WO2011055623A1 - Image pickup lens, image pickup device, and method for manufacturing electronic apparatus - Google Patents

Image pickup lens, image pickup device, and method for manufacturing electronic apparatus Download PDF

Info

Publication number
WO2011055623A1
WO2011055623A1 PCT/JP2010/068141 JP2010068141W WO2011055623A1 WO 2011055623 A1 WO2011055623 A1 WO 2011055623A1 JP 2010068141 W JP2010068141 W JP 2010068141W WO 2011055623 A1 WO2011055623 A1 WO 2011055623A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
resin
imaging
inorganic particles
glass substrate
Prior art date
Application number
PCT/JP2010/068141
Other languages
French (fr)
Japanese (ja)
Inventor
明子 原
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011055623A1 publication Critical patent/WO2011055623A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to an imaging lens, an imaging device, and an electronic device manufacturing method.
  • an imaging device called a camera module has been mounted on a portable terminal which is a compact and thin electronic device such as a mobile phone or a PDA (Personal Digital Assistant).
  • image information can be transmitted mutually.
  • CMOS Complementary Metal Oxide Semiconductor
  • An imaging apparatus is configured by combining such an imaging element and an imaging lens.
  • a reflow soldering process is employed as a method for mounting an imaging device on which an imaging lens is mounted on a printed wiring board.
  • solder is placed in advance on the printed circuit board where electronic components are to be placed, the electronic components are placed thereon, heated to melt the solder, and then cooled to cool the electronic components. It mounts on a printed wiring board (for example, refer patent document 1).
  • Electronic components are automatically mounted inside the furnace for the reflow process.
  • One of the manufacturing methods for imaging lenses with mass productivity, miniaturization, and high heat resistance is that a large number of lens parts made of high heat-resistant curable resin are simultaneously formed on a parallel plate of several inches of glass substrate.
  • a method has been proposed in which a large number of lens elements are simultaneously molded using a replica method, a glass substrate (wafer lens) on which a large number of these lens elements are formed is combined with a sensor wafer and then separated to mass-produce camera modules.
  • a wafer lens having lens portions provided on both surfaces of at least two glass substrates is used as an imaging lens.
  • the lens unit provided closest to the object side is a lens unit having positive power
  • the second or third lens unit viewed from the object side is negative.
  • Excellent focusing performance and chromatic aberration correction by making the lens part with power different from the Abbe number of the object side lens part with positive power and the second or third lens part with negative power Can have a function.
  • reflected light is generated at the interface between the lens unit and the air layer or at the interface between the imaging element and the air layer.
  • the first lens portion, the second lens portion, the third lens portion, and the fourth lens portion are formed from the object side.
  • reflected light is generated on the optical surfaces and imaging device surfaces of the first lens unit and the third lens unit, respectively.
  • the reflected light generated on the surface of the first lens unit does not enter the image sensor, the reflected light generated on the surface of the third lens unit hardly affects the image, and the second lens is again used. Although it is reflected by the light and emitted in the image side direction (image pickup device direction), it does not directly enter the image pickup device, so the influence is slight.
  • the reflected light generated on the surface of the image sensor is reflected on the surface of the fourth lens part and is incident on the surface of the image sensor again, thereby forming a ghost and increasing the influence on the image.
  • the antireflection film is usually formed by laminating an inorganic layer such as a metal oxide layer, and since the coefficient of linear expansion is significantly different from that of the resin used as the base material, high-temperature heat treatment such as reflow soldering treatment.
  • high-temperature heat treatment such as reflow soldering treatment
  • the optical performance deteriorates due to the problem that cracks or wrinkles occur in the antireflection film, it is difficult to form the antireflection film on the resin lens portion.
  • adjusting the deposition temperature of the antireflection film as in the technique of Patent Document 2 is not sufficient to suppress the occurrence of cracks.
  • the lens part of the lens may expand and contract, and wrinkles may occur in the antireflection film.
  • the main object of the present invention is to suppress the occurrence of ghosts due to reflected light on the surface of the image sensor, and to reflect even when exposed to high heat such as reflow soldering processing or due to temperature fluctuations during use.
  • An object of the present invention is to provide an imaging lens capable of preventing optical performance from being deteriorated due to cracks and wrinkles in a prevention film.
  • a second lens group that is disposed on the image side surface of the second glass substrate and has a resin-made fourth lens portion that forms the S4 surface that is an image side optical surface is disposed in this order from the object side to the image side.
  • the antireflection film is provided on the S4 surface, that is, the optical surface of the fourth lens unit, the reflected light reflected by the surface of the imaging element is transmitted to the object side through the S4 surface, It is possible to suppress the generation of ghosts that are generated by entering the image sensor again.
  • the inorganic particles generally have a lower linear expansion coefficient than the resin material, and reduce the difference in the linear expansion coefficient from the antireflection film. Therefore, even when the imaging lens is placed in a high temperature environment by the reflow soldering process, the occurrence of cracks and wrinkles in the antireflection film can be prevented.
  • the imaging device 1 includes an imaging lens 2, an optical low-pass filter 4, an imaging element 6, and the like, and the optical low-pass filter 4 and the imaging element 6 are disposed below the imaging lens 2. ing.
  • a CMOS type image sensor is used as the image sensor 6.
  • the imaging lens 2 is composed of two lens groups 8 and 10.
  • the first lens group 8 has a glass substrate 12.
  • a resin portion 16 is formed on the upper surface of the glass substrate 12.
  • a diaphragm 18 is formed between the glass substrate 12 and the resin portion 16.
  • the resin portion 16 is composed of a convex lens portion 16a and a non-lens portion 16b at the periphery thereof, and these are integrally molded.
  • the convex lens portion 16a has an aspheric surface and has a positive refractive power.
  • the diaphragm 18 is covered with a non-lens portion 16b.
  • a resin portion 22 is formed on the lower surface of the glass substrate 12.
  • the resin portion 22 is composed of a concave lens portion 22a and a non-lens portion 22b in the periphery thereof, and these are integrally molded.
  • the concave lens portion 22a has an aspherical surface and has negative refractive power (power).
  • the first lens group 8 is composed of a glass substrate 12, resin portions 16 and 22, and a diaphragm 18, and has a positive refractive power as a whole.
  • the second lens group 10 has a glass substrate 30.
  • a resin portion 32 is formed on the upper surface of the glass substrate 30.
  • the resin portion 32 is composed of a concave lens portion 32a and a non-lens portion 32b in the periphery thereof, and these are integrally molded.
  • the concave lens portion 32a has an aspheric surface, and has negative refractive power.
  • a resin portion 34 is formed on the lower surface of the glass substrate 30.
  • the resin portion 34 is composed of a convex lens portion 34a and a non-lens portion 34b in the periphery thereof, and these are integrally molded.
  • the convex lens portion 34a has an aspheric surface and has a positive refractive power.
  • the second lens group 10 includes a glass substrate 30 and resin portions 32 and 34, and has a negative refractive power (power) as a whole.
  • the second lens unit and the third lens unit have negative power, but at least one lens unit may have negative power.
  • the resin parts 16 and 22 of the first lens group 8 and the resin parts 32 and 34 of the second lens group 10 are made of a known photocurable resin.
  • the photocurable resin for example, acrylic resins, allyl ester resins, epoxy resins and the like as shown below can be used.
  • acrylic resin or allyl ester resin When acrylic resin or allyl ester resin is used, it can be cured by reaction by radical polymerization, and when epoxy resin is used, it can be cured by reaction by cationic polymerization.
  • the types of resins constituting each part of the first and second lens groups 8 and 10 may be the same or different. Details of the resin are as follows (1) to (3).
  • the (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
  • (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom.
  • 2-alkyl-2-adamantyl (meth) acrylate Japanese Patent Laid-Open No. 2002-193883
  • adamantyl di (meth) acrylate Japanese Patent Laid-Open No. 57-5000785
  • diallyl adamantyl dicarboxylate Japanese Patent Laid-Open No. 60-60
  • perfluoroadamantyl acrylate JP 2004-123687
  • (meth) acrylate for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripent
  • Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
  • Epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator.
  • Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
  • Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin.
  • Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
  • the curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance
  • an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used.
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride
  • examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
  • a curing accelerator is contained as necessary.
  • the curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin.
  • 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
  • an adhesive is applied between the non-lens portion 22 b of the first lens group 8 and the non-lens portion 32 b of the second lens group 10, and the first lens group 8 and the second lens group 10 are connected. It is glued.
  • the non-lens portions 22b and 32b correspond to the flange portions of the concave lens portions 22a and 32a.
  • the non-lens portion 22b and the non-lens portion 32b are directly bonded via an adhesive, but a separate spacer is provided between the resin portion 22 and the resin portion 32, and the spacer You may adhere
  • the convex lens portion 16a, the concave lens portion 22a, the concave lens portion 32a, and the convex lens portion 34a have aspherical surfaces, and the optical axes coincide with each other.
  • the convex lens portion 16a of the first lens group 8 is disposed on the object side
  • the convex lens portion 34a of the second lens group 10 is disposed on the image side.
  • the convex lens portion 16a (first lens portion) is the “S1 surface” that is the object-side optical surface of the first lens group 8, and the concave lens portion 22a (second lens portion) is the first lens.
  • the “S2 surface” that is the image side optical surface of the group 8 is used, and the “S3 surface” that is the object side optical surface of the second lens group 10 is the “S3 surface” that is the concave lens portion 32a (the fourth lens). Part) constitutes the “S4 surface” which is the image side optical surface of the second lens group 10.
  • a light-shielding photoresist is applied to the glass substrate 12 and patterned into a predetermined shape to form a plurality of apertures 18.
  • a photoresist mixed with carbon black can be used as the light shielding photoresist.
  • a photocurable resin is dropped on the mold, and one of the mold and the wafer-shaped glass substrate 12 is pressed against the other to fill the space between the mold and the glass substrate 12 with the photocurable resin.
  • the photocurable resin is cured by light irradiation. As a result, a plurality of convex lens portions 16a are formed on the glass substrate 12.
  • the glass substrate 12 is turned over, and a plurality of concave lens portions 22a are formed on the glass substrate 12 in the same manner as described above.
  • IR cut coats 14 and 20 When forming the IR cut coats 14 and 20, before forming the aperture 18, a known vacuum deposition method, sputtering, CVD (Chemical Vapor Deposition) method or the like is used for each of the front and back surfaces of the glass substrate 12. IR cut coats 14 and 20 are formed (see FIG. 2).
  • a plurality of concave lens portions 32a and convex lens portions 34a are formed on the glass substrate 30 in the same manner as the plurality of convex lens portions 16a and concave lens portions 22a are formed on the glass substrate 12.
  • a photocurable resin containing inorganic particles is used.
  • an antireflection film 36 is formed on the resin portion 34.
  • the second lens group 10 (second lens group 10 without the antireflection film 36) is mounted in the vacuum deposition apparatus, and the pressure in the apparatus is reduced to a predetermined pressure (for example, 2 ⁇ 10 ⁇ 3 Pa), The second lens group 10 is heated by a heater at the upper part of the vacuum evaporation apparatus until the temperature reaches a predetermined temperature (for example, 240 ° C.).
  • the first layer 36a is formed by using a vapor deposition source constituting the first layer 36a.
  • the film forming temperature is preferably kept within a range of ⁇ 40 to + 40 ° C. with respect to the melting temperature of the conductive paste to be melted by the reflow process.
  • a (Ta 2 O 5 + 5% TiO 2 ) film is formed as the first layer 36a
  • OA600 manufactured by Optran Co., Ltd. may be used as the evaporation source, and the evaporation source may be evaporated by electron gun heating.
  • O 2 gas up to a pressure of 1.0 ⁇ 10 ⁇ 2 Pa inside the vacuum vapor deposition apparatus and controlling the vapor deposition rate at 5 ⁇ / sec.
  • the film forming temperature (temperature in the vapor deposition apparatus) is maintained within the range of 200 to 280 ° C.
  • the second layer 36b is formed using a vapor deposition source constituting the second layer 36b.
  • the film forming temperature is kept within the range of ⁇ 40 to + 40 ° C. with respect to the melting temperature of the conductive paste to be melted by the reflow process. .
  • the film forming temperature (temperature in the vapor deposition apparatus) is maintained within the range of 200 to 280 ° C.
  • a set of convex lens portion 16a, concave lens portion 22a, concave lens portion 32a, and convex lens portion 34a is taken as a unit, and wafer lens laminate 50 is diced for each set. Cut (dicing) at line 60 and fragment. As a result, a plurality of imaging lenses 2 are manufactured.
  • a dicer that uses an endless blade (rotary blade) by cutting with abrasive grains, and the rotation speed of the endless blade is 3 to 7 mm / sec. .
  • the dicing portion is preferably cut while flowing pure water for dust prevention (jetting).
  • the imaging lens 2 is assembled and bonded to the casing (not shown), and the optical low-pass filter 4 and the imaging element 6 are installed, whereby the imaging device 1 is manufactured.
  • the optical low-pass filter 4 and the image sensor 6 are installed after the imaging lens 2 is manufactured by dicing.
  • the wafer lens stack 50 and the plurality of image sensors 6 are provided. It is also possible to obtain the imaging device 1 by dicing after stacking the substrates.
  • solder is placed on the printed wiring board in advance, and the imaging device 1 and the electronic component are placed there.
  • the solder is melted and then cooled, so that the imaging device 1 and the electronic component can be simultaneously mounted on the printed wiring board.
  • an antireflection film 36 is formed on the surface of the resin portion 34.
  • the antireflection film 36 is provided only on the surface of the resin portion 34, but may be provided on all surfaces of the resin portions 16, 22, 32, 34.
  • the antireflection film 36 is effectively provided on the surface of the resin portion 34 in order to suppress the occurrence of ghost in the image pickup device 6 which is one of the objects of the present invention, and the antireflection film 36 and the resin portion 34 are effective. It is preferable to provide the antireflection film 36 only on the resin part 34 containing inorganic particles in order to suppress problems such as the generation of cracks at the interface with the resin.
  • the antireflection film 36 has a two-layer structure. A first layer 36a is formed directly on the resin portion 34, and a second layer 36b is formed thereon.
  • the first layer 36a is a layer made of a high refractive index material having a refractive index of 1.7 or more, and is preferably a mixture of Ta 2 O 5 , Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture.
  • the first layer 36a may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 .
  • the second layer 36b is a layer comprised of a low refractive index material is less than the refractive index of 1.7, preferably composed of SiO 2.
  • the antireflection film 36 has both the first layer 36a and the second layer 36b formed by a technique such as vapor deposition.
  • the film formation temperatures of the first layer 36a and the second layer 36b are subjected to a reflow process. It is formed while being kept in the range of ⁇ 40 to + 40 ° C. (preferably ⁇ 20 to + 20 ° C.) with respect to the melting temperature of the conductive paste such as solder.
  • the first layer 36a and the second layer 36b may be alternately stacked on the first layer 36a and the second layer 36b, and the antireflection film 36 may have a 2-7 layer structure as a whole.
  • the layer in direct contact with the resin portion 34 may be a high refractive index material layer (first layer 36a) or a low refractive index material layer (second layer 36b) depending on the type of resin. Good.
  • the layer in direct contact with the resin portion 34 is a layer of a high refractive index material.
  • a photocurable resin containing inorganic particles is used in the resin portion 34 closest to the image side.
  • Inorganic particles may be contained not only in the resin part 34 but also in the resin parts 16, 22, 32. However, it is preferable to include inorganic particles only in the resin parts 22, 32, 34, more preferably to include inorganic particles only in the resin parts 32, 34, and most preferable to include inorganic particles only in the resin part 34. preferable.
  • the reason is as follows. That is, as described above, when the imaging lens 2 is manufactured, the wafer lens stack 50 needs to be cut by dicing. During dicing, dust is generated in the vicinity of the cut portion, and therefore it is preferable to cut while flowing pure water for dust prevention. At that time, if the resin parts 16, 22, 32, and 34 contain inorganic particles, the water absorption may increase due to the inorganic particles.
  • dicing may be performed in a state of being bonded to the imaging element (group) in the state of the wafer lens stack 50, and therefore dicing is performed from the object side (resin portion 16 side).
  • the resin part on the object side is exposed to pure water for a longer time.
  • a resin containing inorganic particles is exposed to pure water for a long time, expansion due to water absorption occurs, and problems such as peeling from the glass substrates 12 and 30 may occur. It is preferable to use a resin that does not contain inorganic particles in the resin portion.
  • the toughness may be decreased and brittleness may be increased, and it is easy to break in the course of the dicing process. .
  • the resin portions 22 and 32 are preferably concave lenses.
  • the non-lens portions are thicker than the lens portions (concave lens portions 22a and 32a). There is a high possibility that it will continue to be received for a long time, and it will be easier to break.
  • a resin containing inorganic particles only in the resin portion 34. Since at least the resin portion 34 is provided with an antireflection film 36 in order to suppress the occurrence of ghost caused by the reflected light entering the image sensor 6, cracks due to stress between the antireflection film and the resin portion are generated. In order to suppress, the resin part 34 needs to use resin containing inorganic particles.
  • the resin part 34 arranged closest to the image among the resin parts 16, 22, 32, 34 of the imaging lens 1 contains inorganic particles, the resin part 34.
  • the inorganic particles that can be contained / dispersed in the resin parts 16, 22, 32, and 34 are optically transparent (having optical transparency), such as oxide particles, sulfide particles, and selenide particles. And telluride particles.
  • silicon oxide particles aluminum oxide particles, aluminum phosphate particles, titanium oxide particles, zinc oxide particles, zinc sulfide particles, etc. can be mentioned, preferably silicon oxide particles (silica particles), carbonic acid Calcium particles.
  • silicon oxide particles silicon oxide particles (silica particles), carbonic acid Calcium particles.
  • one kind of inorganic particles may be used, or a plurality of kinds of inorganic particles may be used in combination.
  • the mixing ratio of inorganic particles to the photocurable resin (volume ratio of inorganic particles in the composite material) is 1 to 50% by volume, preferably 10 to 40% by volume, more preferably 20 to 30% by volume. .
  • the shape of the inorganic particles may be any shape such as a spherical shape, an elliptical shape, a flat shape, or a rod shape, but the lens function can be effectively exhibited particularly when it is spherical.
  • the particle size distribution is not particularly limited, but in order to exhibit the lens function more efficiently, those having a relatively narrow distribution are preferably used rather than those having a wide distribution.
  • Inorganic particles having an average particle diameter of 1 to 30 nm are used.
  • the inorganic particles preferably have an average particle diameter of 1 to 20 nm, more preferably 1 to 10 nm. If the average particle size is less than 1 nm, it may be difficult to disperse the inorganic particles, so that the desired performance may not be obtained. If the average particle size exceeds 30 nm, the resulting composite material becomes turbid and transparent.
  • the light transmittance may be less than 70%.
  • the average particle diameter of the inorganic particles represents the diameter when the volume of the inorganic particles is converted into a sphere.
  • 100 or more particles of an electron micrograph of inorganic particles are selected indiscriminately, and the arithmetic average of the particle sizes of the individual inorganic particles is defined as the average particle size.
  • the method for producing the inorganic particles is not particularly limited, and any known method can be used.
  • methods such as thermal decomposition of metal salts and hydrolysis of metal salts and metal alkoxides are well known.
  • the thermal decomposition of the metal salt can be obtained by spraying the metal salt or a solution thereof and thermally decomposing it.
  • the hydrolysis of the metal salt or metal alkoxide can be obtained by preparing a metal salt or metal alkoxide solution in advance and adding water to the solution to advance hydrolysis polymerization.
  • the surface of inorganic particles is preferably surface-treated.
  • the method for surface treatment is not particularly limited, and any known method can be used.
  • Examples of the surface treatment agent used for the surface treatment of inorganic particles include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetraphenoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and methyltriethoxy.
  • Silane methyltriphenoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, 3-methylphenyltrimethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiphenoxysilane, trimethylmethoxysilane, triethylethoxysilane , Triphenylmethoxysilane, triphenylphenoxysilane, cyclopentyltrimethoxysilane, cyclohexyltriethoxysilane, Dildimethylethoxysilane, octyltriethoxysilane, vinyltriacetoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropylmethyldichlorosilane, ⁇
  • fatty acids such as isostearic acid, stearic acid, cyclopropane carboxylic acid, cyclohexane carboxylic acid, cyclopentane carboxylic acid, cyclohexane propionic acid, octylic acid, palmitic acid, behenic acid, undecylenic acid, oleic acid, hexahydrophthalic acid and the like
  • Any surface treatment agent such as a metal salt of the above, or an organic phosphate surface treatment agent can be used, and these can be used alone or in admixture of two or more.
  • These compounds have different characteristics such as reaction rate, and compounds suitable for surface treatment conditions can be used. Further, only one type may be used or a plurality of types may be used in combination. Furthermore, the properties of the surface-treated fine particles obtained may vary depending on the compound used, and the affinity with the photocurable resin used to obtain the composite material can be achieved by selecting the compound used for the surface treatment. is there.
  • the ratio of the surface treatment agent is not particularly limited, but is preferably 10 to 99% by mass, more preferably 30 to 98% by mass with respect to the inorganic particles after the surface treatment.
  • the organic-inorganic composite material may be prepared (produced) as follows.
  • the organic-inorganic composite material may be prepared by adding and kneading inorganic particles to the molten photocurable resin, or after mixing the photocurable resin and inorganic particles dissolved in a solvent. It may be produced by removing the organic solvent.
  • the organic-inorganic composite material is produced by a melt-kneading method.
  • a photocurable resin in the presence of inorganic particles or to produce inorganic particles in the presence of a photocurable resin
  • an organic-inorganic composite material can be prepared by mixing a photocurable resin or inorganic particles prepared by an existing method, it is usually possible to produce an inexpensive organic-inorganic composite material.
  • an organic solvent can be used in the melt kneading.
  • an organic solvent By using an organic solvent, the temperature of melt kneading can be lowered, and deterioration of the photocurable resin can be easily suppressed. In this case, it is preferable to devolatilize after melt-kneading to remove the organic solvent from the organic-inorganic composite material.
  • Examples of the apparatus that can be used for melt kneading include a closed kneading apparatus such as a lab plast mill, a Brabender, a Banbury mixer, a kneader, and a roll, or a batch kneading apparatus. Further, a continuous melt kneader such as a single screw extruder or a twin screw extruder can be used.
  • KRC kneader manufactured by Kurimoto Iron Works
  • polylab system manufactured by HAAKE
  • nanocon mixer Toyo Seiki Seisakusho
  • Kneader (Buss), TEM extruder (Toshiba Machine), TEX twin-screw kneader (Nihon Steel Works), PCM kneader (Ikegai Iron Works) ), Three roll mill, mixing roll mill, kneader (manufactured by Inoue Mfg.
  • the photocurable resin and the inorganic particles may be added and kneaded all at once, or may be added in stages and kneaded.
  • a melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
  • the inorganic particles can be added in a powder or agglomerated state, or can be added in a dispersed state in the liquid.
  • distributed in the liquid it is preferable to perform devolatilization after kneading
  • IR cut coats 14 and 20 may be formed on the glass substrate 12.
  • the IR cut coats 14 and 20 are films for shielding infrared rays.
  • the IR cut coat 14 is an alternating multilayer film in which a plurality of low refractive index layers 14a made of a low refractive index material and high refractive index layers 14b made of a high refractive index material are alternately stacked.
  • the IR cut coat 20 is also an alternating multilayer film of low refractive index layers 20a and high refractive index layers 20b. In the IR cut coats 14 and 20, the low refractive index layers 14 a and 20 a are preferably in direct contact with the glass substrate 12.
  • the low refractive index material constituting the low refractive index layers 14a and 20a SiO 2 or the like is used.
  • TiO 2 , Ta 2 O 5 , Nb 2 O 3 , ZrO 2 or the like is used as the high refractive index material constituting the high refractive index layers 14b and 20b.
  • the low refractive index layers 14a and 20a may be made of different materials, and the high refractive index layers 14b and 20b may be made of different materials.
  • the IR cut coats 14 and 20 are usually composed of about 10 to 40 layers, preferably 20 layers each. Either one of the IR cut coats 14 and 20 is sufficient, but since the glass substrate 12 may be bent under the stress of the IR cut coats 14 and 20, both IR cut coats 14 and 20 existed. Is preferred. The number of layers of the IR cut coats 14 and 20 may be the same or different.
  • f Focal length of the entire imaging lens system fB: Back focus
  • F F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device
  • ENTP Entrance pupil position (distance from the first surface to the entrance pupil position)
  • EXTP exit pupil position (distance from imaging surface to exit pupil position)
  • H1 Front principal point position (distance from the first surface to the front principal point position)
  • H2 Rear principal point position (distance from the final surface to the rear principal point position)
  • R radius of curvature
  • D spacing between upper surfaces of axis
  • Nd refractive index of lens material with respect to d-line
  • ⁇ d Abbe number of lens material
  • the aspherical shape has the vertex of the surface as the origin and the optical axis direction as the X axis In the orthogonal coordinate system, the vertex curvature is C, the conic constant is K, and the aspherical coefficients are A4, A6, A8, A10, A12
  • This imaging lens is assumed to be used for an imaging element of 1/5 inch type, pixel pitch of 1.75 ⁇ m, and 1600 ⁇ 1200 pixels.
  • an epoxy resin (specifically, 4% by mass of UVI-6992 was added as a UV curing initiator to a hydrogenated bisphenol A type epoxy resin) was used.
  • Table 1 shows lens data of the imaging lens.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E-3
  • inorganic particles were variously contained in each resin portion, and “samples 1 to 5” were obtained by combinations thereof (see Table 2).
  • an antireflection film (Anti-Reflector-Coat) was formed on the most image-side convex lens portion constituting the S4 surface.
  • silica RX300 manufactured by Nippon Aerosil Co., Ltd., particle size: 7 nm
  • the amount of the inorganic particles added was 50% by mass with respect to the resin part.
  • the antireflection film As the antireflection film, a two-layer antireflection film was formed on the lens group on the image side (resin portion constituting the S4 surface).
  • the lens group was mounted in a vacuum deposition apparatus, the pressure in the apparatus was reduced to 2 ⁇ 10 ⁇ 3 Pa, and the lens group was heated to 200 ° C. by a heater at the top of the vacuum deposition apparatus.
  • a 20 nm (Ta 2 O 5 + 5% TiO 2 ) film was formed directly on the surface of the resin portion as the first layer film.
  • OA600 manufactured by Optran Co., Ltd. was used as the evaporation source, and the evaporation source was evaporated by electron gun heating to form a (Ta 2 O 5 + 5% TiO 2 ) film.
  • the O 2 gas was introduced until the pressure inside the vacuum vapor deposition apparatus reached 1.0 ⁇ 10 ⁇ 2 Pa, and the film was formed while controlling the vapor deposition rate at 5 liters / sec.
  • a 110 nm SiO 2 film was formed following the first layer film.
  • O 2 gas was introduced until the pressure inside the vacuum vapor deposition apparatus was 1.2 ⁇ 10 ⁇ 2 Pa, and the film was formed while controlling the vapor deposition rate at 5 ⁇ / sec.
  • each sample was introduced into an IR furnace and heated at 260 ° C. for 6 minutes as one cycle, and this was performed for 3 cycles.
  • a dicer using an endless blade (rotating blade) by cutting with abrasive grains was used, and the rotation speed of the endless blade was set to 3 to 7 mm / sec.
  • pure water was flowed around the endless blade to prevent frictional heat.
  • Table 2 shows the observation results after dicing.
  • the criteria for ⁇ , ⁇ , and X are as follows. “ ⁇ ”: The resin part is peeled off at less than 10% (100) lens parts. “ ⁇ ”: There is peeling of the resin part in the lens part in the range of 10% or more and less than 30% (300). “ ⁇ ”: There is peeling of the resin part in the lens part of 30% or more.
  • Imaging device 2 Imaging lens 4 Optical low-pass filter 6 Imaging element 8, 10 Lens group 12 Glass substrate 14 IR cut coat 14a Low refractive index layer 14b High refractive index layer 16 Resin part 16a Convex lens part 16b Non-lens part 18 Aperture 20 IR cut coat 20a Low refractive index layer 20b High refractive index layer 22 Resin part 22a Concave lens part 22b Non-lens part 30 Glass substrate 32 Resin part 32a Concave lens part 32b Non-lens part 34 Resin part 34a Convex lens part 34b Non-lens part 36 Antireflection film 36a First layer 36b Second layer 40 Spacer 42, 44 IR cut coat 50 Wafer lens laminate 60 Dicing line

