WO2011052220A1 - Wireless transmission device and reference signal transmission method - Google Patents

Wireless transmission device and reference signal transmission method Download PDF

Info

Publication number
WO2011052220A1
WO2011052220A1 PCT/JP2010/006393 JP2010006393W WO2011052220A1 WO 2011052220 A1 WO2011052220 A1 WO 2011052220A1 JP 2010006393 W JP2010006393 W JP 2010006393W WO 2011052220 A1 WO2011052220 A1 WO 2011052220A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
group
csi
reference signal
sfbc
Prior art date
Application number
PCT/JP2010/006393
Other languages
French (fr)
Japanese (ja)
Inventor
中尾正悟
西尾昭彦
福岡将
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011052220A1 publication Critical patent/WO2011052220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the present invention relates to a wireless transmission device and a reference signal transmission method.
  • a reference signal is also used in LTE (Long Term Evolution) of the next generation communication system established by 3GPP (3rd Generation Partnership Project) which is an international standardization organization for mobile communication.
  • reference signals transmitted from a transmitting apparatus (base station) to a receiving apparatus (terminal) mainly include (1) channel estimation for demodulation and (2) frequency scheduling and adaptive MCS. (Modulation and Coding ⁇ Scheme) Used for quality measurement for control.
  • a reference signal is transmitted in units of predetermined radio resources in a multi-antenna system for applying MIMO (Multiple ⁇ Input Multiple Output).
  • the LTE frame has a configuration as shown in FIG.
  • the minimum unit of frequency scheduling and adaptive MCS control (that is, control of coding rate and multi-level modulation number) is called a resource block (RB) (hereinafter also referred to as RB).
  • RB resource block
  • 1 RB is a group of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction.
  • Reference signal RS is arranged on a specific subcarrier in a specific OFDM symbol in 1 RB.
  • a unit specified by one OFDM symbol and one subcarrier is called a resource element (RE: Resource : Element, hereinafter also referred to as RE). That is, since 1 RB includes 12 subcarriers and 14 OFDM symbols, 168 REs are included.
  • RE Resource element
  • Non-Patent Document 1 when there are a plurality of LTE base station antennas, SFBC (Space-Frequency Block Coding) as shown in FIG. 2 is applied to downlink data.
  • FIG. 2 shows a conceptual diagram when the number of antennas of the base station is two.
  • an SFBC result unit (hereinafter referred to as “SFBC group”) obtained by performing SFBC on the block code processing unit of SFBC (the whole of S1 and S2 in FIG. 2).
  • S1, S2, -S2 * , S1 * constitute an SFBC group) is mapped to one resource group (hereinafter referred to as "SFBC resource group") in a resource block.
  • SFBC resource group is a resource unit to which the SFBC result unit is mapped, and one SFBC resource group is composed of two REs adjacent on the frequency axis.
  • one SFBC resource group is transmitted from both antenna 1 and antenna 2, and S1 and S2 are arranged in the first RE and second RE of the SFBC resource group transmitted from antenna 1, respectively, while antenna 2 -S2 * and S1 * are arranged in the first RE and the second RE of the SFBC resource group to be transmitted, respectively.
  • S2 * and S1 * represent the complex conjugate of S2 and S1.
  • the diversity gain is obtained by transmitting the frame in which the SFBC group is mapped to the SFBC resource group.
  • the LTE terminal When receiving downlink data encoded by SFBC, the LTE terminal collectively receives the SFBC resource group, and combines the signal components received by the SFBC resource group by a known decoding method, so that S1 , S2.
  • LTE-A LTE-Advanced
  • LTE-A LTE-Advanced
  • introduction of higher-order MIMO for example, eight transmission antennas
  • CoMP coordinated multipoint transmission / reception
  • DM RS Demodulation RS
  • PDSCH Physical downlink shared channel
  • precoding is also applied. This is a UE-specific reference signal for a terminal (User Equipment: UE).
  • CSI-RS A reference signal for CSI (Channel state information) observation. Precoding is not applied. It is a cell-specific reference signal.
  • the CSI includes CQI (channel quality indicator), PMI (precoding matrix indicator), RI (rank indicator), and the like.
  • the DM RS is inserted only in the RB that allocates data to the LTE-A terminal so that the LTE-A terminal can demodulate the downlink signal. Accordingly, the terminal cannot know in advance which RB and which subframe the DM RS is inserted into.
  • CSI-RS is by all LTE-A terminal connected to a base station, have been recognized for whether it is inserted in advance which RB, in which sub-frame. Therefore, the LTE-A terminal can receive the CSI-RS based on the CSI-RS arrangement information, and feeds back the CSI to the base station. That is, the CSI-RS is always inserted regardless of whether data is assigned to the LTE-A terminal in any RB or any subframe.
  • the CSI-RS is transmitted even when no resource is allocated to the transmission data sequence for the LTE-A terminal.
  • the use of CSI-RS is not regarded as an exclusive position. Specifically, the discussion is proceeding on the assumption that CSI-RS may be used for the application (1).
  • Non-Patent Documents 3 and 4 are diagrams illustrating a CSI-RS transmission method corresponding to the LTE-A terminal.
  • CSI-RSs are arranged for OFDM symbols that are not used for any of RSs for LTE, control channels, and DMRSs.
  • CSI-RS is arranged in the 10th OFDM symbol in the resource block shown in FIG. 3, and CSI-RS is arranged in the 10th and 11th OFDM symbols in the resource block shown in FIG. 4.
  • the LTE-A terminal can measure the quality of the channel from the base station to its own device.
  • the CSI-RS is transmitted from the four antennas of the LTE-A base station arranged in different REs (that is, by FDM).
  • CSI-RS is the same from one antenna pair of LTE-A base station (that is, one set in which four antennas of LTE-A base station are divided into two). Placed in RE and transmitted.
  • CSI-RS transmitted from two antennas constituting an antenna pair is transmitted by CDM (that is, code-multiplexed). Between the two antenna pairs, the CSI-RS is frequency-multiplexed (FDM) and transmitted as in the case of FIG. In FIGS. 3 and 4, the difference in hatching representing CSI-RS represents the difference in antenna to be transmitted. The same notation is adopted in the drawings described below.
  • the above-mentioned CSI-RS is also transmitted in an RB to which downlink data for LTE terminals is assigned.
  • the CSI-RS overwrites downlink data for the LTE terminal. That is, significant data for the LTE terminal is overwritten by CSI-RS that does not make sense for the LTE terminal.
  • the LTE terminal cannot know the existence of the CSI-RS. Therefore, the LTE terminal performs the decoding process on the assumption that significant information addressed to the terminal itself is also included in the RE in which the CSI-RS is arranged. Since convolutional coding is applied to downlink data in LTE, even if a part of RE is overwritten by CSI-RS, in general, decoding can be performed without error.
  • FIG. 5 shows a conceptual diagram in which the CSI-RS shown in FIG. 2 overwrites data for the LTE terminal.
  • a part of REs constituting the 10th OFDM symbol is overwritten by CSI-RS.
  • the LTE-A base station sets an MCS that is more resistant to noise to the LTE terminal. Then, control is performed so that the LTE terminal can receive downlink data without error.
  • An object of the present invention is to arrange a reference signal for the second wireless reception device in a resource allocated to data to the first wireless reception device, so that the data to the first wireless reception device is the first.
  • the radio transmission apparatus of the present invention performs spatial frequency block coding (SFBC) on a transmission data sequence for the first type reception apparatus in units of block code processing, and forms an SFBC group that is a code result for each block code processing unit.
  • Frequency block encoding means and an arrangement means for arranging the SFBC group in a resource group composed of a plurality of resource elements adjacent in the frequency direction, and arranging a reference signal for the second type receiving apparatus in the resource element; , And in the first and second resource groups adjacent to each other in the frequency axis direction, the arranging unit sandwiches a boundary between the first resource group and the second resource group in the frequency axis direction.
  • the reference signal is arranged in two resource elements adjacent to each other in the first resource group. In at least one of the flops and the second resource groups, wherein the two resource resource elements other than the element without placing the reference signal.
  • a transmission data sequence for the first type receiver is subjected to spatial frequency block coding (SFBC) in block code processing units, and an SFBC group as a code result for each block code processing unit is formed.
  • SFBC spatial frequency block coding
  • the reference signal is adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group in the first resource group and the second resource group adjacent in the frequency axis direction.
  • the first resource group and the second resource group In at least one of up, said resource elements other than two resource elements not disposed.
  • the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the data to the first wireless reception device is the first.
  • frame of LTE Diagram for explaining examples of arrangement of SFBC result units in SFBC (Space-Frequency Block Coding) and LTE The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal The figure explaining the overwriting to the data for LTE terminals by CSI-RS
  • positioning (in the case of n 2) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment.
  • positioning (when n 4) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment.
  • positioning (when n 2) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment.
  • positioning of CSI-RS with respect to SFBC resource group by the base station which concerns on this Embodiment (when n 2, the structure of the resource block allocated to a LTE-A terminal).
  • the wireless communication system includes a base station 100, which will be described later, which is a wireless communication device, a first type terminal compatible with the first type system, and a terminal 200 that is a second terminal compatible with the second type system.
  • the base station 100 is an LTE-A base station corresponding to the LTE-A system (and LTE system)
  • the first type terminal is an LTE terminal corresponding to the LTE system
  • the second type terminal is LTE.
  • Base station 100 transmits a signal to a first type terminal or a second type terminal via a plurality of antennas. For this transmission, for example, OFDM is used.
  • Base station 100 transmits an OFDM signal obtained by performing serial-parallel conversion and IFFT on a serial transmission signal in units of OFDM symbols. That is, base station 100 transmits a “spatial multiplexed resource block” to a receiving terminal by transmitting resource blocks defined by a plurality of OFDM symbols and a plurality of subcarriers from a plurality of antennas.
  • the base station 100 can also communicate with the first type terminal.
  • the first type terminal cannot know the existence of the second type system, but can communicate with the base station 100 by performing the same operation as the communication with the base station compatible with the first type system.
  • the type 2 terminal includes a base station classified into the type 1 system (that is, a type 1 base station) and a base station classified into the type 2 system (that is, the base station 100 corresponding to the second type). Seed base stations) and appropriate communication can be performed with each base station.
  • the base station 100 also transmits a second reference signal (for example, CSI-RS) for the LTE-A system in addition to the first reference signal for the first type system.
  • CSI-RS for example, CSI-RS
  • These reference signals are always inserted into a predetermined RE in the RB.
  • the first reference signal is mainly used for frequency scheduling and adaptive MCS control.
  • the base station 100 divides, in the RB, the RE group that can be allocated to the downlink data to the first type terminal into an RE group composed of a predetermined number of REs.
  • This RE group is a resource unit to which the SFBC result unit is mapped, and corresponds to the above-described SFBC resource group.
  • this RE group is composed of two REs that are adjacent on the frequency axis, like the SFBC resource group.
  • the base station 100 is an LTE-A base station
  • the terminal 200 is an LTE-A terminal
  • the first type terminal is an LTE terminal
  • FIG. 6 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • the base station 100 includes a plurality of terminal signal processing units 101-a and 101b, a plurality of transmission RF units 103-1 to m, a plurality of antennas 104-1 to m, a scheduling unit 105, Second reference signal arrangement setting section 106, second reference signal generation section 107, first reference signal generation section 108, reception RF section 109, separation section 110, demodulation / decoding section 111, and CRC check section 112 And a feedback information demodulator 113.
  • antennas 104-1 to m are used to transmit transmission data for the LTE terminal, the first reference signal, transmission data for the LTE-A terminal, and CSI-RS.
  • antennas 104-n + 1 to m are not used for transmitting transmission data for the LTE terminal and the first reference signal, but are used for transmission of transmission data for the LTE-A terminal and CSI-RS.
  • the terminal signal processing unit 101-a includes an encoding / modulation unit 121-1, a precoding processing unit 123-1, and a data overwriting unit 124.
  • the terminal signal processing unit 101-b includes an encoding / modulation unit 121-2, a second reference signal mapping unit 122, and a precoding processing unit 123-2.
  • the signal transmitted from the terminal 200 or the first type terminal is input to the reception RF unit 109 via the antenna 104-1.
  • the reception RF unit 109 performs predetermined radio reception processing (down-conversion, A / D conversion, etc.) on the reception signal, and then outputs the reception signal after the radio reception processing to the separation unit 110.
  • predetermined radio reception processing down-conversion, A / D conversion, etc.
  • Separation section 110 separates the received signal received from reception RF section 109 into a feedback signal and a data signal, outputs the feedback signal to feedback information demodulation section 113, and outputs the data signal to demodulation / decoding section 111.
  • the demodulation / decoding unit 111 obtains received data by demodulating and decoding the data signal.
  • the CRC checker 112 performs error detection processing by CRC check on the received data output from the demodulator / decoder 111 to determine whether the received data contains an error. Then, the reception data is output from the CRC inspection unit 112.
  • the feedback information demodulation unit 113 demodulates the feedback signal and outputs the demodulation result to the scheduling unit 105.
  • the feedback signal includes channel quality information or Ack / Nack information.
  • the channel quality information indicates the channel quality measured by the terminal 200 based on the first type reference signal transmitted from the base station 100.
  • Scheduling section 105 performs transmission signal scheduling based on channel quality information and CSI-RS arrangement information. Specifically, the scheduling unit 105 performs at least one of frequency scheduling and adaptive MCS control based on channel quality information transmitted from a terminal that receives a reference signal. Moreover, the scheduling part 105 allocates each terminal with respect to RE except RE with which CSI-RS is arrange
  • the scheduling information determined by the scheduling unit 105 (including at least one of the frequency scheduling result and the determined MCS) is output to the terminal signal processing units 101-a and 101b.
  • the second reference signal arrangement setting unit 106 outputs CSI-RS arrangement information to the scheduling unit 105 and the second reference signal generation unit 107. Further, the arrangement information of CSI-RS is also notified separately to the second type terminal.
  • Second reference signal generation section 107 generates CSI-RSs transmitted from transmission antennas 104-1 to m at the timing of forming resource blocks in which transmission data for LTE-A terminals is arranged, and Output to the signal processing unit 101-b.
  • second reference signal generation section 107 transmits CSI-RS transmitted from transmission antennas 104-1 to 104-n, respectively. Generate and output to the terminal signal processing unit 101-a.
  • the terminal signal processing unit 101-a forms a resource block in which transmission data for LTE terminals is arranged. Specifically, the terminal signal processing unit 101-a performs spatial frequency block coding (SFBC) on a transmission data sequence for LTE terminals in block code processing units, and an SFBC group that is a code result for each block code processing unit. Form. Then, the terminal signal processing unit 101-a arranges the formed SFBC group in an SFBC resource group composed of a plurality of resource elements assigned to the transmission data sequence. Then, the terminal signal processing unit 101-a replaces the SFBC group with the CSI ⁇ so as to straddle both the first SFBC resource group and the second SFBC resource group adjacent in the frequency axis direction in the spatial multiplexing resource block.
