WO2011049036A1 - Low-molecular drug-containing nanoparticle - Google Patents

Low-molecular drug-containing nanoparticle Download PDF

Info

Publication number
WO2011049036A1
WO2011049036A1 PCT/JP2010/068257 JP2010068257W WO2011049036A1 WO 2011049036 A1 WO2011049036 A1 WO 2011049036A1 JP 2010068257 W JP2010068257 W JP 2010068257W WO 2011049036 A1 WO2011049036 A1 WO 2011049036A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
molecular
negatively charged
poly
drug
Prior art date
Application number
PCT/JP2010/068257
Other languages
French (fr)
Japanese (ja)
Inventor
徹 水島
務 石原
紅星 劉
Original Assignee
株式会社Lttバイオファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lttバイオファーマ filed Critical 株式会社Lttバイオファーマ
Publication of WO2011049036A1 publication Critical patent/WO2011049036A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)

Definitions

  • the present invention relates to a drug-containing nanoparticle, more particularly, to a low-molecular-weight drug-containing nanoparticle having a negatively charged group that is excellent in affected area targeting and sustained release, has reduced liver accumulation, and has increased blood retention.
  • the present invention relates to nanoparticles that suppress the induction of ABC phenomenon in which the stealth of a drug is lost by frequent administration.
  • DDS drug delivery system
  • DDS formulation drug delivery system based formulation
  • active targeting therapy is used.
  • PEG polyethylene glycol
  • PEGylated interferon preparations (Pegasys (registered trademark), pegintron (registered trademark), etc.) in which PEG is directly modified at one amino acid residue of protein interferon alpha-2b, liposomes and polymers as drug carriers
  • Formulations in which micelles are modified with PEG, PEG-modified liposomes as long-term blood-retaining liposomes as drug carriers, and doxorubicin is encapsulated are used clinically.
  • PEG Since PEG has a simple skeletal structure, it is highly flexible and has the property of hydrating many water molecules. By modifying drug particles and carriers with PEG, A heavy hydration layer is formed on the surface layer. It is known that the interaction with serum proteins and cells is suppressed by this hydrated layer, and as a result, the residence time of the drug in the blood (in the body) is greatly extended (stealthing: Stealthing).
  • the present inventors have heretofore made a drug on PLA-PEG block copolymer microparticles or nanoparticles in which polylactic acid, that is, a lactic acid polymer (hereinafter sometimes referred to as “PLA”) and polyethylene glycol are combined.
  • PLA lactic acid polymer
  • PMA lactic acid polymer
  • block copolymer nanoparticles with PLA obtained using polyvinylpyrrolidone (PVP), polyacryloylmorpholine (PAcM)), and polydimethylacrylamide (PDMAA) as copolymer components with PLA
  • PVP polyvinylpyrrolidone
  • PAcM polyacryloylmorpholine
  • PMAA polydimethylacrylamide
  • the present invention relates to a drug-encapsulated nanoparticle that can be used for passive targeting therapy.
  • the issue is to provide.
  • the present inventors have conducted intensive studies.
  • the low molecular weight drug having a negatively charged group is hydrophobized with a metal ion
  • (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, poly Low molecular weight drug-containing nanoparticles with negatively charged groups obtained by the action of acryloylmorpholine or polydimethylacrylamide) block copolymer are excellent in targeting and sustained release of the affected area, and also reduce liver accumulation, blood
  • the medium retention was excellent, in particular, the sustained release property, and the effect of the repeated administration was not reduced, and the induction of the ABC phenomenon was suppressed. It came.
  • polyvinyl pyrrolidone PVP
  • polyacryloylmorpholine PAcM
  • PMAA polydimethylacrylamide
  • PEG polyethylene glycol
  • the present invention is excellent in stealth, excellent in targeting and sustained release of the affected area without inducing the ABC phenomenon in which the pharmacological effect is reduced by frequent administration so far, and has reduced side effects by reducing liver accumulation.
