WO2011052447A1 - 移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラム - Google Patents

移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラム Download PDF

Info

Publication number
WO2011052447A1
WO2011052447A1 PCT/JP2010/068474 JP2010068474W WO2011052447A1 WO 2011052447 A1 WO2011052447 A1 WO 2011052447A1 JP 2010068474 W JP2010068474 W JP 2010068474W WO 2011052447 A1 WO2011052447 A1 WO 2011052447A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
station apparatus
transmission
base station
frequency band
Prior art date
Application number
PCT/JP2010/068474
Other languages
English (en)
French (fr)
Inventor
和豊 王
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP16180231.9A priority Critical patent/EP3099000B1/en
Priority to EP10826579.4A priority patent/EP2496033B1/en
Priority to CN201080048191.9A priority patent/CN102742340B/zh
Priority to EA201270456A priority patent/EA021915B1/ru
Priority to MX2012004770A priority patent/MX2012004770A/es
Publication of WO2011052447A1 publication Critical patent/WO2011052447A1/ja
Priority to US13/454,707 priority patent/US8824403B2/en
Priority to US14/142,589 priority patent/US9699770B2/en
Priority to US15/617,863 priority patent/US10015779B2/en
Priority to US16/025,821 priority patent/US10455561B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to a mobile station device, a base station device, a wireless communication system, a communication control method, and a communication control program.
  • 3GPP 3 rd Generation Partnership Project; 3rd Generation Partnership Project
  • GSM Global System for Mobile Communications ; Jiesuemu
  • W-CDMA Wideband-Code Division Multiple Access; Wideband - Code Division Multiple Access
  • EUTRA Evolved Universal Terrestrial Radio Access
  • LTE-A Advanced EUTRA
  • LTE-A proposes Carrier Aggregation (hereinafter referred to as CA) technology as a technology capable of high-speed data transmission equivalent to or higher than IMT-Advanced (4G) while maintaining compatibility with EUTRA.
  • CA Carrier Aggregation
  • the CA technology means that the mobile station apparatus has a plurality of downlink component carriers transmitted from the base station apparatus and each having a narrow continuous frequency band width (element carrier; Component Carrier, hereinafter referred to as CC, for example, 20 MHz bandwidth).
  • CC element carrier
  • Is a technique for simultaneously receiving signals and forming a carrier signal having a pseudo wide frequency bandwidth (for example, 100 MHz bandwidth with five CCs) to realize high-speed downlink data transmission.
  • the base station apparatus simultaneously receives a plurality of uplink component carrier CC signals transmitted from the mobile station apparatus and having a narrow continuous bandwidth or non-continuous frequency bandwidth (for example, 20 MHz bandwidth).
  • a carrier signal having a wide frequency bandwidth (for example, 40 MHz bandwidth with two CCs) is formed to realize high-speed uplink data transmission.
  • the CC combination in CA technology includes the total number of uplink CCs (for example, 2), the total number of downlink CCs (for example, 5), and the frequency band (for example, 700 MHz band, 2 GHz) Bands, 3 GHz bands, etc.) depending on various variables such as number (eg 3), continuous or discontinuous CC, transmission mode (eg FDD, TDD).
  • FIG. 34 is a schematic diagram showing a combination of CCs according to the prior art.
  • the horizontal axis indicates the frequency.
  • this figure shows a case where there are two frequency bands 1 (2 GHz band) and frequency band 2 (3 GHz band).
  • cases 1 to 6 are shown in the vertical direction, cases 1 to 3 show the case of FDD (Frequency Division ; Duplex) transmission mode, and cases 4 to 6 show TDD (Time Division ⁇ Duplex). ; Time division duplex) Indicates transmission mode.
  • FDD Frequency Division ; Duplex
  • TDD Time Division ⁇ Duplex
  • Case 1 shows that in the same frequency band 1, three consecutive CCs (center frequencies f1_R1, f1_R2, f1_R3) in band 12 (downstream) and two consecutive CCs in band 11 (upstream).
  • the combination of CC when (center frequency f1_T1, f1_T2) is selected is shown.
  • Case 2 includes two CCs that are discontinuous in the band 12 (center frequencies f1_R1, f1_R3; Intra CA case) and two CCs that are discontinuous in the band 11 (center frequency f1_T1) in the same frequency band 1 , F1_T3) is a combination of CCs.
  • Case 3 is CC (center frequency f1_R1) in band 12 of frequency band 1, CC (center frequency f2_R1) in band 22 of frequency band 2, and CC (center frequency f1_T1) in band 11 of frequency band 1.
  • the combination of CCs when selected is shown.
  • Case 3 indicates that two discontinuous CCs (Inter CA cases) are selected in different frequency bands 1 and 2 in downlink communication, and one CC is selected in downlink communication.
  • Cases 4, 5, and 6 correspond to cases 1, 2, and 3, respectively.
  • Case 4 shows a combination of CCs when band 12 is used for downlink / uplink communication and CCs are selected according to time zones.
  • Case 4 is a case where three consecutive CCs (center frequencies f1_1, f1_2, f1_3) are selected in band 12 in downlink communication, and two consecutive CCs (center frequencies f1_1, f1_2) are selected in band 12 in downlink communication. The combination of CC is shown.
  • a plurality of base station apparatuses transmit transmission signals in synchronization with the timing of frames or the like (referred to as inter-base station apparatus synchronization).
  • inter-base station apparatus synchronization In the case where each base station device is independently transmitting a transmission signal, or when synchronization between base station devices is performed, a propagation path delay occurs.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Non-Patent Document 1 For base station apparatus transmission of continuous CCs (for example, center frequencies f1_R1 and f1_R2) in the same frequency band, backward compatibility to the LTE system, 100 kHz UMTS (Universal Mobile Telecommunications System) radio channel raster (Channel Raster), guard bands between CCs, guard bands at both ends of a continuous CC, frequency utilization efficiency, and other factors have been proposed (for example, Non-Patent Document 1).
  • a continuous CC since the guard band between CCs does not become an integral multiple of the subcarrier bandwidth 15 kHz, a separate baseband processing circuit is required in the transmission / reception circuit in order to maintain compatibility with the LTE system.
  • the configuration of the mobile station apparatus is (a) the number of frequency bands, (b) the total number of downlink / uplink CCs, (c) continuous / discontinuous (Intra CA / Inter CA). ) CC, (d) wireless transmission mode, (e) synchronous / asynchronous transmission between downlink CCs or base station devices, (f) various CC bandwidths (eg 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz), and (g) OFDM subcarrier bandwidth, which depends on a continuous CC bandwidth (for example, 100 MHz) having a bandwidth of 15 kHz (for example, Non-Patent Documents 2 and 3).
  • Non-patent Document 4 when the mobile station device is moving at high speed, the downlink is 100 Mbps, the uplink is 75 Mbps, and the mobile station device is fixed, the downlink is 1000 Mbps, and the uplink is 500 Mbps. Data transmission speed is required.
  • a MIMO advanced (High Order MIMO) technology is introduced.
  • downlink 8 ⁇ 8 MIMO (8 transmission antennas in the base station apparatus and 8 reception antennas in the mobile station apparatus) realizes a data transmission rate of 1000 Mbps in a 100 MHz transmission band, and 4 ⁇ 4 uplink MIMO Thus, a 600 Mbps data transmission rate is realized in a 40 MHz transmission band.
  • coordinated communication CoMP: coordinated multipoint
  • the configuration of the mobile station apparatus also depends on (K) downlink / uplink MIMO scheme, (K) cooperative communication CoMP scheme between base station apparatuses, (K) uplink transmission diversity scheme, and the like.
  • Non-Patent Documents 4 and 5 are common bands in each country, and each mobile phone service operator is operated by frequency allocation in their own country. Depending on the frequency allocation situation in each country, mobile phone service operators adopt different transmission modes (TDD, FDD). Also, fusion of different transmission modes (for example, a mixture of different transmission modes in the macro cell / micro cell, indoor / outdoor area, cell vicinity / cell edge) has been proposed. Therefore, the configuration of the mobile station apparatus becomes more complicated in consideration of (sa) the frequency allocation situation of each mobile phone service operator and (f) domestic / international roaming (Non-Patent Documents 6, 7, 8).
  • LTE-A technical elements did not significantly affect the configuration of the mobile station apparatus in the conventional mobile communication system.
  • the mobile station device category (1 ⁇ 1, 2 ⁇ 2, 4 ⁇ 4) and the mobile station device category (1 ⁇ 1, 2 ⁇ 2, 4 ⁇ 4) have a data processing software buffer size (maximum downlink data rate of 10 Mbps to 300 Mbps).
  • UE category, 5 types) could be defined. If this category is determined, the configuration of the mobile station apparatus can be determined. In other words, it is only necessary to provide each mobile phone service operator with five types of mobile station apparatuses, and it is sufficient that five types of mobile station apparatuses are distributed in the market.
  • NTT docomo INC. R1-083015, 3GPP TSG-RAN1 Meeting # 54bis, Jeju, Korea 18-22, August, 2008 Motoroal, R1-083828, 3GPP TSG-RAN1 Meeting # 53bis, Prague, Czech Republic, September 29-October 3, 2008 LG Electronics, R1-082946, 3GPP TSG-RAN1, Meeting # 54bis, Jeju, Korea 18-22, August, 2008 3GPP TR36.913, Requirements for Further Advancements for E-UTRA 3GPP TS 36.101, User Equipment (UE) radio transmission and reception NTT docomo, T-Mobile Intl., CMCC, Orange, Vodafone, Telecom Italia, R4-091011, 3GPP TSG-RAN WG4 Meeting # 50, Athens, Greece, February 9-13, 2009 Ericsson, R4-090594, 3GPP TSG-RAN WG4 Meeting # 50, Athens, Greece, February 9-13, 2009 Nokia, R4-091204, 3GPP-TSG-RAN WG4 Meeting # 50bis,
  • the mobile station apparatus and the base station apparatus communicate using one or a plurality of CCs (element carriers).
  • CCs element carriers
  • the mobile station apparatus may not be able to communicate using the allocated CC.
  • Appropriate mobile station device radio resource allocation is not possible.
  • the conventional technique has a drawback that radio resources appropriate for communication between the mobile station apparatus and the base station apparatus cannot be allocated.
  • the present invention has been made in view of the above points, and a mobile station device, a base station device, a wireless communication system, and a communication control method capable of assigning appropriate radio resources for communication between the mobile station device and the base station device And a communication control program.
  • the present invention has been made to solve the above problems, and the present invention uses a mobile station that communicates with a base station apparatus using one or a plurality of element carriers having a predetermined frequency band.
  • transmission / reception capability information including information on the element carrier that can be used for communication with the base station device is transmitted to the base station device, and the element carrier assigned by the base station device based on the transmission / reception capability information is transmitted.
  • a mobile station device that performs communication with the base station device.
  • the mobile station apparatus communicates with the base station apparatus using one or a plurality of element carriers in each of a plurality of frequency bands, and the base station apparatus Transmission / reception capability information including information on frequency bands that can be used for communication with the base station apparatus is transmitted to the base station apparatus.
  • the mobile station apparatus includes one or a plurality of frequency band reception processing units that receive and process frequency band signals, and the frequency band reception processing unit receives and processes element carrier signals.
  • the information on the frequency band is information indicating the number of the frequency band reception processing units
  • the information on the element carrier is the number of the frequency band reception processing units. It is characterized by that.
  • the information about the frequency band is information indicating a frequency band that can be received and processed by the frequency band reception processing unit
  • the information about the element carrier is the frequency In the frequency band received by the band reception processing unit
  • each element carrier reception process included in the frequency band reception processing unit is information on the maximum frequency band that can be received.
  • the mobile station apparatus includes one or more frequency band transmission processing units that perform transmission processing of frequency band signals, and the frequency band transmission processing unit performs transmission processing of element carrier signals.
  • One or more element carrier transmission processing units are provided, the information on the frequency band is information indicating the number of the frequency band transmission processing units, and the information on the element carrier indicates the number of the element carrier transmission processing units It is characterized by being information.
  • the information about the frequency band is information indicating a frequency band that can be transmitted by the frequency band transmission processing unit
  • the information about the element carrier is the frequency In the frequency band that the band transmission processing unit performs transmission processing
  • each element carrier transmission process included in the frequency band transmission processing unit is information on the maximum frequency band that can be transmitted.
  • the transmission speed of communication with the base station apparatus the number of data streams that the own apparatus can use for communication at the transmission speed, and the element carrier A mobile station category determined on the basis of a combination of numbers, to the base station device, and using the element carriers assigned by the base station device based on the transmission / reception capability information and the mobile station category, Communication with a station apparatus is performed.
  • the mobile station category includes a transmission rate, a combination of the number of data streams and the number of element carriers that can be used for communication at the transmission rate, Is determined based on the mobile station category correspondence information associated with.
  • the present invention provides identification information of a combination of the number of data streams and the number of element carriers that can be used for communication at a transmission rate corresponding to the mobile station category information.
  • the information on the element carrier is transmitted to the base station apparatus.
  • the present invention provides a communication control method in a mobile station apparatus that communicates with a base station apparatus by using one or a plurality of element carriers having a predetermined frequency band.
  • a process of transmitting transmission / reception capability information including information on element carriers that can be used for communication with the device to the base station device, and the mobile station device assigned by the base station device based on the transmission / reception capability information A communication control method comprising: communicating with the base station apparatus using an element carrier.
  • a computer of a mobile station apparatus that communicates with a base station apparatus using one or a plurality of element carriers having a predetermined frequency band is used for communication with the base station apparatus.
  • the present invention provides a radio communication system comprising a base station apparatus and a mobile station apparatus that communicates with the base station apparatus using one or more element carriers having a predetermined frequency band.
  • the mobile station device transmits transmission / reception capability information including information on element carriers that can be used for communication with the base station device to the base station device, and the base station device is based on the transmission / reception capability information.
  • a wireless communication system is characterized in that element carriers used for communication are allocated to the mobile station apparatus.
  • the present invention provides an element carrier that can be used for communication by the mobile station apparatus in a base station apparatus that communicates with the mobile station apparatus using one or a plurality of element carriers having a predetermined frequency band.
  • the base station apparatus is characterized in that element carriers used for communication are allocated to the mobile station apparatus on the basis of transmission / reception capability information including information related to the transmission.
  • the communication system can allocate an appropriate CC for communication between the mobile station apparatus and the base station apparatus.
  • FIG. 1 is a conceptual diagram of a communication system according to a first embodiment of the present invention. It is the schematic which shows the combination of CC which concerns on this embodiment. It is a schematic block diagram which shows the structure of the transmission / reception apparatus which concerns on this embodiment. It is a schematic block diagram which shows the simple structure of the transmission / reception apparatus which concerns on this embodiment. It is explanatory drawing of the radio
  • FIG. 3 is a schematic diagram of an LTE mobile station category according to the prior art.
  • the mobile station apparatus transmits a mobile station apparatus capability message (transmission / reception capability information) including the number of RF transmission / reception branches, the number of baseband modulation / demodulation branches, the frequency band number, and the baseband frequency bandwidth number, and the base station Radio resources used by the apparatus for communication with the mobile station apparatus based on the mobile station apparatus capability message, that is, resource blocks used by each mobile station apparatus in an OFDM signal radio frame of an uplink / downlink component carrier CC (Component Carrier)
  • RB Resource Block
  • the mobile station apparatus capability message corresponds to various LTE-A technical elements by generating information in one data format in which a wireless parameter such as the number of RF transmission / reception branches is represented by a unified structure description. .
  • FIG. 1 is a conceptual diagram of a communication system according to the first embodiment of the present invention.
  • base station apparatus B communicates with mobile station apparatuses A11 and A12.
  • the mobile station apparatus A11 transmits a mobile station apparatus capability message to the base station apparatus B.
  • base station apparatus B allocates radio resources to mobile station apparatus A11 based on the mobile station apparatus capability message received from mobile station apparatus A11.
  • communication from the mobile station device A11 or A12 to the base station device B is referred to as uplink communication
  • communication from the base station device B to the mobile station device A11 or A12 is referred to as downlink communication.
  • each of the mobile station devices A11 and A12 is referred to as a mobile station device A1.
  • the mobile station apparatus A1 and the base station apparatus B perform communication using a carrier aggregation (hereinafter referred to as CA technology) technology.
  • CA technology a carrier aggregation
  • the mobile station apparatus A1 simultaneously receives signals using a plurality of downlink continuous or non-consecutive element carriers having a narrow frequency bandwidth (for example, 20 MHz bandwidth) transmitted from the base station apparatus B, This is a technique for realizing a high-speed downlink data transmission by forming a carrier signal having a pseudo wide frequency bandwidth (for example, 100 MHz bandwidth with five CCs).
  • the base station apparatus B simultaneously receives a plurality of uplink component carrier CC signals transmitted from the mobile station apparatus A1 and having a narrow continuous or non-continuous frequency bandwidth (for example, 20 MHz bandwidth), A carrier signal having a wide frequency bandwidth (for example, 40 MHz bandwidth with two CCs) is formed in a pseudo manner to realize high-speed uplink data transmission.
  • a narrow continuous or non-continuous frequency bandwidth for example, 20 MHz bandwidth
  • a carrier signal having a wide frequency bandwidth for example, 40 MHz bandwidth with two CCs
  • FIG. 2 is a schematic diagram showing a combination of CCs according to the present embodiment.
  • the horizontal axis indicates the frequency.
  • this figure shows a case where there are two frequency bands 1 (2 GHz band) and frequency band 2 (3 GHz band).
  • cases 1 to 6 are shown in the vertical direction
  • cases 1 to 3 show the case of the FDD (Frequency Division Duplex) transmission mode
  • cases 4 to 6 show the TDD (Time Division Duplex).
  • Time division duplex Indicates transmission mode.
  • Case 1 shows that in the same frequency band 1, three consecutive CCs (center frequencies f1_R1, f1_R2, f1_R3) in band 12 (downstream) and two consecutive CCs in band 11 (upstream).
  • the CC combination when (center frequency f1_T1, f1_T2) is selected is shown.
  • Case 2 includes two CCs that are discontinuous in the band 12 (center frequencies f1_R1, f1_R3; Intra CA case) and two CCs that are discontinuous in the band 11 (center frequency f1_T1) in the same frequency band 1 , F1_T3) is a combination of CCs.
  • Case 3 includes CC (center frequency f1_R1) in band 12 of frequency band 1, CC (center frequency f2_R1) in band 22 of frequency band 2, and CC (center frequency f1_T1) in band 1 of frequency band 1.
  • the combination of CCs when selected is shown.
  • Case 3 indicates that two discontinuous CCs (Inter CA cases) are selected in different frequency bands 1 and 2 in downlink communication, and one CC is selected in downlink communication.
  • Cases 4, 5, and 6 correspond to cases 1, 2, and 3, respectively.
  • Case 4 shows a combination of CCs when band 12 is used for downlink / uplink communication and CCs are selected according to time zones.
  • Case 4 is a case where three consecutive CCs (center frequencies f1_1, f1_2, f1_3) are selected in band 12 in downlink communication, and two consecutive CCs (center frequencies f1_1, f1_2) are selected in band 12 in downlink communication.
  • the combination of CC is shown.
  • the mobile station apparatus A1 and the base station apparatus B perform communication using the selected CC.
  • each mobile station apparatus A1 may include transmission / reception apparatuses having different configurations, and the CCs that can be handled by the CA technology are different.
  • a plurality of configuration examples (transmission / reception devices a1 to a3) of the transmission / reception device included in the mobile station device A1 will be described.
  • FIG. 3 is a schematic block diagram illustrating a configuration of the transmission / reception device a1 according to the present embodiment.
  • a transmission / reception device a1 includes a transmission / reception shared antenna a101, an antenna duplexer (DUP) a102, a radio reception unit (RF_Rx) a11, a quadrature demodulator (IQ_DM) a12, a baseband demodulation unit (BB_DM) a13, a baseband modulation.
  • the antenna duplexer a102 outputs a signal received from the base station apparatus B via the transmission / reception shared antenna a101 to the radio reception unit a11.
  • the antenna duplexer a102 transmits the signal input from the radio transmission unit a16 to the base station apparatus B via the transmission / reception shared antenna a101.
  • the wireless reception unit a11 includes an LNA (Low Noise Amplifier) a111 and an RF reception band limiting filter (Rx_BPF; Band Pass Filter) a112.
  • the LNA a111 amplifies the signal input from the antenna duplexer a102 and outputs the amplified signal to the RF reception band limiting filter a112.
  • the RF reception band limiting filter a112 extracts a signal in the reception band (for example, the band 12 in FIG. 2) from the signal input from the antenna duplexer a102 and outputs the signal to the quadrature demodulator a12.
  • the quadrature demodulator a12 includes an amplifier (AMP) a121, a local oscillator a122, a phase shifter a123, multipliers a124 and a126, and LPFs (Low Pass Filters) a125 and a127.
  • the amplifier a121 amplifies the signal input from the RF reception band limiting filter a112 and outputs the amplified signal to the multipliers a124 and a126.
  • the local oscillator a122 generates a sine wave and outputs it to the phase shifter a123.
  • the phase shifter a123 outputs the sine wave input from the local oscillator a122 to the multiplier a124.
  • the phase shifter a123 generates a cosine wave obtained by shifting the phase of the sine wave input from the local oscillator a122 by 90 degrees and outputs the generated cosine wave to the multiplier a126.
  • the multiplier a124 multiplies the signal input from the amplifier a121 by the sine wave input from the phase shifter a123, thereby extracting the in-phase component of the signal and downconverting the signal.
  • the multiplier a124 outputs a signal obtained by multiplying the sine wave to the LPF a125.
  • the LPF a125 extracts a low frequency component of the signal input from the multiplier a124.
  • the LPF a125 outputs the in-phase component of the extracted signal to the baseband demodulation unit a13.
  • the multiplier a126 multiplies the signal input from the amplifier a121 by the cosine wave input from the phase shifter a123, thereby extracting a quadrature component of the signal and downconverting the signal.
  • the multiplier a126 outputs a signal obtained by multiplying the sine wave to the LPF a127.
  • the LPF a127 extracts a low frequency component of the signal input from the multiplier a126.
  • the LPF a127 outputs the in-phase component of the extracted signal to the baseband demodulation unit a13.
  • the baseband demodulation unit includes an AD conversion unit (ADC; Analog to Digital Converter) a131 and a132, a digital filter (Digital Filter; Rx_DF) a133, a CP (Cyclic Prefix) deletion unit a134, and an S / P (serial / parallel) conversion unit. a135, FFT (Fast Fourier Transform) section a136, demapping sections a137-1 to a137-s, and P / S (parallel / serial) conversion section a138.
  • the AD conversion units a131 and a132 convert the signals (analog signals) input from the LPFs a125 and a127, respectively, into digital signals and output the digital signals to the digital filter a133.
  • the digital filter a133 extracts a reception band signal (for example, FIG. 2f1_R1) from the signals input from the AD conversion units a131 and a132, and outputs the extracted signal to the CP deletion unit a133.
  • the CP deletion unit a134 removes the CP from the signal input from the digital filter a133, and outputs it to the S / P conversion unit a135.
  • the S / P conversion unit a135 performs serial-parallel conversion on the signal input from the CP deletion unit a134 and outputs the signal to the FFT unit a136.
  • the FFT unit a136 Fourier-transforms the signal input from the S / P conversion unit a135 from the time domain to the frequency domain, and outputs the result to the demapping units a137-1 to a137-s.
  • the demapping units a137-1 to a137-s demap the frequency domain signal input from the FFT unit a136 and output the demapped signal to the P / S conversion unit a138.
  • the P / S conversion unit a138 performs parallel-serial conversion on the signals input from the demapping units a137-1 to a137-s, and obtains and outputs received data.
  • the baseband modulation unit a14 includes an S / P (serial / parallel) conversion unit a141, mapping units a142-1 to a142-t, an IFFT (Inverse Fast Fourier Transform) unit a143, and a P / S (parallel / serial).
  • the S / P converter a141 performs serial-parallel conversion on the input transmission data, and outputs it to the mapping units a142-1 to a142-t.
  • mapping units a142-1 to a142-t map the signal input from the S / P conversion unit a141 and output it to the IFFT unit a143.
  • IFFT section a143 performs inverse Fourier transform on the signals input from mapping sections a142-1 to a142-t from the frequency domain to the time domain, and outputs the result to P / S conversion section a144.
  • the P / S conversion unit a144 performs parallel-serial conversion on the time domain signal input from the IFFT unit a143 and outputs the signal to the CP insertion unit a145.
  • the CP insertion unit a145 inserts the CP into the signal input from the P / S conversion unit a144, and outputs the signal to the digital filter a146.
  • the digital filter a146 extracts a signal in the transmission band (for example, f1_T1 in FIG. 2) from the signal input from the CP insertion unit a145.
  • the digital filter a146 outputs the in-phase component and the quadrature component of the extracted signal to the DA converters a147 and a148, respectively.
  • the DA converters a147 and a148 each convert the signal (digital signal) input from the digital filter a146 into an analog signal and output the analog signal to the quadrature modulator a15.
  • the quadrature modulator a15 includes LPFs 151 and a152, a local oscillator a153, a phase shifter a154, multipliers a155 and a156, and an amplifier (AMP) a157.
  • the LPFs 151 and a152 extract the low frequency components of the signals input from the DA converters a147 and a148, respectively.
  • the local oscillator a153 generates a sine wave and outputs it to the phase shifter a154.
  • the phase shifter a154 outputs the input sine wave from the local oscillator a153 to the multiplier a155.
  • the phase shifter a154 generates a cosine wave in which the phase of the sine wave input from the local oscillator a153 is shifted by 90 degrees and outputs the generated cosine wave to the multiplier a156.
  • Multiplier a155 multiplies the signal input from LPFa151 by the sine wave input from phase shifter a154, thereby generating an in-phase component wave and upconverting the signal.
  • the multiplier a155 outputs a signal obtained by multiplying the sine wave to the amplifier a157.
  • the multiplier a156 multiplies the signal input from the LPFa 152 by the cosine wave input from the phase shifter a154, thereby generating a quadrature component wave and upconverting the signal.
  • the multiplier a156 outputs a signal obtained by multiplying the cosine wave to the amplifier a157.
  • the amplifier a157 amplifies the signals input from the multipliers a155 and a156 and outputs the amplified signals to the wireless transmission unit a16.
  • the wireless transmission unit a16 includes an RF transmission band limiting filter (Tx_BPF) a161 and a PA (Power Amplifier) a162.
  • the RF transmission band limiting filter a161 extracts a transmission band signal (for example, the band 11 in FIG. 2) from the signal input from the amplifier a157 and outputs the extracted signal to the PA a162.
  • the PA a162 amplifies the signal input from the RF transmission band filter a161 and outputs the amplified signal to the antenna duplexer a102.
  • the transmission / reception device a1 transmits a signal using, for example, the uplink CC having the center frequency f1_T1 and the frequency bandwidth of 20 MHz illustrated in FIG. 3 generates the CC of the uplink OFDM signal, but the present invention is not limited to this, and the SC-FDMA (Single-Carrier Frequency-Division) is not limited to this, but is combined with another circuit block. Even if an uplink continuous SC-FDMA signal or a non-contiguous SC-FDMA (Clustered DFT-S-OFDM or CL-DFT-S-OFDM) signal is generated and transmitted using CC Good. Further, FIG.
  • the present invention is not limited to this, and may be applied to other transmission / reception apparatuses such as a superheterodyne system.
  • the present invention can be applied by correcting the correspondence between the orthogonal modulation / demodulation units a12 and a15.
  • FIG. 4 is a schematic block diagram showing a simple configuration of the transmission / reception device a1 according to the present embodiment.
  • This diagram is a simplified configuration of the transmission / reception device a1 in FIG.
  • the transmission / reception device a1 includes a transmission / reception shared antenna a101, an antenna duplexer (DUP) a102, a radio reception unit (RF_Rx) a11, a quadrature demodulator (IQ_DM) a12, a baseband demodulation unit (BB_DM) a13, and a baseband modulation unit (BB_MD). a14, a quadrature modulator (IQ_MD) a15, and a wireless transmission unit (RF_Tx) a16.
  • DUP antenna duplexer
  • RF_Rx radio reception unit
  • IQ_DM quadrature demodulator
  • BB_DM baseband demodulation unit
  • BB_MD baseband modulation unit
  • FIG. 5 is an explanatory diagram of radio parameters according to the present embodiment. This figure shows that there are RF_BWm and BB_BWn as radio parameters.
  • the parameter RF_BWm is related to the transmission / reception shared antenna a101, the antenna duplexer a102, the radio reception unit a11, the quadrature demodulator a12, the quadrature modulator a15, and the radio transmission unit a16 in FIG.
  • the parameter BB_BWn is related to the quadrature demodulator a12, the baseband demodulator a13, the baseband modulator a14, and the quadrature modulator a15 shown in FIG. Details of this relationship will be described later with reference to FIGS.
  • FIG. 6 is an explanatory diagram of frequency band numbers according to the present embodiment (partially extracted from Table 5.5-1 E-UTRA operating bands of 3GPP TS 36.101). This figure shows the relationship between frequency band numbers, upstream frequency band bands, downstream frequency band bands, frequency band bandwidths, and transmission modes.
  • the first line corresponds to the frequency band of frequency band number “1” (see frequency band 1 in FIG. 2)
  • the upstream frequency band (see band 11 in FIG. 2) is “1920 MHz to 1980 MHz”
  • the downstream frequency This indicates that the band (see band 12 in FIG. 2) is “2110 MHz to 2170 MHz”, the frequency band is “60 MHz”, and the transmission mode is “FDD”. Note that it is predicted that the frequency band number (from No.
  • the operating frequency and operating frequency bandwidth of the transmission / reception shared antenna a101, the antenna shared device a102, the wireless receiving unit a11, the quadrature demodulator a12, the quadrature modulator a15, and the wireless transmitting unit a16 are determined. .
  • FIG. 7 is an explanatory diagram of BB frequency bandwidth numbers according to the present embodiment. This figure shows the relationship between the BB frequency bandwidth number and the frequency bandwidth.
  • BB frequency bandwidth numbers 1, 2, 3, 4, and 5 represent 20 MHz CC bandwidth combinations.
  • the BB frequency bandwidth numbers 6 and 7 and the subsequent numbers can represent combinations of CC bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, and 15 MHz.
  • BB frequency bandwidth number for the downlink, the frequency characteristics in the downconverter (local oscillator a122, phase shifter a123, multiplier a124, a126), LPF a125, a127 of the quadrature demodulator a12 in FIG.
  • the frequency characteristics of the digital filter a133 of the baseband demodulator a13 and the sampling frequencies of the AD converter a131 and the FFT unit a136 are determined.
  • the frequency characteristics at the digital filter a146 of the baseband modulation unit a14, and the sampling frequencies at the IFFT unit a143 and DA conversion units a147 and 148 are determined.
  • FIG. 8 is a schematic block diagram illustrating a simplified configuration of the transmission / reception device a2 according to the present embodiment.
  • DUP antenna duplexer
  • RF_Rx radio reception unit
  • IQ_DMl L orthogonal demodulator
  • BB_DMl L baseband demodulation units
  • K baseband modulation units BB_MDl
  • IQ_MD1 a25-k
  • RF_Tx radio transmission unit
  • the configurations and functions of the antenna duplexer a202, the wireless receiver a21, the quadrature demodulator a22-l, the baseband demodulator a23-l, the baseband modulator a24-k, and the quadrature modulator a25-k are respectively 3 are the same as the antenna duplexer a102, the wireless receiver a11, the quadrature demodulator a12, the baseband demodulator a13, the baseband modulator a14, and the quadrature modulator a15 in FIG.
  • each of the quadrature demodulator a22-l and each of the baseband demodulator a23-l processes a signal received by one or more consecutive downlink CCs associated therewith.
  • each of the baseband modulation units a24-k and each of the quadrature modulators a25-k processes a signal to be transmitted using one or more consecutive uplink CCs associated therewith.
  • the transmission / reception device a2 in FIG. 8 can receive a signal with continuous / non-consecutive L downlink CCs and transmit a signal with continuous / non-continuous K uplink CCs. it can.
  • the L orthogonal demodulators a22-l and the baseband demodulator a23-l are provided, it is possible to cope with asynchronous transmission in the downlink CC.
  • BB_BWn when each BB frequency bandwidth number BB_BWn is different, the total number of continuous / non-consecutive downlink CCs that can be handled, the total number of downlink CCs for asynchronous transmission, and the bandwidth of consecutive CCs with an OFDM subcarrier bandwidth of 15 kHz also change. Various combinations occur. The same applies to the uplink.
  • FIG. 9 is a schematic block diagram showing a simplified configuration of the transmission / reception device a3 according to the present embodiment.
  • IQ_DMil orthogonal Demodulator
  • BB_DMil baseband demodulation unit
  • BB_MDjk baseband modulation unit
  • BB_MDjk baseband modulation unit
  • antenna duplexer a302-i radio receiver a31-i, quadrature demodulator a32-il, baseband demodulator a33-il, baseband modulator a34-jk, quadrature modulator a35-jk, and radio transmission
  • the configuration and functions of the unit a36-j are the antenna duplexer a202, the radio receiving unit a21, the quadrature demodulator a22-l, the baseband demodulator a23-l, the baseband modulator a24-k, and the quadrature unit, respectively. Since it is the same as the modulator a25-k, the description is omitted.
  • the set of the quadrature demodulator a32-il and the baseband demodulator a33-il processes the OFDM baseband signal received in the i-th frequency band and the l (lowercase L) downlink CC (each set). Is called a BB demodulation branch il, and l (lower case letter L) is called a BB demodulation branch number; an element carrier reception processing unit).
  • the set of the baseband modulation unit a34-jk and the quadrature modulator a35-jk processes the OFDM baseband signal received in the i-th frequency band and the k-th uplink CC (each set is a BB modulation branch ik).
  • K is called a BB modulation branch number; an element carrier transmission processing unit).
  • the set of the radio reception unit a31-i and the BB demodulation branches i1 to iL processes OFDM radio reception signals received in the i-th frequency band (each set is referred to as an RF reception branch i, and i is an RF reception branch). Called number; frequency band reception processing unit).
  • a set of the radio transmission unit a36-j and the BB modulation branches j1 to jK processes an OFDM radio transmission signal transmitted in the jth frequency band (each set is referred to as an RF transmission branch j, and j is an RF transmission branch). Called number; frequency band transmission processing unit).
  • FIG. 9 shows the case where the number of RF reception branches and the number of RF transmission branches are the same number (I). However, the present invention is not limited to this, and the number of RF reception branches and the RF transmission branches are the same. The number of may vary.
  • FIG. 9 shows the case where the number of BB demodulation branches in each RF reception branch is the same number (L). However, the present invention is not limited to this, and the BB demodulation branch in each RF reception branch. The number of may vary. Similarly, the number of BB modulation branches in each RF transmission branch may be different.
  • the transmission / reception device a3 When transmitting / receiving a signal in the same frequency band, the transmission / reception device a3 includes a plurality of RF reception branches i and RF transmission branches i, so that downlink / uplink MIMO scheme, coordinated communication between base station devices (CoMP; coordinated multipoint) System and uplink transmission diversity system. Further, when receiving signals of different frequency bands, the transmission / reception device a3 includes a plurality of RF reception branches i and RF transmission branches j, so that the above method can be handled in a plurality of frequency bands.
  • CoMP coordinated multipoint
  • FIG. 10 is a schematic block diagram showing the configuration of the mobile station device A1 according to this embodiment.
  • a mobile station device A1 includes a transmission / reception device A101, a control unit A102, an allocation information storage unit A103, a transmission / reception device configuration information storage unit A104, an ASN (Abstract Syntax Notification) encoding unit A105, and an RRC (Radio Resource Control).
  • the message generation unit A106 is included.
  • the transmission / reception device A101 is the transmission / reception device a1, a2, or a3.
  • the control unit A102 controls each unit of the mobile station device A1. For example, the control unit A102 receives the radio resource information allocated from the base station apparatus B as control data, and stores the received radio resource information in the allocation information storage unit A103. The control unit A102 reads radio resource information from the allocation information storage unit A103 and controls transmission / reception.
  • the transmission / reception device configuration information storage unit A104 stores transmission / reception device configuration information (for example, FIG. 14, details will be described later) in a memory.
  • the transmission / reception device configuration information can be preset at the time of shipment from the factory according to the mobile station device configuration, and can be written in the transmission / reception device configuration information storage unit A104.
  • control unit A102 outputs the transmission / reception device configuration information stored in the transmission / reception device configuration information storage unit A104 to the ASN encoding unit A105.
  • the transmission / reception device configuration information includes information indicating the configuration of the transmission / reception unit A101. Details of the transmission / reception device configuration information will be described later together with the RRC message generation processing.
  • the ASN encoding unit A105 converts the transmission / reception device configuration information input from the control unit A102 into the abstract syntax notation 1 (ASN.1), encodes the information, and outputs the encoded information to the RRC message generation unit A106. To do. The details of the process performed by the ASN encoding unit A105 will be described later together with the RRC message generation process.
  • the RRC message generator A106 generates an LTE-A mobile station communication capability message (UE-Advanced EUTRA-Capability) including the information input from the ASN encoder A105, and as a part of the uplink RRC message included in the control data And output to the transmitting / receiving apparatus A101.
  • UE-Advanced EUTRA-Capability LTE-A mobile station communication capability message
  • the transmission / reception device A101 processes the RRC message input from the RRC message generation unit A106 in the RF transmission branch j and transmits it to the base station device B.
  • the control unit A102, the allocation information storage unit A103, the transmission / reception device configuration information storage unit A104, the ASN encoding unit A105, and the RRC message generation unit A106 may be included in the integrated circuit chip.
  • the transmission / reception device A101 may be configured to include a part or all of it in the integrated circuit chip, and is not limited.
  • FIG. 11 shows transmission / reception device configuration information (UE-RF-Capability in FIG. 12) included in the LTE-A mobile station communication capability message (UE-Advanced EUTRA-Capability in FIG. 12) converted into the abstract syntax notation 1 according to the present embodiment. It is explanatory drawing of. This figure shows that the radio parameters are RXi, RF_BWm, BB_DMl (lower case L), BB_Wn, TXj, RF_BWm, BB_MDk, BB_BWn, and these variables have a hierarchical structure.
  • a parameter RXi indicates the RF reception branch number i.
  • a parameter RF_BWm below the parameter RXi indicates a frequency band number m of a frequency band that can be received by the RF reception branch i.
  • a parameter BB_DMl (lower case L) below the parameter RXi indicates a BB demodulation branch number 1 (lower case L) included in the RF reception branch i.
  • a parameter BB_BWn below the parameter BB_DMl indicates a BB frequency bandwidth number n of a baseband frequency bandwidth that can be processed by the BB demodulation branch l (lower case L).
  • a parameter TXj indicates an RF transmission branch number j.
  • a parameter RF_BWm below the parameter TXj indicates a frequency band number m of a frequency band that can be transmitted by the RF transmission branch j.
  • a parameter BB_MDk below the parameter TXj indicates the BB modulation branch number k included in the RF transmission branch j.
  • a parameter BB_BWn below the parameter BB_MDk indicates a BB frequency bandwidth number n of a baseband frequency bandwidth that can be processed by the BB modulation branch k.
  • FIG. 12 is a schematic diagram illustrating an example of an LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability) and transmission / reception device configuration information (UE-RF-Capability) according to the present embodiment.
  • the parameter Max-RFRx-Branchs indicates the maximum number of RF reception branches I.
  • the parameter Max-BBRx-Branchs indicates the maximum number of BB demodulation branches L.
  • the parameter Max-RFTx-Branchs indicates the maximum RF transmission branch number J
  • the parameter Max-TxBB-Branches indicates the maximum BB modulation branch number K.
  • the parameter Max-RF-Bands indicates the maximum frequency band number M, and the parameter Max-BBRX-Bands indicates the maximum BB frequency bandwidth number N.
  • the transmission / reception apparatus configuration information includes RF reception branch configuration information (UE-RFRx-Branchs) and RF transmission branch configuration information (UE-RFTx- Branches) is substituted.
  • the configuration information (UE-RFRX-Branch) of I RF reception branches is substituted for the configuration information (UE-RFRx-Branchs) of the RF reception branch.
  • the configuration information (UE-RFRX-Branch) of the i-th RF reception branch includes information on the configuration of L BB demodulation branches (UE-BBRx-Branches) and the frequency band number corresponding to the i-th RF reception branch.
  • Information of m (UE-RFRx-Band-List) is substituted.
  • the configuration information (UE-BBRx-Branch) of the l (lowercase L) BB demodulation branch information on the BB frequency bandwidth number n (UE-BBRx-Band-List) corresponding to the l-th BB demodulation branch Is substituted.
  • the information (UE-RFRx-Band-List) of the frequency band number m corresponding to the i-th RF receiving branch is substituted with ue-rfrx-band, that is, the parameter RF_BWm in the lower layer of the parameter RXi in FIG.
  • BB_BWn the BB frequency bandwidth number n (UE-BBRx-Band-List) corresponding to the l-th BB demodulation branch, ue-rxbb-band, that is, the lower layer of the parameter BB_DMl (lowercase L) in FIG.
  • the parameter BB_BWn is substituted.
  • configuration information (UE-RFTX-Branch) of J RF transmission branches is substituted into configuration information (UE-RFTx-Branchs) of the RF transmission branch.
  • the configuration information (UE-RFTX-Branch) of the jth RF transmission branch includes information on the configuration of K BB modulation branches (UE-BBTx-Branchs) and the frequency band number corresponding to the jth RF transmission branch.
  • Information of m (UE-RFTx-Band-List) is substituted.
  • Information on the BB frequency bandwidth number n (UE-BBTx-Band-List) corresponding to the k-th BB modulation branch is substituted into the configuration information (UE-BBTx-Branch) of the k-th BB modulation branch.
  • the information (UE-RFTx-Band-List) of the frequency band number m corresponding to the j-th RF transmission branch is substituted with ue-rftx-band, that is, the parameter RF_BWm below the parameter TXj in FIG.
  • ue-txbb-band that is, the parameter BB_BWn in the lower layer of the parameter BB_MDk in FIG.
  • FIG. 13 is a schematic diagram showing another example of the LTE-A mobile station communication capability message according to the present embodiment.
  • a conventional LTE mobile station communication capability message (UE-EUTRAN-Capability) includes LTE-A mobile station category information (ue-Category in FIG. 13) and transmission / reception device configuration information (FIG. 12).
  • UE-RF-Capability to indicate an LTE-A mobile station communication capability message. Note that the mobile station category information will be described later in the second embodiment.
  • FIG. 14 is a schematic diagram illustrating an example of transmission / reception device configuration information according to the present embodiment.
  • one RF reception branch (RX1) includes two BB demodulation branches (BB_DM1, BB_DM2), and one RF transmission branch 1 (TX1) has one BB modulation branch (BB_MD1).
  • the RF reception branch 1 (RX1) can receive in the frequency band of frequency band number “1” (RF_BW1, see FIG. 6).
  • the BB demodulation branch 1 (BB_DM1) included in the RF reception branch 1 can be processed with the baseband frequency bandwidth of BB frequency bandwidth number “3” (BB_BW3, see FIG. 7). Indicates.
  • FIG. 15 is a schematic block diagram showing the configuration of the base station apparatus B according to this embodiment.
  • the base station apparatus B includes a transmission / reception apparatus B101, a control unit B102, and an allocation information storage unit B103.
  • the transmission / reception device B101 transmits / receives data to / from the mobile station device A1. Since the transmission / reception device B101 has the same basic configuration and basic functions as the transmission / reception device a3, the description thereof is omitted.
  • the control unit B102 controls each unit of the base station apparatus B.
  • control unit B102 decodes and extracts the transmission / reception device configuration information from the RRC message received from the mobile station device A1, and allocates uplink / downlink radio resources of the mobile station device A1 based on the extracted transmission / reception device configuration information. decide.
  • the control unit B102 and the allocation information storage unit B103 may be included in the integrated circuit chip.
  • the transmission / reception device B101 may have a configuration in which part or all of the transmission / reception device B101 is included in the integrated circuit chip, and is not limited.
  • the base station apparatus B has a communication capability as in case 1 of FIG. 2, for example, frequency allocation
  • the mobile station apparatus A1 has a transmission / reception apparatus configuration as in case 3 of FIG.
  • the LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 12) or the LTE mobile station communication capability message (UE-EUTRAN-Capability in FIG. 13) is decoded from the RRC message received from the mobile station apparatus A1, and transmitted / received.
  • Device configuration information UE-RF-Capability in FIG. 12 or FIG.
  • uplink / downlink CC allocation that is, uplink CC is assigned f1_T1 and downlink CC is assigned f1_R1 to the configuration of mobile station device A1.
  • Initial access from the mobile station device A1, for example, random access And it notifies the mobile station apparatus A1 to the scan time.
  • the downlink radio resource that is, the downlink resource block RB in which the mobile station device A1 receives its own device data is transmitted in the downlink CC of f1_R1
  • the uplink radio resource that is, the uplink resource block RB in which the mobile station device A1 transmits its own device data.
  • the base station apparatus B is provided with case 1 in FIG.
  • the mobile station apparatus A1 is in case 3 in FIG. 2 and has two reception antennas in the downlink.
  • the control unit B102 of the base station apparatus B transmits the downlink CC of f1_T1 to the mobile station apparatus A1.
  • a common downlink resource block RB can be allocated between base station apparatuses that perform 2 ⁇ 2 MIMO transmission in the resource block RB allocated within the base station apparatus or perform cooperative communication CoMP between the base station apparatuses.
  • control unit B102 of the base station device B compares the transmission / reception device configuration information from the mobile station device A1 with the transmission / reception device configuration information of the own device, and within the range of the communication capability of the own device and the mobile station device communication capability, It is possible to perform appropriate downlink / uplink radio resource allocation to the mobile station apparatus A1.
  • the control unit B102 stores the uplink / downlink CC allocation information and the allocated uplink / downlink CC radio resource allocation information in the allocation information storage unit B103.
  • the control unit B102 reads the uplink / downlink CC allocation information and the allocated uplink / downlink CC radio resource allocation information from the allocation information storage unit B103, and controls transmission / reception. Further, the control unit B102 transmits the determined uplink / downlink CC assignment information and the assigned uplink / downlink CC radio resource assignment information to the mobile station device A1 via the transmission / reception device B101.
  • the mobile station apparatus A1 can use the number of BB demodulation branches, the number of BB modulation branches, and the baseband frequency bandwidth number (element carrier CC) that can be used for communication with the base station apparatus B. ), And the mobile station apparatus capability message including the number of RF reception branches, the number of RF transmission branches, and the frequency band number (information about the frequency band) is transmitted to the base station apparatus B.
  • the mobile station apparatus A1 communicates with the base station apparatus B using the uplink / downlink radio resources allocated by the base station apparatus B based on the mobile station apparatus capability message.
  • the communication system can allocate uplink / downlink radio resources suitable for communication between the mobile station apparatus A1 and the base station apparatus B.
  • LTE-A technical elements include (a) number of frequency bands, (b) total number of downlink / uplink CCs, (c) continuous / discontinuous (Intra CA / Inter CA) CC, (d) wireless transmission mode, ( E) Synchronous / asynchronous transmission between downlink CCs or base station devices, (f) Various CC bandwidths (eg, 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz), (G) OFDM subcarrier bandwidth 15 kHz A continuous CC bandwidth (for example, 100 MHz), (K) downlink / uplink MIMO scheme, (K) cooperative communication between base station devices CoMP scheme, (K) uplink transmission diversity scheme, (S) each mobile phone service The frequency allocation situation of the operator, (g) domestic / international roaming.
  • LTE-A technical elements include (a) number of frequency bands, (b) total number of downlink / uplink CCs, (c) continuous / discontinuous (Intra CA / Inter CA
  • mobile station equipment categories (five types) can be defined by the data processing software buffer size of the mobile station device (maximum downlink data rate of 10 Mbps to 300 Mbps) and the maximum MIMO configuration (1 ⁇ 1, 2 ⁇ 2, 4 ⁇ 4). did it.
  • the configuration of the mobile station apparatus for each category can be determined. In other words, it is only necessary to provide each mobile phone service operator with five types of mobile station devices, and five types of mobile station devices may be distributed in the market. In addition, for each of the five types of mobile station apparatuses, each mobile phone service operator may consider the service.
  • the mobile station apparatus of the LTE-A system adopts a method of defining the mobile station apparatus category of the conventional LTE system, the mobile station apparatus cannot be defined even in the same category, or different mobile stations in the same category Since it is possible to have a device configuration, appropriate mobile station device performance cannot be derived depending on the mobile station device category. It is difficult to realize various LTE-A technical elements to the maximum and reduce circuit complexity, low power consumption, low cost, miniaturization, and productivity improvement. On the other hand, in the base station apparatus of the LTE-A system, it is necessary to limit various LTE-A technical elements in order to reduce the mobile station apparatus category.
  • the mobile station apparatus configuration is different from the combinations of various LTE-A mobile station apparatus configurations corresponding to various LTE-A technical elements as described in (a) to (b) above.
  • the base station apparatus B By generating information and transmitting it to the base station apparatus B, the base station apparatus B derives the appropriate performance of the mobile station apparatus A1 that can support various LTE-A technical elements according to the mobile station apparatus configuration information. And appropriate uplink / downlink radio resources can be allocated.
  • the LTE-A mobile station communication capability message includes the radio parameters of the frequency band number RF_BWm and the baseband frequency bandwidth number BB_BWm, but the power amplifier PA included in each RF transmission branch number TXj.
  • the radio parameter PA_OUTq is at the same level as the parameter of the transmission frequency band RF_BWm corresponding to the RF transmission branch number TXj, and the corresponding parameter is added under RF_BWm of TXj in FIG. 11 and under ue-rfxx-band in FIG. May be.
  • PA_OUTq “1” indicates that the maximum transmission power level of the PA of RF transmission branch number 1 (TX1) is 23 dBm, and the maximum transmission power level of the PA of RF transmission branch number 2 (TX2) is PA_OUTq “2” represents the opposite, PA_OUTq “3” both represent 23 dBm, and PA_OUTq “4” both represent 20 dBm.
  • the PA_OUTq combination may be the above extension,
  • the frequency band number RF_BWm of the radio parameter indicates the relationship between the frequency band number, the upstream frequency band band, the downstream frequency band band, the frequency band bandwidth, and the transmission mode as shown in FIG. It is also possible to redefine a new and wide upstream frequency band band and downstream frequency band band by combining the upstream frequency band band and the downstream frequency band band.
  • the new frequency band number “1” may be combined with the frequency band numbers “1” and “2” in FIG. 6 to correspond to the upstream frequency band band of 1930 MHz to 2170 MHz and the downstream frequency band band of 1850 MHz to 1980 MHz. it can.
  • one RF reception branch includes a plurality of BB demodulation branches and one RF transmission branch includes a plurality of BB modulation branches. If the frequency bandwidth of the transmitter a15 and the quadrature demodulator a12 is wide and is the same as the transmission / reception band (for example, band 11 and band 12 in FIG. 2), one radio modulator and one quadrature modulator A demodulator may be used.
  • a plurality of RF transmission / reception branches can be configured.
  • LTE-A mobile station category a new mobile station apparatus category
  • mobile station category a mobile station apparatus capability message including the LTE-A mobile station category
  • it can respond to various LTE-A technical elements.
  • the conceptual diagram of the communication system is the same as that of the first embodiment shown in FIG.
  • Each of the mobile station devices A11 and A12 according to the present embodiment is referred to as a mobile station device A2.
  • the mobile station device A2 includes a transmission / reception device a1 (FIGS. 3 and 4), a2 (FIG. 8), or a3 (FIG. 9).
  • a mobile station device category (referred to as LTE mobile station category) in the prior art (LTE) will be described first, and then a mobile station device category (LTE-A mobile) in the present embodiment (LTE-A). Station category) will be described.
  • FIG. 16 is a schematic diagram of LTE mobile station category correspondence information according to the prior art. This figure shows that there are 5 (Category 1-5) LTE mobile station categories (Category). This figure also shows the downlink (DL) / uplink (UL) data transmission rate (bit size of the buffer; bit rate) of the mobile station apparatus, downlink (DL) / uplink of the mobile station apparatus (in accordance with the LTE mobile station category). (UL) modulation scheme and the number of downlink MIMO streams (for example, the number of receiving antennas; Number of MIMO Streams).
  • DL downlink
  • UL uplink
  • the downlink data transmission rate of the mobile station apparatus is “300 Mbps”
  • the uplink data transmission rate is “75 Mbps”
  • the downlink modulation scheme is “QPSK, 16QAM”.
  • the uplink modulation scheme is“ QPSK, 16QAM, or 64QAM ”
  • the number of downlink MIMO streams is“ 4 ”.
  • FIG. 17 is a schematic diagram illustrating an example of transmission / reception device configuration information according to the second embodiment of the present invention.
  • BB demodulation branches and one RF transmission branch (one RF transmission branch includes one BB modulation branch).
  • FIG. 18 is a schematic diagram showing an example of LTE-A mobile station category correspondence information according to the present embodiment.
  • This figure shows that there are six LTE-A mobile station categories (Category) (Category A to F; Category A to F).
  • This figure also shows that the downlink (DL) / uplink (UL) data transmission rate (buffer bit size; bit rate) of the mobile station apparatus is determined by the LTE-A mobile station category.
  • This figure also shows the number of downlink (DL) MIMO streams (Number of MIMO Streams), the number of continuous / non-consecutive CCs (Number of CCs), and mobile stations depending on the LTE-A mobile station category. It indicates that the range of the number of uplink (UL) MIMO streams and the number of uplink continuous / non-continuous CCs is determined.
  • the data transmission rate in the case of category B is “100 Mbps” for downlink and “75 Mbps” for uplink
  • this LTE-A mobile station category is applied to, for example, a mobile station apparatus moving at high speed
  • the data transmission speed is “1000 Mbps” for downlink and “500 Mbps” for uplink.
  • category F is applied to a fixed mobile station apparatus or a mobile station apparatus with a very low movement speed.
  • the number of downlink MIMO streams is determined in the range of 8, 4, 2, 1 and the number of uplink MIMO streams is determined in the range of 4, 2, 1.
  • the number of downlink CCs is determined in the range of 1 to 5
  • the number of uplink CCs is determined in the range of 1 to 2.
  • the maximum data transmission rate is “75 Mbps” (in the case of 64QAM) in a CC having a bandwidth of 20 MHz (see FIG. 16). Therefore, the number of uplink / downlink MIMO streams and the number of CCs in FIG. 18 are adapted to satisfy the data transmission rate.
  • the number of downlink CCs is “1” and the number of downlink MIMO streams is “2”.
  • the number of downlink CCs is “1”, or the number of downlink CCs is associated with “2” to “5” when the number of downlink MIMO streams is “1”.
  • the maximum is 300 Mbps (4 ⁇ 75 Mbps), which can satisfy 100 Mbps.
  • the maximum is 375 Mbps (5 ⁇ 75 Mbps), which can satisfy 100 Mbps.
  • 16QAM which is a modulation method with a low modulation rate is used, and the number of downlink MIMO streams is “1” and When the number of downlink CCs is “2” (maximum 150 Mbps), the data transmission rate can be satisfied by selecting 64QAM, which is a modulation scheme with a high modulation rate.
  • the number of uplink CCs is “1” and the number of uplink MIMO streams is “2”.
  • the number of uplink CCs is “1”, or the number of uplink CCs is associated with “1” or “2” when the number of uplink MIMO streams is “1”.
  • the maximum is 150 Mbps (2 ⁇ 75 Mbps), which can satisfy 75 Mbps.
  • the number of uplink MIMO streams is “1”, if the number of uplink CCs is “1”, the maximum is 75 Mbps (1 ⁇ 75 Mbps), which can satisfy 75 Mbps.
  • 16QAM which is a modulation scheme with a low modulation rate is used, and the number of uplink MIMO streams is “1” and When the number of uplink CCs is “1” (maximum 75 Mbps), the data transmission rate can be satisfied by selecting 64QAM, which is a modulation scheme with a high modulation rate.
  • the LTE-A mobile station category (Category in FIG.
  • the LTE-A mobile station category of the present invention is not limited to the example of FIG. 18, and as described above, the downlink MIMO stream is set so as to satisfy the maximum data transmission rate according to the maximum data transmission rate. What is necessary is just to associate the number and the number of downlink CCs.
  • the number of LTE-A mobile station categories is not limited to the example (six) shown in FIG. 18, and may be larger or smaller than in this example. Further, category 1 of the LTE mobile station category is included in category A of the LTE-A mobile station category.
  • the single carrier SC-FDMA transmission method is suitable.
  • the LTE-A mobile station apparatus has two RF transmission branches (one RF transmission branch having one baseband frequency bandwidth up to 40 MHz).
  • BB modulation branch) may be configured.
  • the upper mobile station category (for example, a 1000 Mbps class mobile station device) has the maximum configuration of the mobile station device (High End product). For example, it is not possible to provide a cheap mobile station apparatus that can operate only at 3.5 GHz (frequency band number A) in a 1000 Mbps class. Accordingly, the LTE-A mobile station category shown in FIG. 18 is defined so as to be unrelated to the radio parameters in the downlink frequency band.
  • the number of RF transmission branches also depends on the number of upstream frequency bands. For example, when three frequency bands and the number of uplink MIMO streams are four (four transmission antennas), the number of RF transmission branches is twelve.
  • the upper category (for example, a 500 Mbps class mobile station device) is the maximum configuration of the mobile station device. For example, it is not possible to provide a cheap mobile station apparatus that can operate only at 3.5 GHz (frequency band number A) in a 500 Mbps class. Therefore, the LTE-A mobile station category shown in FIG. 18 is defined so as to be unrelated to the radio parameter of the uplink frequency band.
  • the LTE-A mobile station category suitable when there are a plurality of frequency bands will be described.
  • the RF reception branch and the RF transmission branch corresponding to one MIMO stream in FIG. 18 are adapted to support a plurality of frequency bands, the following LTE-A mobile station categories (FIG. 19) ) Is used.
  • FIG. 19 is a schematic diagram illustrating another example of LTE-A mobile station category correspondence information according to the present embodiment.
  • the number of uplink / downlink MIMO streams (UL / DL Number of MIMO streams) in FIG. 18 is changed to the number of uplink / downlink data streams (UL / DL Number of DATA streams).
  • This figure shows that there are six LTE-A mobile station categories (Category) (Category A to F; Category A to F).
  • This figure also shows that the downlink (DL) / uplink (UL) data transmission rate (buffer bit size; bit rate) of the mobile station apparatus is determined by the LTE-A mobile station category.
  • This figure also shows the number of downlink (DL) data streams (Number of DATA Streams) and the number of continuous / non-consecutive CCs (Number of CCs), mobile stations, depending on the LTE-A mobile station category. It indicates that the range of the number of uplink (UL) data streams and the number of uplink continuous / non-continuous CCs is determined.
  • the definition of the number of uplink / downlink data streams is an extension of the number of uplink / downlink MIMO streams. In the same frequency band, the number of uplink / downlink MIMO streams is the same as the number of uplink / downlink MIMO streams. This is the total number of MIMO streams.
  • the number of downlink MIMO streams is “2” (2 ⁇ 2 MIMO) and the number of downlink CCs is “1”, whereas the number of downlink data streams is “2” and the number of downlink CCs in two frequency bands. Is “1”, the same downlink data transmission rate of the mobile station apparatus can be realized.
  • the data transmission rate in the case of category B is “100 Mbps” for downlink and “75 Mbps” for uplink
  • this LTE-A mobile station category is applied to, for example, a mobile station apparatus moving at high speed
  • the data transmission speed is “1000 Mbps” for downlink and “500 Mbps” for uplink.
  • category F is applied to a fixed mobile station apparatus or a mobile station apparatus with a very low movement speed.
  • the number of downlink data streams is determined in the range of 8, 4, 2, 1 and the number of uplink data streams is determined in the range of 4, 2, 1.
  • the number of downlink CCs is determined in the range of 1 to 5
  • the number of uplink CCs is determined in the range of 1 to 2.
  • the maximum data transmission rate is “75 Mbps” (in the case of 64QAM) in a CC having a bandwidth of 20 MHz (see FIG. 16). Therefore, the number of uplink / downlink data streams and the number of CCs in FIG. 19 correspond to satisfy the data transmission rate.
  • the number of downlink CCs is “1” and the number of downlink data streams is “2”.
  • the number of downlink CCs is “1”, or the number of downlink CCs is associated with “2” to “5” when the number of downlink data streams is “1”.
  • the maximum is 300 Mbps (4 ⁇ 75 Mbps), which can satisfy 100 Mbps.
  • the number of downlink data streams is “1”, if the number of downlink CCs is “5”, the maximum is 375 Mbps (5 ⁇ 75 Mbps), which can satisfy 100 Mbps.
  • 16QAM which is a modulation scheme with a low modulation rate is used, and the number of downlink data streams is “1” and
  • the number of downlink CCs is “2” (maximum 150 Mbps)
  • the data transmission rate can be satisfied by selecting 64QAM, which is a modulation scheme with a high modulation rate. The same applies to the uplink.
  • the LTE-A mobile station category of the present invention (Category in FIG. 19) is characterized in that the number of data streams is associated, that is, managed by the number of data streams.
  • the LTE-A mobile station category of the present invention is not limited to the example of FIG. 19, and as described above, the downlink data stream can satisfy the maximum data transmission rate according to the maximum data transmission rate. What is necessary is just to associate the number and the number of downlink CCs.
  • the number of LTE-A mobile station categories is not limited to the example (six) in FIG. 19, and may be more or less than in this example. Further, category 1 of the LTE mobile station category is included in category A of the LTE-A mobile station category.
  • the combination of the number of data streams and the number of continuous / non-continuous CCs may be reduced. For example, as shown in FIG. 20, the number of combinations in which the number of data streams is “1” may be reduced.
  • FIG. 20 is a schematic diagram illustrating an example of LTE-A mobile station category correspondence information according to the first modification of the present embodiment. 20 and 19, the LTE-A mobile station category is compared.
  • the number of data streams is “1” in category B downlink (DL) / uplink (UL) and category C downlink.
  • DL downlink
  • UL uplink
  • C downlink
  • the BB frequency bandwidth (FIG. 7) of the BB demodulation branch of the actual mobile station device A2 is a minimum of 20 MHz. Therefore, for example, the mobile station apparatus A2 switches the BB frequency bandwidth between 20 MHz and 40 MHz by the digital filter a133 and the FFT unit a136 of the reception band limitation in FIG. 3 to switch one logical CC and two logical CCs. You may switch and receive.
  • the logical CC is one 20 MHz CC.
  • the BB frequency bandwidth is referred to as a physical CC.
  • the LTE-A mobile station category is as shown in FIG.
  • FIG. 21 is a schematic diagram illustrating an example of LTE-A mobile station category correspondence information according to the second modification of the present embodiment.
  • the number of CCs (Number of CC) is “5” in the downlink (DL) of categories D, E, and F.
  • DL downlink
  • E, and F A combination of a certain number of data streams and the number of continuous / non-continuous CCs is deleted.
  • Mode 3> Further, as shown in FIG. 21, the combination of the number of data streams and the number of continuous / non-continuous CCs is reduced as compared with FIG. 20, but the mobile station apparatus configuration is changed according to the LTE-A mobile station category of FIG. It cannot be completely specified.
  • the number of data streams is the same frequency band for “2”.
  • the number may be limited to the same frequency band, and the number of combinations of the number of data streams of each LTE-A mobile station category and the number of continuous / non-continuous CCs may be set to one as shown in FIG.
  • FIG. 23 is a schematic block diagram showing the configuration of the mobile station device A2 according to this embodiment.
  • the control unit A202, the ASN encoding unit A205, and the category information storage unit A207 are compared. Is different.
  • the functions of other components transmission / reception device A101, allocation information storage unit A103, RRC message creation unit A106 are the same as those in the first embodiment. A description of the same functions as those in the first embodiment is omitted.
  • the category information storage unit A207 stores LTE-A mobile station category information (Category in FIGS. 18 to 22), that is, codes A to F corresponding to the LTE-A mobile station categories A to F, or integers 1 to 6 or 3 bits. Information is stored in memory. Information on the LTE-A mobile station category can be set in advance at the time of factory shipment, at the time of sale, or at the time of initial use by the user according to the mobile station apparatus configuration, and can be written in the category information storage unit A207. In addition, the LTE-A mobile station category information can correspond to mobile station apparatus individual information such as the individual identification number, serial number, and manufacturing number of the mobile station apparatus. For example, FIG.
  • the control unit A202 controls each unit of the mobile station device A2. For example, the control unit A202 receives uplink / downlink radio resource information allocated from the base station apparatus B, and stores the received radio resource information in the allocation information storage unit A103. The control unit A202 reads radio resource information from the allocation information storage unit A103 and controls transmission / reception. Also, the control unit A202 outputs the LTE-A mobile station category information stored in the category information storage unit A207 to the ASN encoding unit A205.
  • the ASN encoding unit A205 converts the LTE-A mobile station category information input from the control unit A202 into an abstract syntax notation 1 (ASN.1), encodes the encoded information, and generates an RRC message generation unit Output to A106.
  • ASN.1 abstract syntax notation 1
  • the details of the process performed by the ASN encoding unit A205 will be described later together with the RRC message generation process.
  • the RRC message generation unit A106 generates an LTE-A mobile station communication capability message (UE-Advanced EUTRA-Capability in FIG. 24) including the information input from the ASN encoding unit A205, and transmits an uplink RRC message included in the control data. As a part, the data is output to the transmitting / receiving apparatus A101.
  • LTE-A mobile station communication capability message UE-Advanced EUTRA-Capability in FIG. 24
  • the transmission / reception device A101 processes the RRC message input from the RRC message generation unit A106 in the RF transmission branch j and transmits it to the base station device B. Further, the allocation information storage unit A103, the RRC message generation unit A106, the control unit A202, the ASN encoding unit A205, and the category information storage unit A207 may be included in the integrated circuit chip. Alternatively, the transmission / reception device A101 may be configured to include a part or all of it in the integrated circuit chip, and is not limited.
  • FIG. 24 shows LTE-A mobile station category information (ue-Category in FIG. 24) included in the LTE-A mobile station communication capability message (UE-Advanced EUTRA-Capability in FIG. 24) converted into the abstract syntax notation 1 according to the present embodiment.
  • mobile station category information (ue-Category) values “1” to “6” are LTE-A mobile station categories A to F (FIGS. 18 to 21), respectively. Reference).
  • the value of mobile station category information (ue-Category) is “1” to “4” (INTERGER (1..4)).
  • the control unit B102 allocates uplink / downlink radio resources based on the mobile station category information as shown in FIG. 22 (see FIG. 15). For example, the control unit B102 decodes the LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 24) from the RRC message received from the mobile station device A2, and mobile station category information (ue-Category in FIG. 24). ) And the allocation of the uplink / downlink local CC of the mobile station device A2 and the allocation of radio resources in the allocated uplink / downlink local CC are determined based on the mobile station category information.
  • LTE-A mobile station communication capability message UE-AdvancedEUTRAN-Capability in FIG. 24
  • mobile station category information ue-Category in FIG. 24.
  • the base station apparatus B transmits the downlink local CCs f1_R1 to f1_R4 and the uplink local CCs f1_T1 to f1_T4 in the communication capability that corresponds to the LTE-A mobile station category C, that is, frequency band 1 (FIG. 2, 2 GHz).
  • the mobile station apparatus A2 has a transmission / reception apparatus configuration as in LTE-A mobile station category A, that is, in frequency band 1 (FIG.
  • the downlink local CCs f1_R1 and f1_R2 Can be transmitted and the uplink local CC f1_T1 can be transmitted
  • the control unit B102 assigns the uplink / downlink local CC to the mobile station device A2, that is, the downlink local CC is f1_R1 and f1_R2, and the uplink local CC is Assigned to f1_T1 at the time of initial access of the mobile station device A2 Notification to.
  • the downlink radio resource that is, the downlink resource block RB from which the mobile station device A2 receives its own device data is transmitted in the downlink local CC of f1_R1 and f1_R2, and the uplink radio resource, that is, the mobile station device A2 transmits its own device data.
  • the resource block RB is allocated in the uplink local CC of f1_T1.
  • the control unit B102 of the base station apparatus B compares the mobile station category information (ue-Category in FIG. 24) from the mobile station apparatus A2 with the transmission / reception apparatus configuration information of the own apparatus, Within the capability range, it is possible to perform appropriate downlink / uplink radio resource allocation to the mobile station apparatus A2.
  • the frequency band information that the mobile station apparatus A2 can handle for example, the frequency band number, can be notified to the base station apparatus B through another RRC message as usual.
  • the control unit B102 stores the determined uplink / downlink local CC allocation information and the allocated uplink / downlink local CC radio resource allocation information in the allocation information storage unit B103.
  • the control unit B102 reads the uplink / downlink local CC allocation information and the allocated uplink / downlink local CC radio resource allocation information from the allocation information storage unit B103, and controls transmission / reception. Also, the control unit B102 transmits the determined uplink / downlink local CC allocation information and the allocated uplink / downlink local CC radio resource allocation information to the mobile station apparatus A2 via the transmission / reception apparatus B101.
  • the mobile station apparatus A2 transmits the LTE-A mobile station category information (ue-Category in FIG. 24) that can be used for communication with the base station apparatus B to the base station apparatus B. Send to.
  • the mobile station device A2 performs communication with the base station device B using the uplink / downlink radio resources allocated by the base station device B based on the LTE-A mobile station category information.
  • the communication system can allocate the uplink / downlink radio resource suitable for the communication between the mobile station device A2 and the base station device B.
  • FIG. 25 is a schematic diagram illustrating another example of the LTE-A mobile station communication capability message converted into the abstract syntax notation 1 according to the third modification of the present embodiment.
  • the conventional LTE mobile station communication capability message (UE-EUTRAN-Capability) includes mobile station category information (ue-Category in FIG. 25) values “1” to “11” (INTAGER (1..11)). )), “1” to “5” respectively indicate conventional LTE mobile station categories 1 to 5, and “6” to “11” respectively add LTE-A mobile station categories A to F.
  • the LTE-A mobile station communication capability message includes mobile station category information (ue-Category in FIG. 25) values “1” to “11” (INTAGER (1..11)).
  • “1” to “5” respectively indicate conventional LTE mobile station categories 1 to 5
  • “6” to “11” respectively add LTE-A mobile station categories A to F.
  • the LTE-A mobile station communication capability message includes mobile station category information (ue-Category in FIG
  • the mobile station device A2 transmits LTE-A mobile station category information (ue-Category in FIG. 24 or FIG. 25) that can be used for communication with the base station device B to the base station. Transmit to station device B. Further, the mobile station device A2 performs communication with the base station device B using the CC assigned by the base station device B based on the LTE-A mobile station category information. Thereby, in this embodiment, the communication system can allocate an appropriate CC for communication between the mobile station apparatus A2 and the base station apparatus B.
  • LTE-A mobile station category information (ue-Category in FIG. 24 or FIG. 25) is defined, and mobile station category information is transmitted to the base station apparatus as in the prior art.
  • this embodiment is a combination of LTE-A mobile station apparatus configurations corresponding to various LTE-A technical elements as described in (a) to (b) above.
  • the mobile station apparatus configuration information is generated and transmitted to the base station apparatus B, so that the base station apparatus B can respond to various LTE-A technical elements in accordance with the mobile station apparatus configuration information.
  • the LTE-A mobile station category is defined by the number of data streams and the number of logical CCs, and the LTE-A mobile station apparatus configuration
  • the LTE-A mobile station categories A to F (FIG. 19 to Figure 2 Amount of information RRC message containing a reference) (e.g. the number of bits, it is possible to reduce the overhead) information volume and radio resources of the uplink signaling control signal.
  • the combination of LTE-A mobile station device configurations it is possible to reduce circuit complexity, reduce power consumption, reduce costs, reduce size, improve productivity, and the like.
  • the mobile station apparatus includes LTE including transmission / reception apparatus configuration information (UE-RF-Capability) according to the first embodiment and mobile station category information (ue-Category) according to the second embodiment.
  • UE-RF-Capability transmission / reception apparatus configuration information
  • Ue-Category mobile station category information
  • -A Generate mobile station communication capability message. Note that the conceptual diagram of the communication system is the same as that of the first embodiment shown in FIG.
  • Each of the mobile station devices A11 and A12 according to the present embodiment is referred to as a mobile station device A3.
  • FIG. 26 is a schematic block diagram showing the configuration of the mobile station device A3 according to the third embodiment of the present invention.
  • the control unit A302 and the ASN encoding unit A305 are different.
  • the functions of other components transmission / reception device A101, allocation information storage unit A103, RRC message creation unit A106, category information storage unit A207, transmission / reception device configuration information storage unit A104
  • transmission / reception device configuration information storage unit A104 are the same as those in the first and second embodiments.
  • a description of the same functions as those in the first and second embodiments is omitted.
  • the control unit A302 controls each unit of the mobile station device A3. For example, the control unit A302 receives the radio resource information allocated from the base station apparatus B, and stores the received radio resource information in the allocation information storage unit A103. The control unit A302 reads radio resource information from the allocation information storage unit A103 and controls transmission / reception. In addition, the control unit A202 outputs the transmission / reception device configuration information stored in the transmission / reception device configuration information storage unit A104 and the LTE-A mobile station category information read from the category information storage unit A207 to the ASN encoding unit A205.
  • the ASN encoding unit A305 converts the transmission / reception apparatus configuration information and the LTE-A mobile station category information input from the control unit A302 into an abstract syntax notation 1 (ASN.1), performs encoding, and encodes the information. Is output to the RRC message generator A106. The details of the process performed by the RRC message generation unit A106 will be described later together with the RRC message generation process.
  • the transmission / reception device A101 processes the RRC message input from the RRC message generation unit A106 in the RF transmission branch j and transmits it to the base station device B.
  • the allocation information storage unit A103, the transmission / reception device configuration information storage unit A104, the RRC message generation unit A106, the control unit A302, the ASN encoding unit A305, and the category information storage unit A207 may be included in the integrated circuit chip.
  • the transmission / reception device A101 may be configured to include a part or all of it in the integrated circuit chip, and is not limited.
  • FIG. 27 is a schematic diagram illustrating an example of an LTE-A mobile station communication capability message according to the present embodiment.
  • the LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 27) includes mobile station category information (ue-Category in FIG. 24), and transceiver configuration information (UE-RF in FIG. 12). -Capability).
  • the values “1” to “6” (INTERGER (1..6)) of mobile station category information (ue-Category in FIG.
  • LTE-A mobile station categories A to F are respectively LTE-A mobile station categories A to F ( FIG. 18 to FIG. 21).
  • mobile station category information for example, “1” to “4” (INTERGER (1..4)) in the case of FIG. 22, “1” to “4” in the case of FIG. “11” (INTERGER (1..11)) indicates a mobile station category.
  • the control unit B102 allocates uplink / downlink radio resources based on mobile station category information as shown in FIG. 21 and transmission / reception apparatus configuration information (see FIG. 15). For example, the control unit B102 decodes and extracts mobile station category information (ue-Category in FIG. 27) and transmission / reception device configuration information (UE-RF-Capability in FIG. 12) from the RRC message received from the mobile station device A3. Based on the extracted mobile station category information and transmission / reception device configuration information, allocation of uplink / downlink radio resources of the mobile station device A3 is determined. For example, the control unit B102 extracts the LTE-A mobile station category B from the mobile station category information and the radio parameters of the mobile station apparatus configuration as shown in FIG.
  • One RF reception branch (RX1) in band number 1) includes two BB demodulation branches (BB_DM1, BB_DM2), and one BB modulation branch (BB_MD1) in one RF transmission branch 1 (TX1). ) Can be determined to be included.
  • the base station apparatus B transmits the downlink local CCs f1_R1 to f1_R4 in the communication capability capable of supporting the LTE-A mobile station category C, that is, in the frequency band 1 (FIG. 2, 2 GHz, frequency band number 1).
  • the control unit B102 allocates an uplink / downlink local CC to the mobile station apparatus A3, and notifies the mobile station apparatus A3 at the time of initial access.
  • the control unit B102 considers the downlink user load, that is, the load balance of the downlink local CCs f1_R1 to f1_R4. For example, continuous downlink local CCs f1_R1 and f1_R2 are allocated to the mobile station apparatus A3, or discontinuous downlink local CCs f1_R1 and f1_R4 are allocated.
  • the control unit B102 considers the uplink user load, that is, the load balance of the uplink local CCs f1_T1 to f1_T4. For example, f1_R2 of uplink local CC is allocated to the mobile station device A3 (when a plurality of uplink local CCs can be handled, continuous / non-continuous CCs can be allocated in the same manner as downlink).
  • downlink radio resources that is, downlink resource blocks RB from which the mobile station device A3 receives its own device data
  • uplink radio resources that is, mobile stations, in the downlink local CCs of f1_R1 and f1_R2.
  • the device A2 allocates the uplink resource block RB to which the device data is transmitted in the uplink local CC of f1_T1.
  • the control unit B102 compares the mobile station category information and the transmission / reception device configuration information from the mobile station device A3 with the transmission / reception device configuration information of the own device, and within the range of the communication capability of the own device and the mobile station device communication capability, the mobile station Appropriate downlink / uplink radio resource allocation can be performed for the device A3.
  • the control unit B102 extracts LTE-A mobile station category B from the mobile station category information and radio parameters of the mobile station apparatus configuration as shown in FIG. 29 from the transmission / reception apparatus configuration information, and LTE-A mobile station category B Therefore, the mobile station apparatus A3 can control the frequency band 1 (FIG. 2, 2 GHz) according to the uplink / downlink data processing soft buffer size (maximum downlink data rate 100 Mbps, uplink maximum data rate 75 Mbps) of the mobile station apparatus A3 and the radio parameters of FIG. ,
  • One RF reception branch (RX1) in frequency band number 1) has one BB demodulation branch (BB_DM1, BB_DM2), and one RF reception branch in frequency band 2 (FIG.
  • RX2 frequency band number A
  • BB_DM2 BB demodulation branch
  • FOG 2,2GHz, frequency band number 1 one BB modulation branches one for RF transmission branch 1 (TX1) in (BB_MD1) included it is possible to determine.
  • the base station apparatus B transmits the downlink local CCs f1_R1 to f1_R4 in the communication capability capable of supporting the LTE-A mobile station category C, that is, in the frequency band 1 (FIG. 2, 2 GHz, frequency band number 1).
  • the control unit B102 allocates an uplink / downlink local CC to the mobile station apparatus A3, and notifies the mobile station apparatus A3 at the time of initial access.
  • the control unit B102 considers the downlink user load, that is, the load balance of f1_R1 to f1_R4 of the downlink local CC.
  • the downlink local CC f1_R2 is assigned to the mobile station apparatus A3 (if there are multiple downlink local CCs, continuous / non-continuous CC assignment is also possible).
  • the control unit B102 Since there is one BB demodulation branch in one RF transmission branch, the control unit B102 considers the uplink user load, that is, the load balance of the f1_T1 to f1_T4 of the uplink local CC, and, for example, the mobile station apparatus A3 includes the f1_T2 of the uplink local CC. (If multiple uplink local CCs can be supported, It is also possible allocation of the continuous / discontinuous CC on). In the case of a continuous downlink local CC, the downlink radio resource, that is, the downlink resource block RB from which the mobile station device A3 receives its own device data is included in the downlink local CC of f1_R2, and the uplink radio resource, that is, the mobile station device A2 itself.
  • An uplink resource block RB for transmitting device data is allocated in the uplink local CC of f1_T2.
  • the control unit B102 compares the mobile station category information and the transmission / reception device configuration information from the mobile station device A3 with the transmission / reception device configuration information of the own device, and within the range of the communication capability of the own device and the mobile station device communication capability, the mobile station Appropriate downlink / uplink radio resource allocation can be performed for the device A3.
  • the control unit B102 stores uplink / downlink local CC allocation information and radio resource allocation information in the allocated uplink / downlink local CC in the allocation information storage unit B103.
  • the control unit B102 reads the uplink / downlink local CC allocation information and the allocated radio resource allocation information in the uplink / downlink local CC from the allocation information storage unit B103, and controls transmission / reception. In addition, the control unit B102 transmits the determined uplink / downlink CC allocation information and the allocated radio resource allocation information in the uplink / downlink CC to the mobile station device A3 via the transmission / reception device B101.
  • the mobile station device A3 is included in the LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 27) that can be used for communication with the base station device B.
  • the LTE-A mobile station category information and the transmission / reception device configuration information are transmitted to the base station device B.
  • the mobile station apparatus A3 performs communication with the base station apparatus B using the uplink / downlink radio resources allocated by the base station apparatus B based on the LTE-A mobile station category information and the transmission / reception apparatus configuration information.
  • the communication system can allocate uplink / downlink radio resources suitable for communication between the mobile station apparatus A3 and the base station apparatus B.
  • the base station apparatus B can determine LTE-A mobile station category information from the transmission / reception apparatus configuration information of the mobile station apparatus A3.
  • the LTE-A mobile station category information is compared with the LTE-A mobile station category information defined in the LTE-A mobile station category information as in the second embodiment, as compared with the case where the combination of LTE-A mobile station apparatus configurations is limited. Since the limited transmission / reception device configuration information is added, from the second embodiment, as in the above (a) to (b), the restriction is relaxed on the correspondence of various LTE-A technical elements.
  • the information amount of RRC message including LTE-A mobile station category A to F information (see FIGS. 19 to 21) and transmitter / receiver configuration information (for example, number of bits, information amount of uplink signaling control signal, radio resource overhead) ) Increases from the second embodiment, but less than the first embodiment.
  • FIG. 19 an example of six LTE-A mobile station categories A to F is shown (FIGS. 18 to 21).
  • the number of downlink data streams is “8”, “4”, “2”, “1”
  • the number of uplink data streams is “4”, “2”, “1”, and one CC.
  • the frequency bandwidth is 20 MHz
  • the number of maximum downlink continuous / non-continuous CCs is “5”
  • the number of maximum uplink continuous / non-continuous CCs is “2”. Even in this case, there are many combinations of the number of data streams and the number of CCs.
  • the mobile station apparatus has mobile station category information (ue-Category in FIG. 24) according to the second embodiment, and a transmission / reception apparatus configuration number that identifies this combination (also referred to as shortened transmission / reception apparatus configuration information; identification LTE-A mobile station communication capability message including (information).
  • the conceptual diagram of the communication system is the same as that of the third embodiment shown in FIG.
  • Each of the mobile station devices A11 and A12 according to the present embodiment is referred to as a mobile station device A4.
  • FIG. 30 is a schematic diagram illustrating an example of transmission / reception device configuration number information according to the fourth embodiment of the present invention. This figure shows transmission / reception apparatus configuration number information when the LTE-A mobile station category is FIG.
  • This transmission / reception device configuration number is identification information for identifying a combination of the number of data streams and the number of local CCs in the LTE-A mobile station category. For example, the transmission / reception apparatus configuration number “1” (UE_TRX1) indicates a combination in which the number of data streams is “8” and the number of local CCs is “3”.
  • FIG. 31 is a schematic block diagram showing the configuration of the mobile station device A4 according to this embodiment. Comparing the mobile station device A4 (FIG. 31) according to the present embodiment with the mobile station device A3 (FIG. 26) according to the third embodiment, the control unit A402, the ASN encoding unit A405, and the transmission / reception device configuration number storage Part A404 is different. However, the functions of other components (transmission / reception device A101, allocation information storage unit A103, RRC message creation unit A106, and category information storage unit A207) are the same as those in the third embodiment. A description of the same functions as those in the third embodiment is omitted.
  • the transmission / reception device configuration number storage unit A404 stores the transmission / reception device configuration number of the own device.
  • the control unit A402 controls each unit of the mobile station device A4. For example, the control unit A402 receives the radio resource information allocated from the base station apparatus B, and stores the received radio resource information in the allocation information storage unit A103. The control unit A402 reads radio resource information from the allocation information storage unit A103 and controls transmission / reception.
  • the transmission / reception device configuration number storage unit A404 stores the transmission / reception device configuration number in a memory.
  • the transmission / reception device configuration number can be preset at the time of shipment from the factory according to the mobile station device configuration, and can be written in the transmission / reception device configuration number storage unit A404.
  • control unit A402 outputs the transmission / reception device configuration number stored in the transmission / reception device configuration number storage unit A404 and the LTE-A mobile station category information stored in the category information storage unit A207 to the ASN encoding unit A405. .
  • the ASN encoding unit A405 converts the transmission / reception apparatus configuration number and LTE-A mobile station category information input from the control unit A402 into an abstract syntax notation 1 (ASN.1), performs encoding, and encodes the information. Is output to the RRC message generator A106. The details of the process performed by the RRC message generation unit A106 will be described later together with the RRC message generation process.
  • the transmission / reception device A101 processes the RRC message input from the RRC message generation unit A106 in the RF transmission branch j and transmits it to the base station device B.
  • the allocation information storage unit A103, the transmission / reception device configuration information storage unit A404, the RRC message generation unit A106, the control unit A402, the ASN encoding unit A405, and the category information storage unit A207 may be included in the integrated circuit chip.
  • the transmission / reception device A101 may be configured to include a part or all of it in the integrated circuit chip, and is not limited.
  • FIG. 32 is a schematic diagram illustrating an example of an LTE-A mobile station communication capability message (UE-Advanced EUTRAN-Capability in FIG. 32) according to the present embodiment.
  • the LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 32) includes mobile station category information (ue-Category) and shortened transceiver configuration information (ue-nrf-capability). .
  • mobile station category information (ue-Category) values “1” to “6” (INTERGER (1..6)) are LTE-A mobile station categories A to F (FIGS. 19 to 21), respectively. Reference).
  • the receiving device configuration number (ue-nrx-capability) and the transmitting device configuration number (ue-nrx-capability) are substituted into the shortened transmitting / receiving device configuration information (UE-NRF-Capability).
  • the receiving device configuration number and the transmitting device configuration number are combinations of the number of data streams and the number of local CCs that can be received by the receiving branch and transmitted by the transmitting branch, respectively. This is the transmission / reception device configuration number shown.
  • FIG. 33 is a schematic diagram showing another example of the LTE-A mobile station communication capability message converted into the abstract syntax notation 1 according to the modification of the present embodiment.
  • mobile station category information Ue-Category in FIG. 25
  • values “1” to “11” INTAGER (1..11)).
  • “1” to “5” respectively indicate conventional LTE mobile station categories 1 to 5
  • “6” to “11” respectively add LTE-A mobile station categories A to F.
  • the abbreviated transmission / reception device configuration information (UE-NRF-Capability in FIG. 32) is added to represent the LTE-A mobile station communication capability message.
  • the control unit B102 allocates uplink / downlink radio resources based on the mobile station category information as shown in FIGS. 19 to 21 and the shortened transmission / reception apparatus configuration information (see FIG. 15). For example, the control unit B102 transmits an LTE-A mobile station communication capability message (UE-AdvancedEUTRAN-Capability in FIG. 32) or an LTE mobile station communication capability message (UE-EUTRAN in FIG. 33) from the RRC message received from the mobile station device A4.
  • LTE-A mobile station communication capability message UE-AdvancedEUTRAN-Capability in FIG. 32
  • UE-EUTRAN LTE mobile station communication capability message
  • the control unit B102 uses the mobile station category information from the LTE-A mobile station category B, the shortened transmission / reception apparatus configuration information from the reception apparatus configuration number (ue-nrx-capability) “11”, and the transmission apparatus configuration number (ue-nrx ⁇ ).
  • the mobile station device A4 uses the frequency band 1 (FIG. 2, 2 GHz, BB in one RF receiving branch (RX1) in frequency band number 1) Tone branch 2 (BB_DM1, BB_DM2) includes, also, one BB modulation branches one for RF transmission branch 1 (TX1) (BB_MD1) included it is possible to determine.
  • the base station apparatus B transmits the downlink local CCs f1_R1 to f1_R4 in the communication capability capable of supporting the LTE-A mobile station category C, that is, in the frequency band 1 (FIG. 2, 2 GHz, frequency band number 1).
  • the control unit B102 assigns an uplink / downlink local CC to the mobile station apparatus A4, and notifies the mobile station apparatus A4 at the time of initial access.
  • the control unit B102 considers the downlink user load, that is, the load balance of f1_R1 to f1_R4 of the downlink local CC. For example, continuous downlink local CCs f1_R1 and f1_R2 are allocated to the mobile station apparatus A4, or non-continuous downlink local CCs f1_R1 and f1_R4 are allocated.
  • the control unit B102 considers the uplink user load, that is, the load balance of f1_T1 to f1_T4 of the uplink local CC. For example, f1_T2 of uplink local CC is allocated to the mobile station apparatus A4 (when a plurality of uplink local CCs can be supported, continuous / non-continuous CCs can be allocated in the same way as downlink).
  • downlink radio resources that is, downlink resource blocks RB that the mobile station apparatus A4 receives its own data are included in uplink radio resources, that is, mobile station apparatuses, in the downlink local CCs of f1_R1 and f1_R2.
  • A4 allocates an uplink resource block RB for transmitting its own device data in the uplink local CC of f1_T2.
  • the control unit B102 compares the mobile station category information and the transmission / reception device configuration information from the mobile station device A4 with the transmission / reception device configuration information of the own device, and within the range of the communication capability of the own device and the communication capability of the mobile station device, It is possible to perform appropriate downlink / uplink radio resource allocation to the device A4.
  • the control unit B102 stores uplink / downlink local CC allocation information and radio resource allocation information in the allocated uplink / downlink local CC in the allocation information storage unit B103.
  • the control unit B102 reads the uplink / downlink local CC allocation information and the allocated radio resource allocation information in the uplink / downlink local CC from the allocation information storage unit B103, and controls transmission / reception.
  • the control unit B102 transmits the determined uplink / downlink CC allocation information and the allocated radio resource allocation information in the uplink / downlink CC to the mobile station device A4 via the transmission / reception device B101.
  • the mobile station apparatus A4 transmits LTE-A mobile station category information and transmission / reception apparatus configuration information that can be used for communication with the base station apparatus B to the base station apparatus B. To do. Further, the mobile station device A4 communicates with the base station device B using the uplink / downlink radio resources allocated by the base station device B based on the LTE-A mobile station category information and the transmission / reception device configuration information. Thereby, in this embodiment, the communication system can allocate uplink / downlink radio resources suitable for communication between the mobile station apparatus A4 and the base station apparatus B.
  • the transmission / reception device configuration information is added, from the third embodiment, as in the above (a) to (f), the restriction on the correspondence to various LTE-A technical elements is relaxed, and the LTE-A mobile station category
  • the amount of information (for example, the number of bits, information amount of uplink signaling control signal / radio resource overhead) of the RRC message including A to F information (see FIGS. 19 to 21) and shortened transmission / reception apparatus configuration information is smaller than that of the third embodiment. .
  • the category information storage unit A207 and the control unit B102 may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the “computer system” is a computer system built in the mobile station devices A1, A2, A3, A4 or the base station device B, and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In such a case, a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • LSI is typically an integrated circuit.
  • Each functional block of the mobile station apparatus and the base station apparatus may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can be used.
  • the present invention is suitable for use in mobile station apparatuses, radio communication systems, and similar technologies related to mobile communication, and can allocate radio resources appropriate for communication between the mobile station apparatus and the base station apparatus.
  • Quadrature modulator a16, a26, a36-j ... Wireless transmission unit, A102, A202, A302, A402 ... Control unit, A103 ... Allocation information storage unit, A104 ... Transmission / reception device configuration information storage unit, A105, A205, A305 A405 ⁇ ⁇ ⁇ ASN encoding unit, A106 ⁇ ⁇ ⁇ RRC message generating unit, B101 ⁇ ⁇ ⁇ transceiver, B 102 ⁇ ⁇ ⁇ controller, B 103 ⁇ ⁇ ⁇ allocation information storage unit, A 207 ⁇ ⁇ ⁇ category information storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動局装置のASN符号化部は、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を生成する。送受信装置は、送受信能力情報を前記基地局装置へ送信する。制御部は、送受信能力情報に基づいて基地局装置が割り当てた要素キャリアを用いて、基地局装置との通信を制御する。

Description

移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラム
 本発明は、移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラムに関する。
 本願は、2009年10月26日に、日本に出願された特願2009-245493号に基づき優先権を主張し、その内容をここに援用する。
 3GPP(3rd Generation Partnership Project;第3世代パートナーシッププロジェクト)は、GSM(Global System for Mobile Communications;ジーエスエム)とW-CDMA(Wideband-Code Division Multiple Access;広帯域-符号分割多重接続)を発展させたネットワークを基本としたセルラー移動通信システムの仕様の検討や作成を行う標準化プロジェクトである。3GPPでは、W-CDMA方式が第3世代セルラー移動通信方式として標準化され、順次サービスが開始されている。また、通信速度をさらに上げたHSPA(High-Speed Packet Access;エイチエスディーピーエー)も標準化され、サービスが開始されている。3GPPでは、第3世代無線アクセス技術の進化であるEUTRA(Evolved Universal Terrestrial Radio Access)が検討され、2008年末にリリース8の仕様書が完成した。更に、EUTRAの発展形であるAdvanced EUTRA(LTE―AdvancedまたはLTE-Aとも呼称される。)の検討が進められている(非特許文献1)。
 LTE-Aでは、EUTRAとの互換性を維持しつつ、IMT―Advanced(4G)相当またはその以上の高速なデータ伝送が可能な技術として、キャリアアグリゲーション(Carrier Aggregation、以下CAと称する)技術が提案されている(例えば、非特許文献2)。CA技術とは、移動局装置は、基地局装置から送信された下りの複数の連続または非連続の周波数帯域幅が狭いコンポネントキャリア(要素キャリア;Component Carrier、以下CCと称する、例えば20MHz帯域幅)を用いて信号を同時に受信し、擬似的に周波数帯域幅の広い(例えば5つのCCで100MHz帯域幅)キャリア信号を形成し、高速な下りデータ伝送を実現する技術である。同様に、CA技術では、基地局装置は、移動局装置から送信された上りの複数の連続または非連続の周波数帯域幅が狭い(例えば20MHz帯域幅)コンポネントキャリアCC信号を同時に受信し、擬似的に周波数帯域幅の広い(例えば2個のCCで40MHz帯域幅)キャリア信号を形成し、高速な上りデータ伝送を実現する。
<CA技術導入と移動局装置構成の組み合わせの関係> CA技術におけるCCの組み合わせは、上りCCの総数(例えば2個)、下りCCの総数(例えば5個)、周波数バンド(例えば700MHzバンド、2GHzバンド、3GHzバンドなど)数(例えば、3個)、連続または非連続のCC、伝送モード(例えばFDD、TDD)など、様々な変数に依存する。
 図34は、従来技術に係るCCの組み合わせを示す概略図である。この図において、横軸は周波数を示す。また、この図では、2個の周波数バンド1(2GHzバンド)、周波数バンド2(3GHzバンド)がある場合を示す。また、この図において、縦方向に分けてケース1~6を示し、ケース1~3はFDD(Frequency Division Duplex;周波数分割復信)伝送モードの場合を示し、ケース4~6はTDD(Time Division Duplex;時分割複信)伝送モードの場合を示す。
 図34において、ケース1は、同じ周波数バンド1において、バンド12(下り)内で3個連続のCC(中心周波数f1_R1、f1_R2、f1_R3)、及び、バンド11(上り)内で2個連続のCC(中心周波数f1_T1、f1_T2)を選択した場合のCCの組み合わせを示す。
 ケース2は、同じ周波数バンド1において、バンド12内で非連続の2個のCC(中心周波数f1_R1、f1_R3;Intra CAケース)、及び、バンド11内で非連続の2個のCC(中心周波数f1_T1、f1_T3)を選択した場合のCCの組み合わせを示す。
 ケース3は、周波数バンド1のバンド12内でCC(中心周波数f1_R1)、周波数バンド2のバンド22内でCC(中心周波数f2_R1)、及び、周波数バンド1のバンド11でCC(中心周波数f1_T1)を選択した場合のCCの組み合わせを示す。ケース3は、下りの通信において非連続の2個のCC(Inter CAケース)が異なる周波数バンド1、2で選択され、下りの通信において1個のCCが選択されていることを示す。
 なお、ケース4、5、6は、ぞれぞれ、ケース1、2、3に対応するものである。例えば、ケース4では、バンド12が下り/上りの通信に用いられ、CCを時間帯によって選択する場合のCCの組み合わせを示す。ケース4は、下りの通信においてバンド12で3個連続のCC(中心周波数f1_1、f1_2、f1_3)、下りの通信においてバンド12で2個連続のCC(中心周波数f1_1、f1_2)を選択した場合のCCの組み合わせを示す。
 また、同じ周波数バンドにおける非連続のCC(例えば、図34の中心周波数f1_R1、f1_R3)では、複数の基地局装置がフレーム等のタイミングを同期して送信信号を送信する(基地局装置間同期という)場合、基地局装置各々が独自に送信信号を送信する非同期の場合、また、基地局装置間同期を行っても伝搬路遅延が発生し、例えば、OFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重方式)信号のフレームタイミングがずれ、非同期になる場合がある。
 また、同じ周波数バンドにおける連続のCC(例えば中心周波数f1_R1、f1_R2)の基地局装置送信について、LTEシステムへの後方互換性(Backward Compatibility)、100kHzのUMTS(Universal Mobile Telecommunications System)無線チャネルラスター (Channel Raster)、CC間のガードバンド、連続のCCの両端のガードバンド、周波数利用効率など要素を考慮し、様々な技術提案がある(例えば非特許文献1)。ただし、連続のCCでは、CC間のガードバンドがサブキャリア帯域幅15kHzの整数倍にならないため、LTEシステムと互換性を保つには、送受信回路では個別のベースバンド処理回路が必要となる。
 以上のような様々な事例に対応するために、移動局装置の構成は、(ア)周波数バンド数、(イ)下り/上りCCの総数、(ウ)連続/非連続(Intra CA/Inter CA)のCC、(エ)無線伝送モード、(オ)下りCC間或いは基地局装置間の同期/非同期送信、(カ)各種のCC帯域幅(例えば1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz)、(キ)OFDMサブキャリア帯域幅15kHzの連続した複数CCの帯域幅(例えば100MHz)などに依存する(例えば非特許文献2、3)。
<LTE-Aにおける他の導入技術と移動局装置構成の組み合わせの関係>
 LTE-Aの要求条件(非特許文献4)として、移動局装置が高速で移動しているとき、下りの100Mbps、上りの75Mbps、移動局装置が固定の場合、下りの1000Mbps、上りの500Mbpsのデータ伝送速度が要求されている。これを実現するために、CA技術を導入する以外に、MIMOの高度化(High Order MIMO)技術が導入される。例えば下り8×8MIMO(基地局装置の送信アンテナ本数が8本、移動局装置の受信アンテナ本数が8本)で、100MHzの伝送帯域で1000Mbpsのデータ伝送速度を実現し、上り4×4のMIMOで、40MHzの伝送帯域で600Mbpsデータ伝送速度を実現する。また、セルエッジのデータ伝送速度またはセルカバーエリアを拡大するために、基地局装置間の協調通信(CoMP;coordinated multipoint)技術、上り送信ダイバーシチ技術が導入される。
 従って、移動局装置の構成は、(ク)下り/上りMIMO方式、(ケ)基地局装置間の協調通信CoMP方式、(コ)上り送信ダイバーシチ方式などにも依存する。
<キャリア運用状況と移動局装置構成の組み合わせの関係>
 2007年世界無線通信会議 <http://www.soumu.go.jp/menu_news/s-news/2005/pdf/051122_6_2.pdf>WRC07によりIMT-Advancedに対応する周波数割り当てが決定された。しかし、現状のIMTバンド(非特許文献4、5)のすべてが各国共通バンドではない、各携帯電話サービス運営者は自国の周波数割り当てにより運営されている。各国の周波数割り当て事情により、携帯電話サービス運営者は異なる伝送モード(TDD、FDD)を採用している。また異なる伝送モードの融合(例えばマクロセル/マイクロセル、室内/室外エリア、セル近傍/セルエッジにおける異なる伝送モードの混在)が提案されている。従って、移動局装置の構成は、(サ)各携帯電話サービス運営者の周波数割り当て事情、(シ)国内/国際ローミングを考慮して、一層複雑になる(非特許文献6、7、8)。
 以上の(ア)~(シ)の要素(LTE-A技術要素という)は、従来の移動通信システムでは、移動局装置の構成に大きな影響を与えることはなかった。例えば、LTEシステムでは、移動局装置のデータ処理ソフトバッファサイズ(下り最大データ速度10Mbps~300Mbps)と最大のMIMOの構成(1×1、2×2、4×4)により移動局装置のカテゴリ(UE category、5種類)を定義することができた。このカテゴリが決まれば、移動局装置の構成は確定することができる。言い換えれば、各携帯電話サービス運営者に対して5種類の移動局装置を提供すればよく、また、市場では5種類の移動局装置が流通すればよい。
NTT docomo、 INC. R1-083015、3GPP TSG-RAN1 Meeting #54bis、 Jeju、 Korea 18-22、 August、 2008 Motoroal、R1-083828、3GPP TSG-RAN1 Meeting #53bis、 Prague、 Czech Republic、 September 29-October 3、2008 LG Electronics、 R1-082946、3GPP TSG-RAN1 Meeting #54bis、 Jeju、 Korea 18-22、 August、 2008 3GPP TR36.913、Requirements for Further Advancements for E-UTRA 3GPP TS 36.101、 User Equipment (UE) radio transmission and reception NTT docomo、 T-Mobile Intl.、 CMCC、 Orange、 Vodafone、 Telecom Italia、R4-091011、 3GPP TSG-RAN WG4 Meeting #50、 Athens、 Greece、 February 9-13、 2009 Ericsson 、 R4-090594、 3GPP TSG-RAN WG4 Meeting #50、 Athens、 Greece、 February 9-13、 2009 Nokia、R4-091204、 3GPP TSG-RAN WG4 Meeting #50bis、 Seoul、 South Korea、23-27 March 2009
 上記のように、LTE-Aの通信システムにおいて、移動局装置と基地局装置とは、1又は複数のCC(要素キャリア)を用いて通信を行う。
 しかしながら、従来の移動局装置のカテゴリに基づいて、移動局装置に複数のCCを割り当てても、例えば、割り当てられたCCを用いて移動局装置が通信をすることができない場合があった。適切な移動局装置の無線リソース割り当てができない。また様々なLTE-A技術要素を最大限に対応し、且つ回路複雑度の低減、低消費電力化、低コスト化、小型化、生産性の向上などを実現することが困難である。このように、従来技術では、移動局装置と基地局装置との通信に適切な無線リソースが割り当てられないという欠点があった。
 本発明は上記の点に鑑みてなされたものであり、移動局装置と基地局装置との通信に適切な無線リソースを割り当てることができる移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラムを提供する。
 (1)本発明は上記の課題を解決するためになされたものであり、本発明は、予め定められた周波数帯域である要素キャリアを1又は複数用いて、基地局装置と通信を行う移動局装置において、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信し、前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行うことを特徴とする移動局装置である。
 (2)また、本発明は、上記の移動局装置において、前記移動局装置は、複数の周波数バンド各々で、1又は複数の前記要素キャリアを用いて基地局装置と通信を行い、基地局装置との通信に用いることができる周波数バンドに関する情報を含む送受信能力情報を、前記基地局装置へ送信することを特徴とする。
 (3)また、本発明は、上記の移動局装置において、周波数バンドの信号を受信処理する周波数バンド受信処理部を1又は複数備え、前記周波数バンド受信処理部は、要素キャリアの信号を受信処理する要素キャリア受信処理部を1又は複数備え、前記周波数バンドに関する情報は、前記周波数バンド受信処理部の数を示す情報であり、前記要素キャリアに関する情報は、前記周波数バンド受信処理部の数であることを特徴とする。
 (4)また、本発明は、上記の移動局装置において、前記周波数バンドに関する情報は、前記周波数バンド受信処理部が受信処理できる周波数バンドを示す情報であり、前記要素キャリアに関する情報は、前記周波数バンド受信処理部が受信処理する周波数バンド内で、当該周波数バンド受信処理部に備えられた要素キャリア受信処理各々が受信処理できる最大周波数帯域の情報であることを特徴とする。
 (5)また、本発明は、上記の移動局装置において、周波数バンドの信号を送信処理する周波数バンド送信処理部を1又は複数備え、前記周波数バンド送信処理部は、要素キャリアの信号を送信処理する要素キャリア送信処理部を1又は複数備え、前記周波数バンドに関する情報は、前記周波数バンド送信処理部の数を示す情報であり、前記要素キャリアに関する情報は、前記要素キャリア送信処理部の数を示す情報であることを特徴とする。
 (6)また、本発明は、上記の移動局装置において、前記周波数バンドに関する情報は、前記周波数バンド送信処理部が送信処理できる周波数バンドを示す情報であり、前記要素キャリアに関する情報は、前記周波数バンド送信処理部が送信処理する周波数バンド内で、当該周波数バンド送信処理部に備えられた要素キャリア送信処理各々が送信処理できる最大周波数帯域の情報であることを特徴とする。
 (7)また、本発明は、上記の移動局装置において、前記基地局装置との通信の伝送速度と、自装置が当該伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせと、に基づいて決定した移動局カテゴリを前記基地局装置へ送信し、前記送受信能力情報と前記移動局カテゴリとに基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行うことを特徴とする。
 (8)また、本発明は、上記の移動局装置において、前記移動局カテゴリを、伝送速度と、当該伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせと、が対応付けられた移動局カテゴリ対応情報に基づいて決定することを特徴とする。
 (9)また、本発明は、上記の移動局装置において、前記移動局カテゴリ情報に対応する伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせの識別情報を、前記要素キャリアに関する情報として、前記基地局装置へ送信することを特徴とする。
 (10)また、本発明は、予め定められた周波数帯域である要素キャリアを1又は複数用いて、基地局装置と通信を行う移動局装置における通信制御方法において、前記移動局装置が、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信する過程と、前記移動局装置が、前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行う過程と、を有することを特徴とする通信制御方法である。
 (11)また、本発明は、予め定められた周波数帯域である要素キャリアを1又は複数用いて、基地局装置と通信を行う移動局装置のコンピュータを、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信する手段、前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行う手段、として機能させることを特徴とする通信制御プログラムである。
 (12)また、本発明は、基地局装置と、予め定められた周波数帯域である要素キャリアを1又は複数用いて、前記基地局装置と通信を行う移動局装置と、を具備する無線通信システムにおいて、前記移動局装置は、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信し、前記基地局装置は、前記送受信能力情報に基づいて、前記移動局装置に対して通信に用いる要素キャリアを割り当てることを特徴とする無線通信システムである。
 (13)また、本発明は、予め定められた周波数帯域である要素キャリアを1又は複数用いて、移動局装置と通信を行う基地局装置において、移動局装置が通信に用いることができる要素キャリアに関する情報を含む送受信能力情報に基づいて、前記移動局装置に対して通信に用いる要素キャリアを割り当てることを特徴とする基地局装置である。
 本発明によれば、通信システムは、移動局装置と基地局装置との通信に適切なCCを割り当てることができる。
この発明の第1の実施形態に係る通信システムの概念図である。 本実施形態に係るCCの組み合わせを示す概略図である。 本実施形態に係る送受信装置の構成を示す概略ブロック図である。 本実施形態に係る送受信装置の簡略的構成を示す概略ブロック図である。 本実施形態に係る無線パラメータの説明図である。 本実施形態に係る周波数バンド番号の説明図である。 本実施形態に係るBB周波数帯域幅番号の説明図である。 本実施形態に係る送受信装置の簡略的構成を示す概略ブロック図である。 本実施形態に係る送受信装置の簡略的構成を示す概略ブロック図である。 本実施形態に係る移動局装置の構成を示す概略ブロック図である。 本実施形態に係る抽象構文記法1に変換した送受信装置構成情報の説明図である。 本実施形態に係るLTE-A移動局通信能力メッセージの一例を示す概略図である。 本実施形態に係るLTE-A移動局通信能力メッセージの別の一例を示す概略図である。 本実施形態に係る送受信装置構成情報の一例を示す概略図である。 本実施形態に係る基地局装置の構成を示す概略ブロック図である。 従来技術に係るLTE移動局カテゴリの概略図である。 本発明の第2の実施形態に係る送受信装置構成情報の一例を示す概略図である。 本実施形態に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。 本実施形態に係るLTE-A移動局カテゴリ対応情報の別の一例を示す概略図である。 本実施形態の変形例1に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。 本実施形態の変形例2に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。 本実施形態の変形例2に係るLTE-A移動局カテゴリ対応情報の別の一例を示す概略図である 本実施形態に係る移動局装置の構成を示す概略ブロック図である。 本実施形態に係る抽象構文記法1に変換したLTE-A移動局カテゴリ情報の一例を示す概略図である。 本実施形態の変形例3に係る抽象構文記法1に変換したLTE-A移動局カテゴリ情報を示す概略図である。 本発明の第3の実施形態に係る移動局装置の構成を示す概略ブロック図である。 本実施形態に係るLTE-A移動局通信能力メッセージの一例を示す概略図である。 本実施形態に係る送受信装置構成情報の一例を示す概略図である。 本実施形態に係る送受信装置構成情報の別の一例を示す概略図である。 本発明の第4の実施形態に係る送受信装置構成番号情報の一例を示す概略図である。 本実施形態に係る移動局装置の構成を示す概略ブロック図である。 本実施形態に係るLTE-A移動局通信能力メッセージの一例を示す概略図である。 本実施形態に係るLTE-A移動局通信能力メッセージの別の一例を示す概略図である。 従来技術に係るCCの組み合わせを示す概略図である。
(第1の実施形態)
 以下、図面を参照しながら本発明の第1の実施形態について詳しく説明する。
 本実施形態では、移動局装置が、RF送受信ブランチ数、ベースバンド変復調ブランチ数、周波数バンド番号、及びベースバンド周波数帯域幅番号を含む移動局装置能力メッセージ(送受信能力情報)を送信し、基地局装置が移動局装置能力メッセージに基づいて移動局装置との通信に用いる無線リソース、すなわち上り/下り要素キャリアCC(Component Carrier;コンポネントキャリア)のOFDM信号無線フレームにおける各移動局装置が使用するリソースブロックRB(Resource Block)を割り当てる場合について説明する。ここで、移動局装置能力メッセージは、RF送受信ブランチ数等の無線パレメータを、統一した構造記述で表した1個のデータ形式の情報を生成することで、様々なLTE-A技術要素に対応する。
<通信システムについて>
 図1は、この発明の第1の実施形態に係る通信システムの概念図である。この図において、基地局装置Bは、移動局装置A11、A12と通信を行う。この図は、移動局装置A11が移動局装置能力メッセージを基地局装置Bに送信することを示す。また、この図は、基地局装置Bが、移動局装置A11から受信した移動局装置能力メッセージに基づいて、移動局装置A11に無線リソースの割り当てを行うことを示す。なお、移動局装置A11又はA12から基地局装置Bへの通信を上りの通信といい、基地局装置Bから移動局装置A11又はA12への通信を下りの通信という。
 以下、移動局装置A11、A12各々を、移動局装置A1という。
 移動局装置A1と基地局装置Bは、キャリアアグリゲーション(Carrier Aggregation;以下CA技術と称する)技術を用いた通信を行う。CA技術では、移動局装置A1は、基地局装置Bから送信された下りの複数の連続または非連続の周波数帯域幅が狭い要素キャリア(例えば、20MHz帯域幅)を用いて信号を同時に受信し、擬似的に周波数帯域幅の広い(例えば5つのCCで100MHz帯域幅)キャリア信号を形成し、高速な下りデータ伝送を実現する技術である。同様に、CA技術では、基地局装置Bは、移動局装置A1から送信された上りの複数の連続または非連続の周波数帯域幅が狭い(例えば20MHz帯域幅)コンポネントキャリアCC信号を同時に受信し、擬似的に周波数帯域幅の広い(例えば2個のCCで40MHz帯域幅)キャリア信号を形成し、高速な上りデータ伝送を実現する。
<CA技術について>
 以下、CA技術について具体的に説明をする。
 図2は、本実施形態に係るCCの組み合わせを示す概略図である。この図において、横軸は周波数を示す。また、この図では、2個の周波数バンド1(2GHzバンド)、周波数バンド2(3GHzバンド)がある場合を示す。また、この図において、縦方向に分けてケース1~6を示し、ケース1~3はFDD(Frequency Division Duplex;周波数分割復信)伝送モードの場合を示し、ケース4~6はTDD(Time Division Duplex;時分割複信)伝送モードの場合を示す。
 図2において、ケース1は、同じ周波数バンド1において、バンド12(下り)内で3個連続のCC(中心周波数f1_R1、f1_R2、f1_R3)、及び、バンド11(上り)内で2個連続のCC(中心周波数f1_T1、f1_T2)を選択した場合のCCの組み合わせを示す。
 ケース2は、同じ周波数バンド1において、バンド12内で非連続の2個のCC(中心周波数f1_R1、f1_R3;Intra CAケース)、及び、バンド11内で非連続の2個のCC(中心周波数f1_T1、f1_T3)を選択した場合のCCの組み合わせを示す。
 ケース3は、周波数バンド1のバンド12内でCC(中心周波数f1_R1)、周波数バンド2のバンド22内でCC(中心周波数f2_R1)、及び、周波数バンド1のバンド1でCC(中心周波数f1_T1)を選択した場合のCCの組み合わせを示す。ケース3は、下りの通信において非連続の2個のCC(Inter CAケース)が異なる周波数バンド1、2で選択され、下りの通信において1個のCCが選択されていることを示す。
 なお、ケース4、5、6は、ぞれぞれ、ケース1、2、3に対応するものである。例えば、ケース4では、バンド12が下り/上りの通信に用いられ、CCを時間帯によって選択する場合のCCの組み合わせを示す。ケース4は、下りの通信においてバンド12で3個連続のCC(中心周波数f1_1、f1_2、f1_3)、下りの通信においてバンド12で2個連続のCC(中心周波数f1_1、f1_2)を選択した場合のCCの組み合わせを示す。
 移動局装置A1と基地局装置Bは、選択したCCを用いた通信を行う。ここで、移動局装置A1各々は、それぞれ構成が異なる送受信装置を備える場合があり、CA技術で対応できるCCが異なる。以下、移動局装置A1が備える送受信装置について、複数の構成例(送受信装置a1~a3)を説明する。
<送受信装置a1の構成について>
 まず、1個のCCを用いた通信を行う送受信装置a1について説明をする。
 図3は、本実施形態に係る送受信装置a1の構成を示す概略ブロック図である。この図において、送受信装置a1は、送受信共用アンテナa101、アンテナ共用器(DUP)a102、無線受信部(RF_Rx)a11、直交復調器(IQ_DM)a12、ベースバンド復調部(BB_DM)a13、ベースバンド変調部(BB_MD)a14、直交変調器(IQ_MD)a15、及び無線送信部(RF_Tx)a16を含んで構成される。
 まず、受信処理について説明をする。
 アンテナ共用器a102は、送受信共用アンテナa101を介して基地局装置Bから受信した信号を無線受信部a11に出力する。また、アンテナ共用器a102は、無線送信部a16から入力された信号を、送受信共用アンテナa101を介して基地局装置Bへ送信する。
 無線受信部a11は、LNA(Low Noise Amplifier)a111、及び、RF受信帯域制限フィルタ(Rx_BPF;Band Pass Filter)a112を含んで構成される。LNA a111は、アンテナ共用器a102から入力された信号を増幅し、RF受信帯域制限フィルタa112に出力する。RF受信帯域制限フィルタa112は、アンテナ共用器a102から入力された信号から、受信帯域(例えば、図2のバンド12)の信号を抽出して直交復調器a12に出力する。
 直交復調器a12は、アンプ(AMP)a121、局部発振器a122、移相器a123、乗算器a124、a126、及び、LPF(Low Pass Filter)a125、a127を含んで構成される。アンプa121は、RF受信帯域制限フィルタa112から入力された信号を増幅し、乗算器a124及びa126に出力する。局部発振器a122は、正弦波を生成して移相器a123に出力する。移相器a123は、局部発振器a122からの入力された正弦波を乗算器a124に出力する。また、移相器a123は、局部発振器a122からの入力された正弦波の位相を90度ずらした余弦波を生成して乗算器a126に出力する。
 乗算器a124は、アンプa121から入力された信号に、移相器a123から入力された正弦波を乗算することで、信号の同相成分を抽出するとともに、信号をダウンコンバートする。乗算器a124は、正弦波を乗算した信号をLPF a125に出力する。LPF a125は、乗算器a124から入力された信号の低周波数成分を抽出する。LPF a125は、抽出した信号の同相成分をベースバンド復調部a13に出力する。
 乗算器a126は、アンプa121から入力された信号に、移相器a123から入力された余弦波を乗算することで、信号の直交成分を抽出するとともに信号をダウンコンバートする。乗算器a126は、正弦波を乗算した信号をLPF a127に出力する。LPF a127は、乗算器a126から入力された信号の低周波数成分を抽出する。LPF a127は、抽出した信号の同相成分をベースバンド復調部a13に出力する。
 ベースバンド復調部は、AD変換部(ADC;Analog to Digital Converter)a131、a132、デジタルフィルタ (Digital Filter;Rx_DF)a133、CP(Cyclic Prefix)削除部a134、S/P(直列/並列)変換部a135、FFT(Fast Fourier Transform;高速フーリエ変換)部a136、ディマッピング部a137-1~a137-s、及び、P/S(並列/直列)変換部a138を含んで構成される。AD変換部a131、a132は、それぞれ、LPF a125、a127から入力された信号(アナログ信号)をデジタル信号に変換し、デジタルフィルタa133に出力する。デジタルフィルタa133は、AD変換部a131、a132から入力された信号から、受信帯域の信号(例えば、図2f1_R1)を抽出してCP削除部a133に出力する。CP削除部a134は、デジタルフィルタa133から入力された信号からCPを除去し、S/P変換部a135に出力する。S/P変換部a135は、CP削除部a134から入力された信号を直並列変換し、FFT部a136に出力する。FFT部a136は、S/P変換部a135から入力された信号を時間領域から周波数領域にフーリエ変換し、ディマッピング部a137-1~a137-sに出力する。ディマッピング部a137-1~a137-sは、FFT部a136から入力された周波数領域の信号をディマッピングし、P/S変換部a138に出力する。P/S変換部a138は、ディマッピング部a137-1~a137-sから入力された信号を並直列変換して受信データを取得し、出力する。
 次に、送信処理について説明をする。
 ベースバンド変調部a14は、S/P(直列/並列)変換部a141、マッピング部a142-1~a142-t、IFFT(Inverse Fast Fourier Transform;逆フーリエ変換)部a143、P/S(並列/直列)変換部a144、CP挿入部a145、デジタルフィルタ (Tx_DF)a146、及び、DA変換部(DAC;Digital to Analog Converter)a147、148を含んで構成される。S/P変換部a141は、入力された送信データを直並列変換し、マッピング部a142-1~a142-tに出力する。マッピング部a142-1~a142-tは、S/P変換部a141から入力された信号をマッピングし、IFFT部a143に出力する。IFFT部a143は、マッピング部a142-1~a142-tから入力された信号を、周波数領域から時間領域に逆フーリエ変換し、P/S変換部a144に出力する。P/S変換部a144は、IFFT部a143から入力された時間領域の信号を並直列変換し、CP挿入部a145に出力する。CP挿入部a145は、P/S変換部a144から入力された信号にCPを挿入し、デジタルフィルタa146に出力する。デジタルフィルタa146は、CP挿入部a145から入力された信号から、送信帯域(例えば、図2のf1_T1)の信号を抽出する。デジタルフィルタa146は、抽出した信号の同相成分、直交成分を、それぞれDA変換部a147、a148に出力する。DA変換部a147、a148は、それぞれ、デジタルフィルタa146から入力された信号(デジタル信号)をアナログ信号に変換し、直交変調器a15に出力する。
 直交変調器a15は、LPFa151、a152、局部発振器a153、移相器a154、乗算器a155、a156、及び、アンプ(AMP)a157を含んで構成される。LPFa151、a152は、それぞれ、DA変換部a147、a148から入力された信号の低周波数成分を抽出する。局部発振器a153は、正弦波を生成して移相器a154に出力する。移相器a154は、局部発振器a153からの入力された正弦波を乗算器a155に出力する。また、移相器a154は、局部発振器a153からの入力された正弦波の位相を90度ずらした余弦波を生成して乗算器a156に出力する。
 乗算器a155は、LPFa151から入力された信号に、移相器a154から入力された正弦波を乗算することで、同相成分の波を生成するとともに、信号をアップコンバートする。乗算器a155は、正弦波を乗算した信号をアンプa157に出力する。乗算器a156は、LPFa152から入力された信号に、移相器a154から入力された余弦波を乗算することで、直交成分の波を生成するとともに、信号をアップコンバートする。乗算器a156は、余弦波を乗算した信号をアンプa157に出力する。アンプa157は、乗算器a155、a156から入力された信号を増幅し、無線送信部a16に出力する。
 無線送信部a16は、RF送信帯域制限フィルタ(Tx_BPF)a161、及び、PA(Power Amplifier)a162を含んで構成される。RF送信帯域制限フィルタa161は、アンプa157から入力された信号から、送信帯域の信号(例えば、図2のバンド11)を抽出してPA a162に出力する。PA a162は、RF送信帯域フィルタa161から入力された信号を増幅し、アンテナ共用器a102に出力する。
 上記の構成によって送受信装置a1は、例えば、図2に示した中心周波数f1_T1、周波数帯域幅20MHzの上りCCを用いて、信号を送信する。なお、図3に示す送受信装置a1の構成は、上りOFDM信号のCCを生成しているが、本発明はこれに限らず、回路ブロックの別組み合わせで、SC-FDMA(Single-Carrier Frequency-Division Multiple Access)の構成で上り連続のSC-FDMA信号、または非連続のSC-FDMA(Clustered DFT-S-OFDMまたはCL-DFT-S-OFDM)信号、を生成しCCを用いて送信してもよい。また、図3はダイレクトコンバージョン方式の送受信装置a1について説明したが、本発明はこれに限らず、スーパーヘテロダイン方式など他の送受信装置に適用してもよい。なお、この場合、直交変復調部a12、a15の対応関係を修正すれば適用することができる。
 図4は、本実施形態に係る送受信装置a1の簡略的構成を示す概略ブロック図である。この図は、図3の送受信装置a1の構成を簡略化したものである。送受信装置a1は、送受信共用アンテナa101、アンテナ共用器(DUP)a102、無線受信部(RF_Rx)a11、直交復調器(IQ_DM)a12、ベースバンド復調部(BB_DM)a13、ベースバンド変調部(BB_MD)a14、直交変調器(IQ_MD)a15、及び無線送信部(RF_Tx)a16を含んで構成される。
<無線パラメータについて>
 図5は、本実施形態に係る無線パラメータの説明図である。この図は、無線パラメータとして、RF_BWm、及び、BB_BWnがあることを示す。ここで、mはシステムオペレーションの周波数バンドの番号(周波数バンド番号という)を示し、m=1、2、・・・、Mである。例えば、図2の周波数バンド1、2の周波数バンド番号は1、2である。また、nはベースバンドの周波数帯域幅(以下、BB周波数帯域幅番号という)の番号を示し、n=1、2、・・・、Nである。
 ここで、パラメータRF_BWmは、図4の送受信共用アンテナa101、アンテナ共用器a102、無線受信部a11、直交復調器a12、直交変調器a15、及び無線送信部a16と関連する。また、パラメータBB_BWnは、図4の直交復調器a12、ベースバンド復調部a13、ベースバンド変調部a14、及び直交変調器a15と関連する。この関連についての詳細は、図6、7を用いて後述する。
 図6は、本実施形態に係る周波数バンド番号の説明図(3GPP TS 36.101のTable 5.5-1 E-UTRA operating bandsから一部抜粋)である。この図は、周波数バンド番号、上り周波数バンド帯域、下り周波数バンド帯域、周波数バンド帯域幅、及び、伝送モードの関係を示す。例えば、1行目の対応は、周波数バンド番号「1」の周波数バンド(図2の周波数バンド1参照)は、上り周波数バンド(図2のバンド11参照)帯域が「1920MHz~1980MHz」、下り周波数バンド(図2のバンド12参照)帯域が「2110MHz~2170MHz」、周波数バンド帯域は「60MHz」、伝送モードが「FDD」であることを示す。なお、IMT-Advancedに対応する周波数帯域の追加により、関連仕様書にLTE-Aシステム対応の周波数バンド番号(41番から)は追加されると予測される。 
 このパラメータRF_BWmにより、図4の送受信共用アンテナa101、アンテナ共用器a102、無線受信部a11、直交復調器a12、直交変調器a15、及び無線送信部a16の動作周波数及び動作周波数帯域幅が決定される。
 図7は、本実施形態に係るBB周波数帯域幅番号の説明図である。この図は、BB周波数帯域幅番号及び周波数帯域幅の関係を示す。例えばBB周波数帯域幅番号1、2、3、4、5は20MHzCCの帯域幅の組み合わせを表す。また、BB周波数帯域幅番号6、7番以降は1.4MHz、3MHz、5MHz、10MHz、15MHzのCC帯域幅の組み合わせを表すこともできる。
 このパラメータBB周波数帯域幅番号により、下りリンクについては、図4の直交復調器a12のダウンコンバータ(局部発振器a122、移相器a123、乗算器a124、a126)、LPF a125、a127での周波数特性、ベースバンド復調部a13のデジタルフィルタa133の周波数特性、及び、AD変換部a131、FFT部a136のサンプリング周波数が決定される。同様に、このパラメータBB周波数帯域幅番号により、上りリンクについては、図4の直交変調器a15のアップコンバータ(局部発振器a153、移相器a154、乗算器a155、a156)の周波数特性、LPFa151、a152での周波数特性、ベースバンド変調部a14のデジタルフィルタa146での周波数特性、及び、IFFT部a143、DA変換部a147、148でのサンプリング周波数が決定される。
<送受信装置a2の構成について>
 次に、1個の周波数バンドで、複数のCC(L個の下りCC、K個の上りCC)を用いた通信を行う送受信装置a2について説明をする。
 図8は、本実施形態に係る送受信装置a2の簡略的構成を示す概略ブロック図である。この図において、送受信装置a2は、送受信共用アンテナa201、アンテナ共用器(DUP)a202、無線受信部(RF_Rx)a21、L個の直交復調器(IQ_DMl)a22-l(Lの小文字;l=1、2、・・・、L)、L個のベースバンド復調部(BB_DMl)a23-l(Lの小文字)、K個のベースバンド変調部(BB_MDl)a24-k(k=1、2、・・・、K)、K個の直交変調器(IQ_MDl)a25-k、及び無線送信部(RF_Tx)a26を含んで構成される。ここで、アンテナ共用器a202、無線受信部a21、直交復調器a22-l、ベースバンド復調部a23-l、ベースバンド変調部a24-k、直交変調器a25-kの持つ構成及び機能は、それぞれ、図3のアンテナ共用器a102、無線受信部a11、直交復調器a12、ベースバンド復調部a13、ベースバンド変調部a14、直交変調器a15と同じであるので、説明は省略する。ただし、直交復調器a22-l各々、及びベースバンド復調部a23-l各々は、対応付けられた1つまたは複数連続の下りCCで受信した信号を処理する。また、ベースバンド変調部a24-k各々、及び直交変調器a25-k各々は、対応付けられた1つまたは複数連続の上りCCで送信する信号を処理する。
 図8の送受信装置a2では、1個の周波数バンド内において、連続/非連続のL個の下りCCで信号を受信し、及び連続/非連続のK個の上りCCで信号を送信することができる。また、L個の直交復調器a22-lとベースバンド復調部a23-lを有するため、非同期送信の下りCCでの通信にも対応できる。また、それぞれのBB周波数帯域幅番号BB_BWnが異なる場合、対応できる連続/非連続の下りCC総数、非同期送信の下りCCの総数、OFDMサブキャリア帯域幅15kHzの連続した複数CCの帯域幅も変化し、様々な組み合わせが生じる。上りについても同様である。
<送受信装置a3の構成について>
 次に、1個又は複数の周波数バンドで、複数のCCを用いた通信を行う送受信装置a3について説明をする。
 図9は、本実施形態に係る送受信装置a3の簡略的構成を示す概略ブロック図である。この図において、送受信装置a3は、送受信共用アンテナa301-i(i=1、2、・・・、I)、アンテナ共用器(DUPi)a302-i、無線受信部(RF_Rxi)a31-i、直交復調器(IQ_DMil)a32-il(Lの小文字;l=1、2、・・・、L)、ベースバンド復調部(BB_DMil)a33-il(Lの小文字)、ベースバンド変調部(BB_MDjk)a34-jk(j=1、2、・・・、I;k=1、2、・・・、K)、直交変調器(IQ_MDjk)a35-jk、及び無線送信部(RF_Txi)a36-jを含んで構成される。ここで、アンテナ共用器a302-i、無線受信部a31-i、直交復調器a32-il、ベースバンド復調部a33-il、ベースバンド変調部a34-jk、直交変調器a35-jk、及び無線送信部a36-jの持つ構成及び機能は、それぞれ、図8のアンテナ共用器a202、無線受信部a21、直交復調器a22-l、ベースバンド復調部a23-l、ベースバンド変調部a24-k、直交変調器a25-kと同じであるので、説明は省略する。
 ここで、直交復調器a32-il及びベースバンド復調部a33-ilの組は、i番目の周波数バンド、l(Lの小文字)番目の下りCCで受信したOFDMベースバンド信号を処理する(各組をBB復調ブランチilといい、l(Lの小文字)をBB復調ブランチ番号という;要素キャリア受信処理部)。また、ベースバンド変調部a34-jk及び直交変調器a35-jkの組は、i番目の周波数バンド、k番目の上りCCで受信したOFDMベースバンド信号を処理する(各組をBB変調ブランチikといい、kをBB変調ブランチ番号という;要素キャリア送信処理部)。また、無線受信部a31-i及びBB復調ブランチi1~iLの組は、i番目の周波数バンドで受信したOFDM無線受信信号を処理する(各組をRF受信ブランチiといい、iをRF受信ブランチ番号という;周波数バンド受信処理部)。また、無線送信部a36-j及びBB変調ブランチj1~jKの組は、j番目の周波数バンドで送信するOFDM無線送信信号を処理する(各組をRF送信ブランチjといい、jをRF送信ブランチ番号という;周波数バンド送信処理部)。
 なお、図9では、RF受信ブランチの数とRF送信ブランチの数が同じ数(I個)である場合を示しているが、本発明はこれに限らず、RF受信ブランチの数とRF送信ブランチの数は異なっていてもよい。また、図9では、各RF受信ブランチ内のBB復調ブランチの数が同じ数(L個)である場合を示しているが、本発明はこれに限らず、各RF受信ブランチ内のBB復調ブランチの数は異なっていてもよい。同様に、各RF送信ブランチ内のBB変調ブランチの数は異なっていてもよい。
 送受信装置a3は、同じ周波数バンドの信号を送受信する場合、複数のRF受信ブランチi及びRF送信ブランチiを備えることにより、下り/上りMIMO方式、基地局装置間の協調通信(CoMP;coordinated multipoint)方式、上り送信ダイバーシチ方式に対応することができる。また、送受信装置a3は、異なる周波数バンドの信号を受信する場合、複数のRF受信ブランチi及びRF送信ブランチjを備えることにより、複数周波数バンドで、上記の方式に対応することができる。
<移動局装置A1の構成について>
 以下、送受信装置a1、a2、又はa3を備える移動局装置A1について説明をする。
 図10は、本実施形態に係る移動局装置A1の構成を示す概略ブロック図である。この図において、移動局装置A1は、送受信装置A101、制御部A102、割当情報記憶部A103、送受信装置構成情報記憶部A104、ASN(Abstract Syntax Notation)符号化部A105、及びRRC(Radio Resource Control)メッセージ生成部A106を含んで構成される。
 送受信装置A101は、上記の送受信装置a1、a2、又はa3である。
 制御部A102は、移動局装置A1の各部を制御する。例えば、制御部A102は、制御データとして、基地局装置Bから割り当てられた無線リソース情報を受信し、受信した無線リソース情報を割当情報記憶部A103に記憶する。制御部A102は、割当情報記憶部A103から無線リソース情報を読み出し、送受信の制御を行う。
 送受信装置構成情報記憶部A104は、送受信装置構成情報(例えば図14、詳細は後述する)をメモリに保存している。送受信装置構成情報は、移動局装置構成に応じて、工場出荷時に予め設定し、送受信装置構成情報記憶部A104に書き込むことができる。
 また、制御部A102は、送受信装置構成情報記憶部A104が記憶する送受信装置構成情報を、ASN符号化部A105に出力する。ここで、この送受信装置構成情報には、送受信部A101の構成を示す情報が含まれる。送受信装置構成情報の詳細については、RRCメッセージの生成処理と併せて後述する。
 ASN符号化部A105は、制御部A102から入力された送受信装置構成情報を、抽象構文記法1(ASN.1)に変換して符号化を行い、符号化した情報をRRCメッセージ生成部A106に出力する。なお、ASN符号化部A105が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。
 RRCメッセージ生成部A106は、ASN符号化部A105から入力された情報を含むLTE-A移動局通信能力メッセージ(UE-AdvancdeEUTRA-Capability)を生成し、制御データに含まれる上りRRCメッセージの一部として、送受信装置A101に出力する。なお、RRCメッセージ生成部A106が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。
 送受信装置A101は、RRCメッセージ生成部A106から入力されたRRCメッセージを、RF送信ブランチjで処理して基地局装置Bへ送信する。
 また、制御部A102、割当情報記憶部A103、送受信装置構成情報記憶部A104、ASN符号化部A105、及びRRCメッセージ生成部A106は集積回路チップ内に含まれてもよい。又は送受信装置A101に一部、または全部を集積回路チップ内に含むような構成でもよく、限定されない。
<RRCメッセージの生成処理について>
 以下、ASN符号化部A105及びRRCメッセージ生成部A106が行うRRCメッセージの生成処理について説明をする。
 図11は、本実施形態に係る抽象構文記法1に変換したLTE-A移動局通信能力メッセージ(図12のUE-AdvancdeEUTRA-Capability)に含む送受信装置構成情報(図12のUE-RF-Capability)の説明図である。この図は、無線パラメータとして、RXi、RF_BWm、BB_DMl(Lの小文字)、BB_Wn、TXj、RF_BWm、BB_MDk、BB_BWnがあり、これらの変数が階層構造であることを示す。
 図11において、パラメータRXiは、RF受信ブランチ番号iを示す。上記のように、RF受信ブランチ番号iは、i=1、2、・・・、Iの範囲の値である。ここで、Iは最大のRF受信ブランチ数(最大の受信アンテナ本数)を示し、例えば、8×8MIMOの場合は、I=8である。
 パラメータRXiの下層のパラメータRF_BWmは、RF受信ブランチiで受信をすることができる周波数バンドの周波数バンド番号mを示す。
 パラメータRXiの下層のパラメータBB_DMl(Lの小文字)は、RF受信ブランチiに含まれるBB復調ブランチ番号l(Lの小文字)を示す。
 パラメータBB_DMlの下層のパラメータBB_BWnは、BB復調ブランチl(Lの小文字)で処理できるベースバンドの周波数帯域幅のBB周波数帯域幅番号nを示す。
 また、図11において、パラメータTXjは、RF送信ブランチ番号jを示す。RF送信ブランチ番号jは、i=1、2、・・・、Jの範囲の値である。ここで、Jは最大のRF送信ブランチ数(最大の送信アンテナ本数)を示し、例えば、4×4MIMOの場合は、J=4である。
 パラメータTXjの下層のパラメータRF_BWmは、RF送信ブランチjで送信できる周波数バンドの周波数バンド番号mを示す。
 パラメータTXjの下層のパラメータBB_MDkは、RF送信ブランチjに含まれるBB変調ブランチ番号kを示す。
 パラメータBB_MDkの下層のパラメータBB_BWnは、BB変調ブランチkで処理できるベースバンドの周波数帯域幅のBB周波数帯域幅番号nを示す。
 図12は、本実施形態に係るLTE-A移動局通信能力メッセージ(UE-AdvancedEUTRAN-Capability)、及び送受信装置構成情報(UE-RF-Capability)の一例を示す概略図である。この図において、パラメータMax-RFRx-Branchsは最大のRF受信ブランチ数Iを示す。また、パラメータMax-BBRx-Branchsは最大のBB復調ブランチ数Lを示す。同様に、パラメータMax-RFTx-Branchsは最大のRF送信ブランチ数Jを示し、パラメータMax-TxBB-Branchsは最大のBB変調ブランチ数Kを示す。また、パラメータMax-RF-Bandsは最大周波数バンド番号Mを示し、パラメータMax-BBRX-Bandsは最大BB周波数帯域幅番号Nを示す。
 例えば、図12において、送受信装置構成情報(図12のUE-RF-Capability)には、RF受信ブランチの構成情報(UE-RFRx-Branchs)、及び、RF送信ブランチの構成情報(UE-RFTx-Branchs)が代入される。
 図12において、RF受信ブランチの構成情報(UE-RFRx-Branchs)には、I個のRF受信ブランチの構成情報(UE-RFRX-Branch)が代入される。i番目のRF受信ブランチの構成情報(UE-RFRX-Branch)には、L個のBB復調ブランチの構成の情報(UE-BBRx-Branchs)と、i番目のRF受信ブランチに対応する周波数バンド番号mの情報(UE-RFRx-Band-List)が代入される。l(Lの小文字)番目のBB復調ブランチの構成情報(UE-BBRx-Branch)には、l番目のBB復調ブランチに対応するBB周波数帯域幅番号nの情報(UE-BBRx-Band-List)が代入される。
 ここで、i番目のRF受信ブランチに対応する周波数バンド番号mの情報(UE-RFRx-Band-List)には、ue-rfrx-band、すなわち図11のパラメータRXiの下層のパラメータRF_BWmが代入される。またl番目のBB復調ブランチに対応するBB周波数帯域幅番号nの情報(UE-BBRx-Band-List)には、ue-rxbb-band、すなわち図11のパラメータBB_DMl(Lの小文字)の下層のパラメータBB_BWnが代入される。
 また、図12において、RF送信ブランチの構成情報(UE-RFTx-Branchs)には、J個のRF送信ブランチの構成情報(UE-RFTX-Branch)が代入される。j番目のRF送信ブランチの構成情報(UE-RFTX-Branch)には、K個のBB変調ブランチの構成の情報(UE-BBTx-Branchs)と、j番目のRF送信ブランチに対応する周波数バンド番号mの情報(UE-RFTx-Band-List)が代入される。k番目のBB変調ブランチの構成情報(UE-BBTx-Branch)には、k番目のBB変調ブランチに対応するBB周波数帯域幅番号nの情報(UE-BBTx-Band-List)が代入される。
 ここで、j番目のRF送信ブランチに対応する周波数バンド番号mの情報(UE-RFTx-Band-List)には、ue-rftx-band、すなわち図11のパラメータTXjの下層のパラメータRF_BWmが代入される。またk番目のBB変調ブランチに対応するBB周波数帯域幅番号nの情報(UE-BBTx-Band-List)には、ue-txbb-band、すなわち図11のパラメータBB_MDkの下層のパラメータBB_BWnが代入される。
 図13は、本実施形態に係るLTE-A移動局通信能力メッセージの別の一例を示す概略図である。この図において、従来のLTE移動局通信能力メッセージ(UE-EUTRAN-Capability)には、LTE-A移動局装置のカテゴリの情報(図13のue-Category)、及び、送受信装置構成情報(図12のUE-RF-Capability)を加えて、LTE-A移動局通信能力メッセージを表す。なお、移動局装置のカテゴリの情報については、第2の実施形態で後述する。
 図14は、本実施形態に係る送受信装置構成情報の一例を示す概略図である。この図は、1個のRF受信ブランチ(RX1)にBB復調ブランチが2個(BB_DM1、BB_DM2)含まれ、また、1個のRF送信ブランチ1(TX1)にBB変調ブランチが1個(BB_MD1)含まれることを示す。
 また、この図は、例えば、RF受信ブランチ1(RX1)では、周波数バンド番号「1」(RF_BW1、図6に参照)の周波数バンドで受信をすることができることを示す。また、例えば、この図は、RF受信ブランチ1に含まれるBB復調ブランチ1(BB_DM1)では、BB周波数帯域幅番号「3」(BB_BW3、図7に参照)のベースバンドの周波数帯域幅で処理できることを示す。
<基地局装置Bの構成について>
 図15は、本実施形態に係る基地局装置Bの構成を示す概略ブロック図である。この図において、基地局装置Bは、送受信装置B101、制御部B102、割当情報記憶部B103を含んで構成される。
 送受信装置B101は、移動局装置A1とデータを送受信する。送受信装置B101は、送受信装置a3と同様の基本構成及び基本機能を持つので、説明は省略する。
 制御部B102は、基地局装置Bの各部を制御する。例えば、制御部B102は、移動局装置A1から受信したRRCメッセージから送受信装置構成情報を復号して抽出し、抽出した送受信装置構成情報に基づいて移動局装置A1の上り/下り無線リソースの割り当てを決定する。
 また、制御部B102、割当情報記憶部B103は集積回路チップ内に含まれてもよい。又は送受信装置B101に一部、または全部を集積回路チップ内に含むような構成でもよく、限定されない。
 例えば、基地局装置Bが図2のケース1のような通信能力、例えば周波数割り当てに対して、移動局装置A1が図2のケース3のような送受信装置構成である場合、制御部B102は、移動局装置A1から受信したRRCメッセージからLTE-A移動局通信能力メッセージ(図12のUE-AdvancedEUTRAN-Capability)またはLTE移動局通信能力メッセージ(図13のUE-EUTRAN-Capability)を復号し、送受信装置構成情報(図12または図13のUE-RF-Capability)を抽出し、移動局装置A1の構成に対して、上り/下りCCの割り当て、すなわち上りCCがf1_T1、下りCCがf1_R1を割り当て、移動局装置A1からの初期アクセス、例えばランダムアクセス時に移動局装置A1に通知する。下りの無線リソース、すなわち移動局装置A1が自装置データを受信する下りリソースブロックRBをf1_R1の下りCC内に、上りの無線リソース、すなわち移動局装置A1が自装置データを送信する上りリソースブロックRBをf1_T1の上りCC内に割り当てる。
 また、基地局装置Bが図2のケース1で、且つ下りに4本送信アンテナと上りに2本受信アンテナが備え、移動局装置A1が図2のケース3で、且つ下りに2本受信アンテナ(2つのRF受信ブランチ)と上りに1本送信アンテナ(1つのRF送信ブランチ)が備えた送受信装置構成である場合、基地局装置Bの制御部B102は、移動局装置A1にf1_T1の下りCC内に割り当てられたリソースブロックRBにおける2×2MIMO送信、または基地局装置間の協調通信CoMPを行う基地局装置間に共通の下りリソースブロックRBの割り当てを行うことができる。すなわち、基地局装置Bの制御部B102は、移動局装置A1からの送受信装置構成情報と自装置の送受信装置構成情報と比較し、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置A1に適切な下り/上り無線リソース割り当てを行うことができる。
 制御部B102は、上り/下りCCの割り当て情報、及び割り当てられた上り/下りCCにおける無線リソースの割り当て情報を割当情報記憶部B103に記憶する。制御部B102は、割当情報記憶部B103から上り/下りCCの割り当て情報、及び割り当てられた上り/下りCCにおける無線リソースの割り当て情報を読み出し、送受信の制御を行う。また、制御部B102は、決定した上り/下りCCの割り当て情報、及び割り当てられた上り/下りCCにおける無線リソースの割り当て情報を、送受信装置B101を介して移動局装置A1に送信する。
 このように、本実施形態によれば、移動局装置A1は、基地局装置Bとの通信に用いることができるBB復調ブランチ数、BB変調ブランチ数、及びベースバンド周波数帯域幅番号(要素キャリアCCに関する情報)と、RF受信ブランチ数、RF送信ブランチ数、及び周波数バンド番号(周波数バンドに関する情報)と、を含む移動局装置能力メッセージを、基地局装置Bへ送信する。また、移動局装置A1は、移動局装置能力メッセージに基づいて基地局装置Bが割り当てた上り/下り無線リソースを用いて、基地局装置Bとの通信を行う。これにより、本実施形態では、通信システムは、移動局装置A1と基地局装置Bとの通信に適切な上り/下り無線リソースを割り当てることができる。
 また、LTE-Aの移動局装置の構成は、以下の(ア)~(シ)の要素(LTE-A技術要素)に依存する。LTE-A技術要素とは、(ア)周波数バンド数、(イ)下り/上りCCの総数、(ウ)連続/非連続(Intra CA/Inter CA)のCC、(エ)無線伝送モード、(オ)下りCC間或いは基地局装置間の同期/非同期送信、(カ)各種のCC帯域幅(例えば1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz)、(キ)OFDMサブキャリア帯域幅15kHzの連続した複数CCの帯域幅(例えば100MHz)、(ク)下り/上りMIMO方式、(ケ)基地局装置間の協調通信CoMP方式、(コ)上り送信ダイバーシチ方式、(サ)各携帯電話サービス運営者の周波数割り当て事情、(シ)国内/国際ローミングである。
 しかしながら、従来の移動通信システム、上記の(ア)~(シ)のように様々なLTE-A技術要素により移動局装置の構成に大きな影響を与えることはなかった。例えばLTEシステムでは、移動局装置のデータ処理ソフトバッファサイズ(下り最大データ速度10Mbps~300Mbps)と最大のMIMOの構成(1x1、2x2、4x4)により移動局装カテゴリ(5種類)を定義することができた。各カテゴリに対する移動局装置の構成は確定可能である。言い換えれば、各携帯電話サービス運営者に対して5種類の移動局装置を提供すればよい、また市場では5種類の移動局装置が流通すればよい。また5種類の移動局装置に対して各携帯電話サービス運営者はサービスが考慮すればよい。LTE-Aシステムでは、そう簡単には行かない。LTE-Aシステムの移動局装置は、従来のLTEシステムの移動局装置カテゴリを定義する手法を採用する場合、同一カテゴリでも同じ移動局装置の構成を定義することができない、同一カテゴリでも異なる移動局装置の構成を持つことができるため、移動局装置カテゴリにより適切な移動局装置の性能を引き出すことができない。様々なLTE-A技術要素を最大限に対応し、且つ回路複雑度の低減、低消費電力化、低コスト化、小型化、生産性の向上などを実現することが困難である。一方、LTE-Aシステムの基地局装置では、移動局装置カテゴリを低減するために、様々なLTE-A技術要素に制限を掛ける必要がある。
 本実施形態によれば、前記の(ア)~(シ)のように様々なLTE-A技術要素に対応するための様々なLTE-A移動局装置構成の組み合わせに対して、移動局装置構成情報を生成し、基地局装置Bに送信することにより、基地局装置Bは、移動局装置構成情報に応じて、様々なLTE-A技術要素に対応できる適切な移動局装置A1の性能を引き出すことができ、適切な上り/下り無線リソースを割り当てることができる。
 また図11、12は、LTE-A移動局通信能力メッセージに周波数バンド番号RF_BWm及びベースバンド周波数帯域幅番号BB_BWmの無線パラメータが含まれているが、各RF送信ブランチ番号TXjに含まれるパワーアンプPA(Power Amplifier)の無線パラメータである最大送信電力レベルPA_OUTq(q=1,2、・・・、Q;qは最大送信電力レベルの組み合わせ番号)を含むこともよい。無線パラメータPA_OUTqはRF送信ブランチ番号TXjに対応する送信周波数バンドRF_BWmのパラメータと同じレベルで、図11にTXjのRF_BWmの下に、図12にue-rftx-bandの下に相応のパラメータを追加してもよい。例えば、2つのRF送信ブランチの場合、PA_OUTqの「1」はRF送信ブランチ番号1(TX1)のPAの最大送信電力レベルが23dBm、RF送信ブランチ番号2(TX2)のPAの最大送信電力レベルが20dBmを表し、PA_OUTqの「2」はその逆を表し、PA_OUTqの「3」は両方とも23dBmを表し、PA_OUTqの「4」は両方とも20dBmを表すことができる。J個のRF送信ブランチの場合、PA_OUTqの組み合わせは上記の拡張でよい、
 また無線パラメータの周波数バンド番号RF_BWmは、図6のように周波数バンド番号、上り周波数バンド帯域、下り周波数バンド帯域、周波数バンド帯域幅、及び、伝送モードの関係を示しているが、幾つか連続した上り周波数バンド帯域、下り周波数バンド帯域を結合して、新しい且つ広い上り周波数バンド帯域、下り周波数バンド帯域を再定義することもよい。例えば、新しい周波数バンド番号「1」は、図6の周波数バンド番号「1」「2」を結合して、上り周波数バンド帯域が1930MHz~2170MHz、下り周波数バンド帯域が1850MHz~1980MHzに対応することができる。また図9は、1つのRF受信ブランチに複数のBB復調ブランチ、1つのRF送信ブランチに複数のBB変調ブランチが含まれていることを示しているが、技術の進歩により、図4の直交変調器a15と直交復調器a12の周波数帯域幅が広帯域で、送受信帯域(例えば、図2のバンド11、バンド12)と同じであれば、1つの無線送受信部に1つの直交変調器と1つの直交復調器を使用してもよい。また1つの送受信アンテナと1つのDUP、あるいは複数送受信アンテナと複数のDUP複数の以降に複数の別々の無線送受信部、直交変調器と直交復調器、及びベースバンド変調器とベースバンド復調器による構成された複数のRF送受信ブランチによる構成することができる。
(第2の実施形態)
 以下、図面を参照しながら本発明の第2の実施形態について詳しく説明する。
 本実施形態では、新たな移動局装置のカテゴリ(以下、LTE-A移動局カテゴリという;移動局カテゴリ)を定義し、LTE-A移動局カテゴリを含む移動局装置能力メッセージを生成する場合について説明をする。これにより、本実施形態では、様々なLTE-A技術要素に対応できる。
 なお、通信システムの概念図は、第1の実施形態と同じ図1であるので説明は省略する。また、本実施形態に係る移動局装置A11、A12各々を、移動局装置A2という。ここで、移動局装置A2は、後述するように、送受信装置a1(図3、4)、a2(図8)、又はa3(図9)を含んで構成される。
 以下、まず、従来技術(LTE)での移動局装置のカテゴリ(LTE移動局カテゴリという)について説明し、次に、本実施形態(LTE-A)での移動局装置のカテゴリ(LTE-A移動局カテゴリ)について説明をする。
<LTE移動局カテゴリについて>
 図16は、従来技術に係るLTE移動局カテゴリ対応情報の概略図である。この図は、LTE移動局カテゴリ(Category)が、5個(Category1~5)あることを示す。また、この図は、LTE移動局カテゴリにより、移動局装置の下り(DL)/上り(UL)のデータ伝送速度(バッファのビットサイズ;Bit rate)、移動局装置の下り(DL)/上り(UL)の変調方式(Modulation Scheme)、及び、下りMIMOストリーム数(例えば、受信アンテナ本数;Number of MIMO Streams)が決まることを示す。
 図16は、例えば、LTE移動局カテゴリ5(Category5)の場合、移動局装置の下りのデータ伝送速度が「300Mbps」、上りのデータ伝送速度が「75Mbps」、下りの変調方式が「QPSK、16QAM、又は64QAM」、上りの変調方式が「QPSK、16QAM、又は64QAM」、下りMIMOストリーム数が「4」であることを示す。
 なお、このLTE移動局カテゴリに属する移動局装置の構成は、第1の実施形態で説明をした送受信装置構成情報を用いて、以下のように表わすことができる。
 図17は、本発明の第2の実施形態に係る送受信装置構成情報の一例を示す概略図である。この図において、LTE移動局装置の組み合わせは、最大送受信CCの帯域幅が20MHz固定のため、最大4個(i=1、2、3、4)のRF受信ブランチ(1個RF受信ブランチに1個BB復調ブランチを含む)と1個のRF送信ブランチ(1個RF送信ブランチに1個BB変調ブランチを含む)で表わされる。
<LTE-A移動局カテゴリについて>
 図18は、本実施形態に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。この図は、LTE-A移動局カテゴリ(Category)が、6個(CategoryA~F;カテゴリA~F)あることを示す。また、この図は、LTE-A移動局カテゴリにより、移動局装置の下り(DL)/上り(UL)のデータ伝送速度(バッファのビットサイズ;Bit rate)が決まることを示す。また、この図は、LTE-A移動局カテゴリにより、移動局装置の下り(DL)のMIMOストリーム数(Number of MIMO Streams)及び下りの連続/非連続CCの個数(Number of CC)、移動局装置の上り(UL)のMIMOストリーム数及び上りの連続/非連続CCの個数の範囲が決まることを示す。
 例えば、カテゴリBの場合のデータ伝送速度は、下りが「100Mbps」、上りが「75Mbps」であり、このLTE-A移動局カテゴリは、例えば、高速移動している移動局装置に適用される。カテゴリFでは、データ伝送速度は、下りが「1000Mbps」、上りが「500Mbps」であり、例えば、カテゴリFは固定の移動局装置又は移動速度が非常に小さい移動局装置に適用される。
 また、例えば、図18において、下りMIMOストリーム数は8、4、2、1の範囲に、上りMIMOストリーム数は4、2、1の範囲で決まる。また、図18において、下りCCの数は1~5個の範囲に、上りCCの数は1~2個の範囲で決まる。
 ここで、LTEでは、1個の上り/下りMIMOストリームにおいて、帯域幅が20MHzのCCでは、最大データ伝送速度が「75Mbps」(64QAMの場合)である(図16参照)。よって、図18での上り/下りのMIMOストリーム数及びCCの数は、データ伝送速度を満たすことができるような対応になっている。
 例えば、カテゴリBでは、下りのデータ伝送速度「100Mbps」を満たすため、下りMIMOストリーム数が「4」個の場合に下りCCの数は「1」個、下りMIMOストリーム数が「2」個の場合に下りCCの数は「1」個、又は、下りMIMOストリーム数が「1」個の場合に下りCCの数は「2」~「5」個が対応付けされている。例えば、下りMIMOストリーム数が「4個」の場合に下りCCが「1」個であれば、最大300Mbps(4個×75Mbps)となり、100Mbpsを満たすことができる。また、例えば、下りMIMOストリーム数が「1」個の場合に下りCCが「5」個であれば、最大375Mbps(5個×75Mbps)となり、100Mbpsを満たすことができる。
 また、下りMIMOストリーム数が「4」個及び下りCCの数は「1」個の場合(最大300Mbps)には低い変調率の変調方式である16QAMを、下りMIMOストリーム数が「1」個及び下りCCの数は「2」個の場合(最大150Mbps)には高い変調率の変調方式である64QAMを、選択することでデータ伝送速度を満たすことができる。
 同様に、カテゴリBでは、上りのデータ伝送速度「75Mbps」を満たすため、上りMIMOストリーム数が「4」個の場合に上りCCの数は「1」個、上りMIMOストリーム数が「2」個の場合に上りCCの数は「1」個、又は、上りMIMOストリーム数が「1」個の場合に上りCCの数は「1」又は「2」個が対応付けされている。例えば、上りMIMOストリーム数が「2個」の場合に上りCCが「1」個であれば、最大150Mbps(2個×75Mbps)となり、75Mbpsを満たすことができる。また、例えば、上りMIMOストリーム数が「1」個の場合に上りCCが「1」個であれば、最大75Mbps(1個×75Mbps)となり、75Mbpsを満たすことができる。
 また、上りMIMOストリーム数が「2」個及び上りCCの数は「1」個の場合(最大150Mbps)には低い変調率の変調方式である16QAMを、上りMIMOストリーム数が「1」個及び上りCCの数は「1」個の場合(最大75Mbps)には高い変調率の変調方式である64QAMを、選択することでデータ伝送速度を満たすことができる。
 本発明のLTE-A移動局カテゴリ(図18のCategory)は、下りCCの数を対応付けたもの、すなわち下りCCの数により管理されていることが特徴である。
 なお、本発明のLTE-A移動局カテゴリは、図18の例に限らず、上記のように、最大データ伝送速度に応じて、その最大データ伝送速度を満たすことができるように、下りMIMOストリーム数及び下りCCの数を対応付けたものであればよい。また、LTE-A移動局カテゴリの数も、図18の例(6個)に限られず、この例の場合より多くてもよいし、少なくてもよい。また、LTE移動局カテゴリのカテゴリ1は、LTE-A移動局カテゴリのカテゴリAに含まれる。
<LTE-A移動局装置構成の制限>
 LTE-A移動局装置のRF送信ブランチとBB変調ブランチの構成に対して、LTEシステムへの後方互換性、及び無線送信部a16(図3)に含まれるパワーアンプPAが影響を受けるRF送信信号のピーク対平均電力の比PAPR (Peak to Average Power Ratio)を考慮した場合、シングルキャリアSC-FDMA送信方式が適している。上り最大連続/非連続CCの個数を2個に制限した場合、LTE-A移動局装置は2個のRF送信ブランチ(1個のRF送信ブランチに最大40MHzベースバンド周波数帯域幅を持つ1個のBB変調ブランチを含む)の構成することが考えられる。
 また、周波数バンドについて、携帯電話サービス運営者から様々な要望があり、移動局装置構成から最大3個の周波数バンドに制限する動きがある。例えばFDDモードでは周波数バンド番号3、1、7(図6参照)、TDDモードでは周波数バンド番号34、29、40(図6参照)に制限しても、下りMIMOストリーム数が8個(受信アンテナ8本)の場合、RF受信ブランチ数は24個となり、移動局装置のハードウェア構成、サイズ、消費電力とも大きな問題になる。周波数バンド数によりLTE-A移動局カテゴリの分類を行う場合、上位の移動局カテゴリ(例えば1000Mbpsクラス移動局装置)は移動局装置の最大構成(High End商品)となる。ユーザの要望、例えば1000Mbpsクラスで3.5GHz(周波数バンド番号A)だけ動作できる安い移動局装置が提供できない。従って、図18に示したLTE-A移動局カテゴリは、下り周波数バンドの無線パラメータと無関係のように定義している。
 同様に、RF送信ブランチ数も上り周波数バンド数に依存している。例えば3個の周波数バンドと上りMIMOストリーム数が4個(送信アンテナ4本)の場合、RF送信ブランチ数は12個となる。周波数バンド数によりLTE-A移動局カテゴリの分類を行う場合、上位のカテゴリ(例えば500Mbpsクラス移動局装置)は移動局装置の最大構成となる。ユーザの要望、例えば500Mbpsクラスで3.5GHz(周波数バンド番号A)だけ動作できる安い移動局装置が提供できない。従って、図18に示したLTE-A移動局カテゴリは、上り周波数バンドの無線パラメータと無関係のように定義している。
 次に、周波数バンドが複数ある場合に好適なLTE-A移動局カテゴリについて説明する。周波数バンドが複数あるときに、図18の1個のMIMOストリーム対応のRF受信ブランチ及びRF送信ブランチを、複数の周波数バンドに対応できるようにした場合、以下のLTE-A移動局カテゴリ(図19)を用いる。
 図19は、本実施形態に係るLTE-A移動局カテゴリ対応情報の別の一例を示す概略図である。この図は、図18の上り/下りMIMOストリーム数(UL/DL Number of MIMO streams)を、上り/下りデータストリーム数(UL/DL Number of DATA streams)に変更したものである。この図は、LTE-A移動局カテゴリ(Category)が、6個(CategoryA~F;カテゴリA~F)あることを示す。また、この図は、LTE-A移動局カテゴリにより、移動局装置の下り(DL)/上り(UL)のデータ伝送速度(バッファのビットサイズ;Bit rate)が決まることを示す。また、この図は、LTE-A移動局カテゴリにより、移動局装置の下り(DL)のデータストリーム数(Number of DATA Streams)及び下りの連続/非連続CCの個数(Number of CC)、移動局装置の上り(UL)のデータストリーム数及び上りの連続/非連続CCの個数の範囲が決まることを示す。
 上り/下りデータストリーム数の定義は、上り/下りMIMOストリーム数の拡張であり、同じ周波数バンド内では、上り/下りMIMOストリーム数と同じ、異なる周波数バンドの場合では、各周波数バンドの上り/下りMIMOストリーム数の合計である。すなわち、同じ周波数バンド内で下りMIMOストリーム数が「2」(2x2MIMO)、下りCCの数が「1」に対して、2つの周波数バンドで、下りデータストリーム数が「2」、下りCCの数が「1」で同様な移動局装置の下りデータ伝送速度を実現することができる。
 例えば、カテゴリBの場合のデータ伝送速度は、下りが「100Mbps」、上りが「75Mbps」であり、このLTE-A移動局カテゴリは、例えば、高速移動している移動局装置に適用される。カテゴリFでは、データ伝送速度は、下りが「1000Mbps」、上りが「500Mbps」であり、例えば、カテゴリFは固定の移動局装置又は移動速度が非常に小さい移動局装置に適用される。
 また、例えば、図19において、下りデータストリーム数は8、4、2、1の範囲に、上りデータストリーム数は4、2、1の範囲で決まる。また、図19において、下りCCの数は1~5個の範囲に、上りCCの数は1~2個の範囲で決まる。
 ここで、LTEでは、1個の上り/下りデータストリームにおいて、帯域幅が20MHzのCCでは、最大データ伝送速度が「75Mbps」(64QAMの場合)である(図16参照)。よって、図19での上り/下りのデータストリーム数及びCCの数は、データ伝送速度を満たすことができるような対応になっている。
 例えば、カテゴリBでは、下りのデータ伝送速度「100Mbps」を満たすため、下りデータストリーム数が「4」個の場合に下りCCの数は「1」個、下りデータストリーム数が「2」個の場合に下りCCの数は「1」個、又は、下りデータストリーム数が「1」個の場合に下りCCの数は「2」~「5」個が対応付けされている。例えば、下りデータストリーム数が「4個」の場合に下りCCが「1」個であれば、最大300Mbps(4個×75Mbps)となり、100Mbpsを満たすことができる。また、例えば、下りデータストリーム数が「1」個の場合に下りCCが「5」個であれば、最大375Mbps(5個×75Mbps)となり、100Mbpsを満たすことができる。
 また、下りデータストリーム数が「4」個及び下りCCの数は「1」個の場合(最大300Mbps)には低い変調率の変調方式である16QAMを、下りデータストリーム数が「1」個及び下りCCの数は「2」個の場合(最大150Mbps)には高い変調率の変調方式である64QAMを、選択することでデータ伝送速度を満たすことができる。なお、上りについても同様である。
 本発明のLTE-A移動局カテゴリは、(図19のCategory)は、データストリーム数を対応付けたもの、すなわちデータストリーム数により管理されていることが特徴である。
 なお、本発明のLTE-A移動局カテゴリは、図19の例に限らず、上記のように、最大データ伝送速度に応じて、その最大データ伝送速度を満たすことができるように、下りデータストリーム数及び下りCCの数を対応付けたものであればよい。また、LTE-A移動局カテゴリの数も、図19の例(6個)に限られず、この例の場合より多くてもよいし、少なくてもよい。また、LTE移動局カテゴリのカテゴリ1は、LTE-A移動局カテゴリのカテゴリAに含まれる。
<変形例1>
 本発明のLTE-A移動局カテゴリ対応情報では、データストリーム数と連続/非連続CCの数との組み合わせを減らしてもよい。例えば、図20のように、データストリーム数が「1」である組み合わせを減らしてもよい。
 図20は、本実施形態の変形例1に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。図20と図19とで、LTE-A移動局カテゴリを比較すると、図20では、カテゴリBの下り(DL)/上り(UL)、及びカテゴリCの下りで、データストリーム数が「1」であるデータストリーム数と連続/非連続CCの数との組み合わせが削除されている。
<変形例2>
 また、実際の移動局装置A2のBB復調ブランチのBB周波数帯域幅(図7)は最少20MHzである。よって、例えば、移動局装置A2は、図3の受信帯域制限のデジタルフィルタa133、FFT部a136で、BB周波数帯域幅を20MHzと40MHzとで切り替えて、1個のロジカルCCと2個のロジカルCCを切り替えて受信してもよい。ここで、ロジカルCCとは、1つの20MHzのCCのことである。また、この場合、BB周波数帯域幅を物理CCという。上りも同様な考え方が適用できる。
 移動局装置のテストケースを考慮し、上り/下りの最大連続2個のロジカルCC、すなわちBB周波数帯域幅を最大40MHzに限定する場合、LTE-A移動局カテゴリは、図21となる。
 図21は、本実施形態の変形例2に係るLTE-A移動局カテゴリ対応情報の一例を示す概略図である。図21と図20とで、LTE-A移動局カテゴリ対応情報を比較すると、図21では、カテゴリD、E、Fの下り(DL)で、CCの数(Number of CC)が「5」であるデータストリーム数と連続/非連続CCの数との組み合わせが削除されている。
<変形例3>
 また、図21に示したように、図20と比べて、データストリーム数と連続/非連続CCの数との組み合わせが減少したが、図21のLTE-A移動局カテゴリにより移動局装置構成を完全に特定することができない。例えばLTE-A移動局カテゴリB~Fでは、データストリーム数が「2」に対して、同じ周波数バンドか判断できない。更なる限定を掛ける必要がある。例えば、同じ周波数バンドに限定し、各LTE-A移動局カテゴリのデータストリーム数と連続/非連続CCの数との組み合わせの数を1つにし、図22のように限定してもよい。
<移動局装置A2の構成について>
 図23は、本実施形態に係る移動局装置A2の構成を示す概略ブロック図である。本実施形態に係る移動局装置A2(図23)と第1の実施形態に係る移動局装置A1(図10)とを比較すると、制御部A202、ASN符号化部A205、及びカテゴリ情報記憶部A207が異なる。しかし、他の構成要素(送受信装置A101、割当情報記憶部A103、RRCメッセージ作成部A106)が持つ機能は第1の実施形態と同じである。第1の実施形態と同じ機能の説明は省略する。
 カテゴリ情報記憶部A207は、LTE-A移動局カテゴリ情報(図18~22のCategory)、すなわちLTE-A移動局カテゴリA~Fに対応する符号A~F、または整数1~6、または3bitの情報をメモリに保存している。LTE-A移動局カテゴリの情報は、移動局装置構成に応じて、工場出荷時、販売時、またはユーザ初期使用時に予め設定し、カテゴリ情報記憶部A207に書き込むことができる。またLTE-A移動局カテゴリの情報は、移動局装置の個体識別番号、シリアル番号、製造番号など移動局装置個別情報と対応することができる。例えば、図14が1個のRF受信ブランチ(RX1)にBB復調ブランチが2個(BB_DM1、BB_DM2)含まれ、また、1個のRF送信ブランチ1(TX1)にBB変調ブランチが1個(BB_MD1)含まれることを示しているため、図21に対してLTE-A移動局カテゴリBの情報がカテゴリ情報記憶部A207に書き込まれる。または図22に対してLTE-A移動局カテゴリAの情報がカテゴリ情報記憶部A207に書き込まれる。
 制御部A202は、移動局装置A2の各部を制御する。例えば、制御部A202は、基地局装置Bから割り当てられた上り/下り無線リソース情報を受信し、受信した無線リソース情報を割当情報記憶部A103に記憶する。制御部A202は、割当情報記憶部A103から無線リソース情報を読み出し、送受信の制御を行う。また、制御部A202は、カテゴリ情報記憶部A207に記憶されたLTE-A移動局カテゴリ情報を、ASN符号化部A205に出力する。
 ASN符号化部A205は、制御部A202から入力されたLTE-A移動局カテゴリ情報を、抽象構文記法1(ASN.1)に変換して符号化を行い、符号化した情報をRRCメッセージ生成部A106に出力する。なお、ASN符号化部A205が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。
 RRCメッセージ生成部A106は、ASN符号化部A205から入力された情報を含むLTE-A移動局通信能力メッセージ(図24のUE-AdvancdeEUTRA-Capability)を生成し、制御データに含まれる上りRRCメッセージの一部として、送受信装置A101に出力する。なお、RRCメッセージ生成部A106が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。
 送受信装置A101は、RRCメッセージ生成部A106から入力されたRRCメッセージを、RF送信ブランチjで処理して基地局装置Bへ送信する。
 また、割当情報記憶部A103、RRCメッセージ生成部A106、制御部A202、ASN符号化部A205、及びカテゴリ情報記憶部A207は集積回路チップ内に含まれてもよい。又は送受信装置A101に一部、または全部を集積回路チップ内に含むような構成でもよく、限定されない。
<RRCメッセージの生成処理について>
 以下、ASN符号化部A205及びRRCメッセージ生成部A106が行うRRCメッセージの生成処理について説明をする。
 図24は、本実施形態に係る抽象構文記法1に変換したLTE-A移動局通信能力メッセージ(図24のUE-AdvancdeEUTRA-Capability)に含むLTE-A移動局カテゴリ情報(図24のue-Category)の一例を示す概略図である。この図において、移動局カテゴリ情報(ue-Category)の値「1」~「6」(INTEGER(1..6))は、それぞれ、LTE-A移動局カテゴリA~F(図18~図21参照)を示す。図22に対して、移動局カテゴリ情報(ue-Category)の値は「1」~「4」(INTEGER(1..4))になる。
 基地局装置Bでは、制御部B102が、図22のような移動局カテゴリ情報に基づいて上り/下り無線リソースを割り当てる(図15参照)。例えば、制御部B102は、移動局装置A2から受信したRRCメッセージからLTE-A移動局通信能力メッセージ(図24のUE-AdvancedEUTRAN-Capability)を復号し、移動局カテゴリ情報(図24のue-Category)を抽出し、移動局カテゴリ情報に基づいて移動局装置A2の上り/下りローカルCCの割り当て、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当てを決定する。
 例えば、基地局装置BがLTE-A移動局カテゴリCに対応できる通信能力、すなわち周波数バンド1(図2、2GHz)において、下りローカルCCのf1_R1~とf1_R4を送信、上りローカルCCのf1_T1~f1_T4が受信できる通信能力に対して、移動局装置A2がLTE-A移動局カテゴリAのような送受信装置構成である場合、すなわち周波数バンド1(図2、2GHz)において、下りローカルCCのf1_R1とf1_R2を受信、上りローカルCCのf1_T1を送信することができる場合、制御部B102は、移動局装置A2に対して、上り/下りローカルCCの割り当て、すなわち下りローカルCCがf1_R1とf1_R2、上りローカルCCがf1_T1に割り当て、移動局装置A2の初期アクセス時に通知する。下りの無線リソース、すなわち移動局装置A2が自装置データを受信する下りリソースブロックRBをf1_R1とf1_R2の下りローカルCC内に、上りの無線リソース、すなわち移動局装置A2が自装置データを送信する上りリソースブロックRBをf1_T1の上りローカルCC内に割り当てる。基地局装置Bの制御部B102は、移動局装置A2からの移動局カテゴリ情報(図24のue-Category)と自装置の送受信装置構成情報と比較し、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置A2に適切な下り/上り無線リソース割り当てを行うことができる。移動局装置A2が対応できる周波数バンド情報、例えば周波数バンド番号は、従来通り、別のRRCメッセージを通じて、基地局装置Bに通知することができる。
 制御部B102は、決定した上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を割当情報記憶部B103に記憶する。制御部B102は、割当情報記憶部B103から上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を読み出し、送受信の制御を行う。また、制御部B102は、決定した上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を、送受信装置B101を介して移動局装置A2に送信する。
 このように、本実施形態によれば、移動局装置A2は、基地局装置Bとの通信に用いることができるLTE-A移動局カテゴリ情報(図24のue-Category)を、基地局装置Bへ送信する。また、移動局装置A2は、LTE-A移動局カテゴリ情報に基づいて基地局装置Bが割り当てた上り/下り無線リソースを用いて、基地局装置Bとの通信を行う。これにより、本実施形態では、通信システムは、移動局装置A2と基地局装置Bとの通信に適切な上り/下り無線リソースを割り当てることができる。
<変形例>
 図25は、本実施形態の変形例3に係る抽象構文記法1に変換したLTE-A移動局通信能力メッセージの別の一例を示す概略図である。この図において、従来のLTE移動局通信能力メッセージ(UE-EUTRAN-Capability)には、移動局カテゴリ情報(図25のue-Category)の値「1」~「11」(INTEGER(1..11))のうち、「1」~「5」は、それぞれ、従来のLTE移動局カテゴリ1~5を示し、「6」~「11」は、それぞれ、LTE-A移動局カテゴリA~Fを加えて、LTE-A移動局通信能力メッセージを表す。
 このように、本実施形態によれば、移動局装置A2は、基地局装置Bとの通信に用いることができるLTE-A移動局カテゴリ情報(図24または図25のue-Category)を、基地局装置Bへ送信する。また、移動局装置A2は、LTE-A移動局カテゴリ情報に基づいて基地局装置Bが割り当てたCCを用いて、基地局装置Bとの通信を行う。これにより、本実施形態では、通信システムは、移動局装置A2と基地局装置Bとの通信に適切なCCを割り当てることができる。
 本実施形態は、LTE-A移動局カテゴリ情報(図24または図25のue-Category)を定義し、移動局カテゴリ情報を基地局装置に送信することが従来と同じであるが、LTE-A移動局カテゴリはデータストリーム数とロジカルCC数により管理されていることにより、従来のように、基地局装置は、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置に適切な下り/上り無線リソース割り当てを行うことができる。
 本実施形態は、第1の実施形態のように、前記の(ア)~(シ)のように様々なLTE-A技術要素に対応するためのLTE-A移動局装置構成の組み合わせに対して、移動局装置構成情報を生成し、基地局装置Bに送信することにより、基地局装置Bは、移動局装置構成情報に応じて、様々なLTE-A技術要素に対応できる適切な移動局装置A1の性能を引き出すことができる適切な上り/下り無線リソース割り当てが可能であることと比べて、データストリーム数とロジカルCC数によりLTE-A移動局カテゴリを定義し、LTE-A移動局装置構成の組み合わせに制限が加えたため、前記の(ア)~(シ)のように、様々なLTE-A技術要素の対応に制限を加えることになるが、LTE-A移動局カテゴリA~F(図19~図22参照)を含むRRCメッセージの情報量(例えばビット数、上りシグナリング制御信号の情報量・無線リソースのオーバーヘッド)を低減することができる。またLTE-A移動局装置構成の組み合わせに制限が加えることにより、回路複雑度の低減、低消費電力化、低コスト化、小型化、生産性の向上などを実現することができる。
(第3の実施形態)
 以下、図面を参照しながら本発明の第3の実施形態について詳しく説明する。
 本実施形態では、移動局装置は、第1の実施形態に係る送受信装置構成情報(UE-RF-Capability)、及び、第2の実施形態に係る移動局カテゴリ情報(ue-Category)を含むLTE-A移動局通信能力メッセージを生成する。
 なお、通信システムの概念図は、第1の実施形態と同じ図1であるので説明は省略する。また、本実施形態に係る移動局装置A11、A12各々を、移動局装置A3という。
<移動局装置A3の構成について>
 図26は、本発明の第3の実施形態に係る移動局装置A3の構成を示す概略ブロック図である。本実施形態に係る移動局装置A3(図26)と第1の実施形態に係る移動局装置A1(図10)とを比較すると、制御部A302、及びASN符号化部A305が異なる。しかし、他の構成要素(送受信装置A101、割当情報記憶部A103、RRCメッセージ作成部A106、及びカテゴリ情報記憶部A207、送受信装置構成情報記憶部A104)が持つ機能は第1、2の実施形態と同じである。第1、2の実施形態と同じ機能の説明は省略する。
 制御部A302は、移動局装置A3の各部を制御する。例えば、制御部A302は、基地局装置Bから割り当てられた無線リソース情報を受信し、受信した無線リソース情報を割当情報記憶部A103に記憶する。制御部A302は、割当情報記憶部A103から無線リソース情報を読み出し、送受信の制御を行う。
 また、制御部A202は、送受信装置構成情報記憶部A104が記憶する送受信装置構成情報、及び、カテゴリ情報記憶部A207から読み出したLTE-A移動局カテゴリ情報を、ASN符号化部A205に出力する。
ASN符号化部A305は、制御部A302から入力された送受信装置構成情報及びLTE-A移動局カテゴリ情報を、抽象構文記法1(ASN.1)に変換して符号化を行い、符号化した情報をRRCメッセージ生成部A106に出力する。なお、RRCメッセージ生成部A106が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。送受信装置A101は、RRCメッセージ生成部A106から入力されたRRCメッセージを、RF送信ブランチjで処理して基地局装置Bへ送信する。
 また、割当情報記憶部A103、送受信装置構成情報記憶部A104、RRCメッセージ生成部A106、制御部A302、ASN符号化部A305、及びカテゴリ情報記憶部A207は集積回路チップ内に含まれてもよい。又は送受信装置A101に一部、または全部を集積回路チップ内に含むような構成でもよく、限定されない。
<RRCメッセージの生成処理について>
 以下、ASN符号化部A305及びRRCメッセージ生成部A106が行うRRCメッセージの生成処理について説明をする。
 図27は、本実施形態に係るLTE-A移動局通信能力メッセージの一例を示す概略図である。この図において、LTE-A移動局通信能力メッセージ(図27のUE-AdvancedEUTRAN-Capability)は、移動局カテゴリ情報(図24のue-Category)、及び、送受信装置構成情報(図12のUE-RF-Capability)を含む。
 また、この図において、移動局カテゴリ情報(図27のue-Category)の値「1」~「6」(INTEGER(1..6))は、それぞれ、LTE-A移動局カテゴリA~F(図18~図21参照)を示す。同様に、移動局カテゴリ情報(ue-Category)の値、例えば、図22の場合には「1」~「4」(INTEGER(1..4))、図25の場合には「1」~「11」(INTEGER(1..11))は、移動局カテゴリを示す。
 基地局装置Bでは、制御部B102が、図21のような移動局カテゴリ情報、及び送受信装置構成情報に基づいて上り/下り無線リソースを割り当てる(図15参照)。例えば、制御部B102は、移動局装置A3から受信したRRCメッセージから移動局カテゴリ情報(図27のue-Category)及び送受信装置構成情報(図12のUE-RF-Capability)を復号して抽出し、抽出した移動局カテゴリ情報及び送受信装置構成情報に基づいて移動局装置A3の上り/下り無線リソースの割り当てを決定する。
 例えば、制御部B102は、移動局カテゴリ情報からLTE-A移動局カテゴリB、送受信装置構成情報から図28のような移動局装置構成の無線パラメータを抽出し、LTE-A移動局カテゴリBにより、移動局装置A3の上り/下りデータ処理ソフトバッファサイズ(下り最大データ速度100Mbps、上り最大データ速度75Mbps)、図28の無線パラメータにより、移動局装置A3は、周波数バンド1(図2、2GHz、周波数バンド番号1)における1個のRF受信ブランチ(RX1)にBB復調ブランチが2個(BB_DM1、BB_DM2)含まれ、また、1個のRF送信ブランチ1(TX1)にBB変調ブランチが1個(BB_MD1)含まれることが判断できる。
 基地局装置BがLTE-A移動局カテゴリCに対応できる通信能力、すなわち周波数バンド1(図2、2GHz、周波数バンド番号1)において、下りローカルCCのf1_R1~とf1_R4を送信、上りローカルCCのf1_T1~f1_T4が受信できる通信能力がある場合、制御部B102は、移動局装置A3に対して、上り/下りローカルCCの割り当てを行い、移動局装置A3の初期アクセス時に通知する。下りでは、移動局装置A3が周波数バンド1に1つのRF受信ブランチに2つのBB復調ブランチがあるため、制御部B102は、下りユーザ負荷、すなわち下りローカルCCのf1_R1~f1_R4のロードバランスを考慮し、例えば、移動局装置A3に連続の下りローカルCCのf1_R1とf1_R2を割り当て、または非連続の下りローカルCCのf1_R1とf1_R4を割り当てる。上りでは、移動局装置A3が周波数バンド1に1つのRF送信ブランチに1つのBB復調ブランチがあるため、制御部B102は、上りユーザ負荷、すなわち上りローカルCCのf1_T1~f1_T4のロードバランスを考慮し、例えば、移動局装置A3に上りローカルCCのf1_R2を割り当てる(複数上りローカルCCに対応可能な場合、下りと同様に連続/非連続CCの割り当ても可能である)。
 例えば、連続の下りローカルCCの場合、下りの無線リソース、すなわち移動局装置A3が自装置データを受信する下りリソースブロックRBをf1_R1とf1_R2の下りローカルCC内に、上りの無線リソース、すなわち移動局装置A2が自装置データを送信する上りリソースブロックRBをf1_T1の上りローカルCC内に割り当てる。制御部B102は、移動局装置A3からの移動局カテゴリ情報及び送受信装置構成情報と自装置の送受信装置構成情報と比較し、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置A3に適切な下り/上り無線リソース割り当てを行うことができる。
 また、例えば、制御部B102は、移動局カテゴリ情報からLTE-A移動局カテゴリB、送受信装置構成情報から図29のような移動局装置構成の無線パラメータを抽出し、LTE-A移動局カテゴリBにより、移動局装置A3の上り/下りデータ処理ソフトバッファサイズ(下り最大データ速度100Mbps、上り最大データ速度75Mbps)、図29の無線パラメータにより、移動局装置A3は、周波数バンド1(図2、2GHz、周波数バンド番号1)における1個のRF受信ブランチ(RX1)にBB復調ブランチが1個(BB_DM1、BB_DM2)、周波数バンド2(図2、3GHz、周波数バンド番号A)における1個のRF受信ブランチ(RX2)にBB復調ブランチが1個(BB_DM2)含まれ、また、周波数バンド1(図2、2GHz、周波数バンド番号1)における1個のRF送信ブランチ1(TX1)にBB変調ブランチが1個(BB_MD1)含まれることが判断できる。
 基地局装置BがLTE-A移動局カテゴリCに対応できる通信能力、すなわち周波数バンド1(図2、2GHz、周波数バンド番号1)において、下りローカルCCのf1_R1~とf1_R4を送信、上りローカルCCのf1_T1~f1_T4が受信できる通信能力がある場合、制御部B102は、移動局装置A3に対して、上り/下りローカルCCの割り当てを行い、移動局装置A3の初期アクセス時に通知する。下りでは、移動局装置A3が周波数バンド1に1つのRF受信ブランチに1つのBB復調ブランチがあるため、制御部B102は、下りユーザ負荷、すなわち下りローカルCCのf1_R1~f1_R4のロードバランスを考慮し、例えば、移動局装置A3に下りローカルCCのf1_R2を割り当て(複数下りローカルCCがある場合、連続/非連続CCの割り当ても可能である)、上りでは、移動局装置A3が周波数バンド1に1つのRF送信ブランチに1つのBB復調ブランチがあるため、制御部B102は、上りユーザ負荷、すなわち上りローカルCCのf1_T1~f1_T4のロードバランスを考慮し、例えば、移動局装置A3に上りローカルCCのf1_T2を割り当てる(複数上りローカルCCに対応可能な場合、下りと同様に連続/非連続CCの割り当ても可能である)。
 連続の下りローカルCCの場合、下りの無線リソース、すなわち移動局装置A3が自装置データを受信する下りリソースブロックRBをf1_R2の下りローカルCC内に、上りの無線リソース、すなわち移動局装置A2が自装置データを送信する上りリソースブロックRBをf1_T2の上りローカルCC内に割り当てる。制御部B102は、移動局装置A3からの移動局カテゴリ情報及び送受信装置構成情報と自装置の送受信装置構成情報と比較し、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置A3に適切な下り/上り無線リソース割り当てを行うことができる。
 制御部B102は、上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を割当情報記憶部B103に記憶する。制御部B102は、割当情報記憶部B103から上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を読み出し、送受信の制御を行う。また、制御部B102は、決定した上り/下りCC割り当て情報、及び割り当てられた上り/下りCCにおける無線リソースの割り当て情報を、送受信装置B101を介して移動局装置A3に送信する。
 このように、本実施形態によれば、移動局装置A3は、基地局装置Bとの通信に用いることができるLTE-A移動局通信能力メッセージ(図27のUE-AdvancedEUTRAN-Capability)に含まれるLTE-A移動局カテゴリ情報、及び送受信装置構成情報を、基地局装置Bへ送信する。また、移動局装置A3は、LTE-A移動局カテゴリ情報及び送受信装置構成情報に基づいて基地局装置Bが割り当てた上り/下り無線リソースを用いて、基地局装置Bとの通信を行う。これにより、本実施形態では、通信システムは、移動局装置A3と基地局装置Bとの通信に適切な上り/下り無線リソースを割り当てることができる。
<変形例>
 図19~図21のように、LTE-A移動局カテゴリ間に上り/下りのデータストリーム数及び上り/下りローカルCCの数の組み合わせは一部同様である。図22のようにLTE-A移動局カテゴリ間に上り/下りのデータストリーム数及び上り/下りローカルCCの数の組み合わせは異なる場合、第2実施形態のように、移動局装置A3はLTE-A移動局カテゴリ情報だけを基地局装置Bに送信すればよい。または、図21のLTE-A移動局カテゴリ情報により構成された移動局装置A3の送受信装置構成情報だけを基地局装置Bに送信すればよい。基地局装置Bは移動局装置A3の送受信装置構成情報からLTE-A移動局カテゴリ情報を判断することができる。
 本実施形態は、第2の実施形態のように、LTE-A移動局カテゴリ情報の定義により、LTE-A移動局装置構成の組み合わせに制限を加えると比べて、LTE-A移動局カテゴリ情報に制限された限定的な送受信装置構成情報を加えたため、第2の実施形態から、前記の(ア)~(シ)のように、様々なLTE-A技術要素の対応に制限を緩和することになるが、LTE-A移動局カテゴリA~F情報(図19~図21参照)と送受信装置構成情報を含むRRCメッセージの情報量(例えばビット数、上りシグナリング制御信号の情報量・無線リソースのオーバーヘッド)が第2の実施形態より増加し、一方、第1の実施形態より少ない。
(第4の実施形態)
 以下、図面を参照しながら本発明の第4の実施形態について詳しく説明する。
 第2の実施形態では、6個のLTE-A移動局カテゴリA~Fの一例を示した(図18~図21)。例えば、図19の一例は、下りデータストリーム数が「8」、「4」、「2」、「1」、上りデータストリーム数が「4」、「2」、「1」、1個CCの周波数帯域幅が20MHzに、下り最大連続/非連続CCの数が「5」、上り最大連続/非連続CCの個数が「2」、とした場合の例である。この場合でも、データストリーム数とCCの数の組み合わせが多数がある。例えば図19の場合、下り/上りデータストリーム数とCCの数の組み合わせを含め、24種類がある。
 本実施形態では、移動局装置は第2の実施形態に係る移動局カテゴリ情報(図24のue-Category)、及び、この組み合わせを識別する送受信装置構成番号(短縮送受信装置構成情報ともいう;識別情報)を含むLTE-A移動局通信能力メッセージを生成する。
 なお、通信システムの概念図は、第3の実施形態と同じ図1であるので説明は省略する。また、本実施形態に係る移動局装置A11、A12各々を、移動局装置A4という。
<送受信装置構成番号について>
 図30は、本発明の第4の実施形態に係る送受信装置構成番号情報の一例を示す概略図である。この図は、LTE-A移動局カテゴリが図19である場合の送受信装置構成番号情報を示す。
 図30において、送受信装置構成番号情報は、送受信装置構成番号(UE_TRXh、h=1、2、・・・、H)、データストリーム数(Number of DATA streams)、及び、ローカルCCの数(Number of CC)の各項目を有している。この送受信装置構成番号は、LTE-A移動局カテゴリでのデータストリーム数とローカルCCの数の組み合わせを識別する識別情報である。
 例えば、送受信装置構成番号が「1」(UE_TRX1)は、データストリーム数が「8」、ローカルCCの数が「3」の組み合わせを示す。
<移動局装置A4の構成について>
 図31は、本実施形態に係る移動局装置A4の構成を示す概略ブロック図である。本実施形態に係る移動局装置A4(図31)と第3の実施形態に係る移動局装置A3(図26)とを比較すると、制御部A402、ASN符号化部A405、及び送受信装置構成番号記憶部A404が異なる。しかし、他の構成要素(送受信装置A101、割当情報記憶部A103、RRCメッセージ作成部A106、及び、カテゴリ情報記憶部A207)が持つ機能は第3の実施形態と同じである。第3の実施形態と同じ機能の説明は省略する。
 送受信装置構成番号記憶部A404は、自装置の送受信装置構成番号を記憶する。
 制御部A402は、移動局装置A4の各部を制御する。例えば、制御部A402は、基地局装置Bから割り当てられた無線リソース情報を受信し、受信した無線リソース情報を割当情報記憶部A103に記憶する。制御部A402は、割当情報記憶部A103から無線リソース情報を読み出し、送受信の制御を行う。
 送受信装置構成番号記憶部A404は、送受信装置構成番号がをメモリに保存している。送受信装置構成番号は、移動局装置構成に応じて、工場出荷時に予め設定し、送受信装置構成番号記憶部A404に書き込むことができる。
 また、制御部A402は、送受信装置構成番号記憶部A404が記憶する送受信装置構成番号、及び、カテゴリ情報記憶部A207が記憶されたLTE-A移動局カテゴリ情報を、ASN符号化部A405に出力する。
 ASN符号化部A405は、制御部A402から入力された送受信装置構成番号及びLTE-A移動局カテゴリ情報を、抽象構文記法1(ASN.1)に変換して符号化を行い、符号化した情報をRRCメッセージ生成部A106に出力する。なお、RRCメッセージ生成部A106が行う処理の詳細については、RRCメッセージの生成処理と併せて後述する。送受信装置A101は、RRCメッセージ生成部A106から入力されたRRCメッセージを、RF送信ブランチjで処理して基地局装置Bへ送信する。
 また、割当情報記憶部A103、送受信装置構成情報記憶部A404、RRCメッセージ生成部A106、制御部A402、ASN符号化部A405、及びカテゴリ情報記憶部A207は集積回路チップ内に含まれてもよい。又は送受信装置A101に一部、または全部を集積回路チップ内に含むような構成でもよく、限定されない。
<RRCメッセージの生成処理について>
 以下、ASN符号化部A405及びRRCメッセージ生成部A106が行うRRCメッセージの生成処理について説明をする。
 図32は、本実施形態に係るLTE-A移動局通信能力メッセージ(図32のUE-AdvancedEUTRAN-Capability)の一例を示す概略図である。この図において、LTE-A移動局通信能力メッセージ(図32のUE-AdvancedEUTRAN-Capability)は、移動局カテゴリ情報(ue-Category)、及び、短縮送受信装置構成情報(ue-nrf-capability)を含む。
 図32において、移動局カテゴリ情報(ue-Category)の値「1」~「6」(INTEGER(1..6))は、それぞれ、LTE-A移動局カテゴリA~F(図19~図21参照)を示す。
 また、この図において、短縮送受信装置構成情報(UE-NRF-Capability)には、受信装置構成番号(ue-nrx-capability)、及び送信装置構成番号(ue-nrx-capability)が代入される。ここで、受信装置構成番号及び送信装置構成番号は、図30に示したように、それぞれ、受信ブランチで受信、及び送信ブランチで送信することができるデータストリーム数とローカルCCの数との組み合わせを示す送受信装置構成番号である。
<変形例>
 図33は、本実施形態の変形例に係る抽象構文記法1に変換したLTE-A移動局通信能力メッセージの別の一例を示す概略図である。この図において、従来のLTE移動局通信能力メッセージ(UE-EUTRAN-Capability)には、移動局カテゴリ情報(図25のue-Category)の値「1」~「11」(INTEGER(1..11))のうち、「1」~「5」は、それぞれ、従来のLTE移動局カテゴリ1~5を示し、「6」~「11」は、それぞれ、LTE-A移動局カテゴリA~Fを加えて、さらに短縮送受信装置構成情報(図32のUE-NRF-Capability)を加えて、LTE-A移動局通信能力メッセージを表す。
 基地局装置Bでは、制御部B102が、図19~21のような移動局カテゴリ情報、及び短縮送受信装置構成情報に基づいて上り/下り無線リソースを割り当てる(図15参照)。例えば、制御部B102は、移動局装置A4から受信したRRCメッセージからLTE-A移動局通信能力メッセージ(図32のUE-AdvancedEUTRAN-Capability)、またはLTE移動局通信能力メッセージ(図33のUE-EUTRAN-Capability)を復号し、移動局カテゴリ情報(ue-Category)及び短縮送受信装置構成情報(UE-NRF-Capability)を抽出し、抽出した移動局カテゴリ情報及び送受信装置構成情報に基づいて移動局装置A4の上り/下り無線リソースの割り当てを決定する。
 例えば、制御部B102は、移動局カテゴリ情報からLTE-A移動局カテゴリB、短縮送受信装置構成情報から受信装置構成番号(ue-nrx-capability)「11」と送信装置構成番号(ue-nrx-capability)「11」を抽出し、LTE-A移動局カテゴリBにより、移動局装置A4の上り/下りデータ処理ソフトバッファサイズ(下り最大データ速度100Mbps、上り最大データ速度75Mbps)、受信装置構成番号「11」と送信装置構成番号「11」、また別のRRCメッセージを通じて受信した周波数バンド1(図2、2GHz、周波数バンド番号1)により、移動局装置A4は、周波数バンド1(図2、2GHz、周波数バンド番号1)における1個のRF受信ブランチ(RX1)にBB復調ブランチが2個(BB_DM1、BB_DM2)含まれ、また、1個のRF送信ブランチ1(TX1)にBB変調ブランチが1個(BB_MD1)含まれることが判断できる。
 基地局装置BがLTE-A移動局カテゴリCに対応できる通信能力、すなわち周波数バンド1(図2、2GHz、周波数バンド番号1)において、下りローカルCCのf1_R1~とf1_R4を送信、上りローカルCCのf1_T1~f1_T4が受信できる通信能力がある場合、制御部B102は、移動局装置A4に対して、上り/下りローカルCCの割り当てを行い、移動局装置A4の初期アクセス時に通知する。下りでは、移動局装置A4が周波数バンド1に1つのRF受信ブランチに2つのBB復調ブランチがあるため、制御部B102は、下りユーザ負荷、すなわち下りローカルCCのf1_R1~f1_R4のロードバランスを考慮し、例えば、移動局装置A4に連続の下りローカルCCのf1_R1とf1_R2を割り当て、または非連続の下りローカルCCのf1_R1とf1_R4を割り当てる。上りでは、移動局装置A4が周波数バンド1に1つのRF送信ブランチに1つのBB復調ブランチがあるため、制御部B102は、上りユーザ負荷、すなわち上りローカルCCのf1_T1~f1_T4のロードバランスを考慮し、例えば、移動局装置A4に上りローカルCCのf1_T2を割り当てる(複数上りローカルCCに対応可能な場合、下りと同様に連続/非連続CCの割り当ても可能である)。
 例えば、連続の下りローカルCCの場合、下りの無線リソース、すなわち移動局装置A4が自装置データ受信する下りリソースブロックRBをf1_R1とf1_R2の下りローカルCC内に、上りの無線リソース、すなわち移動局装置A4が自装置データを送信する上りリソースブロックRBをf1_T2の上りローカルCC内に割り当てる。制御部B102は、移動局装置A4からの移動局カテゴリ情報及び送受信装置構成情報と自装置の送受信装置構成情報と比較し、自装置の通信能力と移動局装置通信能力の範囲内で、移動局装置A4に適切な下り/上り無線リソース割り当てを行うことができる。
 制御部B102は、上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を割当情報記憶部B103に記憶する。制御部B102は、割当情報記憶部B103から上り/下りローカルCCの割り当て情報、及び割り当てられた上り/下りローカルCCにおける無線リソースの割り当て情報を読み出し、送受信の制御を行う。また、制御部B102は、決定した上り/下りCC割り当て情報、及び割り当てられた上り/下りCCにおける無線リソースの割り当て情報を、送受信装置B101を介して移動局装置A4に送信する。
 このように、本実施形態によれば、移動局装置A4は、基地局装置Bとの通信に用いることができるLTE-A移動局カテゴリ情報、及び送受信装置構成情報を、基地局装置Bへ送信する。また、移動局装置A4は、LTE-A移動局カテゴリ情報及び送受信装置構成情報に基づいて基地局装置Bが割り当てた上り/下り無線リソースを用いて、基地局装置Bとの通信を行う。これにより、本実施形態では、通信システムは、移動局装置A4と基地局装置Bとの通信に適切な上り/下り無線リソースを割り当てることができる。
 本実施形態は、第3の実施形態のように、LTE-A移動局カテゴリ情報に制限された限定的な送受信装置構成情報を加えると比べて、LTE-A移動局カテゴリ情報に制限された短縮送受信装置構成情報を加えたため、第3の実施形態から、前記の(ア)~(シ)のように、様々なLTE-A技術要素の対応に制限を緩和するとともに、LTE-A移動局カテゴリA~F情報(図19~図21参照)と短縮送受信装置構成情報を含むRRCメッセージの情報量(例えばビット数、上りシグナリング制御信号の情報量・無線リソースオーバーヘッド)が第3の実施形態より少ない。
 なお、上述した実施形態における移動局装置A1、A2、A3、A4、基地局装置Bの一部、例えば、制御部A102、A202、A302、A402、ASN符号化部A105、A205、A305、A405、カテゴリ情報記憶部A207、及び制御部B102をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、移動局装置A1、A2、A3、A4、又は基地局装置Bに内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置および基地局装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本発明は、移動体通信に係る移動局装置、無線通信システム、それと類似の技術において用いて好適であり、移動局装置と基地局装置との通信に適切な無線リソースを割り当てることができる。
 A12、A11、A1、A2、A3、A4・・・移動局装置、B・・・基地局装置、a1・・・送受信装置、a101、a201、a301-i・・・送受信共用アンテナ、a102、a202、a302-i・・・アンテナ共用器、a11、a21、a31-i・・・無線受信部、a12、a22-l、a32-il・・・直交復調器、a13、a23-l、a33-il・・・ベースバンド復調部、a14、a24-k、a34-jk・・・ベースバンド変調部、a15、a25-k、a35-jk・・・直交変調器、a16、a26、a36-j・・・無線送信部、A102、A202、A302、A402・・・制御部、A103・・・割当情報記憶部、A104・・・送受信装置構成情報記憶部、A105、A205、A305、A405・・・ASN符号化部、A106・・・RRCメッセージ生成部、B101・・・送受信装置、B102・・・制御部、B103・・・割当情報記憶部、A207・・・カテゴリ情報記憶部

Claims (13)

  1.  予め定められた周波数帯域である要素キャリアを1又は複数を用いて、基地局装置と通信を行う移動局装置において、
     基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信し、
     前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行うことを特徴とする移動局装置。
  2.  前記移動局装置は、複数の周波数バンド各々で、1又は複数の前記要素キャリアを用いて基地局装置と通信を行い、
     基地局装置との通信に用いることができる周波数バンドに関する情報を含む送受信能力情報を、前記基地局装置へ送信することを特徴とする請求項1に記載の移動局装置。
  3.  周波数バンドの信号を受信処理する周波数バンド受信処理部を1又は複数備え、
     前記周波数バンド受信処理部は、要素キャリアの信号を受信処理する要素キャリア受信処理部を1又は複数備え、
     前記周波数バンドに関する情報は、前記周波数バンド受信処理部の数を示す情報であり、
     前記要素キャリアに関する情報は、前記要素キャリア受信処理部の数を示す情報であることを特徴とする請求項2に記載の移動局装置。
  4.  前記周波数バンドに関する情報は、前記周波数バンド受信処理部が受信処理できる周波数バンドを示す情報であり、
     前記要素キャリアに関する情報は、前記周波数バンド受信処理部が受信処理する周波数バンド内で、当該周波数バンド受信処理部に備えられた要素キャリア受信処理各々が受信処理できる最大周波数帯域の情報であることを特徴とする請求項3に記載の移動局装置。
  5.  周波数バンドの信号を送信処理する周波数バンド送信処理部を1又は複数備え、
     前記周波数バンド送信処理部は、要素キャリアの信号を送信処理する要素キャリア送信処理部を1又は複数備え、
     前記周波数バンドに関する情報は、前記周波数バンド送信処理部の数を示す情報であり、
     前記要素キャリアに関する情報は、前記要素キャリア送信処理部の数を示す情報であることを特徴とする請求項3に記載の移動局装置。
  6.  前記周波数バンドに関する情報は、前記周波数バンド送信処理部が送信処理できる周波数バンドを示す情報であり、
     前記要素キャリアに関する情報は、前記周波数バンド送信処理部が送信処理する周波数バンド内で、当該周波数バンド送信処理部に備えられた要素キャリア送信処理各々が送信処理できる最大周波数帯域の情報であることを特徴とする請求項5に記載の移動局装置。
  7.  前記基地局装置との通信の伝送速度と、自装置が当該伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせと、に基づいて決定した移動局カテゴリを前記基地局装置へ送信し、
     前記送受信能力情報と前記移動局カテゴリとに基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行うことを特徴とする請求項1に記載の移動局装置。
  8.  前記移動局カテゴリを、伝送速度と、当該伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせと、が対応付けられた移動局カテゴリ対応情報に基づいて決定することを特徴とする請求項5に記載の移動局装置。
  9.  前記移動局カテゴリ情報に対応する伝送速度での通信に用いることができるデータストリームの数及び要素キャリアの数の組み合わせの識別情報を、前記要素キャリアに関する情報として、前記基地局装置へ送信することを特徴とする請求項5に記載の移動局装置。
  10.  予め定められた周波数帯域である要素キャリアを1又は複数用いて、基地局装置と通信を行う移動局装置における通信制御方法において、
     前記移動局装置が、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信する過程と、
     前記移動局装置が、前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行う過程と、
     を有することを特徴とする通信制御方法。
  11.  予め定められた周波数帯域である要素キャリアを1又は複数用いて、基地局装置と通信を行う移動局装置のコンピュータを、
     基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信する手段、
     前記送受信能力情報に基づいて前記基地局装置が割り当てた要素キャリアを用いて、前記基地局装置との通信を行う手段、
     として機能させることを特徴とする通信制御プログラム。
  12.  基地局装置と、予め定められた周波数帯域である要素キャリアを1又は複数用いて、前記基地局装置と通信を行う移動局装置と、を具備する無線通信システムにおいて、
     前記移動局装置は、基地局装置との通信に用いることができる要素キャリアに関する情報を含む送受信能力情報を、前記基地局装置へ送信し、
     前記基地局装置は、前記送受信能力情報に基づいて、前記移動局装置に対して通信に用いる要素キャリアを割り当てることを特徴とする無線通信システム。
  13.  予め定められた周波数帯域である要素キャリアを1又は複数用いて、移動局装置と通信を行う基地局装置において、
    移動局装置が通信に用いることができる要素キャリアに関する情報を含む送受信能力情報に基づいて、前記移動局装置に対して通信に用いる要素キャリアを割り当てることを特徴とする基地局装置。
PCT/JP2010/068474 2009-10-26 2010-10-20 移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラム WO2011052447A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP16180231.9A EP3099000B1 (en) 2009-10-26 2010-10-20 Mobile station apparatus, base station apparatus and communication control method for carrier aggregation
EP10826579.4A EP2496033B1 (en) 2009-10-26 2010-10-20 Mobile station apparatus, base station apparatus, wireless communication system, communication control method, and communication control program
CN201080048191.9A CN102742340B (zh) 2009-10-26 2010-10-20 移动站装置、基站装置、无线通信***、通信控制方法
EA201270456A EA021915B1 (ru) 2009-10-26 2010-10-20 Устройство мобильной станции, устройство базовой станции, система беспроводной связи, способ управления связью и программа управления связью
MX2012004770A MX2012004770A (es) 2009-10-26 2010-10-20 Aparato de estacion movil, aparato de estacion base, sistema de comunicacion inalambrico, metodo de control de comunicacion, y programa de control de comunicacion.
US13/454,707 US8824403B2 (en) 2009-10-26 2012-04-24 Mobile station apparatus, base station apparatus, wireless communication system, communication control method, communication control program, and processor
US14/142,589 US9699770B2 (en) 2009-10-26 2013-12-27 Mobile station apparatus and base station apparatus
US15/617,863 US10015779B2 (en) 2009-10-26 2017-06-08 Mobile station apparatus and base station apparatus
US16/025,821 US10455561B2 (en) 2009-10-26 2018-07-02 Mobile station apparatus and base station apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009245493A JP4740365B2 (ja) 2009-10-26 2009-10-26 移動局装置、基地局装置、無線通信システム、通信制御方法、通信制御プログラム、及びプロセッサ
JP2009-245493 2009-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/454,707 Continuation US8824403B2 (en) 2009-10-26 2012-04-24 Mobile station apparatus, base station apparatus, wireless communication system, communication control method, communication control program, and processor

Publications (1)

Publication Number Publication Date
WO2011052447A1 true WO2011052447A1 (ja) 2011-05-05

Family

ID=43921871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068474 WO2011052447A1 (ja) 2009-10-26 2010-10-20 移動局装置、基地局装置、無線通信システム、通信制御方法、及び通信制御プログラム

Country Status (7)

Country Link
US (4) US8824403B2 (ja)
EP (2) EP3099000B1 (ja)
JP (1) JP4740365B2 (ja)
CN (1) CN102742340B (ja)
EA (1) EA021915B1 (ja)
MX (1) MX2012004770A (ja)
WO (1) WO2011052447A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027395A1 (en) 2011-08-22 2013-02-28 Sharp Kabushiki Kaisha User equipment capability signaling
WO2013147680A3 (en) * 2012-03-26 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Handling band combinations with reduced performance in carrier aggregation
EP2725861A1 (en) * 2011-06-21 2014-04-30 Sharp Kabushiki Kaisha Mobile station device, base station device, communication system, mobile station device capacity notification method, and integrated circuit
CN103826290A (zh) * 2012-11-16 2014-05-28 三星电子株式会社 用于在便携式终端中连接到局域通信的设备和方法
WO2022071072A1 (ja) * 2020-09-29 2022-04-07 株式会社デンソー 通信管理装置、通信管理方法、および通信管理プログラム
JP7468278B2 (ja) 2020-09-29 2024-04-16 株式会社デンソー 通信制御装置、通信制御方法、および通信制御プログラム

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450665B2 (en) 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
WO2008056425A1 (fr) * 2006-11-10 2008-05-15 Fujitsu Limited Système de communication sans fil et dispositif terminal sans fil
US8649326B2 (en) * 2010-07-06 2014-02-11 Htc Corporation Method of handling capability information of a mobile device and related communication device
JP5581890B2 (ja) 2010-08-20 2014-09-03 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの制御方法
EP2664184B1 (en) * 2011-01-11 2015-02-18 Telefonaktiebolaget LM Ericsson (PUBL) Bandwidth configuration and reporting for relay links
US9537555B2 (en) * 2011-02-22 2017-01-03 Qualcomm Incorporated Uplink transmit antenna selection in carrier aggregation
JP2012204910A (ja) * 2011-03-24 2012-10-22 Sharp Corp 通信システム、基地局装置、移動局装置、移動局装置処理能力の管理方法及び集積回路
US9480031B2 (en) * 2011-05-03 2016-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods and network nodes in a telecommunication system
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
CN102882657B (zh) 2011-07-15 2018-01-23 瑞典爱立信有限公司 用于上行链路秩自适应的方法、设备和***
JP5802480B2 (ja) * 2011-08-12 2015-10-28 株式会社Nttドコモ 移動通信方法及び無線基地局
US9338695B2 (en) * 2011-12-01 2016-05-10 Qualcomm Incorporated Signaling of supported carrier bandwidths for carrier aggregation
JP6041498B2 (ja) 2012-02-03 2016-12-07 株式会社Nttドコモ 移動通信方法、無線基地局及び移動局
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US8908493B2 (en) * 2012-05-01 2014-12-09 Src, Inc. NC-OFDM for a cognitive radio
US9154356B2 (en) 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
GB2506445B (en) * 2012-10-01 2015-06-10 Broadcom Corp Apparatus, methods and computer programs for signalling transmitted output power
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US9312933B2 (en) * 2013-02-22 2016-04-12 Qualcomm Incorporated Apparatus and method for dynamically altering a downlink MIMO configuration
WO2014129842A1 (ko) * 2013-02-24 2014-08-28 엘지전자 주식회사 무선 통신 시스템에서 랭크 인덱스의 비트 길이를 결정하는 방법 및 장치
US9210562B2 (en) * 2013-04-04 2015-12-08 Blackberry Limited Method and apparatus for proximity discovery for device-to-device communication
WO2015051507A1 (zh) * 2013-10-09 2015-04-16 华为技术有限公司 信息传输方法和装置
KR102262183B1 (ko) * 2014-04-04 2021-06-07 뉴라컴 인코포레이티드 수신 확인 방법 및 다중 사용자 전송 방법
CN105099638B (zh) 2014-05-09 2020-08-28 三星电子株式会社 在移动通信***中收发用户设备性能信息的方法和装置
KR20160081122A (ko) * 2014-12-30 2016-07-08 주식회사 쏠리드 다중입출력신호를 위한 분산 안테나 시스템
CN106162906B (zh) 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
MX2018000757A (es) * 2015-07-22 2018-05-15 Ericsson Telefon Ab L M Informes independientes de las capacidades de rf y bb de un equipo de usuario movil en un sistema de comunicaciones inalambrico que admite la agregacion de portadora.
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter
US10158477B2 (en) 2016-07-28 2018-12-18 At&T Mobility Ii Llc Method and apparatus for defining carrier aggregation group sets
GB2552689A (en) * 2016-08-03 2018-02-07 Nec Corp Communication system
US10148311B2 (en) * 2016-09-26 2018-12-04 Lg Electronics Inc. Studies about MSD level in aggregating a plurality of downlink carriers and two uplink carriers
US10440645B2 (en) * 2016-10-11 2019-10-08 Verizon Patent And Licensing Inc. Extending signal coverage and charge duration of a user equipment
EP3598828A1 (en) 2017-04-01 2020-01-22 Cloudminds (Shenzhen) Robotics Systems Co., Ltd. Data transmission method, resource scheduling method, apparatus, terminal, and network side device
US11259203B2 (en) * 2018-01-07 2022-02-22 Htc Corporation Device and method of handling communication device capabilities
JP6956755B2 (ja) * 2019-02-25 2021-11-02 アンリツ株式会社 移動端末試験装置とそのサポート組合せ取得方法
US20230063345A1 (en) 2020-01-31 2023-03-02 Sony Group Corporation Operating a terminal device and a network node in a wireless mimo system
KR20220049990A (ko) * 2020-10-15 2022-04-22 삼성전자주식회사 무선 통신 시스템에서 다수의 사업자를 지원하는 네트워크 공유 방법 및 장치.

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3583401B2 (ja) * 2000-12-19 2004-11-04 株式会社エヌ・ティ・ティ・ドコモ 無線チャネル切換方法、移動通信システム、基地局及び移動局
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
EP1816666B1 (en) 2004-10-29 2016-02-03 Fujitsu Ltd. Communication device by multicarrier transmission method and communication system
KR100957318B1 (ko) * 2004-11-24 2010-05-12 삼성전자주식회사 다중 반송파 시스템에서의 자원할당 방법 및 장치
US7961700B2 (en) * 2005-04-28 2011-06-14 Qualcomm Incorporated Multi-carrier operation in data transmission systems
CN100407802C (zh) * 2005-08-28 2008-07-30 华为技术有限公司 一种多载波ev-do的反向链路管理方法及接入终端
KR100834668B1 (ko) * 2005-11-04 2008-06-02 삼성전자주식회사 통신 시스템에서 스케쥴링 장치 및 방법
US8385217B2 (en) * 2005-11-16 2013-02-26 Zte Corporation Method for configuring channel and carrier resources for multi-carrier high speed downlink packet access
GB0607362D0 (en) * 2006-04-12 2006-05-24 Siemens Ag A method of indicating mobile station capability to a network
CN101047711B (zh) 2006-04-27 2010-08-18 华为技术有限公司 Ip报文传输、协商带宽节省能力和节省网络带宽的方法
US7787567B2 (en) * 2006-09-26 2010-08-31 Intel Corporation Beamforming by antenna puncturing
WO2008056425A1 (fr) 2006-11-10 2008-05-15 Fujitsu Limited Système de communication sans fil et dispositif terminal sans fil
US20080305825A1 (en) * 2007-06-08 2008-12-11 Interdigital Technology Corporation Method and apparatus for providing capability and core network information to support interworking between 3gpp and non-3gpp networks
CN101345988A (zh) * 2007-07-13 2009-01-14 大唐移动通信设备有限公司 多载波***的资源分配方法及装置
CN101345976A (zh) * 2007-07-13 2009-01-14 大唐移动通信设备有限公司 多载波***跨无线网络控制器业务的资源分配方法及***
CN101389054B (zh) * 2007-09-11 2012-07-04 电信科学技术研究院 一种多载波资源的分配方法、***及一种网络侧
US8681711B2 (en) * 2007-10-05 2014-03-25 Qualcomm Incorporated Inactivity-based multi-carrier allocation in wireless networks
JP5450438B2 (ja) 2007-12-06 2014-03-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動電気通信ネットワークにおけるue能力情報の更新方法
JP5210895B2 (ja) * 2008-02-20 2013-06-12 株式会社日立製作所 無線通信システム、端末及び基地局
CN101965707B (zh) * 2008-03-24 2014-03-12 诺基亚公司 通信***中的软缓冲存储器配置
AU2009229803B9 (en) 2008-03-28 2014-02-27 Ntt Docomo, Inc. Mobile station, base station, basic frequency block specifying method and band control method
WO2010005233A2 (ko) * 2008-07-08 2010-01-14 엘지전자 주식회사 캐리어 집합 생성 방법 및 캐리어 집합 정보 전송방법
US8670376B2 (en) * 2008-08-12 2014-03-11 Qualcomm Incorporated Multi-carrier grant design
DK2351445T3 (en) * 2008-10-20 2015-10-26 Interdigital Patent Holdings carrier Aggregation
US8514793B2 (en) * 2008-10-31 2013-08-20 Interdigital Patent Holdings, Inc. Method and apparatus for monitoring and processing component carriers
WO2010059813A1 (en) * 2008-11-21 2010-05-27 Interdigital Patent Holdings, Inc. Method and apparatus for supporting aggregation of multiple component carriers
WO2010088536A1 (en) * 2009-01-30 2010-08-05 Interdigital Patent Holdings, Inc. Method and apparatus for component carrier aggregation in wireless communications
EP2903326B1 (en) * 2009-04-15 2016-09-28 HTC Corporation Method of handling measurement capability and related communication device
WO2010123893A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
KR101715397B1 (ko) * 2009-04-22 2017-03-13 엘지전자 주식회사 무선 통신 시스템에서 참조신호 전송 장치 및 방법
US8767638B2 (en) * 2009-08-06 2014-07-01 Htc Corporation Method of handling resource assignment and related communication device
US8489105B2 (en) 2009-11-05 2013-07-16 Intel Mobile Communications GmbH Radio base stations, radio communication devices, methods for controlling a radio base station and methods for controlling a radio communication device
US8767641B2 (en) 2009-11-16 2014-07-01 Texas Instruments Incorporated Carrier indication in a bandwidth aggregated wireless communications systems
SG182371A1 (en) * 2010-01-08 2012-08-30 Interdigital Patent Holdings Method and apparatus for channel resource mapping in carrier aggregation
US20110205976A1 (en) 2010-02-19 2011-08-25 Nokia Siemens Networks Oy UE Specific Signaling Carrier Indicator For Carrier Aggregation
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
US8606257B2 (en) * 2010-06-25 2013-12-10 Htc Corporation Apparatuses and methods for mobile capability signaling

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"NTT docomo, INC.R1-083015, 3GPP TSG-RAN Meeting #54 bis", 3GPP, 18 August 2008 (2008-08-18) - 22 August 2008 (2008-08-22)
3GPP TSG-RAN MEETING #54BIS, JEJU, KOREA, 18 August 2008 (2008-08-18)
3GPP TSG-RAN WG4 MEETING #50, ATHENS, GREECE, 9 February 2009 (2009-02-09)
3GPP TSG-RAN WG4 MEETING #50BIS, SEOUL, SOUTH KOREA, 23 March 2009 (2009-03-23)
3GPP TSG-RAN1 MEETING #53BIS, PRAGUE, CZECH REPUBLIC, 29 September 2008 (2008-09-29)
3GPP: "3GPP TR36.913, Requirements for Further Advancements for E-UTRA", 3GPP
3GPP: "3GPP TS 36.101, User Equipment (UE) radio transmission and reception", 3GPP
ERICSSON: "Report of the email discussion [67#24] LTE: RRC protocol extensions", 3GPP TSG RAN WG2 MEETING #67BIS R2-095759, - 12 October 2009 (2009-10-12), XP050390250 *
NTT DOCOMO, 3GPP TSG-RAN WG4 MEETING #50, ATHENS, GREECE, 9 February 2009 (2009-02-09)
NTT DOCOMO: "Initial Access Procedure for Asymmetric Wider Bandwidth in LTE-Advanced", 3GPP TSG RAN WG1 MEETING #57BIS R1-092802, - July 2009 (2009-07-01), XP050351255 *
See also references of EP2496033A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009897B2 (en) 2011-06-21 2018-06-26 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, communication system, mobile station apparatus capability notification method, and integrated circuit
EP2725861A1 (en) * 2011-06-21 2014-04-30 Sharp Kabushiki Kaisha Mobile station device, base station device, communication system, mobile station device capacity notification method, and integrated circuit
EP2725861A4 (en) * 2011-06-21 2014-12-10 Sharp Kk MOBILE STATION DEVICE, BASE STATION DEVICE, COMMUNICATION SYSTEM, MOBILE STATION DEVICE CAPACITY NOTIFICATION METHOD, AND INTEGRATED CIRCUIT
US9277398B2 (en) 2011-08-22 2016-03-01 Sharp Kabushiki Kaisha User equipment capability signaling
WO2013027395A1 (en) 2011-08-22 2013-02-28 Sharp Kabushiki Kaisha User equipment capability signaling
EP2749052A1 (en) * 2011-08-22 2014-07-02 Sharp Kabushiki Kaisha User equipment capability signaling
EP2749052A4 (en) * 2011-08-22 2014-12-31 Sharp Kk CAPACITY SIGNALING FOR A USER DEVICE
US9516651B2 (en) 2012-03-26 2016-12-06 Telefonaktiebolaget Lm Ericsson (Publ) Handling band combinations with reduced performance in carrier aggregation
WO2013147680A3 (en) * 2012-03-26 2014-02-06 Telefonaktiebolaget L M Ericsson (Publ) Handling band combinations with reduced performance in carrier aggregation
CN103826290A (zh) * 2012-11-16 2014-05-28 三星电子株式会社 用于在便携式终端中连接到局域通信的设备和方法
CN103826290B (zh) * 2012-11-16 2019-03-15 三星电子株式会社 用于在便携式终端中连接到局域通信的设备和方法
US11212743B2 (en) 2012-11-16 2021-12-28 Samsung Electronics Co., Ltd. Apparatus and method for connecting to a local area communication in a portable terminal
WO2022071072A1 (ja) * 2020-09-29 2022-04-07 株式会社デンソー 通信管理装置、通信管理方法、および通信管理プログラム
JP2022056017A (ja) * 2020-09-29 2022-04-08 株式会社デンソー 通信管理装置、通信管理方法、および通信管理プログラム
JP7354979B2 (ja) 2020-09-29 2023-10-03 株式会社デンソー 通信管理装置、通信管理方法、および通信管理プログラム
JP7468278B2 (ja) 2020-09-29 2024-04-16 株式会社デンソー 通信制御装置、通信制御方法、および通信制御プログラム

Also Published As

Publication number Publication date
EP2496033B1 (en) 2016-08-24
EA201270456A1 (ru) 2012-10-30
MX2012004770A (es) 2012-06-08
US8824403B2 (en) 2014-09-02
JP2011091747A (ja) 2011-05-06
EA021915B1 (ru) 2015-09-30
EP2496033A1 (en) 2012-09-05
US20180317222A1 (en) 2018-11-01
US9699770B2 (en) 2017-07-04
US10015779B2 (en) 2018-07-03
EP3099000B1 (en) 2020-01-01
US10455561B2 (en) 2019-10-22
US20140112298A1 (en) 2014-04-24
EP3099000A1 (en) 2016-11-30
US20120207115A1 (en) 2012-08-16
CN102742340B (zh) 2015-08-05
EP2496033A4 (en) 2014-11-26
CN102742340A (zh) 2012-10-17
JP4740365B2 (ja) 2011-08-03
US20170280442A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP4740365B2 (ja) 移動局装置、基地局装置、無線通信システム、通信制御方法、通信制御プログラム、及びプロセッサ
JP5094896B2 (ja) 移動局装置、基地局装置、通信制御方法及び集積回路
JP5406916B2 (ja) 装置
US20210105724A1 (en) User equipment (ue) capability signaling for maximum power support
CN111418178B (zh) 用于在集成接入和回程及非地面网络中进行改进以及与集成接入和回程及非地面网络相关的方法和装置
CN108781099A (zh) 用户设备(ue)支持模式和id支持
JP5285738B2 (ja) 移動局装置、プロセッサ、無線通信システム、通信制御方法、通信制御プログラム、及び基地局装置
JP5954908B2 (ja) 移動局装置、通信制御方法、及び基地局装置
JP5265730B2 (ja) 移動局装置、プロセッサ、無線通信システム、通信制御方法、通信制御プログラム、及び基地局装置
JP2020516144A (ja) 無線ネットワークノード、無線デバイス、及びそれらで実行される、無線通信ネットワークにおける通信を処理するための方法
JP5623595B2 (ja) 移動局装置、プロセッサ、無線通信システム、通信制御方法、通信制御プログラム、及び基地局装置
WO2014050646A1 (ja) 端末装置、基地局装置、無線通信システム通信方法およびプログラム
KR20130063633A (ko) 단말간 직접 통신을 위한 송수신 방법 및 송수신기를 구비한 단말 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048191.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826579

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/004770

Country of ref document: MX

Ref document number: 201270456

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3958/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010826579

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010826579

Country of ref document: EP