  • SFBC spatial frequency block coding
  • the terminal signal processing unit 101-a arranges at least CSI-RSs in two resource elements adjacent in the frequency axis direction across the boundary between the first SFBC resource group and the second SFBC resource group, CSI-RS is not allocated to resource elements other than the two resource elements.
  • the CSI-RS arranged in one of the two resource elements is transmitted from the first antenna, and the CSI-RS arranged in the other is transmitted from the second antenna.
  • the CSI-RS has the first SFBC resource described above. It is arranged so as to straddle both the group and the second SFBC resource group. The arrangement of the CSI-RS with respect to the SFBC resource group will be described in detail later.
  • the encoding / modulation unit 121-1 performs spatial frequency block coding (SFBC) on the transmission data sequence for LTE terminals in block code processing units, and performs block code processing units.
  • SFBC spatial frequency block coding
  • An SFBC group which is a code result of each is formed.
  • the encoding / modulation unit 121-1 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
  • the precoding processing unit 123-1 forms n parallel streams corresponding to the antennas 104-1 to 104-n from the SFBC group group received from the encoding / modulation unit 121-1.
  • the precoding processing unit 123-1 forms a plurality of parallel streams by dividing the SFBC group.
  • Each stream obtained by the precoding processing unit 123-1 is serially output in units of OFDM symbols.
  • the data overwriting unit 124 overwrites the configuration data corresponding to the resource element in which the CSI-RS is to be arranged in the configuration data group that configures the plurality of parallel streams with the CSI-RS, and the obtained plurality of parallel streams.
  • Reference signals for LTE terminals generated by the first reference signal generation unit 108 are inserted into the plurality of parallel streams. However, since the plurality of parallel streams are arranged avoiding the RE in which the reference signal for the LTE terminal is inserted, data is not overwritten by the first reference signal.
  • the terminal signal processing unit 101-b forms a resource block in which transmission data for the LTE-A terminal is arranged.
  • the encoding / modulation unit 121-2 performs spatial frequency block coding (SFBC) on the block data processing unit for the transmission data sequence for the LTE-A terminal, and blocks An SFBC group that is a code result for each code processing unit is formed.
  • SFBC spatial frequency block coding
  • the encoding / modulation unit 121-2 also performs control signal multiplexing processing, rate matching processing, interleaving processing, modulation processing, and the like.
  • Second reference signal mapping section 122 receives CSI-RSs transmitted from transmission antennas 104-1 to m received from second reference signal generation section 107, and divides CSI-RS for each antenna and performs precoding processing in parallel.
  • the encoding / modulation unit 121-2 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
  • the precoding processing unit 123-2 receives m parallels corresponding to the antennas 104-n + 1 to m from the SFBC group group received from the encoding / modulation unit 121-1 and the CSI-RS received from the second reference signal generation unit 107. Form a stream.
  • Each stream obtained by the precoding processing unit 123-2 is serially output in units of OFDM symbols.
  • the SFBC group configuration data and CSI-RS correspond to the SFBC group configuration data and CSI-RS to be allocated in the resource block transmitted from the antenna corresponding to the stream. It is arranged at the position to do.
  • the transmission RF units 103-1 to 103-m receive the OFDM symbol unit stream, perform serial-parallel conversion and IFFT processing, and form an OFDM signal.
  • the OFDM signals formed by the transmission RF units 103-1 to m are transmitted from the antennas 104-1 to m, respectively.
  • FIG. 7 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • terminal 200 includes a plurality of antennas 211-1 to 211-m, a plurality of reception RF units 212-1 to m, a channel estimation unit 213, a CSI measurement unit 214, a MIMO demodulation unit 215, and a decoding unit. 216, CRC checker 217, feedback information generator 218, encoder 219, multiplexer 220, transmission RF unit 221, and control signal demodulator 222.
  • terminal 200 is described as an LTE-A terminal.
  • the spatially multiplexed OFDM signal obtained by spatially multiplexing the OFDM signal transmitted from the base station 100 is received by the antennas 211-1 to 211-m.
  • the reception RF units 212-1 to 212-m perform radio reception processing (down-conversion, A / D conversion, etc.) and OFDM demodulation processing (Fourier transform, parallel) on the received OFDM signals received via the antennas 211-1-m. / Serial conversion etc.) to obtain serial received signals.
  • This received signal is output to channel estimation section 213, MIMO demodulation section 215, and control signal demodulation section 222.
  • the channel estimation unit 213 performs channel estimation based on a channel quality measurement reference signal included in the received signal, and calculates a channel estimation value.
  • the position of the channel quality measurement reference signal is specified based on control information separately notified from the base station 100.
  • the channel estimation unit 213 inputs CSI-RS arrangement information as resource information for the second reference signal, and a resource block to which CSI-RS that is a reference signal for channel quality measurement is assigned and its resource block Specify the frequency position at.
  • the CSI-RS arrangement information is notified by control information from the base station 100 or the like.
  • the channel estimation value calculated by channel estimation section 213 is output to CSI measurement section 214 and MIMO demodulation section 215.
  • the control signal demodulator 222 demodulates the control signal transmitted from the base station 100. Then, the control signal demodulator 222 transmits, from the demodulated control signal, CSI-RS arrangement information related to the setting of resources for arranging the CSI-RS, transmission parameters including MCS information such as a modulation scheme or a coding rate of the transmission signal, Extract control information. At this time, the control signal demodulator 222 receives and demodulates the CSI-RS arrangement information in advance and holds the CSI-RS arrangement information.
  • the CSI measurement unit 214 uses the channel estimation value calculated by the channel estimation unit 213 to calculate CSI as channel quality (reception quality) and outputs the CSI to the feedback information generation unit 218.
  • the CSI measurement unit 214 receives the CSI-RS arrangement information as in the channel estimation unit 213, and acquires information on the resource element to which the CSI-RS that is a reference signal for channel quality measurement is assigned. Then, the CSI measurement unit 214 calculates channel quality information by averaging the channel estimation values for each resource element indicated by the information regarding the resource element. Furthermore, the CSI measurement unit 214 also calculates channel quality information of resource elements in which no CSI-RS is arranged by performing an interpolation process using the average channel estimation value. As specific channel quality information, CSI corresponding to a combination of a predetermined modulation scheme and coding rate, PMI for selecting a precoding matrix corresponding to the current channel condition from a predetermined codebook, and the desired number of transmission streams And the like.
  • MIMO demodulation section 215 uses the channel estimation value received from channel estimation section 213 to perform MIMO demodulation processing (for example, SFBC reception processing) on the received signal, and outputs the demodulated signal to decoding section 216.
  • MIMO demodulator 215 also performs deinterleaving processing, rate dematching processing, likelihood combining processing, and the like.
  • the decoding unit 216 obtains received data by performing error correction decoding on the signal after MIMO separation.
  • the CRC checker 217 checks the received data CRC (Cyclic Redundancy Check) obtained by the decoder 216, and outputs data error presence / absence information indicating whether or not the received data includes an error to the feedback information generator 218. . When the CRC checking unit 217 determines that there is no error, the CRC checking unit 217 outputs the received data to the subsequent function unit.
  • CRC Cyclic Redundancy Check
  • the feedback information generation unit 218 generates feedback information including the channel quality information (CQI, PMI, RI, etc.) calculated by the CSI measurement unit 214. Further, the feedback information generation unit 218 generates Ack / Nack information based on the error detection result in the CRC check unit 217. Here, if the error detection result in the CRC checking unit 217 indicates “no error”, the feedback information generation unit 218 generates an ACK (Acknowledgement). If the error detection result indicates “error present”, the Nack ( Generate Negative (Acknowledgement).
  • the encoding unit 219 decodes the transmission data and outputs the decoding result to the multiplexing unit 220.
  • the multiplexing unit 220 multiplexes transmission signals including feedback information and encoded transmission data. Then, multiplexing section 220 performs rate matching (Rate-Maching) processing, interleaving processing, modulation processing, and the like that adaptively sets the modulation multi-level number or coding rate, and outputs the result to transmission RF section 221.
  • rate matching Raster-Maching
  • the transmission RF unit 221 performs OFDM modulation processing (serial / parallel conversion, inverse Fourier transform, etc.) and radio transmission processing (up-conversion, D / A conversion, amplification, etc.) on the multiplexed signal received from the multiplexing unit 220, and the antenna 211- 1 to send.
  • OFDM modulation processing serial / parallel conversion, inverse Fourier transform, etc.
  • radio transmission processing up-conversion, D / A conversion, amplification, etc.
  • FIG. 8 is a diagram for explaining a first arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment.
  • CDM and FDM are used.
  • the resource block shown in FIG. 8 can be regarded as a spatial multiplexing resource block transmitted by the base station 100.
  • CSI-RS is arranged in a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis.
  • a CSI-RS group is configured by a total of four REs in which the CSI-RS is arranged.
  • the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal. That is, the CSI-RS group is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and is arranged in a part of the at least two SFBC resource groups. Not.
  • the CSI-RS is arranged instead of the SFBC group so as to straddle both the first resource group and the second resource group adjacent in the frequency axis direction in the spatial multiplexing resource block. That is, at least CSI-RSs are arranged in two resource elements adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group. Among the resource elements other than the two resource elements, resource elements in which CSI-RS is not arranged exist in both the first resource group and the second resource group.
  • the SFBC resource group which is a processing unit when the LTE terminal performs the SFBC demodulation process, is not affected by the overwriting by the CSI-RS.
  • the influence of the CSI-RS after the SFBC group is subjected to the SFBC demodulation processing is reduced as compared with the conventional case (for example, in the case of FIG. 4).
  • the CSI-RS groups are arranged so as to straddle a plurality of SFBC resource groups, the number of SFBC resource groups affected by overwriting by the CSI-RS itself is increased.
  • “more data (for example, 2X data) than“ when some data (for example, X data) is strongly adversely affected that is, conventional CSI arrangement example: FIG. 4, etc.)
  • the effect of the error correction code is greater when the influence is reduced by half (that is, the arrangement example according to the embodiment: FIG. 8). For this reason, it is possible to reduce performance degradation when the LTE terminal decodes downlink data without recognizing the presence of CSI-RS.
  • CSI-RS is code-multiplexed (CDM). That is, a CSI-RS group is configured based on a form (Localized CDM) in which CSI-RSs multiplexed by CDM and FDM are arranged without gaps on the frequency axis and the time axis.
  • CDM code-multiplexed
  • FIG. 9 is a diagram for explaining a second arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment.
  • FDM is used.
  • FIG. 9B shows that the base station 100 has four antennas.
  • the resource block shown in FIG. 8 can be regarded as a spatial multiplexing resource block transmitted by the base station 100.
  • CSI-RS is arranged in a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis.
  • a CSI-RS group is configured by a total of four REs in which the CSI-RS is arranged.
  • the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal. That is, the CSI-RS group is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and is arranged in a part of the at least two SFBC resource groups.
  • CSI-RSs 1 to 4 transmitted from four antennas are arranged in four REs of the CSI-RS group, respectively.
  • FIG. 10 is a diagram for explaining a third arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment.
  • the OFDM symbol in which the CSI-RS is arranged is limited to only the 11th OFDM symbol.
  • CSI-RSs are arranged on at least two consecutive subcarriers on the frequency axis, and a CSI-RS group is configured by two or four REs.
  • the CSI-RS group is changed to LTE as in FIGS.
  • the SFBC resource groups defined for the terminals are arranged across the terminals. That is, the CSI-RS group constituted by two REs is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and the at least two SFBC resource groups It is not arranged in a part of.
  • the CSI-RS group (the CSI-RS group surrounded by an ellipse in FIG. 10) configured by the four REs overlaps the entire two SFBC resource groups.
  • the OFDM symbol in which CSI-RS is arranged is limited to only the 11th OFDM symbol.
  • another reference signal that is, UE Specific Reference signal
  • UE Specific Reference signal UE Specific Reference signal
  • transmission power boosting is generally performed, and reference signals having different purposes are included in the same OFDM symbol. It is better to avoid being placed as much as possible. This arrangement example can meet such a demand.
  • CSI-RS arrangement example 3 was shown here on the premise of FDM, CDM can also be applied to CSI-RS arrangement example 3.
  • FIG. 11 is a diagram for explaining a fourth arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment.
  • CDM is used.
  • FIG. 11A shows the configuration of resource blocks allocated to LTE terminals
  • FIG. 11B shows the configuration of resource blocks allocated to LTE-A terminals. That is, the SFBC resource group in FIG. 11A is an SFBC resource group recognized by the LTE terminal connected to the base station 100, while the SFBC resource group in FIG.
  • FIG. 11B is recognized by the LTE-A terminal connected to the base station 100.
  • This is an SFBC resource group. That is, when a certain resource block is allocated to downlink data of an LTE terminal, the base station 100 selects a resource block configuration in which SFBC resource groups are spread as shown in FIG. 11A. On the other hand, when a certain resource block is allocated to the downlink data of the LTE-A terminal, the base station 100 selects a resource block configuration in which SFBC resource groups are spread as shown in FIG. 11B.
  • FIG. 11A and FIG. 11B differ only in how SFBC resource groups are spread.
  • a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis that is, a CSI-RS group consisting of four REs
  • a CSI-RS group composed of the two REs is configured. It should be noted here that the CSI-RS group consisting of four REs is not only arranged across the SFBC resource group defined for the LTE terminal, but also a subcarrier sandwiched between the CSI-RS groups. The number of all is an even number.
  • the resource block configuration shown in FIG. 11A reduces performance degradation when LTE terminals decode downlink data without recognizing the presence of CSI-RS, similar to the above-described arrangement examples 1 to 3. Can do. Furthermore, since the number of subcarriers sandwiched between CSI-RS groups is all an even number, the RE group sandwiched between CSI-RS groups is configured for an LTE-A terminal having an even number of REs. Since it can be divided into SFBC resource groups (that is, the spread method of SFBC resource groups as shown in FIG. 11B can be adopted), the performance when the LTE-A terminal performs SFBC communication using the resource blocks shown in FIG. Can be improved.
  • SFBC resource groups that is, the spread method of SFBC resource groups as shown in FIG. 11B can be adopted
  • an SFBC resource group for LTE-A terminals is formed by an even number of REs continuous on the frequency axis. This is because it is most preferable. For example, referring to FIG. 8, in the OFDM symbol in which the CSI-RS group is arranged, the number of resource elements in which the CSI-RS groups at both ends of the OFDM symbol are not arranged is an odd number. Thus, in the resource block configuration as shown in FIG. 8, some SFBC resource groups for LTE-A terminals have to be arranged apart on the frequency axis. This problem is solved by CSI-RS arrangement example 4.
  • base station 100 transmits a spatial multiplexing resource block to a receiving apparatus by transmitting the resource block from each of a plurality of antennas. Then, in base station 100, terminal signal processing section 101-a arranges an SFBC group for LTE terminals in a resource group composed of a plurality of resource elements, and arranges CSI-RS in a resource block. In the first resource group and the second resource group that are adjacent in the frequency axis direction in the spatial multiplexing resource block, two adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group.
  • At least CSI-RS is arranged in one resource element instead of the SFBC group, and among the resource elements other than the two resource elements, the resource element in which CSI-RS is not arranged is the first resource.