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Disclosed is an image pickup lens wherein generation of cracks and wrinkles in a reflection preventing film is eliminated, and entry of unnecessary reflected light into an image pickup element is suppressed, said entry of unnecessary reflected light being the cause of ghost. The image pickup lens (2) has the following disposed therein, in the following order from the object side to the image side: a first lens group (8), which has a glass substrate (12), a resin convex lens section (16a) configuring the surface (S1), i. e., the object side optical surface, and a resin concave lens section (22a) configuring the surface (S2), i. e., the image side optical surface; a second lens group (10), which has a glass substrate (30), a resin concave lens section (32a) configuring the surface (S3), i.e., the object side optical surface, and a resin convex lens section (34a) configuring the surface (S4), i. e., an image side optical surface. In the image pickup lens (2), the reflection preventing film (36) is formed at least on the surface (S4), and at least the concave lens section (34a) is configured of a resin wherein inorganic particles are dispersed.

Description

撮像用レンズ、撮像装置及び電子機器の製造方法Imaging lens, imaging apparatus, and electronic device manufacturing method
 本発明は撮像用レンズ、撮像装置及び電子機器の製造方法に関する。 The present invention relates to an imaging lens, an imaging device, and an electronic device manufacturing method.
 従来から、いわゆるカメラモジュールと称される撮像装置が、携帯電話機やPDA(Personal Digital Assistant)等のコンパクトで薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。 2. Description of the Related Art Conventionally, an imaging device called a camera module has been mounted on a portable terminal which is a compact and thin electronic device such as a mobile phone or a PDA (Personal Digital Assistant). In addition to this, image information can be transmitted mutually.
 これらの撮像装置に使用される撮像素子としては、CMOS(Complementary Metal Oxide Semiconductor)型イメージセンサなどの固体撮像素子が使用される。撮像用レンズとしては、安価に大量生産でき、かつ非球面の付加が容易な樹脂製のレンズが低コスト化、小型化のために用いられている。このような撮像素子と撮像用レンズとが組み合わされて撮像装置が構成されている。 As an image pickup device used in these image pickup devices, a solid-state image pickup device such as a CMOS (Complementary Metal Oxide Semiconductor) type image sensor is used. As an imaging lens, a resin lens that can be mass-produced at low cost and can be easily added with an aspheric surface is used for cost reduction and size reduction. An imaging apparatus is configured by combining such an imaging element and an imaging lens.
 近年の携帯端末では、撮像用レンズが搭載された撮像装置をプリント配線基板に実装する手法として、リフロー半田付け(Reflow soldering)処理が採用されている。リフロー工程においては、プリント配線基板上に電子部品を配置する箇所にあらかじめ半田を配置し、そこへ電子部品を配置してから加熱して半田を溶融させた後、冷却することで、電子部品をプリント配線基板に実装する(例えば特許文献1参照)。電子部品は、リフロー工程用の炉の内部で自動実装される。このようなリフロー工程の採用により、部品類のプリント配線基板への実装コストが安価で製造品質を一定に保つことができるようになってきたため、リフロー工程に耐えうる耐熱性に優れた撮像用レンズが求められている。 In recent portable terminals, a reflow soldering process is employed as a method for mounting an imaging device on which an imaging lens is mounted on a printed wiring board. In the reflow process, solder is placed in advance on the printed circuit board where electronic components are to be placed, the electronic components are placed thereon, heated to melt the solder, and then cooled to cool the electronic components. It mounts on a printed wiring board (for example, refer patent document 1). Electronic components are automatically mounted inside the furnace for the reflow process. By adopting such a reflow process, the mounting cost of components on a printed wiring board is low, and it has become possible to maintain a constant manufacturing quality, so the imaging lens has excellent heat resistance that can withstand the reflow process. Is required.
 大量生産性と小型化、高耐熱性を有する撮像レンズの製造方法の一つに、平行平板である数インチのガラス基板上に、高耐熱の硬化性樹脂で構成された多数のレンズ部を同時に形成するレプリカ法(replica method)がある。レプリカ法を用いてレンズ要素を同時に大量に成形し、これらのレンズ要素が多数形成されたガラス基板(ウエハレンズ)をセンサウエハと組み合わせた後切り離し、カメラモジュールを大量生産する方法が提案されている。 One of the manufacturing methods for imaging lenses with mass productivity, miniaturization, and high heat resistance is that a large number of lens parts made of high heat-resistant curable resin are simultaneously formed on a parallel plate of several inches of glass substrate. There is a replica method to form. A method has been proposed in which a large number of lens elements are simultaneously molded using a replica method, a glass substrate (wafer lens) on which a large number of these lens elements are formed is combined with a sensor wafer and then separated to mass-produce camera modules.
 このような撮像装置において、更に集光性能や色収差補正等の光学性能を改善するため、少なくとも2枚のガラス基板の両面にレンズ部を設けたウエハレンズを積層させたものを撮像用レンズとして用いる技術が検討されている。このような撮像用レンズによれば、例えば、最も物体側に設けられたレンズ部を正のパワーを持たせたレンズ部とし、物体側からみて2番目若しくは3番目に設けられるレンズ部を負のパワーを持たせたレンズ部とし、正のパワーを持つ物体側のレンズ部と負のパワーを有する2番目若しくは3番目のレンズ部のアッベ数を異ならせることで、優れた集光性能と色収差補正機能を持たせることができる。 In such an imaging apparatus, in order to further improve optical performance such as light collection performance and chromatic aberration correction, a wafer lens having lens portions provided on both surfaces of at least two glass substrates is used as an imaging lens. Technology is being considered. According to such an imaging lens, for example, the lens unit provided closest to the object side is a lens unit having positive power, and the second or third lens unit viewed from the object side is negative. Excellent focusing performance and chromatic aberration correction by making the lens part with power different from the Abbe number of the object side lens part with positive power and the second or third lens part with negative power Can have a function.
 上述のように撮像レンズを複数枚のウエハレンズを組み合わせた構成とすることで光学性能を向上させることは可能であるが、このような撮像装置をリフロー半田付け処理により配線基板上に実装する場合において、解決すべき新たな課題が発生した。 Although it is possible to improve the optical performance by combining the imaging lens with a plurality of wafer lenses as described above, such an imaging device is mounted on a wiring board by reflow soldering processing. , A new problem to be solved has occurred.
 撮像装置においては、レンズ部と空気層との界面や撮像素子と空気層との界面において反射光が発生する。例えば、2枚のガラス基板のそれぞれの面にレンズ部を設けて積層させた撮像レンズにおいて、物体側から第1レンズ部、第2レンズ部、第3レンズ部、第4レンズ部とした場合には、第1レンズ部及び第3レンズ部のそれぞれの光学面及び撮像素子表面で反射光が発生することとなる。 In the imaging apparatus, reflected light is generated at the interface between the lens unit and the air layer or at the interface between the imaging element and the air layer. For example, in an imaging lens in which a lens portion is provided on each surface of two glass substrates and laminated, the first lens portion, the second lens portion, the third lens portion, and the fourth lens portion are formed from the object side. In this case, reflected light is generated on the optical surfaces and imaging device surfaces of the first lens unit and the third lens unit, respectively.
 この場合、第1レンズ部の表面で発生した反射光は撮像素子に入射することはないため、殆ど画像に影響を与えず、第3レンズ部の表面で発生した反射光は、再度第2レンズで反射されて像側方向(撮像素子方向)に出射されるものの撮像素子に直接入射することはないので影響は軽微である。 In this case, since the reflected light generated on the surface of the first lens unit does not enter the image sensor, the reflected light generated on the surface of the third lens unit hardly affects the image, and the second lens is again used. Although it is reflected by the light and emitted in the image side direction (image pickup device direction), it does not directly enter the image pickup device, so the influence is slight.
 しかしながら、撮像素子の表面で発生した反射光は、第4レンズ部の表面で反射され、再度撮像素子表面に入射することでゴーストが形成されてしまい画像への影響が大きくなってしまう。 However, the reflected light generated on the surface of the image sensor is reflected on the surface of the fourth lens part and is incident on the surface of the image sensor again, thereby forming a ghost and increasing the influence on the image.
 このような光の反射を防ぐ一手段として、レンズ部表面に反射防止膜を形成する方法が考えられる。しかしながら、通常、反射防止膜は金属酸化物層等の無機層を積層させて形成されるものであり、基材となる樹脂と線膨張係数が大きく異なるため、リフロー半田付け処理等の高温加熱処理が施された場合には、反射防止膜にクラック(割れ)やシワが発生する問題があり、光学性能が劣化してしまうため、樹脂レンズ部への反射防止膜の形成は困難であった。 As one means for preventing such reflection of light, a method of forming an antireflection film on the lens surface can be considered. However, the antireflection film is usually formed by laminating an inorganic layer such as a metal oxide layer, and since the coefficient of linear expansion is significantly different from that of the resin used as the base material, high-temperature heat treatment such as reflow soldering treatment However, since the optical performance deteriorates due to the problem that cracks or wrinkles occur in the antireflection film, it is difficult to form the antireflection film on the resin lens portion.
 上記のような課題に対して、反射防止膜を蒸着により形成する際に、製膜温度をリフロー温度に対して適切な温度範囲で行う技術が検討されており、このような技術によれば、ある程度反射防止膜のクラックの発生を抑制することは可能であった(例えば特許文献2参照)。 In order to solve the above-described problems, a technique for performing a film forming temperature in an appropriate temperature range with respect to a reflow temperature when an antireflection film is formed by vapor deposition has been studied. It was possible to suppress the occurrence of cracks in the antireflection film to some extent (see, for example, Patent Document 2).
特開2001-24320号公報JP 2001-24320 A 特開2009-244583号公報JP 2009-244583 A
 しかしながら、特許文献2の技術のように、反射防止膜の成膜温度を調整しても、クラックの発生を抑えるには十分とは言えず、更に、温度変動を伴う経時変化下では、樹脂製のレンズ部が膨張・収縮し、反射防止膜に皺(シワ)が発生することもある。 However, adjusting the deposition temperature of the antireflection film as in the technique of Patent Document 2 is not sufficient to suppress the occurrence of cracks. The lens part of the lens may expand and contract, and wrinkles may occur in the antireflection film.
 一方で、反射防止膜を形成しない場合には、撮像素子表面における反射光によるゴーストの問題が解決できず、改善が望まれていた。 On the other hand, when the antireflection film is not formed, the problem of the ghost caused by the reflected light on the surface of the image sensor cannot be solved, and improvement has been desired.
 従って、本発明の主な目的は、撮像素子表面における反射光によるゴーストの発生を抑制しながらも、リフロー半田付け処理等の高熱にさらされたり、使用時の温度変動によったりしても反射防止膜のクラックやシワによる光学性能の劣化が発生することを防止することができる撮像用レンズを提供することにある。 Therefore, the main object of the present invention is to suppress the occurrence of ghosts due to reflected light on the surface of the image sensor, and to reflect even when exposed to high heat such as reflow soldering processing or due to temperature fluctuations during use. An object of the present invention is to provide an imaging lens capable of preventing optical performance from being deteriorated due to cracks and wrinkles in a prevention film.
 上記課題を解決するため、本発明によれば、
 第1ガラス基板、
 前記第1ガラス基板の物体側表面に配置され、物体側光学面であるS1面を構成する樹脂製の第1レンズ部、及び、
 前記第1ガラス基板の像側表面に配置され、像側光学面であるS2面を構成する樹脂製の第2レンズ部を有する第1レンズ群と、
 第2ガラス基板、
 前記第2ガラス基板の物体側表面に配置され、物体側光学面であるS3面を構成する樹脂製の第3レンズ部、及び、
 前記第2ガラス基板の像側表面に配置され、像側光学面であるS4面を構成する樹脂製の第4レンズ部を有する第2レンズ群とが、物体側から像側にかけてこの順に配置された撮像用レンズであって、
 少なくとも前記S4面には反射防止膜が形成され、
 少なくとも前記第4レンズ部は無機粒子が分散された樹脂により構成されていることを特徴とする撮像用レンズが提供される。
In order to solve the above problems, according to the present invention,
A first glass substrate,
A resin-made first lens portion that is disposed on the object-side surface of the first glass substrate and constitutes an S1 surface that is an object-side optical surface; and
A first lens group that is disposed on the image side surface of the first glass substrate and has a second lens portion made of a resin that constitutes an S2 surface that is an image side optical surface;
A second glass substrate,
A resin-made third lens portion that is disposed on the object-side surface of the second glass substrate and forms an S3 surface that is an object-side optical surface; and
A second lens group that is disposed on the image side surface of the second glass substrate and has a resin-made fourth lens portion that forms the S4 surface that is an image side optical surface is disposed in this order from the object side to the image side. An imaging lens,
An antireflection film is formed on at least the S4 surface,
At least the fourth lens portion is formed of a resin in which inorganic particles are dispersed, and an imaging lens is provided.
 本発明によれば、S4面すなわち第4レンズ部の光学面には反射防止膜が設けられるため、撮像素子の表面で反射された反射光は、S4面を透過して物体側に放射され、再度撮像素子に入射することで発生するゴーストの発生を抑制することが可能となる。 According to the present invention, since the antireflection film is provided on the S4 surface, that is, the optical surface of the fourth lens unit, the reflected light reflected by the surface of the imaging element is transmitted to the object side through the S4 surface, It is possible to suppress the generation of ghosts that are generated by entering the image sensor again.
 また、第4レンズ部を無機粒子が分散された樹脂により構成することで、一般的に無機粒子は樹脂材料に比べて線膨張係数が低く、反射防止膜との線膨張係数の差を低減することが可能となることから、リフロー半田付け処理により撮像レンズが高温環境下に置かれた場合であっても、反射防止膜のクラックやシワの発生を防止することができる。 In addition, by configuring the fourth lens portion with a resin in which inorganic particles are dispersed, the inorganic particles generally have a lower linear expansion coefficient than the resin material, and reduce the difference in the linear expansion coefficient from the antireflection film. Therefore, even when the imaging lens is placed in a high temperature environment by the reflow soldering process, the occurrence of cracks and wrinkles in the antireflection film can be prevented.
撮像装置とそれに用いられる撮像用レンズの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of an imaging device and the imaging lens used for it. 図1の変形例を示す図面である。It is drawing which shows the modification of FIG. 撮像用レンズの製造過程中で製造されるウエハレンズ積層体を、切断する際の様子を概略的に説明するための図面である。It is drawing for demonstrating roughly the mode at the time of cut | disconnecting the wafer lens laminated body manufactured in the manufacture process of the lens for imaging.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図1に示す通り、撮像装置1は撮像用レンズ2、光学的ローパスフィルタ4、撮像素子6などから構成されており、撮像用レンズ2の下方に光学的ローパスフィルタ4、撮像素子6が配置されている。撮像素子6としては例えばCMOS型イメージセンサが用いられる。 As shown in FIG. 1, the imaging device 1 includes an imaging lens 2, an optical low-pass filter 4, an imaging element 6, and the like, and the optical low-pass filter 4 and the imaging element 6 are disposed below the imaging lens 2. ing. For example, a CMOS type image sensor is used as the image sensor 6.
