WO2011052300A1 - Wireless communication system and control method - Google Patents

Wireless communication system and control method Download PDF

Info

Publication number
WO2011052300A1
WO2011052300A1 PCT/JP2010/065504 JP2010065504W WO2011052300A1 WO 2011052300 A1 WO2011052300 A1 WO 2011052300A1 JP 2010065504 W JP2010065504 W JP 2010065504W WO 2011052300 A1 WO2011052300 A1 WO 2011052300A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization signal
signal
transmitter
receiver
transmission
Prior art date
Application number
PCT/JP2010/065504
Other languages
French (fr)
Japanese (ja)
Inventor
克志 山本
佳夫 伊東
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/504,415 priority Critical patent/US9444538B2/en
Priority to CN201080047674.7A priority patent/CN102598560B/en
Priority to EP10826435.9A priority patent/EP2495897A4/en
Publication of WO2011052300A1 publication Critical patent/WO2011052300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • H04B7/0693Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas switching off a diversity branch, e.g. to save power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a same frequency radio communication system and a control method.
  • Patent Documents 1 and 2 describe the same frequency (CO-CH: Co-Channel) wireless communication system that performs wireless communication using vertical polarization and horizontal polarization of the same frequency.
  • This wireless communication system can use two lines corresponding to vertical polarization and horizontal polarization for communication. Therefore, the throughput is improved as compared with the case where either one of vertical polarization and horizontal polarization is transmitted alone.
  • the communication quality of the CO-CH transmission system may deteriorate due to the mutual interference between the polarizations.
  • the horizontal polarization and the vertical polarization are attenuated due to factors such as bad weather, and as a result, the communication quality may be deteriorated.
  • FIG. 1 shows an example of the configuration of a general CO-CH transmission system.
  • an antenna with high cross polarization discrimination (XPD: Cross Polarization Discrimination) is used, or as shown in FIG. 1, a cross polarization interference canceller (XPIC: Cross Polarization) is installed on the receiving side.
  • XPD Cross Polarization Discrimination
  • XPIC Cross Polarization interference canceller
  • an antenna with high orthogonal polarization discrimination is more expensive than a normal antenna. If a cross polarization interference canceller is provided, the cost is increased accordingly.
  • An object of the present invention is to provide a technique for improving reception quality at a low cost in a CO-CH wireless communication system.
  • the wireless communication system of the present invention transmits a first polarization signal and a second polarization signal to a receiver, and the second polarization signal according to an instruction of the receiver.
  • a transmitter that stops transmission of the first polarization signal and the second polarization signal from the transmitter, and whether or not the reception quality of the second polarization signal is less than a threshold value And if the reception quality is less than the threshold value, a receiver that instructs the transmitter to stop the second polarization signal.
  • the transmitter of the present invention includes a transmission means for transmitting the first polarization signal and the second polarization signal to a receiver, a reception means for receiving an instruction from the receiver, and the reception means received by the reception means. Switching means for causing the transmission means to stop transmission of the second polarization signal in accordance with an instruction.
  • the transmitter of the present invention includes a receiving means for receiving the first polarization signal and the second polarization signal from the transmitter, and the reception quality of the second polarization signal received by the receiving means is a threshold value. And determining means for determining whether or not the second polarization signal is less than the threshold by the determining means, and stopping the second polarization signal to the transmitter. Instruction means for instructing.
  • the transmitter transmits the first polarization signal and the second polarization signal to the receiver, and the receiver transmits the first polarization signal from the transmitter.
  • a signal and the second polarization signal determine whether or not the reception quality of the second polarization signal is less than a threshold, and if the reception quality is less than the threshold,
  • a control method for a wireless communication system instructing a transmitter to stop the second polarization signal, wherein the transmitter stops transmission of the second polarization signal in accordance with an instruction from the receiver. is there.
  • the transmitter stops transmitting the second polarization signal, so the first polarization signal and the second polarization signal Interference between the polarization signals is eliminated, and the communication quality of the first polarization signal is improved. Since there is no need to provide an antenna with a high degree of orthogonal polarization discrimination or a cross polarization interference canceller, communication quality can be improved at low cost.
  • 1 is an example of an overall view of a general wireless communication system. It is an example of the whole figure of the radio
  • (C) It is a figure which shows the relationship between a throughput and rainfall intensity in embodiment of this invention. It is a flowchart which shows operation
  • FIG. 2 is an example of an overall view of the wireless communication system 1 of the present embodiment.
  • the wireless communication system 1 is a wireless communication system that transmits and receives data signals over two lines by placing them on a horizontally polarized microwave and a vertically polarized microwave.
  • the wireless communication system 1 uses the link aggregation technology to bundle these two lines and use them logically as one line.
  • the microwaves of the horizontally polarized wave and the vertically polarized wave are respectively referred to as the vertically polarized wave signal and the horizontally polarized wave.
  • This is called a wave signal.
  • the data signal put on the microwave is, for example, an Ethernet (registered trademark) signal.
  • the wireless communication system 1 includes a transmitter 10 and a receiver 20.
  • the transmitter 10 transmits a data signal to the receiver 20, and the receiver 20 receives the data signal from the transmitter 10. Further, the receiver 20 transmits a control signal to the transmitter 10, and the transmitter 10 receives the control signal from the receiver 20.
  • Control signals transmitted and received in this embodiment include an alarm signal and a recovery signal.
  • the alarm signal is a control signal for the receiver 20 to instruct the transmitter 10 to stop the transmission of the horizontally polarized signal.
  • the recovery signal is a control signal for instructing the transmitter 10 to resume transmission of the stopped horizontal polarization signal to the transmitter 10.
  • the transmitter 10 has a transmission circuit and a reception circuit, but FIG. 2 shows only the configuration of the transmission circuit that transmits the Ethernet signal, and the reception circuit is omitted.
  • the receiver 20 includes a transmission circuit and a reception circuit, but FIG. 2 shows only the configuration of the reception circuit that receives an Ethernet signal, and omits the transmission circuit.
  • the transmitter 10 includes a link aggregation unit 101, a DPU / MOD (Data Processing Unit / Modulator) 102, a DPU / MOD 103, TX 104, TX 105, a switching unit 106, and an antenna 107.
  • the antenna 107 has an antenna element 107V for transmitting a vertically polarized signal and an antenna element 107H for transmitting a horizontally polarized signal.
  • the link aggregation unit 101 receives an Ethernet signal.
  • the link aggregation unit 101 divides the input Ethernet signal into two so that the signal throughput has a desired transmission capacity, and outputs the divided signal to the DPU / MOD 102 and the DPU / MOD 103, respectively.
  • the DPU / MOD 102 divides the Ethernet signal from the link aggregation unit 101 in units of packets, puts the generated packet data on a carrier wave, and outputs it to the TX 104.
  • the DPU / MOD 103 divides the Ethernet signal from the link aggregation unit 101 in units of packets, places the generated packet data on a carrier wave, and outputs it to the TX 105.
  • the TX 104 receives and amplifies the electric signal on which the Ethernet signal is superimposed by the DPU / MOD 102, and outputs it to the antenna element 107V.
  • the TX 105 receives and amplifies the electrical signal on which the Ethernet signal is superimposed by the DPU / MOD 102, and outputs it to the antenna element 107H via the switching unit 106.
  • the switching unit 106 receives a control signal from the receiver 20 via a receiving circuit (not shown), and switches the ON / OFF state according to the control signal. When it is ON, the switching unit 106 outputs an electrical signal from the DPU / MOD 103 to the antenna 107, and when it is OFF, the switching unit 106 does not output the electrical signal.
  • the switching unit 106 In the initial state, the switching unit 106 is in an ON state, and when an alarm signal is received from the receiver 20, it shifts to an OFF state. When the restoration signal is received from the receiver 20, the switching unit 106 shifts to the ON state.
  • the antenna element 107V converts the electrical signal from the TX 104 into a vertically polarized signal and outputs it
  • the antenna element 107H converts the electrical signal from the TX 105 into a horizontally polarized signal and outputs it.
  • the receiver 20 includes an antenna 201, RX 202, RX 203, DEM (Demodulator) / DPU 204, DEM / DPU 205, and a link aggregation unit 206.
  • the antenna 201 has an antenna element 201V for receiving a vertically polarized signal and an antenna element 201H for receiving a horizontally polarized signal.
  • the antenna element 201V receives the vertically polarized signal, converts the vertically polarized signal into an electrical signal, and outputs the electrical signal to the RX 202.
  • the antenna element 201H receives the horizontally polarized signal, converts the horizontally polarized signal into an electrical signal, and outputs the electrical signal to the RX 203.
  • RX 202 amplifies an electric signal from antenna element 201V and outputs the amplified signal to DEM / DPU 204.
  • the RX 203 amplifies the electrical signal from the antenna element 201H and outputs it to the DEM / DPU 205.
  • the RX 202 measures the level of the electric signal from the antenna element 201H, that is, the reception electric field level of the vertically polarized signal. RX 202 estimates the reception quality of the horizontally polarized signal when the transmission of the horizontally polarized signal is restarted from the measured received electric field level.
  • the reception quality is, for example, a system failure rate (System Outrage) or a BER (Bit Error Rate).
  • the RX 202 transmits a recovery signal to the transmitter 10 via a transmission circuit (not shown).
  • the DEM / DPU 204 extracts an Ethernet signal from the electrical signal output by the RX 202 and outputs the Ethernet signal to the link aggregation unit 206.
  • the DEM / DPU 204 monitors the electrical signal from the RX 203 and determines whether or not the reception quality of the horizontally polarized signal has decreased below the threshold value. In the present embodiment, when the communication using the electrical signal from the RX 202 is disconnected, the DEM / DPU 204 may determine that the reception quality of the horizontally polarized signal is less than the threshold value.
  • the DEM / DPU 204 transmits an alarm signal to the transmitter 10 via a transmission circuit (not shown) if the reception quality of the horizontally polarized signal is less than the threshold value.
  • the DEM / DPU 205 extracts an Ethernet signal from the electrical signal output by the RX 203 and outputs the Ethernet signal to the link aggregation unit 206.
  • the link aggregation unit 206 logically bundles two lines of Ethernet signals from the DEM / DPU 204 and the DEM / DPU 204 and outputs them as one line of Ethernet signals.
  • FIG. 3 is a block diagram illustrating a configuration example of the transmitter 10.
  • the transmitter 10 includes a data signal transmission unit 111, a control signal reception unit 112, and a switching unit 113.
  • the link aggregation unit 101, the DPU / MOD 102, the DPU / MOD 103, the TX 104, the TX 105, and the antenna 107 correspond to the data signal transmission unit 111 in FIG.
  • the receiving circuit omitted in FIG. 2 corresponds to the control signal receiving unit 112 in FIG.
  • the switching unit 106 in FIG. 2 corresponds to the switching unit 113 in FIG.
  • the data signal transmission unit 111 transmits the Ethernet signal, which is a data signal, to the receiver 20 on the horizontal polarization signal and the vertical polarization signal. Further, the data signal transmission unit 111 stops or restarts transmission of the horizontally polarized signal according to the control of the switching unit 113.
  • the control signal receiving unit 112 receives an alarm signal or a recovery signal that is a control signal from the receiver 20.
  • the switching unit 113 causes the data signal transmitting unit 111 to stop transmitting the horizontally polarized signal. Then, when the control signal receiving unit 112 receives the restoration signal, the switching unit 113 causes the data signal transmission unit 111 to resume transmission of the horizontal polarization signal.
  • FIG. 4 is a block diagram illustrating a configuration example of the receiver 20.
  • the receiver 20 includes a data signal receiving unit 211, a monitoring unit 212, and a control signal transmitting unit 213.
  • the antenna 201, RX 202, RX 203, DEM / DPU 204, DEM / DPU 205, and link aggregation unit 206 in FIG. 2 correspond to the data signal reception unit 211 in FIG.
  • a circuit that realizes the function of the monitoring unit 212 in FIG. 4 is provided in part of the RX 202 and part of the DEM / DPU 205 in FIG.
  • the configuration obtained by removing the circuit corresponding to the monitoring unit 212 from the RX 202 and the DEM / DPU 205, and the antenna 201, RX 203, and DEM / DPU 204 in FIG. 2 correspond to the data signal receiving unit 211 in FIG.
  • RX202 and DEM / DPU 205 in FIG. 2 correspond to the monitoring unit 212 in FIG.
  • the reception circuit omitted in FIG. 2 corresponds to the control signal transmission unit 213 in FIG.
  • the data signal receiving unit 211 receives from the transmitter 10 a horizontally polarized signal and a vertically polarized signal on which the Ethernet signal, which is a data signal, is superimposed.
  • the monitoring unit 212 monitors the reception quality of the horizontally polarized signal. Before the alarm signal is transmitted, the monitoring unit 212 determines whether or not the reception quality of the horizontally polarized signal has become less than the threshold depending on whether or not communication using the horizontally polarized signal is disconnected. After transmitting the alarm signal, the monitoring unit 212 estimates the reception quality of the horizontal polarization signal from the reception electric field level of the vertical polarization signal, and determines whether or not the reception quality is equal to or higher than the threshold value.
  • the control signal transmission unit 213 transmits an alarm signal, which is a control signal, to the transmitter 10 when the monitoring unit 212 determines that the reception quality of the horizontally polarized signal is less than the threshold value.
  • the control signal transmission unit 213 transmits a recovery signal, which is a control signal, to the transmitter 10 when the monitoring unit 212 determines that the reception quality of the horizontally polarized signal is equal to or higher than the threshold value.
  • FIG. 5 is a diagram showing the relationship between the amount of attenuation of the horizontally polarized signal and the vertically polarized signal and the rainfall intensity.
  • the vertical axis represents the attenuation (dB) of each of the horizontal polarization signal and the vertical polarization signal
  • the horizontal axis represents the rainfall intensity (mm / h).
  • a solid line H indicates the characteristics of the horizontally polarized signal
  • a broken line V indicates the characteristics of the vertically polarized signal.
  • the higher the rainfall intensity the greater the attenuation of the horizontally polarized signal and the vertically polarized signal.
  • the attenuation due to microwave rain always increases on the horizontal polarization side of the antenna compared to the vertical polarization side. That is, in microwave communication, the transmission quality during rainfall is usually lower on the horizontal polarization side than on the vertical polarization side at the same rainfall intensity.
  • FIG. 6 is a diagram showing the relationship between the reception quality and the rainfall intensity during CO-CH transmission and single transmission.
  • the vertical axis represents transmission quality such as system failure rate and BER
  • the horizontal axis represents rainfall intensity.
  • the solid lines Vs and Hs indicate the characteristics of the horizontal polarization signal and the vertical polarization signal during single transmission
  • the wavy lines Vc and Hc indicate the characteristics of the horizontal polarization signal and the vertical polarization signal during CO-CH transmission.
  • the length of the arrow indicates the amount of transmission quality that has deteriorated due to mutual interference between the horizontally polarized signal and the vertically polarized signal.
  • the thick line indicates the threshold Th of the reception quality when the communication using the horizontally polarized signal is disconnected.
  • the transmission side stop transmitting the horizontally polarized signal.
  • FIG. 7A is a diagram showing a relationship between reception quality and rainfall intensity in the wireless communication system 1 of the present embodiment.
  • the vertical axis represents transmission quality such as system failure rate and BER
  • the horizontal axis represents rainfall intensity.
  • Solid lines Vc and Hc indicate the characteristics of the horizontal polarization signal and the vertical polarization signal at the time of CO-CH transmission
  • solid lines Vs indicate the characteristics of the vertical polarization signal at the time of single transmission.
  • “ ⁇ ” on the solid line Hc indicates the time when the alarm signal is output
  • “ ⁇ ” on the solid line Vs indicates the time when the recovery signal is output.
  • the thick line indicates the threshold Th of the reception quality at which the communication using the horizontally polarized signal is disconnected.
  • the reception quality of the horizontally polarized signal and the vertically polarized signal during CO-CH transmission deteriorates as the rainfall intensity increases from the state where it is not raining.
  • the transmitter 10 stops the transmission of the horizontally polarized signal and shifts to single transmission according to the alarm signal from the receiver 20.
  • the transmitter 10 stops the transmission of the horizontally polarized signal when the alarm signal is received. For this reason, the interference with the vertically polarized signal by the horizontally polarized signal, that is, leakage is eliminated, and the reception quality of the vertically polarized signal is improved as shown by the upward arrow in FIG.
  • the receiver 20 estimates the reception quality of the horizontal polarization signal when the transmission of the horizontal polarization signal is resumed from the reception electric field level of the vertical polarization signal.
  • the reception electric field level of the vertical polarization signal at the time of single transmission in the rain intensity where the reception quality of the horizontal polarization signal is less than the threshold is registered in advance as a predetermined value.
  • the reception electric field level of the vertically polarized signal rises above this received electric field level (predetermined value)
  • the receiver 20 transmits a recovery signal to the transmitter 10.
  • the transmitter 10 resumes the transmission of the horizontally polarized signal according to the restoration signal.
  • the predetermined value is a value larger than the received electric field level of the vertically polarized signal at the rainfall intensity when communication is disconnected.
  • FIG. 7 (b) is a diagram showing a relationship between throughput and rainfall intensity in a wireless communication system that does not shift from CO-CH transmission to single transmission.
  • FIG.7 (c) is a figure which shows the relationship between a throughput and rainfall intensity in the radio
  • the wireless communication system 1 when the rainfall intensity reaches a value corresponding to the reception quality threshold value, the transmission of the horizontally polarized signal is stopped, so that FIG. As in the case of, the throughput decreases.
  • the shift to single transmission eliminates the mutual interference between the polarized waves, and the reception quality of the vertically polarized signal is improved.
  • the wireless communication system 1 can continue the communication even if the rainfall intensity is high enough to disconnect the communication.
  • FIG. 8 is a flowchart showing the operation of the transmitter 10. This operation starts when an Ethernet signal to be transmitted to the receiver 20 is input to the transmitter 10.
  • Transmitter 10 transmits a horizontally polarized signal and a vertically polarized signal on which an Ethernet signal is placed to receiver 20 (step S1).
  • the transmitter 10 determines whether or not an alarm signal from the receiver 20 has been received (step S2). If the alarm signal has not been received (step S2: NO), the transmitter 10 returns to step S2.
  • step S2 If the alarm signal has been received (step S2: YES), the transmitter 10 stops the transmission of the horizontal polarization signal and shifts to the single transmission of only the vertical polarization signal (step S3).
  • the transmitter 10 determines whether or not the restoration signal from the receiver 20 is received during the single transmission of only the vertically polarized signal (step S4). If the recovery signal has not been received (step S4: NO), the transmitter 10 returns to step S4.
  • step S4 If the restoration signal has been received (step S4: YES), the transmitter 10 resumes the transmission of the horizontally polarized signal and shifts to CO-CH transmission (step S5). After step S5, the transmitter 10 returns to step S2.
  • FIG. 9 is a flowchart showing the operation of the receiver 20. This operation starts when a horizontal polarization signal and a vertical polarization signal carrying an Ethernet signal are received from the transmitter 10.
  • the receiver 20 monitors the reception quality of the horizontally polarized signal (step T1).
  • the receiver 20 determines whether or not the reception quality of the horizontally polarized signal is less than the threshold value. In the present embodiment, the receiver 20 determines that the reception quality of the horizontal polarization signal has become less than the threshold when detecting the communication disconnection of the line on the horizontal polarization side (step T2). If the reception quality is not less than the threshold (step T2: NO), the receiver 20 returns to step T1.
  • step T3 When the reception quality is less than the threshold (step T2: YES), the receiver 20 transmits an alarm signal to the transmitter 10 (step T3).
  • the receiver 20 measures the received electric field level of the vertically polarized signal after transmitting the alarm signal (step T4).
  • the receiver 20 estimates the reception quality of the horizontal polarization signal when the transmission of the horizontal polarization signal is resumed from the received electric field level, and determines whether or not the reception quality is equal to or higher than the threshold (step T5). . If the estimated reception quality does not exceed the threshold value, the receiver 20 returns to Step T4.
  • the receiver 20 transmits an alarm signal to the transmitter 10 (step T6). After step T6, the receiver 20 returns to step T1.
  • the reception quality of the horizontally polarized signal is more affected by the rainfall intensity than the vertically polarized signal. For this reason, the transmitter 10 has stopped transmission of a horizontally polarized signal, assuming rain.
  • the influence of the reception quality of the vertically polarized signal may be larger than that of the horizontally polarized signal.
  • the reception quality of a vertically polarized signal may be lower than that of a horizontally polarized signal due to a failure of an antenna element that transmits the vertically polarized signal.
  • the transmitter 10 may be configured to stop transmission of the vertical polarization signal according to the reception quality of the vertical polarization signal.
  • the configuration that stops the vertically polarized signal is also possible because the reception quality of the horizontally polarized signal is not always lower than that of the vertically polarized signal when the reception quality decreases for reasons other than rainfall. It is. For example, it is conceivable that an antenna element that transmits a vertically polarized signal breaks down, and the reception quality of the vertically polarized signal is lower than the reception quality of the horizontally polarized signal.
  • the transmitter 10 is automatically restored when the reception quality is recovered after the transmission of the horizontally polarized signal is stopped, but the transmitter 10 does not perform autonomous recovery. Also good. For example, as described above, when it is assumed that the reception quality is deteriorated due to a failure, it is possible to restore the CO-CH transmission by the user's operation after the repair is completed.
  • the receiver 20 determines whether or not the reception quality of the horizontally polarized signal is less than the threshold value based on whether or not the communication is disconnected. However, the receiver 20 may determine whether or not the reception quality of the horizontally polarized signal is less than a threshold value by monitoring events and parameters other than the presence or absence of communication disconnection. For example, the receiver 20 may measure the BER and system failure rate of the line corresponding to the horizontally polarized signal, or measure the received electric field level of the horizontally polarized signal.
  • the receiver 20 estimates the reception quality of the horizontal polarization signal from the reception electric field level of the vertical polarization signal.
  • the receiver 20 may determine whether or not the reception quality of the horizontal polarization signal is equal to or higher than the threshold value from other parameters as long as the reception quality of the horizontal polarization signal can be estimated. For example, the BER or system failure rate of a line corresponding to a vertically polarized signal may be used.
  • a high XPD antenna or XPIC is not provided, but a high XPD antenna or XPIC may be provided in order to further improve reception quality.
  • the communication quality of the wireless communication system 1 is improved as compared with the system that does not stop the transmission of the horizontally polarized signal. For this reason, even in the case where both the High XPD antenna and the XPIC must be provided in a system that does not stop the transmission of the horizontally polarized signal to achieve the desired communication quality, Often, only one of them is required, and costs are often reduced.
  • the vertical polarization signal of the present embodiment corresponds to the first polarization signal of the present invention
  • the horizontal polarization signal of the present embodiment corresponds to the second polarization signal of the present invention.
  • the transmitter stops transmitting the second polarization signal. Interference between the wave signal and the second polarization signal is eliminated, and the communication quality of the first polarization signal is improved. It is not necessary to provide an antenna with a high degree of orthogonal polarization discrimination or a cross polarization interference canceller. Although it is necessary to provide a circuit and software for controlling transmission and stop of a polarization signal, it is less expensive than providing an antenna with high orthogonal polarization discrimination and a cross polarization interference canceller. For this reason, communication quality can be improved at low cost.
  • the transmitter 10 resumes the transmission of the horizontally polarized signal according to the restoration signal, so that the radio communication system 1 autonomously restores the CO-CH transmission.
  • throughput can be improved.
  • the horizontal polarization signal is more attenuated by rainfall than the vertical polarization signal. For this reason, if it is assumed that communication quality deteriorates due to rain, communication is less affected by stopping transmission of a horizontally polarized signal instead of a vertically polarized signal.
  • the receiver 20 determines whether or not the reception quality is less than the threshold depending on whether or not the communication is disconnected, there is no need to provide a configuration for measuring the reception quality, and the reception quality can be improved with a simple configuration. Can improve.
  • the receiver 20 measures the received electric field level of the vertically polarized signal after transmitting the alarm signal. At this time, the transmission of the horizontal polarization signal is stopped, but as shown in FIG. 6, the reception quality of the vertical polarization signal at the time of single transmission and the reception of the horizontal polarization signal at the time of CO-CH transmission. There is a correlation with quality. Therefore, the receiver 20 can estimate the reception quality when the transmission is resumed while the transmission of the horizontal polarization signal is stopped by measuring the reception electric field level of the vertical polarization signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

Provided is a co-channel wireless communication system that improves reception quality at low cost. The provided wireless communication system has a transmitter and a receiver. The transmitter transmits a first polarized signal and a second polarized signal to the receiver, and in accordance with an instruction from the receiver, halts transmission of the second polarized signal. The receiver receives the polarized signals from the transmitter, determines whether or not the reception quality of the second polarized signal is below a threshold, and if so, instructs the transmitter to halt transmission of the second polarized signal.

Description

無線通信システムおよび制御方法Wireless communication system and control method
 本発明は、同一周波数無線通信システムおよび制御方法に関する。 The present invention relates to a same frequency radio communication system and a control method.
 特許文献1、2には、同じ周波数の垂直偏波および水平偏波を利用して無線通信を行う、同一周波数(CO-CH: Co-Channel)無線通信システムが記載されている。この無線通信システムは、垂直偏波と水平偏波に対応する2回線を通信に利用できる。そのため、垂直偏波および水平偏波のうち、いずれかを単独で伝送する場合よりもスループットが向上する。 Patent Documents 1 and 2 describe the same frequency (CO-CH: Co-Channel) wireless communication system that performs wireless communication using vertical polarization and horizontal polarization of the same frequency. This wireless communication system can use two lines corresponding to vertical polarization and horizontal polarization for communication. Therefore, the throughput is improved as compared with the case where either one of vertical polarization and horizontal polarization is transmitted alone.
 ところが、CO-CH伝送システムでは、垂直偏波と水平偏波との間に相互干渉が生じ、この偏波間の相互干渉によりCO-CH伝送システムの通信品質が低下することがあった。また、CO-CH伝送システムでは天候不良などの要因により水平偏波および垂直偏波が減衰し、その結果として通信品質がかえって低下することがあった。 However, in the CO-CH transmission system, mutual interference occurs between the vertical polarization and the horizontal polarization, and the communication quality of the CO-CH transmission system may deteriorate due to the mutual interference between the polarizations. Further, in the CO-CH transmission system, the horizontal polarization and the vertical polarization are attenuated due to factors such as bad weather, and as a result, the communication quality may be deteriorated.
 図1に、一般的なCO-CH伝送システムの構成の一例を示す。 FIG. 1 shows an example of the configuration of a general CO-CH transmission system.
 このようなCO-CH伝送システムにおいて、直交偏波識別度(XPD: Cross Polarization Discrimination)の高いアンテナを用いたり、図1に示すように、受信側に交差偏波干渉除去器(XPIC: Cross Polarization Interference Canceller)2041、2051を設けたりすれば、偏波間の相互干渉による通信品質の低下を防ぐことができる。 In such a CO-CH transmission system, an antenna with high cross polarization discrimination (XPD: Cross Polarization Discrimination) is used, or as shown in FIG. 1, a cross polarization interference canceller (XPIC: Cross Polarization) is installed on the receiving side. If the interference cancellers 2041 and 2051 are provided, it is possible to prevent deterioration in communication quality due to mutual interference between polarized waves.
特開2005-72739号公報JP 2005-72739 A 特開2007-214780号公報JP 2007-214780 A
 しかしながら、直交偏波識別度の高いアンテナは、通常のアンテナに比べて高価である。また、交差偏波干渉除去器を設けると、その分だけコストが向上する。 However, an antenna with high orthogonal polarization discrimination is more expensive than a normal antenna. If a cross polarization interference canceller is provided, the cost is increased accordingly.
 このため、CO―CH無線通信システムにおいて、低コストで通信品質を向上するのが困難であるという問題があった。 For this reason, in the CO-CH wireless communication system, there is a problem that it is difficult to improve communication quality at low cost.
 本発明は、CO-CH無線通信システムにおいて、低コストで、受信品質を向上する技術を提供することを目的とする。 An object of the present invention is to provide a technique for improving reception quality at a low cost in a CO-CH wireless communication system.
 上記目的を達成するために、本発明の無線通信システムは、第1の偏波信号及び第2の偏波信号を受信機へ送信し、該受信機の指示に従って、該第2の偏波信号の送信を停止する送信機と、前記送信機から前記第1の偏波信号及び前記第2の偏波信号を受信し、該第2の偏波信号の受信品質が閾値未満になったか否かを判断し、該受信品質が該閾値未満になったのであれば、該送信機に対して該第2の偏波信号の停止を指示する受信機と、を有する。 In order to achieve the above object, the wireless communication system of the present invention transmits a first polarization signal and a second polarization signal to a receiver, and the second polarization signal according to an instruction of the receiver. A transmitter that stops transmission of the first polarization signal and the second polarization signal from the transmitter, and whether or not the reception quality of the second polarization signal is less than a threshold value And if the reception quality is less than the threshold value, a receiver that instructs the transmitter to stop the second polarization signal.
 本発明の送信機は、第1の偏波信号及び第2の偏波信号を受信機へ送信する送信手段と、前記受信機の指示を受信する受信手段と、前記受信手段により受信された前記指示に従って、前記送信手段に前記第2の偏波信号の送信を停止させる切替手段と、を有する。 The transmitter of the present invention includes a transmission means for transmitting the first polarization signal and the second polarization signal to a receiver, a reception means for receiving an instruction from the receiver, and the reception means received by the reception means. Switching means for causing the transmission means to stop transmission of the second polarization signal in accordance with an instruction.
 本発明の送信機は、前記送信機から第1の偏波信号及び第2の偏波信号を受信する受信手段と、前記受信手段により受信された前記第2の偏波信号の受信品質が閾値未満になったか否かを判断する判断手段と、前記判断手段により前記受信品質が前記閾値未満になったと判断されたのであれば、該送信機に対して該第2の偏波信号の停止を指示する指示手段と、を有する。 The transmitter of the present invention includes a receiving means for receiving the first polarization signal and the second polarization signal from the transmitter, and the reception quality of the second polarization signal received by the receiving means is a threshold value. And determining means for determining whether or not the second polarization signal is less than the threshold by the determining means, and stopping the second polarization signal to the transmitter. Instruction means for instructing.
 本発明の無線通信システムの制御方法は、送信機が、第1の偏波信号及び第2の偏波信号を受信機へ送信し、前記受信機が、前記送信機から前記第1の偏波信号及び前記第2の偏波信号を受信し、前記第2の偏波信号の受信品質が閾値未満になったか否かを判断し、該受信品質が該閾値未満になったのであれば、該送信機に対して該第2の偏波信号の停止を指示し、前記送信機は、前記受信機の指示に従って、前記第2の偏波信号の送信を停止する、無線通信システムの制御方法である。 In the control method of the wireless communication system of the present invention, the transmitter transmits the first polarization signal and the second polarization signal to the receiver, and the receiver transmits the first polarization signal from the transmitter. A signal and the second polarization signal, determine whether or not the reception quality of the second polarization signal is less than a threshold, and if the reception quality is less than the threshold, A control method for a wireless communication system, instructing a transmitter to stop the second polarization signal, wherein the transmitter stops transmission of the second polarization signal in accordance with an instruction from the receiver. is there.
 本発明によれば、第2の偏波信号の受信品質が閾値未満となったとき、送信機が第2の偏波信号の送信を停止するので、第1の偏波信号、および第2の偏波信号の間の干渉がなくなり、第1の偏波信号の通信品質が向上する。そして、直交偏波識別度の高いアンテナや交差偏波干渉除去器を設ける必要はないので、低コストで通信品質の向上を実現できる。 According to the present invention, when the reception quality of the second polarization signal becomes less than the threshold value, the transmitter stops transmitting the second polarization signal, so the first polarization signal and the second polarization signal Interference between the polarization signals is eliminated, and the communication quality of the first polarization signal is improved. Since there is no need to provide an antenna with a high degree of orthogonal polarization discrimination or a cross polarization interference canceller, communication quality can be improved at low cost.
一般的な無線通信システムの全体図の一例である。1 is an example of an overall view of a general wireless communication system. 本発明の実施形態の無線通信システムの全体図の一例である。It is an example of the whole figure of the radio | wireless communications system of embodiment of this invention. 本発明の送信機の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the transmitter of this invention. 本発明の受信機の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the receiver of this invention. マイクロ波の減衰量と降雨強度との間の関係を示す図である。It is a figure which shows the relationship between the attenuation of a microwave, and rainfall intensity. マイクロ波の受信品質と降雨強度との間の関係を示す図である。It is a figure which shows the relationship between the reception quality of a microwave, and rainfall intensity. (a)本発明の実施形態における、受信品質と降雨強度との間の関係を示す図である。(b)一般的なシステムにおけるスループットと降雨強度との間の関係を示す図である。(c)本発明の実施形態における、スループットと降雨強度との間の関係を示す図である。(A) It is a figure which shows the relationship between reception quality and rainfall intensity in embodiment of this invention. (B) It is a figure which shows the relationship between the throughput and rainfall intensity in a general system. (C) It is a figure which shows the relationship between a throughput and rainfall intensity in embodiment of this invention. 本発明の実施形態の送信機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the transmitter of embodiment of this invention. 本発明の実施形態の受信機の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the receiver of embodiment of this invention.
 本発明を実施するための実施形態について図面を参照して説明する。図2は、本実施形態の無線通信システム1の全体図の一例である。無線通信システム1は、データ信号を、水平偏波のマイクロ波と、垂直偏波のマイクロ波とに乗せて、2回線で送受信する無線通信システムである。但し、本実施形態では、無線通信システム1は、リンクアグリゲーション技術を用いて、この2回線を束ね、論理的に1本の回線として使用している。 Embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 2 is an example of an overall view of the wireless communication system 1 of the present embodiment. The wireless communication system 1 is a wireless communication system that transmits and receives data signals over two lines by placing them on a horizontally polarized microwave and a vertically polarized microwave. However, in the present embodiment, the wireless communication system 1 uses the link aggregation technology to bundle these two lines and use them logically as one line.
 本実施形態では、水平偏波、垂直偏波のそれぞれには、送受信するデータ信号が重畳されているので、以下、水平偏波、垂直偏波のそれぞれのマイクロ波を垂直偏波信号、水平偏波信号と称する。マイクロ波に乗せるデータ信号は、例えば、イーサネット(登録商標)信号である。 In the present embodiment, since the data signal to be transmitted / received is superimposed on each of the horizontally polarized wave and the vertically polarized wave, hereinafter, the microwaves of the horizontally polarized wave and the vertically polarized wave are respectively referred to as the vertically polarized wave signal and the horizontally polarized wave. This is called a wave signal. The data signal put on the microwave is, for example, an Ethernet (registered trademark) signal.
 図2を参照すると、無線通信システム1は、送信機10、および受信機20を有する。送信機10は、データ信号を受信機20へ送信し、受信機20は、送信機10からのデータ信号を受信する。また、受信機20は、制御信号を送信機10へ送信し、送信機10は、受信機20からの制御信号を受信する。本実施形態で送受信される制御信号には、警報信号、および復旧信号がある。 Referring to FIG. 2, the wireless communication system 1 includes a transmitter 10 and a receiver 20. The transmitter 10 transmits a data signal to the receiver 20, and the receiver 20 receives the data signal from the transmitter 10. Further, the receiver 20 transmits a control signal to the transmitter 10, and the transmitter 10 receives the control signal from the receiver 20. Control signals transmitted and received in this embodiment include an alarm signal and a recovery signal.
 ここで、警報信号は、受信機20が送信機10に対して、水平偏波信号の送信の停止を指示する制御信号である。復旧信号は、受信機20が送信機10に対して、停止された水平偏波信号の送信の再開を指示する制御信号である。これらのデータ信号、警報信号、および復旧信号は、無線で送受信される。 Here, the alarm signal is a control signal for the receiver 20 to instruct the transmitter 10 to stop the transmission of the horizontally polarized signal. The recovery signal is a control signal for instructing the transmitter 10 to resume transmission of the stopped horizontal polarization signal to the transmitter 10. These data signals, alarm signals, and recovery signals are transmitted and received wirelessly.
 送信機10は送信回路および受信回路を有しているが、図2ではイーサネット信号を送信する送信回路の構成のみを示し、受信回路を省略している。また、受信機20は送信回路および受信回路を有しているが、図2では、イーサネット信号を受信する受信回路の構成のみを示し、送信回路を省略している。 The transmitter 10 has a transmission circuit and a reception circuit, but FIG. 2 shows only the configuration of the transmission circuit that transmits the Ethernet signal, and the reception circuit is omitted. The receiver 20 includes a transmission circuit and a reception circuit, but FIG. 2 shows only the configuration of the reception circuit that receives an Ethernet signal, and omits the transmission circuit.
 まず、送信機10の構成について説明する。送信機10は、リンク・アグリゲーション部101、DPU/MOD(Data Processing Unit/Modulator)102、DPU/MOD103、TX104、TX105、切替部106、およびアンテナ107を有する。アンテナ107は、垂直偏波信号を送信するためのアンテナ素子107Vと、水平偏波信号を送信するためのアンテナ素子107Hとを有する。 First, the configuration of the transmitter 10 will be described. The transmitter 10 includes a link aggregation unit 101, a DPU / MOD (Data Processing Unit / Modulator) 102, a DPU / MOD 103, TX 104, TX 105, a switching unit 106, and an antenna 107. The antenna 107 has an antenna element 107V for transmitting a vertically polarized signal and an antenna element 107H for transmitting a horizontally polarized signal.
 リンク・アグリゲーション部101には、イーサネット信号が入力される。リンク・アグリゲーション部101は、入力されたイーサネット信号を、信号スループットが所望の伝送容量になるように2分割し、それぞれDPU/MOD102、およびDPU/MOD103へ出力する。 The link aggregation unit 101 receives an Ethernet signal. The link aggregation unit 101 divides the input Ethernet signal into two so that the signal throughput has a desired transmission capacity, and outputs the divided signal to the DPU / MOD 102 and the DPU / MOD 103, respectively.
 DPU/MOD102は、リンク・アグリゲーション部101からのイーサネット信号をパケット単位で分割し、生成したパケットデータを搬送波に乗せてTX104へ出力する。DPU/MOD103は、リンク・アグリゲーション部101からのイーサネット信号をパケット単位で分割し、生成したパケットデータを搬送波に乗せてTX105へ出力する。 The DPU / MOD 102 divides the Ethernet signal from the link aggregation unit 101 in units of packets, puts the generated packet data on a carrier wave, and outputs it to the TX 104. The DPU / MOD 103 divides the Ethernet signal from the link aggregation unit 101 in units of packets, places the generated packet data on a carrier wave, and outputs it to the TX 105.
 TX104は、DPU/MOD102によりイーサネット信号が重畳された電気信号を受信して増幅し、アンテナ素子107Vへ出力する。TX105は、DPU/MOD102によりイーサネット信号が重畳された電気信号を受信して増幅し、切替部106を介して、アンテナ素子107Hへ出力する。 The TX 104 receives and amplifies the electric signal on which the Ethernet signal is superimposed by the DPU / MOD 102, and outputs it to the antenna element 107V. The TX 105 receives and amplifies the electrical signal on which the Ethernet signal is superimposed by the DPU / MOD 102, and outputs it to the antenna element 107H via the switching unit 106.
 切替部106は、受信回路(不図示)を介して受信機20から制御信号を受信し、その制御信号に応じて、ON/OFFの状態を切り替える。ONである場合、切替部106は、DPU/MOD103からの電気信号をアンテナ107へ出力し、OFFである場合、その電気信号を出力しない。 The switching unit 106 receives a control signal from the receiver 20 via a receiving circuit (not shown), and switches the ON / OFF state according to the control signal. When it is ON, the switching unit 106 outputs an electrical signal from the DPU / MOD 103 to the antenna 107, and when it is OFF, the switching unit 106 does not output the electrical signal.
 初期状態において、切替部106はON状態であり、受信機20から警報信号を受信したとき、OFF状態に移行する。そして、受信機20から復旧信号を受信したとき、切替部106はON状態に移行する。 In the initial state, the switching unit 106 is in an ON state, and when an alarm signal is received from the receiver 20, it shifts to an OFF state. When the restoration signal is received from the receiver 20, the switching unit 106 shifts to the ON state.
 アンテナ素子107Vは、TX104からの電気信号を垂直偏波信号に変換して出力し、アンテナ素子107Hは、TX105からの電気信号を水平偏波信号に変換して出力する。 The antenna element 107V converts the electrical signal from the TX 104 into a vertically polarized signal and outputs it, and the antenna element 107H converts the electrical signal from the TX 105 into a horizontally polarized signal and outputs it.
 次に、受信機20の構成について説明する。受信機20は、アンテナ201、RX202、RX203、DEM(Demodulator)/DPU204、DEM/DPU205、およびリンク・アグリゲーション部206を有する。アンテナ201は、垂直偏波信号を受信するためのアンテナ素子201Vと、水平偏波信号を受信するためのアンテナ素子201Hとを有する。 Next, the configuration of the receiver 20 will be described. The receiver 20 includes an antenna 201, RX 202, RX 203, DEM (Demodulator) / DPU 204, DEM / DPU 205, and a link aggregation unit 206. The antenna 201 has an antenna element 201V for receiving a vertically polarized signal and an antenna element 201H for receiving a horizontally polarized signal.
 アンテナ素子201Vは、垂直偏波信号を受信し、その垂直偏波信号を電気信号に変換してRX202へ出力する。アンテナ素子201Hは、水平偏波信号を受信し、その水平偏波信号を電気信号に変換してRX203へ出力する。 The antenna element 201V receives the vertically polarized signal, converts the vertically polarized signal into an electrical signal, and outputs the electrical signal to the RX 202. The antenna element 201H receives the horizontally polarized signal, converts the horizontally polarized signal into an electrical signal, and outputs the electrical signal to the RX 203.
 RX202は、アンテナ素子201Vからの電気信号を増幅し、DEM/DPU204へ出力する。RX203は、アンテナ素子201Hからの電気信号を増幅し、DEM/DPU205へ出力する。 RX 202 amplifies an electric signal from antenna element 201V and outputs the amplified signal to DEM / DPU 204. The RX 203 amplifies the electrical signal from the antenna element 201H and outputs it to the DEM / DPU 205.
 また、RX202は、アンテナ素子201Hからの電気信号のレベル、すなわち、垂直偏波信号の受信電界レベルを測定する。そして、RX202は、水平偏波信号の送信を再開した場合における、水平偏波信号の受信品質を、測定した受信電界レベルから推定する。 The RX 202 measures the level of the electric signal from the antenna element 201H, that is, the reception electric field level of the vertically polarized signal. RX 202 estimates the reception quality of the horizontally polarized signal when the transmission of the horizontally polarized signal is restarted from the measured received electric field level.
 ここで、受信品質は、例えば、システム故障率(System Outrage)、やBER(Bit Error Rate)である。 Here, the reception quality is, for example, a system failure rate (System Outrage) or a BER (Bit Error Rate).
 受信品質が閾値以上になるのであれば、RX202は、送信回路(不図示)を介して、復旧信号を送信機10へ送信する。 If the reception quality is equal to or higher than the threshold value, the RX 202 transmits a recovery signal to the transmitter 10 via a transmission circuit (not shown).
 DEM/DPU204は、RX202により出力された電気信号からイーサネット信号を取り出し、リンク・アグリゲーション部206へ出力する。 The DEM / DPU 204 extracts an Ethernet signal from the electrical signal output by the RX 202 and outputs the Ethernet signal to the link aggregation unit 206.
 また、DEM/DPU204は、RX203からの電気信号を監視し、水平偏波信号の受信品質が閾値未満に低下したか否かを判断する。本実施形態では、RX202からの電気信号を利用した通信が切断されたとき、DEM/DPU204は、水平偏波信号の受信品質が閾値未満になったと判断してもよい。 Also, the DEM / DPU 204 monitors the electrical signal from the RX 203 and determines whether or not the reception quality of the horizontally polarized signal has decreased below the threshold value. In the present embodiment, when the communication using the electrical signal from the RX 202 is disconnected, the DEM / DPU 204 may determine that the reception quality of the horizontally polarized signal is less than the threshold value.
 そして、DEM/DPU204は、水平偏波信号の受信品質が閾値未満であれば、送信回路(不図示)を介して警報信号を送信機10へ送信する。 The DEM / DPU 204 transmits an alarm signal to the transmitter 10 via a transmission circuit (not shown) if the reception quality of the horizontally polarized signal is less than the threshold value.
 DEM/DPU205は、RX203により出力された電気信号からイーサネット信号を取り出し、リンク・アグリゲーション部206へ出力する。 The DEM / DPU 205 extracts an Ethernet signal from the electrical signal output by the RX 203 and outputs the Ethernet signal to the link aggregation unit 206.
 リンク・アグリゲーション部206は、DEM/DPU204、およびDEM/DPU204からの2回線分のイーサネット信号を論理的に束ねて、1回線のイーサネット信号として出力する。 The link aggregation unit 206 logically bundles two lines of Ethernet signals from the DEM / DPU 204 and the DEM / DPU 204 and outputs them as one line of Ethernet signals.
 図3は、送信機10の一構成例を示すブロック図である。同図を参照すると、送信機10は、データ信号送信部111、制御信号受信部112、および切替部113を有する。 FIG. 3 is a block diagram illustrating a configuration example of the transmitter 10. Referring to the figure, the transmitter 10 includes a data signal transmission unit 111, a control signal reception unit 112, and a switching unit 113.
 図2における、リンク・アグリゲーション部101、DPU/MOD102、DPU/MOD103、TX104、TX105、およびアンテナ107が、図3における、データ信号送信部111に相当する。また、図2において省略された受信回路が、図3における制御信号受信部112に相当する。図2における切替部106が、図3における切替部113に相当する。 2, the link aggregation unit 101, the DPU / MOD 102, the DPU / MOD 103, the TX 104, the TX 105, and the antenna 107 correspond to the data signal transmission unit 111 in FIG. Also, the receiving circuit omitted in FIG. 2 corresponds to the control signal receiving unit 112 in FIG. The switching unit 106 in FIG. 2 corresponds to the switching unit 113 in FIG.
 データ信号送信部111は、データ信号であるイーサネット信号を、水平偏波信号、および垂直偏波信号に乗せて受信機20へ送信する。また、データ信号送信部111は、切替部113の制御に従って、水平偏波信号の送信を停止したり、再開したりする。 The data signal transmission unit 111 transmits the Ethernet signal, which is a data signal, to the receiver 20 on the horizontal polarization signal and the vertical polarization signal. Further, the data signal transmission unit 111 stops or restarts transmission of the horizontally polarized signal according to the control of the switching unit 113.
 制御信号受信部112は、受信機20から、制御信号である警報信号、または復旧信号を受信する。 The control signal receiving unit 112 receives an alarm signal or a recovery signal that is a control signal from the receiver 20.
 切替部113は、制御信号受信部112が警報信号を受信した場合、データ信号送信部111に、水平偏波信号の送信を停止させる。そして、切替部113は、制御信号受信部112が復旧信号を受信した場合、データ信号送信部111に、水平偏波信号の送信を再開させる。 When the control signal receiving unit 112 receives an alarm signal, the switching unit 113 causes the data signal transmitting unit 111 to stop transmitting the horizontally polarized signal. Then, when the control signal receiving unit 112 receives the restoration signal, the switching unit 113 causes the data signal transmission unit 111 to resume transmission of the horizontal polarization signal.
 図4は、受信機20の一構成例を示すブロック図である。同図を参照すると、受信機20は、データ信号受信部211、監視部212、および制御信号送信部213を有する。 FIG. 4 is a block diagram illustrating a configuration example of the receiver 20. Referring to the figure, the receiver 20 includes a data signal receiving unit 211, a monitoring unit 212, and a control signal transmitting unit 213.
 図2における、アンテナ201、RX202、RX203、DEM/DPU204、DEM/DPU205、およびリンク・アグリゲーション部206が、図4における、データ信号受信部211に相当する。図4の監視部212の機能を実現する回路が、図2における、RX202の一部と、DEM/DPU205の一部とに設けられている。RX202、およびDEM/DPU205から、監視部212に相当する回路を除いた構成と、図2におけるアンテナ201、RX203およびDEM/DPU204とが図4におけるデータ信号受信部211に相当する。図2における、RX202、およびDEM/DPU205が、図4における監視部212に相当する。図2において省略された受信回路が、図4における制御信号送信部213に相当する。 The antenna 201, RX 202, RX 203, DEM / DPU 204, DEM / DPU 205, and link aggregation unit 206 in FIG. 2 correspond to the data signal reception unit 211 in FIG. A circuit that realizes the function of the monitoring unit 212 in FIG. 4 is provided in part of the RX 202 and part of the DEM / DPU 205 in FIG. The configuration obtained by removing the circuit corresponding to the monitoring unit 212 from the RX 202 and the DEM / DPU 205, and the antenna 201, RX 203, and DEM / DPU 204 in FIG. 2 correspond to the data signal receiving unit 211 in FIG. RX202 and DEM / DPU 205 in FIG. 2 correspond to the monitoring unit 212 in FIG. The reception circuit omitted in FIG. 2 corresponds to the control signal transmission unit 213 in FIG.
 データ信号受信部211は、データ信号であるイーサネット信号が重畳された水平偏波信号、および垂直偏波信号を、送信機10から受信する。 The data signal receiving unit 211 receives from the transmitter 10 a horizontally polarized signal and a vertically polarized signal on which the Ethernet signal, which is a data signal, is superimposed.
 監視部212は、水平偏波信号の受信品質を監視する。警報信号送信前においては、監視部212は、水平偏波信号を利用した通信の切断の有無により、水平偏波信号の受信品質が閾値未満となったか否かを判断する。警報信号送信後においては、監視部212は、垂直偏波信号の受信電界レベルから水平偏波信号の受信品質を推定し、その受信品質が閾値以上になったか否かを判断する。 The monitoring unit 212 monitors the reception quality of the horizontally polarized signal. Before the alarm signal is transmitted, the monitoring unit 212 determines whether or not the reception quality of the horizontally polarized signal has become less than the threshold depending on whether or not communication using the horizontally polarized signal is disconnected. After transmitting the alarm signal, the monitoring unit 212 estimates the reception quality of the horizontal polarization signal from the reception electric field level of the vertical polarization signal, and determines whether or not the reception quality is equal to or higher than the threshold value.
 制御信号送信部213は、監視部212により、水平偏波信号の受信品質が閾値未満になったと判断されたとき、制御信号である警報信号を送信機10へ送信する。そして、制御信号送信部213は、監視部212により、水平偏波信号の受信品質が閾値以上になったと判断されたとき、制御信号である復旧信号を送信機10へ送信する。 The control signal transmission unit 213 transmits an alarm signal, which is a control signal, to the transmitter 10 when the monitoring unit 212 determines that the reception quality of the horizontally polarized signal is less than the threshold value. The control signal transmission unit 213 transmits a recovery signal, which is a control signal, to the transmitter 10 when the monitoring unit 212 determines that the reception quality of the horizontally polarized signal is equal to or higher than the threshold value.
 続いて、図5~図7を参照して、水平偏波信号の受信品質に応じて、送信側が、水平偏波信号の送信を停止する効果について説明する。 Subsequently, the effect of the transmission side stopping the transmission of the horizontally polarized signal according to the reception quality of the horizontally polarized signal will be described with reference to FIGS.
 図5は、水平偏波信号、垂直偏波信号の減衰量と、降雨強度との間の関係を示す図である。同図における縦軸は、水平偏波信号、垂直偏波信号のそれぞれの減衰量(dB)であり、横軸は降雨強度(mm/h)である。実線Hは、水平偏波信号の特性を示し、破線Vは、垂直偏波信号の特性を示している。 FIG. 5 is a diagram showing the relationship between the amount of attenuation of the horizontally polarized signal and the vertically polarized signal and the rainfall intensity. In the figure, the vertical axis represents the attenuation (dB) of each of the horizontal polarization signal and the vertical polarization signal, and the horizontal axis represents the rainfall intensity (mm / h). A solid line H indicates the characteristics of the horizontally polarized signal, and a broken line V indicates the characteristics of the vertically polarized signal.
 図5に示すように、降雨強度が強くなるほど、水平偏波信号、垂直偏波信号の減衰量は大きくなる。そして、マイクロ波の降雨による減衰は、常にアンテナの水平偏波側が、垂直偏波側に比べて大きくなる。すなわち、マイクロ波通信において、降雨時の伝送品質は、同じ降雨強度において、通常、水平偏波側が垂直偏波側に比べて低い。 As shown in FIG. 5, the higher the rainfall intensity, the greater the attenuation of the horizontally polarized signal and the vertically polarized signal. The attenuation due to microwave rain always increases on the horizontal polarization side of the antenna compared to the vertical polarization side. That is, in microwave communication, the transmission quality during rainfall is usually lower on the horizontal polarization side than on the vertical polarization side at the same rainfall intensity.
 このため、天候により通信に影響が生じないように、水平偏波信号、垂直偏波信号のいずれかの送信を停止するのであれば、降雨の影響を受けやすい水平偏波信号の送信を停止することが望ましい。 For this reason, if the transmission of either the horizontally polarized signal or the vertically polarized signal is stopped so that the communication is not affected by the weather, the transmission of the horizontally polarized signal that is easily affected by rainfall is stopped. It is desirable.
 図6は、CO-CH伝送時、単独伝送時のそれぞれの受信品質と、降雨強度との間の関係を示す図である。同図における縦軸は、システム故障率やBERなどの伝送品質であり、横軸は降雨強度である。実線Vs、Hsは、単独伝送時における水平偏波信号、垂直偏波信号の特性を示し、波線Vc、Hcは、CO-CH伝送時における水平偏波信号、垂直偏波信号の特性を示している。矢印の長さは、水平偏波信号、垂直偏波信号の相互の干渉により、劣化した分の伝送品質の量を示している。太線は、水平偏波信号を利用した通信に切断が生じるときの、受信品質の閾値Thを示している。 FIG. 6 is a diagram showing the relationship between the reception quality and the rainfall intensity during CO-CH transmission and single transmission. In the figure, the vertical axis represents transmission quality such as system failure rate and BER, and the horizontal axis represents rainfall intensity. The solid lines Vs and Hs indicate the characteristics of the horizontal polarization signal and the vertical polarization signal during single transmission, and the wavy lines Vc and Hc indicate the characteristics of the horizontal polarization signal and the vertical polarization signal during CO-CH transmission. Yes. The length of the arrow indicates the amount of transmission quality that has deteriorated due to mutual interference between the horizontally polarized signal and the vertically polarized signal. The thick line indicates the threshold Th of the reception quality when the communication using the horizontally polarized signal is disconnected.
 図6に示すように、CO―CH伝送システムでは、水平偏波信号と、垂直偏波信号との間の干渉が伝送品質を劣化させる。 As shown in FIG. 6, in the CO-CH transmission system, interference between the horizontally polarized signal and the vertically polarized signal deteriorates the transmission quality.
 従って、通常のCO-CH伝送システムでは、この干渉分を軽減するため、High XPDアンテナや、XPICを設けることが必要となる。また、通常のCO-CH伝送システムにおいては、水平偏波信号が閾値(Th)未満となっても、水平偏波信号を出力し続けるので、依然として、垂直偏波信号は、この水平偏波信号からの干渉を受けてしまう。 Therefore, in an ordinary CO-CH transmission system, it is necessary to provide a high XPD antenna and an XPIC in order to reduce this interference. Further, in a normal CO-CH transmission system, even if the horizontal polarization signal becomes less than the threshold value (Th), the horizontal polarization signal is continuously output. Will receive interference.
 このため、水平偏波信号が閾値未満となったのであれば、送信側は、その水平偏波信号の送信を停止するのが望ましい。 For this reason, if the horizontally polarized signal becomes less than the threshold value, it is desirable that the transmission side stop transmitting the horizontally polarized signal.
 図7(a)は、本実施形態の無線通信システム1における、受信品質と降雨強度との間の関係を示す図である。同図(a)における縦軸は、システム故障率やBERなどの伝送品質であり、横軸は降雨強度である。実線Vc、Hcは、CO-CH伝送時における水平偏波信号、垂直偏波信号の特性を示し、実線Vsは、単独伝送時における垂直偏波信号の特性を示している。実線Hc上の「○」は、警報信号が出力される時点を示し、実線Vs上の「○」は、復旧信号が出力される時点を示している。太線は、水平偏波信号を利用した通信の切断が生じる、受信品質の閾値Thを示している。 FIG. 7A is a diagram showing a relationship between reception quality and rainfall intensity in the wireless communication system 1 of the present embodiment. In FIG. 6A, the vertical axis represents transmission quality such as system failure rate and BER, and the horizontal axis represents rainfall intensity. Solid lines Vc and Hc indicate the characteristics of the horizontal polarization signal and the vertical polarization signal at the time of CO-CH transmission, and solid lines Vs indicate the characteristics of the vertical polarization signal at the time of single transmission. “◯” on the solid line Hc indicates the time when the alarm signal is output, and “◯” on the solid line Vs indicates the time when the recovery signal is output. The thick line indicates the threshold Th of the reception quality at which the communication using the horizontally polarized signal is disconnected.
 図7(a)に示すように、雨が降っていない状態から、降雨強度が増加するにつれ、CO-CH伝送時における水平偏波信号、垂直偏波信号の受信品質は劣化してゆく。水平偏波信号の受信品質が、閾値未満となったとき、受信機20からの警報信号に応じて、送信機10は、水平偏波信号の送信を停止して単独伝送に移行する。 As shown in FIG. 7A, the reception quality of the horizontally polarized signal and the vertically polarized signal during CO-CH transmission deteriorates as the rainfall intensity increases from the state where it is not raining. When the reception quality of the horizontally polarized signal becomes less than the threshold, the transmitter 10 stops the transmission of the horizontally polarized signal and shifts to single transmission according to the alarm signal from the receiver 20.
 水平偏波信号の受信品質が、閾値未満となっても、依然としてCO-CH伝送を継続した場合について考える。この場合、垂直偏波信号は引き続き水平偏波信号の干渉を受けるため、図6で示したように、垂直偏波信号の伝送品質は、降雨強度の増大に伴い、劣化してゆく。 Suppose that CO-CH transmission is still continued even if the reception quality of the horizontally polarized signal is below the threshold. In this case, since the vertically polarized signal continues to receive interference from the horizontally polarized signal, the transmission quality of the vertically polarized signal deteriorates as the rainfall intensity increases, as shown in FIG.
 これに対して、上述したように、本実施形態の送信機10は、警報信号を受信したときに水平偏波信号の送出を停止している。このため、水平偏波信号による垂直偏波信号への干渉、すなわち漏れこみがなくなり、図7(a)の上向きの矢印で示すように、垂直偏波信号の受信品質が改善する。 On the other hand, as described above, the transmitter 10 according to the present embodiment stops the transmission of the horizontally polarized signal when the alarm signal is received. For this reason, the interference with the vertically polarized signal by the horizontally polarized signal, that is, leakage is eliminated, and the reception quality of the vertically polarized signal is improved as shown by the upward arrow in FIG.
 次に、降雨強度が弱くなって、水平偏波信号の送信を復旧させる場合を、図7(a)を参照して説明する。 Next, the case where the rainfall intensity becomes weak and the transmission of the horizontally polarized signal is restored will be described with reference to FIG.
 単独伝送に移行した後、受信機20は、垂直偏波信号の受信電界レベルから、水平偏波信号の送信を再開する場合における、水平偏波信号の受信品質を推定する。 After shifting to the single transmission, the receiver 20 estimates the reception quality of the horizontal polarization signal when the transmission of the horizontal polarization signal is resumed from the reception electric field level of the vertical polarization signal.
 水平偏波信号の受信品質が閾値未満となるような降雨強度における、単独伝送時の垂直偏波信号の受信電界レベルが所定値として予め登録されている。この受信電界レベル(所定値)よりも垂直偏波信号の受信電界レベルが上昇したとき、水平偏波信号の受信品質が閾値以上になると推定される。このとき、受信機20は、復旧信号を送信機10に送信する。送信機10は、その復旧信号に応じて、水平偏波信号の送信を再開する。なお、所定値は、通信が切断されるときの降雨強度における垂直偏波信号の受信電界レベルより大きな値である。 The reception electric field level of the vertical polarization signal at the time of single transmission in the rain intensity where the reception quality of the horizontal polarization signal is less than the threshold is registered in advance as a predetermined value. When the reception electric field level of the vertically polarized signal rises above this received electric field level (predetermined value), it is estimated that the reception quality of the horizontal polarization signal becomes equal to or higher than the threshold value. At this time, the receiver 20 transmits a recovery signal to the transmitter 10. The transmitter 10 resumes the transmission of the horizontally polarized signal according to the restoration signal. The predetermined value is a value larger than the received electric field level of the vertically polarized signal at the rainfall intensity when communication is disconnected.
 図7(b)は、CO-CH伝送から単独伝送へ移行しない無線通信システムにおける、スループットと降雨強度との間の関係を示す図である。図7(c)は、本実施形態の無線通信システム1における、スループットと降雨強度との間の関係を示す図である。同図(b)、(c)の横軸は、降雨強度である。 FIG. 7 (b) is a diagram showing a relationship between throughput and rainfall intensity in a wireless communication system that does not shift from CO-CH transmission to single transmission. FIG.7 (c) is a figure which shows the relationship between a throughput and rainfall intensity in the radio | wireless communications system 1 of this embodiment. The horizontal axis of (b) and (c) of FIG.
 図7(b)に示すように、降雨強度が、受信品質の閾値Thに対応する値となったとき、水平偏波を搬送波としてデータ信号を送受信する通信が切断されてしまう。このため、無線通信システム1において、水平偏波信号に対応する回線の分、スループットが低下する。更に降雨強度が高くなると、垂直偏波信号の受信品質も低下し、垂直偏波信号に対応する通信も切断されてしまう。 As shown in FIG. 7B, when the rainfall intensity reaches a value corresponding to the reception quality threshold Th, communication for transmitting and receiving data signals using the horizontally polarized wave as a carrier wave is cut off. For this reason, in the wireless communication system 1, the throughput is reduced by the amount of the line corresponding to the horizontally polarized signal. If the rainfall intensity further increases, the reception quality of the vertically polarized signal also decreases, and the communication corresponding to the vertically polarized signal is also disconnected.
 図7(c)に示すように、本実施形態の無線通信システム1では、降雨強度が受信品質の閾値に対応する値となったとき、水平偏波信号の送信停止により、図7(b)の場合と同様に、スループットが低下する。しかし、図7(a)に示したように、単独伝送に移行したことにより、偏波間の相互干渉がなくなり、垂直偏波信号の受信品質が向上している。このため、図7(b)の場合であれば、通信が切断されるような高さの降雨強度であっても、無線通信システム1は、通信を継続することができる。 As shown in FIG. 7C, in the wireless communication system 1 according to the present embodiment, when the rainfall intensity reaches a value corresponding to the reception quality threshold value, the transmission of the horizontally polarized signal is stopped, so that FIG. As in the case of, the throughput decreases. However, as shown in FIG. 7A, the shift to single transmission eliminates the mutual interference between the polarized waves, and the reception quality of the vertically polarized signal is improved. For this reason, in the case of FIG. 7B, the wireless communication system 1 can continue the communication even if the rainfall intensity is high enough to disconnect the communication.
 図8および図9を参照して、無線通信システム1の動作について説明する。図8は、送信機10の動作を示すフローチャートである。この動作は、受信機20へ送信するイーサネット信号が、送信機10に入力されたときに開始する。 The operation of the wireless communication system 1 will be described with reference to FIG. 8 and FIG. FIG. 8 is a flowchart showing the operation of the transmitter 10. This operation starts when an Ethernet signal to be transmitted to the receiver 20 is input to the transmitter 10.
 送信機10は、イーサネット信号を乗せた、水平偏波信号および垂直偏波信号を受信機20へ送信する(ステップS1)。 Transmitter 10 transmits a horizontally polarized signal and a vertically polarized signal on which an Ethernet signal is placed to receiver 20 (step S1).
 水平偏波信号および垂直偏波信号の送信中に、送信機10は、受信機20からの警報信号を受信したか否かを判断する(ステップS2)。警報信号を受信していなければ(ステップS2:NO)、送信機10は、ステップS2に戻る。 During transmission of the horizontal polarization signal and the vertical polarization signal, the transmitter 10 determines whether or not an alarm signal from the receiver 20 has been received (step S2). If the alarm signal has not been received (step S2: NO), the transmitter 10 returns to step S2.
 警報信号を受信したのであれば(ステップS2:YES)、送信機10は、水平偏波信号の送信を停止し、垂直偏波信号のみの単独伝送に移行する(ステップS3)。 If the alarm signal has been received (step S2: YES), the transmitter 10 stops the transmission of the horizontal polarization signal and shifts to the single transmission of only the vertical polarization signal (step S3).
 そして、送信機10は、垂直偏波信号のみの単独伝送中に受信機20からの復旧信号を受信したか否かを判断する(ステップS4)。復旧信号を受信していなければ(ステップS4:NO)、送信機10は、ステップS4に戻る。 Then, the transmitter 10 determines whether or not the restoration signal from the receiver 20 is received during the single transmission of only the vertically polarized signal (step S4). If the recovery signal has not been received (step S4: NO), the transmitter 10 returns to step S4.
 復旧信号を受信したのであれば(ステップS4:YES)、送信機10は、水平偏波信号の送信を再開し、CO-CH伝送に移行する(ステップS5)。ステップS5の後、送信機10は、ステップS2に戻る。 If the restoration signal has been received (step S4: YES), the transmitter 10 resumes the transmission of the horizontally polarized signal and shifts to CO-CH transmission (step S5). After step S5, the transmitter 10 returns to step S2.
 図9は、受信機20の動作を示すフローチャートである。この動作は、送信機10から、イーサネット信号を乗せた、水平偏波信号および垂直偏波信号を受信したときに開始する。 FIG. 9 is a flowchart showing the operation of the receiver 20. This operation starts when a horizontal polarization signal and a vertical polarization signal carrying an Ethernet signal are received from the transmitter 10.
 受信機20は、水平偏波信号の受信品質を監視する(ステップT1)。受信機20は、水平偏波信号の受信品質が閾値未満になったか否かを判断する。本実施形態では、受信機20は、水平偏波側の回線の通信断を検出したとき、水平偏波信号の受信品質が閾値未満になったと判断する(ステップT2)。受信品質が閾値未満になっていなければ(ステップT2:NO)、受信機20は、ステップT1に戻る。 The receiver 20 monitors the reception quality of the horizontally polarized signal (step T1). The receiver 20 determines whether or not the reception quality of the horizontally polarized signal is less than the threshold value. In the present embodiment, the receiver 20 determines that the reception quality of the horizontal polarization signal has become less than the threshold when detecting the communication disconnection of the line on the horizontal polarization side (step T2). If the reception quality is not less than the threshold (step T2: NO), the receiver 20 returns to step T1.
 受信品質が閾値未満になると(ステップT2:YES)、受信機20は、警報信号を送信機10へ送信する(ステップT3)。 When the reception quality is less than the threshold (step T2: YES), the receiver 20 transmits an alarm signal to the transmitter 10 (step T3).
 そして、受信機20は、警報信号の送信後に垂直偏波信号の受信電界レベルを測定する(ステップT4)。受信機20は、受信電界レベルから、水平偏波信号の送信を再開した場合の水平偏波信号の受信品質を推定し、その受信品質が閾値以上になるか否かを判断する(ステップT5)。推定した受信品質が閾値以上にならないのであれば、受信機20は、ステップT4に戻る。 Then, the receiver 20 measures the received electric field level of the vertically polarized signal after transmitting the alarm signal (step T4). The receiver 20 estimates the reception quality of the horizontal polarization signal when the transmission of the horizontal polarization signal is resumed from the received electric field level, and determines whether or not the reception quality is equal to or higher than the threshold (step T5). . If the estimated reception quality does not exceed the threshold value, the receiver 20 returns to Step T4.
 推定した受信品質が閾値以上であれば、受信機20は、警報信号を送信機10へ送信する(ステップT6)。ステップT6の後、受信機20は、ステップT1に戻る。 If the estimated reception quality is equal to or higher than the threshold value, the receiver 20 transmits an alarm signal to the transmitter 10 (step T6). After step T6, the receiver 20 returns to step T1.
 なお、上述したように、水平偏波信号の受信品質は、垂直偏波信号よりも、降雨強度から受ける影響が大きい。このため、降雨を想定して、送信機10は、水平偏波信号の送信を停止していた。 As described above, the reception quality of the horizontally polarized signal is more affected by the rainfall intensity than the vertically polarized signal. For this reason, the transmitter 10 has stopped transmission of a horizontally polarized signal, assuming rain.
 しかし、受信品質を劣化させる要因によっては、垂直偏波信号の受信品質の受ける影響が水平偏波信号よりも大きいものもある。例えば、垂直偏波信号を送信するアンテナ素子の故障により、垂直偏波信号の受信品質が水平偏波信号よりも低下することがある。このような、降雨以外の要因を想定する場合、送信機10は、垂直偏波信号の受信品質に応じて、その垂直偏波信号の送信を停止する構成としてもよい。 However, depending on the factors that degrade the reception quality, the influence of the reception quality of the vertically polarized signal may be larger than that of the horizontally polarized signal. For example, the reception quality of a vertically polarized signal may be lower than that of a horizontally polarized signal due to a failure of an antenna element that transmits the vertically polarized signal. When such factors other than rainfall are assumed, the transmitter 10 may be configured to stop transmission of the vertical polarization signal according to the reception quality of the vertical polarization signal.
 また、常に一方の信号を停止する構成でなく、水平偏波信号、垂直偏波信号の双方の受信品質を監視し、いずれかの信号の受信品質が閾値より低下したとき、その送信を停止する構成とすることも可能である。 Also, it is not a configuration that always stops one of the signals, but monitors the reception quality of both the horizontally polarized signal and the vertically polarized signal, and stops the transmission when the received quality of either signal falls below the threshold value. A configuration is also possible.
 垂直偏波信号を停止する構成も可能なのは、降雨以外の理由により、受信品質が低下する場合、水平偏波信号の方が、垂直偏波信号よりも、常に受信品質が低いとは限らないためである。例えば、垂直偏波信号を送信するアンテナ素子が故障して、垂直偏波信号の受信品質が、水平偏波信号の受信品質よりも低下することも考えられる。 The configuration that stops the vertically polarized signal is also possible because the reception quality of the horizontally polarized signal is not always lower than that of the vertically polarized signal when the reception quality decreases for reasons other than rainfall. It is. For example, it is conceivable that an antenna element that transmits a vertically polarized signal breaks down, and the reception quality of the vertically polarized signal is lower than the reception quality of the horizontally polarized signal.
 また、本実施形態では、水平偏波信号の送信を停止した後、受信品質が回復すると、送信機10が自動的に復旧しているが、送信機10が自律的な復旧を行わない構成としてもよい。例えば、前述したように、故障による受信品質の低下を想定している場合、修理が完了してから、利用者の操作により、CO-CH伝送に復旧する構成とすることもできる。 In the present embodiment, the transmitter 10 is automatically restored when the reception quality is recovered after the transmission of the horizontally polarized signal is stopped, but the transmitter 10 does not perform autonomous recovery. Also good. For example, as described above, when it is assumed that the reception quality is deteriorated due to a failure, it is possible to restore the CO-CH transmission by the user's operation after the repair is completed.
 本実施形態では、受信機20は、通信の切断の有無から、水平偏波信号の受信品質が閾値未満となったか否かを判断している。しかし、受信機20は、通信の切断の有無以外の事象やパラメータの監視により、水平偏波信号の受信品質が閾値未満となったか否かを判断してもよい。例えば、受信機20は、水平偏波信号に対応する回線のBERやシステム故障率を測定したり、水平偏波信号の受信電界レベルを測定したりしてもよい。 In the present embodiment, the receiver 20 determines whether or not the reception quality of the horizontally polarized signal is less than the threshold value based on whether or not the communication is disconnected. However, the receiver 20 may determine whether or not the reception quality of the horizontally polarized signal is less than a threshold value by monitoring events and parameters other than the presence or absence of communication disconnection. For example, the receiver 20 may measure the BER and system failure rate of the line corresponding to the horizontally polarized signal, or measure the received electric field level of the horizontally polarized signal.
 本実施形態では、受信機20は、垂直偏波信号の受信電界レベルから、水平偏波信号の受信品質を推定している。しかし、受信機20は、水平偏波信号の受信品質を推定できるパラメータであれば、他のパラメータから、水平偏波信号の受信品質が閾値以上になったか否かを判断してもよい。例えば、垂直偏波信号に対応する回線のBERやシステム故障率を利用してもよい。 In this embodiment, the receiver 20 estimates the reception quality of the horizontal polarization signal from the reception electric field level of the vertical polarization signal. However, the receiver 20 may determine whether or not the reception quality of the horizontal polarization signal is equal to or higher than the threshold value from other parameters as long as the reception quality of the horizontal polarization signal can be estimated. For example, the BER or system failure rate of a line corresponding to a vertically polarized signal may be used.
 更に、本実施形態では、High XPDアンテナや、XPICを設けない構成としているが、受信品質を更に向上させたい場合、High XPDアンテナ、またはXPICを設ける構成としてもよい。この場合であっても、上述したように、無線通信システム1の通信品質は、水平偏波信号の送信を停止しないシステムに比べて向上している。このため、所望の通信品質を実現するのに、水平偏波信号の送信を停止しないシステムでHigh XPDアンテナ、XPICの双方を設けなくてはならない場合であっても、無線通信システム1では、そのうちの一方のみですみ、コストが低減することが多い。 Furthermore, in the present embodiment, a high XPD antenna or XPIC is not provided, but a high XPD antenna or XPIC may be provided in order to further improve reception quality. Even in this case, as described above, the communication quality of the wireless communication system 1 is improved as compared with the system that does not stop the transmission of the horizontally polarized signal. For this reason, even in the case where both the High XPD antenna and the XPIC must be provided in a system that does not stop the transmission of the horizontally polarized signal to achieve the desired communication quality, Often, only one of them is required, and costs are often reduced.
 なお、本実施形態の垂直偏波信号が、本発明の第1の偏波信号に相当し、本実施形態の水平偏波信号が、本発明の第2の偏波信号に相当する。 Note that the vertical polarization signal of the present embodiment corresponds to the first polarization signal of the present invention, and the horizontal polarization signal of the present embodiment corresponds to the second polarization signal of the present invention.
 以上説明したように、本実施形態によれば、第2の偏波信号の受信品質が閾値未満となったとき、送信機が第2の偏波信号の送信を停止するので、第1の偏波信号、および第2の偏波信号の間の干渉がなくなり、第1の偏波信号の通信品質が向上する。そして、直交偏波識別度の高いアンテナや交差偏波干渉除去器を設ける必要はない。偏波信号の送信、停止を制御するための回路やソフトウェアを設ける必要があるものの、直交偏波識別度の高いアンテナや交差偏波干渉除去器を設けるよりは、コストはかからない。このため、低コストで通信品質の向上を実現できる。 As described above, according to the present embodiment, when the reception quality of the second polarization signal becomes less than the threshold value, the transmitter stops transmitting the second polarization signal. Interference between the wave signal and the second polarization signal is eliminated, and the communication quality of the first polarization signal is improved. It is not necessary to provide an antenna with a high degree of orthogonal polarization discrimination or a cross polarization interference canceller. Although it is necessary to provide a circuit and software for controlling transmission and stop of a polarization signal, it is less expensive than providing an antenna with high orthogonal polarization discrimination and a cross polarization interference canceller. For this reason, communication quality can be improved at low cost.
 また、受信品質が閾値以上になったとき、送信機10は、復旧信号に応じて、水平偏波信号の送信を再開するので、無線通信システム1は、自律的に、CO-CH伝送に復旧してスループットを向上させることができる。 Further, when the reception quality becomes equal to or higher than the threshold value, the transmitter 10 resumes the transmission of the horizontally polarized signal according to the restoration signal, so that the radio communication system 1 autonomously restores the CO-CH transmission. Thus, throughput can be improved.
 上述したように、水平偏波信号の方が垂直偏波信号よりも降雨による減衰が大きい。このため、降雨による通信品質の低下を想定するのであれば、垂直偏波信号でなく、水平偏波信号の送信を停止する方が通信に影響が生じにくい。 As described above, the horizontal polarization signal is more attenuated by rainfall than the vertical polarization signal. For this reason, if it is assumed that communication quality deteriorates due to rain, communication is less affected by stopping transmission of a horizontally polarized signal instead of a vertically polarized signal.
 受信機20は、通信の切断の有無により、受信品質が閾値未満となったか否かを判断しているので、受信品質を測定するための構成を設ける必要がなく、簡易な構成で受信品質を改善できる。 Since the receiver 20 determines whether or not the reception quality is less than the threshold depending on whether or not the communication is disconnected, there is no need to provide a configuration for measuring the reception quality, and the reception quality can be improved with a simple configuration. Can improve.
 受信機20は、警報信号送信後は、垂直偏波信号の受信電界レベルを測定している。この時点では、水平偏波信号の送信は停止されているが、図6に示したように、単独伝送時の垂直偏波信号の受信品質と、CO-CH伝送時の水平偏波信号の受信品質との間には相関関係がある。このため、受信機20は、垂直偏波信号の受信電界レベルを測定することにより、水平偏波信号の送信停止中において、その送信を再開した場合における受信品質を推定することができる。 The receiver 20 measures the received electric field level of the vertically polarized signal after transmitting the alarm signal. At this time, the transmission of the horizontal polarization signal is stopped, but as shown in FIG. 6, the reception quality of the vertical polarization signal at the time of single transmission and the reception of the horizontal polarization signal at the time of CO-CH transmission. There is a correlation with quality. Therefore, the receiver 20 can estimate the reception quality when the transmission is resumed while the transmission of the horizontal polarization signal is stopped by measuring the reception electric field level of the vertical polarization signal.
 この出願は、2009年10月27日に出願された日本出願特願2009-246520号公報を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-246520 filed on Oct. 27, 2009, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  第1の偏波信号及び第2の偏波信号を受信機へ送信し、該受信機の指示に従って、該第2の偏波信号の送信を停止する送信機と、
     前記送信機から前記偏波信号を受信し、該第2の偏波信号の受信品質が閾値未満になったか否かを判断し、該受信品質が該閾値未満になったのであれば、該送信機に対して該第2の偏波信号の停止を指示する受信機と、を有する無線通信システム。
    A transmitter for transmitting a first polarization signal and a second polarization signal to a receiver, and stopping transmission of the second polarization signal according to an instruction of the receiver;
    The polarization signal is received from the transmitter, it is determined whether the reception quality of the second polarization signal is less than a threshold, and if the reception quality is less than the threshold, the transmission A radio communication system comprising: a receiver instructing the apparatus to stop the second polarization signal.
  2.  前記受信機は、前記送信機に対して前記第2の偏波信号の停止を指示した後、該第2の偏波信号の送信を再開した場合における該第2の偏波信号の受信品質が前記閾値以上になったか否かを推定し、該受信品質が該閾値以上になったのであれば、該第2の偏波信号の送信再開を前記送信機に指示し、
     前記送信機は、前記第2の偏波信号の送信を停止した後、前記送信機により該第2の偏波信号の送信再開が指示されると、該第2の偏波信号の送信を再開する、請求項1に記載の無線通信システム。
    The reception quality of the second polarization signal when the receiver resumes transmission of the second polarization signal after instructing the transmitter to stop the second polarization signal Estimating whether or not the threshold value is exceeded, and if the reception quality is equal to or higher than the threshold value, instruct the transmitter to resume transmission of the second polarization signal,
    The transmitter resumes transmission of the second polarization signal when the transmitter is instructed to resume transmission of the second polarization signal after stopping transmission of the second polarization signal. The wireless communication system according to claim 1.
  3.  前記受信機は、前記第1の偏波信号の受信電界レベルを測定し、前記送信機に対して前記第2の偏波信号の停止を指示した後、該受信電界レベルが所定値以上となったとき、該第2の偏波信号の受信品質が閾値未満になったと判断する、請求項2に記載の無線通信システム。 The receiver measures the received electric field level of the first polarization signal, and instructs the transmitter to stop the second polarization signal, and then the received electric field level becomes a predetermined value or more. The radio communication system according to claim 2, wherein when it is determined that the reception quality of the second polarization signal is less than a threshold value.
  4.  前記所定値は、前記通信が切断されるときの降雨強度における前記第1の偏波信号の受信電界レベルより大きな値である、請求項3に記載の無線通信システム。 The wireless communication system according to claim 3, wherein the predetermined value is a value larger than a reception electric field level of the first polarization signal at a rainfall intensity when the communication is disconnected.
  5.  前記受信機は、前記送信機に対して前記第2の偏波信号の停止を指示する前において、前記第2の偏波信号を利用した通信が切断されたとき、該第2の偏波信号の受信品質が閾値未満になったと判断する、請求項1ないし4のいずれか1項に記載の無線通信システム。 The receiver uses the second polarization signal when communication using the second polarization signal is disconnected before instructing the transmitter to stop the second polarization signal. The wireless communication system according to any one of claims 1 to 4, wherein the reception quality is determined to be less than a threshold value.
  6.  前記第1の偏波信号は垂直偏波信号であり、前記第2の偏波信号は水平偏波信号である、請求項1ないし5のいずれか1項に記載の無線通信システム。 The wireless communication system according to any one of claims 1 to 5, wherein the first polarization signal is a vertical polarization signal and the second polarization signal is a horizontal polarization signal.
  7.  第1の偏波信号及び第2の偏波信号を受信機へ送信する送信手段と、
     前記受信機の指示を受信する受信手段と、
     前記受信手段により受信された前記指示に従って、前記送信手段に前記第2の偏波信号の送信を停止させる切替手段と、を有する送信機。
    Transmitting means for transmitting the first polarization signal and the second polarization signal to the receiver;
    Receiving means for receiving instructions from the receiver;
    And a switching unit that causes the transmission unit to stop transmission of the second polarization signal in accordance with the instruction received by the reception unit.
  8.  前記送信機から第1の偏波信号及び第2の偏波信号を受信する受信手段と、
     前記受信手段により受信された前記第2の偏波信号の受信品質が閾値未満になったか否かを判断する判断手段と、
     前記判断手段により前記受信品質が前記閾値未満になったと判断されたのであれば、該送信機に対して該第2の偏波信号の停止を指示する指示手段と、を有する受信機。
    Receiving means for receiving a first polarization signal and a second polarization signal from the transmitter;
    Determining means for determining whether or not the reception quality of the second polarization signal received by the receiving means is less than a threshold;
    A receiver having an instruction means for instructing the transmitter to stop the second polarization signal if the determination means determines that the reception quality is less than the threshold value;
  9.  送信機および受信機を有する無線通信システムの制御方法であって、
     前記送信機が、第1の偏波信号及び第2の偏波信号を受信機へ送信し、
     前記受信機が、前記送信機から前記第1の偏波信号及び前記第2の偏波信号を受信し、
     前記受信機が、前記第2の偏波信号の受信品質が閾値未満になったか否かを判断し、
     前記受信機が、該受信品質が該閾値未満になったのであれば、該送信機に対して該第2の偏波信号の停止を指示し、
     前記送信機が、前記受信機の指示に従って、前記第2の偏波信号の送信を停止する、無線通信システムの制御方法。
    A method for controlling a wireless communication system having a transmitter and a receiver, comprising:
    The transmitter transmits a first polarization signal and a second polarization signal to a receiver;
    The receiver receives the first polarization signal and the second polarization signal from the transmitter;
    The receiver determines whether the reception quality of the second polarization signal is less than a threshold;
    If the reception quality is less than the threshold, the receiver instructs the transmitter to stop the second polarization signal;
    A control method of a radio communication system, wherein the transmitter stops transmission of the second polarization signal according to an instruction of the receiver.
PCT/JP2010/065504 2009-10-27 2010-09-09 Wireless communication system and control method WO2011052300A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/504,415 US9444538B2 (en) 2009-10-27 2010-09-09 Radio communication system and controlling method thereof
CN201080047674.7A CN102598560B (en) 2009-10-27 2010-09-09 Wireless communication system and control method
EP10826435.9A EP2495897A4 (en) 2009-10-27 2010-09-09 Wireless communication system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009246520A JP2011097155A (en) 2009-10-27 2009-10-27 Radio communication system and control method for radio communication system
JP2009-246520 2009-10-27

Publications (1)

Publication Number Publication Date
WO2011052300A1 true WO2011052300A1 (en) 2011-05-05

Family

ID=43921730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065504 WO2011052300A1 (en) 2009-10-27 2010-09-09 Wireless communication system and control method

Country Status (5)

Country Link
US (1) US9444538B2 (en)
EP (1) EP2495897A4 (en)
JP (1) JP2011097155A (en)
CN (1) CN102598560B (en)
WO (1) WO2011052300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378899A (en) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 Control method and system by application of cross-polarization interference counteracter
CN103546401A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Microwave modem and cross interference cancellation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2712277T3 (en) 2014-04-04 2019-05-10 Huawei Tech Co Ltd Method, device and interference cancellation system of the same frequency
CN112135339A (en) * 2018-01-09 2020-12-25 Oppo广东移动通信有限公司 Control method for terminal sending data, terminal equipment and computer storage medium
CN112567638B (en) 2018-08-21 2023-03-10 瑞典爱立信有限公司 Radio unit and radio link transceiver for cross-polarized signal transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282831A (en) * 1988-09-20 1990-03-23 Fujitsu Ltd Inter-axial ratio compensation system
JP2003298546A (en) * 2002-04-05 2003-10-17 Nec Corp Cross polarization interference eliminating system
JP2005072739A (en) 2003-08-21 2005-03-17 Nec Engineering Ltd Wireless communication system, wireless communication apparatus, and transmission output control method used for them
JP2007214780A (en) 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2009124361A (en) * 2007-11-14 2009-06-04 Nec Engineering Ltd Wireless communication system
JP2009246520A (en) 2008-03-28 2009-10-22 Fujitsu Ltd Communication path switching device, communication path switching method and communication path switching program

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112370A (en) * 1976-08-06 1978-09-05 Signatron, Inc. Digital communications receiver for dual input signal
US5708971A (en) * 1994-01-11 1998-01-13 Ericsson Inc. Two-way paging system and apparatus
JP3335040B2 (en) * 1995-05-18 2002-10-15 富士通株式会社 Rainfall determination device and method, transmission output control device and method
JPH10303871A (en) 1997-04-30 1998-11-13 Nec Corp Line switching system
JP2000165340A (en) * 1998-11-24 2000-06-16 Nec Corp Control method for transmission strength and information transmitter
FI982763A (en) * 1998-12-21 2000-06-22 Nokia Networks Oy Procedure for data communication and radio systems
DE19926658A1 (en) * 1999-06-11 2000-12-14 Bosch Gmbh Robert Receiver for two orthogonally polarized signals
JP2001086051A (en) * 1999-09-16 2001-03-30 Toshiba Corp Radio communication system
US20020198026A1 (en) * 2001-06-20 2002-12-26 Nokia Corporation Method, communications system, and base station for transmitting signals with transmit diversity
JP2003244056A (en) * 2002-02-14 2003-08-29 Oki Electric Ind Co Ltd Wireless communication system
JP4460226B2 (en) * 2002-02-21 2010-05-12 パナソニック株式会社 Radio base station apparatus, radio terminal apparatus, and radio communication method
JP2003259414A (en) * 2002-03-05 2003-09-12 Sony Corp Mobile station and mobile communication system
JP4345280B2 (en) * 2002-09-18 2009-10-14 日本電気株式会社 Wireless communication apparatus and wireless communication system using the same
US7310379B2 (en) 2002-12-30 2007-12-18 Motorola, Inc. Polarization state techniques for wireless communications
US20090016210A1 (en) * 2005-02-02 2009-01-15 Naoki Suehiro Transmitting/receiving method, method of generation of signal sequences having no periodic correlation, and communication device
US8068872B2 (en) * 2005-10-06 2011-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Signaling support for antenna selection using subset lists and subset masks
ES2907939T3 (en) * 2007-08-14 2022-04-27 Panasonic Corp Radio communication device and radio communication procedure
JP2009159453A (en) 2007-12-27 2009-07-16 Panasonic Corp Wireless communication system, polarization plane adjustment method, base station, and sensor station
US8126408B2 (en) * 2008-01-22 2012-02-28 Provigent Ltd Multi-mode wireless communication link
US8306473B2 (en) * 2008-02-15 2012-11-06 Qualcomm Incorporated Methods and apparatus for using multiple antennas having different polarization
US8331946B2 (en) * 2008-03-06 2012-12-11 Qualcomm Incorporated Methods and apparatus for supporting multiple users in a system with multiple polarized antennas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282831A (en) * 1988-09-20 1990-03-23 Fujitsu Ltd Inter-axial ratio compensation system
JP2003298546A (en) * 2002-04-05 2003-10-17 Nec Corp Cross polarization interference eliminating system
JP2005072739A (en) 2003-08-21 2005-03-17 Nec Engineering Ltd Wireless communication system, wireless communication apparatus, and transmission output control method used for them
JP2007214780A (en) 2006-02-08 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> Radio communication device system, radio communication method, base station device, and terminal device
JP2009124361A (en) * 2007-11-14 2009-06-04 Nec Engineering Ltd Wireless communication system
JP2009246520A (en) 2008-03-28 2009-10-22 Fujitsu Ltd Communication path switching device, communication path switching method and communication path switching program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495897A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378899A (en) * 2012-04-25 2013-10-30 中兴通讯股份有限公司 Control method and system by application of cross-polarization interference counteracter
CN103378899B (en) * 2012-04-25 2016-03-30 中兴通讯股份有限公司 A kind of control method and system applying cross polarization interference canceler
CN103546401A (en) * 2012-07-09 2014-01-29 中兴通讯股份有限公司 Microwave modem and cross interference cancellation method thereof

Also Published As

Publication number Publication date
EP2495897A4 (en) 2014-08-06
EP2495897A1 (en) 2012-09-05
CN102598560B (en) 2014-11-26
CN102598560A (en) 2012-07-18
US9444538B2 (en) 2016-09-13
JP2011097155A (en) 2011-05-12
US20120262336A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
US20100222012A1 (en) Wireless communication apparatus and method
JP2882147B2 (en) Transmission power control method
JP5391432B2 (en) Method for switching MIMO repeater, MIMO network repeater, and system
WO2011052300A1 (en) Wireless communication system and control method
WO2019109723A1 (en) Full-time duplex system, full-time duplex circuit, and control method
JP4354245B2 (en) Wireless relay device
US9049060B2 (en) Co-channel dual polarized microwave device and method for receiving receive signal
EP2795975B1 (en) Automatic transmit power control in xpic configuration for wireless applications
US20150249522A1 (en) Method and system for switching modulation mode, and network element
JP4627080B2 (en) Wireless communication system
JP4670727B2 (en) Low power microwave radio communication system
EP3258616B1 (en) Receiving device and signal receiving processing method
JP3610911B2 (en) Transmission power control method and transmission power control apparatus
JPH10303871A (en) Line switching system
CN112886998B (en) Microwave transmission method and related equipment
JP4257166B2 (en) RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION DEVICE, AND TRANSMISSION OUTPUT CONTROL METHOD USED FOR THEM
JP6018038B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION DEVICE CONTROL PROGRAM
JP2000151543A (en) Both-polarized wave transmitter
WO2011145540A1 (en) Wireless communication apparatus and wireless communication method
JP4670673B2 (en) Transmission power control apparatus, method and program
JPH1141146A (en) Radio communication equipment
KR0159360B1 (en) Site diversity system in satellite communication and the method for the same
JP2013017080A (en) Transmission system, transmission device, and reception device
JPH04179323A (en) Radio communication system
JPH0683177B2 (en) Polarization sharing digital wireless transmission system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047674.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010826435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010826435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504415

Country of ref document: US