  • the resource element in which CSI-RS is not arranged is the first resource.
  • the first resource group at least the CSI-RS is arranged instead of the SFBC group in the resource element adjacent to the second resource group, and in the second resource group, the first resource group
  • At least CSI-RS is arranged in the adjacent resource element instead of the SFBC group, and there is a resource element in which CSI-RS is not arranged in both the first resource group and the second resource group. That is, the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal.
  • both the first resource group and the second resource group have been described on the assumption that the CSI-RS is arranged only in a part of the constituent resource elements.
  • the present invention is not limited to this, and there may be a resource element in which CSI-RS is not arranged only in one of the first resource group and the second resource group. Even in this way, the same effect as described above can be obtained for the resource group in which the resource element in which the CSI-RS is not arranged exists.
  • this invention is applicable similarly also with an antenna port (antenna port).
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the first wireless Even when the data to the receiving device is overwritten by the reference signal for the second wireless receiving device, it is useful for minimizing the deterioration of the error characteristics of the data to the first wireless receiving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

Provided are a wireless transmission device and a reference signal transmission method that minimize degradation of error characteristics in data going to a first wireless reception device even if a reference signal going to a second wireless reception device is overwritten by a resource allocated to data going to the first wireless reception device. In a first resource group (RG) and a second resource group, which are transmitted from a base station (100) to a reception-side device and are adjacent on the frequency axis of a spatially multiplexed resource block, each of a pair of resource elements (RE) that straddle the boundary between the two resource groups and are adjacent on the frequency axis has at least a CSI-RS in place of an SFBC group. Also, among the resource elements other than the aforementioned two resource elements, there are resource elements in both the first resource group and the second resource group that have no CSI-RSs. In other words, a CSI-RS group straddles SFBC resource groups defined for an LTE terminal.

Description

無線送信装置及び参照信号送信方法Wireless transmission apparatus and reference signal transmission method
 本発明は、無線送信装置及び参照信号送信方法に関する。 The present invention relates to a wireless transmission device and a reference signal transmission method.
 セルラーシステム等の無線通信システムでは、伝搬路又は伝送信号の各種指標を得るための参照信号が導入されている。例えば、移動体通信の国際的な標準化団体である3GPP(3rd Generation Partnership Project)にて策定された次世代通信システムのLTE(Long Term Evolution)においても、参照信号(Reference Signal:RS)が用いられる。基地局から端末への下り通信において、送信装置(基地局)から受信装置(端末)に送信する参照信号は、主に、(1)復調用の伝搬路推定、(2)周波数スケジューリングや適応MCS(Modulation and Coding Scheme)制御のための品質測定、などに用いられる。LTEでは、MIMO(Multiple Input Multiple Output)を適用するためのマルチアンテナシステムにおいて、所定の無線リソース単位で参照信号が送信される。 In wireless communication systems such as cellular systems, reference signals for obtaining various indicators of propagation paths or transmission signals are introduced. For example, a reference signal (RS) is also used in LTE (Long Term Evolution) of the next generation communication system established by 3GPP (3rd Generation Partnership Project) which is an international standardization organization for mobile communication. . In downlink communication from a base station to a terminal, reference signals transmitted from a transmitting apparatus (base station) to a receiving apparatus (terminal) mainly include (1) channel estimation for demodulation and (2) frequency scheduling and adaptive MCS. (Modulation and Coding 品質 Scheme) Used for quality measurement for control. In LTE, a reference signal is transmitted in units of predetermined radio resources in a multi-antenna system for applying MIMO (Multiple 信号 Input Multiple Output).
 また、LTEのフレームは、例えば、図1のような構成を採る。LTEでは、周波数スケジューリング及び適応MCS制御(つまり、符号化率及び多値変調数の制御)の最小単位は、リソースブロック(Resource Block:RB、以下RBともいう)と呼ばれる。図1に示す構成では、1つのRB内において、時間軸の先頭から制御信号と参照信号RSとが配置され、続いてデータが配置される。ここで、1RBは、周波数方向に12のサブキャリア及び時間方向に14のOFDMシンボルの纏まりである。参照信号RSは、1RB中の特定のOFDMシンボルにおける特定のサブキャリアに配置される。1つのOFDMシンボルと1つのサブキャリアとにより特定される単位は、リソースエレメント(RE:Resource Element、以下REともいう)と呼ばれる。すなわち、1RBには、12サブキャリア及び14OFDMシンボルが含まれるので、168個のREが含まれることになる。 Further, for example, the LTE frame has a configuration as shown in FIG. In LTE, the minimum unit of frequency scheduling and adaptive MCS control (that is, control of coding rate and multi-level modulation number) is called a resource block (RB) (hereinafter also referred to as RB). In the configuration shown in FIG. 1, in one RB, a control signal and a reference signal RS are arranged from the beginning of the time axis, and then data is arranged. Here, 1 RB is a group of 12 subcarriers in the frequency direction and 14 OFDM symbols in the time direction. Reference signal RS is arranged on a specific subcarrier in a specific OFDM symbol in 1 RB. A unit specified by one OFDM symbol and one subcarrier is called a resource element (RE: Resource : Element, hereinafter also referred to as RE). That is, since 1 RB includes 12 subcarriers and 14 OFDM symbols, 168 REs are included.
 ここで、非特許文献1に示すように、LTE基地局のアンテナが複数の場合、下り回線データに対して図2に示すようなSFBC(Space-Frequency Block Coding)が適用される。ただし、図2は、基地局のアンテナ数が2本の場合の概念図を示している。 Here, as shown in Non-Patent Document 1, when there are a plurality of LTE base station antennas, SFBC (Space-Frequency Block Coding) as shown in FIG. 2 is applied to downlink data. However, FIG. 2 shows a conceptual diagram when the number of antennas of the base station is two.
 図2に示すように、LTE基地局では、SFBCのブロック符号処理単位(図2では、S1及びS2の全体)に対してSFBCを行って得られたSFBC結果単位(以下、「SFBCグループ」と呼ばれる。図2では、S1,S2,-S2,S1がSFBCグループを構成する。)が、リソースブロック内の1つのリソースグループ(以下、「SFBCリソースグループ」と呼ばれる)にマッピングされる。すなわち、SFBCリソースグループは、SFBC結果単位がマッピングされるリソース単位であり、1つのSFBCリソースグループは、周波数軸上で隣接する2つのREから構成される。例えば、1つのSFBCリソースグループはアンテナ1及びアンテナ2の両方から送信され、アンテナ1から送信されるSFBCリソースグループの第1RE及び第2REには、それぞれS1及びS2が配置される一方、アンテナ2から送信されるSFBCリソースグループの第1RE及び第2REには、それぞれ-S2及びS1が配置される。ただし、S2及びS1はS2及びS1の複素共役を表す。このように、SFBCグループがSFBCリソースグループにマッピングされたフレームを送信することにより、ダイバーシチゲインが得られる。SFBCによって符号化された下り回線データを受信する際には、LTE端末は、SFBCリソースグループをまとめて受信し、公知の復号方法によってSFBCリソースグループで受信された信号成分を合成することにより、S1,S2を得る。 As shown in FIG. 2, in the LTE base station, an SFBC result unit (hereinafter referred to as “SFBC group”) obtained by performing SFBC on the block code processing unit of SFBC (the whole of S1 and S2 in FIG. 2). 2, S1, S2, -S2 * , S1 * constitute an SFBC group) is mapped to one resource group (hereinafter referred to as "SFBC resource group") in a resource block. That is, the SFBC resource group is a resource unit to which the SFBC result unit is mapped, and one SFBC resource group is composed of two REs adjacent on the frequency axis. For example, one SFBC resource group is transmitted from both antenna 1 and antenna 2, and S1 and S2 are arranged in the first RE and second RE of the SFBC resource group transmitted from antenna 1, respectively, while antenna 2 -S2 * and S1 * are arranged in the first RE and the second RE of the SFBC resource group to be transmitted, respectively. However, S2 * and S1 * represent the complex conjugate of S2 and S1. As described above, the diversity gain is obtained by transmitting the frame in which the SFBC group is mapped to the SFBC resource group. When receiving downlink data encoded by SFBC, the LTE terminal collectively receives the SFBC resource group, and combines the signal components received by the SFBC resource group by a known decoding method, so that S1 , S2.
 LTEをさらに進めた通信システムであるLTE-Advanced(以下LTE-Aという)では、さらなる高度化を図るために、高次MIMO(例えば送信8アンテナ)及び協調マルチポイント送受信(CoMP)などの導入が検討されている。このため、LTEで検討されていた参照信号(第1の参照信号)に加えて、LTE-A用に追加の参照信号(第2の参照信号)が必要となり、その送信方法が議論されている。 In LTE-Advanced (hereinafter referred to as LTE-A), which is a communication system that further advances LTE, introduction of higher-order MIMO (for example, eight transmission antennas) and coordinated multipoint transmission / reception (CoMP) has been introduced in order to further improve the level of sophistication. It is being considered. For this reason, in addition to the reference signal (first reference signal) studied in LTE, an additional reference signal (second reference signal) is required for LTE-A, and its transmission method is discussed. .
 例えば非特許文献2に示されるように、LTE-Aでは前述の用途別に2種の参照信号が検討されている。
 (1)Demodulation RS(DM RS):PDSCH(Physical downlink shared channel)復調用の参照信号である。PDSCHと同一のレイヤ(layer)数が適用されるとともに、プリコーディング(Precoding)も適用される。端末(User Equipment:UE)に特定(UE-specific)の参照信号である。
 (2)CSI-RS:CSI(Channel state information)観測用の参照信号である。プリコーディングは適用されない。セルに特定の(cell-specific)の参照信号である。なお、CSIとしては、CQI(channel quality indicator)、PMI(precoding matrix indicator)、RI(rank indicator)などがある。
For example, as shown in Non-Patent Document 2, in LTE-A, two types of reference signals are studied for each of the above uses.
(1) Demodulation RS (DM RS): a reference signal for demodulating PDSCH (Physical downlink shared channel). The same number of layers as PDSCH is applied, and precoding is also applied. This is a UE-specific reference signal for a terminal (User Equipment: UE).
(2) CSI-RS: A reference signal for CSI (Channel state information) observation. Precoding is not applied. It is a cell-specific reference signal. The CSI includes CQI (channel quality indicator), PMI (precoding matrix indicator), RI (rank indicator), and the like.
 基本的に、DM RSは、LTE-A端末へのデータを割り当てるRBにのみ、当該LTE-A端末が下り信号を復調できるように、挿入される。従って、DM RSがどのRB、どのサブフレームに挿入されるかについて、端末側は予め知ることができない。これに対して、CSI-RSは、基地局に繋がる全てのLTE-A端末によって、予めどのRB、どのサブフレームに挿入されているかについて認識されている。従って、LTE-A端末は、CSI-RSの配置情報に基づいてCSI-RSを受信することができ、基地局にCSIをフィードバックする。すなわち、CSI-RSは、任意のRB又は任意のサブフレームでLTE-A端末へのデータが割り当てられているか否かに関わらず、常に挿入される。つまり、LTE-A端末向けの送信データ系列に対してリソースの割り当てが無い場合にも、CSI-RSは送信される。ただし、CSI-RSの用途は、排他的な位置づけとしない。具体的には(1)の用途にCSI-RSを用いても良い、といった想定で議論が進んでいる。 Basically, the DM RS is inserted only in the RB that allocates data to the LTE-A terminal so that the LTE-A terminal can demodulate the downlink signal. Accordingly, the terminal cannot know in advance which RB and which subframe the DM RS is inserted into. In contrast, CSI-RS is by all LTE-A terminal connected to a base station, have been recognized for whether it is inserted in advance which RB, in which sub-frame. Therefore, the LTE-A terminal can receive the CSI-RS based on the CSI-RS arrangement information, and feeds back the CSI to the base station. That is, the CSI-RS is always inserted regardless of whether data is assigned to the LTE-A terminal in any RB or any subframe. That is, the CSI-RS is transmitted even when no resource is allocated to the transmission data sequence for the LTE-A terminal. However, the use of CSI-RS is not regarded as an exclusive position. Specifically, the discussion is proceeding on the assumption that CSI-RS may be used for the application (1).
 LTE-A端末用のCSI-RSの送信方法の例が、例えば、非特許文献3、4に開示されている。図3及び図4は、LTE-A端末に対応するCSI-RSの送信方法を示す図である。図3及び図4に示す例では、LTE向けのRS、制御チャネル、及びDMRSのいずれにも使用されないOFDMシンボルに対して、CSI-RSが配置されている。 Examples of CSI-RS transmission methods for LTE-A terminals are disclosed in Non-Patent Documents 3 and 4, for example. 3 and 4 are diagrams illustrating a CSI-RS transmission method corresponding to the LTE-A terminal. In the example illustrated in FIGS. 3 and 4, CSI-RSs are arranged for OFDM symbols that are not used for any of RSs for LTE, control channels, and DMRSs.
 図3に示すリソースブロックでは、10番目のOFDMシンボルにCSI-RSが配置され、図4に示すリソースブロックでは、10番目及び11番目のOFDMシンボルにCSI-RSが配置されている。これらのCSI-RSを用いて、LTE-A端末が、基地局から自装置までのチャネルの品質を測定できる。ここで、図3の例では、CSI-RSは、LTE-A基地局の4つのアンテナから、異なるREに配置されて(つまり、FDMによって)を送信されている。一方、図4の例では、CSI-RSは、LTE-A基地局の1つのアンテナペア(つまり、LTE-A基地局の4つのアンテナが2つずつに分けられた1つの組)から、同じREに配置されて送信される。ただし、アンテナペアを構成する2つのアンテナから送信されるCSI-RSは、CDMによって(つまり、コード多重されて)送信される。2つのアンテナペア間では、図3の場合と同様に、CSI-RSは、周波数多重(FDM)されて送信される。なお、図3及び図4において、CSI-RSを表すハッチングの違いは、送信されるアンテナの違いを表している。以下で説明する図面においても、同様の表し方が採用されている。 3, CSI-RS is arranged in the 10th OFDM symbol in the resource block shown in FIG. 3, and CSI-RS is arranged in the 10th and 11th OFDM symbols in the resource block shown in FIG. 4. Using these CSI-RSs, the LTE-A terminal can measure the quality of the channel from the base station to its own device. Here, in the example of FIG. 3, the CSI-RS is transmitted from the four antennas of the LTE-A base station arranged in different REs (that is, by FDM). On the other hand, in the example of FIG. 4, CSI-RS is the same from one antenna pair of LTE-A base station (that is, one set in which four antennas of LTE-A base station are divided into two). Placed in RE and transmitted. However, CSI-RS transmitted from two antennas constituting an antenna pair is transmitted by CDM (that is, code-multiplexed). Between the two antenna pairs, the CSI-RS is frequency-multiplexed (FDM) and transmitted as in the case of FIG. In FIGS. 3 and 4, the difference in hatching representing CSI-RS represents the difference in antenna to be transmitted. The same notation is adopted in the drawings described below.