 撮像用レンズ2は2群のレンズ群8、10から構成されている。 The imaging lens 2 is composed of two lens groups 8 and 10.
 第1レンズ群8はガラス基板12を有している。ガラス基板12の上面には樹脂部16が形成されている。ガラス基板12と樹脂部16との間には絞り18が形成されている。樹脂部16は凸レンズ部16aとその周辺部の非レンズ部16bとから構成され、これらが一体成形されている。凸レンズ部16aは表面が非球面形状を呈しており、正の屈折力(パワー)を有している。絞り18は非レンズ部16bで覆われている。 The first lens group 8 has a glass substrate 12. A resin portion 16 is formed on the upper surface of the glass substrate 12. A diaphragm 18 is formed between the glass substrate 12 and the resin portion 16. The resin portion 16 is composed of a convex lens portion 16a and a non-lens portion 16b at the periphery thereof, and these are integrally molded. The convex lens portion 16a has an aspheric surface and has a positive refractive power. The diaphragm 18 is covered with a non-lens portion 16b.
 ガラス基板12の下面には樹脂部22が形成されている。樹脂部22は凹レンズ部22aとその周辺部の非レンズ部22bとから構成され、これらが一体成形されている。凹レンズ部22aは表面が非球面形状を呈しており、負の屈折力(パワー)を有している。 A resin portion 22 is formed on the lower surface of the glass substrate 12. The resin portion 22 is composed of a concave lens portion 22a and a non-lens portion 22b in the periphery thereof, and these are integrally molded. The concave lens portion 22a has an aspherical surface and has negative refractive power (power).
 第1レンズ群8はガラス基板12、樹脂部16、22、絞り18により構成されており、全体として正の屈折力(パワー)を有している。 The first lens group 8 is composed of a glass substrate 12, resin portions 16 and 22, and a diaphragm 18, and has a positive refractive power as a whole.
 第2レンズ群10はガラス基板30を有している。ガラス基板30の上面には樹脂部32が形成されている。樹脂部32は凹レンズ部32aとその周辺部の非レンズ部32bとから構成され、これらが一体成形されている。凹レンズ部32aは表面が非球面形状を呈しており、負の屈折力(パワー)を有している。 The second lens group 10 has a glass substrate 30. A resin portion 32 is formed on the upper surface of the glass substrate 30. The resin portion 32 is composed of a concave lens portion 32a and a non-lens portion 32b in the periphery thereof, and these are integrally molded. The concave lens portion 32a has an aspheric surface, and has negative refractive power.
 ガラス基板30の下面には樹脂部34が形成されている。樹脂部34は凸レンズ部34aとその周辺部の非レンズ部34bとから構成され、これらが一体成形されている。凸レンズ部34aは表面が非球面形状を呈しており、正の屈折力(パワー)を有している。 A resin portion 34 is formed on the lower surface of the glass substrate 30. The resin portion 34 is composed of a convex lens portion 34a and a non-lens portion 34b in the periphery thereof, and these are integrally molded. The convex lens portion 34a has an aspheric surface and has a positive refractive power.
 第2レンズ群10はガラス基板30、樹脂部32、34により構成されており、全体として負の屈折力(パワー)を有している。 The second lens group 10 includes a glass substrate 30 and resin portions 32 and 34, and has a negative refractive power (power) as a whole.
 なお、上記の説明では、第2レンズ部と第3レンズ部とが負のパワーを持つとしたが、少なくとも一方のレンズ部が負のパワーを持つ構成としてもよい。 In the above description, the second lens unit and the third lens unit have negative power, but at least one lens unit may have negative power.
 第1レンズ群8の樹脂部16、22と第2レンズ群10の樹脂部32、34とは公知の光硬化性樹脂から構成されている。当該光硬化性樹脂としては、例えば下記に示すようなアクリル樹脂、アリルエステル樹脂、エポキシ系樹脂などが使用可能である。 The resin parts 16 and 22 of the first lens group 8 and the resin parts 32 and 34 of the second lens group 10 are made of a known photocurable resin. As the photocurable resin, for example, acrylic resins, allyl ester resins, epoxy resins and the like as shown below can be used.
 アクリル樹脂、アリルエステル樹脂を使用する場合にはラジカル重合により反応硬化させることができ、エポキシ樹脂を使用する場合にはカチオン重合により反応硬化させることができる。 When acrylic resin or allyl ester resin is used, it can be cured by reaction by radical polymerization, and when epoxy resin is used, it can be cured by reaction by cationic polymerization.
 第1、第2レンズ群8、10の各部位を構成する樹脂の種類は互いに同じでもよいし、異なってもいてもよい。樹脂の詳細は下記(1)~(3)の通りである。 The types of resins constituting each part of the first and second lens groups 8 and 10 may be the same or different. Details of the resin are as follows (1) to (3).
 (1)アクリル樹脂
 重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記(メタ)アクリレートを使用することができる。エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
(1) Acrylic resin The (meth) acrylate used for the polymerization reaction is not particularly limited, and the following (meth) acrylate produced by a general production method can be used. Ester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, ether (meth) acrylate, alkyl (meth) acrylate, alkylene (meth) acrylate, (meth) acrylate having an aromatic ring, alicyclic structure The (meth) acrylate which has is mentioned. One or more of these can be used.
 特に脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また特にアダマンタン骨格を持つと好ましい。例えば、2-アルキル-2-アダマンチル(メタ)アクリレート(特開2002-193883号公報)、アダマンチルジ(メタ)アクリレート(特開昭57-500785号公報)、アダマンチルジカルボン酸ジアリル(特開昭60-100537号公報)、パーフルオロアダマンチルアクリル酸エステル(特開2004-123687号公報)、新中村化学製 2-メチル-2-アダマンチルメタクリレート、1,3-アダマンタンジオールジアクリレート、1,3,5-アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000-119220号公報)、3,3’-ジアルコキシカルボニル-1,1’ビアダマンタン(特開2001-253835号公報)、1,1’-ビアダマンタン化合物(米国特許第3342880号明細書)、テトラアダマンタン(特開2006-169177号公報)、2-アルキル-2-ヒドロキシアダマンタン、2-アルキレンアダマンタン、1,3-アダマンタンジカルボン酸ジ-tert-ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001-322950号公報)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11-35522号公報、特開平10-130371号公報)等が挙げられる。 (Meth) acrylate having an alicyclic structure is particularly preferable, and may be an alicyclic structure containing an oxygen atom or a nitrogen atom. For example, cyclohexyl (meth) acrylate, cyclopentyl (meth) acrylate, cycloheptyl (meth) acrylate, bicycloheptyl (meth) acrylate, tricyclodecyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, isoboronyl (meth) ) Acrylate, di (meth) acrylate of hydrogenated bisphenols, and the like. In particular, it preferably has an adamantane skeleton. For example, 2-alkyl-2-adamantyl (meth) acrylate (Japanese Patent Laid-Open No. 2002-193883), adamantyl di (meth) acrylate (Japanese Patent Laid-Open No. 57-5000785), diallyl adamantyl dicarboxylate (Japanese Patent Laid-Open No. 60-60) No. 100537), perfluoroadamantyl acrylate (JP 2004-123687), Shin-Nakamura Chemical Co., Ltd. 2-methyl-2-adamantyl methacrylate, 1,3-adamantanediol diacrylate, 1,3,5-adamantane Triol triacrylate, unsaturated carboxylic acid adamantyl ester (JP 2000-119220 A), 3,3′-dialkoxycarbonyl-1,1 ′ biadamantane (JP 2001-253835 A), 1,1′- Biadamantane compounds U.S. Pat. No. 3,342,880), tetraadamantane (Japanese Patent Laid-Open No. 2006-169177), 2-alkyl-2-hydroxyadamantane, 2-alkyleneadamantane, 1,3-adamantane dicarboxylate di-tert-butyl and the like Curable resins having an adamantane skeleton having no ring (Japanese Patent Laid-Open No. 2001-322950), bis (hydroxyphenyl) adamantanes and bis (glycidyloxyphenyl) adamantanes (Japanese Patent Laid-Open Nos. 11-35522 and 10-130371) No. gazette).
 また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n-ブチルアクリレート、n-ブチルメタアクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert-ブチルアクリレート、tert-ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート、などが挙げられる。 It is also possible to contain other reactive monomers. In the case of (meth) acrylate, for example, methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate Tert-butyl methacrylate, phenyl acrylate, phenyl methacrylate, benzyl acrylate, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, and the like.
 多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。 Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) ) Acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, tripentaerythritol octa (meth) acrylate, tripentaerythritol septa (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripenta Erythritol penta (meth) acrylate, tripentaerythritol tetra (meth) acrylate, tripentaerythritol And tri (meth) acrylate.
 (2)アリルエステル樹脂
 アリル基を持ちラジカル重合による硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
(2) Allyl ester resin A resin having an allyl group and cured by radical polymerization. Examples thereof include the following, but are not particularly limited to the following.
 芳香環を含まない臭素含有(メタ)アリルエステル(特開2003-66201号公報)、アリル(メタ)アクリレート(特開平5-286896号公報)、アリルエステル樹脂(特開平5-286896号公報、特開2003-66201号公報)、アクリル酸エステルとエポキシ基含有不飽和化合物の共重合化合物(特開2003-128725号公報)、アクリレート化合物(特開2003-147072号公報)、アクリルエステル化合物(特開2005-2064号公報)等が挙げられる。 Bromine-containing (meth) allyl ester not containing an aromatic ring (Japanese Patent Laid-Open No. 2003-66201), allyl (meth) acrylate (Japanese Patent Laid-Open No. 5-286896), allyl ester resin (Japanese Patent Laid-Open No. 5-286896), No. 2003-66201), a copolymer compound of an acrylate ester and an epoxy group-containing unsaturated compound (JP-A 2003-128725), an acrylate compound (JP-A 2003-147072), an acrylic ester compound (JP-A No. 2005-2064).
 (3)エポキシ樹脂
 エポキシ樹脂としては、エポキシ基を持ち光又は熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物やカチオン発生剤等を用いることができる。エポキシ樹脂は硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
(3) Epoxy resin The epoxy resin is not particularly limited as long as it has an epoxy group and is polymerized and cured by light or heat, and an acid anhydride, a cation generator, or the like can be used as a curing initiator. Epoxy resin is preferable in that it has a low cure shrinkage and can be a lens with excellent molding accuracy.
 エポキシの種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル等を挙げることができる。 Examples of the epoxy include novolak phenol type epoxy resin, biphenyl type epoxy resin, and dicyclopentadiene type epoxy resin. Examples include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2′-bis (4-glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl Cyclohexene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 -Cyclopropanedicarboxylic acid bisglycidyl ester and the like.
 硬化剤は硬化性樹脂材料を構成する上で使用されるものであり、特に限定はない。また、本発明において、硬化性樹脂材料と、添加剤を添加した後の光学材料の透過率を比較する場合、硬化剤は添加剤には含まれないものとする。硬化剤としては、酸無水物硬化剤やフェノール硬化剤等を好ましく使用することができる。酸無水物硬化剤の具体例としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、あるいは3-メチル-ヘキサヒドロ無水フタル酸と4-メチル-ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸等を挙げることができる。 The curing agent is used for constituting the curable resin material and is not particularly limited. Moreover, in this invention, when comparing the transmittance | permeability of the curable resin material and the optical material after adding an additive, a hardening | curing agent shall not be contained in an additive. As the curing agent, an acid anhydride curing agent, a phenol curing agent, or the like can be preferably used. Specific examples of acid anhydride curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride Examples thereof include an acid, a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, and methyl nadic anhydride.
 また、必要に応じて硬化促進剤が含有される。硬化促進剤としては、硬化性が良好で、着色がなく、熱硬化性樹脂の透明性を損なわないものであれば、特に限定されるものではないが、例えば、2-エチル-4-メチルイミダゾール(2E4MZ)等のイミダゾール類、3級アミン、4級アンモニウム塩、ジアザビシクロウンデセン等の双環式アミジン類とその誘導体、ホスフィン、ホスホニウム塩等を用いることができ、これらを1種、あるいは二種以上を混合して用いてもよい。 Moreover, a curing accelerator is contained as necessary. The curing accelerator is not particularly limited as long as it has good curability, is not colored, and does not impair the transparency of the thermosetting resin. For example, 2-ethyl-4-methylimidazole is not limited. Imidazoles such as (2E4MZ), tertiary amines, quaternary ammonium salts, bicyclic amidines such as diazabicycloundecene and their derivatives, phosphines, phosphonium salts, etc. can be used, Two or more kinds may be mixed and used.
 撮像用レンズ2では、第1レンズ群8の非レンズ部22bと第2レンズ群10の非レンズ部32bとの間に接着剤が塗布され、第1レンズ群8と第2レンズ群10とが接着されている。非レンズ部22b、32bは凹レンズ部22a、32aのフランジ部に相当している。 In the imaging lens 2, an adhesive is applied between the non-lens portion 22 b of the first lens group 8 and the non-lens portion 32 b of the second lens group 10, and the first lens group 8 and the second lens group 10 are connected. It is glued. The non-lens portions 22b and 32b correspond to the flange portions of the concave lens portions 22a and 32a.
 本実施の形態においては、非レンズ部22bと非レンズ部32bとが接着剤を介して直接接着されているが、樹脂部22と樹脂部32との間に別体のスペーサを設け、当該スペーサを介して接着してもよい。 In the present embodiment, the non-lens portion 22b and the non-lens portion 32b are directly bonded via an adhesive, but a separate spacer is provided between the resin portion 22 and the resin portion 32, and the spacer You may adhere | attach through.
 撮像用レンズ2では、凸レンズ部16a、凹レンズ部22a、凹レンズ部32a、凸レンズ部34aは各表面が非球面形状を呈しており、光軸が一致している。特に撮像用レンズ2では、第1レンズ群8の凸レンズ部16aが物体側に配置され、第2レンズ群10の凸レンズ部34aが像側に配置されている。 In the imaging lens 2, the convex lens portion 16a, the concave lens portion 22a, the concave lens portion 32a, and the convex lens portion 34a have aspherical surfaces, and the optical axes coincide with each other. In particular, in the imaging lens 2, the convex lens portion 16a of the first lens group 8 is disposed on the object side, and the convex lens portion 34a of the second lens group 10 is disposed on the image side.
 物体側から像側に向けて、凸レンズ部16a(第1レンズ部)が第1レンズ群8の物体側光学面である「S1面」を、凹レンズ部22a(第2レンズ部)が第1レンズ群8の像側光学面である「S2面」を、凹レンズ部32a(第3レンズ部)が第2レンズ群10の物体側光学面である「S3面」を、凸レンズ部34a(第4レンズ部)が第2レンズ群10の像側光学面である「S4面」をそれぞれ構成している。 From the object side to the image side, the convex lens portion 16a (first lens portion) is the “S1 surface” that is the object-side optical surface of the first lens group 8, and the concave lens portion 22a (second lens portion) is the first lens. The “S2 surface” that is the image side optical surface of the group 8 is used, and the “S3 surface” that is the object side optical surface of the second lens group 10 is the “S3 surface” that is the concave lens portion 32a (the fourth lens). Part) constitutes the “S4 surface” which is the image side optical surface of the second lens group 10.
 続いて、撮像装置1の製造方法(撮像用レンズ2の製造方法を含む。)について簡単に説明する。 Subsequently, a method for manufacturing the imaging device 1 (including a method for manufacturing the imaging lens 2) will be briefly described.
 始めに、ガラス基板12に対し、例えば遮光性フォトレジストを塗布してこれを所定形状にパターニングし、複数の絞り18を形成する。遮光性フォトレジストとしては、カーボンブラックを混入させたフォトレジストが使用可能である。 First, for example, a light-shielding photoresist is applied to the glass substrate 12 and patterned into a predetermined shape to form a plurality of apertures 18. As the light shielding photoresist, a photoresist mixed with carbon black can be used.
 その後、光硬化性樹脂を成形型に滴下し、当該成形型とウエハ状のガラス基板12とのうち一方を他方に押圧して成形型とガラス基板12との間に光硬化性樹脂を充填し、光照射して光硬化性樹脂を硬化させる。その結果、ガラス基板12に複数の凸レンズ部16aが形成される。 Thereafter, a photocurable resin is dropped on the mold, and one of the mold and the wafer-shaped glass substrate 12 is pressed against the other to fill the space between the mold and the glass substrate 12 with the photocurable resin. The photocurable resin is cured by light irradiation. As a result, a plurality of convex lens portions 16a are formed on the glass substrate 12.
 次いで、ガラス基板12を裏返し、上記と同様にしてガラス基板12に複数の凹レンズ部22aを形成する。 Next, the glass substrate 12 is turned over, and a plurality of concave lens portions 22a are formed on the glass substrate 12 in the same manner as described above.
 IRカットコート14、20を形成する場合は、絞り18を形成する前に、公知の真空蒸着法やスパッタ、CVD(Chemical Vapor Deposition)法などを使用して、ガラス基板12の表裏両面に対しそれぞれIRカットコート14、20を形成する(図2参照)。 When forming the IR cut coats 14 and 20, before forming the aperture 18, a known vacuum deposition method, sputtering, CVD (Chemical Vapor Deposition) method or the like is used for each of the front and back surfaces of the glass substrate 12. IR cut coats 14 and 20 are formed (see FIG. 2).
 その後、ガラス基板12に複数の凸レンズ部16a、凹レンズ部22aを形成したのと同様にして、ガラス基板30にも複数の凹レンズ部32a、凸レンズ部34aを形成する。凸レンズ部34aを形成する場合には、無機粒子を含有する光硬化性樹脂を用いる。 Thereafter, a plurality of concave lens portions 32a and convex lens portions 34a are formed on the glass substrate 30 in the same manner as the plurality of convex lens portions 16a and concave lens portions 22a are formed on the glass substrate 12. In the case of forming the convex lens portion 34a, a photocurable resin containing inorganic particles is used.
 続いて、樹脂部34上に反射防止膜36を形成する。真空蒸着装置内に第2レンズ群10(反射防止膜36がない状態の第2レンズ群10)を装着し、装置内の圧力を所定圧力(例えば2×10-3Pa)まで減圧するとともに、真空蒸着装置上部のヒータより第2レンズ群10を所定温度(例えば240℃)の温度になるまで加熱する。 Subsequently, an antireflection film 36 is formed on the resin portion 34. The second lens group 10 (second lens group 10 without the antireflection film 36) is mounted in the vacuum deposition apparatus, and the pressure in the apparatus is reduced to a predetermined pressure (for example, 2 × 10 −3 Pa), The second lens group 10 is heated by a heater at the upper part of the vacuum evaporation apparatus until the temperature reaches a predetermined temperature (for example, 240 ° C.).
 その後、第1層36aを構成する蒸着源を用いて第1層36aを形成する。この場合、好ましくは、成膜温度を、リフロー処理で溶融しようとする導電性ペーストの溶融温度に対し-40~+40℃の範囲内で保持する。 Thereafter, the first layer 36a is formed by using a vapor deposition source constituting the first layer 36a. In this case, the film forming temperature is preferably kept within a range of −40 to + 40 ° C. with respect to the melting temperature of the conductive paste to be melted by the reflow process.
 例えば、第1層36aとして(Ta+5%TiO)膜を形成する場合には、蒸発源としてオプトラン社製OA600を用い、電子銃加熱により当該蒸着源を蒸発させればよい。蒸着中は、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。リフロー処理で溶融しようとする導電性ペーストの溶融温度が例えば240℃である場合には、成膜温度(蒸着装置内の温度)を200~280℃の範囲内で保持する。 For example, when a (Ta 2 O 5 + 5% TiO 2 ) film is formed as the first layer 36a, OA600 manufactured by Optran Co., Ltd. may be used as the evaporation source, and the evaporation source may be evaporated by electron gun heating. During vapor deposition, it is preferable to form a film while introducing O 2 gas up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus and controlling the vapor deposition rate at 5 Å / sec. When the melting temperature of the conductive paste to be melted by the reflow process is 240 ° C., for example, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within the range of 200 to 280 ° C.
 その後、第1層36aに続けて、第2層36bを構成する蒸着源を用いて第2層36bを形成する。この場合も、好ましくは、第1層36aを形成する場合と同様に、成膜温度を、リフロー処理で溶融しようとする導電性ペーストの溶融温度に対し-40~+40℃の範囲内で保持する。 Then, following the first layer 36a, the second layer 36b is formed using a vapor deposition source constituting the second layer 36b. Also in this case, preferably, as in the case of forming the first layer 36a, the film forming temperature is kept within the range of −40 to + 40 ° C. with respect to the melting temperature of the conductive paste to be melted by the reflow process. .
 例えば、第2層36bとして、SiO膜を形成する場合には、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜するのがよい。リフロー処理で溶融しようとする導電性ペーストの溶融温度が例えば240℃である場合には、成膜温度(蒸着装置内の温度)を200~280℃の範囲内で保持する。 For example, when an SiO 2 film is formed as the second layer 36b, O 2 gas is introduced up to a pressure of 1.0 × 10 −2 Pa inside the vacuum vapor deposition apparatus, and the vapor deposition rate is set to 5 Å / sec. It is better to deposit while controlling. When the melting temperature of the conductive paste to be melted by the reflow process is 240 ° C., for example, the film forming temperature (temperature in the vapor deposition apparatus) is maintained within the range of 200 to 280 ° C.
 その後、非レンズ部22b、32bのうち少なくとも一方に接着剤を塗布して、レンズ群8、10を互いに接着し、ウエハレンズ積層体50を製造する(図3参照)。 Thereafter, an adhesive is applied to at least one of the non-lens portions 22b and 32b, and the lens groups 8 and 10 are bonded to each other to manufacture the wafer lens laminate 50 (see FIG. 3).
 最後に、ダイサーなどを使用して、図3に示す通り、1組の凸レンズ部16a、凹レンズ部22a、凹レンズ部32a、凸レンズ部34aを一単位として、その組ごとにウエハレンズ積層体50をダイシングライン60で切断(ダイシング)して断片化する。その結果、複数の撮像用レンズ2が製造される。 Finally, using a dicer or the like, as shown in FIG. 3, a set of convex lens portion 16a, concave lens portion 22a, concave lens portion 32a, and convex lens portion 34a is taken as a unit, and wafer lens laminate 50 is diced for each set. Cut (dicing) at line 60 and fragment. As a result, a plurality of imaging lenses 2 are manufactured.
 樹脂部16、22、32、34をダイシングする場合、例えば、砥粒による切断でエンドレス刃(回転刃)を用いるダイサーを使用し、エンドレス刃の回転数を3~7mm/secとすることが好ましい。 When dicing the resin parts 16, 22, 32, 34, for example, it is preferable to use a dicer that uses an endless blade (rotary blade) by cutting with abrasive grains, and the rotation speed of the endless blade is 3 to 7 mm / sec. .
 樹脂部16、22、32、34をダイシングする場合、物体側の樹脂部16から像側の樹脂部34に向けて切断することが好ましい。ダイシング中は、樹脂部16、22、32、34のダイシング部分で粉塵が舞うため、好ましくはダイシング部分に対し防塵用の純水を流しながら(噴出しながら)切断する。 When dicing the resin parts 16, 22, 32, 34, it is preferable to cut from the resin part 16 on the object side toward the resin part 34 on the image side. During dicing, the dust flies at the dicing portions of the resin portions 16, 22, 32, and 34. Therefore, the dicing portion is preferably cut while flowing pure water for dust prevention (jetting).
 その後は、ケーシング(図示略)に対し、撮像用レンズ2を組み込んで接着するとともに、光学的ローパスフィルタ4、撮像素子6を設置し、撮像装置1が製造される。 Thereafter, the imaging lens 2 is assembled and bonded to the casing (not shown), and the optical low-pass filter 4 and the imaging element 6 are installed, whereby the imaging device 1 is manufactured.
 本実施の形態においては、ダイシングにより撮像用レンズ2を作製した後に、光学的ローパスフィルタ4や撮像素子6を設置する形態としたが、ウエハレンズ積層体50と複数の撮像素子6が設けられた基板を積層した後にダイシングすることで、撮像装置1を得ることも可能である。 In the present embodiment, the optical low-pass filter 4 and the image sensor 6 are installed after the imaging lens 2 is manufactured by dicing. However, the wafer lens stack 50 and the plurality of image sensors 6 are provided. It is also possible to obtain the imaging device 1 by dicing after stacking the substrates.
 電子機器の製造方法の一例として、撮像装置1と他の電子部品とをプリント配線基板に実装する場合には、プリント配線基板上にあらかじめ半田を配置し、そこへ撮像装置1と電子部品とを配置してからIRリフロー炉に投入・加熱して半田を溶融させ、その後冷却することにより、撮像装置1と電子部品とをプリント配線基板に同時に実装することができる。 As an example of a method for manufacturing an electronic device, when the imaging device 1 and other electronic components are mounted on a printed wiring board, solder is placed on the printed wiring board in advance, and the imaging device 1 and the electronic component are placed there. By placing and heating in an IR reflow furnace after placement, the solder is melted and then cooled, so that the imaging device 1 and the electronic component can be simultaneously mounted on the printed wiring board.
 図1中拡大部に示す通り、本実施の形態においては、樹脂部34の表面に反射防止膜36が形成されている。ここでは、樹脂部34の表面にのみ反射防止膜36が設けられているが、樹脂部16、22、32、34全ての面に設けられていてもよい。 As shown in the enlarged portion in FIG. 1, in the present embodiment, an antireflection film 36 is formed on the surface of the resin portion 34. Here, the antireflection film 36 is provided only on the surface of the resin portion 34, but may be provided on all surfaces of the resin portions 16, 22, 32, 34.
 本発明の目的の一つである撮像素子6におけるゴーストの発生を抑制する意味では、反射防止膜36は樹脂部34の表面に設けられることが効果的であり、反射防止膜36と樹脂部34との界面でのクラックの発生等の問題を抑制するために、無機粒子が含有された樹脂部34のみに反射防止膜36を設けることが好ましい。 The antireflection film 36 is effectively provided on the surface of the resin portion 34 in order to suppress the occurrence of ghost in the image pickup device 6 which is one of the objects of the present invention, and the antireflection film 36 and the resin portion 34 are effective. It is preferable to provide the antireflection film 36 only on the resin part 34 containing inorganic particles in order to suppress problems such as the generation of cracks at the interface with the resin.
 反射防止膜36は2層構造を有している。樹脂部34に対し直接第1層36aが形成されており、その上に第2層36bが形成されている。 The antireflection film 36 has a two-layer structure. A first layer 36a is formed directly on the resin portion 34, and a second layer 36b is formed thereon.
 第1層36aは屈折率1.7以上の高屈折率材料から構成された層であり、好ましくはTa,TaとTiOとの混合物、ZrO,ZrOとTiOとの混合物のいずれかで構成されている。第1層36aはTiO,Nb,HfOで構成されてもよい。 The first layer 36a is a layer made of a high refractive index material having a refractive index of 1.7 or more, and is preferably a mixture of Ta 2 O 5 , Ta 2 O 5 and TiO 2 , ZrO 2 , ZrO 2 and TiO 2. And is composed of any mixture. The first layer 36a may be composed of TiO 2 , Nb 2 O 3 , and HfO 2 .
 第2層36bは屈折率1.7未満の低屈折率材料から構成された層であり、好ましくはSiOから構成されている。 The second layer 36b is a layer comprised of a low refractive index material is less than the refractive index of 1.7, preferably composed of SiO 2.
 反射防止膜36は第1層36a、第2層36bがともに蒸着等の手法により形成されており、好ましくは、第1層36a、第2層36bは、その成膜温度がリフロー処理に供される半田等の導電性ペーストの溶融温度に対し-40~+40℃(好ましくは-20~+20℃)の範囲に保持されながら、形成されている。 The antireflection film 36 has both the first layer 36a and the second layer 36b formed by a technique such as vapor deposition. Preferably, the film formation temperatures of the first layer 36a and the second layer 36b are subjected to a reflow process. It is formed while being kept in the range of −40 to + 40 ° C. (preferably −20 to + 20 ° C.) with respect to the melting temperature of the conductive paste such as solder.
 撮像装置1では、第1層36a、第2層36bの上に更に第1層36a、第2層36bを交互に積層し、反射防止膜36を全体で2~7層構造としてもよい。 In the imaging device 1, the first layer 36a and the second layer 36b may be alternately stacked on the first layer 36a and the second layer 36b, and the antireflection film 36 may have a 2-7 layer structure as a whole.
 この場合、樹脂部34に直接接触する層は樹脂の種類に応じて、高屈折率材料の層(第1層36a)としてもよいし、低屈折率材料の層(第2層36b)としてもよい。ここでは樹脂部34に直接接触する層が高屈折率材料の層となっている。 In this case, the layer in direct contact with the resin portion 34 may be a high refractive index material layer (first layer 36a) or a low refractive index material layer (second layer 36b) depending on the type of resin. Good. Here, the layer in direct contact with the resin portion 34 is a layer of a high refractive index material.
 本実施形態においては、4つの樹脂部16、22、32、34のうち、最も像側の樹脂部34に無機粒子を含有する光硬化性樹脂が用いられている。 In the present embodiment, among the four resin portions 16, 22, 32, 34, a photocurable resin containing inorganic particles is used in the resin portion 34 closest to the image side.
 無機粒子は、樹脂部34だけではなく、樹脂部16、22、32に含有させてもよい。しかし、樹脂部22、32、34のみに無機粒子を含有させることが好ましく、樹脂部32、34のみに無機粒子を含有させることが更に好ましく、樹脂部34のみに無機粒子を含有させることが最も好ましい。 Inorganic particles may be contained not only in the resin part 34 but also in the resin parts 16, 22, 32. However, it is preferable to include inorganic particles only in the resin parts 22, 32, 34, more preferably to include inorganic particles only in the resin parts 32, 34, and most preferable to include inorganic particles only in the resin part 34. preferable.
 その理由は次の通りである。すなわち、上述のように、撮像用レンズ2を製造する際には、ウエハレンズ積層体50をダイシングにより切断する必要がある。ダイシングの際には、切断部分付近で粉塵が発生するため、防塵用の純水を流しながら切断することが好ましい。その際、樹脂部16、22、32、34に無機粒子を含有させると、無機粒子により吸水性が増大する場合がある。撮像用レンズ2を製造する際には、ウエハレンズ積層体50の状態で撮像素子(群)と貼り合せられた状態でダイシングされる場合があるため、物体側(樹脂部16側)からダイシングを行いつつ、樹脂部16側から純水が噴射されるため、物体側の樹脂部の方が長時間純水に晒されることとなる。無機粒子を含有する樹脂が長時間純水に晒された場合は、吸水による膨張が発生し、ガラス基板12、30からの剥離等の問題が発生することも考えられるため、できる限り物体側の樹脂部には無機粒子を含有しない樹脂を用いることが好ましい。 The reason is as follows. That is, as described above, when the imaging lens 2 is manufactured, the wafer lens stack 50 needs to be cut by dicing. During dicing, dust is generated in the vicinity of the cut portion, and therefore it is preferable to cut while flowing pure water for dust prevention. At that time, if the resin parts 16, 22, 32, and 34 contain inorganic particles, the water absorption may increase due to the inorganic particles. When the imaging lens 2 is manufactured, dicing may be performed in a state of being bonded to the imaging element (group) in the state of the wafer lens stack 50, and therefore dicing is performed from the object side (resin portion 16 side). Since pure water is jetted from the resin part 16 side, the resin part on the object side is exposed to pure water for a longer time. When a resin containing inorganic particles is exposed to pure water for a long time, expansion due to water absorption occurs, and problems such as peeling from the glass substrates 12 and 30 may occur. It is preferable to use a resin that does not contain inorganic particles in the resin portion.
 また、無機粒子を樹脂に含有させると、靭性が減少、脆性が増大する場合があり、ダイシング工程の過程で割れやすくなるため、できるだけ光学性能上不要なレンズには無機粒子を含有させないことが好ましい。 In addition, when inorganic particles are contained in the resin, the toughness may be decreased and brittleness may be increased, and it is easy to break in the course of the dicing process. .
 また、樹脂部22、32は凹レンズとなる形態が好ましく、その場合レンズ部(凹レンズ部22a、32a)よりも非レンズ部(非レンズ部22b、32b)の方が厚みが増大するため、切断力を長く受け続ける可能性が高く、更に割れやすくなる。 In addition, the resin portions 22 and 32 are preferably concave lenses. In this case, the non-lens portions ( non-lens portions 22b and 32b) are thicker than the lens portions ( concave lens portions 22a and 32a). There is a high possibility that it will continue to be received for a long time, and it will be easier to break.
 従って、樹脂部34のみに無機粒子を含有する樹脂が用いられることが好ましい。少なくとも樹脂部34には、撮像素子6へ反射光が入射することによるゴーストの発生を抑制するために反射防止膜36が設けられるため、反射防止膜と樹脂部との間の応力によるクラック発生を抑制するために、樹脂部34は、無機粒子を含有する樹脂を用いることが必要とされる。 Therefore, it is preferable to use a resin containing inorganic particles only in the resin portion 34. Since at least the resin portion 34 is provided with an antireflection film 36 in order to suppress the occurrence of ghost caused by the reflected light entering the image sensor 6, cracks due to stress between the antireflection film and the resin portion are generated. In order to suppress, the resin part 34 needs to use resin containing inorganic particles.
 以上の本実施形態によれば、撮像用レンズ1の樹脂部16、22、32、34のうち、最も像側に配置される樹脂部34には無機粒子が含有されているから、樹脂部34は、それ以外の樹脂部16、22、32より、線膨張係数(熱膨張係数)が低くなる。そのため、凸レンズ部34aの樹脂に高温がかかっても、樹脂の膨張や収縮を抑えられ、反射防止膜36にクラックやシワが発生するのを防止することができる。 According to the above embodiment, since the resin part 34 arranged closest to the image among the resin parts 16, 22, 32, 34 of the imaging lens 1 contains inorganic particles, the resin part 34. Has a lower linear expansion coefficient (thermal expansion coefficient) than the other resin parts 16, 22, 32. Therefore, even when the resin of the convex lens portion 34a is subjected to a high temperature, expansion and contraction of the resin can be suppressed, and cracks and wrinkles can be prevented from occurring in the antireflection film 36.
 なお、樹脂部16、22、32、34に含有・分散可能な当該無機粒子としては、光学的に透明な(光透過性を有する)もの、例えば、酸化物粒子、硫化物粒子、セレン化物粒子、テルル化物粒子等が挙げられる。 The inorganic particles that can be contained / dispersed in the resin parts 16, 22, 32, and 34 are optically transparent (having optical transparency), such as oxide particles, sulfide particles, and selenide particles. And telluride particles.
 より具体的には、例えば、酸化ケイ素粒子、酸化アルミ粒子、リン酸アルミ粒子、酸化チタン粒子、酸化亜鉛粒子、硫化亜鉛粒子等を挙げることができ、好ましくは酸化ケイ素粒子(シリカ粒子)、炭酸カルシウム粒子である。これらの粒子は、1種類の無機粒子を用いてもよく、また複数種類の無機粒子を併用してもよい。 More specifically, for example, silicon oxide particles, aluminum oxide particles, aluminum phosphate particles, titanium oxide particles, zinc oxide particles, zinc sulfide particles, etc. can be mentioned, preferably silicon oxide particles (silica particles), carbonic acid Calcium particles. As these particles, one kind of inorganic particles may be used, or a plurality of kinds of inorganic particles may be used in combination.
 光硬化性樹脂に対する無機粒子の混合比(複合材料に占める無機粒子の体積比)は1~50体積%であり、好ましくは10~40体積%であり、更に好ましくは20~30体積%である。 The mixing ratio of inorganic particles to the photocurable resin (volume ratio of inorganic particles in the composite material) is 1 to 50% by volume, preferably 10 to 40% by volume, more preferably 20 to 30% by volume. .
 無機粒子の形状は、球状、楕円状、扁平状、ロッド状などいずれの形状であっても良いが、特に球状のときにレンズ機能を有効に発揮できる。 The shape of the inorganic particles may be any shape such as a spherical shape, an elliptical shape, a flat shape, or a rod shape, but the lens function can be effectively exhibited particularly when it is spherical.
 粒子径の分布に関しても特に制限されるものではないが、レンズ機能をより効率よく発揮させるためには、広範な分布を有するものよりも、比較的狭い分布を持つものが好適に用いられる。 The particle size distribution is not particularly limited, but in order to exhibit the lens function more efficiently, those having a relatively narrow distribution are preferably used rather than those having a wide distribution.
 無機粒子として平均粒子径が1~30nmであるものが使用される。無機粒子は平均粒子径が好ましくは1~20nmであり、より好ましくは1~10nmである。平均粒子径が1nm未満であると、無機粒子の分散が困難であるため所望の性能が得られない可能性があり、平均粒子径が30nmを超えると、得られる複合材料が濁るなどして透明性が低下し、光線透過率が70%未満となる可能性がある。 Inorganic particles having an average particle diameter of 1 to 30 nm are used. The inorganic particles preferably have an average particle diameter of 1 to 20 nm, more preferably 1 to 10 nm. If the average particle size is less than 1 nm, it may be difficult to disperse the inorganic particles, so that the desired performance may not be obtained. If the average particle size exceeds 30 nm, the resulting composite material becomes turbid and transparent. The light transmittance may be less than 70%.
 無機粒子の平均粒子径は、無機粒子体積を球換算した場合の直径を表す。測定粒子個数は、無機粒子の電子顕微鏡写真の粒子を無差別に100個以上選択し、個々の無機粒子の粒径の算術平均を平均粒子径とする。 The average particle diameter of the inorganic particles represents the diameter when the volume of the inorganic particles is converted into a sphere. As for the number of particles to be measured, 100 or more particles of an electron micrograph of inorganic particles are selected indiscriminately, and the arithmetic average of the particle sizes of the individual inorganic particles is defined as the average particle size.
 無機粒子の製造方法は、特に限定されるものではなく、公知のいずれの方法も用いることができる。例えば、金属塩の熱分解、金属塩や金属アルコキシドの加水分解などの方法がよく知られている。金属塩の熱分解としては、金属塩若しくはそれらの溶液を噴霧し、加熱分解することにより得られる。金属塩や金属アルコキシドの加水分解としては、あらかじめ金属塩や金属アルコキシド溶液を作製し、この溶液に水を添加することで、加水分解重合を進行させることにより得られる。 The method for producing the inorganic particles is not particularly limited, and any known method can be used. For example, methods such as thermal decomposition of metal salts and hydrolysis of metal salts and metal alkoxides are well known. The thermal decomposition of the metal salt can be obtained by spraying the metal salt or a solution thereof and thermally decomposing it. The hydrolysis of the metal salt or metal alkoxide can be obtained by preparing a metal salt or metal alkoxide solution in advance and adding water to the solution to advance hydrolysis polymerization.
 無機粒子は表面に表面処理が施されていることが好ましい。表面処理する方法は、特に限定されるものではなく、公知のいずれの方法も用いることができる。 The surface of inorganic particles is preferably surface-treated. The method for surface treatment is not particularly limited, and any known method can be used.
 無機粒子の表面処理に用いる表面処理剤としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラフェノキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、3-メチルフェニルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジフェノキシシラン、トリメチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルフェノキシシラン、シクロペンチルトリメトキシラン、シクロヘキシルトリエトキシシラン、ベンジルジメチルエトキシシラン、オクチルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジクロロシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩及びアミノシラン配合物等が挙げられ、更に、シランに代わってアルミニウム、チタン、ジルコニア等を用いることもでき、その場合は例えば、アルミニウムトリエトキシド、アルミニウムトリイソプロキシド等である。 Examples of the surface treatment agent used for the surface treatment of inorganic particles include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetraphenoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, and methyltriethoxy. Silane, methyltriphenoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, 3-methylphenyltrimethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiphenoxysilane, trimethylmethoxysilane, triethylethoxysilane , Triphenylmethoxysilane, triphenylphenoxysilane, cyclopentyltrimethoxysilane, cyclohexyltriethoxysilane, Dildimethylethoxysilane, octyltriethoxysilane, vinyltriacetoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropylmethyldichlorosilane, γ-chloropropylmethyldimethoxysilane, γ- Chloropropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ -Mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-methacryloxypropylto Methoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- Anilinopropyltrimethoxysilane, vinyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane / hydrochloride, aminosilane compound and the like, and in place of silane Aluminum, titanium, zirconia, or the like can also be used, and in this case, for example, aluminum triethoxide, aluminum triisoproxide, or the like.
 また、イソステアリン酸、ステアリン酸、シクロプロパンカルボン酸、シクロヘキサンカルボン酸、シクロペンタンカルボン酸、シクロヘキサンプロピオン酸、オクチル酸、パルミチン酸、ベヘン酸、ウンデシレン酸、オレイン酸、ヘキサヒドロフタル酸などの脂肪酸やそれらの金属塩、更に有機リン酸系表面処理剤のいずれの表面処理剤が使用可能であり、これらを単独、又は二種以上を混合して用いることができる。 Also, fatty acids such as isostearic acid, stearic acid, cyclopropane carboxylic acid, cyclohexane carboxylic acid, cyclopentane carboxylic acid, cyclohexane propionic acid, octylic acid, palmitic acid, behenic acid, undecylenic acid, oleic acid, hexahydrophthalic acid and the like Any surface treatment agent such as a metal salt of the above, or an organic phosphate surface treatment agent can be used, and these can be used alone or in admixture of two or more.
 これらの化合物は、反応速度などの特性が異なり、表面処理の条件などに適した化合物を用いることができる。また、1種類のみを用いても、複数種類を併用してもよい。更に、用いる化合物によって得られる表面処理微粒子の性状は異なることがあり、複合材料を得るにあたって用いる光硬化性樹脂との親和性を、表面処理する際に用いる化合物を選ぶことによって図ることも可能である。 These compounds have different characteristics such as reaction rate, and compounds suitable for surface treatment conditions can be used. Further, only one type may be used or a plurality of types may be used in combination. Furthermore, the properties of the surface-treated fine particles obtained may vary depending on the compound used, and the affinity with the photocurable resin used to obtain the composite material can be achieved by selecting the compound used for the surface treatment. is there.
 表面処理剤の割合は特に限定されるものではないが、表面処理後の無機粒子に対して、好ましくは10~99質量%であり、より好ましくは30~98質量%である。 The ratio of the surface treatment agent is not particularly limited, but is preferably 10 to 99% by mass, more preferably 30 to 98% by mass with respect to the inorganic particles after the surface treatment.
 樹脂部16、22、32、34に無機粒子を含有させる場合、その有機無機複合材料は以下のように調製(作製)すればよい。 When the resin parts 16, 22, 32, and 34 contain inorganic particles, the organic-inorganic composite material may be prepared (produced) as follows.
 有機無機複合材料は、溶融中の光硬化性樹脂に対して、無機粒子を添加・混練することで作製されてもよいし、溶媒に溶解した光硬化性樹脂と無機粒子とを混合してその後有機溶媒を除去することで作製されてもよい。 The organic-inorganic composite material may be prepared by adding and kneading inorganic particles to the molten photocurable resin, or after mixing the photocurable resin and inorganic particles dissolved in a solvent. It may be produced by removing the organic solvent.
 本実施形態では、有機無機複合材料は溶融混練法で作製することが望ましい。光硬化性樹脂を無機粒子の存在下で重合したり、光硬化性樹脂の存在下で無機粒子を作製することも可能であるが、光硬化性樹脂の重合や無機粒子の作製において特殊な条件が必要になるからである。 In this embodiment, it is desirable that the organic-inorganic composite material is produced by a melt-kneading method. Although it is possible to polymerize a photocurable resin in the presence of inorganic particles or to produce inorganic particles in the presence of a photocurable resin, there are special conditions for polymerization of the photocurable resin and preparation of inorganic particles. Because it becomes necessary.
 溶融混練法では、既成の手法で作製した光硬化性樹脂や無機粒子を混合することで有機無機複合材料を作製できるため、通常、安価な有機無機複合材料の作製が可能になる。 In the melt-kneading method, since an organic-inorganic composite material can be prepared by mixing a photocurable resin or inorganic particles prepared by an existing method, it is usually possible to produce an inexpensive organic-inorganic composite material.
 溶融混練において、有機溶剤の使用も可能である。有機溶剤の使用で、溶融混練の温度を下げることができ、光硬化性樹脂の劣化が抑制しやすくなる。この場合、溶融混練後に脱揮を行い、有機無機複合材料中から有機溶剤を除去することが好ましい。 In the melt kneading, an organic solvent can be used. By using an organic solvent, the temperature of melt kneading can be lowered, and deterioration of the photocurable resin can be easily suppressed. In this case, it is preferable to devolatilize after melt-kneading to remove the organic solvent from the organic-inorganic composite material.
 溶融混練に用いることのできる装置としては、ラボプラストミル、ブラベンダー、バンバリーミキサー、ニーダー、ロール等のような密閉式混練装置又はバッチ式混練装置を挙げることができる。また、単軸押出機、二軸押出機等のように連続式の溶融混練装置を用いることもできる。 Examples of the apparatus that can be used for melt kneading include a closed kneading apparatus such as a lab plast mill, a Brabender, a Banbury mixer, a kneader, and a roll, or a batch kneading apparatus. Further, a continuous melt kneader such as a single screw extruder or a twin screw extruder can be used.
 処理後の無機粒子と光硬化性樹脂の混合方法として、具体的な混練機としては、KRCニーダー(栗本鉄工所社製)、ポリラボシステム(HAAKE社製)、ナノコンミキサー(東洋精機製作所社製)、ナウターミキサーブス・コ・ニーダー(Buss社製)、TEM型押し出し機(東芝機械社製)、TEX二軸混練機(日本製鋼所社製)、PCM混練機(池貝鉄工所社製)、三本ロールミル、ミキシングロールミル、ニーダー(井上製作所社製)、ニーデックス(三井鉱山社製)、MS式加圧ニーダー、ニダールーダー(森山製作所社製)、バンバリーミキサー(神戸製鋼所社製)が挙げられる。 As a mixing method of the inorganic particles after the treatment and the photocurable resin, as a specific kneader, KRC kneader (manufactured by Kurimoto Iron Works), polylab system (manufactured by HAAKE), nanocon mixer (Toyo Seiki Seisakusho) ), Nauta Mixer Bus Co. Kneader (Buss), TEM extruder (Toshiba Machine), TEX twin-screw kneader (Nihon Steel Works), PCM kneader (Ikegai Iron Works) ), Three roll mill, mixing roll mill, kneader (manufactured by Inoue Mfg. Co., Ltd.), kneedex (manufactured by Mitsui Mining Co., Ltd.), MS-type pressure kneader, nider ruder (manufactured by Moriyama Mfg. Co., Ltd.), Banbury mixer (manufactured by Kobe Steel) Is mentioned.
 有機無機複合材料の製造方法において、溶融混練を用いる場合、光硬化性樹脂と無機粒子とを一括で添加し混練してもよいし、段階的に分割添加して混練してもよい。この場合、押出機などの溶融混練装置では、段階的に添加する成分をシリンダーの途中から添加することも可能である。 In the method for producing an organic-inorganic composite material, when melt kneading is used, the photocurable resin and the inorganic particles may be added and kneaded all at once, or may be added in stages and kneaded. In this case, in a melt-kneading apparatus such as an extruder, it is possible to add the components to be added step by step from the middle of the cylinder.
 溶融混練による複合化を行う場合、無機粒子は粉体ないし凝集状態のまま添加することが可能であり、液中に分散した状態で添加することも可能である。液中に分散した状態で添加する場合は、混練後に脱揮を行うことが好ましい。 In the case of compounding by melt kneading, the inorganic particles can be added in a powder or agglomerated state, or can be added in a dispersed state in the liquid. When adding in the state disperse | distributed in the liquid, it is preferable to perform devolatilization after kneading | mixing.
 図2の変形例に示す通り、ガラス基板12にはIRカットコート14、20(赤外線遮蔽膜)が形成されてもよい。IRカットコート14、20は赤外線を遮光するための膜である。 As shown in the modification of FIG. 2, IR cut coats 14 and 20 (infrared shielding films) may be formed on the glass substrate 12. The IR cut coats 14 and 20 are films for shielding infrared rays.
 IRカットコート14は低屈折率材料から構成された低屈折率層14aと、高屈折率材料から構成された高屈折率層14bとを、交互に複数積層した交互多層膜である。IRカットコート20も、低屈折率層20aと高屈折率層20bとの交互多層膜である。IRカットコート14、20においては、好ましくは低屈折率層14a、20aがガラス基板12に対し直接接している。 The IR cut coat 14 is an alternating multilayer film in which a plurality of low refractive index layers 14a made of a low refractive index material and high refractive index layers 14b made of a high refractive index material are alternately stacked. The IR cut coat 20 is also an alternating multilayer film of low refractive index layers 20a and high refractive index layers 20b. In the IR cut coats 14 and 20, the low refractive index layers 14 a and 20 a are preferably in direct contact with the glass substrate 12.
 低屈折率層14a、20aを構成する低屈折率材料としてはSiOなどが使用される。他方、高屈折率層14b、20bを構成する高屈折率材料としてはTiO、Ta、Nb、ZrOなどが使用される。IRカットコート14、20は低屈折率層14a、20aが互いに異なる材料で構成されていてもよいし、高屈折率層14b、20bも互いに異なる材料で構成されていてもよい。 As the low refractive index material constituting the low refractive index layers 14a and 20a, SiO 2 or the like is used. On the other hand, TiO 2 , Ta 2 O 5 , Nb 2 O 3 , ZrO 2 or the like is used as the high refractive index material constituting the high refractive index layers 14b and 20b. In the IR cut coats 14 and 20, the low refractive index layers 14a and 20a may be made of different materials, and the high refractive index layers 14b and 20b may be made of different materials.
 IRカットコート14、20は通常10~40層程度で構成され、好ましくは20層ずつで構成されている。IRカットコート14、20のうちいずれか一方があればよいが、ガラス基板12がIRカットコート14、20の応力を受けて撓む可能性があるので、IRカットコート14、20は両方あった方が好ましい。IRカットコート14、20の層数は互いに同じであってもよいし、異なっていてもよい。 The IR cut coats 14 and 20 are usually composed of about 10 to 40 layers, preferably 20 layers each. Either one of the IR cut coats 14 and 20 is sufficient, but since the glass substrate 12 may be bent under the stress of the IR cut coats 14 and 20, both IR cut coats 14 and 20 existed. Is preferred. The number of layers of the IR cut coats 14 and 20 may be the same or different.
 本実施例において使用する記号は下記の通りである。 The symbols used in this example are as follows.
 f :撮像レンズ全系の焦点距離
 fB:バックフォーカス
 F :Fナンバー
 2Y:固体撮像素子の撮像面対角線長
 ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
 EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
 H1:前側主点位置(第1面から前側主点位置までの距離)
 H2:後側主点位置(最終面から後側主点位置までの距離)
 R :曲率半径
 D :軸上面間隔
 Nd:レンズ材料のd線に対する屈折率
 νd:レンズ材料のアッベ数
 本実施例において、非球面の形状は、面の頂点を原点とし光軸方向をX軸とした直交座標系において、頂点曲率をC、円錐定数をK、非球面係数をA4、A6、A8、A10、A12、A14、A16として「数1」で表している。
f: Focal length of the entire imaging lens system fB: Back focus F: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device ENTP: Entrance pupil position (distance from the first surface to the entrance pupil position)
EXTP: exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from the first surface to the front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: spacing between upper surfaces of axis Nd: refractive index of lens material with respect to d-line νd: Abbe number of lens material In this embodiment, the aspherical shape has the vertex of the surface as the origin and the optical axis direction as the X axis In the orthogonal coordinate system, the vertex curvature is C, the conic constant is K, and the aspherical coefficients are A4, A6, A8, A10, A12, A14, and A16, expressed by “Equation 1”.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)サンプルの作製
 基本的には、実施形態中に記載の製造方法に従い、図1と同様の構成を有する撮像用レンズを製造し、これをサンプルとして使用した。
(1) Production of Sample Basically, an imaging lens having the same configuration as that shown in FIG. 1 was produced according to the production method described in the embodiment, and this was used as a sample.
 本撮像用レンズは1/5インチ型、画素ピッチ1.75μm、1600×1200画素の撮像素子に用いられることを想定している。 This imaging lens is assumed to be used for an imaging element of 1/5 inch type, pixel pitch of 1.75 μm, and 1600 × 1200 pixels.
 各樹脂部を構成する樹脂として、エポキシ樹脂(詳しくは水添ビスフェノールA型エポキシ樹脂に対しUV硬化開始剤としてUVI-6992を4質量%添加したもの)を使用した。 As the resin constituting each resin part, an epoxy resin (specifically, 4% by mass of UVI-6992 was added as a UV curing initiator to a hydrogenated bisphenol A type epoxy resin) was used.
 本撮像用レンズのレンズデータを表1に示す。表1中では、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。 Table 1 shows lens data of the imaging lens. In Table 1, a power of 10 (for example, 2.5 × 10 −3 ) is represented by using E (for example, 2.5 × E-3).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上のような撮像用レンズにおいて、各樹脂部に種々に無機粒子を含有させその組合せにより「サンプル1~5」とした(表2参照)。 In the imaging lens as described above, inorganic particles were variously contained in each resin portion, and “samples 1 to 5” were obtained by combinations thereof (see Table 2).
 全てのサンプルにおいて、S4面を構成する最も像側の凸レンズ部には、反射防止膜(Anti Reflector Coat)を形成した。 In all the samples, an antireflection film (Anti-Reflector-Coat) was formed on the most image-side convex lens portion constituting the S4 surface.
 無機粒子としては、シリカ(日本アエロジル社製RX300、粒径7nm)を使用し、当該無機粒子の添加量を樹脂部に対し50質量%とした。 As the inorganic particles, silica (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size: 7 nm) was used, and the amount of the inorganic particles added was 50% by mass with respect to the resin part.
 反射防止膜としては、像側のレンズ群(S4面を構成する樹脂部)に2層の反射防止膜を形成した。 As the antireflection film, a two-layer antireflection film was formed on the lens group on the image side (resin portion constituting the S4 surface).
 始めに、真空蒸着装置内にレンズ群を装着し、装置内の圧力を2×10-3Paまで減圧するとともに、真空蒸着装置上部のヒータよりレンズ群を200℃になるまで加熱した。 First, the lens group was mounted in a vacuum deposition apparatus, the pressure in the apparatus was reduced to 2 × 10 −3 Pa, and the lens group was heated to 200 ° C. by a heater at the top of the vacuum deposition apparatus.
 その後、第1層目の膜として、樹脂部の表面に対し直接20nmの(Ta+5%TiO)膜を形成した。この場合、蒸発源としてオプトラン社製OA600を用い、電子銃加熱により当該蒸着源を蒸発させ、(Ta+5%TiO)膜を形成した。蒸着中は、真空蒸着装置内部の圧力が1.0×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜した。 Thereafter, a 20 nm (Ta 2 O 5 + 5% TiO 2 ) film was formed directly on the surface of the resin portion as the first layer film. In this case, OA600 manufactured by Optran Co., Ltd. was used as the evaporation source, and the evaporation source was evaporated by electron gun heating to form a (Ta 2 O 5 + 5% TiO 2 ) film. During the vapor deposition, the O 2 gas was introduced until the pressure inside the vacuum vapor deposition apparatus reached 1.0 × 10 −2 Pa, and the film was formed while controlling the vapor deposition rate at 5 liters / sec.
 その後、第2層目の膜として、第1層目の膜に続けて110nmのSiO膜を形成した。この場合、真空蒸着装置内部の圧力が1.2×10-2PaまでOガスを導入し、蒸着速度を5Å/secの条件にコントロールしながら成膜した。 Thereafter, as the second layer film, a 110 nm SiO 2 film was formed following the first layer film. In this case, O 2 gas was introduced until the pressure inside the vacuum vapor deposition apparatus was 1.2 × 10 −2 Pa, and the film was formed while controlling the vapor deposition rate at 5 Å / sec.
 表2中、無機粒子を含有させた樹脂部を「P(Particle)」と記載している。 In Table 2, the resin part containing inorganic particles is described as “P (Particle)”.
 (2)サンプルの評価
 (2.1)リフロー後のクラックの有無
 各サンプルに対しIRリフロー処理を想定した耐熱試験を行った。
(2) Evaluation of samples (2.1) Presence or absence of cracks after reflow A heat resistance test assuming IR reflow treatment was performed on each sample.
 耐熱試験では、各サンプルをIR炉に導入して260℃で6分間加熱するという処理を1サイクルとして、これを3サイクル行った。 In the heat resistance test, each sample was introduced into an IR furnace and heated at 260 ° C. for 6 minutes as one cycle, and this was performed for 3 cycles.
 耐熱試験後の反射防止膜の表面の状態(クラックの有無)を光学顕微鏡で観察した。観察結果を表2に示す。表2中、○、△、×の基準は下記の通りである。
「○」…クラックがない。
「△」…1~10本のクラックがある。
「×」…11本以上のクラックがある。
The surface state (presence or absence of cracks) of the antireflection film after the heat test was observed with an optical microscope. The observation results are shown in Table 2. In Table 2, the criteria for ◯, Δ, and X are as follows.
“○”… There are no cracks.
“△”: There are 1 to 10 cracks.
“X”: There are 11 or more cracks.
 (2.2)蒸着条件下でのシワの有無
 各サンプルを、真空蒸着装置の内部に設置・真空引きし、その後200℃で加熱して室温まで冷却した。冷却後の反射防止膜の表面の状態(シワの有無)を光学顕微鏡で観察した。観察結果を表2に示す。表2中、○、×の基準は下記の通りである。
「○」…シワがない。
「×」…シワがある。
(2.2) Presence or absence of wrinkles under vapor deposition conditions Each sample was placed and evacuated inside a vacuum vapor deposition apparatus, and then heated at 200 ° C. to cool to room temperature. The surface state (presence or absence of wrinkles) of the antireflection film after cooling was observed with an optical microscope. The observation results are shown in Table 2. In Table 2, the criteria for ◯ and × are as follows.
“○”… No wrinkles.
“×”… There are wrinkles.
 (2.3)ダイシング後の樹脂部の剥離の有無
 サンプル製造過程中のウエハレンズ積層体(図3参照、1枚のガラス基板の表裏両面に対し1000個ずつレンズ部を形成したウエハレンズを用いる。)をダイシング加工(機械的切断)し、樹脂部の状態(剥離や割れの有無)を観察した。
(2.3) Presence / absence of peeling of resin part after dicing Wafer lens laminated body during sample manufacturing process (see FIG. 3, a wafer lens in which 1000 lens parts are formed on both front and back surfaces of one glass substrate is used. .) Was diced (mechanically cut), and the state of the resin part (existence of peeling or cracking) was observed.
 ダイシング加工では、砥粒による切断でエンドレス刃(回転刃)を用いるダイサーを使用し、エンドレス刃の回転数を3~7mm/secとした。ダイシング加工中は、摩擦熱を防ぐため、エンドレス刃の周辺に純水を流した。 In the dicing process, a dicer using an endless blade (rotating blade) by cutting with abrasive grains was used, and the rotation speed of the endless blade was set to 3 to 7 mm / sec. During dicing, pure water was flowed around the endless blade to prevent frictional heat.
 ダイシング加工後の観察結果を表2に示す。表2中、○、△、×の基準は下記の通りである。
「○」…10%(100個)未満のレンズ部で樹脂部の剥離がある。
「△」…10%以上30%(300個)未満の範囲のレンズ部で樹脂部の剥離がある。
「×」…30%以上のレンズ部で樹脂部の剥離がある。
Table 2 shows the observation results after dicing. In Table 2, the criteria for ◯, Δ, and X are as follows.
“◯”: The resin part is peeled off at less than 10% (100) lens parts.
“Δ”: There is peeling of the resin part in the lens part in the range of 10% or more and less than 30% (300).
“×”: There is peeling of the resin part in the lens part of 30% or more.
 (2.4)ダイシング後の樹脂部の割れの有無
 項目(2.3)と同様のダイシング加工を行い、ダイシング加工後の樹脂部の状態(割れの有無)を観察した。観察結果を表2に示す。表2中、○、△、×の基準は下記の通りである。
「○」…10%(100個)未満のレンズ部で樹脂部の割れがある。
「△」…10%以上30%(300個)未満の範囲のレンズ部で樹脂部の割れがある。
「×」…30%以上のレンズ部で樹脂部の割れがある。
(2.4) Presence / absence of cracking of resin part after dicing The same dicing process as in item (2.3) was performed, and the state of the resin part after dicing process (presence of cracking) was observed. The observation results are shown in Table 2. In Table 2, the criteria for ◯, Δ, and X are as follows.
“◯”: There is a crack in the resin portion at a lens portion of less than 10% (100 pieces).
“Δ”: There is a crack in the resin portion in the lens portion in the range of 10% or more and less than 30% (300 pieces).
“×”: There is a crack in the resin part in the lens part of 30% or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (3)まとめ
 表2に示す通り、S4面を構成する凸レンズ部に無機粒子を含有させないサンプル1(比較例)では反射防止膜にクラックやシワが形成されたのに対し、サンプル2~5ではこのような現象はみられなかった。
(3) Summary As shown in Table 2, cracks and wrinkles were formed in the antireflection film in sample 1 (comparative example) in which the convex lens portion constituting the S4 surface did not contain inorganic particles, whereas in samples 2-5 Such a phenomenon was not observed.
 このことから、S4面を構成する凸レンズ部に無機粒子を含有させることは、反射防止膜のクラックやシワの発生の防止に有用であることがわかる。 From this, it can be seen that the inclusion of inorganic particles in the convex lens portion constituting the S4 surface is useful for preventing the occurrence of cracks and wrinkles in the antireflection film.
 サンプル2~5のなかでも、S1面を構成する凸レンズ部に無機粒子を含有させたサンプル2(比較例)では、ダイシング加工後の樹脂部の剥離や割れが特に顕著であったのに対し、サンプル3~5ではこのような現象は軽減されていた。 Among samples 2 to 5, in sample 2 (comparative example) in which inorganic particles are contained in the convex lens portion constituting the S1 surface, peeling and cracking of the resin portion after dicing were particularly remarkable. In Samples 3 to 5, this phenomenon was reduced.
 このことから、S4面を構成するレンズ部以外のレンズ部に無機粒子を含有させないことは、樹脂部の剥離や割れの防止に有用であることもわかる。 From this, it can also be seen that it is useful to prevent the resin portion from peeling or cracking if the lens portion other than the lens portion constituting the S4 surface does not contain inorganic particles.
 1 撮像装置
 2 撮像用レンズ
 4 光学的ローパスフィルタ
 6 撮像素子
 8、10 レンズ群
 12 ガラス基板
 14 IRカットコート
 14a 低屈折率層
 14b 高屈折率層
 16 樹脂部
 16a 凸レンズ部
 16b 非レンズ部
 18 絞り
 20 IRカットコート
 20a 低屈折率層
 20b 高屈折率層
 22 樹脂部
 22a 凹レンズ部
 22b 非レンズ部
 30 ガラス基板
 32 樹脂部
 32a 凹レンズ部
 32b 非レンズ部
 34 樹脂部
 34a 凸レンズ部
 34b 非レンズ部
 36 反射防止膜
 36a 第1層
 36b 第2層
 40 スペーサ
 42、44 IRカットコート
 50 ウエハレンズ積層体
 60 ダイシングライン
DESCRIPTION OF SYMBOLS 1 Imaging device 2 Imaging lens 4 Optical low-pass filter 6 Imaging element 8, 10 Lens group 12 Glass substrate 14 IR cut coat 14a Low refractive index layer 14b High refractive index layer 16 Resin part 16a Convex lens part 16b Non-lens part 18 Aperture 20 IR cut coat 20a Low refractive index layer 20b High refractive index layer 22 Resin part 22a Concave lens part 22b Non-lens part 30 Glass substrate 32 Resin part 32a Concave lens part 32b Non-lens part 34 Resin part 34a Convex lens part 34b Non-lens part 36 Antireflection film 36a First layer 36b Second layer 40 Spacer 42, 44 IR cut coat 50 Wafer lens laminate 60 Dicing line

Claims (9)

  1.  第1ガラス基板、
     前記第1ガラス基板の物体側表面に配置され、物体側光学面であるS1面を構成する樹脂製の第1レンズ部、及び、
     前記第1ガラス基板の像側表面に配置され、像側光学面であるS2面を構成する樹脂製の第2レンズ部を有する第1レンズ群と、
     第2ガラス基板、
     前記第2ガラス基板の物体側表面に配置され、物体側光学面であるS3面を構成する樹脂製の第3レンズ部、及び、
     前記第2ガラス基板の像側表面に配置され、像側光学面であるS4面を構成する樹脂製の第4レンズ部を有する第2レンズ群とが、物体側から像側にかけてこの順に配置された撮像用レンズであって、
     少なくとも前記S4面には反射防止膜が形成され、
     少なくとも前記第4レンズ部は無機粒子が分散された樹脂により構成されていることを特徴とする撮像用レンズ。
    A first glass substrate,
    A resin-made first lens portion that is disposed on the object-side surface of the first glass substrate and constitutes an S1 surface that is an object-side optical surface; and
    A first lens group that is disposed on the image side surface of the first glass substrate and has a second lens portion made of a resin that constitutes an S2 surface that is an image side optical surface;
    A second glass substrate,
    A resin-made third lens portion that is disposed on the object-side surface of the second glass substrate and forms an S3 surface that is an object-side optical surface; and
    A second lens group that is disposed on the image side surface of the second glass substrate and has a resin-made fourth lens portion that forms the S4 surface that is an image side optical surface is disposed in this order from the object side to the image side. An imaging lens,
    An antireflection film is formed on at least the S4 surface,
    At least the fourth lens portion is made of a resin in which inorganic particles are dispersed.
  2.  請求項1に記載の撮像用レンズにおいて、
     少なくとも前記第1レンズ部は、正のパワーを有し、
     前記第2レンズ部及び第3レンズ部の少なくとも一方は、負のパワーを有することを特徴とする撮像用レンズ。
    The imaging lens according to claim 1,
    At least the first lens unit has a positive power,
    At least one of the second lens unit and the third lens unit has a negative power.
  3.  請求項1又は2に記載の撮像用レンズにおいて、
     前記第2レンズ部及び第3レンズ部は、いずれも負のパワーを有することを特徴とする撮像用レンズ。
    The imaging lens according to claim 1 or 2,
    The second lens unit and the third lens unit both have negative power.
  4.  請求項3に記載の撮像用レンズにおいて、
     前記第2レンズ部及び第3レンズ部は、それぞれ光学面の外周に設けられたフランジ部を有し、
     前記第2レンズ部のフランジ部及び前記第3レンズ部のフランジ部同士が直接接着されていることを特徴とする撮像用レンズ。
    The imaging lens according to claim 3,
    The second lens portion and the third lens portion each have a flange portion provided on the outer periphery of the optical surface,
    The imaging lens, wherein the flange portion of the second lens portion and the flange portion of the third lens portion are directly bonded to each other.
  5.  請求項1~4のいずれか一項に記載の撮像用レンズにおいて、
     前記第1レンズ部は、無機粒子を含有しない樹脂により構成されていることを特徴とする撮像用レンズ。
    The imaging lens according to any one of claims 1 to 4,
    The imaging lens, wherein the first lens portion is made of a resin that does not contain inorganic particles.
  6.  請求項1~5のいずれか一項に記載の撮像用レンズにおいて、
     前記第2レンズ部及び第3レンズ部は、無機粒子を含有しない樹脂により構成されていることを特徴とする撮像用レンズ。
    The imaging lens according to any one of claims 1 to 5,
    The imaging lens, wherein the second lens portion and the third lens portion are made of a resin not containing inorganic particles.
  7.  請求項1~6のいずれか一項に記載の撮像用レンズにおいて、
     前記反射防止膜は、無機粒子が分散された樹脂により構成されたレンズ部にのみ形成されていることを特徴とする撮像用レンズ。
    The imaging lens according to any one of claims 1 to 6,
    The imaging lens, wherein the antireflection film is formed only on a lens portion made of a resin in which inorganic particles are dispersed.
  8.  請求項1~7のいずれか一項に記載の撮像用レンズと、
     撮像素子と、を有し、
     前記第4レンズ部が前記撮像素子と対向するように配置されていることを特徴とする撮像装置。
    An imaging lens according to any one of claims 1 to 7;
    An image sensor;
    An image pickup apparatus, wherein the fourth lens unit is disposed so as to face the image pickup element.
  9.  請求項8に記載の撮像装置と電子部品とを、あらかじめ半田が配置された配線基板上に載置し、加熱することで半田を溶融させて、前記撮像装置と前記電子部品とを前記配線基板上に実装することを特徴とする電子機器の製造方法。 The imaging device and the electronic component according to claim 8 are placed on a wiring board on which solder is previously disposed, and the solder is melted by heating, whereby the imaging device and the electronic component are connected to the wiring board. A method for manufacturing an electronic device, which is mounted on the electronic device.
PCT/JP2010/068141 2009-11-09 2010-10-15 Image pickup lens, image pickup device, and method for manufacturing electronic apparatus WO2011055623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009255620 2009-11-09
JP2009-255620 2009-11-09

Publications (1)

Publication Number Publication Date
WO2011055623A1 true WO2011055623A1 (en) 2011-05-12

Family

ID=43969863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068141 WO2011055623A1 (en) 2009-11-09 2010-10-15 Image pickup lens, image pickup device, and method for manufacturing electronic apparatus

Country Status (1)

Country Link
WO (1) WO2011055623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998775A (en) * 2011-09-09 2013-03-27 杭州精工技研有限公司 Imaging lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2008046526A (en) * 2006-08-21 2008-02-28 Konica Minolta Opto Inc Imaging lens, imaging apparatus and mobile terminal
WO2008102648A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, and mobile terminal
JP2009008775A (en) * 2007-06-27 2009-01-15 Panasonic Corp Lens unit
WO2009069468A1 (en) * 2007-11-26 2009-06-04 Konica Minolta Opto, Inc. Image picking-up lens and image picking-up device
WO2009116492A1 (en) * 2008-03-21 2009-09-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, digital instrument, and manufacturing method of the imaging lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2008046526A (en) * 2006-08-21 2008-02-28 Konica Minolta Opto Inc Imaging lens, imaging apparatus and mobile terminal
WO2008102648A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, and mobile terminal
JP2009008775A (en) * 2007-06-27 2009-01-15 Panasonic Corp Lens unit
WO2009069468A1 (en) * 2007-11-26 2009-06-04 Konica Minolta Opto, Inc. Image picking-up lens and image picking-up device
WO2009116492A1 (en) * 2008-03-21 2009-09-24 コニカミノルタオプト株式会社 Imaging lens, imaging device, digital instrument, and manufacturing method of the imaging lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998775A (en) * 2011-09-09 2013-03-27 杭州精工技研有限公司 Imaging lens
JP2013254210A (en) * 2011-09-09 2013-12-19 Seikoh Giken Co Ltd Imaging lens
US8861100B2 (en) 2011-09-09 2014-10-14 Seikoh Giken Co., Ltd. Imaging lens
JP2015038538A (en) * 2011-09-09 2015-02-26 株式会社精工技研 Image capturing lens

Similar Documents

Publication Publication Date Title
JP4924777B2 (en) Imaging lens, wafer lens, wafer lens laminate, imaging lens manufacturing method, imaging lens intermediate, imaging lens intermediate manufacturing method
WO2009157273A1 (en) Imaging optical system, and imaging lens manufacturing method
JP5321954B2 (en) Imaging lens, imaging device, and portable terminal
US9625618B2 (en) Optical member set and solid-state imaging element using the same
WO2012086350A1 (en) Lens unit and image capturing unit
JP2007291321A (en) Curable organometallic composition, organometallic polymer material and optical component
US20140284747A1 (en) Optical member set and solid-state imaging element using the same
WO2014034701A1 (en) Low refractive index film, curable composition for forming low refractive index film, optical member, and solid-state imaging device using same
JP2009251210A (en) Imaging lens, imaging apparatus, electronic apparatus, portable terminal, and method for manufacturing imaging lens
JP2008266578A (en) Optical polymer material and optical component
WO2011136139A1 (en) Method for producing wafer lens member, method for producing image-capturing lens, method for producing image-capturing module, and method for producing electronic device mounted with image-capturing module
WO2011055623A1 (en) Image pickup lens, image pickup device, and method for manufacturing electronic apparatus
JP2011237472A (en) Imaging lens
JP5391822B2 (en) Imaging lens, imaging device, and portable terminal
US20090244729A1 (en) Method for manufacturing optical element, optical element unit, and imaging unit
WO2009087836A1 (en) Optical element manufacturing method, optical element, electronic apparatus manufacturing method, and electronic apparatus
WO2011040226A1 (en) Image capturing lens
JP2007191687A (en) Material for forming organic-inorganic composite, organic-inorganic composite, its manufacturing method and optical device
JP5568988B2 (en) Optical element
US20080233417A1 (en) Optical polymer material and optical component
JPWO2009041204A1 (en) Optical element manufacturing method
JP2009237471A (en) Optical resin material, manufacturing method therefor, and optical element
JP2010018700A (en) Optical element and process for manufacturing electronic equipment
US20240206322A1 (en) Optical semiconductor device, method for manufacturing same, solid-state imaging device, and electronic device
WO2009142124A1 (en) Optical element and process for producing electronic equipment using the optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP