.
  • the output shaft body is rotated little by little by repeatedly applying a voltage in a pulse form by the voltage applying means, and the output shaft body is controlled to rotate while exhibiting a substantially constant rotational torque.
  • the stress generated in the rotating structure can be reliably prevented from being transmitted or transmitted to the output shaft by the combination of the transmission member in the power transmission mechanism and the casing / cylindrical portion.
  • highly accurate rotation control can be performed while preventing malfunction of the output shaft body.
  • the cylindrical portion has a function of appropriately switching the direction of torsional rotation while exhibiting a spool-like operation.
  • the rotating structure can be firmly fixed to the transmission member, and the rotating structure is prevented from loosening, dropping off, or being rapidly consumed, and has excellent sealing performance. It can be used to maintain high-precision resolution as a rotary actuator.
  • the rotating structure can be operated while increasing the resistance in the pulling direction and reliably preventing the pulling and loosening.
  • the twelfth aspect of the present invention it is possible to provide a simple structure without requiring a complicated mechanism, and it is possible to control the rotation of the valve with high accuracy by connecting to various valves while exhibiting compactness. it can.
  • FIG. 2 is a vector diagram showing a force applied to a rotary structure of the rotary actuator of FIG. 1. It is a longitudinal cross-sectional view which shows 2nd Embodiment of the rotary actuator in this invention. It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG.
  • FIG. 1 It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. It is a longitudinal cross-sectional view which shows the state which started discharge
  • FIG. 20 is a longitudinal sectional view showing a state in which a voltage is applied to a switch member on one side of the rotary actuator of FIG. 19.
  • FIG. 20 is a longitudinal sectional view showing a state in which a voltage is applied to the switch member on the other side of the rotary actuator of FIG. 19.
  • FIG. 20 is a vector diagram showing a force applied to the rotary structure of the rotary actuator of FIG. 19. It is a longitudinal cross-sectional view which shows 4th Embodiment of the rotary actuator in this invention. It is a partially expanded sectional view of FIG. It is explanatory drawing which shows the comparative example of the relationship between the supply pressure of air, and the rotation angle of an output shaft body.
  • FIG. 1 to 6 show a first embodiment of the rotary actuator of the present invention, and show an example in which a hydraulic rotary actuator is used as the rotary actuator.
  • FIG. 7 shows a circuit diagram in which a fluid supply / discharge means is connected to the rotary actuator of FIG. In this embodiment, air is used as the fluid pressure.
  • a rotary actuator main body (hereinafter referred to as an actuator main body) 1 has a rotary structure 2, an output shaft 3, and a power transmission mechanism 4.
  • the rotary structure 2 has a twist angle ⁇ shown in FIG. 11 in the axial direction, and has a fluid supply / discharge region 5 serving as a sealed space inside.
  • a fluid supply / discharge means 6 shown in FIG. 7 is connected as a drive energy source to the fluid supply / discharge region 5, and the rotary structure 2 is rotatably provided via the drive energy source 6.
  • the rotary structure 2 has a cylindrical elastic body 7 and a plurality of wires 8 disposed inside the elastic body 7.
  • the elastic body 7 is made of, for example, a rubber material such as chloropyrene rubber, and expands and contracts in the circumferential direction when air such as pulsed air is supplied and discharged inside.
  • the wire 8 is made of reinforcing fiber such as aramid fiber, for example, and is embedded in the elastic body 7 so as to have a helical twist angle ⁇ . In a state where the internal pressure is not applied to the elastic body 7, the rotating structure 2 is maintained in a cylindrical shape or a shape in which the vicinity of the central portion is contracted as shown in FIG. 1 by the restoring force of the elastic body 7.
  • the elastic body 7 When pressure is applied from the inside of the elastic body 7, the elastic body 7 expands around the center as shown in FIGS. 3 and 4, and twists in the axial direction due to the tension of the wire 8. Further, when the pressure on the elastic body 7 is removed from this state, the elastic body 7 contracts to the state shown in FIG. 1, and the elastic body 7 returns to the original state by the action of the wire 8.
  • the rotating structure 2 is deformed so as to expand and contract and twist in the axial direction when a fluid as drive energy is supplied to and discharged from the fluid supply / discharge region 5.
  • the rotating structure 2 rotates, and this rotation can be repeatedly transmitted to the output shaft body 3. Since the torque generated by the rotating structure 2 is affected by the inner diameter of the elastic body 7, the length in the axial direction, and the pressure applied to the inside of the elastic body 7, it is necessary to appropriately set each value.
  • the twist angle ⁇ of the wire 8 is appropriately set in consideration of the rotational operation angle ⁇ when the elastic body 7 is expanded and contracted.
  • air pressure is applied (air is supplied)
  • the elastic member 7 expands in the rotating structure 2 and the wire 8 is pulled outward to rotate.
  • a rotational torque T about the axis L is generated, and the upper side of the rotating structure 2 rotates.
  • the upper side of the rotating structure 2 is rotated by the rotation operation angle ⁇ so that the point P on the upper end side of one wire 8 moves to the point P ′.
  • the line segment PQ the line segment P′RQ, and the length of the wire 8 is constant.
  • the rotating structure 2 is acted upon by the elastic force of the elastic body 7 to return torsional rotation (so-called bias force).
  • the upper side of the rotating structure 2 is rotated to return to the original shape.
  • the rotational torque T acts in the opposite (reverse) direction to the above.
  • the wire 8 is arranged in a structure other than a spiral, or is wound around the outer periphery of the elastic body 7 or provided in a net shape. It may be.
  • the elastic body 7 may be a resin or the like, and the rotary structure 2 may be formed as a single body.
  • the rotating structure 2 is disposed in a state in which one end side is constrained in the axial direction, and stress generated at both ends of the rotating structure 2 is converted into rotational force and transmitted to the output shaft 3. Is done.
  • the output shaft body 3 is formed in a substantially cylindrical shape, is disposed coaxially with the rotary structure 2 on the inner peripheral side of the rotary structure 2, and is rotatable with respect to the rotary structure 2.
  • the output shaft body 3 is formed integrally with the enlarged diameter cylindrical portion 9 so that the output shaft body 3 and the cylindrical portion 9 rotate integrally.
  • the output shaft body 3 (cylindrical portion 9) is formed with fluid supply / discharge ports 12, 13 on both end surfaces 10, 11 side, and a fluid supply / discharge port 14 near the center, which communicate with each other through a communication hole 15. ing.
  • the fluid supply / discharge ports 12 and 13 on both end faces are formed on the inner diameter side of the end face with respect to a seal member 16 described later.
  • the power transmission mechanism 4 is provided between the rotary structure 2 and the output shaft body 3, and has the cylindrical portion 9, the transmission member 20, and the cylindrical casing 21 coaxially.
  • tapered surfaces 22 and 23 whose diameter is increased from the end side of the output shaft body 3 toward the center side are formed near both sides of the outer periphery of the cylindrical portion 9, and a sealing O-ring 24 is attached.
  • O-rings 16 and 16 as the sealing members described above are mounted on both end surface sides of the cylindrical portion 9.
  • the transmission member 20 is disposed on the upper and lower sides of the cylindrical portion 9 and is movable in the axial direction with respect to the cylindrical portion 9 via the O-ring 24.
  • Each transmission member 20, 20 includes an inner transmission member 25 and an outer transmission member 26.
  • An inner peripheral transmission surface 27 is formed on the inner peripheral side of the inner transmission member 25, and an outer peripheral transmission surface 28 is formed on the outer peripheral side of the outer transmission member 26.
  • the inner peripheral transmission surface 27 is formed in a taper that can mesh with the tapered surfaces 22 and 23 of the cylindrical portion described above.
  • the outer peripheral transmission surface 28 is formed in a taper that can mesh with tapered surfaces 29 and 30 that reduce in diameter from the end side to the center side of the casing 21.
  • the taper angles (not shown) of the inner peripheral transmission surface 27 (tapered surfaces 22 and 23) and the outer peripheral transmission surface 28 (tapered surfaces 29 and 30) are provided at appropriate angles at which the transmission member 20 can operate.
  • a male screw 31 and a female screw 32 that can be screwed together are formed on the outer peripheral side of the inner transmission member 25 and the inner peripheral side of the outer transmission member 26 .
  • the inner transmission member 25 and the outer transmission member 26 are screwed together with both end portions of the rotary structure 2 sandwiched between them.
  • the rotating structure 2 is mounted on the outer peripheral side of the output shaft body 3 via an O-ring 24. Therefore, a fluid supply / discharge region 5, which is a sealed space, is formed between the output shaft body 3 inside the rotary structure 2.
  • the casing 21 is disposed on the outer peripheral side of the transmission member 20 and accommodates the transmission member 20 and the cylindrical portion 9 therein.
  • the tapered surfaces 29 and 30 that can mesh with the outer peripheral transmission surface 28 are formed on the inner periphery on the opening side of the casing 21.
  • a first cap member 33 and a second cap member 34 that can cover the opening portion are fixed to both end opening portions of the casing 21.
  • Guide holes 35 are formed in the first cap member 33 and the second cap member 34, respectively.
  • the guide hole 35 is provided with a hole diameter that allows the output shaft body 3 to rotate and slide in the axial direction.
  • An O-ring 36 is attached to the inner peripheral surface of the guide hole 35, and the outer peripheral surface of the output shaft body 3 is sealed by the O-ring 36.
  • first cap member 33 and the second cap member 34 are respectively formed with a first air port 39 and a second air port 40 that can supply and discharge air to and from the gap portion 37 so as to communicate with the outside.
  • the rotating structure 2 described above is twisted in the clockwise direction (right rotation) when air is supplied from the first air port 39, and the air is supplied from the second air port 40. Sometimes it is provided so as to cause a torsional rotation in the counterclockwise (left) rotation direction.
  • a flange portion may be provided in the first cap member 33, the second cap member 34, and the casing. In this case, the 1st cap member 33 and the 2nd cap member 34 can be attached to a casing with a volt
  • the output shaft 3 rotates along with the torsional rotation of the rotating structure 2 when the rotating structure 2 expands, and stops rotating when the rotating structure 2 contracts. That is, the power transmission mechanism 4 transmits the rotation to the output shaft body 3 when rotating in one direction due to the stress generated by the rotating structure 2, and when the rotating structure 2 rotates in the opposite direction and returns to the original state. In addition, the rotation transmission of the output shaft body 3 is stopped. Further, when air is repeatedly supplied / discharged following the fluid supply / discharge area 5, the output shaft (not shown) of the valve 55 rotates to a predetermined angle while the output shaft 3 rotates or stops rotating for each supply / discharge. To do.
  • a pair of transmission members 20 and 20 are provided on the upper and lower sides of the power transmission mechanism 4.
  • the transmission mechanisms 20 and 20 hold different side portions of the rotating structure 2 in the casing 21 when air is supplied and discharged from the first air port 39 on the upper side and the second air port 40 on the lower side. It becomes possible. Therefore, the rotation direction of the output shaft body 3 can be rotated forward and backward by alternately switching the supply and discharge of air at the first air port 39 and the second air port 40.
  • a spacer member 41 is interposed between the upper and lower transmission members 20 and 20.
  • the spacer member 41 is fitted on the outer peripheral side of the cylindrical portion 9 (output shaft body 3) with the upper and lower end faces 41a, 41a being capable of thrust rotation with respect to the inner transmission members 25, 25.
  • the spacer member 41 regulates the movement of the upper and lower transmission members 20, 20 in the proximity direction, and prevents the rotating structure 2 from being excessively contracted in the axial direction when air is supplied to the fluid supply / discharge region 5. Can be removed. Therefore, torque due to torsional rotation of the rotating structure 2 is ensured.
  • a communication hole 42 is provided at a position corresponding to the fluid supply / discharge port 14 of the output shaft body 3. Air can be supplied to and discharged from the fluid supply / discharge region 5 through the communication hole 42.
  • the fluid supply / discharge means 6 has a first fluid channel 45 and a second fluid channel 46.
  • the first fluid channel 45 and the second fluid channel 46 are connected to the first air port 39 and the second air port 40, respectively.
  • the fluid supply / discharge means 6 is a means for applying a fluid of a predetermined pressure to the fluid supply / discharge area 5 as a drive energy source in a pulsed manner to expand and contract the rotary structure 2.
  • the fluid supply / discharge means 6 includes a compressor 47, an electromagnetic switching valve 48, a pulse generator 49, a filter 50, and a regulator 51.
  • the compressor 47 is a supply source of compressed air, and is connected to the electromagnetic switching valve 48 via the filter 50 and the regulator 51.
  • the filter 50 is provided to remove dust, dirt, and the like of compressed air from the compressor 47.
  • the regulator 51 is provided to supply the compressed air from the compressor 47 to the electromagnetic switching valve 48.
  • the electromagnetic switching valve 48 is provided to send air from the compressor 47 to the first air port 39 and the second air port 40 of the actuator body 1, and is composed of, for example, a five-way electromagnetic switching valve.
  • the air from the compressor 47 is appropriately sent to the actuator body 1 with the flow path switched by a first air control solenoid and a second air control solenoid (not shown) in the electromagnetic switching valve 48.
  • the pulse generator 49 has a pulse width adjusting mechanism (not shown) inside.
  • the pulse width adjusting mechanism can generate a pulse signal having a predetermined width.
  • the pulse generator 49 includes a first air port pulse output unit 52 and a second air port pulse output unit 53.
  • the pulse generator 49 supplies variable pulse power to the first air port control solenoid and the second air port control solenoid via the first air port pulse output unit 52 and the second air port pulse output unit 53. These can be controlled.
  • pulsed air is supplied from the flow path of the electromagnetic switching valve 48 to the actuator body 1.
  • the pulse generator 49 can generate a pulse signal at an arbitrary interval. Thereby, the interval of the pulse air from the electromagnetic switching valve 48 can be controlled, and the rotation angle of the output shaft 3 can be arbitrarily controlled as will be described later.
  • the compressed air from the compressor 47 is sent to the electromagnetic switching valve 48 via the filter 50 and the regulator 51.
  • the flow path of the electromagnetic switching valve 48 is switched by the pulse generator.
  • pulsed air with a predetermined pressure is repeatedly supplied to and discharged from the actuator body 1 at predetermined intervals.
  • the rotating structure 2 is expanded and contracted.
  • the compressor 47, the electromagnetic switching valve 48, the pulse generator 49, the filter 50, and the regulator 51 described above, those commonly used can be used.
  • an optional valve 55 can be connected to the output shaft body 3.
  • the valve 55 include a rotary valve such as a ball valve and a butterfly valve, and a lift valve such as a gate valve and a globe valve.
  • the valve body (not shown) in the valve 55 is controlled to be opened and closed by adjusting the supply / discharge of pulsed air from the fluid supply / discharge means 6, or is proportionally controlled to an arbitrary intermediate opening.
  • FIG. 1 shows the state of the actuator body 1 before the start of supply of pulsed air.
  • the seal member 16 of the cylindrical portion 9 seals tightly to the contact surfaces 38, 38 of the first cap member 33 and the second cap member 34.
  • the output shaft body 3 is maintained in a rotation stopped state, and air is discharged from the fluid supply / discharge region 5 and the rotating structure 2 is contracted.
  • the inner peripheral transmission surface 27 and the outer peripheral transmission surface 28 of the upper and lower transmission members 20, 20 are in a state of disengagement from the tapered surfaces 22, 23 of the cylindrical portion 9 and the tapered surfaces 29, 30 of the casing 21. Yes. Therefore, the transmission members 20 and 20 are in a free state with respect to the cylindrical portion 9 and the casing 21.
  • FIG. 4 shows a state where the rotating structure 2 is expanded to the maximum.
  • the pulsed air from the fluid supply / discharge means 6 is continuously supplied until the state shown in FIG. Subsequently, air in the fluid supply / discharge region 5 is discharged from the first air port 39 through the fluid supply / discharge port 14, the communication hole 15, and the fluid supply / discharge port 12 from this state.
  • the operation of the actuator body 1 is the rotation of the output shaft body 3 when pulsed air is supplied / discharged once.
  • the output shaft body 3 can be rotated each time the pulse air is supplied, and the output shaft body 3 can be maintained in a state where the rotation is stopped for each discharge.
  • the output shaft 3 can be rotated to a predetermined angle by inching rotation, and the valve opening degree of the valve 55 can be controlled.
  • the output shaft body 3 is equivalent to the time corresponding to one application width.
  • the electromagnetic switching valve 48 is switched to supply pulsed air having a predetermined pressure from the fluid supply / discharge means 6 through the second air port 40.
  • the cylindrical portion 9 moves upward because a force pressing upward is applied to the cylindrical portion 9.
  • the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 30 of the casing 21 are engaged with each other on the lower side of the rotating structure 2, and the engagement between the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion 9 is released.
  • the inner peripheral transmission surface 27 and the tapered surface 22 of the cylindrical portion 9 are engaged with each other while the outer peripheral transmission surface 28 and the tapered surface 29 of the casing 21 are disengaged.
  • the output shaft 3 rotates counterclockwise by generating a torsional rotation that rotates counterclockwise in the axial direction in the rotating structure 2. Further, when the air is discharged from the fluid supply / discharge region 5, the rotation stop state of the output shaft body 3 is maintained.
  • the output shaft body 3 can be controlled to rotate in the left and right rotational directions by switching the supply and discharge to the first air port 39 and the second air port 40 by the electromagnetic switching valve 48, and the valve 55 can be adjusted to a predetermined opening. .
  • FIG. 8 shows the relationship between air supply / discharge and the rotation direction of the output shaft 3.
  • the output shaft 3 rotates in the clockwise direction (CW direction).
  • the output shaft body 3 rotates in the counterclockwise direction (CCW direction).
  • the supply / discharge from the first air port 39 and the second air port 40 and the rotation direction of the output shaft body 3 may be opposite to each other, and can be arbitrarily changed according to the implementation.
  • the rotary structure 2 having the twist angle ⁇ in the axial direction is rotatably provided via the drive energy source 6, and the rotary structure 2 is restrained in the axial direction. Since the stress generated at both ends of the rotating structure 2 is converted into a rotational force and transmitted to the output shaft body 3 while the twisting resistance of the rotating structure 2 is minimized, the output shaft The rotation can be transmitted to the body 3.
  • the rotating structure 2 when the rotating structure 2 is rotated in one direction due to stress by the power transmission mechanism 4, this rotation is transmitted to the output shaft body 3, and the rotating structure 2 is rotated in the opposite direction to return to the original state. Since the rotation is not transmitted to the output shaft 3, the rotation structure 2 can be repeatedly rotated to transmit the rotation to the output shaft 3 and rotate it. Thereby, as shown in FIG. 9 and FIG. 10, the rotational torque of the output shaft body 3 can always be kept substantially constant. It can be used for various valves 55 that require constant rotational torque and high-precision rotational control.
  • the actuator main body 60 in this embodiment includes an output shaft body 61 and a cylindrical portion 62 provided separately.
  • the cylindrical portion 62 is provided so as to be rotatable with respect to the output shaft body 61.
  • the cylindrical portion 62 is provided separately on the upper and lower sides of the output shaft body 61, and one-way clutches 63 and 63 are mounted between the cylindrical portions 62 and 62 and the output shaft body 61.
  • the cylindrical portion 62 is slidable in the axial direction with respect to the output shaft body 61, and can be individually rotated relative to the output shaft body 61.
  • a spacer member 64 is interposed between the cylindrical portions 62 and 62.
  • the spacer member 64 is loosely fitted to the output shaft body 61 with the upper and lower end faces 64a, 64a being capable of thrust rotation on the cylindrical portion 62 (one-way clutch 63).
  • the spacer member 64 restricts the upper and lower cylindrical portions 62 and 62 from moving in the proximity direction.
  • a fluid supply / discharge communication hole 65 is provided near the center of the spacer member 64. Air can be supplied and discharged through the communication hole 65.
  • Fluid supply / discharge ports 66 and 66 are formed on the end face side of the output shaft body 61.
  • the fluid supply / discharge port 66 communicates with the inner peripheral side of the output shaft through a communication hole 67. Accordingly, as shown in FIGS. 13 to 15, when air is supplied / discharged from the fluid supply / discharge port 66, the air passes through the inner peripheral side of the one-way clutch 63 and passes through the communication hole 65 of the spacer member 64.
  • the fluid supply / discharge region 5 can be supplied / discharged from the communication hole 42 formed in the spacer member 64.
  • the actuator main body 60 when air is supplied to the fluid supply / discharge region 5 (FIGS. 13 to 15) and discharged (FIGS. 16 and 17), an output is output from the transmission member 20 via the one-way clutch 63 by the cylindrical portion 62. Rotation can be transmitted to the shaft body 61. For this reason, the cylindrical part 62 does not rotate with respect to the transmission member 20.
  • the one-way clutch 63 holds the output shaft body 61 so as not to rotate relative to the transmission member 20 on the twisting side of the rotary structure 2. Therefore, the torsional rotation can be reliably transmitted from the transmission member 20 to the output shaft body 3.
  • the one-way clutch 63 is attached so that the one-way clutch 63 and the output shaft 3 can be rotated relative to each other on the side where the rotary structure 2 is fixed so as not to rotate. For this reason, when the rotary structure 2 causes torsional rotation, the output shaft body 3 rotates smoothly.
  • air used as the fluid
  • the fluid is not limited to air. This air may be other types of fluid such as oil or water.
  • the actuator main body 71 of this embodiment has the rotating structure 72 of FIG.
  • the rotating structure 72 appropriately includes a plurality of metal wire rods 73 made of a shape memory alloy.
  • the metal wire 73 is arranged in a substantially cylindrical shape with a twist angle ⁇ in the axial direction, and has a characteristic of contracting in the length direction when a voltage is applied.
  • an output shaft body 82 is provided on the inner peripheral side of the rotating structure 72.
  • a coil spring 74 is provided inside the spacer member 41 between the rotary structure 72 and the output shaft body 82.
  • the upper and lower ends of the coil spring 74 are fixed to the inner transmission members 25 and 25 in the transmission member 20, respectively.
  • the coil spring 74 is twisted, and the coil spring 74 applies a force to return the transmission member 20 to the original state.
  • the coil spring 74 has a function of maintaining the upper and lower transmission members 20 and 20 at a predetermined interval.
  • the actuator body 71 is provided with a voltage applying means 75 in the rotating structure 72 as a drive energy source.
  • the voltage application unit 75 includes a power source 76, a switch 77, a circuit unit 78, a voltage application unit 79, and a switch member 80.
  • the power source 76 and the switch 77 are connected by a circuit unit 78.
  • a voltage application unit 79 and a switch member 80 are connected to the circuit unit 78 in parallel.
  • the switch 77 is provided so as to be able to be turned on / off so that a voltage can be applied to the metal wire 73 via the voltage application unit 79 when the switch 77 is turned on.
  • the switch 77 has a structure that can switch any one of the switch portions 81 and 81 provided in the switch members 80 and 80 so as to be operable during an ON operation.
  • the voltage application unit 79 is connected to the upper and lower parts of the rotating structure 72 so that a voltage can be applied to the metal wire 73.
  • the switch member 80 has, for example, a solenoid structure inside, and the switch portion 81 pulls when the solenoid portion is attracted and excited by turning on the switch 77.
  • the actuator body 71 rotates the rotating structure 72 by applying a voltage by the voltage applying means 75 and repeats the application of this voltage, thereby repeating the rotation of the rotating structure 72 to the output shaft body 82. It is possible to communicate.
  • the voltage applying means 75 has a function of applying a voltage to the rotating structure 72 and the switch members 80 and 80 in a pulsed manner. With this pulse voltage, the rotating structure 72 and the switch members 80 and 80 can repeat the operation and the operation stop at a predetermined interval.
  • FIG. 19 shows a state where the switch 77 is off.
  • the rotating structure 72 does not rotate.
  • the switch portions 80, 80 do not operate.
  • the inner peripheral transmission surface 27 and the outer peripheral transmission surface 28 of the transmission members 20 and 20 are disengaged from the tapered surfaces 22, 23, 29, and 30. For this reason, the transmission members 20 and 20 are in a free state with respect to the cylindrical portion 9 and the casing 21, and the output shaft body 82 is in a stopped state.
  • the switch 77 is turned off as shown in FIG. 19, and the voltage application by the voltage applying means 75 is stopped. Thereby, the switch part 81 returns to the original state, and the pressing to the upper transmission member 20 is released. Subsequently, the engagement between the outer peripheral transmission surface 28 and the tapered surface 29 and the engagement between the inner peripheral transmission surface 27 and the tapered surface 23 are released.
  • the rotating structure 72 is biased by the coil spring 74 described above, so that the rotating structure 72 twists in the left direction and returns to its original state.
  • the output shaft body 82 since the output shaft body 82 does not rotate together with the rotating structure 72, the output shaft body 82 is maintained in the right-rotated state, and the valve opening degree of the valve 55 connected to the output shaft body 72 is also maintained.
  • the above operation describes a case where a pulse voltage is applied once by the voltage applying means 75. Subsequently, a pulse voltage is repeatedly applied (switch 77 is repeatedly turned on and off), and the rotation structure 72 and the switch member 80 are repeatedly operated and stopped so that the output shaft 82 is continuously inchingly operated. Rotation can be controlled. Further, similarly to the case of the pulse air described above, the pulse width of the pulse voltage can be controlled to a predetermined interval. In this case, the rotation angle of the output shaft 82 by one pulse voltage can be adjusted more finely.
  • the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 30 of the casing 21 are engaged with each other, and the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion 9 are disengaged.
  • the inner peripheral transmission surface 27 and the tapered surface 22 of the cylindrical portion 9 are engaged with each other while the outer peripheral transmission surface 28 and the tapered surface 29 of the casing 21 are disengaged.
  • the switch 81 is returned to the original state, so that the pressure on the lower transmission member 20 is released. Then, the outer peripheral transmission surface 28 and the inner peripheral transmission surface 27 of the transmission member 20 are disengaged from the tapered surfaces 30 and 22, and the rotating structure 72 is twisted and rotated to the right by the bias force of the coil spring 74. Return to the state. At this time, the output shaft body 82 is maintained in the left-rotated state. When a pulsed voltage that repeatedly operates the switch member 80 on the other side is applied continuously from this state, the output shaft body 82 can be continuously controlled to rotate by the inching operation, as in the case of the right rotation described above.
  • FIG. 23 shows a fourth embodiment of the rotary actuator according to the present invention.
  • heat-shrinkable tubes 92 are provided on the outer peripheral surfaces 91a and 91a on both ends of the rotating structure 91.
  • the heat-shrinkable tube 92 for example, an olefin-based heat-shrinkable tube or a heat-shrinkable silicone rubber tube is used.
  • a material having appropriate shrinkage, tensile strength, elongation and tear strength and capable of exhibiting shrinkage even in a wide use temperature range is preferable.
  • various materials can be used instead of the heat-shrinkable tube 92 as long as it has such characteristics.
  • the heat-shrinkable tube 92 is attached to the outer peripheral surfaces 91a and 91a at both ends of the rotating structure 91, and is heated by appropriate heating means such as a dryer (not shown) in this state. Thereby, the heat-shrinkable tube 92 is heat-shrinked, and the rotary structure 91 is compressed and adhered in the radial direction and fixed. When the heat-shrinkable tube 92 is disposed, both end sides of the rotating structure 91 are thicker than other portions. The outer diameter side of the rotating structure 91 is protected by the heat shrinkable tube 92.
  • Both ends 105 and 105 of the rotating structure 91 to which the heat-shrinkable tube 92 is fixed are fixed and held between the inner transmission member 94 and the outer transmission member 95 constituting the transmission member 93 in a contraction clamp state.
  • the inner transmission member 94 and the outer transmission member 95 are integrated by screwing a male screw 96 and a female screw 97 formed respectively.
  • the rotary structure 91 and the heat-shrinkable tube 92 are expanded and held by the inner transmission member 94.
  • the outer diameter side of the heat-shrinkable tube 92 is protected by an outer transmission member 95.
  • At least one bamboo shoot portion 98 is formed on the outer peripheral surface 94a of the inner transmission member 94.
  • the bamboo shoot portion 98 has a ring-like protrusion shape, and is provided in a substantially right-angled triangular cross section in which the outer diameter gradually increases with respect to the direction of insertion into the rotating structure 91.
  • An apex angle (not shown) of the bamboo shoot portion 98 is formed in an acute angle shape. Due to this apex angle of the acute angle shape, the bamboo shoot portion 98 bites into the inner peripheral surfaces 91b and 91b of the both ends 105 and 105 of the rotating structure 91.
  • About three bamboo shoot portions 98 are preferably formed.
  • an adhesive may be applied between the vicinity of the bamboo shoot portion 98 and the heat-shrinkable tube 92.
  • this adhesive is preferably a synthetic rubber adhesive such as SBR (styrene rubber) or CR (chloroprene rubber).
  • a bent portion 99 that bends at an appropriate angle inward in the inner direction is formed at a contact portion with the heat-shrinkable tube 92 on the inner peripheral side of the outer transmission member 95.
  • a space portion 100 is formed in the outer peripheral portion of the inner transmission member 94 that faces the bent portion 99.
  • the heat shrinkable tube 92 and both end portions 105, 105 of the rotating structure 91 are located between the inner transmission member 94 and the outer transmission member 95 in a state where the end portion side is bent toward the space portion 100 by the bent portion 99. It is held fixed. At this time, it is crimped and fixed to the bamboo shoot portion 98.
  • a spacer member 101 is provided between the upper and lower transmission members 93 and 93 as in the above-described embodiment.
  • the upper and lower end surfaces 101a, 101a of the spacer member 101 are in contact with the inner transmission member 94 in a metal touch state. Therefore, the spacer member 101 can smoothly rotate and slide with respect to the transmission member 93.
  • An annular contact portion 102 is formed on the outer periphery of the inner transmission member 94. The annular contact portion 102 is in contact with the touch surface 103 formed at the corresponding position of the outer transmission member 95 in a metal touch state.
  • the rotating structure 91 is mounted in a state in which the dimensional accuracy in the axial direction is increased by a metal touch between the spacer member 101 and the inner transmission member 94 and a metal touch between the inner transmission member 94 and the outer transmission member 95. Therefore, the rotational force can be transmitted in a state where the axial dimension of the rotating structure 91 after contraction is controlled to be constant.
  • the actuator main body 90 holds the both end portions 105 and 105 of the rotating structure 91, to which the heat-shrinkable tube 92 is fixed by heat shrinkage, between the inner transmission member 94 and the outer transmission member 95. Therefore, the contact surface pressure with respect to the transmission member 93 is increased by the thick portion, and the rotating structure 91 and the heat-shrinkable tube 92 can be fixed in a state where the fixation is strengthened by the contraction force. Therefore, it is possible to prevent the rotating structure 91 from loosening with respect to the transmission member 93 due to a torsional force, or a sudden wear of the fixed portion between the rotating structure 91 and the transmission member 93. Since the heat-shrinkable tube 92 is covered and fixed to the rotating structure 91 by heat shrinkage, the covered surface can be made airtight by acting on the contraction force.
  • the rotating structure 91 can be prevented from falling off the transmission member 93, and fatigue fracture, cracking and breakage of the fixed portion can also be prevented. Since the rotating structure 91 is fixed through a metal touch between the spacer member 101 and the inner transmission member 94 and between the inner transmission member 94 and the outer transmission member 95, the length in the axial direction does not change and is highly accurate. Resolution can be maintained. Since the heat-shrinkable tube 92 is fixed by screwing the rotating structure 91, disassembly and assembly are easy. With the assembly structure of the rotating structure 91, the entire structure can be formed compactly while suppressing the actuator at low cost.
  • the rotating structure 91 is biting into the apex portion of the bamboo slat 98 formed on the inner transmission member 94, the rotating structure 91 is compressed and held in the radial direction from the outer peripheral side by the heat-shrinkable tube 92. Therefore, a large pulling resistance force can be generated with respect to the force in the pulling direction acting on the rotating structure 91. For this reason, the rotation structure 91 can be prevented from coming off or loosening. Since the rotating structure 91 and the heat-shrinkable tube 92 are bent at the bent portion 99 of the outer transmission member 95, the resistance force is exerted more strongly in addition to the pulling force by the bamboo shoot portion 98.
  • the heat-shrinkable tube 92 can be more firmly fixed to the rotating structure 91 by this adhesive. Moreover, there is no risk of fluid leakage by closing the gap between them.
  • a rotary structure having a twist angle in the axial direction is rotatably provided via a drive energy source, and stress generated at both ends of the structure is converted into a rotational force to output a shaft.
  • the rotating structure can be provided in a structure other than a structure including an elastic body and a wire, or a metal wire made of a shape memory alloy.
  • the rotary actuator can be used for devices and devices other than valves, and in particular, the rotation control function can be utilized to the maximum by providing it at a place where high-precision rotation control with high resolution is required.
  • the power transmission mechanism can be simplified to make it compact. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Actuator (AREA)

Abstract

Provided is a rotation actuator which can control rotation with high precision while maintaining the high torque property, specifically, a rotation actuator suitable for controlling the rotation of various kinds of valves. A rotation structure (2) having a torsion angle in the axial direction is rotatably provided via a drive energy source (6), and the rotation structure (2) is disposed while being retained in the axial direction to convert stress occurring at both ends of the structure (2) to a rotational force and transmit the rotational force to an output shaft body (3).

Description

回転アクチュエータRotary actuator
 本発明は、例えば、生産設備等における装置の自動化などに利用され、空気圧、電気等の駆動エネルギー源により動作する回転アクチュエータに関する。 The present invention relates to a rotary actuator that is used, for example, for automation of an apparatus in a production facility or the like and is operated by a driving energy source such as air pressure or electricity.
 従来より、装置の自動化などに用いられるアクチュエータとして、例えば、ピストンシリンダー、モータなどのアクチュエータが知られている。このうち、カム、リンク、歯車などの機械部品を内部機構として有し、この内部機構により直線運動・回転運動などに変換して出力するアクチュエータがある。その中で、出力側が回転運動となるアクチュエータは、例えば、バルブに利用され、このアクチュエータの内部機構においては、一般的に、被駆動体に動力を伝達する出力部が軸体形状になっている。内部機構により変換された回転運動は、軸体が回転することで外部に伝達される。すなわち、この変換機構では、同一軸体である出力軸の両端部は、常に同一の回転方向になっている。 Conventionally, for example, actuators such as piston cylinders and motors are known as actuators used for device automation. Among these, there are actuators that have mechanical parts such as cams, links, and gears as internal mechanisms, and convert them into linear motions, rotational motions, and the like by the internal mechanisms. Among them, an actuator whose output side is in rotational motion is used, for example, in a valve. In the internal mechanism of this actuator, an output portion that transmits power to a driven body is generally shaped like a shaft. . The rotational motion converted by the internal mechanism is transmitted to the outside as the shaft body rotates. That is, in this conversion mechanism, both end portions of the output shaft that is the same shaft body are always in the same rotational direction.
 この種の機械部品を有する変換機構を備えたアクチュエータは、機械部品間の摩擦による熱損失を発生したり、部品間への異物の浸入や傷の発生などによる劣化が生じたり、或は、部品間の摩耗に伴うヒステリシスの発生による動作特性の劣化が発生しやすくなっている。これらを防止するために、潤滑油を添加したり、機械部品の材料の選定の最適化を図ったりする場合があるが、これらの場合にはコストが上昇するという問題が生じる。
 一方で、空気圧等の動作エネルギーを利用して弾性体を動作させ、この弾性体により回転運動に変換させるようにしたものを使用することがある。この場合、機械部品をほとんど用いることがないため、上記の問題が起こりにくくなっている。
Actuators equipped with this type of mechanical component conversion mechanism may cause heat loss due to friction between mechanical components, deterioration due to intrusion of foreign objects between the components, generation of scratches, etc. It is easy for the operating characteristics to deteriorate due to the occurrence of hysteresis due to wear during the operation. In order to prevent these problems, lubricating oil may be added or the selection of materials for machine parts may be optimized. In these cases, there is a problem that costs increase.
On the other hand, there is a case where an elastic body is operated using operating energy such as air pressure and converted into a rotational motion by the elastic body. In this case, since the machine parts are hardly used, the above-described problem is hardly caused.
 このような、弾性体を利用したアクチュエータとして、例えば、特許文献1のトルクアクチュエータが知られている。このトルクアクチュエータは、流体圧を軸方向の回転力に変換する弾性体を有し、この弾性体の膨径変形を利用して回転トルクを発生させるようにしたものである。一方、特許文献2は、弾性体を変形させることにより正転逆転の回転トルクを発生させるようにしたトルクアクチュエータである。同文献1、2のトルクアクチュエータは、いわゆる、ねじり回転動作になっており、同一軸体である出力軸の一端側を固定したときに他端側が回転するようになっている。 For example, a torque actuator disclosed in Patent Document 1 is known as an actuator using an elastic body. This torque actuator has an elastic body that converts fluid pressure into axial rotational force, and generates rotational torque by utilizing the bulging deformation of this elastic body. On the other hand, Patent Document 2 is a torque actuator configured to generate forward and reverse rotational torque by deforming an elastic body. The torque actuators of Patent Documents 1 and 2 are so-called torsional rotation operations, and the other end side rotates when one end side of the output shaft that is the same shaft body is fixed.
 特許文献3の流体作動式回転駆動装置は、二つのヘッドピースとこのヘッドピース間に延在するホース本体とを有している。この回転駆動装置は、流体がホース本体の内部空間に作用するときに、互いのヘッドピースの軸方向の相対的運動を妨げつつ、この二つのヘッドピースの相対的回転運動を許容することで駆動力を得るようにしたものである。同文献3の回転駆動装置も、いわゆるねじり回転動作によるアクチュエータである。しかし、このアクチュエータは、同一軸体である出力軸の両端側が互いに逆の方向に回転するようになっている。 The fluid-operated rotary drive device of Patent Literature 3 has two head pieces and a hose body extending between the head pieces. The rotary drive device is driven by allowing the relative rotational movement of the two head pieces while preventing the relative movement of the head pieces in the axial direction when fluid acts on the internal space of the hose body. It is intended to gain power. The rotation drive device of the same literature 3 is also an actuator by so-called torsional rotation operation. However, this actuator is configured such that both ends of the output shaft, which is the same shaft body, rotate in opposite directions.
特公平5-78687号公報Japanese Patent Publication No. 5-78687 特公平5-563号公報Japanese Patent Publication No. 5-563 特開2001-12414号公報JP 2001-12414 A
 しかしながら、特許文献1~3のアクチュエータにおいては、ねじれを発生させるために弾性体の内部に軸方向に傾きを有する線状材が設けられ、図25に示すように、エアの流入により弾性体のねじれる回転角が大きくなるときに弾性体のねじれ量に比例して回転軸が回転する構造になっている。このように、これらのアクチュエータは、弾性体のねじれ変形をそのまま出力軸に伝達する構造である。この場合、線状材の張力によって生じる回転トルクは、回転軸の回転角が大きくなるにつれて弾性体のねじれ抵抗が増加することで減少するため、回転軸の回転トルクを一定に保つことができない。 However, in the actuators of Patent Documents 1 to 3, a linear member having an inclination in the axial direction is provided inside the elastic body in order to generate a twist, and as shown in FIG. When the twisting rotation angle increases, the rotation shaft rotates in proportion to the amount of twist of the elastic body. Thus, these actuators have a structure for transmitting torsional deformation of the elastic body to the output shaft as it is. In this case, since the rotational torque generated by the tension of the linear material decreases as the torsional resistance of the elastic body increases as the rotational angle of the rotational shaft increases, the rotational torque of the rotational shaft cannot be kept constant.
 そのため、これらのアクチュエータは、その回転角が一定限度内の範囲になるように回転動作が限定される補助機構として用いられることが多く、一定の回転トルクや高精度の回転制御・比例制御が要求されるバルブ用のアクチュエータとして使用することは難しくなっている。 For this reason, these actuators are often used as an auxiliary mechanism whose rotation angle is limited so that the rotation angle is within a certain range, requiring constant rotation torque and high-precision rotation control / proportional control. It has become difficult to use as an actuator for valves that are used.
 本発明は、上記した実情に鑑み、鋭意検討の結果開発に至ったものであり、その目的とするところは、高トルク性を一定に保持しつつ高精度に回転制御でき、特に、各種バルブの回転制御用として好適な回転アクチュエータを提供することにある。 The present invention has been developed as a result of intensive studies in view of the above-described circumstances, and the object of the present invention is to control rotation with high accuracy while maintaining high torque characteristics, and in particular, various valves. An object of the present invention is to provide a rotation actuator suitable for rotation control.
 上記目的を達成するため、請求項1に係る発明は、軸方向にねじれ角を有する回転構造体を駆動エネルギー源を介して回動可能に設け、この回動構造体を軸方向に拘束した状態で配設して構造体の両端部に発生した応力を回転力に変換して出力軸体に伝達した回転アクチュエータである。 In order to achieve the above object, the invention according to claim 1 is a state in which a rotating structure having a twist angle in the axial direction is rotatably provided via a driving energy source, and the rotating structure is constrained in the axial direction. It is a rotary actuator which is arranged in the above and converts the stress generated at both ends of the structure into a rotational force and transmits it to the output shaft.
 請求項2に係る発明は、回転構造体と出力軸体との間に動力伝達機構を設け、この動力伝達機構は、回転構造体が発生した応力により一方向に回転するときに出力軸体に回転を伝達し、回転構造体が逆方向に回転して元の状態に戻るときに出力軸体への回転伝達を停止する機構である回転アクチュエータである。 According to a second aspect of the present invention, a power transmission mechanism is provided between the rotating structure and the output shaft body, and the power transmission mechanism is provided on the output shaft body when rotating in one direction due to the stress generated by the rotating structure. This is a rotary actuator that is a mechanism for transmitting rotation and stopping rotation transmission to the output shaft when the rotating structure rotates in the reverse direction and returns to its original state.
 請求項3に係る発明は、回転構造体は、円筒状の弾性体と、この弾性体の軸方向にねじれ角を有する複数の線材とを有し、弾性体の内側から圧力を加えたときに線材により軸方向のねじれ回転を生じる構造体である回転アクチュエータである。 According to a third aspect of the present invention, the rotating structure has a cylindrical elastic body and a plurality of wires having twist angles in the axial direction of the elastic body, and pressure is applied from the inside of the elastic body. This is a rotary actuator that is a structure that generates axial torsional rotation by a wire.
 請求項4に係る発明は、回転構造体の内側に密閉空間となる流体供給排出領域を設け、この流体供給排出領域内に駆動エネルギーとして適宜の流体の供給と排出とを繰り返し行って回転構造体の回転を出力軸体に伝達した回転アクチュエータである。 According to a fourth aspect of the present invention, there is provided a fluid supply / discharge region serving as a sealed space inside the rotary structure, and the supply and discharge of appropriate fluid as driving energy is repeatedly performed in the fluid supply / discharge region to rotate the rotary structure. Is a rotary actuator that transmits the rotation of the motor to the output shaft body.
 請求項5に係る発明は、流体供給排出領域に所定圧の流体をパルス状に印加する流体供給排出手段を駆動エネルギー源として接続した回転アクチュエータである。 The invention according to claim 5 is a rotary actuator in which fluid supply / discharge means for applying a fluid of a predetermined pressure in a pulse shape to a fluid supply / discharge region is connected as a drive energy source.
 請求項6に係る発明は、回転構造体は、軸方向にねじれ角を有し、電圧の印加時に長さの縮む形状記憶合金製の複数の金属線材を適宜数含んだ略円筒状の構造体である回転アクチュエータである。 The invention according to claim 6 is a substantially cylindrical structure in which the rotating structure has a twist angle in the axial direction and appropriately includes a plurality of metal wires made of a shape memory alloy whose length is reduced when a voltage is applied. Is a rotary actuator.
 請求項7に係る発明は、回転構造体に駆動エネルギー源として電圧印加手段を設け、この電圧印加手段により繰り返し電圧を印加して回転構造体の回転を出力軸体に繰り返し伝達した回転アクチュエータである。 The invention according to claim 7 is a rotary actuator in which a voltage applying means is provided as a driving energy source in the rotating structure, and the rotation of the rotating structure is repeatedly transmitted to the output shaft body by repeatedly applying a voltage by the voltage applying means. .
 請求項8に係る発明は、電圧印加手段は、電圧をパルス状に印加する機能を有する印加手段である回転アクチュエータである。 The invention according to claim 8 is a rotary actuator, wherein the voltage applying means is an applying means having a function of applying a voltage in a pulsed manner.
 請求項9に係る発明は、動力伝達機構は、出力軸体の外周側に設けられる円筒部と、この円筒部の外周側に軸方向に移動可能に装着され、内外周側に伝達面を有する伝達部材と、この伝達部材の外周側に配設される筒状のケーシングとを同軸に有し、回転構造体の両端側を伝達部材で保持しつつ、駆動エネルギー源を一側部から供給したときに、伝達部材が、回転構造体の一側部でケーシングとかみ合いつつ円筒部とのかみ合いが外れ、他側部でケーシングとのかみ合いが外れつつ円筒部とかみ合って回転構造体の一側部をケーシングに保持しながら回転構造体にねじれ回転を加えて他側部を回転させ、この回転トルクを円筒部を介して出力軸体に伝達する機構である回転アクチュエータである。 In the invention according to claim 9, the power transmission mechanism has a cylindrical portion provided on the outer peripheral side of the output shaft body, and is mounted on the outer peripheral side of the cylindrical portion so as to be movable in the axial direction, and has a transmission surface on the inner and outer peripheral sides. A transmission member and a cylindrical casing disposed on the outer peripheral side of the transmission member are coaxially provided, and a driving energy source is supplied from one side while holding both ends of the rotating structure with the transmission member. Sometimes, the transmission member engages with the cylindrical part while engaging with the casing at one side of the rotating structure, and engages with the cylindrical part while disengaging with the casing at the other side. The rotary actuator is a mechanism that applies torsional rotation to the rotating structure while rotating the rotating structure to rotate the other side, and transmits this rotational torque to the output shaft through the cylindrical portion.
 請求項10に係る発明は、回転構造体の両端側外周面に熱収縮性チューブを熱収縮により固着し、この熱収縮性チューブを固着した回転構造体の両端部を、伝達部材を成す内側伝達部材と外側伝達部材との螺着により固定保持した回転アクチュエータである。 In a tenth aspect of the present invention, a heat-shrinkable tube is fixed to the outer peripheral surfaces of both ends of the rotating structure by heat shrinking, and both ends of the rotating structure to which the heat-shrinkable tube is fixed are connected to the inner transmission forming a transmission member. The rotary actuator is fixed and held by screwing the member and the outer transmission member.
 請求項11に係る発明は、内側伝達部材の外周面に少なくとも1つの竹の子部を形成し、この竹の子部を回転構造体両端部の内周面に食い込ませた回転アクチュエータである。 The invention according to claim 11 is a rotary actuator in which at least one bamboo shoot part is formed on the outer peripheral surface of the inner transmission member, and this bamboo shoot part is bitten into the inner peripheral surfaces of both ends of the rotary structure.
 請求項12に係る発明は、出力軸体に回転弁や昇降動弁等のバルブを接続した回転アクチュエータである。 The invention according to claim 12 is a rotary actuator in which a valve such as a rotary valve or a lift valve is connected to the output shaft body.
 請求項1に係る発明によると、回転構造体のねじれ回転により発生する応力を回転力に変換して出力軸体に伝達しているので、出力軸体の回転トルクを略一定に確保できる。しかも、出力軸体が一度に回転するときの回転角を小さくすることで高精度の分解能を発揮できる。さらに、回転構造体の小さい回転角による回転を出力軸体に連続的に伝達できるため円滑な回転制御が可能になり、各種バルブの回転制御用として利用することができる。これらの場合、拘束状態を交互に切り換えて回転方向を変化させることができる。また、例えば、電動アクチュエータの場合のように、ステッピングモータや専用の制御回路などを必要としないため、構造が複雑化することがなく全体のコンパクト化を図ることもできる。 According to the first aspect of the invention, since the stress generated by the torsional rotation of the rotating structure is converted into a rotational force and transmitted to the output shaft body, the rotational torque of the output shaft body can be secured substantially constant. In addition, by reducing the rotation angle when the output shaft body rotates at a time, high-precision resolution can be exhibited. Furthermore, since the rotation at a small rotation angle of the rotating structure can be continuously transmitted to the output shaft body, smooth rotation control is possible, and it can be used for rotation control of various valves. In these cases, the rotation direction can be changed by alternately switching the restraint state. Further, for example, as in the case of an electric actuator, a stepping motor or a dedicated control circuit is not required, so that the structure can be made compact without complicating the structure.
 請求項2に係る発明によると、駆動エネルギー源から駆動エネルギーを供給又は供給停止したときに駆動エネルギーの供給ごとに出力軸体を回転させることができる。このため、この回転構造体に繰り返し駆動エネルギーを供給することで、出力軸体を連続的に回転させることができる。これにより、出力軸体を安定したトルク特性により回転制御できる。更に、この動力伝達機構を出力軸体の相反する回転側に設けるようにすれば、出力軸を異なる回転方向に回転制御できる。 According to the second aspect of the present invention, when the drive energy is supplied or stopped from the drive energy source, the output shaft body can be rotated every time the drive energy is supplied. For this reason, the output shaft body can be continuously rotated by repeatedly supplying driving energy to the rotating structure. Thereby, the rotation of the output shaft body can be controlled with stable torque characteristics. Furthermore, if this power transmission mechanism is provided on the opposite rotation side of the output shaft body, the output shaft can be controlled to rotate in different rotational directions.
 請求項3又は4に係る発明によると、回転構造体の内側に所定圧の流体を繰り返し供給又は排出することで出力軸体を少しずつ連続的に回転させることができ、この出力軸体を、一定のトルク性を確保しながら所定角度まで回転制御させることができる。しかも、流体としてエアを用いた場合には、弾性体の内側への供給と排出とを迅速かつスムーズにできるため、出力軸体をより滑らかに回転制御できる。 According to the invention according to claim 3 or 4, the output shaft body can be continuously rotated little by little by repeatedly supplying or discharging a fluid having a predetermined pressure to the inside of the rotating structure. The rotation can be controlled to a predetermined angle while ensuring a certain torque characteristic. In addition, when air is used as the fluid, the supply and discharge to the inside of the elastic body can be performed quickly and smoothly, so that the output shaft body can be controlled to rotate more smoothly.
 請求項5に係る発明によると、流体供給排出領域に所定圧のパルスエアを繰り返し印加することで出力軸体を極僅かずつ回転させ、略一定の回転トルクを発揮させながら出力軸体を回転制御することで安定したトルク特性を発揮できる。 According to the fifth aspect of the invention, the output shaft body is rotated little by little by repeatedly applying pulsed air of a predetermined pressure to the fluid supply / discharge region, and the output shaft body is controlled to rotate while exhibiting a substantially constant rotational torque. This makes it possible to exhibit stable torque characteristics.
 請求項6又は7に係る発明によると、回転構造体に電圧を繰り返し印加又は印加停止するだけで出力軸体を少しずつ連続的に回転させることができ、この出力軸体を一定のトルク性を確保しながら所定角度まで回転制御することができる。しかも、電圧印加手段を小型化して設備全体のコンパクト化を図ることもできる。 According to the invention according to claim 6 or 7, the output shaft body can be continuously rotated little by little by repeatedly applying or stopping application of voltage to the rotating structure, and the output shaft body has a constant torque characteristic. The rotation can be controlled to a predetermined angle while ensuring. In addition, the voltage application means can be downsized to make the entire equipment compact.
 請求項8に係る発明によると、電圧印加手段により電圧をパルス状に繰り返し印加することで出力軸体を極僅かずつ回転させ、略一定の回転トルクを発揮させながら出力軸体を回転制御することで安定したトルク特性を発揮できる。 According to the eighth aspect of the invention, the output shaft body is rotated little by little by repeatedly applying a voltage in a pulse form by the voltage applying means, and the output shaft body is controlled to rotate while exhibiting a substantially constant rotational torque. Can exhibit stable torque characteristics.
 請求項9に係る発明によると、動力伝達機構における伝達部材と、ケーシング・円筒部とのかみ合いの組み合わせにより、回転構造体に発生した応力を確実に出力軸に伝達又は伝達を回避することができ、出力軸体の誤動作を防ぎつつ高精度の回転制御を実施することができる。この場合、円筒部にスプール的動作を発揮させながら、ねじれ回転の方向を適宜切り換える機能を有している。 According to the ninth aspect of the present invention, the stress generated in the rotating structure can be reliably prevented from being transmitted or transmitted to the output shaft by the combination of the transmission member in the power transmission mechanism and the casing / cylindrical portion. Thus, highly accurate rotation control can be performed while preventing malfunction of the output shaft body. In this case, the cylindrical portion has a function of appropriately switching the direction of torsional rotation while exhibiting a spool-like operation.
 請求項10に係る発明によると、回転構造体を伝達部材に対して強固に固着することができ、回転構造体が緩んだり脱落したり急激に消耗することを防いで、優れた封止性能を発揮して回転アクチュエータとして高精度の分解能を維持できる。 According to the invention of claim 10, the rotating structure can be firmly fixed to the transmission member, and the rotating structure is prevented from loosening, dropping off, or being rapidly consumed, and has excellent sealing performance. It can be used to maintain high-precision resolution as a rotary actuator.
 請求項11に係る発明によると、回転構造体を抜け方向の抵抗を増加させて抜けや緩みを確実に防止しながら動作させることができる。 According to the eleventh aspect of the present invention, the rotating structure can be operated while increasing the resistance in the pulling direction and reliably preventing the pulling and loosening.
 請求項12に係る発明によると、複雑な機構を必要とすることなく単純な構成により設けることができ、コンパクト性を発揮しながら各種バルブに接続してこのバルブを高精度に回転制御することができる。 According to the twelfth aspect of the present invention, it is possible to provide a simple structure without requiring a complicated mechanism, and it is possible to control the rotation of the valve with high accuracy by connecting to various valves while exhibiting compactness. it can.
本発明における回転アクチュエータの第1実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a rotation actuator in the present invention. 図1の回転アクチュエータにエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. 図2の回転アクチュエータに更にエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air further to the rotary actuator of FIG. 図3の回転アクチュエータに更にエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air further to the rotary actuator of FIG. 図4の回転アクチュエータからエアの排出を開始した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which started discharge | emission of air from the rotary actuator of FIG. 図5の回転アクチュエータからエアの排出を完了した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which completed discharge | emission of air from the rotary actuator of FIG. 回転アクチュエータと流体供給排出手段とを示した回路図である。It is the circuit diagram which showed the rotation actuator and the fluid supply / discharge means. エアの供給・排出と出力軸体の回転方向との関係を示す説明図である。It is explanatory drawing which shows the relationship between the supply / discharge of air, and the rotation direction of an output shaft body. エアの供給圧力と出力軸体の回転角度との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the supply pressure of air, and the rotation angle of an output shaft body. エアの供給圧力と出力軸体の回転角度との関係の他例を示す説明図である。It is explanatory drawing which shows the other example of the relationship between the supply pressure of air, and the rotation angle of an output shaft body. 図1の回転アクチュエータの回転構造体にかかる力を示したベクトル図である。FIG. 2 is a vector diagram showing a force applied to a rotary structure of the rotary actuator of FIG. 1. 本発明における回転アクチュエータの第2実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the rotary actuator in this invention. 図12の回転アクチュエータにエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. 図13の回転アクチュエータにエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. 図14の回転アクチュエータにエアを供給した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which supplied air to the rotary actuator of FIG. 図15の回転アクチュエータからエアの排出を開始した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which started discharge | emission of air from the rotary actuator of FIG. 図16の回転アクチュエータからエアの排出を完了した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which completed discharge | emission of air from the rotary actuator of FIG. 第2実施形態における回転アクチュエータの分解斜視図である。It is a disassembled perspective view of the rotary actuator in 2nd Embodiment. 本発明における回転アクチュエータの第3実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the rotary actuator in this invention. 図19の回転アクチュエータの一方側のスイッチ部材に電圧を印加した状態を示す縦断面図である。FIG. 20 is a longitudinal sectional view showing a state in which a voltage is applied to a switch member on one side of the rotary actuator of FIG. 19. 図19の回転アクチュエータの他方側のスイッチ部材に電圧を印加した状態を示す縦断面図である。FIG. 20 is a longitudinal sectional view showing a state in which a voltage is applied to the switch member on the other side of the rotary actuator of FIG. 19. 図19の回転アクチュエータの回転構造体にかかる力を示したベクトル図である。FIG. 20 is a vector diagram showing a force applied to the rotary structure of the rotary actuator of FIG. 19. 本発明における回転アクチュエータの第4実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 4th Embodiment of the rotary actuator in this invention. 図23の一部拡大断面図である。It is a partially expanded sectional view of FIG. エアの供給圧力と出力軸体の回転角度との関係の比較例を示す説明図である。It is explanatory drawing which shows the comparative example of the relationship between the supply pressure of air, and the rotation angle of an output shaft body.
 以下に、本発明における回転アクチュエータを図面に基づいて詳細に説明する。図1ないし図6においては、本発明の回転アクチュエータの第1実施形態を示したものであり、回転アクチュエータとして流体圧式回転アクチュエータとした例を示している。図7は、図1の回転アクチュエータに流体供給排出手段を接続した回路図を示している。この実施形態では、流体圧としてエアを使用している。 Hereinafter, the rotary actuator according to the present invention will be described in detail with reference to the drawings. 1 to 6 show a first embodiment of the rotary actuator of the present invention, and show an example in which a hydraulic rotary actuator is used as the rotary actuator. FIG. 7 shows a circuit diagram in which a fluid supply / discharge means is connected to the rotary actuator of FIG. In this embodiment, air is used as the fluid pressure.
 図1において、回転アクチュエータ本体(以下、アクチュエータ本体という)1は、回転構造体2と、出力軸体3と、動力伝達機構4とを有している。回転構造体2は、軸方向に図11に示すねじれ角θを有し、内側に密封空間となる流体供給排出領域5を有している。流体供給排出領域5には図7に示した流体供給排出手段6が駆動エネルギー源として接続され、回転構造体2は、この駆動エネルギー源6を介して回動可能に設けられている。 1, a rotary actuator main body (hereinafter referred to as an actuator main body) 1 has a rotary structure 2, an output shaft 3, and a power transmission mechanism 4. The rotary structure 2 has a twist angle θ shown in FIG. 11 in the axial direction, and has a fluid supply / discharge region 5 serving as a sealed space inside. A fluid supply / discharge means 6 shown in FIG. 7 is connected as a drive energy source to the fluid supply / discharge region 5, and the rotary structure 2 is rotatably provided via the drive energy source 6.
 回転構造体2は、円筒状の弾性体7と、この弾性体7の内部に配設される複数の線材8とを有している。弾性体7は、例えば、クロロピレンゴム等のゴム材料からなり、内側にパルスエア等のエアを供給・排出したときに円周方向に膨張・収縮変形する。線材8は、例えば、アラミド繊維等の強化繊維からなり、弾性体7内に螺旋状にねじれ角θを有するように埋め込まれている。回転構造体2は、弾性体7に内圧が加わらない状態では、弾性体7の復元力により円筒状の形状、又は、図1に示すような中央部付近が収縮した形状に維持されている。 The rotary structure 2 has a cylindrical elastic body 7 and a plurality of wires 8 disposed inside the elastic body 7. The elastic body 7 is made of, for example, a rubber material such as chloropyrene rubber, and expands and contracts in the circumferential direction when air such as pulsed air is supplied and discharged inside. The wire 8 is made of reinforcing fiber such as aramid fiber, for example, and is embedded in the elastic body 7 so as to have a helical twist angle θ. In a state where the internal pressure is not applied to the elastic body 7, the rotating structure 2 is maintained in a cylindrical shape or a shape in which the vicinity of the central portion is contracted as shown in FIG. 1 by the restoring force of the elastic body 7.
 この弾性体7の内側から圧力を加えたときには、弾性体7は、図3、図4に示すように中央部付近を中心として膨張しながら、線材8の張力により軸方向のねじれ回転が生じる。更に、この状態から弾性体7への圧力を除去すると、図1の状態まで弾性体7が収縮し、線材8の作用により弾性体7が元の状態まで戻るようになっている。 When pressure is applied from the inside of the elastic body 7, the elastic body 7 expands around the center as shown in FIGS. 3 and 4, and twists in the axial direction due to the tension of the wire 8. Further, when the pressure on the elastic body 7 is removed from this state, the elastic body 7 contracts to the state shown in FIG. 1, and the elastic body 7 returns to the original state by the action of the wire 8.
 このように、回転構造体2は、流体供給排出領域5に駆動エネルギーである流体が供給・排出されたときに膨張・収縮して軸方向にねじれるように変形する。これにより、回転構造体2が回転し、この回転を出力軸体3に繰り返し伝達することが可能になっている。回転構造体2により生じるトルクは、弾性体7の内径、軸方向の長さ、弾性体7の内部に加わる圧力に影響されるため、それぞれの値を適宜設定する必要がある。 Thus, the rotating structure 2 is deformed so as to expand and contract and twist in the axial direction when a fluid as drive energy is supplied to and discharged from the fluid supply / discharge region 5. As a result, the rotating structure 2 rotates, and this rotation can be repeatedly transmitted to the output shaft body 3. Since the torque generated by the rotating structure 2 is affected by the inner diameter of the elastic body 7, the length in the axial direction, and the pressure applied to the inside of the elastic body 7, it is necessary to appropriately set each value.
 図11において、線材8のねじれ角θは、弾性体7の膨張・収縮変形時の回転動作角度αを考慮した上で適宜設定される。空気圧を印加(エアを供給)するときに、上部側が開放され下部側が拘束されている場合には、回転構造体2には、弾性体7が膨張することにより線材8が外側に引張られて回転軸心Lを中心とした回転トルクTが発生し、回転構造体2の上部側が回転する。その際、回転構造体2は、1つの線材8の上端側の点Pが点P´まで移動するように回転動作角度αにより上部側が回転する。このときの線材8の下端側の固定点をQ、線材に対して力の加わる中心点をRとすると、線分PQ=線分P´RQとなり、線材8の長さは一定になる。一方、空気圧の印加を除去(エアを排出)した際には、回転構造体2には弾性体7の弾性力によりねじれ回転の戻り力(いわゆる、バイアス力)が働き、このバイアス力により開放側である回転構造体2の上部側が回転して元の形状まで戻る。又、固定点をPとした場合には、回転トルクTは、上記と反対(逆)方向に作用することになる。 11, the twist angle θ of the wire 8 is appropriately set in consideration of the rotational operation angle α when the elastic body 7 is expanded and contracted. When air pressure is applied (air is supplied), if the upper side is opened and the lower side is constrained, the elastic member 7 expands in the rotating structure 2 and the wire 8 is pulled outward to rotate. A rotational torque T about the axis L is generated, and the upper side of the rotating structure 2 rotates. At that time, the upper side of the rotating structure 2 is rotated by the rotation operation angle α so that the point P on the upper end side of one wire 8 moves to the point P ′. If the fixed point on the lower end side of the wire 8 at this time is Q and the center point where the force is applied to the wire is R, the line segment PQ = the line segment P′RQ, and the length of the wire 8 is constant. On the other hand, when the application of air pressure is removed (air is discharged), the rotating structure 2 is acted upon by the elastic force of the elastic body 7 to return torsional rotation (so-called bias force). The upper side of the rotating structure 2 is rotated to return to the original shape. When the fixed point is P, the rotational torque T acts in the opposite (reverse) direction to the above.
 線材8は、回転構造体2の両端部に応力を発生することができれば、螺旋状以外の構造に配列されていたり、或は、弾性体7の外周側に巻装されたり、網状に設けられていてもよい。一方、弾性体7は樹脂等であってもよく、回転構造体2は一体物により形成されていてもよい。 If the stress can be generated at both ends of the rotating structure 2, the wire 8 is arranged in a structure other than a spiral, or is wound around the outer periphery of the elastic body 7 or provided in a net shape. It may be. On the other hand, the elastic body 7 may be a resin or the like, and the rotary structure 2 may be formed as a single body.
 上記したように、回転構造体2は、軸方向に一端側が拘束された状態で配設され、この回転構造体2の両端部に発生した応力が回転力に変換されて出力軸体3に伝達される。
 出力軸体3は、略筒状に形成され、回転構造体2の内周側にこの回転構造体2と同軸に配設されて、回転構造体2に対して回転可能になっている。本実施形態では、出力軸体3は、拡径状の円筒部9と一体に形成され、出力軸体3と円筒部9とが一体回転するようになっている。出力軸体3(円筒部9)には、その両端面10、11側に流体供給排出口12、13、略中央付近に流体供給排出口14とが形成され、これらは連通孔15により連通している。両端面の流体供給排出口12、13は、後述するシール部材16よりも端面の内径側に形成されている。
As described above, the rotating structure 2 is disposed in a state in which one end side is constrained in the axial direction, and stress generated at both ends of the rotating structure 2 is converted into rotational force and transmitted to the output shaft 3. Is done.
The output shaft body 3 is formed in a substantially cylindrical shape, is disposed coaxially with the rotary structure 2 on the inner peripheral side of the rotary structure 2, and is rotatable with respect to the rotary structure 2. In the present embodiment, the output shaft body 3 is formed integrally with the enlarged diameter cylindrical portion 9 so that the output shaft body 3 and the cylindrical portion 9 rotate integrally. The output shaft body 3 (cylindrical portion 9) is formed with fluid supply / discharge ports 12, 13 on both end surfaces 10, 11 side, and a fluid supply / discharge port 14 near the center, which communicate with each other through a communication hole 15. ing. The fluid supply / discharge ports 12 and 13 on both end faces are formed on the inner diameter side of the end face with respect to a seal member 16 described later.
 動力伝達機構4は、回転構造体2と出力軸体3との間に設けられ、上記円筒部9と、伝達部材20と、筒状のケーシング21とを同軸に有している。このうち、円筒部9の外周の両側付近には出力軸体3の端部側から中央側に向けて拡径するテーパ面22、23が周面形成され、また、シール用Oリング24が装着されている。更に、円筒部9の両端面側には、上記したシール部材であるOリング16、16が装着されている。 The power transmission mechanism 4 is provided between the rotary structure 2 and the output shaft body 3, and has the cylindrical portion 9, the transmission member 20, and the cylindrical casing 21 coaxially. Of these, tapered surfaces 22 and 23 whose diameter is increased from the end side of the output shaft body 3 toward the center side are formed near both sides of the outer periphery of the cylindrical portion 9, and a sealing O-ring 24 is attached. Has been. Further, O- rings 16 and 16 as the sealing members described above are mounted on both end surface sides of the cylindrical portion 9.
 伝達部材20は、円筒部9の上下部側に配設され、Oリング24を介して円筒部9に対して軸方向に移動可能になっている。各伝達部材20、20は、内側伝達部材25と外側伝達部材26とからなっている。内側伝達部材25の内周側には内周伝達面27、外側伝達部材26の外周側には外周伝達面28が形成されている。内周伝達面27は、上記した円筒部のテーパ面22、23にかみ合い可能なテーパに形成されている。外周伝達面28は、ケーシング21の端部側から中央側に向けて縮径するテーパ面29、30にかみ合い可能なテーパに形成されている。内周伝達面27(テーパ面22、23)、外周伝達面28(テーパ面29、30)の図示しないテーパ角度は、伝達部材20が作動可能な適宜の角度に設けられる。 The transmission member 20 is disposed on the upper and lower sides of the cylindrical portion 9 and is movable in the axial direction with respect to the cylindrical portion 9 via the O-ring 24. Each transmission member 20, 20 includes an inner transmission member 25 and an outer transmission member 26. An inner peripheral transmission surface 27 is formed on the inner peripheral side of the inner transmission member 25, and an outer peripheral transmission surface 28 is formed on the outer peripheral side of the outer transmission member 26. The inner peripheral transmission surface 27 is formed in a taper that can mesh with the tapered surfaces 22 and 23 of the cylindrical portion described above. The outer peripheral transmission surface 28 is formed in a taper that can mesh with tapered surfaces 29 and 30 that reduce in diameter from the end side to the center side of the casing 21. The taper angles (not shown) of the inner peripheral transmission surface 27 (tapered surfaces 22 and 23) and the outer peripheral transmission surface 28 (tapered surfaces 29 and 30) are provided at appropriate angles at which the transmission member 20 can operate.
 内側伝達部材25の外周側と外側伝達部材26の内周側には、互いに螺合可能なおねじ31とめねじ32とが形成されている。内側伝達部材25と外側伝達部材26とは、その間に回転構造体2の両端部位がシール状態に挟まれた状態で螺着される。この回転構造体2は、Oリング24を介して出力軸体3の外周側に装着される。そのため、この回転構造体2の内側の出力軸体3との間には、密封空間である流体供給排出領域5が形成される。 On the outer peripheral side of the inner transmission member 25 and the inner peripheral side of the outer transmission member 26, a male screw 31 and a female screw 32 that can be screwed together are formed. The inner transmission member 25 and the outer transmission member 26 are screwed together with both end portions of the rotary structure 2 sandwiched between them. The rotating structure 2 is mounted on the outer peripheral side of the output shaft body 3 via an O-ring 24. Therefore, a fluid supply / discharge region 5, which is a sealed space, is formed between the output shaft body 3 inside the rotary structure 2.
 ケーシング21は、伝達部材20の外周側に配設されてこの伝達部材20と円筒部9とを内部に収納している。ケーシング21の開口側の内周には、外周伝達面28とかみ合い可能な前記テーパ面29、30が形成されている。ケーシング21の両端開口部位には、この開口部位を被蓋可能な第1キャップ部材33と第2キャップ部材34とがそれぞれ固着されている。 The casing 21 is disposed on the outer peripheral side of the transmission member 20 and accommodates the transmission member 20 and the cylindrical portion 9 therein. The tapered surfaces 29 and 30 that can mesh with the outer peripheral transmission surface 28 are formed on the inner periphery on the opening side of the casing 21. A first cap member 33 and a second cap member 34 that can cover the opening portion are fixed to both end opening portions of the casing 21.
 第1キャップ部材33、第2キャップ部材34には、それぞれガイド穴35が形成されている。ガイド穴35は、出力軸体3を回転かつ軸方向に摺動可能な穴径に設けられている。ガイド穴35の内周面にはOリング36が装着され、このOリング36により出力軸体3の外周面がシールされる。第1キャップ部材33、第2キャップ部材34における円筒部9の装着位置には、円筒部9が移動可能な空隙部37と、この空隙部37に続けて円筒部9の端面10、11が当接可能な当接面38が形成されている。更に、第1キャップ部材33、第2キャップ部材34には、空隙部37にエアを供給・排出可能な第1空気口39、第2空気口40がそれぞれ外部と連通して形成されている。本実施形態では、前述した回転構造体2は、第1空気口39からエアが供給されたときに時計回転(右回転)方向にねじれ回転を生じ、第2空気口40からエアが供給されたときに反時計回転(左回転)方向にねじれ回転を生じるように設けられている。
 図示しないが、第1キャップ部材33、第2キャップ部材34、及び、ケーシングに、フランジ部を設けるようにしてもよい。この場合、第1キャップ部材33、第2キャップ部材34をフランジ部を介してボルト等によりケーシングに取付けできる。
Guide holes 35 are formed in the first cap member 33 and the second cap member 34, respectively. The guide hole 35 is provided with a hole diameter that allows the output shaft body 3 to rotate and slide in the axial direction. An O-ring 36 is attached to the inner peripheral surface of the guide hole 35, and the outer peripheral surface of the output shaft body 3 is sealed by the O-ring 36. At the mounting position of the cylindrical portion 9 on the first cap member 33 and the second cap member 34, the gap portion 37 in which the cylindrical portion 9 can move, and the end faces 10, 11 of the cylindrical portion 9 subsequent to the gap portion 37 are abutted. A contact surface 38 that can be contacted is formed. Further, the first cap member 33 and the second cap member 34 are respectively formed with a first air port 39 and a second air port 40 that can supply and discharge air to and from the gap portion 37 so as to communicate with the outside. In the present embodiment, the rotating structure 2 described above is twisted in the clockwise direction (right rotation) when air is supplied from the first air port 39, and the air is supplied from the second air port 40. Sometimes it is provided so as to cause a torsional rotation in the counterclockwise (left) rotation direction.
Although not shown, a flange portion may be provided in the first cap member 33, the second cap member 34, and the casing. In this case, the 1st cap member 33 and the 2nd cap member 34 can be attached to a casing with a volt | bolt etc. via a flange part.
 前記構成により、動力伝達機構4は、流体供給排出手段6から空気口39、40を介して一側部からアクチュエータ本体1内に駆動エネルギー源であるエアが供給されたときに、出力軸体の円筒部9の一側のエア供給室に露出している半径方向端面部位がエア圧力の作用により軸方向に移動する。このとき、一側部ではテーパ面22と内周伝達面27とのかみ合いが外れ、他側部ではテーパ面23と内周伝達面27とがかみ合いつつ、伝達部材20、20が軸方向に移動して、回転構造体2の一側部では伝達部材20の外周伝達面28とケーシング21のテーパ面29とがかみ合い、他側部では、外周伝達面28とケーシング21のテーパ面30とのかみ合いが外れる。これにより、回転構造体2の一側部がケーシング21の回転方向に保持され、この状態で第1空気口39よりエアが供給されたときに、回転構造体2に反時計方向にねじれ回転が生じる。このねじれ回転により、他側部が回転したときの回転トルクが円筒部9を介して出力軸体3に伝達される機構である。 With the above configuration, when the power transmission mechanism 4 is supplied with air as a driving energy source from one side portion through the air ports 39 and 40 from the fluid supply / discharge means 6 into the actuator body 1, A radial end surface portion exposed to the air supply chamber on one side of the cylindrical portion 9 moves in the axial direction by the action of air pressure. At this time, the engagement between the tapered surface 22 and the inner peripheral transmission surface 27 is disengaged on one side, and the transmission members 20 and 20 move in the axial direction while the taper surface 23 and the inner peripheral transmission surface 27 are engaged on the other side. Then, the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 29 of the casing 21 mesh with each other on one side of the rotating structure 2, and the outer peripheral transmission surface 28 and the tapered surface 30 of the casing 21 mesh with each other. Comes off. As a result, one side of the rotating structure 2 is held in the rotating direction of the casing 21, and when air is supplied from the first air port 39 in this state, the rotating structure 2 is twisted and rotated counterclockwise. Arise. This is a mechanism in which rotational torque when the other side portion is rotated by this torsional rotation is transmitted to the output shaft body 3 via the cylindrical portion 9.
 この動力伝達機構4により、出力軸体3は、回転構造体2の膨張時にこの回転構造体2のねじれ回転に伴って回転し、回転構造体2の収縮時に回転を停止する。すなわち、動力伝達機構4は、回転構造体2が発生した応力により一方向に回転するときには出力軸体3に回転を伝達し、回転構造体2が逆方向に回転して元の状態に戻るときに出力軸体3の回転伝達を停止する機構となっている。更に、流体供給排出領域5に続けてエアが繰り返し供給・排出されたときには、その供給・排出ごとに出力軸体3が回転又は回転停止しながら、バルブ55の図示しない出力軸を所定角度まで回転する。 By this power transmission mechanism 4, the output shaft 3 rotates along with the torsional rotation of the rotating structure 2 when the rotating structure 2 expands, and stops rotating when the rotating structure 2 contracts. That is, the power transmission mechanism 4 transmits the rotation to the output shaft body 3 when rotating in one direction due to the stress generated by the rotating structure 2, and when the rotating structure 2 rotates in the opposite direction and returns to the original state. In addition, the rotation transmission of the output shaft body 3 is stopped. Further, when air is repeatedly supplied / discharged following the fluid supply / discharge area 5, the output shaft (not shown) of the valve 55 rotates to a predetermined angle while the output shaft 3 rotates or stops rotating for each supply / discharge. To do.
 本実施形態においては、伝達部材20、20は、動力伝達機構4の上下側に一対設けられる。この伝達機構20、20は、上部側の第1空気口39、下部側の第2空気口40よりエアが供給・排出されたときに、回転構造体2の異なる側部をケーシング21に保持することが可能になる。したがって、エアの供給・排出を、第1空気口39、第2空気口40で交互に切り換えることによって、出力軸体3の回転方向を正転・逆転させることができる。 In the present embodiment, a pair of transmission members 20 and 20 are provided on the upper and lower sides of the power transmission mechanism 4. The transmission mechanisms 20 and 20 hold different side portions of the rotating structure 2 in the casing 21 when air is supplied and discharged from the first air port 39 on the upper side and the second air port 40 on the lower side. It becomes possible. Therefore, the rotation direction of the output shaft body 3 can be rotated forward and backward by alternately switching the supply and discharge of air at the first air port 39 and the second air port 40.
 また、上下の伝達部材20、20の間にはスペーサ部材41が介在されている。スペーサ部材41は、上下の端面41a、41aが内側伝達部材25、25に対してスラスト回転可能な状態で円筒部9(出力軸体3)の外周側に嵌着されている。このスペーサ部材41により、上下の伝達部材20、20の近接方向への移動が規制され、流体供給排出領域5にエアが供給されたときに回転構造体2が軸方向に過度に縮むことが防がれる。そのため、回転構造体2のねじれ回転によるトルクが確保される。スペーサ部材41の略中央付近には、出力軸体3の流体供給排出口14と対応する位置に連通穴42が設けられている。この連通穴42を介して流体供給排出領域5にエアを供給・排出可能になっている。 Further, a spacer member 41 is interposed between the upper and lower transmission members 20 and 20. The spacer member 41 is fitted on the outer peripheral side of the cylindrical portion 9 (output shaft body 3) with the upper and lower end faces 41a, 41a being capable of thrust rotation with respect to the inner transmission members 25, 25. The spacer member 41 regulates the movement of the upper and lower transmission members 20, 20 in the proximity direction, and prevents the rotating structure 2 from being excessively contracted in the axial direction when air is supplied to the fluid supply / discharge region 5. Can be removed. Therefore, torque due to torsional rotation of the rotating structure 2 is ensured. Near the center of the spacer member 41, a communication hole 42 is provided at a position corresponding to the fluid supply / discharge port 14 of the output shaft body 3. Air can be supplied to and discharged from the fluid supply / discharge region 5 through the communication hole 42.
 図7において、流体供給排出手段6は、第1流体流路45と第2流体流路46とを有している。この第1流体流路45、第2流体流路46は、それぞれ第1空気口39、第2空気口40に接続されている。流体供給排出手段6は、流体供給排出領域5に所定圧力の流体を駆動エネルギー源としてパルス状に印加し、回転構造体2を膨張・収縮変形させる手段になっている。流体供給排出手段6は、コンプレッサー47、電磁切換弁48、パルス発生器49、フィルター50、レギュレーター51を有している。 In FIG. 7, the fluid supply / discharge means 6 has a first fluid channel 45 and a second fluid channel 46. The first fluid channel 45 and the second fluid channel 46 are connected to the first air port 39 and the second air port 40, respectively. The fluid supply / discharge means 6 is a means for applying a fluid of a predetermined pressure to the fluid supply / discharge area 5 as a drive energy source in a pulsed manner to expand and contract the rotary structure 2. The fluid supply / discharge means 6 includes a compressor 47, an electromagnetic switching valve 48, a pulse generator 49, a filter 50, and a regulator 51.
 コンプレッサー47は、圧縮エアの供給源であり、フィルター50とレギュレーター51とを介して電磁切換弁48に接続される。フィルター50は、コンプレッサー47からの圧縮エアの塵埃やゴミ等を除去するために設けられる。レギュレーター51は、コンプレッサー47からの圧縮エアを電磁切換弁48に供給するために設けられる。 The compressor 47 is a supply source of compressed air, and is connected to the electromagnetic switching valve 48 via the filter 50 and the regulator 51. The filter 50 is provided to remove dust, dirt, and the like of compressed air from the compressor 47. The regulator 51 is provided to supply the compressed air from the compressor 47 to the electromagnetic switching valve 48.
 電磁切換弁48は、コンプレッサー47からのエアをアクチュエータ本体1の第1空気口39、第2空気口40に送るために設けられ、例えば、5方口電磁切換弁からなる。コンプレッサー47からのエアは、電磁切換弁48内の図示しない第1空気用制御ソレノイド、第2空気用制御ソレノイドにより流路が切換えられてアクチュエータ本体1に適宜送られる。 The electromagnetic switching valve 48 is provided to send air from the compressor 47 to the first air port 39 and the second air port 40 of the actuator body 1, and is composed of, for example, a five-way electromagnetic switching valve. The air from the compressor 47 is appropriately sent to the actuator body 1 with the flow path switched by a first air control solenoid and a second air control solenoid (not shown) in the electromagnetic switching valve 48.
 パルス発生器49は、内部に図示しないパルス幅調整機構を有している。パルス幅調整機構は、所定幅のパルス信号を発生可能になっている。パルス発生器49は、第1空気口用パルス出力部52、第2空気口用パルス出力部53を有している。パルス発生器49は、第1空気口用パルス出力部52、第2空気口用パルス出力部53を介して、第1空気口用制御ソレノイド、第2空気口用制御ソレノイドに可変パルス電源を供給してこれらを制御可能になっている。この制御により、電磁切換弁48の流路からアクチュエータ本体1にパルスエアが供給される。パルス発生器49は、任意の間隔でパルス信号を発生することが可能である。これにより、電磁切換弁48からのパルスエアの間隔を制御し、後述するように出力軸体3の回転角度を任意に制御できる。 The pulse generator 49 has a pulse width adjusting mechanism (not shown) inside. The pulse width adjusting mechanism can generate a pulse signal having a predetermined width. The pulse generator 49 includes a first air port pulse output unit 52 and a second air port pulse output unit 53. The pulse generator 49 supplies variable pulse power to the first air port control solenoid and the second air port control solenoid via the first air port pulse output unit 52 and the second air port pulse output unit 53. These can be controlled. By this control, pulsed air is supplied from the flow path of the electromagnetic switching valve 48 to the actuator body 1. The pulse generator 49 can generate a pulse signal at an arbitrary interval. Thereby, the interval of the pulse air from the electromagnetic switching valve 48 can be controlled, and the rotation angle of the output shaft 3 can be arbitrarily controlled as will be described later.
 流体供給排出手段6において、コンプレッサー47からの圧縮エアは、フィルター50、レギュレーター51を介して電磁切換弁48に送られる。このとき、電磁切換弁48の流路がパルス発生器により切換えられる。そして、アクチュエータ本体1に所定圧力のパルスエアが所定間隔で繰り返し供給・排出される。これにより、回転構造体2が膨張・収縮動作される。前述したコンプレッサー47、電磁切換弁48、パルス発生器49、フィルター50、レギュレーター51は、通常用いられるものが利用可能である。 In the fluid supply / discharge means 6, the compressed air from the compressor 47 is sent to the electromagnetic switching valve 48 via the filter 50 and the regulator 51. At this time, the flow path of the electromagnetic switching valve 48 is switched by the pulse generator. Then, pulsed air with a predetermined pressure is repeatedly supplied to and discharged from the actuator body 1 at predetermined intervals. As a result, the rotating structure 2 is expanded and contracted. As the compressor 47, the electromagnetic switching valve 48, the pulse generator 49, the filter 50, and the regulator 51 described above, those commonly used can be used.
 また、図1、図7に示すように、出力軸体3には、任意のバルブ55を接続することが可能である。バルブ55としては、例えば、ボールバルブやバタフライバルブ等の回転弁、ゲートバルブやグローブバルブ等の昇降動弁等がある。バルブ55内の図示しないバルブ弁体は、流体供給排出手段6のパルスエアの供給・排出の調節で開閉制御され、或は任意の中間開度に比例制御される。 Further, as shown in FIGS. 1 and 7, an optional valve 55 can be connected to the output shaft body 3. Examples of the valve 55 include a rotary valve such as a ball valve and a butterfly valve, and a lift valve such as a gate valve and a globe valve. The valve body (not shown) in the valve 55 is controlled to be opened and closed by adjusting the supply / discharge of pulsed air from the fluid supply / discharge means 6, or is proportionally controlled to an arbitrary intermediate opening.
 続いて、上述した回転アクチュエータの動作を図1~図6を用いて詳しく説明する。
 図1においては、パルスエアの供給開始前のアクチュエータ本体1の状態を示している。エア供給前においては、円筒部9のシール部材16が第1キャップ部材33、第2キャップ部材34の各当接面38、38に密接シールする。出力軸体3は、回転停止状態に維持され、流体供給排出領域5からエアが排出されて回転構造体2が収縮した状態になっている。上下の伝達部材20、20の内周伝達面27、外周伝達面28は、円筒部9のテーパ面22、23とケーシング21のテーパ面29、30とに対してかみ合いが外れた状態になっている。そのため、伝達部材20、20は、円筒部9、ケーシング21に対してフリーの状態になっている。
Subsequently, the operation of the above-described rotary actuator will be described in detail with reference to FIGS.
FIG. 1 shows the state of the actuator body 1 before the start of supply of pulsed air. Before the air supply, the seal member 16 of the cylindrical portion 9 seals tightly to the contact surfaces 38, 38 of the first cap member 33 and the second cap member 34. The output shaft body 3 is maintained in a rotation stopped state, and air is discharged from the fluid supply / discharge region 5 and the rotating structure 2 is contracted. The inner peripheral transmission surface 27 and the outer peripheral transmission surface 28 of the upper and lower transmission members 20, 20 are in a state of disengagement from the tapered surfaces 22, 23 of the cylindrical portion 9 and the tapered surfaces 29, 30 of the casing 21. Yes. Therefore, the transmission members 20 and 20 are in a free state with respect to the cylindrical portion 9 and the casing 21.
 電磁切換弁48を切換えて、流体供給排出手段6から第1空気口39を介して所定圧力のパルスエアが供給されると、このエアは、第1キャップ部材33の空隙部37に達し、円筒部9には図における下方向に押圧する力が加わる。この力により、下側のシール部材16が端面11との間に押し潰されながら円筒部9(出力軸体3)が下方に往動する。このとき、円筒部9が下方側の伝達部材20を下方側に押圧する。この押圧により、回転構造体2を介して一体化している上方側の伝達部材20も下方側に移動する。そして、円筒部9の摺動により、回転構造体2の一側部、図2における上部側では伝達部材20の外周伝達面28とケーシング21のテーパ面29とがかみ合いつつ、内周伝達面27と円筒部9のテーパ面22とのかみ合いが外れる。回転構造体2の他側部、図2における下部側では外周伝達面28とケーシング21のテーパ面30とのかみ合いが外れつつ、内周伝達面27と円筒部9のテーパ面23とがかみ合った状態になる。 When the electromagnetic switching valve 48 is switched and pulse air of a predetermined pressure is supplied from the fluid supply / discharge means 6 through the first air port 39, the air reaches the gap portion 37 of the first cap member 33, and the cylindrical portion. 9 is applied with a downward pressing force in the figure. This force causes the cylindrical portion 9 (output shaft body 3) to move downward while the lower seal member 16 is crushed between the end surface 11 and the lower seal member 16. At this time, the cylindrical portion 9 presses the lower transmission member 20 downward. By this pressing, the upper transmission member 20 integrated through the rotating structure 2 is also moved downward. As the cylindrical portion 9 slides, the outer peripheral transmission surface 28 of the transmission member 20 and the taper surface 29 of the casing 21 are engaged with each other on one side of the rotary structure 2 and the upper side in FIG. And the taper surface 22 of the cylindrical portion 9 are disengaged. On the other side of the rotating structure 2, the lower side in FIG. 2, the outer peripheral transmission surface 28 and the taper surface 30 of the casing 21 are disengaged, while the inner peripheral transmission surface 27 and the taper surface 23 of the cylindrical portion 9 are engaged. It becomes a state.
 この状態から更に第1空気口39よりエアが供給されると、図3に示すように、出力軸体3の流体供給排出口12よりエアが流れ込む。このエアは、連通孔15を介して中央の流体供給排出口14から、スペーサ部材41の連通穴42を介して回転軸体内側の流体供給排出領域5に供給される。このとき、下側のシール部材16により端面11と当接面38とがシールされているため、第2空気口40からエアが漏れることが防がれる。流体供給排出領域5にエアが供給されると、回転構造体2が膨張変形して線材8により軸方向において右回転のねじれ回転を発生する。このとき、スペーサ部材41により、回転構造体2がねじれに伴って縮むことが防止されている。 When air is further supplied from the first air port 39 from this state, air flows from the fluid supply / discharge port 12 of the output shaft 3 as shown in FIG. The air is supplied from the fluid supply / discharge port 14 at the center via the communication hole 15 to the fluid supply / discharge region 5 inside the rotary shaft body via the communication hole 42 of the spacer member 41. At this time, since the end surface 11 and the contact surface 38 are sealed by the lower seal member 16, the air is prevented from leaking from the second air port 40. When air is supplied to the fluid supply / discharge region 5, the rotating structure 2 expands and deforms, and the wire rod 8 generates a right-handed torsional rotation in the axial direction. At this time, the rotation member 2 is prevented from shrinking due to the twist by the spacer member 41.
 その際、上記のように、伝達部材20の一側部で外周伝達面28とケーシングのテーパ面29、他側部で内周伝達面27と円筒部のテーパ面23とがかみ合った状態にある。そのため、回転構造体2は、一側部ではケーシング21に対して回転不能に保持され、他側部では出力軸体3と一体に回転可能になる。このことから、回転構造体2に加わったねじれ回転は他側部の伝達部材20を介して出力軸体3に伝達され、出力軸体3が回転構造体2のねじれ回転に伴って、上方側から見て右方向に回転動作する。
 図4においては、回転構造体2が最大に膨張した状態を示している。流体供給排出手段6からのパルスエアは、図の状態になるまで連続的に供給される。続いて、この状態から流体供給排出領域5のエアが流体供給排出口14、連通孔15、流体供給排出口12を介して第1空気口39より排出される。
At that time, as described above, the outer peripheral transmission surface 28 and the taper surface 29 of the casing are engaged with each other at one side of the transmission member 20, and the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion are engaged with each other. . Therefore, the rotating structure 2 is held non-rotatable with respect to the casing 21 on one side, and can rotate integrally with the output shaft 3 on the other side. Therefore, the torsional rotation applied to the rotating structure 2 is transmitted to the output shaft 3 via the transmission member 20 on the other side, and the output shaft 3 is moved upward as the rotating structure 2 is twisted. Rotate in the right direction when viewed from the side.
FIG. 4 shows a state where the rotating structure 2 is expanded to the maximum. The pulsed air from the fluid supply / discharge means 6 is continuously supplied until the state shown in FIG. Subsequently, air in the fluid supply / discharge region 5 is discharged from the first air port 39 through the fluid supply / discharge port 14, the communication hole 15, and the fluid supply / discharge port 12 from this state.
 図5に示すように、流体供給排出領域5からエアが排出されると、回転構造体2が弾性体7の復元力によって収縮伸張変形して左方向のねじれ回転を発生する。このとき、空隙部37のエアも排出されて、出力軸体3が図において上方に復動するとともにテーパ面23でのスラスト方向の推力がなくなるため、下方側の伝達部材20への出力軸体3の押圧が解除される。そして、伝達部材20の外周伝達面28とケーシング21のテーパ面29とのかみ合い、伝達部材20の内周伝達面27と円筒部9のテーパ面23とのかみ合いが外れる。 As shown in FIG. 5, when air is discharged from the fluid supply / discharge region 5, the rotating structure 2 contracts, expands and deforms due to the restoring force of the elastic body 7, and generates leftward twisting rotation. At this time, the air in the gap portion 37 is also discharged, and the output shaft body 3 moves back upward in the drawing and thrust in the thrust direction on the tapered surface 23 disappears. Therefore, the output shaft body to the transmission member 20 on the lower side 3 is released. Then, the engagement between the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 29 of the casing 21 and the engagement between the inner peripheral transmission surface 27 of the transmission member 20 and the tapered surface 23 of the cylindrical portion 9 are released.
 このような動力伝達機構4の解除により、図5から図6のエア抜けの完了状態までには、出力軸体3の回転が防がれて回転停止状態が維持される。そのため、出力軸体3に接続されたバルブ55のバルブ弁体の開度が維持される。続いて、空隙部37からエアが排出されることで、出力軸体3は図6に示すようにシール部材16が当接面38に密接シールするまで復動する。 By releasing the power transmission mechanism 4 as described above, the rotation of the output shaft body 3 is prevented and the rotation stopped state is maintained until the air removal completion state shown in FIGS. Therefore, the opening degree of the valve body of the valve 55 connected to the output shaft body 3 is maintained. Subsequently, when the air is discharged from the gap portion 37, the output shaft body 3 moves backward until the seal member 16 is tightly sealed to the contact surface 38 as shown in FIG. 6.
 このアクチュエータ本体1の動作は、パルスエアを1回供給・排出したときの出力軸体3の回転である。このパルスエアを所定間隔で繰り返し供給・排出することで、その供給ごとに出力軸体3を回転させ、又、排出ごとに出力軸体3を回転停止した状態を維持できる。これにより、出力軸体3をインチング回転により所定角度まで回転動作させ、バルブ55の弁開度を制御することが可能になる。更に、図9や図10に示すように、流体供給排出手段6からのパルスエアの供給・排出時間のパルス印加幅を制御すれば、1回の印加幅に相当する時間の分だけ出力軸体3を回転させて1パルス幅で回転する回転角を調節できる。このため、図10において、パルスエアの供給・排出時間を短く設定して出力軸体3を細かく回転制御でき、バルブ55を微小角度に調整して高精度に制御することが可能になる。このパルスエアの制御は、パルス発生器49のパルス幅調整機構を調整することで可能となり、このパルスエアの制御によりバルブ55を比例制御することも容易となる。 The operation of the actuator body 1 is the rotation of the output shaft body 3 when pulsed air is supplied / discharged once. By repeatedly supplying and discharging this pulsed air at a predetermined interval, the output shaft body 3 can be rotated each time the pulse air is supplied, and the output shaft body 3 can be maintained in a state where the rotation is stopped for each discharge. As a result, the output shaft 3 can be rotated to a predetermined angle by inching rotation, and the valve opening degree of the valve 55 can be controlled. Further, as shown in FIG. 9 and FIG. 10, if the pulse application width of the supply / discharge time of the pulse air from the fluid supply / discharge means 6 is controlled, the output shaft body 3 is equivalent to the time corresponding to one application width. Can be rotated to adjust the rotation angle at one pulse width. For this reason, in FIG. 10, it is possible to finely control the rotation of the output shaft 3 by setting the supply / discharge time of the pulse air to be short, and to adjust the valve 55 to a minute angle and to control it with high accuracy. This pulse air can be controlled by adjusting the pulse width adjusting mechanism of the pulse generator 49, and the valve 55 can be easily proportionally controlled by this pulse air control.
 一方、出力軸体3を上記と逆回転方向に回転させる場合には、電磁切換弁48を切換えて、流体供給排出手段6から第2空気口40を介して所定圧力のパルスエアを供給する。この場合、図示しないが、円筒部9には上方向に押圧する力が加わるためにこの円筒部9は上方に往動する。この往動により、回転構造体2の下部側で伝達部材20の外周伝達面28とケーシング21のテーパ面30とがかみ合いつつ内周伝達面27と円筒部9のテーパ面23とのかみ合いが外れる。上部側では、外周伝達面28とケーシング21のテーパ面29とのかみ合いが外れつつ、内周伝達面27と円筒部9のテーパ面22とがかみ合った状態になる。 On the other hand, when rotating the output shaft body 3 in the reverse rotation direction as described above, the electromagnetic switching valve 48 is switched to supply pulsed air having a predetermined pressure from the fluid supply / discharge means 6 through the second air port 40. In this case, although not shown, the cylindrical portion 9 moves upward because a force pressing upward is applied to the cylindrical portion 9. By this forward movement, the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 30 of the casing 21 are engaged with each other on the lower side of the rotating structure 2, and the engagement between the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion 9 is released. . On the upper side, the inner peripheral transmission surface 27 and the tapered surface 22 of the cylindrical portion 9 are engaged with each other while the outer peripheral transmission surface 28 and the tapered surface 29 of the casing 21 are disengaged.
 そして、流体供給排出領域5内にエアが供給されると、回転構造体2には軸方向に対して左回転のねじれ回転が発生することで出力軸体3が左回転する。また、流体供給排出領域5からエアが排出された場合には、出力軸体3の回転停止の状態が維持される。このように、第2空気口40からパルスエアを供給・排出した場合には、第1空気口39からパルスエアを供給・排出した場合と逆回転の出力軸体3の動作が前記と同様におこなわれる。
 従って、電磁切換弁48により第1空気口39と第2空気口40への供給・排出を切換えることで出力軸体3を左右の回転方向に回転制御でき、バルブ55を所定開度に調節できる。
Then, when air is supplied into the fluid supply / discharge region 5, the output shaft 3 rotates counterclockwise by generating a torsional rotation that rotates counterclockwise in the axial direction in the rotating structure 2. Further, when the air is discharged from the fluid supply / discharge region 5, the rotation stop state of the output shaft body 3 is maintained. As described above, when pulse air is supplied / discharged from the second air port 40, the operation of the output shaft body 3 is performed in the same manner as described above when pulse air is supplied / discharged from the first air port 39. .
Accordingly, the output shaft body 3 can be controlled to rotate in the left and right rotational directions by switching the supply and discharge to the first air port 39 and the second air port 40 by the electromagnetic switching valve 48, and the valve 55 can be adjusted to a predetermined opening. .
 図8においては、エアの供給・排出と出力軸体3の回転方向との関係を示している。前述したように、第1空気口39よりエアを供給・排出したときには、出力軸体3が時計回り方向(C.W方向)に回転する。第2空気口40よりエアを供給・排出したときには、出力軸体3が反時計回り方向(C.C.W方向)に回転する。この第1空気口39、第2空気口40からの供給・排出と出力軸体3の回転方向とは逆の関係であってもよく、実施に応じて任意に変更可能である。 FIG. 8 shows the relationship between air supply / discharge and the rotation direction of the output shaft 3. As described above, when air is supplied / discharged from the first air port 39, the output shaft 3 rotates in the clockwise direction (CW direction). When air is supplied / discharged from the second air port 40, the output shaft body 3 rotates in the counterclockwise direction (CCW direction). The supply / discharge from the first air port 39 and the second air port 40 and the rotation direction of the output shaft body 3 may be opposite to each other, and can be arbitrarily changed according to the implementation.
 本発明の回転アクチュエータは、前述したように、軸方向にねじれ角θを有する回転構造体2を駆動エネルギー源6を介して回動可能に設け、回動構造体2を軸方向に拘束した状態で配設してこの回転構造体2の両端部に発生した応力を回転力に変換して出力軸体3に伝達しているので、回転構造体2のねじれ抵抗を最小限に抑えつつ出力軸体3に回転を伝達することができる。 In the rotary actuator of the present invention, as described above, the rotary structure 2 having the twist angle θ in the axial direction is rotatably provided via the drive energy source 6, and the rotary structure 2 is restrained in the axial direction. Since the stress generated at both ends of the rotating structure 2 is converted into a rotational force and transmitted to the output shaft body 3 while the twisting resistance of the rotating structure 2 is minimized, the output shaft The rotation can be transmitted to the body 3.
 しかも、動力伝達機構4により、回転構造体2が応力により一方向に回転したときにこの回転を出力軸体3に伝達し、回転構造体2が逆方向に回転して元の状態に戻るときにこの回転を出力軸体3に伝達しない構造であるので、回転構造体2を繰り返し回転動作させてこの回転を出力軸体3に伝達して回転させることができる。これにより、図9や図10に示すように、出力軸体3の回転トルクを常に略一定に保つことができる。そして、一定の回転トルクや高精度の回転制御が要求される各種のバルブ55に利用可能である。 In addition, when the rotating structure 2 is rotated in one direction due to stress by the power transmission mechanism 4, this rotation is transmitted to the output shaft body 3, and the rotating structure 2 is rotated in the opposite direction to return to the original state. Since the rotation is not transmitted to the output shaft 3, the rotation structure 2 can be repeatedly rotated to transmit the rotation to the output shaft 3 and rotate it. Thereby, as shown in FIG. 9 and FIG. 10, the rotational torque of the output shaft body 3 can always be kept substantially constant. It can be used for various valves 55 that require constant rotational torque and high-precision rotational control.
 図12ないし図18においては、本発明の回転アクチュエータの第2実施形態を示している。なお、この実施形態以降において、それ以前の実施形態と同一部分は同一符号によって表し、その説明を省略する。
 この実施形態におけるアクチュエータ本体60は、図18の分解斜視図に示すように、出力軸体61と円筒部62とが別体に設けられている。円筒部62は、出力軸体61に対して回転可能に設けられている。円筒部62は、出力軸体61の上下側に別体に設けられ、各円筒部62、62と出力軸体61との間にワンウェイクラッチ63、63が装着されている。この構造により、円筒部62は、出力軸体61に対して軸方向に摺動可能であり、かつ、出力軸体61に対して個別に相対回転可能になっている。
12 to 18 show a second embodiment of the rotary actuator of the present invention. In the following embodiments, the same parts as those in the previous embodiments are denoted by the same reference numerals, and the description thereof is omitted.
As shown in the exploded perspective view of FIG. 18, the actuator main body 60 in this embodiment includes an output shaft body 61 and a cylindrical portion 62 provided separately. The cylindrical portion 62 is provided so as to be rotatable with respect to the output shaft body 61. The cylindrical portion 62 is provided separately on the upper and lower sides of the output shaft body 61, and one- way clutches 63 and 63 are mounted between the cylindrical portions 62 and 62 and the output shaft body 61. With this structure, the cylindrical portion 62 is slidable in the axial direction with respect to the output shaft body 61, and can be individually rotated relative to the output shaft body 61.
 更に、円筒部62、62の間にはスペーサ部材64が介在されている。スペーサ部材64は、上下の端面64a、64aが円筒部62(ワンウェイクラッチ63)にスラスト回転可能な状態で出力軸体61に遊嵌されている。このスペーサ部材64により、上下の円筒部62、62が近接方向に移動することが規制される。スペーサ部材64の略中央付近には、流体供給排出用の連通穴65が設けられている。この連通穴65を介してエアを供給・排出することが可能になっている。 Furthermore, a spacer member 64 is interposed between the cylindrical portions 62 and 62. The spacer member 64 is loosely fitted to the output shaft body 61 with the upper and lower end faces 64a, 64a being capable of thrust rotation on the cylindrical portion 62 (one-way clutch 63). The spacer member 64 restricts the upper and lower cylindrical portions 62 and 62 from moving in the proximity direction. Near the center of the spacer member 64, a fluid supply / discharge communication hole 65 is provided. Air can be supplied and discharged through the communication hole 65.
 出力軸体61の端面側には流体供給排出口66、66が形成されている。流体供給排出口66は、連通孔67により出力軸体の内周側に連通している。これにより、図13~図15に示すように、エアが流体供給排出口66より供給・排出されたときに、このエアはワンウェイクラッチ63の内周側を通り、スペーサ部材64の連通穴65を介してスペーサ部材64に形成された連通穴42から流体供給排出領域5に供給・排出可能になっている。 Fluid supply / discharge ports 66 and 66 are formed on the end face side of the output shaft body 61. The fluid supply / discharge port 66 communicates with the inner peripheral side of the output shaft through a communication hole 67. Accordingly, as shown in FIGS. 13 to 15, when air is supplied / discharged from the fluid supply / discharge port 66, the air passes through the inner peripheral side of the one-way clutch 63 and passes through the communication hole 65 of the spacer member 64. The fluid supply / discharge region 5 can be supplied / discharged from the communication hole 42 formed in the spacer member 64.
 アクチュエータ本体60では、流体供給排出領域5にエアが供給(図13~図15)・排出(図16、図17)されたときに、伝達部材20から円筒部62によりワンウェイクラッチ63を介して出力軸体61に回転伝達が可能である。このため、伝達部材20に対して円筒部62が回転することがない。回転構造体2がねじれ回転するときには、この回転構造体2のねじれる側ではワンウェイクラッチ63が出力軸体61を伝達部材20に対して相対回転不能に保持する。そのため、確実にねじれ回転を伝達部材20から出力軸体3に伝達できる。一方、回転構造体2を回転不能に固定する側では、ワンウェイクラッチ63と出力軸体3とが相対回転可能な関係になるようにワンウェイクラッチ63が取付けられている。このため、回転構造体2がねじれ回転を生じたときに、出力軸体3がスムーズに回転するようになっている。
 なお、上述した第1実施形態及び第2実施形態において、流体としてエアを用いた例を説明したが、この流体はエアに限られることはない。このエアは、例えば、油や水等の他の種類の流体であってもよい。
In the actuator main body 60, when air is supplied to the fluid supply / discharge region 5 (FIGS. 13 to 15) and discharged (FIGS. 16 and 17), an output is output from the transmission member 20 via the one-way clutch 63 by the cylindrical portion 62. Rotation can be transmitted to the shaft body 61. For this reason, the cylindrical part 62 does not rotate with respect to the transmission member 20. When the rotary structure 2 is torsionally rotated, the one-way clutch 63 holds the output shaft body 61 so as not to rotate relative to the transmission member 20 on the twisting side of the rotary structure 2. Therefore, the torsional rotation can be reliably transmitted from the transmission member 20 to the output shaft body 3. On the other hand, the one-way clutch 63 is attached so that the one-way clutch 63 and the output shaft 3 can be rotated relative to each other on the side where the rotary structure 2 is fixed so as not to rotate. For this reason, when the rotary structure 2 causes torsional rotation, the output shaft body 3 rotates smoothly.
In the first embodiment and the second embodiment described above, the example in which air is used as the fluid has been described. However, the fluid is not limited to air. This air may be other types of fluid such as oil or water.
 図19ないし図22においては、本発明の回転アクチュエータの第3実施形態を示している。この実施形態のアクチュエータ本体71は、図22の回転構造体72を有している。回転構造体72は、形状記憶合金製の複数の金属線材73を適宜数含んでいる。金属線材73は、軸方向にねじれ角θを有した状態で略円筒状に配列され、電圧の印加時に長さ方向に縮む特性を有している。 19 to 22 show a third embodiment of the rotary actuator of the present invention. The actuator main body 71 of this embodiment has the rotating structure 72 of FIG. The rotating structure 72 appropriately includes a plurality of metal wire rods 73 made of a shape memory alloy. The metal wire 73 is arranged in a substantially cylindrical shape with a twist angle θ in the axial direction, and has a characteristic of contracting in the length direction when a voltage is applied.
 図19において、回転構造体72の内周側には出力軸体82が設けられている。回転構造体72と出力軸体82との間のスペーサ部材41の内側には、コイルスプリング74が設けられている。コイルスプリング74は、上下端側が伝達部材20における内側伝達部材25、25にそれぞれ固定されている。これにより、上下の内側伝達部材25、25が相対回転したときにコイルスプリング74がねじられて、このコイルスプリング74により伝達部材20に元の状態に戻ろうとする力が働く。更に、コイルスプリング74は、上下の伝達部材20、20を所定の間隔に維持する機能も有している。 In FIG. 19, an output shaft body 82 is provided on the inner peripheral side of the rotating structure 72. A coil spring 74 is provided inside the spacer member 41 between the rotary structure 72 and the output shaft body 82. The upper and lower ends of the coil spring 74 are fixed to the inner transmission members 25 and 25 in the transmission member 20, respectively. As a result, when the upper and lower inner transmission members 25, 25 rotate relative to each other, the coil spring 74 is twisted, and the coil spring 74 applies a force to return the transmission member 20 to the original state. Further, the coil spring 74 has a function of maintaining the upper and lower transmission members 20 and 20 at a predetermined interval.
 回転構造体72に電圧を加えた場合には、金属線材73が縮むことでねじれ角θにより回転構造体72に軸方向のねじれ回転が生じる。このときの回転構造体72の動作を詳述する。図22において、電圧を印加するときに、回転構造体72の上部側が開放され、下部側が拘束されている場合に、回転構造体72には回転軸心Lを中心として回転トルクTが発生し、回転構造体72の上部側が回転する。この場合、1つの金属線材73における上端側の点Pは、点P´まで移動するように回転する。この金属線材の下端側の固定点をQとすると、金属線材73が伸縮することで、線分P>線分P´Qの関係になる。 When a voltage is applied to the rotating structure 72, the metal wire 73 is contracted, so that the rotating structure 72 is twisted in the axial direction due to the twisting angle θ. The operation of the rotating structure 72 at this time will be described in detail. In FIG. 22, when the voltage is applied, when the upper side of the rotating structure 72 is opened and the lower side is constrained, the rotating structure 72 generates a rotational torque T 1 around the rotation axis L 1. Then, the upper side of the rotating structure 72 rotates. In this case, the point P 1 on the upper end side of one metal wire rod 73 rotates so as to move to the point P 1 ′. When the fixed point of the lower end side of the metal wire and Q 1, by a metal wire 73 expands and contracts, the relation of the line segment P 1 Q 1> segment P 1'Q 1.
 一方、電圧印加を停止すると、金属線材73が初期の長さに復帰しながら回転構造体72にはコイルスプリング74のねじれ回転の戻り力(バイアス力)が働く。このバイアス力により開放側である回転構造体72上部側が回転して元の状態まで戻る。 On the other hand, when the voltage application is stopped, the return force (bias force) of torsional rotation of the coil spring 74 is applied to the rotating structure 72 while the metal wire 73 returns to the initial length. By this bias force, the upper side of the rotating structure 72, which is the open side, rotates and returns to its original state.
 図19において、アクチュエータ本体71には駆動エネルギー源として、電圧印加手段75が回転構造体72に設けられている。電圧印加手段75は、電源76、開閉器77、回路部78、電圧印加部79、スイッチ部材80を有している。図19ないし図21に示すように、電源76、開閉器77は、回路部78により接続される。回路部78には、電圧印加部79とスイッチ部材80とが並列に接続される。 In FIG. 19, the actuator body 71 is provided with a voltage applying means 75 in the rotating structure 72 as a drive energy source. The voltage application unit 75 includes a power source 76, a switch 77, a circuit unit 78, a voltage application unit 79, and a switch member 80. As shown in FIGS. 19 to 21, the power source 76 and the switch 77 are connected by a circuit unit 78. A voltage application unit 79 and a switch member 80 are connected to the circuit unit 78 in parallel.
 開閉器77は、オン操作したときに電圧印加部79を介して金属線材73に電圧を印加できるようにオンオフ可能に設けられる。この開閉器77は、オン操作時にスイッチ部材80、80に設けられたスイッチ部81、81のうち、何れか一方側のスイッチ部81を動作可能に切換できる構造である。電圧印加部79は、回転構造体72の上下部位に接続され、金属線材73に電圧を印加可能になっている。スイッチ部材80は、例えば、内部にソレノイド構造を有し、開閉器77のオン操作によりこのソレノイド部分が吸着励磁することによりスイッチ部81がプル動作する。 The switch 77 is provided so as to be able to be turned on / off so that a voltage can be applied to the metal wire 73 via the voltage application unit 79 when the switch 77 is turned on. The switch 77 has a structure that can switch any one of the switch portions 81 and 81 provided in the switch members 80 and 80 so as to be operable during an ON operation. The voltage application unit 79 is connected to the upper and lower parts of the rotating structure 72 so that a voltage can be applied to the metal wire 73. The switch member 80 has, for example, a solenoid structure inside, and the switch portion 81 pulls when the solenoid portion is attracted and excited by turning on the switch 77.
 アクチュエータ本体71は、上述した構成により、電圧印加手段75により電圧を印加して回転構造体72を回転させ、この電圧の印加を繰り返すことで、回転構造体72の回転を出力軸体82に繰り返し伝達可能になっている。
 この場合、電圧印加手段75は、回転構造体72と各スイッチ部材80、80とに電圧をパルス状に印加する機能を有している。このパルス状電圧により、回転構造体72と各スイッチ部材80、80とは、動作と動作停止とを所定間隔で繰り返すことが可能である。
With the above-described configuration, the actuator body 71 rotates the rotating structure 72 by applying a voltage by the voltage applying means 75 and repeats the application of this voltage, thereby repeating the rotation of the rotating structure 72 to the output shaft body 82. It is possible to communicate.
In this case, the voltage applying means 75 has a function of applying a voltage to the rotating structure 72 and the switch members 80 and 80 in a pulsed manner. With this pulse voltage, the rotating structure 72 and the switch members 80 and 80 can repeat the operation and the operation stop at a predetermined interval.
 次いで、アクチュエータ本体71の動作を述べる。図19においては、開閉器77がオフの状態を示している。この場合には、金属線材73には電圧が印加されないため、回転構造体72が回転することがない。また、上下のスイッチ部材80、80に対しても電圧が印加されないため、このスイッチ部80、80が動作することがない。伝達部材20、20における内周伝達面27、外周伝達面28は、テーパ面22、23、29、30からかみ合いが外れている。このため、伝達部材20、20は、円筒部9、ケーシング21に対してフリーの状態になり、出力軸体82は停止状態になっている。 Next, the operation of the actuator body 71 will be described. FIG. 19 shows a state where the switch 77 is off. In this case, since no voltage is applied to the metal wire 73, the rotating structure 72 does not rotate. Further, since no voltage is applied to the upper and lower switch members 80, 80, the switch portions 80, 80 do not operate. The inner peripheral transmission surface 27 and the outer peripheral transmission surface 28 of the transmission members 20 and 20 are disengaged from the tapered surfaces 22, 23, 29, and 30. For this reason, the transmission members 20 and 20 are in a free state with respect to the cylindrical portion 9 and the casing 21, and the output shaft body 82 is in a stopped state.
 図20に示すように、開閉器77をオンにして一方側、図において上方側のスイッチ部材80に電圧を印加すると、金属線材73に電圧が印加されて回転構造体72が右回転しようとする。このとき、上方側のスイッチ部材80のスイッチ部81がプル動作し、上方側の伝達部材20を下方側に押圧する。更に、コイルスプリング74を介してこの押圧力が下方側の伝達部材20まで伝わる。そのため、下方側の伝達部材20も下方側に移動する。 As shown in FIG. 20, when the switch 77 is turned on and a voltage is applied to the switch member 80 on one side, the upper side in the figure, the voltage is applied to the metal wire 73 and the rotating structure 72 tries to rotate clockwise. . At this time, the switch portion 81 of the upper switch member 80 performs a pull operation, and presses the upper transmission member 20 downward. Further, this pressing force is transmitted to the lower transmission member 20 via the coil spring 74. Therefore, the lower transmission member 20 also moves downward.
 そして、回転構造体72の一側部、図において上部側では、伝達部材20の外周伝達面28とケーシング21のテーパ面29とがかみ合いつつ内周伝達面27と円筒部9のテーパ面22とのかみ合いが外れる。回転構造体72の他側部、図において下部側では、外周伝達面28とケーシング21のテーパ面30とのかみ合いが外れつつ内周伝達面27と円筒部9のテーパ面23とがかみ合った状態になる。 Then, on one side of the rotating structure 72, the upper side in the figure, the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 29 of the casing 21 are engaged with each other, and the inner peripheral transmission surface 27 and the tapered surface 22 of the cylindrical portion 9 are engaged. Disengagement. On the other side of the rotating structure 72, the lower side in the figure, the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion 9 are engaged with each other while the outer peripheral transmission surface 28 and the tapered surface 30 of the casing 21 are disengaged. become.
 この状態で回転構造体72が右回転しようとすると、この回転構造体72の一側部がケーシング21に回動不能に保持され、他側部が出力軸体82と一体に回転可能になる。回転構造体72に右回転のねじれ回転が生じると、このねじれ回転が他側部の伝達部材20を介して出力軸体82に伝達され、この出力軸体82が回転構造体72のねじれ回転に伴って回転動作する。 In this state, when the rotating structure 72 tries to rotate to the right, one side portion of the rotating structure 72 is held in the casing 21 so as not to rotate, and the other side portion can rotate integrally with the output shaft 82. When a torsional rotation of right rotation occurs in the rotating structure 72, the torsional rotation is transmitted to the output shaft body 82 via the transmission member 20 on the other side, and the output shaft body 82 is rotated torsionally by the rotating structure 72. It rotates with it.
 回転構造体72のねじれ回転により出力軸体82が所定角度まで回転した後には、図19に示すように開閉器77がオフとなり、電圧印加手段75による電圧印加が停止する。これにより、スイッチ部81が元の状態まで戻り、上方側の伝達部材20へ押圧が解除される。続いて、外周伝達面28とテーパ面29とのかみ合いと、内周伝達面27とテーパ面23とのかみ合いが外れる。そして、回転構造体72には上述したコイルスプリング74によるバイアス力が働くため、この回転構造体72が左方向にねじれ回転を生じて元の状態まで戻る。 After the output shaft 82 is rotated to a predetermined angle by the torsional rotation of the rotating structure 72, the switch 77 is turned off as shown in FIG. 19, and the voltage application by the voltage applying means 75 is stopped. Thereby, the switch part 81 returns to the original state, and the pressing to the upper transmission member 20 is released. Subsequently, the engagement between the outer peripheral transmission surface 28 and the tapered surface 29 and the engagement between the inner peripheral transmission surface 27 and the tapered surface 23 are released. The rotating structure 72 is biased by the coil spring 74 described above, so that the rotating structure 72 twists in the left direction and returns to its original state.
 その際、出力軸体82は、回転構造体72と共に回転することがないため、右回転した状態が維持され、出力軸体72に接続されたバルブ55の弁開度も維持される。以上の動作は、電圧印加手段75によりパルス状電圧を1回印加した場合を述べたものである。引き続きパルス状電圧を繰り返し印加(開閉器77を繰り返しオンオフ)し、回転構造体72とスイッチ部材80との動作と動作停止とを繰り返しておこなうことで、出力軸体82をインチング動作で連続的に回転制御できる。
 更に、上述したパルスエアの場合と同様に、パルス状電圧のパルス幅を所定間隔に制御することもできる。この場合、1回のパルス状電圧による出力軸体82の回転角をより細かく調整できる。
At this time, since the output shaft body 82 does not rotate together with the rotating structure 72, the output shaft body 82 is maintained in the right-rotated state, and the valve opening degree of the valve 55 connected to the output shaft body 72 is also maintained. The above operation describes a case where a pulse voltage is applied once by the voltage applying means 75. Subsequently, a pulse voltage is repeatedly applied (switch 77 is repeatedly turned on and off), and the rotation structure 72 and the switch member 80 are repeatedly operated and stopped so that the output shaft 82 is continuously inchingly operated. Rotation can be controlled.
Further, similarly to the case of the pulse air described above, the pulse width of the pulse voltage can be controlled to a predetermined interval. In this case, the rotation angle of the output shaft 82 by one pulse voltage can be adjusted more finely.
 出力軸体82を逆回転させる場合には、図21において、開閉器77を他方側のスイッチ部材20の電圧印加側にオンさせる。この場合、金属線材73に電圧が印加されて回転構造体72が左回転しようとすると共に、下方側のスイッチ部材80のスイッチ部81がプル動作して下方側の伝達部材20を上方側に押圧する。この押圧力は、コイルスプリング74により上方側の伝達部材20に伝わり、この伝達部材20も上方側に移動する。 When the output shaft body 82 is rotated in the reverse direction, the switch 77 is turned on to the voltage application side of the other side switch member 20 in FIG. In this case, a voltage is applied to the metal wire 73 so that the rotary structure 72 tries to rotate counterclockwise, and the switch portion 81 of the lower switch member 80 pulls to push the lower transmission member 20 upward. To do. This pressing force is transmitted to the upper transmission member 20 by the coil spring 74, and this transmission member 20 also moves upward.
 このとき、回転構造体72の下部側では、伝達部材20の外周伝達面28とケーシング21のテーパ面30とがかみ合いつつ内周伝達面27と円筒部9のテーパ面23とのかみ合いが外れる。回転構造体72の上部側では、外周伝達面28とケーシング21のテーパ面29とのかみ合いが外れつつ内周伝達面27と円筒部9のテーパ面22とがかみ合った状態になる。 At this time, on the lower side of the rotating structure 72, the outer peripheral transmission surface 28 of the transmission member 20 and the tapered surface 30 of the casing 21 are engaged with each other, and the inner peripheral transmission surface 27 and the tapered surface 23 of the cylindrical portion 9 are disengaged. On the upper side of the rotating structure 72, the inner peripheral transmission surface 27 and the tapered surface 22 of the cylindrical portion 9 are engaged with each other while the outer peripheral transmission surface 28 and the tapered surface 29 of the casing 21 are disengaged.
 この状態で回転構造体72が左回転しようとすると、この回転構造体72の他側部がケーシング21に回転不能に保持され、一側部が出力軸体82と一体に回転可能となる。回転構造体72に左回転のねじれ回転が生じると、このねじれ回転が一側部の伝達部材20を介して出力軸体82に伝達され、この出力軸体82が回転構造体72のねじれ回転に伴って回転動作する。 In this state, when the rotating structure 72 tries to rotate counterclockwise, the other side portion of the rotating structure 72 is held in the casing 21 so as not to rotate, and one side portion can rotate integrally with the output shaft 82. When a left-handed torsional rotation occurs in the rotating structure 72, this torsional rotation is transmitted to the output shaft body 82 via the transmission member 20 on one side, and the output shaft body 82 is rotated torsionally by the rotating structure 72. It rotates with it.
 続いて、電圧印加手段75からの電圧の印加が停止すると、スイッチ部81が元の状態まで戻ることで下方側の伝達部材20への押圧が解除される。そして、伝達部材20の外周伝達面28、内周伝達面27と、テーパ面30、22とのかみ合いが外れ、回転構造体72がコイルスプリング74のバイアス力で右方向にねじれ回転を生じて元の状態まで戻る。このとき、出力軸体82は、左回転したままの状態が維持される。この状態から続けて他方側のスイッチ部材80を繰り返し動作させるパルス状電圧を印加すると、上述した右回転の場合と同様に、出力軸体82を連続的にインチング動作で回転制御できる。 Subsequently, when the application of voltage from the voltage applying means 75 is stopped, the switch 81 is returned to the original state, so that the pressure on the lower transmission member 20 is released. Then, the outer peripheral transmission surface 28 and the inner peripheral transmission surface 27 of the transmission member 20 are disengaged from the tapered surfaces 30 and 22, and the rotating structure 72 is twisted and rotated to the right by the bias force of the coil spring 74. Return to the state. At this time, the output shaft body 82 is maintained in the left-rotated state. When a pulsed voltage that repeatedly operates the switch member 80 on the other side is applied continuously from this state, the output shaft body 82 can be continuously controlled to rotate by the inching operation, as in the case of the right rotation described above.
 図23においては、本発明における回転アクチュエータの第4実施形態を示している。
 この実施形態におけるアクチュエータ本体90では、回転構造体91の両端側外周面91a、91aに熱収縮性チューブ92が設けられている。熱収縮性チューブ92としては、例えば、オレフィン系熱収縮チューブや熱収縮性シリコーンゴムチューブが用いられる。このように適度な収縮性、引張り強さ、伸び、引裂き強さを有し、かつ、広い使用温度範囲でも収縮性を発揮できる材料が好ましい。更に、このような特性を具備していれば、熱収縮性チューブ92の代わりに各種の材料を使用することもできる。
FIG. 23 shows a fourth embodiment of the rotary actuator according to the present invention.
In the actuator main body 90 in this embodiment, heat-shrinkable tubes 92 are provided on the outer peripheral surfaces 91a and 91a on both ends of the rotating structure 91. As the heat-shrinkable tube 92, for example, an olefin-based heat-shrinkable tube or a heat-shrinkable silicone rubber tube is used. Thus, a material having appropriate shrinkage, tensile strength, elongation and tear strength and capable of exhibiting shrinkage even in a wide use temperature range is preferable. Furthermore, various materials can be used instead of the heat-shrinkable tube 92 as long as it has such characteristics.
 熱収縮性チューブ92は、回転構造体91の両端側外周面91a、91aに装着され、この状態で図示しないドライヤ等の適宜の加熱手段で加熱される。これにより、熱収縮性チューブ92が熱収縮し、回転構造体91を半径方向に圧縮密着し、かつ固着される。熱収縮性チューブ92を配設すると回転構造体91の両端側がその他の部分よりも肉厚の状態になる。回転構造体91の外径側は、この熱収縮性チューブ92により保護される。 The heat-shrinkable tube 92 is attached to the outer peripheral surfaces 91a and 91a at both ends of the rotating structure 91, and is heated by appropriate heating means such as a dryer (not shown) in this state. Thereby, the heat-shrinkable tube 92 is heat-shrinked, and the rotary structure 91 is compressed and adhered in the radial direction and fixed. When the heat-shrinkable tube 92 is disposed, both end sides of the rotating structure 91 are thicker than other portions. The outer diameter side of the rotating structure 91 is protected by the heat shrinkable tube 92.
 熱収縮性チューブ92が固着された回転構造体91の両端部105、105は、伝達部材93を成す内側伝達部材94と外側伝達部材95との間に収縮クランプ状態で固定保持される。内側伝達部材94と外側伝達部材95とは、それぞれに形成されたおねじ96とめねじ97との螺着により一体化する。回転構造体91と熱収縮性チューブ92とは、内側伝達部材94により拡径保持されている。熱収縮性チューブ92の外径側は、外側伝達部材95により保護されている。 Both ends 105 and 105 of the rotating structure 91 to which the heat-shrinkable tube 92 is fixed are fixed and held between the inner transmission member 94 and the outer transmission member 95 constituting the transmission member 93 in a contraction clamp state. The inner transmission member 94 and the outer transmission member 95 are integrated by screwing a male screw 96 and a female screw 97 formed respectively. The rotary structure 91 and the heat-shrinkable tube 92 are expanded and held by the inner transmission member 94. The outer diameter side of the heat-shrinkable tube 92 is protected by an outer transmission member 95.
 図24に示すように、内側伝達部材94の外周面94aには、少なくとも1つの竹の子部98が形成されている。竹の子部98は、リング状の突起形状を成し、回転構造体91への挿入方向に対して次第に外径が拡径する断面略直角三角形状に設けられる。竹の子部98の図示しない頂角は、鋭角状に形成されている。この鋭角形状の頂角により、竹の子部98は、回転構造体91両端部105、105の内周面91b、91bに食い込むようになっている。竹の子部98は、3つ程度形成されているとよい。 As shown in FIG. 24, at least one bamboo shoot portion 98 is formed on the outer peripheral surface 94a of the inner transmission member 94. The bamboo shoot portion 98 has a ring-like protrusion shape, and is provided in a substantially right-angled triangular cross section in which the outer diameter gradually increases with respect to the direction of insertion into the rotating structure 91. An apex angle (not shown) of the bamboo shoot portion 98 is formed in an acute angle shape. Due to this apex angle of the acute angle shape, the bamboo shoot portion 98 bites into the inner peripheral surfaces 91b and 91b of the both ends 105 and 105 of the rotating structure 91. About three bamboo shoot portions 98 are preferably formed.
 更に、竹の子部98付近と熱収縮性チューブ92との間には、図示しない接着剤が塗布されていてもよい。接着剤を塗布する場合、この接着剤としては、例えば、SBR(スチレンゴム)系、CR(クロロプレンゴム)系などの合成ゴム系接着剤が好ましい。 Furthermore, an adhesive (not shown) may be applied between the vicinity of the bamboo shoot portion 98 and the heat-shrinkable tube 92. When an adhesive is applied, this adhesive is preferably a synthetic rubber adhesive such as SBR (styrene rubber) or CR (chloroprene rubber).
 外側伝達部材95の内周側の熱収縮性チューブ92との当接部位には、内側方向に適宜角度で曲折する曲折部99が形成されている。曲折部99と対向する内側伝達部材94の外周部分には空間部100が形成されている。熱収縮性チューブ92と回転構造体91の両端部105、105とは、端部側が曲折部99により空間部100側に曲折された状態で、内側伝達部材94と外側伝達部材95との間に固定保持されている。このとき、竹の子部98に圧着固定されている。 A bent portion 99 that bends at an appropriate angle inward in the inner direction is formed at a contact portion with the heat-shrinkable tube 92 on the inner peripheral side of the outer transmission member 95. A space portion 100 is formed in the outer peripheral portion of the inner transmission member 94 that faces the bent portion 99. The heat shrinkable tube 92 and both end portions 105, 105 of the rotating structure 91 are located between the inner transmission member 94 and the outer transmission member 95 in a state where the end portion side is bent toward the space portion 100 by the bent portion 99. It is held fixed. At this time, it is crimped and fixed to the bamboo shoot portion 98.
 上下の伝達部材93、93の間には、前述の実施形態と同様にスペーサ部材101が設けられている。スペーサ部材101の上下の端面101a、101aは、メタルタッチの状態で内側伝達部材94に接触している。そのため、スペーサ部材101は、伝達部材93に対して滑らかに回転摺動可能になっている。内側伝達部材94の外周には、環状当接部102が形成されている。環状当接部102は、外側伝達部材95の対応位置に形成されたタッチ面103にメタルタッチの状態で当接している。
 回転構造体91は、スペーサ部材101と内側伝達部材94とのメタルタッチ、内側伝達部材94と外側伝達部材95とのメタルタッチにより、軸方向の寸法精度が高められた状態で装着されている。そのため、収縮後の回転構造体91の軸方向の寸法が一定に制御された状態で回転力を伝達可能になる。
A spacer member 101 is provided between the upper and lower transmission members 93 and 93 as in the above-described embodiment. The upper and lower end surfaces 101a, 101a of the spacer member 101 are in contact with the inner transmission member 94 in a metal touch state. Therefore, the spacer member 101 can smoothly rotate and slide with respect to the transmission member 93. An annular contact portion 102 is formed on the outer periphery of the inner transmission member 94. The annular contact portion 102 is in contact with the touch surface 103 formed at the corresponding position of the outer transmission member 95 in a metal touch state.
The rotating structure 91 is mounted in a state in which the dimensional accuracy in the axial direction is increased by a metal touch between the spacer member 101 and the inner transmission member 94 and a metal touch between the inner transmission member 94 and the outer transmission member 95. Therefore, the rotational force can be transmitted in a state where the axial dimension of the rotating structure 91 after contraction is controlled to be constant.
 上記のように、アクチュエータ本体90は、熱収縮性チューブ92を熱収縮で固着した回転構造体91の両端部105、105を内側伝達部材94と外側伝達部材95との間に固定保持しているので、この肉厚部分により伝達部材93に対して接触面圧を高め、その収縮力によって固定が強化された状態で回転構造体91及び熱収縮性チューブ92を固着できる。そのため、ねじれ力により回転構造体91が伝達部材93に対して緩んだり、回転構造体91と伝達部材93との固着部分の急激な消耗を防ぐことができる。熱収縮性チューブ92は、熱収縮により回転構造体91に被覆固着されているので、その収縮力に作用によって被覆面を気密状態にできる。 As described above, the actuator main body 90 holds the both end portions 105 and 105 of the rotating structure 91, to which the heat-shrinkable tube 92 is fixed by heat shrinkage, between the inner transmission member 94 and the outer transmission member 95. Therefore, the contact surface pressure with respect to the transmission member 93 is increased by the thick portion, and the rotating structure 91 and the heat-shrinkable tube 92 can be fixed in a state where the fixation is strengthened by the contraction force. Therefore, it is possible to prevent the rotating structure 91 from loosening with respect to the transmission member 93 due to a torsional force, or a sudden wear of the fixed portion between the rotating structure 91 and the transmission member 93. Since the heat-shrinkable tube 92 is covered and fixed to the rotating structure 91 by heat shrinkage, the covered surface can be made airtight by acting on the contraction force.
 従って、回転構造体91内への流体の加圧に対する封止性能を高めてエア漏れを防止できる。流体の加圧・減圧の繰返しに対しても、回転構造体91が伝達部材93から脱落することを防ぎ、その固着部分の疲労破断や亀裂・破損も防止できる。回転構造体91は、スペーサ部材101と内側伝達部材94、内側伝達部材94と外側伝達部材95とのメタルタッチを介して固定されているので、軸方向の長さが変化することがなく高精度の分解能を維持できる。回転構造体91の螺着により熱収縮性チューブ92を固定しているので分解や組立が容易である。この回転構造体91の組付け構造により、アクチュエータを低コストに抑えつつ全体をコンパクトに形成可能である。 Therefore, it is possible to improve the sealing performance against the pressurization of the fluid into the rotating structure 91 and prevent air leakage. Even when the fluid is repeatedly pressurized and depressurized, the rotating structure 91 can be prevented from falling off the transmission member 93, and fatigue fracture, cracking and breakage of the fixed portion can also be prevented. Since the rotating structure 91 is fixed through a metal touch between the spacer member 101 and the inner transmission member 94 and between the inner transmission member 94 and the outer transmission member 95, the length in the axial direction does not change and is highly accurate. Resolution can be maintained. Since the heat-shrinkable tube 92 is fixed by screwing the rotating structure 91, disassembly and assembly are easy. With the assembly structure of the rotating structure 91, the entire structure can be formed compactly while suppressing the actuator at low cost.
 更に、内側伝達部材94に形成した竹の子部98の頂角部分に回転構造体91を食い込ませながら、熱収縮性チューブ92により回転構造体91を外周側から半径方向に圧縮保持して装着しているため、回転構造体91に作用する引張り方向の力に対して大きな引き抜き抵抗力を発生できる。このため、回転構造体91の抜けや緩みを防止できる。外側伝達部材95の曲折部99で回転構造体91及び熱収縮性チューブ92が曲折されるため、竹の子部98による引き抜き力に加えて抵抗力がより強く発揮される。 Further, while the rotating structure 91 is biting into the apex portion of the bamboo slat 98 formed on the inner transmission member 94, the rotating structure 91 is compressed and held in the radial direction from the outer peripheral side by the heat-shrinkable tube 92. Therefore, a large pulling resistance force can be generated with respect to the force in the pulling direction acting on the rotating structure 91. For this reason, the rotation structure 91 can be prevented from coming off or loosening. Since the rotating structure 91 and the heat-shrinkable tube 92 are bent at the bent portion 99 of the outer transmission member 95, the resistance force is exerted more strongly in addition to the pulling force by the bamboo shoot portion 98.
 しかも、竹の子部98と熱収縮性チューブ92との間に接着剤を塗布した場合、この接着剤により熱収縮性チューブ92を回転構造体91に更に強固に固着できる。しかも、これらの間の隙間が塞がれることで流体漏れのおそれもない。 Moreover, when an adhesive is applied between the bamboo shoot portion 98 and the heat-shrinkable tube 92, the heat-shrinkable tube 92 can be more firmly fixed to the rotating structure 91 by this adhesive. Moreover, there is no risk of fluid leakage by closing the gap between them.
 本発明の回転アクチュエータは、軸方向にねじれ角を有する回転構造体を駆動エネルギー源を介して回動可能に設け、この構造体の両端部に発生した応力を回転力に変換して出力軸体に伝達できる構造であれば、上述した以外の各種の構造に設けることもできる。この場合、回転構造体を、弾性体と線材、或は、形状記憶合金製の金属線材を含んだ構造以外の構造に設けることもできる。更に、回転アクチュエータは、バルブ以外の機器や装置などにも利用することができ、特に、高分解能による高精度の回転制御が必要な箇所に設けることでその回転制御機能を最大限に利用できる。 In the rotary actuator of the present invention, a rotary structure having a twist angle in the axial direction is rotatably provided via a drive energy source, and stress generated at both ends of the structure is converted into a rotational force to output a shaft. Any structure other than those described above can be used as long as the structure can transmit to the other. In this case, the rotating structure can be provided in a structure other than a structure including an elastic body and a wire, or a metal wire made of a shape memory alloy. Furthermore, the rotary actuator can be used for devices and devices other than valves, and in particular, the rotation control function can be utilized to the maximum by providing it at a place where high-precision rotation control with high resolution is required.
 また、伝達部材を動力伝達機構の片側のみに設けることにより、出力軸体の一方向のみの回転制御を実施することも可能であり、この場合には、動力伝達機構を簡略化できることでコンパクト化できる。 In addition, by providing the transmission member only on one side of the power transmission mechanism, it is possible to control the rotation of the output shaft in only one direction. In this case, the power transmission mechanism can be simplified to make it compact. it can.
 1 アクチュエータ本体
 2、72 回転構造体
 3 出力軸体
 4 動力伝達機構
 5 流体供給排出領域
 6 流体供給排出手段(駆動エネルギー源)
 7 弾性体
 8 線材
 9 円筒部
 20 伝達部材
 21 ケーシング
 55 バルブ
 73 金属線材
 75 電圧印加手段(駆動エネルギー源)
 82 出力軸体
 92 熱収縮性チューブ
 98 竹の子部
 θ ねじれ角
DESCRIPTION OF SYMBOLS 1 Actuator body 2, 72 Rotating structure 3 Output shaft body 4 Power transmission mechanism 5 Fluid supply / discharge area 6 Fluid supply / discharge means (drive energy source)
7 Elastic body 8 Wire material 9 Cylindrical portion 20 Transmission member 21 Casing 55 Valve 73 Metal wire material 75 Voltage application means (drive energy source)
82 Output shaft 92 Heat-shrinkable tube 98 Bamboo child part θ Twist angle

Claims (12)

  1.  軸方向にねじれ角を有する回転構造体を駆動エネルギー源を介して回動可能に設け、この回動構造体を軸方向に拘束した状態で配設して構造体の両端部に発生した応力を回転力に変換して出力軸体に伝達したことを特徴とする回転アクチュエータ。 A rotating structure having a twist angle in the axial direction is rotatably provided via a drive energy source, and the rotating structure is disposed in a state of being restrained in the axial direction to generate stress generated at both ends of the structure. A rotary actuator characterized in that it is converted into a rotational force and transmitted to an output shaft.
  2.  前記回転構造体と出力軸体との間に動力伝達機構を設け、この動力伝達機構は、前記回転構造体が発生した応力により一方向に回転するときに前記出力軸体に回転を伝達し、前記回転構造体が逆方向に回転して元の状態に戻るときに前記出力軸体への回転伝達を停止する機構である請求項1に記載の回転アクチュエータ。 A power transmission mechanism is provided between the rotary structure and the output shaft body, and the power transmission mechanism transmits rotation to the output shaft body when rotating in one direction due to the stress generated by the rotary structure, The rotary actuator according to claim 1, wherein the rotary structure is a mechanism that stops rotation transmission to the output shaft body when the rotary structure rotates in the reverse direction and returns to the original state.
  3.  前記回転構造体は、円筒状の弾性体と、この弾性体の軸方向にねじれ角を有する複数の線材とを有し、前記弾性体の内側から圧力を加えたときに前記線材により軸方向のねじれ回転を生じる構造体である請求項1又は2に記載の回転アクチュエータ。 The rotating structure has a cylindrical elastic body and a plurality of wires having a twist angle in the axial direction of the elastic body. When pressure is applied from the inside of the elastic body, the rotating structure is axially moved by the wire. The rotary actuator according to claim 1, wherein the rotary actuator is a structure that generates torsional rotation.
  4.  前記回転構造体の内側に密閉空間となる流体供給排出領域を設け、この流体供給排出領域内に駆動エネルギーとして適宜の流体の供給と排出とを繰り返し行って前記回転構造体の回転を前記出力軸体に伝達した請求項2又は3に記載の回転アクチュエータ。 A fluid supply / discharge region serving as a sealed space is provided inside the rotating structure, and an appropriate fluid is repeatedly supplied and discharged as driving energy in the fluid supply / discharge region to rotate the rotating structure to the output shaft. The rotary actuator according to claim 2 or 3, wherein the rotary actuator is transmitted to a body.
  5.  前記流体供給排出領域に所定圧の流体をパルス状に印加する流体供給排出手段を駆動エネルギー源として接続した請求項4に記載の回転アクチュエータ。 The rotary actuator according to claim 4, wherein a fluid supply / discharge means for applying a fluid of a predetermined pressure in a pulse shape to the fluid supply / discharge region is connected as a drive energy source.
  6.  前記回転構造体は、軸方向にねじれ角を有し、電圧の印加時に長さの縮む形状記憶合金製の複数の金属線材を適宜数含んだ略円筒状の構造体である請求項1又は2に記載の回転アクチュエータ。 The rotary structure is a substantially cylindrical structure having an appropriate number of metal wire rods made of a shape memory alloy having a twist angle in the axial direction and contracting in length when a voltage is applied. The rotary actuator described in 1.
  7.  前記回転構造体に駆動エネルギー源として電圧印加手段を設け、この電圧印加手段により繰り返し電圧を印加して前記回転構造体の回転を前記出力軸体に繰り返し伝達した請求項2又は6に記載の回転アクチュエータ。 The rotation according to claim 2 or 6, wherein a voltage applying means is provided as a driving energy source in the rotating structure, and a voltage is repeatedly applied by the voltage applying means to repeatedly transmit the rotation of the rotating structure to the output shaft body. Actuator.
  8.  前記電圧印加手段は、電圧をパルス状に印加する機能を有する印加手段である請求項7に記載の回転アクチュエータ。 The rotary actuator according to claim 7, wherein the voltage applying means is an applying means having a function of applying a voltage in a pulse shape.
  9.  前記動力伝達機構は、前記出力軸体の外周側に設けられる円筒部と、この円筒部の外周側に軸方向に移動可能に装着され、内外周側に伝達面を有する伝達部材と、この伝達部材の外周側に配設される筒状のケーシングとを同軸に有し、前記回転構造体の両端側を前記伝達部材で保持しつつ、前記駆動エネルギ-源を一側部から供給したときに、前記伝達部材が、前記回転構造体の一側部で前記ケーシングとかみ合いつつ前記円筒部とのかみ合いが外れ、他側部で前記ケーシングとのかみ合いが外れつつ前記円筒部とかみ合って前記回転構造体の一側部を前記ケーシングに保持しながら回転構造体にねじれ回転を加えて他側部を回転させ、この回転トルクを前記円筒部を介して前記出力軸体に伝達する機構である請求項2乃至8の何れか1項に記載の回転アクチュエータ。 The power transmission mechanism includes a cylindrical portion provided on the outer peripheral side of the output shaft body, a transmission member mounted on the outer peripheral side of the cylindrical portion so as to be movable in the axial direction, and having a transmission surface on the inner and outer peripheral sides. A cylindrical casing disposed on the outer peripheral side of the member, and when the drive energy source is supplied from one side while holding both ends of the rotating structure with the transmission member The transmission member engages with the cylindrical portion while engaging with the casing at one side of the rotating structure, and engages with the cylindrical portion while disengaging with the casing at the other side. A mechanism for applying a torsional rotation to the rotating structure while rotating one side of the body to the casing to rotate the other side and transmitting the rotational torque to the output shaft through the cylindrical part. Any one of 2 to 8 Rotary actuator according.
  10.  前記回転構造体の両端側外周面に熱収縮性チューブを熱収縮により固着し、この熱収縮性チューブを固着した前記回転構造体の両端部を、前記伝達部材を成す内側伝達部材と外側伝達部材との螺着により固定保持した請求項9に記載の回転アクチュエータ。 A heat-shrinkable tube is fixed to the outer peripheral surfaces at both ends of the rotating structure by heat shrinking, and both end portions of the rotating structure to which the heat-shrinkable tube is fixed are connected to an inner transmission member and an outer transmission member constituting the transmission member. The rotary actuator according to claim 9, wherein the rotary actuator is fixed and held by screwing.
  11.  前記内側伝達部材の外周面に少なくとも1つの竹の子部を形成し、この竹の子部を前記回転構造体両端部の内周面に食い込ませた請求項10に記載の回転アクチュエータ。 The rotary actuator according to claim 10, wherein at least one bamboo shoot part is formed on an outer peripheral surface of the inner transmission member, and the bamboo shoot part is bitten into inner peripheral surfaces of both ends of the rotary structure.
  12.  前記出力軸体に回転弁や昇降動弁等のバルブを接続した請求項1乃至11の何れか1項に記載の回転アクチュエータ。 The rotary actuator according to any one of claims 1 to 11, wherein a valve such as a rotary valve or a lift valve is connected to the output shaft body.
PCT/JP2010/069612 2009-11-09 2010-11-04 Rotation actuator WO2011055750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011539380A JPWO2011055750A1 (en) 2009-11-09 2010-11-04 Rotary actuator
CN2010800506403A CN102597537A (en) 2009-11-09 2010-11-04 Rotation actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-255872 2009-11-09
JP2009255872 2009-11-09

Publications (1)

Publication Number Publication Date
WO2011055750A1 true WO2011055750A1 (en) 2011-05-12

Family

ID=43969988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069612 WO2011055750A1 (en) 2009-11-09 2010-11-04 Rotation actuator

Country Status (3)

Country Link
JP (1) JPWO2011055750A1 (en)
CN (1) CN102597537A (en)
WO (1) WO2011055750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570620B1 (en) * 2022-09-02 2023-08-25 성균관대학교산학협력단 Rotary actuator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234535B2 (en) 2013-02-27 2016-01-12 Woodward, Inc. Rotary piston type actuator
US9816537B2 (en) 2013-02-27 2017-11-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly
US9631645B2 (en) 2013-02-27 2017-04-25 Woodward, Inc. Rotary piston actuator anti-rotation configurations
JP5906506B1 (en) * 2014-09-12 2016-04-20 株式会社国際電気通信基礎技術研究所 Actuator device, power assist robot and humanoid robot
EP3473866B1 (en) * 2014-09-19 2020-10-14 Woodward, Inc. Rotary piston actuator
US11199248B2 (en) 2019-04-30 2021-12-14 Woodward, Inc. Compact linear to rotary actuator
WO2021207482A1 (en) 2020-04-08 2021-10-14 Woodward, Inc. Rotary piston type actuator with a central actuation assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169483U (en) * 1984-10-15 1986-05-12
JPS6217378A (en) * 1985-07-13 1987-01-26 Daido Steel Co Ltd Driving device employing shape-memory alloy
JPH01152977A (en) * 1987-12-08 1989-06-15 Tokieda Naomitsu Rotary stepping device
JPH01144502U (en) * 1988-03-29 1989-10-04
JPH077975A (en) * 1992-06-12 1995-01-10 Sarcos Group Mobile operator and mobile detector
JPH1068893A (en) * 1996-06-05 1998-03-10 Mitsubishi Cable Ind Ltd Rotating mechanism and endoscope formed by using the same
JP2001012414A (en) * 1999-06-09 2001-01-16 Festo Ag & Co Fluid operative rotation driving device
JP2003166669A (en) * 2001-11-30 2003-06-13 Smc Corp Fluid pressure valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145206A (en) * 1990-10-04 1992-05-19 Bridgestone Corp Hollow elastic expansion body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169483U (en) * 1984-10-15 1986-05-12
JPS6217378A (en) * 1985-07-13 1987-01-26 Daido Steel Co Ltd Driving device employing shape-memory alloy
JPH01152977A (en) * 1987-12-08 1989-06-15 Tokieda Naomitsu Rotary stepping device
JPH01144502U (en) * 1988-03-29 1989-10-04
JPH077975A (en) * 1992-06-12 1995-01-10 Sarcos Group Mobile operator and mobile detector
JPH1068893A (en) * 1996-06-05 1998-03-10 Mitsubishi Cable Ind Ltd Rotating mechanism and endoscope formed by using the same
JP2001012414A (en) * 1999-06-09 2001-01-16 Festo Ag & Co Fluid operative rotation driving device
JP2003166669A (en) * 2001-11-30 2003-06-13 Smc Corp Fluid pressure valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570620B1 (en) * 2022-09-02 2023-08-25 성균관대학교산학협력단 Rotary actuator

Also Published As

Publication number Publication date
JPWO2011055750A1 (en) 2013-03-28
CN102597537A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2011055750A1 (en) Rotation actuator
JP6068551B2 (en) Electric actuator with internal load device
JP5716034B2 (en) Coupling device for use with an electric actuator
EP3212977B1 (en) Flow control valve having a motion conversion device
US7017882B2 (en) Valve assembly
US5158005A (en) Actuator using elastic extensible member
US7797933B2 (en) Servo system augmented with an active material component
US5201262A (en) Actuator using elastic extensible member
US20200047332A1 (en) Cabled differential for cable controlled joint
US9068606B2 (en) Clutch switching device and twin-clutch type transmission comprising clutch switching device
US9989056B2 (en) Hydraulic pump with integrated clutch
US5165323A (en) Pneumatic actuators for manipulators
EP3376083B1 (en) Valve actuator
EP3022473B1 (en) Valve operator assembly with compensating actuator
EP3112771B1 (en) Electric actuator for heating, ventilating and air-conditioning system
RU199149U9 (en) The device for returning the output link of the actuator of the working body to its original position
EP1059462A1 (en) Flexible push-pull drive device
CN211175585U (en) Multi-piston pneumatic actuator
WO2021095020A1 (en) Actuator device for shut-off valve
CN111022743A (en) Multi-piston pneumatic actuator
WO2010140188A1 (en) Wave-type linear motion mechanism
ITTO20080357A1 (en) ACTUATORS WITH GROOVED PROFILES.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050640.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828310

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011539380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828310

Country of ref document: EP

Kind code of ref document: A1