 ところで、前述のCSI-RSは、LTE端末向けの下り回線データが割り当てられるRBにおいても送信される。この場合、CSI-RSは、LTE端末向けの下り回線データを上書きする。すなわち、LTE端末向けの有意なデータが、LTE端末にとっては意味を成さないCSI-RSによって上書きされる。ここで、LTE端末はCSI-RSの存在自体を知りえない。従って、LTE端末はCSI-RSが配置されているREにも自端末宛の有意な情報が載っているとして、復号処理を行う。LTEにおける下り回線データには畳み込み符号化が適用されているため、CSI-RSによって一部のREが上書きされたとしても、一般的には、誤り無く復号が可能である。しかしながら、LTE端末向けの下り回線データがCSI-RSよって上書きされることにより、LTE端末向けの下り回線データに関する「SNR(Signal to Noise Ratio)対BLER(Block Error rate)特性」、つまり、誤り率特性が劣化する。 By the way, the above-mentioned CSI-RS is also transmitted in an RB to which downlink data for LTE terminals is assigned. In this case, the CSI-RS overwrites downlink data for the LTE terminal. That is, significant data for the LTE terminal is overwritten by CSI-RS that does not make sense for the LTE terminal. Here, the LTE terminal cannot know the existence of the CSI-RS. Therefore, the LTE terminal performs the decoding process on the assumption that significant information addressed to the terminal itself is also included in the RE in which the CSI-RS is arranged. Since convolutional coding is applied to downlink data in LTE, even if a part of RE is overwritten by CSI-RS, in general, decoding can be performed without error. However, when downlink data for LTE terminals is overwritten by CSI-RS, “SNR (SignalNRto Noise Ratio) vs. BLER (Block Error rate) characteristics” relating to downlink data for LTE terminals, that is, error rate Characteristics deteriorate.
 例えば、図5では、図2に示すCSI-RSがLTE端末向けのデータを上書きする概念図が示されている。図5では、CSI-RSによって10番目のOFDMシンボルを構成するRE群の内の一部のREが上書きされている。 For example, FIG. 5 shows a conceptual diagram in which the CSI-RS shown in FIG. 2 overwrites data for the LTE terminal. In FIG. 5, a part of REs constituting the 10th OFDM symbol is overwritten by CSI-RS.
 このようにLTE端末に対して下り回線データを割り当てたRBにおいてCSI-RSを送信する必要が生じた場合、LTE-A基地局は、そのLTE端末に対して、よりノイズに強いMCSを設定し、LTE端末が誤り無く下り回線データを受信できるように制御する。 In this way, when it becomes necessary to transmit CSI-RS in the RB to which downlink data is allocated to the LTE terminal, the LTE-A base station sets an MCS that is more resistant to noise to the LTE terminal. Then, control is performed so that the LTE terminal can receive downlink data without error.
 しかしながら、よりノイズに強いMCSを設定すると、同一のサイズの情報をLTE端末に送信する場合に必要となる、時間・周波数リソースの量が増加してしまう。従って、CSI-RSによってLTE端末向けの下り回線データが上書きされた場合にもMCSの設定を高ノイズ耐性側に大きくシフトしなくても良い、すなわち、下り回線データの誤り率特性の劣化が最小限に抑えられるCSI-RS送信方法が望まれている。 However, if an MCS that is more resistant to noise is set, the amount of time / frequency resources required when transmitting information of the same size to the LTE terminal increases. Therefore, even when downlink data for LTE terminals is overwritten by CSI-RS, the MCS setting does not have to be greatly shifted to the high noise tolerance side, that is, the degradation of error rate characteristics of downlink data is minimized. A CSI-RS transmission method that can be suppressed to the limit is desired.
 本発明の目的は、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑える、無線送信装置及び参照信号送信方法を提供することである。 An object of the present invention is to arrange a reference signal for the second wireless reception device in a resource allocated to data to the first wireless reception device, so that the data to the first wireless reception device is the first. By providing a wireless transmission device and a reference signal transmission method that minimize deterioration of error characteristics of data to the first wireless reception device even when overwritten by a reference signal for the second wireless reception device is there.
 本発明の無線送信装置は、第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する空間周波数ブロック符号化手段と、前記SFBCグループを、周波数方向で隣接する複数のリソースエレメントから構成されるリソースグループに配置し、第2種受信装置用の参照信号を、リソースエレメントに配置する配置手段と、を具備し、前記配置手段は、周波数軸方向で隣接する第1のリソースグループ及び第2のリソースグループにおいて、前記第1のリソースグループと第2のリソースグループとの境界を挟んで周波数軸方向で隣り合う2つのリソースエレメントに、前記参照信号を配置し、前記第1のリソースグループ及び第2のリソースグループの少なくとも一方において、前記2つのリソースエレメント以外のリソースエレメントには前記参照信号を配置しない。 The radio transmission apparatus of the present invention performs spatial frequency block coding (SFBC) on a transmission data sequence for the first type reception apparatus in units of block code processing, and forms an SFBC group that is a code result for each block code processing unit. Frequency block encoding means; and an arrangement means for arranging the SFBC group in a resource group composed of a plurality of resource elements adjacent in the frequency direction, and arranging a reference signal for the second type receiving apparatus in the resource element; , And in the first and second resource groups adjacent to each other in the frequency axis direction, the arranging unit sandwiches a boundary between the first resource group and the second resource group in the frequency axis direction. The reference signal is arranged in two resource elements adjacent to each other in the first resource group. In at least one of the flops and the second resource groups, wherein the two resource resource elements other than the element without placing the reference signal.
 本発明の参照信号送信方法は、第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成するステップと、前記SFBCグループを、周波数方向で隣接する複数のリソースエレメントから構成されるリソースグループに配置し、第2種受信装置用の参照信号を、前記リソースエレメントに配置するステップと、を具備し、前記参照信号は、周波数軸方向で隣接する第1のリソースグループ及び第2のリソースグループにおいて、前記第1のリソースグループと第2のリソースグループとの境界を挟んで周波数軸方向で隣り合う2つのリソースエレメントに配置され、前記第1のリソースグループ及び第2のリソースグループの少なくとも一方において、前記2つのリソースエレメント以外のリソースエレメントには配置されない。 In the reference signal transmission method of the present invention, a transmission data sequence for the first type receiver is subjected to spatial frequency block coding (SFBC) in block code processing units, and an SFBC group as a code result for each block code processing unit is formed. And arranging the SFBC group in a resource group composed of a plurality of resource elements adjacent in the frequency direction, and arranging a reference signal for a type 2 receiver in the resource element. The reference signal is adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group in the first resource group and the second resource group adjacent in the frequency axis direction. Arranged in one resource element, the first resource group and the second resource group In at least one of up, said resource elements other than two resource elements not disposed.
 本発明によれば、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑える、無線送信装置及び参照信号送信方法を提供することができる。 According to the present invention, the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the data to the first wireless reception device is the first. To provide a wireless transmission device and a reference signal transmission method that minimizes deterioration of error characteristics of data to the first wireless reception device even when overwritten by a reference signal for the second wireless reception device. it can.
LTEのフレームの構成を示す図The figure which shows the structure of the flame | frame of LTE SFBC(Space-Frequency Block Coding)及びLTEにおけるSFBC結果単位の配置例の説明に供する図Diagram for explaining examples of arrangement of SFBC result units in SFBC (Space-Frequency Block Coding) and LTE LTE-A端末に対応するCSI-RSの送信方法を示す図The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal LTE-A端末に対応するCSI-RSの送信方法を示す図The figure which shows the transmission method of CSI-RS corresponding to a LTE-A terminal CSI-RSによるLTE端末向けのデータへの上書きを説明する図The figure explaining the overwriting to the data for LTE terminals by CSI-RS 本実施の形態に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on this Embodiment. 本実施の形態に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on this Embodiment. 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第1の配置例(n=2の場合)の説明に供する図The figure which uses for description of the 1st example of arrangement | positioning (in the case of n = 2) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment. 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第1の配置例(n=4の場合)の説明に供する図The figure which uses for description of the 1st example of arrangement | positioning (when n = 4) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment. 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第2の配置例(n=2の場合)の説明に供する図The figure which uses for description of the 2nd example of arrangement | positioning (when n = 2) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment. 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第2の配置例(n=4の場合)の説明に供する図The figure with which it uses for description of the 2nd example of arrangement | positioning (when n = 4) of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第3の配置例の説明に供する図The figure with which it uses for description of the 3rd example of arrangement | positioning of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第4の配置例(n=2の場合、LTE端末に割り当てられるリソースブロックの構成)の説明に供する図The figure which uses for description of the 4th example of arrangement | positioning of CSI-RS with respect to the SFBC resource group by the base station which concerns on this Embodiment (When n = 2, the structure of the resource block allocated to a LTE terminal). 本実施の形態に係る基地局によるSFBCリソースグループに対するCSI-RSの第4の配置例(n=2の場合、LTE-A端末に割り当てられるリソースブロックの構成)の説明に供する図The figure which uses for description of the 4th example of arrangement | positioning of CSI-RS with respect to SFBC resource group by the base station which concerns on this Embodiment (when n = 2, the structure of the resource block allocated to a LTE-A terminal). 図11Aの配置例に周波数多重(FDM)方式を適用した変形例を示す図The figure which shows the modification which applied the frequency multiplexing (FDM) system to the example of arrangement | positioning of FIG. 11A 図11Bの配置例に周波数多重(FDM)方式を適用した変形例を示す図The figure which shows the modification which applied the frequency multiplexing (FDM) system to the example of arrangement | positioning of FIG. 11B
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 [システムの概要]
 以下の説明では、本発明に係る無線通信装置を携帯電話等の移動体通信用のセルラーシステムに適用した例を示す。
[System Overview]
In the following description, an example is shown in which the wireless communication apparatus according to the present invention is applied to a cellular system for mobile communication such as a mobile phone.
 本実施の形態に係る無線通信システムは、無線通信装置である後述の基地局100と、第1種システム対応の第1種端末と、第2種システム対応の第2端末である端末200とを有する。例えば、基地局100は、LTE-Aシステム(及びLTEシステム)に対応するLTE-A基地局であり、第1種端末は、LTEシステムに対応するLTE端末であり、第2種端末は、LTE-A端末である。基地局100は、複数のアンテナを介して、第1種端末又は第2種端末へ信号を送信する。この送信には、例えば、OFDMが用いられる。基地局100は、シリアルな送信信号をOFDMシンボル単位で直並列変換及びIFFTを行うことにより得られたOFDM信号を送信する。すなわち、基地局100は、複数のOFDMシンボル及び複数のサブキャリアにより定義されるリソースブロックを、複数のアンテナからそれぞれ送信することにより、受信側の端末へ「空間多重リソースブロック」を送信する。 The wireless communication system according to the present embodiment includes a base station 100, which will be described later, which is a wireless communication device, a first type terminal compatible with the first type system, and a terminal 200 that is a second terminal compatible with the second type system. Have. For example, the base station 100 is an LTE-A base station corresponding to the LTE-A system (and LTE system), the first type terminal is an LTE terminal corresponding to the LTE system, and the second type terminal is LTE. -A terminal. Base station 100 transmits a signal to a first type terminal or a second type terminal via a plurality of antennas. For this transmission, for example, OFDM is used. Base station 100 transmits an OFDM signal obtained by performing serial-parallel conversion and IFFT on a serial transmission signal in units of OFDM symbols. That is, base station 100 transmits a “spatial multiplexed resource block” to a receiving terminal by transmitting resource blocks defined by a plurality of OFDM symbols and a plurality of subcarriers from a plurality of antennas.
 第2種システムは第1種システムを踏襲するシステムであるので、基地局100は、第1種端末とも通信することができる。第1種端末は、第2種システムの存在を知り得ないが、第1種システム対応の基地局との間の通信における動作と同じ動作をすることで、基地局100と通信することができる。一方、第2種端末は、第1種システムに分類される基地局(つまり、第1種基地局)と、第2種システムに分類される基地局(つまり、基地局100も該当する第2種基地局)とを見分けることができ、各基地局との間で適切な通信を実行することができる。 Since the second type system follows the first type system, the base station 100 can also communicate with the first type terminal. The first type terminal cannot know the existence of the second type system, but can communicate with the base station 100 by performing the same operation as the communication with the base station compatible with the first type system. . On the other hand, the type 2 terminal includes a base station classified into the type 1 system (that is, a type 1 base station) and a base station classified into the type 2 system (that is, the base station 100 corresponding to the second type). Seed base stations) and appropriate communication can be performed with each base station.
 基地局100は、第1種システム用の第1参照信号に加えて、LTE-Aシステム用の第2参照信号(例えば、CSI-RS)も送信する。これらの参照信号は、常にRB内の予め決められたREに挿入される。第1参照信号は、主に、周波数スケジューリングや適応MCS制御を行うために用いられる。 The base station 100 also transmits a second reference signal (for example, CSI-RS) for the LTE-A system in addition to the first reference signal for the first type system. These reference signals are always inserted into a predetermined RE in the RB. The first reference signal is mainly used for frequency scheduling and adaptive MCS control.
 また、基地局100は、RBにおいて、第1種端末への下り回線データに割り当て可能なRE群を、所定数のREから構成されるREグループに分割する。このREグループは、SFBC結果単位がマッピングされるリソース単位であり、上述のSFBCリソースグループに対応する。ここでは、このREグループは、SFBCリソースグループと同様に、周波数軸上で隣接する2つのREから構成される。 In addition, the base station 100 divides, in the RB, the RE group that can be allocated to the downlink data to the first type terminal into an RE group composed of a predetermined number of REs. This RE group is a resource unit to which the SFBC result unit is mapped, and corresponds to the above-described SFBC resource group. Here, this RE group is composed of two REs that are adjacent on the frequency axis, like the SFBC resource group.
 以下では、基地局100は、LTE-A基地局であり、端末200は、LTE-A端末であり、第1種端末は、LTE端末である場合を例にとり説明する。 Hereinafter, a case where the base station 100 is an LTE-A base station, the terminal 200 is an LTE-A terminal, and the first type terminal is an LTE terminal will be described as an example.
 [基地局の構成]
 図6は、本実施の形態に係る基地局100の構成を示すブロック図である。図6において、基地局100は、複数の端末用信号処理部101-a,bと、複数の送信RF部103-1~mと、複数のアンテナ104-1~mと、スケジューリング部105と、第2参照信号配置設定部106と、第2参照信号生成部107と、第1参照信号生成部108と、受信RF部109と、分離部110と、復調/復号部111と、CRC検査部112と、フィードバック情報復調部113とを有する。なお、アンテナ104-1~mの内、アンテナ104-1~nは、LTE端末向けの送信データ及び第1参照信号並びにLTE-A端末向けの送信データ及びCSI-RSを送信することに用いられる。一方、アンテナ104-n+1~mは、LTE端末向けの送信データ及び第1参照信号を送信することには用いられず、LTE-A端末向けの送信データ及びCSI-RSの送信に用いられる。
[Base station configuration]
FIG. 6 is a block diagram showing a configuration of base station 100 according to the present embodiment. In FIG. 6, the base station 100 includes a plurality of terminal signal processing units 101-a and 101b, a plurality of transmission RF units 103-1 to m, a plurality of antennas 104-1 to m, a scheduling unit 105, Second reference signal arrangement setting section 106, second reference signal generation section 107, first reference signal generation section 108, reception RF section 109, separation section 110, demodulation / decoding section 111, and CRC check section 112 And a feedback information demodulator 113. Of antennas 104-1 to m, antennas 104-1 to n are used to transmit transmission data for the LTE terminal, the first reference signal, transmission data for the LTE-A terminal, and CSI-RS. . On the other hand, the antennas 104-n + 1 to m are not used for transmitting transmission data for the LTE terminal and the first reference signal, but are used for transmission of transmission data for the LTE-A terminal and CSI-RS.
 端末用信号処理部101-aは、符号化/変調部121-1と、プリコーディング処理部123-1と、データ上書き部124とを有する。また、端末用信号処理部101-bは、符号化/変調部121-2と、第2参照信号マッピング部122と、プリコーディング処理部123-2とを有する。 The terminal signal processing unit 101-a includes an encoding / modulation unit 121-1, a precoding processing unit 123-1, and a data overwriting unit 124. The terminal signal processing unit 101-b includes an encoding / modulation unit 121-2, a second reference signal mapping unit 122, and a precoding processing unit 123-2.
 端末200又は第1種端末から送信された信号は、アンテナ104-1を介して受信RF部109に入力される。 The signal transmitted from the terminal 200 or the first type terminal is input to the reception RF unit 109 via the antenna 104-1.
 受信RF部109は、受信信号に対して、所定の無線受信処理(ダウンコンバート、A/D変換等)を施した後、無線受信処理後の受信信号を分離部110へ出力する。 The reception RF unit 109 performs predetermined radio reception processing (down-conversion, A / D conversion, etc.) on the reception signal, and then outputs the reception signal after the radio reception processing to the separation unit 110.
 分離部110は、受信RF部109から受け取る受信信号をフィードバック信号とデータ信号とに分離し、フィードバック信号をフィードバック情報復調部113へ出力し、データ信号を復調/復号部111へ出力する。 Separation section 110 separates the received signal received from reception RF section 109 into a feedback signal and a data signal, outputs the feedback signal to feedback information demodulation section 113, and outputs the data signal to demodulation / decoding section 111.
 復調/復号部111は、データ信号を復調、復号することにより、受信データを得る。CRC検査部112は、復調/復号部111から出力される受信データに対しCRC検査による誤り検出処理を施し、受信データに誤りが含まれているかどうかを判定する。そして、CRC検査部112より受信データが出力される。 The demodulation / decoding unit 111 obtains received data by demodulating and decoding the data signal. The CRC checker 112 performs error detection processing by CRC check on the received data output from the demodulator / decoder 111 to determine whether the received data contains an error. Then, the reception data is output from the CRC inspection unit 112.
 フィードバック情報復調部113は、フィードバック信号を復調し、復調結果をスケジューリング部105へ出力する。フィードバック信号には、チャネル品質情報又はAck/Nack情報等が含まれている。チャネル品質情報は、基地局100から送信された第1種参照信号に基づいて端末200で測定されたチャネル品質を示す。 The feedback information demodulation unit 113 demodulates the feedback signal and outputs the demodulation result to the scheduling unit 105. The feedback signal includes channel quality information or Ack / Nack information. The channel quality information indicates the channel quality measured by the terminal 200 based on the first type reference signal transmitted from the base station 100.
 スケジューリング部105は、チャネル品質情報及びCSI-RS配置情報に基づいて、伝送信号に関するスケジューリングを行う。具体的には、スケジューリング部105は、参照信号を受信する端末から送信されたチャネル品質情報に基づいて、周波数スケジューリング及び適応MCS制御の少なくともいずれか一方を実施する。また、スケジューリング部105は、CSI-RS配置情報を参照することにより、CSI-RSが配置されるREを除くREに対して、各端末の割り当てを行う。ただし、CSI-RSが配置される任意のRBに対してLTE端末向けの送信データ(すなわち、下り回線データ)を配置する場合には、スケジューリング部105は、CSI-RSが配置されないRBにおけるMCSよりも、少しロバストなMCSを設定する。 Scheduling section 105 performs transmission signal scheduling based on channel quality information and CSI-RS arrangement information. Specifically, the scheduling unit 105 performs at least one of frequency scheduling and adaptive MCS control based on channel quality information transmitted from a terminal that receives a reference signal. Moreover, the scheduling part 105 allocates each terminal with respect to RE except RE with which CSI-RS is arrange | positioned with reference to CSI-RS arrangement | positioning information. However, in the case where transmission data for LTE terminals (that is, downlink data) is allocated to an arbitrary RB in which CSI-RS is allocated, scheduling section 105 uses MCS in RB in which CSI-RS is not allocated. Set a little more robust MCS.
 スケジューリング部105によって決定されたスケジューリング情報(周波数スケジューリングの結果及び決定されたMCSの少なくとも一方を含む)は、端末用信号処理部101-a,bへ出力される。 The scheduling information determined by the scheduling unit 105 (including at least one of the frequency scheduling result and the determined MCS) is output to the terminal signal processing units 101-a and 101b.
 第2参照信号配置設定部106は、CSI-RSの配置情報をスケジューリング部105及び第2参照信号生成部107へ出力する。また、CSI-RSの配置情報は、第2種端末に対しても別途通知される。 The second reference signal arrangement setting unit 106 outputs CSI-RS arrangement information to the scheduling unit 105 and the second reference signal generation unit 107. Further, the arrangement information of CSI-RS is also notified separately to the second type terminal.
 第2参照信号生成部107は、LTE-A端末向けの送信データが配置されるリソースブロックを形成するタイミングでは、送信アンテナ104-1~mから送信されるCSI-RSをそれぞれ生成し、端末用信号処理部101-bへ出力する。 Second reference signal generation section 107 generates CSI-RSs transmitted from transmission antennas 104-1 to m at the timing of forming resource blocks in which transmission data for LTE-A terminals is arranged, and Output to the signal processing unit 101-b.
 また、第2参照信号生成部107は、LTE端末向けの送信データが配置されるリソースブロックにおいてCSI-RSを送信する場合には、送信アンテナ104-1~nから送信されるCSI-RSをそれぞれ生成し、端末用信号処理部101-aへ出力する。 Further, when transmitting CSI-RS in a resource block in which transmission data for LTE terminals is arranged, second reference signal generation section 107 transmits CSI-RS transmitted from transmission antennas 104-1 to 104-n, respectively. Generate and output to the terminal signal processing unit 101-a.
 端末用信号処理部101-aは、LTE端末向けの送信データが配置されるリソースブロックを形成する。具体的には、端末用信号処理部101-aは、LTE端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。そして、端末用信号処理部101-aは、形成したSFBCグループを、送信データ系列に割り当てられた、複数のリソースエレメントから構成されるSFBCリソースグループに配置する。そして、端末用信号処理部101-aは、空間多重リソースブロックにおいて周波数軸方向で隣接する第1のSFBCリソースグループ及び第2のSFBCリソースグループの両方に跨るように、SFBCグループの代わりにCSI-RSを配置する。すなわち、端末用信号処理部101-aは、第1のSFBCリソースグループと第2のSFBCリソースグループとの境界を挟んで周波数軸方向で隣り合う2つのリソースエレメントに少なくともCSI-RSを配置し、その2つのリソースエレメント以外のリソースエレメントにはCSI-RSを配置しない。そして、その2つのリソースエレメントの内の一方に配置されるCSI-RSは、第1のアンテナから送信され、他方に配置されるCSI-RSは、第2のアンテナから送信される。こうすることで、第1のアンテナから送信されるリソースブロックと第2のアンテナから送信されるリソースブロックとが空間多重される空間多重リソースブロックにおいては、CSI-RSが上記した第1のSFBCリソースグループ及び第2のSFBCリソースグループの両方に跨るように配置されることになる。なお、SFBCリソースグループに対するCSI-RSの配置については、後に詳述する。 The terminal signal processing unit 101-a forms a resource block in which transmission data for LTE terminals is arranged. Specifically, the terminal signal processing unit 101-a performs spatial frequency block coding (SFBC) on a transmission data sequence for LTE terminals in block code processing units, and an SFBC group that is a code result for each block code processing unit. Form. Then, the terminal signal processing unit 101-a arranges the formed SFBC group in an SFBC resource group composed of a plurality of resource elements assigned to the transmission data sequence. Then, the terminal signal processing unit 101-a replaces the SFBC group with the CSI− so as to straddle both the first SFBC resource group and the second SFBC resource group adjacent in the frequency axis direction in the spatial multiplexing resource block. RS is arranged. That is, the terminal signal processing unit 101-a arranges at least CSI-RSs in two resource elements adjacent in the frequency axis direction across the boundary between the first SFBC resource group and the second SFBC resource group, CSI-RS is not allocated to resource elements other than the two resource elements. The CSI-RS arranged in one of the two resource elements is transmitted from the first antenna, and the CSI-RS arranged in the other is transmitted from the second antenna. In this way, in the spatial multiplexing resource block in which the resource block transmitted from the first antenna and the resource block transmitted from the second antenna are spatially multiplexed, the CSI-RS has the first SFBC resource described above. It is arranged so as to straddle both the group and the second SFBC resource group. The arrangement of the CSI-RS with respect to the SFBC resource group will be described in detail later.
 詳細には、端末用信号処理部101-aにおいて符号化/変調部121-1は、LTE端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。なお、符号化/変調部121-1は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。 Specifically, in the terminal signal processing unit 101-a, the encoding / modulation unit 121-1 performs spatial frequency block coding (SFBC) on the transmission data sequence for LTE terminals in block code processing units, and performs block code processing units. An SFBC group which is a code result of each is formed. Note that the encoding / modulation unit 121-1 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
 プリコーディング処理部123-1は、符号化/変調部121-1から受け取るSFBCグループ群から、アンテナ104-1~nに対応するn個の並列ストリームを形成する。プリコーディング処理部123-1は、SFBCグループを分割することにより複数の並列ストリームを形成する。プリコーディング処理部123-1で得られた各ストリームは、OFDMシンボル単位でシリアルに出力される。 The precoding processing unit 123-1 forms n parallel streams corresponding to the antennas 104-1 to 104-n from the SFBC group group received from the encoding / modulation unit 121-1. The precoding processing unit 123-1 forms a plurality of parallel streams by dividing the SFBC group. Each stream obtained by the precoding processing unit 123-1 is serially output in units of OFDM symbols.
 データ上書き部124は、複数の並列ストリームを構成する構成データ群の内でCSI-RSを配置する予定のリソースエレメントに対応する構成データをCSI-RSで上書きし、得られた複数の並列ストリームを送信RF部103-1~nへ出力する。この複数の並列ストリームには、第1参照信号生成部108で生成されたLTE端末向けの参照信号が挿入される。ただし、この複数の並列ストリームはLTE端末向けの参照信号が挿入されるREを避けて配置されているため、第1参照信号によるデータの上書きは行われない。 The data overwriting unit 124 overwrites the configuration data corresponding to the resource element in which the CSI-RS is to be arranged in the configuration data group that configures the plurality of parallel streams with the CSI-RS, and the obtained plurality of parallel streams. Output to transmission RF sections 103-1 to n. Reference signals for LTE terminals generated by the first reference signal generation unit 108 are inserted into the plurality of parallel streams. However, since the plurality of parallel streams are arranged avoiding the RE in which the reference signal for the LTE terminal is inserted, data is not overwritten by the first reference signal.
 端末用信号処理部101-bは、LTE-A端末向けの送信データが配置されるリソースブロックを形成する。 The terminal signal processing unit 101-b forms a resource block in which transmission data for the LTE-A terminal is arranged.
 具体的には、端末用信号処理部101-bにおいて符号化/変調部121-2は、LTE-A端末向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する。 Specifically, in the terminal signal processing unit 101-b, the encoding / modulation unit 121-2 performs spatial frequency block coding (SFBC) on the block data processing unit for the transmission data sequence for the LTE-A terminal, and blocks An SFBC group that is a code result for each code processing unit is formed.
 符号化/変調部121-2は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。第2参照信号マッピング部122は、第2参照信号生成部107から受け取る送信アンテナ104-1~mから送信されるCSI-RSを入力し、CSI-RSをアンテナ毎に分けて並列にプリコーディング処理部123-2へ出力する。なお、符号化/変調部121-2は、制御信号等の多重処理、レートマッチング処理、インターリーブ処理、変調処理等も行う。 The encoding / modulation unit 121-2 also performs control signal multiplexing processing, rate matching processing, interleaving processing, modulation processing, and the like. Second reference signal mapping section 122 receives CSI-RSs transmitted from transmission antennas 104-1 to m received from second reference signal generation section 107, and divides CSI-RS for each antenna and performs precoding processing in parallel. To the unit 123-2. Note that the encoding / modulation unit 121-2 also performs multiplexing processing of a control signal, rate matching processing, interleaving processing, modulation processing, and the like.
 プリコーディング処理部123-2は、符号化/変調部121-1から受け取るSFBCグループ群及び第2参照信号生成部107から受け取るCSI-RSから、アンテナ104-n+1~mに対応するm個の並列ストリームを形成する。プリコーディング処理部123-2で得られた各ストリームは、OFDMシンボル単位でシリアルに出力される。OFDMシンボル単位のストリームにおいて、SFBCグループの構成データ及びCSI-RSは、そのストリームに対応するアンテナから送信されるリソースブロックにおいてSFBCグループの構成データ及びCSI-RSが配置される予定のリソースエレメントに対応する位置に配置される。 The precoding processing unit 123-2 receives m parallels corresponding to the antennas 104-n + 1 to m from the SFBC group group received from the encoding / modulation unit 121-1 and the CSI-RS received from the second reference signal generation unit 107. Form a stream. Each stream obtained by the precoding processing unit 123-2 is serially output in units of OFDM symbols. In the OFDM symbol unit stream, the SFBC group configuration data and CSI-RS correspond to the SFBC group configuration data and CSI-RS to be allocated in the resource block transmitted from the antenna corresponding to the stream. It is arranged at the position to do.
 送信RF部103-1~mは、OFDMシンボル単位のストリームを入力し、直並列変換及びIFFT処理を施してOFDM信号を形成する。送信RF部103-1~mで形成されたOFDM信号は、アンテナ104-1~mからそれぞれ送信される。 The transmission RF units 103-1 to 103-m receive the OFDM symbol unit stream, perform serial-parallel conversion and IFFT processing, and form an OFDM signal. The OFDM signals formed by the transmission RF units 103-1 to m are transmitted from the antennas 104-1 to m, respectively.
 [端末の構成]
 図7は、本実施の形態に係る端末200の構成を示すブロック図である。図7において、端末200は、複数のアンテナ211-1~mと、複数の受信RF部212-1~mと、チャネル推定部213と、CSI測定部214と、MIMO復調部215と、復号部216と、CRC検査部217と、フィードバック情報生成部218と、符号化部219と、多重部220と、送信RF部221と、制御信号復調部222とを有する。ここでは、上述のように、端末200は、LTE-A端末として説明される。
[Terminal configuration]
FIG. 7 is a block diagram showing a configuration of terminal 200 according to the present embodiment. In FIG. 7, terminal 200 includes a plurality of antennas 211-1 to 211-m, a plurality of reception RF units 212-1 to m, a channel estimation unit 213, a CSI measurement unit 214, a MIMO demodulation unit 215, and a decoding unit. 216, CRC checker 217, feedback information generator 218, encoder 219, multiplexer 220, transmission RF unit 221, and control signal demodulator 222. Here, as described above, terminal 200 is described as an LTE-A terminal.
 基地局100から送信されたOFDM信号が空間多重された空間多重OFDM信号が、アンテナ211-1~mで受信される。 The spatially multiplexed OFDM signal obtained by spatially multiplexing the OFDM signal transmitted from the base station 100 is received by the antennas 211-1 to 211-m.
 受信RF部212-1~mは、アンテナ211-1~mを介して受信した受信OFDM信号に対して、無線受信処理(ダウンコンバート、A/D変換等)及びOFDM復調処理(フーリエ変換、パラレル/シリアル変換等)を施すことにより、シリアルの受信信号をそれぞれ得る。この受信信号は、チャネル推定部213、MIMO復調部215、及び制御信号復調部222へ出力される。 The reception RF units 212-1 to 212-m perform radio reception processing (down-conversion, A / D conversion, etc.) and OFDM demodulation processing (Fourier transform, parallel) on the received OFDM signals received via the antennas 211-1-m. / Serial conversion etc.) to obtain serial received signals. This received signal is output to channel estimation section 213, MIMO demodulation section 215, and control signal demodulation section 222.
 チャネル推定部213は、受信信号に含まれるチャネル品質測定用参照信号に基づいてチャネル推定を実施し、チャネル推定値を算出する。チャネル品質測定用参照信号の位置は、基地局100から別途通知された制御情報に基づき特定される。具体的には、チャネル推定部213は、第2参照信号用のリソース情報としてCSI-RS配置情報を入力し、チャネル品質測定用の参照信号であるCSI-RSが割り当てられるリソースブロック及びそのリソースブロックにおける周波数位置を特定する。ただし、CSI-RS配置情報は、基地局100からの制御情報などによって通知される。チャネル推定部213で算出されたチャネル推定値は、CSI測定部214及びMIMO復調部215へ出力される。 The channel estimation unit 213 performs channel estimation based on a channel quality measurement reference signal included in the received signal, and calculates a channel estimation value. The position of the channel quality measurement reference signal is specified based on control information separately notified from the base station 100. Specifically, the channel estimation unit 213 inputs CSI-RS arrangement information as resource information for the second reference signal, and a resource block to which CSI-RS that is a reference signal for channel quality measurement is assigned and its resource block Specify the frequency position at. However, the CSI-RS arrangement information is notified by control information from the base station 100 or the like. The channel estimation value calculated by channel estimation section 213 is output to CSI measurement section 214 and MIMO demodulation section 215.
 制御信号復調部222は、基地局100から送信される制御信号を復調する。そして、制御信号復調部222は、復調後の制御信号から、CSI-RSを配置するリソースの設定に関するCSI-RS配置情報、送信信号の変調方式又は符号化率などのMCS情報を含む送信パラメータなどの制御情報を抽出する。この際、制御信号復調部222は、予めCSI-RS配置情報を受信及び復調し、CSI-RS配置情報を保持している。 The control signal demodulator 222 demodulates the control signal transmitted from the base station 100. Then, the control signal demodulator 222 transmits, from the demodulated control signal, CSI-RS arrangement information related to the setting of resources for arranging the CSI-RS, transmission parameters including MCS information such as a modulation scheme or a coding rate of the transmission signal, Extract control information. At this time, the control signal demodulator 222 receives and demodulates the CSI-RS arrangement information in advance and holds the CSI-RS arrangement information.
 CSI測定部214は、チャネル推定部213で算出されたチャネル推定値を用いて、チャネル品質(受信品質)としてCSIを算出し、フィードバック情報生成部218に出力する。この際、CSI測定部214は、チャネル推定部213と同様にCSI-RS配置情報を入力し、チャネル品質測定用の参照信号であるCSI-RSが割り当てられるリソースエレメントに関する情報を取得する。そして、CSI測定部214は、リソースエレメントに関する情報の示すリソースエレメントごとにチャネル推定値を平均化することによりチャネル品質情報を算出する。更に、CSI測定部214は、平均チャネル推定値を用いて補間処理することにより、CSI-RSの配置されていないリソースエレメントのチャネル品質情報も算出する。具体的なチャネル品質情報として、既定の変調方式・符号化率の組み合わせに対応したCSI、既定のコードブックから現在のチャネル状況に即したプリコーディングマトリクスを選択するPMI、希望する送信ストリーム数に対応したRIなどが挙げられる。 The CSI measurement unit 214 uses the channel estimation value calculated by the channel estimation unit 213 to calculate CSI as channel quality (reception quality) and outputs the CSI to the feedback information generation unit 218. At this time, the CSI measurement unit 214 receives the CSI-RS arrangement information as in the channel estimation unit 213, and acquires information on the resource element to which the CSI-RS that is a reference signal for channel quality measurement is assigned. Then, the CSI measurement unit 214 calculates channel quality information by averaging the channel estimation values for each resource element indicated by the information regarding the resource element. Furthermore, the CSI measurement unit 214 also calculates channel quality information of resource elements in which no CSI-RS is arranged by performing an interpolation process using the average channel estimation value. As specific channel quality information, CSI corresponding to a combination of a predetermined modulation scheme and coding rate, PMI for selecting a precoding matrix corresponding to the current channel condition from a predetermined codebook, and the desired number of transmission streams And the like.
 MIMO復調部215は、チャネル推定部213から受け取ったチャネル推定値を用いて、受信信号をMIMO復調処理(例えば、SFBC受信処理)し、復調した信号を復号部216へ出力する。MIMO復調部215は、デインターリーブ処理、レートデマッチング(Rate-Demaching)処理、尤度合成処理等も行う。 MIMO demodulation section 215 uses the channel estimation value received from channel estimation section 213 to perform MIMO demodulation processing (for example, SFBC reception processing) on the received signal, and outputs the demodulated signal to decoding section 216. The MIMO demodulator 215 also performs deinterleaving processing, rate dematching processing, likelihood combining processing, and the like.
 復号部216は、MIMO分離後の信号を誤り訂正復号することにより、受信データを得る。 The decoding unit 216 obtains received data by performing error correction decoding on the signal after MIMO separation.
 CRC検査部217は、復号部216で得られた受信データCRC(Cyclic Redundancy Check)検査し、受信データに誤りが含まれているかどうかを示すデータエラーの有無情報をフィードバック情報生成部218に出力する。CRC検査部217は、誤りが無いと判定したときには、受信データを後段の機能部へ出力する。 The CRC checker 217 checks the received data CRC (Cyclic Redundancy Check) obtained by the decoder 216, and outputs data error presence / absence information indicating whether or not the received data includes an error to the feedback information generator 218. . When the CRC checking unit 217 determines that there is no error, the CRC checking unit 217 outputs the received data to the subsequent function unit.
 フィードバック情報生成部218は、CSI測定部214で算出したチャネル品質情報(CQI、PMI、RIなど)を含むフィードバック情報を生成する。また、フィードバック情報生成部218は、CRC検査部217での誤り検出結果に基づいて、Ack/Nack情報を生成する。ここで、CRC検査部217での誤り検出結果が「誤り無し」を示していれば、フィードバック情報生成部218は、ACK(Acknowledgement)を生成し、「誤り有り」を示していれば、Nack(Negative Acknowledgement)を生成する。 The feedback information generation unit 218 generates feedback information including the channel quality information (CQI, PMI, RI, etc.) calculated by the CSI measurement unit 214. Further, the feedback information generation unit 218 generates Ack / Nack information based on the error detection result in the CRC check unit 217. Here, if the error detection result in the CRC checking unit 217 indicates “no error”, the feedback information generation unit 218 generates an ACK (Acknowledgement). If the error detection result indicates “error present”, the Nack ( Generate Negative (Acknowledgement).
 符号化部219は、送信データを復号し、復号結果を多重部220へ出力する。 The encoding unit 219 decodes the transmission data and outputs the decoding result to the multiplexing unit 220.
 多重部220は、フィードバック情報及び符号化された送信データを含む送信信号等を多重処理する。そして、多重部220は、変調多値数又は符号化率を適応的に設定するレートマッチング(Rate-Maching)処理、インターリーブ処理、変調処理等を行い、送信RF部221に出力する。 The multiplexing unit 220 multiplexes transmission signals including feedback information and encoded transmission data. Then, multiplexing section 220 performs rate matching (Rate-Maching) processing, interleaving processing, modulation processing, and the like that adaptively sets the modulation multi-level number or coding rate, and outputs the result to transmission RF section 221.
 送信RF部221は、多重部220から受け取る多重信号を、OFDM変調処理(シリアル/パラレル変換、逆フーリエ変換等)及び無線送信処理(アップコンバート、D/A変換、増幅等)し、アンテナ211-1を介して送信する。 The transmission RF unit 221 performs OFDM modulation processing (serial / parallel conversion, inverse Fourier transform, etc.) and radio transmission processing (up-conversion, D / A conversion, amplification, etc.) on the multiplexed signal received from the multiplexing unit 220, and the antenna 211- 1 to send.
 [基地局100によるCSI-RS送信の詳細]
 次に、SFBCリソースグループに対するCSI-RSの配置について説明する。
[Details of CSI-RS transmission by base station 100]
Next, the arrangement of CSI-RS for the SFBC resource group will be described.
 〈CSI-RS配置例1(CDM+FDM)〉
 図8は、本実施の形態に係る基地局100によるSFBCリソースグループに対するCSI-RSの第1の配置例の説明に供する図である。ここでは、CDM及びFDMが用いられている。特に、図8Aは、基地局100が2アンテナLTE基地局を模擬して動作する場合(つまり、図6におけるn=2の場合)の概念図であり、図8B、基地局100が4アンテナLTE基地局を模擬して動作する場合(つまり、図6におけるn=4の場合)の概念図である。図8に示されるリソースブロックは、基地局100が送信する空間多重リソースブロックとして捉えることができる。
<CSI-RS arrangement example 1 (CDM + FDM)>
FIG. 8 is a diagram for explaining a first arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment. Here, CDM and FDM are used. In particular, FIG. 8A is a conceptual diagram when the base station 100 operates by simulating a two-antenna LTE base station (that is, when n = 2 in FIG. 6), and FIG. 8B shows that the base station 100 has four-antenna LTE. FIG. 7 is a conceptual diagram when operating by simulating a base station (that is, when n = 4 in FIG. 6). The resource block shown in FIG. 8 can be regarded as a spatial multiplexing resource block transmitted by the base station 100.
 また、図8では、周波数軸上に2つ連続したサブキャリア及び時間軸上に2つ連続したOFDMシンボルで規定される領域にCSI-RSが配置されている。このCSI-RSが配置されている、合計で4つのREによって、CSI-RSグループが構成されている。 In FIG. 8, CSI-RS is arranged in a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis. A CSI-RS group is configured by a total of four REs in which the CSI-RS is arranged.
 ここで着目すべきは、図8において、CSI-RSグループが、LTE端末に対して定義されているSFBCリソースグループを跨いで配置されていることである。すなわち、CSI-RSグループは、空間多重リソースブロックにおいて周波数軸上で連続する少なくとも2つのSFBCリソースグループの一部に配置されており、かつ、その少なくとも2つのSFBCリソースグループの一部には配置されていない。 It should be noted here that in FIG. 8, the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal. That is, the CSI-RS group is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and is arranged in a part of the at least two SFBC resource groups. Not.
 別の見方をすれば、空間多重リソースブロックにおいて周波数軸方向で隣接する第1のリソースグループ及び第2のリソースグループの両方に跨るように、SFBCグループの代わりにCSI-RSが配置される。すなわち、第1のリソースグループと第2のリソースグループとの境界を挟んで周波数軸方向で隣り合う2つのリソースエレメントに少なくともCSI-RSを配置する。そして、その2つのリソースエレメント以外のリソースエレメントの中にはCSI-RSの配置されていないリソースエレメントが第1のリソースグループ及び第2のリソースグループの両方にそれぞれ存在する。 From another viewpoint, the CSI-RS is arranged instead of the SFBC group so as to straddle both the first resource group and the second resource group adjacent in the frequency axis direction in the spatial multiplexing resource block. That is, at least CSI-RSs are arranged in two resource elements adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group. Among the resource elements other than the two resource elements, resource elements in which CSI-RS is not arranged exist in both the first resource group and the second resource group.
 このような配置を行うことによって、LTE端末がSFBC復調処理をする際の処理単位であるSFBCリソースグループの内の少なくとも一部のREがCSI-RSによる上書きの影響を受けない。これにより、SFBCグループをSFBC復調処理した後のCSI-RSによる影響が、従来(例えば、図4の場合)よりも軽減される。 By performing such an arrangement, at least a part of the REs in the SFBC resource group, which is a processing unit when the LTE terminal performs the SFBC demodulation process, is not affected by the overwriting by the CSI-RS. As a result, the influence of the CSI-RS after the SFBC group is subjected to the SFBC demodulation processing is reduced as compared with the conventional case (for example, in the case of FIG. 4).
 一方で、CSI-RSグループを複数のSFBCリソースグループに跨るように配置すると、CSI-RSによる上書きの影響を受けるSFBCリソースグループの数自体は、従来よりも増加している。しかしながら、「一部のデータ(例えばX個のデータ)が強い悪影響を受けている場合(つまり、従来のCSI配置例:図4など)」よりも、「多くのデータ(例えば2X個のデータ)が半減された影響を受ける(つまり、実施の形態による配置例:図8)」場合の方が誤り訂正符号の効果が大きい。このため、LTE端末がCSI-RSの存在を認識せずに下り回線データを復号する場合の性能劣化を低減することができる。 On the other hand, when the CSI-RS groups are arranged so as to straddle a plurality of SFBC resource groups, the number of SFBC resource groups affected by overwriting by the CSI-RS itself is increased. However, “more data (for example, 2X data) than“ when some data (for example, X data) is strongly adversely affected (that is, conventional CSI arrangement example: FIG. 4, etc.) ”) The effect of the error correction code is greater when the influence is reduced by half (that is, the arrangement example according to the embodiment: FIG. 8). For this reason, it is possible to reduce performance degradation when the LTE terminal decodes downlink data without recognizing the presence of CSI-RS.
 更に、上記したCSI-RSグループにおいて、CSI-RSがコード多重(CDM)される。すなわち、CDM及びFDMによって多重されるCSI-RSを周波数軸上及び時間軸上に隙間無く並べた形(Localized CDM)に基づいて、CSI-RSグループが構成されている。こうすることで、周波数選択性フェージング、又は、チャネルの時間変動による影響によるCSI-RS間の符号間干渉が起こりにくくなるので、CSI-RSの分離性能が向上し、端末側でのCSI-RSによる品質測定の精度が向上する。 Furthermore, in the above CSI-RS group, CSI-RS is code-multiplexed (CDM). That is, a CSI-RS group is configured based on a form (Localized CDM) in which CSI-RSs multiplexed by CDM and FDM are arranged without gaps on the frequency axis and the time axis. By doing so, inter-symbol interference between CSI-RSs due to frequency selective fading or the influence of channel time variations is less likely to occur, so the CSI-RS separation performance is improved, and the CSI-RS on the terminal side is improved. Improves quality measurement accuracy.
 〈CSI-RS配置例2(FDM)〉
 図9は、本実施の形態に係る基地局100によるSFBCリソースグループに対するCSI-RSの第2の配置例の説明に供する図である。ここでは、FDMが用いられている。特に、図9Aは、基地局100が2アンテナLTE基地局を模擬して動作する場合(つまり、図6におけるn=2の場合)の概念図であり、図9Bは、基地局100が4アンテナLTE基地局を模擬して動作する場合(すなわち、図6におけるn=4の場合)の概念図である。図8に示されるリソースブロックは、基地局100が送信する空間多重リソースブロックとして捉えることができる。
<CSI-RS arrangement example 2 (FDM)>
FIG. 9 is a diagram for explaining a second arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment. Here, FDM is used. In particular, FIG. 9A is a conceptual diagram when the base station 100 operates by simulating a two-antenna LTE base station (that is, when n = 2 in FIG. 6), and FIG. 9B shows that the base station 100 has four antennas. FIG. 7 is a conceptual diagram when operating by simulating an LTE base station (that is, when n = 4 in FIG. 6). The resource block shown in FIG. 8 can be regarded as a spatial multiplexing resource block transmitted by the base station 100.
 図9においても、周波数軸上に2つ連続したサブキャリア及び時間軸上に2つ連続したOFDMシンボルで規定される領域にCSI-RSが配置されている。このCSI-RSが配置されている、合計で4つのREによって、CSI-RSグループが構成されている。 Also in FIG. 9, CSI-RS is arranged in a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis. A CSI-RS group is configured by a total of four REs in which the CSI-RS is arranged.
 ここで着目すべきは、図8と同様に、図9においても、CSI-RSグループが、LTE端末に対して定義されているSFBCリソースグループを跨いで配置されていることである。すなわち、CSI-RSグループは、空間多重リソースブロックにおいて周波数軸上で連続する少なくとも2つのSFBCリソースグループの一部に配置されており、かつ、その少なくとも2つのSFBCリソースグループの一部には配置されていない。ただし、図9では、4つのアンテナからそれぞれ送信されるCSI-RS1~4が、CSI-RSグループの4つのREにそれぞれ配置されている。 It should be noted here that, similarly to FIG. 8, in FIG. 9 as well, the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal. That is, the CSI-RS group is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and is arranged in a part of the at least two SFBC resource groups. Not. However, in FIG. 9, CSI-RSs 1 to 4 transmitted from four antennas are arranged in four REs of the CSI-RS group, respectively.
 このような配置によっても、配置例1と同様に、LTE端末がCSI-RSの存在を認識せずに下り回線データを復号する場合の性能劣化を低減することができる。 Even with such an arrangement, similarly to the arrangement example 1, it is possible to reduce performance degradation when the LTE terminal decodes the downlink data without recognizing the presence of the CSI-RS.
 〈CSI-RS配置例3(FDM)〉
 図10は、本実施の形態に係る基地局100によるSFBCリソースグループに対するCSI-RSの第3の配置例の説明に供する図である。特に、図10Aは、基地局100が2アンテナLTE基地局を模擬して動作する場合(つまり、図6におけるn=2の場合)の概念図である。図10では、図8,9と異なり、CSI-RSが配置されるOFDMシンボルが11番目のOFDMシンボルのみに限定されている。
<CSI-RS arrangement example 3 (FDM)>
FIG. 10 is a diagram for explaining a third arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment. In particular, FIG. 10A is a conceptual diagram when base station 100 operates by simulating a two-antenna LTE base station (that is, when n = 2 in FIG. 6). In FIG. 10, unlike FIGS. 8 and 9, the OFDM symbol in which the CSI-RS is arranged is limited to only the 11th OFDM symbol.
 図10では、周波数軸上に少なくとも2つ連続したサブキャリアにCSI-RSが配置されており、2つ又は4つのREによってCSI-RSグループが構成されている。このうち、2つのREによって構成されているCSI-RSグループ(図10において、円で囲まれているCSI-RSグループ)に着目すると、図8,9と同様に、CSI-RSグループが、LTE端末に対して定義されているSFBCリソースグループを跨いで配置されていることが分かる。すなわち、2つのREによって構成されるCSI-RSグループは、空間多重リソースブロックにおいて周波数軸上で連続する少なくとも2つのSFBCリソースグループの一部に配置されており、かつ、その少なくとも2つのSFBCリソースグループの一部には配置されていない。ただし、ここでは、4つのREによって構成されているCSI-RSグループ(図10において、楕円で囲まれているCSI-RSグループ)は、2つのSFBCリソースグループの全体に重なっている。 In FIG. 10, CSI-RSs are arranged on at least two consecutive subcarriers on the frequency axis, and a CSI-RS group is configured by two or four REs. Of these, when attention is paid to a CSI-RS group composed of two REs (CSI-RS group surrounded by a circle in FIG. 10), the CSI-RS group is changed to LTE as in FIGS. It can be seen that the SFBC resource groups defined for the terminals are arranged across the terminals. That is, the CSI-RS group constituted by two REs is arranged in a part of at least two SFBC resource groups that are continuous on the frequency axis in the spatial multiplexing resource block, and the at least two SFBC resource groups It is not arranged in a part of. However, here, the CSI-RS group (the CSI-RS group surrounded by an ellipse in FIG. 10) configured by the four REs overlaps the entire two SFBC resource groups.
 このような配置を行うことによって、LTE端末がCSI-RSの存在を認識せずに下り回線データを復号する場合の性能劣化を低減することができる。 By performing such an arrangement, it is possible to reduce performance degradation when the LTE terminal decodes downlink data without recognizing the presence of CSI-RS.
 また、CSI-RSを配置するOFDMシンボルを11番目のOFDMシンボルのみに限定している。これにより、例えば10番目のOFDMシンボルにおいてLTE端末に対する別の参照信号(つまり、UE Specific Reference signal)等が配置されている場合に、その別の参照との衝突を避けることができる。更に、参照信号(CSI-RSやUE Specific Reference Signalを含む)に対しては、送信パワーのブースティング(Boosting)が行われることが一般的であり、異なる目的を持つ参照信号が同一OFDMシンボルに配置されることは出来るだけ避けた方が良い。本配置例は、このような要求に応えることができる。 Also, the OFDM symbol in which CSI-RS is arranged is limited to only the 11th OFDM symbol. Thereby, for example, when another reference signal (that is, UE Specific Reference signal) or the like for the LTE terminal is arranged in the 10th OFDM symbol, collision with the other reference can be avoided. Furthermore, for reference signals (including CSI-RS and UE Specific Reference Signal), transmission power boosting is generally performed, and reference signals having different purposes are included in the same OFDM symbol. It is better to avoid being placed as much as possible. This arrangement example can meet such a demand.
 なお、ここではFDMを前提としてCSI-RS配置例3を示したが、CSI-RS配置例3にはCDMの適用も可能である。 In addition, although CSI-RS arrangement example 3 was shown here on the premise of FDM, CDM can also be applied to CSI-RS arrangement example 3.
 〈CSI-RS配置例4(CDM)〉
 図11は、本実施の形態に係る基地局100によるSFBCリソースグループに対するCSI-RSの第4の配置例の説明に供する図である。ここでは、CDMが用いられている。図11は、基地局100が2アンテナLTE基地局を模擬して動作する場合(つまり、図6におけるn=2の場合)の概念図ある。特に、図11Aには、LTE端末に割り当てられるリソースブロックの構成が示されており、図11Bには、LTE-A端末に割り当てられるリソースブロックの構成が示されている。すなわち、図11AにおけるSFBCリソースグループとは、基地局100に接続するLTE端末が認識するSFBCリソースグループである一方、図11BにおけるSFBCリソースグループとは、基地局100に接続するLTE-A端末が認識するSFBCリソースグループである。つまり、基地局100は、或るリソースブロックをLTE端末の下り回線データに割当てた場合には、図11Aに示すようにSFBCリソースグループが敷き詰められたリソースブロック構成を選択することになる。一方、基地局100は、或るリソースブロックをLTE-A端末の下り回線データに割当てた場合には、図11Bに示すようにSFBCリソースグループが敷き詰められたリソースブロック構成を選択することになる。図11Aと図11Bとでは、SFBCリソースグループの敷き詰められ方だけが異なっている。
<CSI-RS Arrangement Example 4 (CDM)>
FIG. 11 is a diagram for explaining a fourth arrangement example of CSI-RSs for SFBC resource groups by base station 100 according to the present embodiment. Here, CDM is used. FIG. 11 is a conceptual diagram when base station 100 operates by simulating a two-antenna LTE base station (that is, when n = 2 in FIG. 6). In particular, FIG. 11A shows the configuration of resource blocks allocated to LTE terminals, and FIG. 11B shows the configuration of resource blocks allocated to LTE-A terminals. That is, the SFBC resource group in FIG. 11A is an SFBC resource group recognized by the LTE terminal connected to the base station 100, while the SFBC resource group in FIG. 11B is recognized by the LTE-A terminal connected to the base station 100. This is an SFBC resource group. That is, when a certain resource block is allocated to downlink data of an LTE terminal, the base station 100 selects a resource block configuration in which SFBC resource groups are spread as shown in FIG. 11A. On the other hand, when a certain resource block is allocated to the downlink data of the LTE-A terminal, the base station 100 selects a resource block configuration in which SFBC resource groups are spread as shown in FIG. 11B. FIG. 11A and FIG. 11B differ only in how SFBC resource groups are spread.
 図11では、周波数軸上に2つ連続したサブキャリア及び時間軸上に2つ連続したOFDMシンボルで規定される領域(つまり、4つのREから成るCSI-RSグループ)と、時間軸上に連続した2つのREからなるCSI-RSグループとが構成されている。ここで着目すべきは、4つのREからなるCSI-RSグループがLTE端末に対して定義されているSFBCリソースグループを跨いで配置されているだけではなく、CSI-RSグループ間に挟まれるサブキャリアの数が全て偶数個となっている点である。 In FIG. 11, a region defined by two consecutive subcarriers on the frequency axis and two consecutive OFDM symbols on the time axis (that is, a CSI-RS group consisting of four REs) and continuous on the time axis. A CSI-RS group composed of the two REs is configured. It should be noted here that the CSI-RS group consisting of four REs is not only arranged across the SFBC resource group defined for the LTE terminal, but also a subcarrier sandwiched between the CSI-RS groups. The number of all is an even number.
 このように図11Aに示すリソースブロック構成により、上記した配置例1~3と同様に、LTE端末がCSI-RSの存在を認識せずに下り回線データを復号する場合の性能劣化を低減することができる。更に、CSI-RSグループ間に挟まれるサブキャリアの数が全て偶数個となっているので、CSI-RSグループ間に挟まれるRE群を構成RE数が偶数個である、LTE-A端末用のSFBCリソースグループに分けることができる(つまり、図11BのようなSFBCリソースグループの敷き詰め方を採用できる)ので、LTE-A端末が図11に示すリソースブロックを用いてSFBC通信を行う場合の性能を向上させることができる。なぜなら、SFBCリソースグループに含まれるREにおける伝播路を同一と見なせるときにSFBCの効果が一番大きくなるので、周波数軸上に連続した偶数個のREによってLTE-A端末向けのSFBCリソースグループを形成することが最も好ましいためである。例えば、図8を参照すると、CSI-RSグループが配置されているOFDMシンボルにおいて当該OFDMシンボルの両端部のCSI-RSグループが配置されていないリソースエレメントの数は、それぞれが奇数である。これにより、図8に示すようなリソースブロック構成では、LTE-A端末向けの一部のSFBCリソースグループは周波数軸上で離れて配置せざるを得なかった。この課題は、CSI-RS配置例4によって解決されている。 In this way, the resource block configuration shown in FIG. 11A reduces performance degradation when LTE terminals decode downlink data without recognizing the presence of CSI-RS, similar to the above-described arrangement examples 1 to 3. Can do. Furthermore, since the number of subcarriers sandwiched between CSI-RS groups is all an even number, the RE group sandwiched between CSI-RS groups is configured for an LTE-A terminal having an even number of REs. Since it can be divided into SFBC resource groups (that is, the spread method of SFBC resource groups as shown in FIG. 11B can be adopted), the performance when the LTE-A terminal performs SFBC communication using the resource blocks shown in FIG. Can be improved. Because the effect of SFBC is the greatest when the propagation paths in REs included in the SFBC resource group can be regarded as the same, an SFBC resource group for LTE-A terminals is formed by an even number of REs continuous on the frequency axis. This is because it is most preferable. For example, referring to FIG. 8, in the OFDM symbol in which the CSI-RS group is arranged, the number of resource elements in which the CSI-RS groups at both ends of the OFDM symbol are not arranged is an odd number. Thus, in the resource block configuration as shown in FIG. 8, some SFBC resource groups for LTE-A terminals have to be arranged apart on the frequency axis. This problem is solved by CSI-RS arrangement example 4.
 なお、CSI-RS配置例4をFDMに変形させると、図12A,Bのようになる。 In addition, when the CSI-RS arrangement example 4 is transformed into FDM, it becomes as shown in FIGS. 12A and 12B.
 以上のように本実施の形態によれば、基地局100は、リソースブロックを複数のアンテナからそれぞれ送信することにより、受信装置へ空間多重リソースブロックを送信する。そして、基地局100において、端末用信号処理部101-aは、LTE端末向けのSFBCグループを、複数のリソースエレメントから構成されるリソースグループに配置し、CSI-RSを、リソースブロックに配置する。そして、空間多重リソースブロックにおいて周波数軸方向で隣接する第1のリソースグループ及び第2のリソースグループでは、第1のリソースグループと第2のリソースグループとの境界を挟んで周波数軸方向で隣り合う2つのリソースエレメントに少なくともCSI-RSが、SFBCグループの代わりに配置されており、且つ、その2つのリソースエレメント以外のリソースエレメントの中にはCSI-RSの配置されていないリソースエレメントが第1のリソースグループ及び第2のリソースグループの両方にそれぞれ存在している。換言すれば、第1のリソースグループでは、第2のリソースグループに隣接するリソースエレメントに少なくともCSI-RSがSFBCグループの代わりに配置されており、第2のリソースグループでは、第1のリソースグループに隣接するリソースエレメントに少なくともCSI-RSがSFBCグループの代わりに配置されており、第1のリソースグループ及び第2のリソースグループの両方ともに、CSI-RSが配置されていないリソースエレメントが存在する。すなわち、CSI-RSグループが、LTE端末に対して定義されているSFBCリソースグループを跨いで配置されている。 As described above, according to the present embodiment, base station 100 transmits a spatial multiplexing resource block to a receiving apparatus by transmitting the resource block from each of a plurality of antennas. Then, in base station 100, terminal signal processing section 101-a arranges an SFBC group for LTE terminals in a resource group composed of a plurality of resource elements, and arranges CSI-RS in a resource block. In the first resource group and the second resource group that are adjacent in the frequency axis direction in the spatial multiplexing resource block, two adjacent in the frequency axis direction across the boundary between the first resource group and the second resource group. At least CSI-RS is arranged in one resource element instead of the SFBC group, and among the resource elements other than the two resource elements, the resource element in which CSI-RS is not arranged is the first resource. Each exists in both the group and the second resource group. In other words, in the first resource group, at least the CSI-RS is arranged instead of the SFBC group in the resource element adjacent to the second resource group, and in the second resource group, the first resource group At least CSI-RS is arranged in the adjacent resource element instead of the SFBC group, and there is a resource element in which CSI-RS is not arranged in both the first resource group and the second resource group. That is, the CSI-RS group is arranged across the SFBC resource group defined for the LTE terminal.
 こうすることで、LTE端末がCSI-RSの存在を認識せずに下り回線データを復号する場合の性能劣化を低減することができる。 By doing so, it is possible to reduce performance degradation when the LTE terminal decodes downlink data without recognizing the presence of the CSI-RS.
 以上の説明では、第1のリソースグループ及び第2のリソースグループの両方ともに、構成リソースエレメントの一部にのみCSI-RSが配置されるものとして説明した。しかしながら、本発明はこれに限定されるものではなく、第1のリソースグループ及び第2のリソースグループの内の一方においてのみ、CSI-RSが配置されていないリソースエレメントが存在しても良い。こうすることでも、CSI-RSが配置されていないリソースエレメントが存在するリソースグループについては、上記と同様の効果が得られる。 In the above description, both the first resource group and the second resource group have been described on the assumption that the CSI-RS is arranged only in a part of the constituent resource elements. However, the present invention is not limited to this, and there may be a resource element in which CSI-RS is not arranged only in one of the first resource group and the second resource group. Even in this way, the same effect as described above can be obtained for the resource group in which the resource element in which the CSI-RS is not arranged exists.
 なお、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。 In addition, although demonstrated as an antenna in the said embodiment, this invention is applicable similarly also with an antenna port (antenna port).
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in 3GPP LTE, it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2009年10月30日出願の特願2009-251155の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract included in the Japanese application of Japanese Patent Application No. 2009-251155 filed on Oct. 30, 2009 is incorporated herein by reference.
 本発明の無線送信装置及び参照信号送信方法は、第1の無線受信装置へのデータに割り当てられているリソースに第2の無線受信装置向けの参照信号が配置されることで、第1の無線受信装置へのデータが第2の無線受信装置向けの参照信号によって上書きされる場合にも、その第1の無線受信装置へのデータの誤り特性劣化を最小限に抑えるものとして有用である。 According to the wireless transmission device and the reference signal transmission method of the present invention, the reference signal for the second wireless reception device is arranged in the resource allocated to the data to the first wireless reception device, so that the first wireless Even when the data to the receiving device is overwritten by the reference signal for the second wireless receiving device, it is useful for minimizing the deterioration of the error characteristics of the data to the first wireless receiving device.
 100 基地局
 101 端末用信号処理部
 103,221 送信RF部
 104 アンテナ
 105 スケジューリング部
 106 第2参照信号配置設定部
 107 第2参照信号生成部
 108 第1参照信号生成部
 109,212 受信RF部
 110 分離部
 111 復調/復号部
 112,217 CRC検査部
 113 フィードバック情報復調部
 121 符号化/変調部
 122 第2参照信号マッピング部
 123 プリコーディング処理部
 124 データ上書き部
 200 端末
 211 アンテナ
 213 チャネル推定部
 214 CSI測定部
 215 MIMO復調部
 216 復号部
 218 フィードバック情報生成部
 219 符号化部
 220 多重部
 222 制御信号復調部
DESCRIPTION OF SYMBOLS 100 Base station 101 Terminal signal processing part 103,221 Transmission RF part 104 Antenna 105 Scheduling part 106 Second reference signal arrangement setting part 107 Second reference signal generation part 108 First reference signal generation part 109, 212 Reception RF part 110 Separation Unit 111 demodulation / decoding unit 112,217 CRC checking unit 113 feedback information demodulation unit 121 encoding / modulating unit 122 second reference signal mapping unit 123 precoding processing unit 124 data overwriting unit 200 terminal 211 antenna 213 channel estimation unit 214 CSI measurement Unit 215 MIMO demodulation unit 216 decoding unit 218 feedback information generation unit 219 encoding unit 220 multiplexing unit 222 control signal demodulation unit

Claims (6)

  1.  第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成する空間周波数ブロック符号化手段と、
     前記SFBCグループを、周波数方向で隣接する複数のリソースエレメントから構成されるリソースグループに配置し、第2種受信装置用の参照信号を、リソースエレメントに配置する配置手段と、
     を具備し、
     前記配置手段は、周波数方向で隣接する第1のリソースグループ及び第2のリソースグループにおいて、前記第1のリソースグループと第2のリソースグループとの境界を挟んで周波数方向で隣り合う2つのリソースエレメントに、前記参照信号を配置し、前記第1のリソースグループ及び第2のリソースグループの少なくとも一方において、前記2つのリソースエレメント以外のリソースエレメントには前記参照信号を配置しない、
     無線送信装置。
    Spatial frequency block coding means for performing a spatial frequency block coding (SFBC) on a block code processing unit for a transmission data sequence for the first type receiver, and forming an SFBC group as a code result for each block code processing unit;
    Arrangement means for arranging the SFBC group in a resource group composed of a plurality of resource elements adjacent in the frequency direction, and arranging a reference signal for the type 2 receiver in the resource element;
    Comprising
    In the first resource group and the second resource group adjacent to each other in the frequency direction, the arrangement unit includes two resource elements adjacent in the frequency direction across a boundary between the first resource group and the second resource group. The reference signal is arranged, and in at least one of the first resource group and the second resource group, the reference signal is not arranged in resource elements other than the two resource elements.
    Wireless transmission device.
  2.  前記2つのリソースエレメントの内の一方に配置された前記参照信号は、第1のアンテナから送信され、他方に配置された前記参照信号は、第2のアンテナから送信される、
     請求項1に記載の無線送信装置。
    The reference signal arranged in one of the two resource elements is transmitted from a first antenna, and the reference signal arranged in the other is transmitted from a second antenna.
    The wireless transmission device according to claim 1.
  3.  前記配置手段は、前記SFBCグループを分割することにより複数の並列ストリームを形成するストリーム形成手段と、前記複数の並列ストリームを構成する構成データ群の内で前記参照信号を配置する予定のリソースエレメントに対応する構成データを前記参照信号で上書きする上書き手段と、を含む、
     請求項1に記載の無線送信装置。
    The arrangement unit includes: a stream forming unit that forms a plurality of parallel streams by dividing the SFBC group; and a resource element that is to arrange the reference signal in a configuration data group that forms the plurality of parallel streams. Overwriting means for overwriting corresponding configuration data with the reference signal,
    The wireless transmission device according to claim 1.
  4.  前記配置手段は、前記参照信号を、周波数軸方向に2の倍数個のリソースエレメントの間隔を空けて配置する、
     請求項1に記載の無線送信装置。
    The arrangement means arranges the reference signal with an interval of resource elements that are multiples of 2 in the frequency axis direction.
    The wireless transmission device according to claim 1.
  5.  前記送信データ系列は、LTE端末向けのデータであり、
     前記参照信号は、LTE-advanced端末用の参照信号である、
     請求項1に記載の無線送信装置。
    The transmission data series is data for LTE terminals,
    The reference signal is a reference signal for an LTE-advanced terminal.
    The wireless transmission device according to claim 1.
  6.  第1種受信装置向けの送信データ系列をブロック符号処理単位で空間周波数ブロック符号化(SFBC)し、ブロック符号処理単位ごとの符号結果であるSFBCグループを形成するステップと、
     前記SFBCグループを、周波数方向で隣接する複数のリソースエレメントから構成されるリソースグループに配置し、第2種受信装置用の参照信号を、前記リソースエレメントに配置するステップと、
     を具備し、
     前記参照信号は、周波数方向で隣接する第1のリソースグループ及び第2のリソースグループにおいて、前記第1のリソースグループと第2のリソースグループとの境界を挟んで周波数方向で隣り合う2つのリソースエレメントに配置され、前記第1のリソースグループ及び第2のリソースグループの少なくとも一方において、前記2つのリソースエレメント以外のリソースエレメントには配置されない、
     参照信号送信方法。
    A step of performing spatial frequency block coding (SFBC) on a block code processing unit on a transmission data sequence for a first type receiving apparatus to form an SFBC group that is a code result for each block code processing unit;
    Placing the SFBC group in a resource group composed of a plurality of resource elements adjacent in the frequency direction, and placing a reference signal for a type 2 receiver in the resource element;
    Comprising
    The reference signal includes two resource elements adjacent in the frequency direction across a boundary between the first resource group and the second resource group in the first resource group and the second resource group adjacent in the frequency direction. Arranged in the resource element other than the two resource elements in at least one of the first resource group and the second resource group,
    Reference signal transmission method.
PCT/JP2010/006393 2009-10-30 2010-10-29 Wireless transmission device and reference signal transmission method WO2011052220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251155 2009-10-30
JP2009-251155 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052220A1 true WO2011052220A1 (en) 2011-05-05

Family

ID=43921653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006393 WO2011052220A1 (en) 2009-10-30 2010-10-29 Wireless transmission device and reference signal transmission method

Country Status (1)

Country Link
WO (1) WO2011052220A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193467A (en) * 2010-03-16 2011-09-29 Lg Electronics Inc Method and base station for transmitting downlink reference signal, and method and user equipment for receiving downlink reference signal
WO2013065422A1 (en) * 2011-10-31 2013-05-10 Nec Corporation Apparatus and method for csi calculation and reporting
WO2013129146A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Channel estimation method and receiver
WO2013173018A1 (en) * 2012-05-14 2013-11-21 Motorola Mobility Llc Radio link monitoring in a wireless communication device
US8982693B2 (en) 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
WO2018133173A1 (en) * 2017-01-23 2018-07-26 华为技术有限公司 Data transmission method and apparatus
US10091749B2 (en) 2013-11-22 2018-10-02 Corning Optical Communications Wireless Ltd Reference signal generation redundancy in distributed antenna systems (DAS), and related devices and methods
CN112352406A (en) * 2018-06-28 2021-02-09 株式会社Ntt都科摩 User terminal and wireless communication method
US20220094573A1 (en) * 2016-01-07 2022-03-24 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157837A (en) * 2008-12-26 2010-07-15 Sharp Corp Wireless communication system, base station device, mobile station device, and signal distributor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157837A (en) * 2008-12-26 2010-07-15 Sharp Corp Wireless communication system, base station device, mobile station device, and signal distributor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussions on CSI-RS for LTE- Advanced", R1-092204, 3GPP, 4 May 2009 (2009-05-04), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_57/Docs/R1-092204.zip> *
SAMSUNG: "Discussions on CSI-RS for LTE- Advanced", RL-094089, 3GPP, 12 October 2009 (2009-10-12), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_ 58b/Docs/R1-094089.zip> *
ZTE: "DL Reference Signal Design for CSI generation in LTE-Advanced", RL-091714 3GPP, 4 May 2009 (2009-05-04), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsgran/WG1RL1/TSGR157/Docs/R1-091714.zip> *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288005B2 (en) 2010-03-16 2016-03-15 Lg Electronics Inc. Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US9967046B2 (en) 2010-03-16 2018-05-08 Lg Electronics Inc. Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
JP2011193467A (en) * 2010-03-16 2011-09-29 Lg Electronics Inc Method and base station for transmitting downlink reference signal, and method and user equipment for receiving downlink reference signal
US9019904B2 (en) 2010-03-16 2015-04-28 Lg Electronics Inc. Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
US9559799B2 (en) 2010-03-16 2017-01-31 Lg Electronics Inc. Method and base station for transmitting reference signals, and method and user equipment for receiving reference signals
WO2013065422A1 (en) * 2011-10-31 2013-05-10 Nec Corporation Apparatus and method for csi calculation and reporting
WO2013129146A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Channel estimation method and receiver
CN104205694A (en) * 2012-03-02 2014-12-10 日本电气株式会社 Channel estimation method and receiver
US8982693B2 (en) 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
EP2953289A1 (en) * 2012-05-14 2015-12-09 Motorola Mobility LLC Radio link monitoring in a wireless communication device
US9198070B2 (en) 2012-05-14 2015-11-24 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
WO2013173018A1 (en) * 2012-05-14 2013-11-21 Motorola Mobility Llc Radio link monitoring in a wireless communication device
US10091749B2 (en) 2013-11-22 2018-10-02 Corning Optical Communications Wireless Ltd Reference signal generation redundancy in distributed antenna systems (DAS), and related devices and methods
US10531413B2 (en) 2013-11-22 2020-01-07 Corning Optical Communications LLC Reference signal generation redundancy in distributed antenna systems (DAS), and related devices and methods
US20220094573A1 (en) * 2016-01-07 2022-03-24 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot)
WO2018133173A1 (en) * 2017-01-23 2018-07-26 华为技术有限公司 Data transmission method and apparatus
CN108604950A (en) * 2017-01-23 2018-09-28 华为技术有限公司 Data transmission method and device
CN108604950B (en) * 2017-01-23 2020-11-17 华为技术有限公司 Data transmission method and device
US11223453B2 (en) 2017-01-23 2022-01-11 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN112352406A (en) * 2018-06-28 2021-02-09 株式会社Ntt都科摩 User terminal and wireless communication method
CN112352406B (en) * 2018-06-28 2024-03-01 株式会社Ntt都科摩 User terminal and wireless communication method

Similar Documents

Publication Publication Date Title
US20210092722A1 (en) Radio reception apparatus, radio transmission apparatus, and radio communication method
WO2011052220A1 (en) Wireless transmission device and reference signal transmission method
JP5451744B2 (en) Radio receiving apparatus, radio transmitting apparatus, and radio communication method
US10903947B2 (en) Communication apparatus and communication method
KR101534349B1 (en) Method for data transmission using space time block code
US9241334B2 (en) Wireless reception device, wireless transmission device, and wireless communication method
US9386556B2 (en) Method and apparatus for optimizing a limited feedback in a wireless access system supporting a distributed antenna (DA) technique
WO2013111092A1 (en) Method and apparatus for configuring a resource allocation over e-pdcch with an indication of the selected antenna ports
CN111526589B (en) Method and device used in user equipment and base station for wireless communication
CN111431680B (en) Method and device used in user equipment and base station for wireless communication
CN114513289B (en) Method and apparatus in a node for wireless communication
WO2011083761A1 (en) Wireless transmission device and reference signal transmission method
CN114465699B (en) User equipment, method and device in base station for wireless communication
CN113746591B (en) User equipment, method and device in base station for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP