WO2011052842A1 - Spherical electrode and electrolysis cell including same - Google Patents

Spherical electrode and electrolysis cell including same Download PDF

Info

Publication number
WO2011052842A1
WO2011052842A1 PCT/KR2009/007012 KR2009007012W WO2011052842A1 WO 2011052842 A1 WO2011052842 A1 WO 2011052842A1 KR 2009007012 W KR2009007012 W KR 2009007012W WO 2011052842 A1 WO2011052842 A1 WO 2011052842A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode layer
electrochemical cell
anion
ion exchange
Prior art date
Application number
PCT/KR2009/007012
Other languages
French (fr)
Korean (ko)
Inventor
문상봉
이태임
정영
김은수
류택형
최윤기
Original Assignee
(주)엘켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘켐텍 filed Critical (주)엘켐텍
Priority to US13/504,235 priority Critical patent/US20120267242A1/en
Publication of WO2011052842A1 publication Critical patent/WO2011052842A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a spherical electrode suitable for electrolyzing an aqueous solution of water or an electrolyte (for example salt, sodium chlorite) and the like and an electrolysis cell comprising the same.
  • an electrolyte for example salt, sodium chlorite
  • An electrochemical cell is a type of energy conversion device that uses, for example, an electrolysis cell that produces oxygen or hydrogen gas using a reactant such as water, or decomposes a solution containing a salt or sodium chlorite electrolyte, and an oxygen and hydrogen fuel. It can be divided into a fuel cell that produces electricity.
  • the most basic unit components of an electrochemical cell are the anode, cathode and electrolyte.
  • 1 is a typical electrolysis cell comprising an anode chamber 20 having a positive electrode 10, a cathode chamber 40 having a negative electrode 30, and an ion exchange membrane 50 that is an electrolyte transfer medium between the positive electrode and the negative electrode. do.
  • the operation principle of the electrolysis cell will be described by way of example as an electrolysis cell for producing chlorine dioxide by supplying the electrolyte chamber with electrolyte NaClO 2.
  • Electrolyte NaClO2 is supplied to the anode in the anode compartment, chlorine dioxide gas (ClO2) and electron (e -) and the electrolytic cell with a sodium ion (Na +) with a resolution and the unreacted part of the chlorine dioxide gas (ClO 2) Out of the anode chamber.
  • the decomposed sodium ions (Na + ) move through the ion exchange membrane 50 to the cathode 30 (hydrogen electrode), and the electrons follow the external circuit 60 connecting the anode 10 and the cathode 30. Move. Pure water is supplied to the cathode chamber 40.
  • the pure water is decomposed by the electrons (e ⁇ ) moved from the anode 10 (reduction reaction) to decompose hydrogen gas (H 2 ) and hydroxyl ions. . Hydroxide ions react with sodium ions moved through the ion exchange membrane 50 in the anode chamber 20 to form NaOH.
  • the electrochemical reactions occurring in the anode 10 and the cathode 30, respectively are represented as in Scheme 1 through Scheme 4.
  • the structure of FIG. 1 can also produce hydrogen gas and oxygen gas by electrochemically decomposing water.
  • water (H 2 O) when water (H 2 O) is supplied to the anode catalyst, it is decomposed into oxygen gas (O 2 ), electrons (e ⁇ ), and hydrogen ions (H + ) (protons) by an electrochemical reaction.
  • O 2 oxygen gas
  • e ⁇ electrons
  • H + hydrogen ions
  • a portion of the water (H 2 O) is discharged to the outside through the product outlet of the electrolysis cell together with the oxygen gas (O 2).
  • the decomposed hydrogen ions (H + ) move through the ion exchange membrane to the cathode catalyst (hydrogen electrode) and move along the external circuit (not shown) connected between the anode catalyst and the cathode catalyst (e-).
  • the reaction is hydrogen gas (H 2).
  • the electrochemical reactions occurring in the anode catalyst and the cathode catalyst, respectively, are represented by Schemes 5 and 6.
  • the fuel cell reacts with a mechanism opposite to that of the electrolysis of water, that is, electrolysis.
  • hydrogen, methanol or another hydrogen fuel source and oxygen react to produce electricity.
  • FIG. 2 is another form of another typical electrolysis cell, wherein a spherical electrode 26 is filled between anode 22 and membrane 28, membrane 28 and cathode 24 to determine the electrode area within the electrolysis cell. It is maximized compared to the electrolyzer of FIG.
  • Representative patents related to spherical electrodes include US Pat. No. 6,024,850 (Modified ion exchange materials, Applicant: Assignee: Halox Technologies Corporation), wherein the spherical electrodes are made of an ion exchange resin and the electrode catalyst is contained in the ion exchange resin.
  • the existing structure is characteristic.
  • the electrolyte in order for an electrochemical reaction to occur, the electrolyte must move into the ion exchange resin, which causes a decrease in the reaction efficiency. (The diffusion resistance of ions to be transferred into the ion exchange resin is high. Difficult to pass out exchange resin)
  • the electrode of the present invention has a structure having an electrode catalyst having a counter ion in the active site in the ion exchange resin, which can easily outflow catalyst ions when electrolyzing a high concentration of electrolyte, for example, saturated brine. This can be easily expected from the regeneration process using the brine of the general ion exchange resin.
  • an electrode for an electrochemical cell comprising an ion exchange resin base material and a first electrode layer coated on the surface of the ion exchange resin base material, wherein the electrode for electrochemical cells is spherical, granule, bead, grain, fiber
  • an electrode for an electrochemical cell characterized in that it has a form selected from among them.
  • the first electrode layer may be coated on 1-100% of the total surface area of the electrode for the electrochemical cell, in particular at least 70% should be coated in terms of overall electrochemical performance or efficiency.
  • the electrode for the electrochemical cell further comprises a second electrode layer, the second electrode layer is coated on the surface of the ion exchange resin base material, the first electrode layer is the first It can also comprise a multilayer electrode coated on the surface of a 2 electrode layer. Furthermore, the electrode for electrochemical cells may further include a third electrode layer coated on the surface of the first electrode layer.
  • Such multi-layered electrodes show a significant improvement in the use of expensive noble metal catalysts, while having substantially equivalent or rather superior electrode performance.
  • an electrochemical cell comprising an ion exchange resin matrix, a first electrode layer coated on the surface of the ion exchange resin base material, and a second electrode layer coated on the surface of the ion exchange resin base material
  • An electrode for an electrochemical cell has a form selected from spheres, granules, beads, grains, and fibers, and an electrochemical cell is disclosed in which the first electrode layer and the second electrode layer are an anode and a cathode or a cathode and an anode, respectively.
  • the sum of the surface areas of the first electrode layer and the second electrode layer is 1-99%, preferably 30-90% of the total surface area of the electrochemical cell.
  • the first electrode layer and the second electrode layer may each be coated at 0.5-60% of the total surface area of the electrochemical cell in order to have the above surface area sum.
  • the sum of the surface areas of the first electrode layer and the second electrode layer is in the range of 50-70% of the total surface area of the electrochemical cell, and the surface area of the anode and cathode is 30-35% of the total surface area of the total electrochemical cell, respectively.
  • it When coated, it has the special effect of showing normal operation as an electrochemical cell for a long time without short circuit, even without a short circuit prevention medium such as a nonwoven fabric between the anode and the cathode.
  • Adjusting the surface coating degree of such an electrode can be easily achieved by those skilled in the art with reference to the common knowledge in the art 'as long as it can be based on the disclosure of the present invention'.
  • the base material is a strong acid polystyrene divinylbenzene cross-linked cation resin; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strong basic polystyrene divinylbenzene type anionic resins; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Strong acid perfluoro sulfonated cationic resins; Strongly basic perfluoro aminated anion resins; Natural anion exchangers; natural cation exchangers; It can be selected from porous inorganics and mixtures thereof.
  • the first electrode layer is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, molybdenum, tungsten , Aluminum, silicon, zinc, tin and alloys or mixtures thereof, and the second electrode layer is selected from titanium, silver, copper, tin and alloys or mixtures thereof.
  • the first electrode layer may have a thickness of 0.1-5 ⁇ m.
  • the present invention is a pupil electrode that can be filled between an anode and a cathode, between an anode and a membrane, between an anode and a membrane, between a membrane and a membrane, etc. in an electrolysis cell of an aqueous solution containing an electrolyte.
  • the electrode area per volume is characterized in that 1,000-1,000,000 cm 2 / m 3 .
  • the pupil electrode of the present invention is characterized in that the metal which is an electrochemical catalyst on the surface of the ion-exchangeable medium has a form of 1-100% precipitated on the surface.
  • the pupil electrolysis cell of the present invention is characterized in that one or more metals, which are electrochemical catalysts, are present on the surface of a medium capable of ion exchange, and the metals have a precipitation rate of 1-99%.
  • Electrode according to an embodiment of the present invention has an electrode surface area of up to 100 m 2 in the electrolytic cell volume 1 m 3 to maximize the performance of the electrolytic system, it is possible to achieve the compactness of the electrolytic system, manufacturing cost reduction.
  • FIG. 1 is a conceptual diagram of a typical electrolysis cell.
  • FIG. 2 is a structural diagram of another typical electrolysis cell (US Pat. No. 6,4,850, titled Modified ion exchange materials, Applicant: Assignee: Halox Technologies Corporation).
  • FIG. 3 is a structural diagram illustrating a problem of the existing electrolysis cell of FIG. 2.
  • FIG. 4 is a structural diagram of a spherical electrode 400 of the present invention.
  • FIG. 5 is a structural diagram of a spherical electrode 500 having another metal layer of another embodiment of the present invention.
  • 6 is another spherical electrode structure of the present invention.
  • Example 8 is a SEM photograph showing the coating state of the primary Ti obtained in Example 9.
  • Example 9 is a SEM photograph showing the coating state of the secondary Pt obtained in Example 9.
  • FIG. 10 is an XRD analysis photograph of a sample obtained in Example 9.
  • FIG. 10 is an XRD analysis photograph of a sample obtained in Example 9.
  • FIG. 11 is a structural diagram of an electrolysis cell according to an embodiment of the present invention.
  • FIG. 15 is a photograph of the spherical electrolysis cell of FIG. 7.
  • FIG. 16 is an enlarged photograph of an interface of the spherical electrolysis cell of FIG. 10.
  • FIG. 4 is a structural diagram of a spherical electrode 400 of the present invention.
  • the spherical electrode 400 applies an ion exchanger to the base material 410, and is composed of a metal electrode catalyst 420 on the surface thereof.
  • the shape of a base material is not limited to something like a spherical shape.
  • the base material 410 is preferably a medium capable of ion exchange.
  • Possible materials include strongly acidic polystyrene divinylbenzene cross-linked cationic resins; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strongly basic polystyrene divinylbenzene type anionic resin; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Perfluoro sulfonated amounts of hot water paper with strong acid type perflow; Strongly basic perfluoro aminated anion resins; Natural anion exchangers such as mud; Natural cation exchangers such as magnese greensand. Moreover, it is a porous inorganic substance which i
  • the catalyst 420 coated on the base material is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, Preference is given to alloys with one or more metals selected from the group consisting of molybdenum, tungsten, aluminum, silicon, zinc, and tin or oxides composed of these.
  • the thickness of the electrode catalyst layer 420 in this invention is not limited, 0.1-5 micrometers or less are preferable. Preferably it is 0.1-2 micrometers. At thicknesses of 2 ⁇ m or more, the inert reaction layer that does not participate in the reaction is too large and inefficiently loses the catalyst.
  • the surface area of the electrode catalyst layer 420 may cover an area between 1-100%, depending on the purpose of the electrochemical reaction.
  • the method of forming the electrode catalyst layer on the ion exchange resin includes chemical adsorption-reduction method, electroplating method, and physical vapor deposition method. However, considering the method of coating a large amount of spherical ion exchanger particles, the chemical adsorption- Reduction methods are preferred.
  • the chemical adsorption-reduction method is a method of adsorbing an electrode catalyst material on an ion exchanger and then reducing it on the surface of the ion exchanger resin.
  • FIG. 5 is a spherical electrode 500 having a multilayer metal layer according to another embodiment of the present invention, and then the metal layer 520 of the first layer is formed on the ion exchange resin base material 510 of FIG. It is a two-layered electrode in which another metal or the same catalyst layer 530 is formed.
  • titanium, silver, copper, tin, and the like having excellent electron conductivity may be formed, and in the second layer 530, the electrode catalyst layer mentioned in FIG. 4 may be formed.
  • FIG. 6 is a pupil-shaped spherical electrode structure obtained by firing the spherical electrode of FIG. 4 or 5 at about 800 ° C. by thermal decomposition of an ion exchange resin layer.
  • the spherical electrochemical cell 700 has a positive electrode, a negative electrode, an electrolyte and the like which are basic elements of the basic electrolysis cell.
  • the spherical electrolysis cell has an ion exchangeable ion conductor 710 as a base material as an electrolyte, a metal 720 for the anode function (oxidation reaction) as a cathode catalyst, and a metal 730 for the cathode function (reduction function) as the cathode catalyst. It consists of.
  • the type of the anode 720 or the cathode catalyst 730 coated on the base material is the same as the type of the catalyst described above with reference to FIG. 4, and in the actual configuration, the anode 720 and the cathode catalyst 730 are different metals. It is most preferable to constitute.
  • the surface area of the electrode catalyst layer may comprise between 1-99% depending on the purpose of the electrochemical reaction, but preferably the surface area (sum of anode and cathode catalyst surfaces) is 30-90. % Is preferred. 100% surface area means the contact between the positive electrode and the negative electrode, which means physically a shot of the positive electrode and the negative electrode, and no electrochemical action takes place.
  • the method of forming the anode catalyst metal 720 and the cathode catalyst metal 730 may be formed by the method applied in FIG. 4. For example, first, a metal catalyst of one anode catalyst metal 720 is partially formed by adsorption-reduction method on a part of the total surface area, and then the cathode catalyst metal 730 is partially formed by adsorption-reduction method. can do. It is possible to form the anode catalyst metal 720 and the cathode catalyst metal 730 at different positions because the process is performed by the adsorption-reduction method.
  • FIG. 15 is a photograph of the spherical electrolysis cell of FIG. 7, in which platinum is used as the anode catalyst metal and tin is used as the cathode catalyst metal.
  • FIG. 16 is an enlarged photograph of an interface of the spherical electrolysis cell of FIG. 10.
  • Example 1 Example 2 Example 3
  • Example 4 Catalyst type Pt Ru Ni Pd Type of precursor Pt (NH 3 ) 6 ] Cl 4 RuCl 4 NiCl 2 PdCl 2
  • Precursor concentration 1 mM 1 mM 1 mM 1 mM Adsorption time 1 hours 1 hours 1 hours 1 hours 1 hours Reducing Agent
  • Reduction time 1 hours 1 hours 1 hours 1 hours 1 hours 1 hours 1 hours Reducing pH 8 8 8 8
  • Confirmation of precipitation SEM SEM SEM SEM result Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface
  • Example 5 Example 6
  • Example 7 Catalyst type Ir Pb Sn Cu Type of precursor IrCl 4 Pb (SO 4 ) SnCl 4 CuSO 4
  • Precursor concentration 1 mM 1 mM 1 mM 1 mM 1 mM Adsorption time 1 hours 1 hours 1 hours 1 hours 1 hours Reducing Agent
  • Reduction time 1 hours 1 hours 1 hours 1 hours 1 hours 1 hours 1 hours Reducing pH 8
  • 8 8 8 Confirmation of precipitation SEM SEM SEM SEM result Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface Check coating on surface
  • Example 10 Catalyst type Pt / TiO2 Pt (anode), Ni (cathode) Type of precursor TiCl 4 (primary) H 2 PtCl 6 (secondary) Pt (NH 3 ) 6 ] Cl 4 NiCl 2 Precursor concentration 1 mM 1 mM / 1 mM Adsorption time 1 hours 1 hours Reducing Agent Type NaBH4 NaBH4 Reducing agent concentration 5% 5% Reduction time 1 hours 1 hours Reducing pH 8 8 Confirmation of precipitation SEM SEM result Check coating on surface Check coating on surface
  • Example 8 is a SEM photograph showing the coating state of the primary Ti obtained in Example 9. Ti shows well developed in a certain shape.
  • Example 9 is a SEM photograph showing the coating state of the secondary Pt obtained in Example 9. It can be seen that Pt is not dispersed in one place but is uniformly dispersed.
  • Example 10 is an XRD analysis photograph of a sample obtained in Example 9.
  • FIG. It can be seen that desired Pt, TiO 2 and the like are formed. It is assumed that the Ti form is TiO 2 , which is combined with oxygen in water to become an oxide.
  • the current efficiency is obtained by dividing the actual value of hypochlorous acid generated with respect to the applied current (I) by the theoretical amount.
  • F is the Faraday constant, 96500 (C)
  • is the actual residual chlorine concentration (ppm, mg / L)
  • V is the quantity of water supplied to the electrolysis cell (L)
  • I is the current carrying current (A)
  • t Electrolysis time (s).
  • FIG. 11 the electrolytic voltages of the electrode of the present invention and the comparative example electrode are the same, but in FIG. 12, the chlorine generation concentrations of the electrode of the present invention and the comparative example electrode are more than two times different. This is because the area of the electrode in the same space and the current density in the filling electrode is low, the current efficiency seems to increase.
  • FIG. 13 is a current efficiency comparison between the electrode of the present invention and the comparative example electrode, obtained from the results of FIGS. 10 and 11 and the current efficiency equations mentioned in Comparative Example 1.
  • FIG. 13 is a current efficiency comparison between the electrode of the present invention and the comparative example electrode, obtained from the results of FIGS. 10 and 11 and the current efficiency equations mentioned in Comparative Example 1.

Abstract

The present invention relates to a spherical electrode and to a spherical electrode cell, and more particularly, to a method for forming an electrode on an ion-exchange resin or forming an electrolysis cell on an ion-exchange resin. The spherical electrode or spherical electrolysis cell of the present invention can be used for: electrolysis reactors, for example in hydrolysis for producing hydrogen and oxygen gas; for the production of oxidants by means of the electrolysis of electrolytes such as a sodium chloride solution and sodium chlorite; or fuel cells that generate electricity using oxygen and hydrogen.

Description

구형 전극 및 이를 포함하는 전기분해 셀Spherical electrode and electrolysis cell comprising the same
본 발명은 물 또는 전해질(예를 들면 소금, 아염소산 나트륨) 등의 수용액을 전기분해하는데 적합한 구형의 전극 및 이를 포함하는 전기분해 셀에 관한 것이다.The present invention relates to a spherical electrode suitable for electrolyzing an aqueous solution of water or an electrolyte (for example salt, sodium chlorite) and the like and an electrolysis cell comprising the same.
전기화학 셀이란 일종의 에너지 변환 장치로서, 예를 들면 물과 같은 반응물을 이용하여 산소나 수소 기체를 만들거나, 소금 또는 아염소산 나트륨 전해질을 가지는 용액을 분해하는 전기분해 셀과 산소와 수소 연료를 이용하여 전기를 생산하는 연료전지로 구분할 수 있다.An electrochemical cell is a type of energy conversion device that uses, for example, an electrolysis cell that produces oxygen or hydrogen gas using a reactant such as water, or decomposes a solution containing a salt or sodium chlorite electrolyte, and an oxygen and hydrogen fuel. It can be divided into a fuel cell that produces electricity.
전기화학 셀의 가장 기본적인 단위 구성요소는 양극, 음극, 전해질이다. 도 1은 전형적인 전기분해 셀로서 양극(10)이 존재하는 양극실(20), 음극(30)이 존재하는 음극실(40), 양극과 음극 사이에 전해질 이동매체인 이온교환막(50)으로 구성된다. 전기분해 셀의 운전 원리를 전해질 NaClO2로 양극실에 공급하여 이산화염소를 제조하는 전기분해 셀을 예를 들어 설명하고자 한다. 전해질 NaClO2는 양극실에 있는 양극으로 공급되어 이산화염소 기체(ClO2)와 전자(e-) 그리고 나트륨 이온(Na+)으로 분해되며 미반응된 일부분은 이산화 염소 기체(ClO2)와 함께 전기분해 셀의 양극실의 외부로 유출된다. 분해된 나트륨 이온(Na+)은 이온교환막(50)을 통과하여 음극(30)(수소극)으로 이동하며, 전자는 양극(10)과 음극(30)을 연결하는 외부회로(60)를 따라 이동한다. 음극실(40)에는 순수를 공급하며, 음극(30)에서는 양극(10)에서 이동한 전자(e-)에 의해 순수가 분해되어(환원반응) 수소기체(H2)와 수산 이온이 분해된다. 수산화 이온은 양극실(20)에서 이온교환막(50)을 통해 이동한 나트륨 이온과 반응하여 NaOH가 된다. 이때, 양극(10)과 음극(30)에서 각각 일어나는 전기화학적 반응을 표현하면 반응식 1에서 반응식 4까지와 같다.The most basic unit components of an electrochemical cell are the anode, cathode and electrolyte. 1 is a typical electrolysis cell comprising an anode chamber 20 having a positive electrode 10, a cathode chamber 40 having a negative electrode 30, and an ion exchange membrane 50 that is an electrolyte transfer medium between the positive electrode and the negative electrode. do. The operation principle of the electrolysis cell will be described by way of example as an electrolysis cell for producing chlorine dioxide by supplying the electrolyte chamber with electrolyte NaClO 2. Electrolyte NaClO2 is supplied to the anode in the anode compartment, chlorine dioxide gas (ClO2) and electron (e -) and the electrolytic cell with a sodium ion (Na +) with a resolution and the unreacted part of the chlorine dioxide gas (ClO 2) Out of the anode chamber. The decomposed sodium ions (Na + ) move through the ion exchange membrane 50 to the cathode 30 (hydrogen electrode), and the electrons follow the external circuit 60 connecting the anode 10 and the cathode 30. Move. Pure water is supplied to the cathode chamber 40. In the cathode 30, the pure water is decomposed by the electrons (e ) moved from the anode 10 (reduction reaction) to decompose hydrogen gas (H 2 ) and hydroxyl ions. . Hydroxide ions react with sodium ions moved through the ion exchange membrane 50 in the anode chamber 20 to form NaOH. In this case, the electrochemical reactions occurring in the anode 10 and the cathode 30, respectively, are represented as in Scheme 1 through Scheme 4.
반응식 1 Scheme 1
NaClO2 → Na+ + ClO2 - (전해질의 양극실에서의 해리) NaClO 2 → Na + + ClO 2 - ( dissociation in the anode chamber of the electrolyte)
반응식 2 Scheme 2
ClO2 - → ClO2(gas) + e (양극에서의 산화반응) ClO 2 - → ClO 2 (gas ) + e ( oxidation at the positive electrode)
반응식 3 Scheme 3
H2O + e → 1/2H2 + OH- (음극에서의 환원반응) H 2 O + e → 1 / 2H 2 + OH - ( reducing reaction at the cathode)
반응식 4 Scheme 4
Na+ + OH- → NaOH (음극에서의 가성소다 생성반응)Na + + OH - → NaOH (caustic soda produced at the cathode reaction)
또한, 도 1의 구조로도 물을 전기화학적으로 분해하여 수소기체와 산소기체를 생산할 수 있다. 도 1의 구조에서 물(H2O)을 양극촉매로 공급되면 전기화학 반응에 의해 산소기체(O2)와 전자(e-) 그리고 수소 이온(H+)(프로톤)으로 분해된다. 이때, 물(H2O)의 일부분은 산소기체(O2)와 함께 전기분해 셀의 생성물 배출구를 통해 외부로 유출된다. 그리고 분해된 수소 이온(H+)은 이온교환막을 통과하여 음극촉매(수소극)으로 이동하여, 양극촉매와 음극 촉매 사이에 연결된 외부회로(도시하지 않음)를 따라 이동한 전자(e-)와 반응하여 수소기체(H2)가 된다. 이때, 양극촉매와 음극촉매에서 각각 일어나는 전기화학적 반응을 표현하면 반응식 5, 6과 같다.In addition, the structure of FIG. 1 can also produce hydrogen gas and oxygen gas by electrochemically decomposing water. In the structure of FIG. 1, when water (H 2 O) is supplied to the anode catalyst, it is decomposed into oxygen gas (O 2 ), electrons (e ), and hydrogen ions (H + ) (protons) by an electrochemical reaction. At this time, a portion of the water (H 2 O) is discharged to the outside through the product outlet of the electrolysis cell together with the oxygen gas (O 2). The decomposed hydrogen ions (H + ) move through the ion exchange membrane to the cathode catalyst (hydrogen electrode) and move along the external circuit (not shown) connected between the anode catalyst and the cathode catalyst (e-). the reaction is hydrogen gas (H 2). In this case, the electrochemical reactions occurring in the anode catalyst and the cathode catalyst, respectively, are represented by Schemes 5 and 6.
반응식 5Scheme 5
2H2O → 4H++ 4e-+ O2 (양극에서의 산화과정) 2H 2 O → 4H + + 4e - + O 2 ( oxidation at the positive electrode)
반응식 6Scheme 6
4H++ 4e-→ 2H2 (음극에서의 환원과정) 4H + + 4e - → 2H 2 ( reduction process at the negative electrode)
이와 반대로 연료전지는 상기 물의 전기분해 반응 즉, 전기분해의 경우와 반대 메커니즘으로 반응이 일어난다. 즉, 연료전지에서는 수소, 메탄올(methanol) 또는 다른 수소 연료원과 산소가 반응하여 전기를 생산한다. 이때, 연료전지에서 일어나는 일반적인 반응을 표현하면 반응식 7, 8과 같다.In contrast, the fuel cell reacts with a mechanism opposite to that of the electrolysis of water, that is, electrolysis. In other words, in a fuel cell, hydrogen, methanol or another hydrogen fuel source and oxygen react to produce electricity. In this case, the general reaction occurring in the fuel cell is represented by Reaction Equations 7, 8.
반응식 7Scheme 7
2H2 → 4H++ 4e-(양극의 산화반응) 2H 2 → 4H + + 4e - ( oxidation of the positive electrode)
반응식 8Scheme 8
4H++ 4e-+ O2 → 2H2O (음극의 환원반응) 4H + + 4e - + O 2 → 2H 2 O ( reduction of the negative electrode)
상기 전기화학 반응(반응식 2와 3, 반응식 5와 6, 반응식 7과 8)에서 반응이 일어나는 부분은 전극 계면이다. 전극 계면에서는 고체-액체-기체 3상 반응이 관련되어 있으며, 고체 부분으로는 전자의 이동 경로가 제공되어야 하고, 액체는 전해질로 이온의 전극으로 이동, 생성물(액체의 경우)의 벌크용액으로의 이동, 기체는 기체 생성물의 벌크 용액으로의 이동 등 관련 현상이 있다. 따라서, 전기화학 반응의 효율을 극대화하기 위해서는 전해질의 이동도(전도도) 극대화, 전자의 이동 경로 극대화(전극의 면적), 기체생성물의 이동(전극의 형상)을 극대화하여야 한다. 따라서, 일정한 공간을 가지는 전극의 구조가 판형전극 또는 메쉬형 전극을 가지는 일반적인 전기화학 반응기는 다수의 전극을 적층해야 하므로 성능을 획기적으로 개선하는데 한계가 있다.In the electrochemical reaction ( Scheme 2 and 3, Scheme 5 and 6, Reaction 7 and 8), the reaction occurs at the electrode interface. At the electrode interface, a solid-liquid-gas three-phase reaction is involved, the solid portion of which provides the path of electron transport, the liquid moves to the electrode of the ions with the electrolyte, and to the bulk solution of the product (liquid). There are related phenomena, such as migration, gas flow into the bulk solution of gaseous products. Therefore, in order to maximize the efficiency of the electrochemical reaction, it is necessary to maximize the mobility (conductivity) of the electrolyte, maximize the movement path of the electrons (area of the electrode), and maximize the movement of the gas product (the shape of the electrode). Therefore, a general electrochemical reactor having a structure having an electrode having a predetermined space has a plate electrode or a mesh electrode, and thus, a plurality of electrodes must be stacked, thereby limiting performance.
도 2는 또 다른 전형적인 전기분해 셀의 다른 형태로서 구형의 전극(26)을 양극(22)과 막(28), 막(28)과 음극(24) 사이에 충진하여 전기분해 셀 내의 전극 면적을 도 1의 전해조와 비교하여 극대화한 것이다.FIG. 2 is another form of another typical electrolysis cell, wherein a spherical electrode 26 is filled between anode 22 and membrane 28, membrane 28 and cathode 24 to determine the electrode area within the electrolysis cell. It is maximized compared to the electrolyzer of FIG.
구형 전극과 관련한 대표 특허로는 미합중국특허 6,024,850(발명의 명칭: Modified ion exchange materials, 출원인: Assignee: Halox Technologies Corporation)가 있으며, 구형전극은 모재를 이온교환 수지로 하고, 전극촉매를 이온교환 수지 내에 존재하는 구조가 특징이다.Representative patents related to spherical electrodes include US Pat. No. 6,024,850 (Modified ion exchange materials, Applicant: Assignee: Halox Technologies Corporation), wherein the spherical electrodes are made of an ion exchange resin and the electrode catalyst is contained in the ion exchange resin. The existing structure is characteristic.
그러나, 이 같은 이온교환 수지 내에 전극촉매를 가지는 구형 전극은 기능상에 문제점을 가지고 있음을 도 3으로 앞서 설명한 전극 표면에서의 반응현상을 기준으로 설명하고자 한다. However, a spherical electrode having an electrode catalyst in such an ion exchange resin will be described based on the reaction phenomenon on the electrode surface described above with reference to FIG. 3.
첫째, 전기화학반응이 일어나기 위해서는 이온교환 수지 내로 전해질이 이동을 해야하며, 이는 반응효율을 떨어뜨리는 원인이 된다.(이온교환 수지 내로 이온이 전달하는데 확산저항이 크며, 특히 생성된 기체는 더욱 이온교환 수지 밖으로 전달하기 어려움)First, in order for an electrochemical reaction to occur, the electrolyte must move into the ion exchange resin, which causes a decrease in the reaction efficiency. (The diffusion resistance of ions to be transferred into the ion exchange resin is high. Difficult to pass out exchange resin)
둘째, 이온교환 수지 내에서 전기화학 반응에 의해 발생한 전자의 이동 경로 (바람직하게는 금속)가 없어 전자 저항이 커져 반응 효율이 떨어지는 문제가 있다. Second, there is a problem that the reaction efficiency is lowered because the electron resistance is large because there is no movement path (preferably metal) of electrons generated by the electrochemical reaction in the ion exchange resin.
더욱이, 고농도의 전해질을 다루는 전기화학 반응의 경우에는 전극 촉매가 유출되어 내구성이 급격히 감소하는 문제점이 있다. 상기 발명의 전극은 이온교환 수지내 활성사이트에 반대이온을 가지는 전극촉매를 가지는 구조를 가지고 있는데, 이는 고농도의 전해질, 예를 들면 포화 소금물을 전기 분해하는 경우 촉매 이온이 쉽게 유출될 수 있다. 이는 일반적인 이온교환 수지의 소금물을 이용하는 재생공정으로부터 쉽게 예상할 수 있다.Moreover, in the case of electrochemical reactions dealing with high concentrations of electrolytes, there is a problem in that the electrode catalyst is leaked and the durability rapidly decreases. The electrode of the present invention has a structure having an electrode catalyst having a counter ion in the active site in the ion exchange resin, which can easily outflow catalyst ions when electrolyzing a high concentration of electrolyte, for example, saturated brine. This can be easily expected from the regeneration process using the brine of the general ion exchange resin.
본 발명은 전기분해 셀 내 충진 가능하며, 다양한 전해질 또는 농도 등의 조건에 상관없이 적용 가능한 구형 전극의 구조를 제공하는데 목적이 있다.It is an object of the present invention to provide a structure of a spherical electrode which can be filled in an electrolysis cell and can be applied regardless of conditions such as various electrolytes or concentrations.
본 발명의 일 측면에 따르면, 이온교환 수지 모재 및 상기 이온교환 수지 모재 표면에 코팅되어 있는 제1 전극층을 포함하는 전기화학 셀용 전극으로서, 상기 전기화학 셀용 전극은 구형, 그래뉼, 비드, 그레인, 파이버 중에서 선택된 형태를 지니는 것을 특징으로 하는 전기화학 셀용 전극이 개시된다.According to an aspect of the present invention, an electrode for an electrochemical cell comprising an ion exchange resin base material and a first electrode layer coated on the surface of the ion exchange resin base material, wherein the electrode for electrochemical cells is spherical, granule, bead, grain, fiber Disclosed is an electrode for an electrochemical cell, characterized in that it has a form selected from among them.
일 구현예에 따르면, 상기 제1 전극층은 상기 전기화학 셀용 전극의 전체 표면적의 1-100%에 코팅될 수 있으며, 특히 70% 이상 코팅되어 있어야 전체 전기화학 성능 또는 효율 면에서 바람직하다.According to one embodiment, the first electrode layer may be coated on 1-100% of the total surface area of the electrode for the electrochemical cell, in particular at least 70% should be coated in terms of overall electrochemical performance or efficiency.
다른 구현예에 따르면, 상기 전기화학 셀용 전극은 상기 전기화학 셀용 전극은 제2 전극층을 추가로 포함하며, 상기 제2 전극층은 상기 이온교환 수지 모재 표면에 코팅되어 있고, 상기 제1 전극층은 상기 제2 전극층 표면에 코팅되어 있는 다층형 전극으로 구성할 수도 있다. 나아가, 상기 전기화학 셀용 전극은 상기 제1 전극층 표면에 코팅되어 있는 제3 전극층을 추가로 포함할 수도 있다. 이와 같은 다층형 전극은 고가의 귀금속 촉매의 사용량을 현저히 줄이면서도 거의 대등하거나 오히려 더욱 우수한 전극 성능을 보일 수 있는 효과 향상을 보인다.According to another embodiment, the electrode for the electrochemical cell, the electrode for the electrochemical cell further comprises a second electrode layer, the second electrode layer is coated on the surface of the ion exchange resin base material, the first electrode layer is the first It can also comprise a multilayer electrode coated on the surface of a 2 electrode layer. Furthermore, the electrode for electrochemical cells may further include a third electrode layer coated on the surface of the first electrode layer. Such multi-layered electrodes show a significant improvement in the use of expensive noble metal catalysts, while having substantially equivalent or rather superior electrode performance.
본 발명의 다른 측면에 따르면, 이온교환 수지 모재, 상기 이온교환 수지 모재 표면에 코팅되어 있는 제1 전극층, 및 상기 이온교환 수지 모재 표면에 코팅되어 있는 제2 전극층을 포함하는 전기화학 셀로서, 상기 전기화학 셀용 전극은 구형, 그래뉼, 비드, 그레인, 파이버 중에서 선택된 형태를 지니고, 상기 제1 전극층과 상기 제2 전극층은 각각 양극과 음극 또는 음극과 양극인 것을 특징으로 하는 전기화학 셀이 개시된다.According to another aspect of the present invention, an electrochemical cell comprising an ion exchange resin matrix, a first electrode layer coated on the surface of the ion exchange resin base material, and a second electrode layer coated on the surface of the ion exchange resin base material, An electrode for an electrochemical cell has a form selected from spheres, granules, beads, grains, and fibers, and an electrochemical cell is disclosed in which the first electrode layer and the second electrode layer are an anode and a cathode or a cathode and an anode, respectively.
일 구현예에 따르면, 상기 제1 전극층 및 상기 제2 전극층의 표면적의 합은 상기 전기화학 셀 전체 표면적의 1-99%, 바람직하게는 30-90%이다. 다른 구현예에 따르면, 위와 같은 범위의 표면적 합을 가지기 위해서, 상기 제1 전극층 및 상기 제2 전극층은 각각 상기 전기화학 셀 전체 표면적의 0.5-60%에 코팅될 수 있다. According to one embodiment, the sum of the surface areas of the first electrode layer and the second electrode layer is 1-99%, preferably 30-90% of the total surface area of the electrochemical cell. According to another embodiment, the first electrode layer and the second electrode layer may each be coated at 0.5-60% of the total surface area of the electrochemical cell in order to have the above surface area sum.
특히, 상기 제1 전극층 및 상기 제2 전극층의 표면적의 합이 전기화학 셀 전체 표면적의 50-70%의 범위에 있고, 양극과 음극의 표면적이 각각 전체 전기화학 셀 전체 표면적의 30-35%로 코팅될 경우에는, 양극과 음극 사이에 부직포와 같은 단락 방지 매체를 두지 않아도, 단락 없이 장기간 전기화학 셀로서 정상적인 작동을 보이는 특별한 효과를 보인다.In particular, the sum of the surface areas of the first electrode layer and the second electrode layer is in the range of 50-70% of the total surface area of the electrochemical cell, and the surface area of the anode and cathode is 30-35% of the total surface area of the total electrochemical cell, respectively. When coated, it has the special effect of showing normal operation as an electrochemical cell for a long time without short circuit, even without a short circuit prevention medium such as a nonwoven fabric between the anode and the cathode.
이와 같은 전극의 표면 코팅 정도를 조절하는 것은 '본 발명이 개시하고 있는 내용에 기초할 수만 있다면' 당업자가 당업계 상식 등을 참고하여 용이하게 달성할 수 있다.Adjusting the surface coating degree of such an electrode can be easily achieved by those skilled in the art with reference to the common knowledge in the art 'as long as it can be based on the disclosure of the present invention'.
본 발명에 있어서 상기 모재는 강산성 폴리스타일렌 디비닐벤젠 공중합체(polystyrene divinylbenzene cross-linked) 양이온 수지; 약산성 폴리스타일렌 디비닐벤젠 공중합체 양이온 수지; 이미노디아세틱산(iminodiacetic acid) 폴리스타일렌 디비닐 공중합체 킬레이팅(chelating) 양이온 수지; 강염기성 폴리스타일렌 디비닐벤젠형 음이온수지; 약염기성 폴리스타일렌 디비닐벤젠 음이온수지; 강염기/음염기형 폴리스타일렌 디비닐벤젠 음이온수; 강염기/음염기형 아크릴 음이온수지; 강산형 퍼플로로 설폰화(perfluoro sulfonated) 양이온수지; 강염기성 퍼플로로 아민화(perfluoro aminated) 음이온 수지; 천연 음이온 교환체;천연 양이온 교환체; 다공성 무기물 및 이들의 혼합물 중에서 선택될 수 있다.In the present invention, the base material is a strong acid polystyrene divinylbenzene cross-linked cation resin; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strong basic polystyrene divinylbenzene type anionic resins; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Strong acid perfluoro sulfonated cationic resins; Strongly basic perfluoro aminated anion resins; Natural anion exchangers; natural cation exchangers; It can be selected from porous inorganics and mixtures thereof.
본 발명에 있어서, 상기 제1 전극층은 백금족의 금속(백금, 루테늄, 로듐, 파라듐, 오스뮴, 이리듐)외에 금, 은, 크롬, 철, 납, 티타늄, 망간, 코벨트, 니켈, 몰리브덴, 텅스텐, 알루미늄, 규소, 아연, 주석 및 이들의 합금 또는 혼합물 중에 선택되며, 상기 제2 전극층은 티타늄, 은, 구리, 주석 및 이들의 합금 또는 혼합물 중에서 선택된다. 또한, 상기 제1 전극층은 0.1-5 ㎛의 두께를 가질 수 있다.In the present invention, the first electrode layer is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, molybdenum, tungsten , Aluminum, silicon, zinc, tin and alloys or mixtures thereof, and the second electrode layer is selected from titanium, silver, copper, tin and alloys or mixtures thereof. In addition, the first electrode layer may have a thickness of 0.1-5 μm.
본 발명은 전해질이 포함된 수용액의 전기분해 셀에 있어서 양극과 음극 사이, 양극과 막 사이, 음극과 막 사이, 막과 막 사이 등에 충진 가능한 동공 전극으로, 동공전극 충진 시 전극의 면적이 전해 셀 부피당 전극면적이 1,000-1,000,000 cm2/m3 인 것을 특징으로 한다.The present invention is a pupil electrode that can be filled between an anode and a cathode, between an anode and a membrane, between an anode and a membrane, between a membrane and a membrane, etc. in an electrolysis cell of an aqueous solution containing an electrolyte. The electrode area per volume is characterized in that 1,000-1,000,000 cm 2 / m 3 .
본 발명의 동공전극은 이온교환이 가능한 매체 표면에 전기화학 촉매인 금속이 표면에 1-100% 석출된 형태를 가진 것을 특징으로 한다.The pupil electrode of the present invention is characterized in that the metal which is an electrochemical catalyst on the surface of the ion-exchangeable medium has a form of 1-100% precipitated on the surface.
본 발명의 동공 전기분해 셀은 이온교환이 가능한 매체 표면에 전기화학촉매인 금속이 1종 또는 그 이상을 가지며, 금속이 표면에 석출 비율이 1-99% 인 것을 특징으로 한다.The pupil electrolysis cell of the present invention is characterized in that one or more metals, which are electrochemical catalysts, are present on the surface of a medium capable of ion exchange, and the metals have a precipitation rate of 1-99%.
본 발명의 일 구현예에 따른 전극은 전해조 부피 1 m3에 최대 100 m2의 전극 표면적을 가져, 전해시스템의 성능을 최대화할 수 있고, 전해시스템의 콤팩트화, 제조원가 절감 등을 이룰 수 있다.Electrode according to an embodiment of the present invention has an electrode surface area of up to 100 m 2 in the electrolytic cell volume 1 m 3 to maximize the performance of the electrolytic system, it is possible to achieve the compactness of the electrolytic system, manufacturing cost reduction.
도 1은 전형적인 전기분해 셀의 개념도이다.1 is a conceptual diagram of a typical electrolysis cell.
도 2는 또 다른 전형적인 전기분해 셀의 구조도이다(미 합중국 특허 제6,4,850호 (발명의 명칭: Modified ion exchange materials, 출원인: Assignee: Halox Technologies Corporation)2 is a structural diagram of another typical electrolysis cell (US Pat. No. 6,4,850, titled Modified ion exchange materials, Applicant: Assignee: Halox Technologies Corporation).
도 3은 도 2의 기존 전기분해셀의 문제점을 설명하기 위한 구조도이다.3 is a structural diagram illustrating a problem of the existing electrolysis cell of FIG. 2.
도 4는 본 발명의 구형전극(400)의 구조도이다. 4 is a structural diagram of a spherical electrode 400 of the present invention.
도 5는 또 다른 본 발명의 다층의 금속층을 가지는 구형 전극(500)의 구조도이다.5 is a structural diagram of a spherical electrode 500 having another metal layer of another embodiment of the present invention.
도 6은 본 발명의 또 다른 구형 전극 구조이다.6 is another spherical electrode structure of the present invention.
도 7은 본 발명의 구형 전기화학셀(700)에 관한 것이다. 7 relates to a spherical electrochemical cell 700 of the present invention.
도 8은 실시예 9에서 얻어진 1차 Ti의 코팅 상태를 보여주는 SEM 사진이다. 8 is a SEM photograph showing the coating state of the primary Ti obtained in Example 9.
도 9은 실시예 9에서 얻어진 2차 Pt의 코팅 상태를 보여주는 SEM 사진이다. 9 is a SEM photograph showing the coating state of the secondary Pt obtained in Example 9.
도 10은 실시예 9에서 얻은 시료의 XRD 분석 사진이다. 10 is an XRD analysis photograph of a sample obtained in Example 9. FIG.
도 11은 본 발명의 일 구현예에 따른 전기분해 셀의 구조도이다.11 is a structural diagram of an electrolysis cell according to an embodiment of the present invention.
도 12는 본 발명의 전극과 비교예 전극의 전해 전압 비교 그래프이다.12 is a graph of comparison of electrolytic voltages between the electrode of the present invention and the electrode of Comparative Example.
도 13은 본 발명의 전극과 비교예 전극의 염소 발생농도는 비교 그래프이다. 13 is a comparison graph of the chlorine generation concentration of the electrode of the present invention and the Comparative Example electrode.
도 14는 본 발명의 전극과 비교예 전극의 전류효율 비교 그래프이다.14 is a graph comparing current efficiency between the electrode of the present invention and the comparative electrode.
도 15는 도 7의 구형 전기분해 셀에 대한 사진이다.FIG. 15 is a photograph of the spherical electrolysis cell of FIG. 7.
도 16는 도 10의 구형 전기분해 셀의 경계면을 확대하여 촬영한 사진이다.FIG. 16 is an enlarged photograph of an interface of the spherical electrolysis cell of FIG. 10.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 4는 본 발명의 구형전극(400)의 구조도이다. 그림에서와 같이 구형전극(400)은 모재(410)로 이온교환체를 적용하고, 그 표면에 금속의 전극촉매(420)로 구성된다. 모재의 형상은 구형과 같은 것에 한정을 두지 않는다.4 is a structural diagram of a spherical electrode 400 of the present invention. As shown in the figure, the spherical electrode 400 applies an ion exchanger to the base material 410, and is composed of a metal electrode catalyst 420 on the surface thereof. The shape of a base material is not limited to something like a spherical shape.
모재(410)는 이온교환이 가능한 매질이면 바람직하다. 가능한 소재로 강산성 폴리스타일렌 디비닐벤젠 공중합체(polystyrene divinylbenzene cross-linked) 양이온 수지; 약산성 폴리스타일렌 디비닐벤젠 공중합체 양이온 수지; 이미노디아세틱산(iminodiacetic acid) 폴리스타일렌 디비닐 공중합체 킬레이팅(chelating) 양이온 수지; 강염기성 폴리스타일렌 디비닐벤젠형 음이온 수지; 약염기성 폴리스타일렌 디비닐벤젠 음이온 수지; 강염기/음염기형 폴리스타일렌 디비닐벤젠 음이온수; 강염기/음염기형 아크릴 음이온 수지; 강산형 퍼플로로 설폰화(perfluoro sulfonated) 양이 온수지; 강염기성 퍼플로로 아민화(perfluoro aminated) 음이온 수지; 진흙과 같은 천연 음이온 교환체; 마그네세 그린샌드(manganese greensand)와 같은 천연 양이온 교환체. 또한, 이온들이 흡착 가능한 다공성 무기물, 예를 들면 제올라이트 등이다. 이들 모재는 상업적으로 쉽게 구입 가능하다. The base material 410 is preferably a medium capable of ion exchange. Possible materials include strongly acidic polystyrene divinylbenzene cross-linked cationic resins; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strongly basic polystyrene divinylbenzene type anionic resin; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Perfluoro sulfonated amounts of hot water paper with strong acid type perflow; Strongly basic perfluoro aminated anion resins; Natural anion exchangers such as mud; Natural cation exchangers such as magnese greensand. Moreover, it is a porous inorganic substance which ion can adsorb | suck, for example, a zeolite. These base materials are readily commercially available.
본 발명에서 모재 위에 코팅되는 촉매(420)는 백금 족의 금속(백금, 루테늄, 로듐, 파라듐, 오스뮴, 이리듐) 외에 금, 은, 크롬, 철, 납, 티타늄, 망간, 코벨트, 니켈, 몰리브덴, 텅스텐, 알루미늄, 규소, 아연, 및 주석으로 이루어지는 군에서 선택되는 1종 또는 1종 이상의 금속과의 합금 또는 이들로 구성된 산화물이 바람직하다. In the present invention, the catalyst 420 coated on the base material is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, Preference is given to alloys with one or more metals selected from the group consisting of molybdenum, tungsten, aluminum, silicon, zinc, and tin or oxides composed of these.
본 발명에 있어서의 전극 촉매 층(420)의 두께는 한정되지 않지만 0.1-5 ㎛ 이하가 바람직하다. 바람직하게는 0.1-2 ㎛ 이다. 2 ㎛ 이상의 두께에서는 반응에 참여하지 않은 비활성 반응 층이 너무 커져 비효율적으로 촉매의 손실이 많아진다.Although the thickness of the electrode catalyst layer 420 in this invention is not limited, 0.1-5 micrometers or less are preferable. Preferably it is 0.1-2 micrometers. At thicknesses of 2 μm or more, the inert reaction layer that does not participate in the reaction is too large and inefficiently loses the catalyst.
전극 촉매 층(420)의 표면적은 전기화학 반응의 목적에 따라 1-100% 사이의 면적을 커버할 수 있다.The surface area of the electrode catalyst layer 420 may cover an area between 1-100%, depending on the purpose of the electrochemical reaction.
이온교환 수지체 위에 전극 촉매 층을 형성하는 방법은 화학적 방법인 흡착-환원법 및 전기도금법, 물리적 방법인 진공 증착법 등이 있으나, 다량의 구형의 이온교환체 입자에 코팅하는 방법을 고려하면 화학적 흡착-환원 방법이 바람직하다. 화학적 흡착-환원법은 이온교환체에 전극촉매물질을 흡착시킨 후 이를 이온교환체 수지 표면에서 환원하는 방법으로 본 발명자의 특허에서 쉽게 인용 적용이 가능하다.The method of forming the electrode catalyst layer on the ion exchange resin includes chemical adsorption-reduction method, electroplating method, and physical vapor deposition method. However, considering the method of coating a large amount of spherical ion exchanger particles, the chemical adsorption- Reduction methods are preferred. The chemical adsorption-reduction method is a method of adsorbing an electrode catalyst material on an ion exchanger and then reducing it on the surface of the ion exchanger resin.
도 5는 또 다른 본 발명의 다층의 금속층을 가지는 구형 전극(500)으로 도 4의 이온교환 수지 모재(510)에 흡착-환원법 등으로 제1층의 금속 층(520)을 형성한 후 그 위에 다른 금속 또는 같은 촉매 층(530)을 형성시킨 2층 구조의 전극이다. 제1층(520)에서는 전자전도성이 우수한 티타늄, 은, 구리, 주석 등을 형성시키고, 제2층(530)에서는 도 4에서 언급한 전극촉매 층을 형성할 수 있다.FIG. 5 is a spherical electrode 500 having a multilayer metal layer according to another embodiment of the present invention, and then the metal layer 520 of the first layer is formed on the ion exchange resin base material 510 of FIG. It is a two-layered electrode in which another metal or the same catalyst layer 530 is formed. In the first layer 520, titanium, silver, copper, tin, and the like having excellent electron conductivity may be formed, and in the second layer 530, the electrode catalyst layer mentioned in FIG. 4 may be formed.
도 6은 본 발명의 또 다른 구형 전극 구조로 도 4 또는 도 5의 구형전극을 약 800 ℃에서 소성하여 내부의 이온교환 수지층을 열분해하여 얻는 동공의 구형 전극 구조체이다.FIG. 6 is a pupil-shaped spherical electrode structure obtained by firing the spherical electrode of FIG. 4 or 5 at about 800 ° C. by thermal decomposition of an ion exchange resin layer.
도 7은 본 발명의 구형 전기화학 셀(700)에 관한 것이다. 도면에 나타낸 것과 같이 구형체는 단위 전기분해 셀(700)의 기능을 한다. 구형 전기화학 셀(700)은 기본 전기분해 셀의 기본요소인 양극, 음극, 전해질 등을 가지고 있다. 구형 전기분해 셀은 전해질로 모재인 이온교환 가능한 이온전도체(710)를, 양극촉매로 양극 기능(산화반응)을 금속(720)을, 음극촉매는 음극 기능(환원기능)을 하는 금속(730)으로 구성된다. 본 발명에서 모재 위에 코팅되는 양극(720) 또는 음극 촉매(730)의 종류는 도 4에서 상술한 촉매의 종류와 같으며, 실제 구성에 있어서는 양극(720)과 음극 촉매(730)는 서로 다른 금속으로 구성하는 것이 가장 바람직하다.7 relates to a spherical electrochemical cell 700 of the present invention. As shown in the figure, the sphere functions as a unit electrolysis cell 700. The spherical electrochemical cell 700 has a positive electrode, a negative electrode, an electrolyte and the like which are basic elements of the basic electrolysis cell. The spherical electrolysis cell has an ion exchangeable ion conductor 710 as a base material as an electrolyte, a metal 720 for the anode function (oxidation reaction) as a cathode catalyst, and a metal 730 for the cathode function (reduction function) as the cathode catalyst. It consists of. In the present invention, the type of the anode 720 or the cathode catalyst 730 coated on the base material is the same as the type of the catalyst described above with reference to FIG. 4, and in the actual configuration, the anode 720 and the cathode catalyst 730 are different metals. It is most preferable to constitute.
본 구형 전기화학 셀의 경우는 1-5 ㎛가 바람직하다. 5 ㎛ 이상의 두께는 반응에 참여하지 않은 반응 층이 너무 커져 비활성 촉매의 양이 손실이 많아진다. In the case of this spherical electrochemical cell, 1-5 micrometers is preferable. The thickness of 5 mu m or more causes the reaction layer not participating in the reaction to become so large that the amount of inert catalyst is largely lost.
전극 촉매 층의 표면적(양극 층과 음극 층의 표면적 합)은 전기화학 반응의 목적에 따라 1-99% 사이를 포함할 수 있으나, 바람직하게 표면적(양극과 음극 촉매 표면의 합)은 30-90%가 바람직하다. 100%의 표면적은 양극과 음극의 접촉을 의미하며 이는 물리적 의미로 양극과 음극의 단락(shot)를 의미하며, 전기화학적 작용이 일어나지 않는다.The surface area of the electrode catalyst layer (surface area summation of the anode layer and cathode layer) may comprise between 1-99% depending on the purpose of the electrochemical reaction, but preferably the surface area (sum of anode and cathode catalyst surfaces) is 30-90. % Is preferred. 100% surface area means the contact between the positive electrode and the negative electrode, which means physically a shot of the positive electrode and the negative electrode, and no electrochemical action takes place.
양극촉매 금속(720)과 음극촉매 금속(730)을 형성하는 방법은 도 4에서 적용한 방법에 의해 형성 가능하다. 예를 들면, 먼저 양극촉매 금속(720) 한 개의 금속 촉매를 전체 표면적 중 일부에 흡착-환원법에 의해 부분적으로 형성시킨 후, 다시 음극촉매 금속(730)을 흡착-환원법에 의해 부분적으로 형성함으로써 구성할 수 있다. 양극촉매 금속(720)과 음극촉매 금속(730)이 서로 다른 위치에 형성되는 것은 흡착-환원방법에 의해 공정이 이루어지기 때문에 가능하다.The method of forming the anode catalyst metal 720 and the cathode catalyst metal 730 may be formed by the method applied in FIG. 4. For example, first, a metal catalyst of one anode catalyst metal 720 is partially formed by adsorption-reduction method on a part of the total surface area, and then the cathode catalyst metal 730 is partially formed by adsorption-reduction method. can do. It is possible to form the anode catalyst metal 720 and the cathode catalyst metal 730 at different positions because the process is performed by the adsorption-reduction method.
도 15는 도 7의 구형 전기분해 셀에 대한 사진으로서, 양극촉매 금속로 백금을 사용하고 음극촉매 금속으로 주석을 사용였다. 도 16는 도 10의 구형 전기분해 셀의 경계면을 확대하여 촬영한 사진이다.FIG. 15 is a photograph of the spherical electrolysis cell of FIG. 7, in which platinum is used as the anode catalyst metal and tin is used as the cathode catalyst metal. FIG. 16 is an enlarged photograph of an interface of the spherical electrolysis cell of FIG. 10.
이하 실시예에서 본 발명의 여러 구현예를 보다 구체적으로 설명하며, 다만 하기 실시예에 의해 본 발명의 범위를 제한하거나 축소하여 해석할 수 없다.In the following examples, various embodiments of the present invention are described in more detail, but the scope of the present invention is not limited or reduced by the following examples.
실시예 1-10: 구형전극의 제조Example 1-10: Preparation of Spherical Electrode
표 1
실시예1 실시예2 실시예3 실시예4
촉매종류 Pt Ru Ni Pd
전구체의 종류 Pt(NH3)6]Cl4 RuCl4 NiCl2 PdCl2
전구체 농도 1mM 1mM 1mM 1mM
흡착 시간 1 시간 1 시간 1 시간 1 시간
환원제종류 NaBH4 NaBH4 NaBH4 NaBH4
환원제농도 5% 5% 5% 5%
환원시간 1 시간 1 시간 1 시간 1 시간
환원 pH 8 8 8 8
석출여부 확인 SEM SEM SEM SEM
결과 표면에 코팅 확인 표면에 코팅 확인 표면에 코팅 확인 표면에 코팅 확인
Table 1
Example 1 Example 2 Example 3 Example 4
Catalyst type Pt Ru Ni Pd
Type of precursor Pt (NH 3 ) 6 ] Cl 4 RuCl 4 NiCl 2 PdCl 2
Precursor concentration 1 mM 1 mM 1 mM 1 mM
Adsorption time
1 hours 1 hours 1 hours 1 hours
Reducing Agent Type NaBH4 NaBH4 NaBH4 NaBH4
Reducing agent concentration 5% 5% 5% 5%
Reduction time
1 hours 1 hours 1 hours 1 hours
Reducing pH 8 8 8 8
Confirmation of precipitation SEM SEM SEM SEM
result Check coating on surface Check coating on surface Check coating on surface Check coating on surface
표 2
실시예5 실시예6 실시예7 실시예8
촉매종류 Ir Pb Sn Cu
전구체의 종류 IrCl4 Pb(SO4) SnCl4 CuSO4
전구체 농도 1mM 1mM 1mM 1mM
흡착 시간 1 시간 1 시간 1 시간 1 시간
환원제종류 NaBH4 NaBH4 NaBH4 NaBH4
환원제농도 5% 5% 5% 5%
환원시간 1 시간 1 시간 1 시간 1 시간
환원 pH 8 8 8 8
석출여부 확인 SEM SEM SEM SEM
결과 표면에 코팅 확인 표면에 코팅 확인 표면에 코팅 확인 표면에 코팅 확인
TABLE 2
Example 5 Example 6 Example 7 Example 8
Catalyst type Ir Pb Sn Cu
Type of precursor IrCl 4 Pb (SO 4 ) SnCl 4 CuSO 4
Precursor concentration 1 mM 1 mM 1 mM 1 mM
Adsorption time
1 hours 1 hours 1 hours 1 hours
Reducing Agent Type NaBH4 NaBH4 NaBH4 NaBH4
Reducing agent concentration 5% 5% 5% 5%
Reduction time
1 hours 1 hours 1 hours 1 hours
Reducing pH 8 8 8 8
Confirmation of precipitation SEM SEM SEM SEM
result Check coating on surface Check coating on surface Check coating on surface Check coating on surface
표 3
실시예 9 실시예 10
촉매종류 Pt/TiO2 Pt(양극), Ni(음극)
전구체의 종류 TiCl4(1차) H2PtCl6(2차) Pt(NH3)6]Cl4NiCl2
전구체 농도 1 mM 1 mM/1mM
흡착 시간 1 시간 1 시간
환원제종류 NaBH4 NaBH4
환원제농도 5% 5%
환원시간 1 시간 1 시간
환원 pH 8 8
석출여부 확인 SEM SEM
결과 표면에 코팅 확인 표면에 코팅 확인
TABLE 3
Example 9 Example 10
Catalyst type Pt / TiO2 Pt (anode), Ni (cathode)
Type of precursor TiCl 4 (primary) H 2 PtCl 6 (secondary) Pt (NH 3 ) 6 ] Cl 4 NiCl 2
Precursor concentration 1 mM 1 mM / 1 mM
Adsorption time
1 hours 1 hours
Reducing Agent Type NaBH4 NaBH4
Reducing agent concentration 5% 5%
Reduction time
1 hours 1 hours
Reducing pH 8 8
Confirmation of precipitation SEM SEM
result Check coating on surface Check coating on surface
도 8은 실시예 9에서 얻어진 1차 Ti의 코팅 상태를 보여주는 SEM 사진이다. Ti가 일정 모양으로 잘 발달 되었음을 보여 준다. 8 is a SEM photograph showing the coating state of the primary Ti obtained in Example 9. Ti shows well developed in a certain shape.
도 9은 실시예 9에서 얻어진 2차 Pt의 코팅 상태를 보여주는 SEM 사진이다. Pt가 한 곳에 몰려 있지 않고 균일하게 분산되어 있음을 알 수 있다.9 is a SEM photograph showing the coating state of the secondary Pt obtained in Example 9. It can be seen that Pt is not dispersed in one place but is uniformly dispersed.
도 10은 실시예 9에서 얻은 시료의 XRD 분석 사진이다. 원하는 Pt, TiO2 등이 형성되어 있음을 알 수 있다. Ti 형태가 TiO2인 것은 물속의 산소와 결합되어 산화물이 된 것으로 추정된다.10 is an XRD analysis photograph of a sample obtained in Example 9. FIG. It can be seen that desired Pt, TiO 2 and the like are formed. It is assumed that the Ti form is TiO 2 , which is combined with oxygen in water to become an oxide.
실시예 11: 구형 Pt/TiO2 이온교환 수지(모재)를 이용한 염소산 이온 제조Example 11 Preparation of Chloride Ion Using Spherical Pt / TiO 2 Ion Exchange Resin (Material)
1. 구형전극의 제조(실시예 9 참조)1. Preparation of Spherical Electrode (see Example 9)
2. 전기분해셀의 구조2. Structure of Electrolysis Cell
(1) 전기분해 셀의 구조도: 도 11(1) Structure diagram of the electrolysis cell: Fig. 11
(2) 전기분해 셀의 구조 값(2) Structural value of electrolysis cell
표 4
파라메터
격막의 유무 없음
양극-음극 사이의 거리 4 mm
양극 급전체의 종류 및 크기 Ti 위에 IrO2-RuO2 열분해전극4cm x 4 cm
음극 급전체의 종류 및 크기 Ti 위에 Pt 전기도금 전극4cm x 4 cm
음극 급전체위에 단락방지체 기공율 80%의 나일론 고분자 계열 부직포
충진 전극의 위치 양극과 음극사이 4mm 공간에 충진
Table 4
Parameter value
Presence of diaphragm none
Distance between anode and cathode 4 mm
Type and Size of Anode Feeder IrO 2 -RuO 2 pyrolysis electrode over Ti4cm x 4 cm
Type and Size of Cathode Feeder Pt Electroplating Electrode Over Ti4cm x 4cm
Short circuit protector on anode feeder Nylon polymer nonwoven fabric with a porosity of 80%
Position of the filling electrode Fill in 4mm space between anode and cathode
3. 전기분해셀의 운전조건3. Operation condition of electrolysis cell
표 5
파라메터
전류밀도 0.1 A/cm2
전해질 소금 3% 수용액
전해질 체류시간(min) 10
Table 5
Parameter value
Current density 0.1 A / cm2
Electrolyte
3% salt solution
Electrolyte residence time (min) 10
4. 성능분석4. Performance Analysis
(1) 전류효율의 계산 방법(1) Calculation method of current efficiency
전류효율은 가해준 전류(I)에 대하여 발생된 차아염소산의 실제값을 이론양으로 나눈 것으로 다음식에 의해 값을 얻을 수 있다.The current efficiency is obtained by dividing the actual value of hypochlorous acid generated with respect to the applied current (I) by the theoretical amount.
전류효율(%)=(F×ρ×V)/(35500(mg)×I×t)}×100 Current efficiency (%) = (F × ρ × V) / (35500 (mg) × I × t)} × 100
여기서 F는 파라데이 상수로 96500(C), ρ는 실제 잔류 염소 농도(ppm,mg/L), V는 전기분해 셀에 공급한 물의 수량(L), I는 통전전류(A), t는 전기분해 시간(s)이다.Where F is the Faraday constant, 96500 (C), ρ is the actual residual chlorine concentration (ppm, mg / L), V is the quantity of water supplied to the electrolysis cell (L), I is the current carrying current (A), and t is Electrolysis time (s).
(2) 성능 파라메터 및 측정 방법(2) performance parameters and measurement methods
표 6
파라메터 분석방법 분석간격(시간) 결과
전압 멀티미터로 측정 1시간 도 11에 실시예11로 표시
염소농도 요오드적정법 1시간 도 12에 실시예11로 표시
전류효율 식 1에의해 계산 1시간 도 13에 실시예11로 표시
Table 6
Parameter Analysis method Analysis interval (hours) result
Voltage Measure with multimeter 1 hours Marked as Example 11 in FIG.
Chlorine Concentration Iodine titration 1 hours Marked as Example 11 in FIG.
Current efficiency Calculation by Equation 1 1 hours Marked as Example 11 in FIG.
비교예 1: 기존 전기분해 셀을 이용한 염소산 이온 제조 Comparative Example 1: Preparation of chlorate ions using an existing electrolysis cell
1. 전기분해셀의 구조1. Structure of electrolysis cell
표 7
파라메터
격막의 유무 없음
양극-음극 사이의 거리 4 mm
양극(급전체)의 종류 및 크기 Ti 위에 IrO2-RuO2 열분해전극4cm x 4 cm
음극(급전체)의 종류 및 크기 Ti 위에 Pt 전기도금 전극4cm x 4 cm
음극 급전체위에 단락방지체 없음
충진 전극의 위치 없음
TABLE 7
Parameter value
Presence of diaphragm none
Distance between anode and cathode 4 mm
Type and size of anode IrO 2 -RuO 2 pyrolysis electrode over Ti4cm x 4 cm
Type and Size of Cathode Pt Electroplating Electrode Over Ti4cm x 4cm
Short circuit protector on anode feeder none
Position of the filling electrode none
2. 전기분해셀의 운전조건2. Operation condition of electrolysis cell
표 8
파라메터
전류밀도 0.1 A/cm2
전해질 소금 3% 수용액
전해질 체류시간(min) 10
Table 8
Parameter value
Current density 0.1 A / cm2
Electrolyte
3% salt solution
Electrolyte residence time (min) 10
3. 성능분석3. Performance Analysis
표 9
파라메터 분석방법 분석간격(시간) 결과
전압 멀티미터로 측정 1시간 도 11에 비교예1로 표시
염소농도 요오드적정법 1시간 도 12에 비교예1로 표시
전류효율 식 1에의해 계산 1시간 도 13에 비교예1로 표시
Table 9
Parameter Analysis method Analysis interval (hours) result
Voltage Measure with multimeter 1 hours Marked as Comparative Example 1 in FIG.
Chlorine Concentration Iodine titration 1 hours Marked as Comparative Example 1 in FIG.
Current efficiency Calculation by Equation 1 1 hours Displayed as Comparative Example 1 in FIG.
도 11에서와 같이 본 발명의 전극과 비교예 전극의 전해 전압은 동일하나, 도 12에서는 본 발명의 전극과 비교예 전극의 염소 발생농도는 2배 이상의 차이를 보이고 있다. 이는 동일 공간에서 전극의 면적이 커지고, 충진 전극에서의 전류밀도가 낮아 전류효율이 높아진 것으로 보인다. 도 13은 본 발명의 전극과 비교예 전극의 전류효율 비교로서, 도 10, 도 11의 결과와 비교예 1에서 언급한 전류효율 식으로부터 얻어졌다.As shown in FIG. 11, the electrolytic voltages of the electrode of the present invention and the comparative example electrode are the same, but in FIG. 12, the chlorine generation concentrations of the electrode of the present invention and the comparative example electrode are more than two times different. This is because the area of the electrode in the same space and the current density in the filling electrode is low, the current efficiency seems to increase. FIG. 13 is a current efficiency comparison between the electrode of the present invention and the comparative example electrode, obtained from the results of FIGS. 10 and 11 and the current efficiency equations mentioned in Comparative Example 1. FIG.

Claims (8)

  1. 이온교환 수지 모재 및 상기 이온교환 수지 모재 위에 코팅되어 있는 제1 전극층을 포함하는 전기화학 셀용 전극으로서,An electrode for an electrochemical cell comprising an ion exchange resin base material and a first electrode layer coated on the ion exchange resin base material,
    상기 전기화학 셀용 전극은 구형, 그래뉼, 비드, 그레인, 파이버 중에서 선택된 형태를 지니는 것을 특징으로 하는 전기화학 셀용 전극.The electrode for an electrochemical cell is an electrode for an electrochemical cell, characterized in that it has a form selected from spherical, granules, beads, grains, fibers.
  2. 제1항에 있어서, 상기 제1 전극층은 상기 전기화학 셀용 전극의 전체 표면적의 1-100%에 코팅되어 있는 것을 특징으로 하는 전기화학 셀용 전극.The electrode of claim 1, wherein the first electrode layer is coated on 1-100% of the total surface area of the electrode for electrochemical cells.
  3. 제2항에 있어서, 상기 전기화학 셀용 전극은 제2 전극층을 추가로 포함하며, 상기 제2 전극층은 상기 이온교환 수지 모재 표면에 코팅되어 있고, 상기 제1 전극층은 상기 제2 전극층 표면에 코팅되어 있는 것을 특징으로 하는 전기화학 셀용 전극.The electrode for an electrochemical cell of claim 2, further comprising a second electrode layer, wherein the second electrode layer is coated on the surface of the ion exchange resin matrix, and the first electrode layer is coated on the surface of the second electrode layer. Electrochemical cell electrode, characterized in that there is.
  4. 제3항에 있어서, 상기 전기화학 셀용 전극은 상기 제1 전극층 표면에 코팅되어 있는 제3 전극층을 추가로 포함하는 것을 특징으로 하는 전기화학 셀용 전극.The electrode for an electrochemical cell of claim 3, wherein the electrode for an electrochemical cell further comprises a third electrode layer coated on the surface of the first electrode layer.
  5. 제3항에 있어서, 상기 모재는 강산성 폴리스타일렌 디비닐벤젠 공중합체(polystyrene divinylbenzene cross-linked) 양이온 수지; 약산성 폴리스타일렌 디비닐벤젠 공중합체 양이온 수지; 이미노디아세틱산(iminodiacetic acid) 폴리스타일렌 디비닐 공중합체 킬레이팅(chelating) 양이온 수지; 강염기성 폴리스타일렌 디비닐벤젠형 음이온수지; 약염기성 폴리스타일렌 디비닐벤젠 음이온수지; 강염기/음염기형 폴리스타일렌 디비닐벤젠 음이온수; 강염기/음염기형 아크릴 음이온수지; 강산형 퍼플로로 설폰화(perfluoro sulfonated) 양이온수지; 강염기성 퍼플로로 아민화(perfluoro aminated) 음이온 수지; 천연 음이온 교환체;천연 양이온 교환체; 다공성 무기물 및 이들의 혼합물 중에서 선택되고;The method of claim 3, wherein the base material is a strong acid polystyrene divinylbenzene cross-linked cation resin; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strong basic polystyrene divinylbenzene type anionic resins; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Strong acid perfluoro sulfonated cationic resins; Strongly basic perfluoro aminated anion resins; Natural anion exchangers; natural cation exchangers; Selected from porous inorganics and mixtures thereof;
    상기 제1 전극층은 백금족의 금속(백금, 루테늄, 로듐, 파라듐, 오스뮴, 이리듐)외에 금, 은, 크롬, 철, 납, 티타늄, 망간, 코벨트, 니켈, 몰리브덴, 텅스텐, 알루미늄, 규소, 아연, 주석 및 이들의 합금 또는 혼합물 중에 선택되며; 상기 제2 전극층은 티타늄, 은, 구리, 주석 및 이들의 합금 또는 혼합물 중에서 선택되고;The first electrode layer is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, molybdenum, tungsten, aluminum, silicon, Zinc, tin and alloys or mixtures thereof; The second electrode layer is selected from titanium, silver, copper, tin and alloys or mixtures thereof;
    상기 제1 전극층 및 상기 제2 전극층은 각각 0.1-5 ㎛의 두께를 가지는 것을 특징으로 하는 전기화학 셀용 전극.And the first electrode layer and the second electrode layer each have a thickness of 0.1-5 μm.
  6. 이온교환 수지 모재,Ion exchange resin base material,
    상기 이온교환 수지 모재 표면에 코팅되어 있는 제1 전극층, 및A first electrode layer coated on the surface of the ion exchange resin base material, and
    상기 이온교환 수지 모재 표면에 코팅되어 있는 제2 전극층을 포함하는 전기화학 셀로서,An electrochemical cell comprising a second electrode layer coated on a surface of the ion exchange resin base material,
    상기 전기화학 셀용 전극은 구형, 그래뉼, 비드, 그레인, 파이버 중에서 선택된 형태를 지니고,The electrode for the electrochemical cell has a form selected from spherical, granules, beads, grains, fibers,
    상기 제1 전극층과 상기 제2 전극층은 각각 양극과 음극 또는 음극과 양극인 것을 특징으로 하는 전기화학 셀.And wherein the first electrode layer and the second electrode layer are an anode and a cathode or a cathode and an anode, respectively.
  7. 제6항에 있어서, 상기 제1 전극층 및 상기 제2 전극층의 표면적의 합은 상기 전기화학 셀용 전극의 전체 표면적의 1-99%이며, 상기 제1 전극층 및 상기 제2 전극층은 각각 상기 전기화학 셀용 전극의 전체 표면적의 0.5-60%에 코팅되어 있는 것을 특징으로 하는 전기화학 셀.The method of claim 6, wherein the sum of the surface areas of the first electrode layer and the second electrode layer is 1-99% of the total surface area of the electrode for the electrochemical cell, and the first electrode layer and the second electrode layer are respectively used for the electrochemical cell. An electrochemical cell, which is coated at 0.5-60% of the total surface area of the electrode.
  8. 제7항에 있어서, 상기 모재는 강산성 폴리스타일렌 디비닐벤젠 공중합체(polystyrene divinylbenzene cross-linked) 양이온 수지; 약산성 폴리스타일렌 디비닐벤젠 공중합체 양이온 수지; 이미노디아세틱산(iminodiacetic acid) 폴리스타일렌 디비닐 공중합체 킬레이팅(chelating) 양이온 수지; 강염기성 폴리스타일렌 디비닐벤젠형 음이온수지; 약염기성 폴리스타일렌 디비닐벤젠 음이온수지; 강염기/음염기형 폴리스타일렌 디비닐벤젠 음이온수; 강염기/음염기형 아크릴 음이온수지; 강산형 퍼플로로 설폰화(perfluoro sulfonated) 양이온수지; 강염기성 퍼플로로 아민화(perfluoro aminated) 음이온 수지; 천연 음이온 교환체;천연 양이온 교환체; 다공성 무기물 및 이들의 혼합물 중에서 선택되고;The method of claim 7, wherein the base material is a strong acid polystyrene divinylbenzene cross-linked cation resin; Weakly acidic polystyrene divinylbenzene copolymer cationic resin; Iminodiacetic acid polystyrene divinyl copolymer chelating cationic resins; Strong basic polystyrene divinylbenzene type anionic resins; Weakly basic polystyrene divinylbenzene anion resin; Strong base / negative polystyrene divinylbenzene anion water; Strong base / negative base type acrylic anion resin; Strong acid perfluoro sulfonated cationic resins; Strongly basic perfluoro aminated anion resins; Natural anion exchangers; natural cation exchangers; Selected from porous inorganics and mixtures thereof;
    상기 제1 전극층은 백금족의 금속(백금, 루테늄, 로듐, 파라듐, 오스뮴, 이리듐)외에 금, 은, 크롬, 철, 납, 티타늄, 망간, 코벨트, 니켈, 몰리브덴, 텅스텐, 알루미늄, 규소, 아연, 주석 및 이들의 합금 또는 혼합물 중에 선택되며;The first electrode layer is a metal of platinum group (platinum, ruthenium, rhodium, palladium, osmium, iridium), gold, silver, chromium, iron, lead, titanium, manganese, cobelt, nickel, molybdenum, tungsten, aluminum, silicon, Zinc, tin and alloys or mixtures thereof;
    상기 제1 전극층은 0.1-5 ㎛의 두께를 가지는 것을 특징으로 하는 전기화학 셀.Wherein said first electrode layer has a thickness of 0.1-5 μm.
PCT/KR2009/007012 2009-10-30 2009-11-26 Spherical electrode and electrolysis cell including same WO2011052842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/504,235 US20120267242A1 (en) 2009-10-30 2009-11-26 Spherical electrode and electrolysis cell including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0104524 2009-10-30
KR20090104524 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052842A1 true WO2011052842A1 (en) 2011-05-05

Family

ID=43922259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007012 WO2011052842A1 (en) 2009-10-30 2009-11-26 Spherical electrode and electrolysis cell including same

Country Status (2)

Country Link
US (1) US20120267242A1 (en)
WO (1) WO2011052842A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849885B (en) * 2012-12-06 2016-12-21 清华大学 Cathod catalyst, cathode material and preparation method thereof and reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652059A (en) * 1991-11-20 1997-07-29 Bar Ilan University Method for attaching microspheres to a substrate
US20060169580A1 (en) * 2003-10-20 2006-08-03 Vladimir Grebenyuk Spiral electrodeionization device with segregated ionic flows

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074075B2 (en) * 1991-02-28 1995-01-18 工業技術院長 Actuator element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652059A (en) * 1991-11-20 1997-07-29 Bar Ilan University Method for attaching microspheres to a substrate
US20060169580A1 (en) * 2003-10-20 2006-08-03 Vladimir Grebenyuk Spiral electrodeionization device with segregated ionic flows

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 34, no. 5, March 2009 (2009-03-01), pages 2164 - 2173 *

Also Published As

Publication number Publication date
US20120267242A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
CN104114748B (en) Electrolyzer and electrolysis bath
US4191618A (en) Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4732660A (en) Membrane electrolyzer
KR101082859B1 (en) Precious metal oxide catalyst for water electrolysis
JP3859358B2 (en) Electrolyzed water production equipment
KR101326120B1 (en) Electrolysis Module and Oxygen Generator with the Same
KR101399172B1 (en) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US20170271697A1 (en) Membrane electrode assembly, and electrochemical cell and electrochemical stack using same
EP0255099B1 (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
CA2456048A1 (en) Electrolysis cell, particularly for electrochemically producing chlorine
US4455210A (en) Multi layer ion exchanging membrane with protected interior hydroxyl ion rejection layer
US20180274112A1 (en) Membrane electrode assembly for electrochemical cell
JP4190026B2 (en) Gas diffusion electrode
US4608144A (en) Electrode and electrolytic cell
KR20090091503A (en) The oxygen generator
JP3421021B2 (en) Electrolysis method of alkali chloride
WO2011052842A1 (en) Spherical electrode and electrolysis cell including same
US4956061A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US6066248A (en) Process for aqueous HCl electrolysis with thin film electrodes
US4402806A (en) Multi layer ion exchanging membrane with protected interior hydroxyl ion rejection layer
KR101181658B1 (en) Spherical electrode and electrochemical cell comprising the same
KR20200052752A (en) Long Life Membrane Electrode Assembly and the Electrochemical Cell using Membrane Electrode Assembly
Han et al. Electrochemical generation of ozone using solid polymer electrolyte-State of the art
KR20210000073A (en) Hydrogen production system using acid-base solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13504235

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09850913

Country of ref document: EP

Kind code of ref document: A1