  • the present invention provides a nanoparticle containing a low-molecular-weight drug having a negatively charged group that is excellent in retention in blood.
  • the present invention provides preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, sprays and the like containing the nanoparticles as an active ingredient.
  • the present invention has the following configuration. That is, (1) Hydrophobizing low molecular weight drugs with negatively charged groups with metal ions, (A) a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer, and (B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers, Low-molecular-weight drug-containing nanoparticles with negatively charged groups obtained by acting with (2) The low-molecular-weight drug-containing nanoparticle having a negatively charged group as described in 1 above, further mixed with a basic low-molecular compound; (3) A low-molecular-weight drug-containing nanop
  • the low molecular weight drug having a negatively charged group is an anti-inflammatory steroid, a nonsteroidal anti-inflammatory drug, a prostaglandin or a derivative thereof, an antimicrobial drug or an anticancer drug according to the above 1, 2 or 6 Low molecular weight drug-containing nanoparticles with negatively charged groups; (8) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly) 3.
  • Basic low molecular weight compounds are (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine , Hexamethylenediamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, dieth
  • (10) Surfactant is phosphatidylcholine, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan mono Palmitate, polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (80) octylphenyl ether, polyoxyethylene (20) cholesterol ester, lipid-polyethylene glycol, polyoxyethylene hydrogenated castor oil and fatty acid-polyethylene glycol co-polymer
  • (11) A preparation for parenteral administration comprising the low-molecular-weight drug-containing nanoparticles having negatively charged groups described in 1 to 10 as an active ingredient; (12) The preparation for parenteral administration according to 11 above, wherein the preparation is a preparation for intravenous injection, a preparation for
  • A a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer
  • B (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers
  • the present invention hydrophobizes a low-molecular-weight drug having a negatively charged group with a metal ion, and converts the hydrophobized drug into a (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) block copolymer.
  • a metal ion converts the hydrophobized drug into a (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) block copolymer.
  • the low-molecular-weight drug-containing nanoparticles with negatively charged groups target low-molecular-weight drugs with negatively charged groups, have excellent drug sustained release properties, and reduce side effects by reducing liver accumulation In addition, it is excellent in blood retention, particularly in sustained release, suppresses the ABC phenomenon, does not show a decrease in pharmacological effects even after repeated administration, and has excellent stealth properties. is there.
  • PVP, PAcM or PDMAA is used instead of the conventionally used PEG, and by using a copolymer of this and polylactic acid, the induction of ABC phenomenon is suppressed and the stealth is excellent. This is a feature of the present invention.
  • nano-molecules that have improved the targeting and sustained sustained release of low molecular weight drugs with negatively charged groups, which have not been fully achieved until now, further reducing the side effects caused by liver accumulation, and further improving the blood concentration. It is particularly excellent in providing particles.
  • Example 3 It is the figure which showed the result of Example 3. It is the figure which showed the result of Example 4, and showed the result of the PEG modification particle
  • B is the result of the PVP modified particles of the present invention. It is the figure which showed the result of Example 5, and showed the result of the PVP modified particle
  • the low-molecular-weight drug-containing nanoparticles having a negatively charged group which is an embodiment of the present invention hydrophobizes a low molecular weight drug having a negatively charged group with a metal ion, and the hydrophobized drug is converted to poly DL- or L-lactic acid or poly ( (DL- or L-lactic acid / glycolic acid) copolymer, and (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, polyacryloylmorpholine, or polydimethylacrylamide) block copolymer [hereinafter these The block copolymer may be expressed as “poly DL-, D- or L-lactic acid” / (polyvinylpyrrolidone or the like) block copolymer ”). Moreover, you may mix
  • the low-molecular-weight drug-containing nanoparticle having a negatively charged group of the present invention is an L-isomer poly-L-lactic acid or poly (L-lactic acid / glycolic acid) as a biodegradable polymer used for forming the nanoparticle.
  • the use of a copolymer is also a feature.
  • Poly-L-lactic acid is known to have different solubility in organic solvents and higher crystallinity than poly-DL-lactic acid.
  • poly-L-lactic acid is mixed with a block copolymer (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) to form nanoparticles, thereby forming poly-L-lactic acid.
  • Nanoparticles that can be stably dispersed can be prepared by suppressing crystallization in the aqueous phase. Since poly-L-lactic acid is insoluble in acetone, nanoparticles were prepared using a mixture of acetone / dioxane or acetone / tetrahydrofuran in order to increase its solubility.
  • the above low-molecular-weight drug-containing nanoparticles having negatively charged groups may contain a surfactant.
  • a surfactant By adding a surfactant, the produced nanoparticles are stabilized and aggregation between particles is suppressed. be able to.
  • the low-molecular-weight drug-containing nanoparticles having a negatively charged group of the present invention provided by the above are preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, sprays and the like. By doing so, it can be administered.
  • the low-molecular-weight drug-containing nanoparticles having negatively charged groups provided by the present invention can be prepared as follows. That is, a low molecular drug having a negatively charged group and a metal ion are mixed in an organic solvent or a water-containing organic solvent to form a hydrophobic drug, and poly DL-, L-lactic acid or poly (DL- Or L-lactic acid / glycolic acid) copolymer and further (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) block copolymer and stirred, and this solution is added to water and diffused. Can be prepared.
  • poly DL- or L-lactic acid or poly (DL- or L-lactic acid / glycolic acid) copolymer, and further (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone etc.) block copolymer are used.
  • Similar nanoparticles can be prepared by simultaneously adding and mixing a solution dissolved in a solvent, an aqueous solution of a low-molecular drug having a negatively charged group, and an aqueous metal ion solution.
  • a poly (DL-, D-, or L-lactic acid) / (polyvinyl pyrrolidone, etc.) block copolymer is used as a surface modifier for the nanoparticles, so that poly (DL-) or L-lactic acid or poly (DL).
  • the crystallization of the (or L-lactic acid / glycolic acid) copolymer in the aqueous phase is suppressed, and as a result, stable nanoparticles with uniform particle size can be obtained.
  • the metal ion used is any one of zinc ion, iron ion, copper ion, nickel ion, beryllium ion, manganese ion and cobalt ion, and one or more of these water-soluble metal salts are used.
  • zinc ions and iron ions are preferable, and zinc chloride, iron chloride and the like can be preferably used.
  • Solvents used in the above reaction include organic solvents such as acetone, acetonitrile, ethanol, methanol, propanol, dimethylformamide, dimethyl sulfoxide, dioxane, tetrahydrofuran, and water-containing solvents thereof, acetone, dimethylformamide, dioxane, Tetrahydrofuran is preferred.
  • the low molecular weight drug having a negatively charged group preferably has a phosphate group, a sulfate group or a carboxyl group in the molecule so as to be easily hydrophobized by binding to the above metal ion, and has a molecular weight of 1, 000 or less is preferred.
  • low molecular weight drugs having negatively charged groups include various drugs, among which water-soluble anti-inflammatory steroids, non-steroidal anti-inflammatory drugs, prostaglandins or derivatives thereof, antimicrobials Drugs or anticancer drugs are preferred, and more specifically, anti-inflammatory steroids such as betamethasone phosphate, dexamethasone phosphate, prednisolone phosphate, hydrocortisone phosphate, prednisolone succinate, hydrocortisone succinate; loxoprofen, ibuprofen , ketoprofen, diclofenac, a non-steroidal anti-inflammatory drugs such as fenbufen; prostaglandin E 1, prostaglandin E 2, or derivatives thereof; vancomycin, succinic acid chloramphenicol, latamoxef, cefpirome, clindamycin phosphate, Carmona Antimicrobial agents, such as; vincristine, but anti-cancer agents and the like, such as vinblastine, but
  • (Poly DL-, D- or L-lactic acid) / (polyvinyl prolidone etc.) block copolymer is poly DL-lactic acid (sometimes called PDLLA), poly D-lactic acid (sometimes called PDLA) or poly L-lactic acid (sometimes called PLLA) (these polymers are called block A), polyvinylpyrrolidone (PVP) polyacryloylmorpholine (PAcM)), or polydimethylacrylamide (PDMAA) (these are called block B)
  • PDL-lactic acid sometimes called PDLLA
  • poly D-lactic acid sometimes called PDLA
  • poly L-lactic acid sometimes called PLLA
  • PVP polyvinylpyrrolidone
  • PAcM polyacryloylmorpholine
  • PDMAA polydimethylacrylamide
  • block B can be produced by reaction under a condensing agent such as diisopropylcarbodiimide, ethylenedimethylaminopropylcarbodiimide, or the like,
  • the block copolymer may be any of AB type, ABA type, and BAB type. However, the object of the present invention can be achieved.
  • the weight average molecular weight of these block copolymers is preferably 2,000 to 50,000.
  • the low-molecular-weight drug-containing nanoparticles having negatively charged groups of the present invention include poly (DL-, L-lactic acid) or poly (poly (DL-, D- or L-lactic acid)) / (polyvinylpyrrolidone, etc.) block copolymers.
  • poly (DL-, L-lactic acid) or poly (poly (DL-, D- or L-lactic acid)) / (polyvinylpyrrolidone, etc.) block copolymers When the mixing ratio of the (DL- or L-lactic acid / glycolic acid) copolymer is increased, large nanoparticles are generated and the encapsulation rate of the drug in the nanoparticles tends to increase.
  • the encapsulation rate of the drug in the nanoparticle increases, and it can be encapsulated to about 10%.
  • Such basic low molecular weight compounds include (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine , Hexamethylenediamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, Examples include ethylenediamine and trimethylenediamine. Details, a secondary or tertiary amine, diethanolamine being particularly preferred.
  • a surfactant may be added to the low-molecular-weight drug-containing nanoparticles having negatively charged groups thus prepared, and by adding a surfactant, the generated nanoparticles are stabilized and aggregation between particles is suppressed. can do. Therefore, it becomes a preferable thing for the formulation process of the formulation containing nanoparticles.
  • Surfactants used include phosphatidylcholine, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan Monopalmitate, polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (80) octylphenyl ether, polyoxyethylene (20) cholesterol ester, lipid-polyethylene glycol, polyoxyethylene hydrogenated castor oil and fatty acid-polyethylene glycol A polymer etc. can be mention
  • the diameter of the particles is in the range of 20 to 300 nm, preferably 50 to 200 nm.
  • the particle size can be determined. For example, when the drug is used for arthritis, cancer, obstructive arteriosclerosis, etc., it is preferable to intravenously inject nanoparticles having a particle size of 50 to 200 nm.
  • This particle size can be adjusted, for example, by adjusting the amount of a solvent, preferably acetone or dioxane, that dissolves the block copolymer (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.).
  • a solvent preferably acetone or dioxane
  • nanoparticles having a small particle size can be obtained.
  • the drug encapsulation rate tends to increase as the particle size of the nanoparticles increases.
  • the low-molecular-weight drug-containing nanoparticles having negatively charged groups of the present invention thus prepared are appropriately purified from nanoparticle solutions or suspensions by operations such as centrifugation, ultrafiltration, gel filtration, filter filtration, and fiber dialysis. And then freeze-dried to obtain and store.
  • a stabilizer and / or a dispersing agent in order to resuspend the lyophilized preparation so that it can be administered, and then lyophilized.
  • a stabilizer and / or a dispersing agent are preferably used.
  • the low-molecular-weight drug-containing nanoparticles having a negatively charged group provided by the present invention are used as pharmaceuticals for preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, and sprays.
  • parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, and sprays.
  • the characteristics and effects of the nanoparticles can be better exhibited by preparing a preparation for intravenous injection.
  • bases and other additive components used in the preparation of these parenteral preparations include various bases and components that are pharmaceutically acceptable and used. Specifically, saccharides such as physiological saline, monosaccharides, disaccharides, sugar alcohols, polysaccharides; polymer additives such as hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose; ionic or nonionic surfactants; Etc. can be appropriately selected and used depending on the dosage form.
  • saccharides such as physiological saline, monosaccharides, disaccharides, sugar alcohols, polysaccharides
  • polymer additives such as hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose
  • ionic or nonionic surfactants Etc.
  • Example 1 Synthesis of Block Copolymer
  • Polyvinylpyrrolidone (PVP), polyacryloylmorpholine (PAcM), and polydimethylacrylamide (PDMAA) are selected as block copolymer partners with PLA, and a block polymer (ie, , PVP-PLA block copolymer, PAcM-PLA block copolymer, and PVP-PDMAA block copolymer) were synthesized by radical polymerization.
  • PVP polyvinylpyrrolidone
  • PAcM polyacryloylmorpholine
  • PDMAA polydimethylacrylamide
  • Terminal thiolated PLA was synthesized.
  • the initiator azobisisobutyronitrile (10 mg) and each monomer (1100 mg: vinylpyrrolidone, acryloylmorpholine, and dimethylacrylamide) were added to 1 mL of dimethylformamide. It melt
  • the molecular weight and composition of each polymer obtained were analyzed by size exclusion chromatography (SEC) and proton NMR.
  • the average molecular weight of each hydrophilic chain (PVP, PAcM, and PDMAA) was about 30,000, and the ratio of the hydrophilic chain in the polymer was about 60 to 70%.
  • PVP-PLA polyvinylpyrrolidone
  • PAcM polyacryloylmorpholine
  • PDMAA polydimethylacrylamide
  • Mw Weight average molecular weight
  • Mn Number average molecular weight * 1: All indicate the molecular weight of the hydrophilic chain (PVP, PAcM and PDMAA) calculated by SEC.
  • Example 2 Preparation of nanoparticles Using the block copolymer shown in Table 1 above, nanoparticles encapsulating prostaglandin E1 (PGE1) as a drug were prepared. 25 mg of each polymer shown in Table 1, 25 mg of PLA (L-form, molecular weight: 17500), 10 mg of prostaglandin E1 (PGE1), 9.5 mg of diethanolamine were mixed in an acetone / dioxane mixture (mixing ratio: 7). / 3) Dissolve in 1.5 mL, and add 30 ⁇ L of 0.5 M anhydrous ferric chloride solution in acetone. The mixture was allowed to stand for 10 minutes, and then added at once to water (25 mL) stirred at 1000 rpm using a stir bar.
  • PGE1 prostaglandin E1
  • PEG-PLA polyethylene glycol
  • PGE1 prostaglandin E1
  • the particle size and zeta potential were measured by Zetasizer Nano ZS (Malvern).
  • the amount of PGE1 was measured by HPLC.
  • the particle diameter was about 120 to 130 nm. Further, the surface potential of each nanoparticle was slightly negative.
  • the encapsulation rate of prostaglandin E1 (PGE1) PGE1 weight ratio in the total amount of particles was about 1% or less. These values were almost equivalent to the nanoparticles prepared using PEG-PLA. From the above results, it has been clarified that by using each polymer shown in Table 1, nanoparticles containing PGE1 can be prepared in the same manner as PEG-modified nanoparticles prepared using PEG-PLA. .
  • Example 3 Evaluation of drug retention in blood when each nanoparticle is administered
  • PVP-modified particle, PAcM-modified particle, PDMAA-modified particle, and PEG-modified particle Each nanoparticle obtained in Example 2 (hereinafter referred to as PVP-modified particle, PAcM-modified particle, PDMAA-modified particle, and PEG-modified particle) was injected into the Wister rat (male: 6 weeks old) via tail vein, and the blood concentration of prostaglandin E1 (PGE1) was measured by the EIA method over time.
  • PGE1 prostaglandin E1
  • Example 4 Induction of ABC phenomenon in PVP modified particles and PEG modified particles PVP modified particles (50 ⁇ g or 1,000 ⁇ g) obtained in Example 2 were injected into Wister rats (male: 6 weeks old) via tail vein. After a certain interval, PVP-modified particles (1,000 ⁇ g) were again injected into the tail vein, and the blood concentration of PGE1 was measured. As a control, PEG-modified particles were used and evaluated in the same manner.
  • Example 5 Induction of ABC Phenomenon in PVP-modified Particles and PEG-Modified Particles after Multiple Administrations
  • PVP-modified particles 50 ⁇ g or 1,000 ⁇ g obtained in Example 2 were given to Wister rats (male: 6 weeks old).
  • the tail vein was injected three times at weekly intervals, one week after the third administration, PVP modified particles (1,000 ⁇ g) were injected into the tail vein, and the blood concentration of PGE1 was measured. Further, PEG-modified particles were used as a control, and the blood concentration of PGE1 was measured in the same manner.
  • Example 6 Induction of ABC Phenomenon in PAcM Modified Particles and PDMAA Modified Particles PAcM modified particles or PDMAA modified particles (50 ⁇ g each) obtained in Example 2 were injected into Wister rats (male: 6 weeks old) via tail vein. Seven days later, the same particles (1,000 ⁇ g) were again injected into the tail vein, and the blood concentration of PGE1 was measured.
  • the low-molecular-weight drug-containing nanoparticles provided by the present invention target a low-molecular-weight drug having a negatively charged group, are excellent in sustained release of the drug, and reduce side effects by reducing liver accumulation.
  • it is excellent in blood retention, particularly in sustained release, suppresses the ABC phenomenon, does not show a decrease in pharmacological effects even after repeated administration, and has excellent stealth properties. is there.
  • PVP or the like instead of PEG that has been used conventionally, and using a copolymer of this and polylactic acid, the ABC phenomenon is suppressed, and the stealth property is excellent. Its industrial applicability is tremendous.

Abstract

Provided is a nanoparticle containing a low-molecular drug that is usable in passive targeting therapy, which carries the drug enclosed therein and can prevent the induction of the ABC phenomenon, i.e., reduction in a pharmacological effect or expression of side effects, accompanied with the frequent administration thereof. The nanoparticle containing a low-molecular drug, which has a negatively charged group, is obtained by hydrophobizing the low-molecular drug having the negatively charged group by using a metal ion, and then treating the same with: (a) poly-DL- or L-lactic acid or a poly(DL- or L-lactic acid/glycolic acid) copolymer; and (b) a copolymer selected from among a (poly-DL- or L-lactic acid)/(polyvinylpyrrolidone) block copolymer, a (poly-DL- or L-lactic acid)/(polyacryloylmorpholine) block copolymer and a (poly-DL- or L-lactic acid)/(polydimethylacrylamide) block copolymer.

Description

低分子薬物含有ナノ粒子Low molecular weight drug-containing nanoparticles
 本発明は薬物含有ナノ粒子に関し、さらに詳しくは患部ターゲッティング及び徐放性に優れ、かつ肝臓集積を低減し、血中滞留性を高めた陰荷電基を持つ低分子薬物含有ナノ粒子に関し、特に、頻回投与による薬物のステルス性が失われるABC現象の誘発を抑制したナノ粒子に関する。 The present invention relates to a drug-containing nanoparticle, more particularly, to a low-molecular-weight drug-containing nanoparticle having a negatively charged group that is excellent in affected area targeting and sustained release, has reduced liver accumulation, and has increased blood retention. The present invention relates to nanoparticles that suppress the induction of ABC phenomenon in which the stealth of a drug is lost by frequent administration.
 近年において、薬物送達システム、すなわちドラッグデリバリーシステム(DDS:Drug Delivery System)に基づく製剤(DDS製剤)の開発が積極的に行われてきており、最近のDDS製剤にあっては、アクティブターゲッティング療法における分子標的治療薬と、パッシブターゲッティング療法におけるナノテクノロジーによって薬剤を標的細胞に集積し易くした製剤がある。
 このパッシブターゲッティング療法に利用されている物質としては、ポリエチレングリコール(以後、「PEG」と記す場合もある)が広く用いられている。
In recent years, a drug delivery system, that is, a drug delivery system (DDS: Drug Delivery System) based formulation (DDS formulation) has been actively developed. In recent DDS formulations, active targeting therapy is used. There are molecular targeted therapeutics and formulations that facilitate the accumulation of drugs in target cells by nanotechnology in passive targeting therapy.
As a substance used for this passive targeting therapy, polyethylene glycol (hereinafter sometimes referred to as “PEG”) is widely used.
 例えば、タンパク質であるインターフェロンアルファ-2bの1箇所のアミノ酸残基に直接PEGを修飾したPEG化インターフェロン製剤(ペガシス(登録商標)、ペグイントロン(登録商標)など)や、薬物キャリアであるリポソームや高分子ミセルをPEGにより修飾した、PEG修飾リポソームを長期血中滞留性リポソームとして薬物キャリアにし、ドキソルビシンを封入した製剤(ドキシル(登録商標))などが臨床的に利用されている。 For example, PEGylated interferon preparations (Pegasys (registered trademark), pegintron (registered trademark), etc.) in which PEG is directly modified at one amino acid residue of protein interferon alpha-2b, liposomes and polymers as drug carriers Formulations in which micelles are modified with PEG, PEG-modified liposomes as long-term blood-retaining liposomes as drug carriers, and doxorubicin is encapsulated (Doxyl (registered trademark)) are used clinically.
 PEGは、その骨格構造が単純であるため、柔軟性が高いものであり、また多くの水分子を水和できるという特性を有しており、PEGにより薬物粒子やキャリアを修飾することにより、粒子表層に重厚な水和層が形成される。この水和層により、血清タンパク質や細胞との相互作用が抑制され、その結果、薬物の血中(体内)滞留時間が大きく延伸されること(ステルス化:Stealth化)が知られている。 Since PEG has a simple skeletal structure, it is highly flexible and has the property of hydrating many water molecules. By modifying drug particles and carriers with PEG, A heavy hydration layer is formed on the surface layer. It is known that the interaction with serum proteins and cells is suppressed by this hydrated layer, and as a result, the residence time of the drug in the blood (in the body) is greatly extended (stealthing: Stealthing).
 このように、PEGにより修飾化した医薬品は、今後も新規製剤化技術において重要な一翼を担うと期待されており、現在も多くのものが臨床治験中である。しかしながら、近年PEGにより表面修飾したリポソームや高分子ミセルにおいて、その繰り返し投与(頻回投与)により薬物のステルス性が失われる現象(Accelerated Blood Clearance:ABC現象)が生じることが報告されてきている(非特許文献1、2)。 Thus, pharmaceuticals modified with PEG are expected to continue to play an important role in new formulation technology, and many are still in clinical trials. However, in recent years, it has been reported that in liposomes and polymer micelles surface-modified with PEG, a phenomenon (Accelerated Blood Clearrance: ABC phenomenon) that the stealth property of the drug is lost by repeated administration (multiple administration) ( Non-patent documents 1, 2).
 このABC現象は、頻回投与に伴い薬理効果の低減や、予期せぬ副作用が誘導される可能性があることを意味している。したがって、今後このようなPEG化医薬品にあっては、適応疾患の種類や、薬物投与様式(投与量/投与回数/投与頻度)に制約が課せられることも予想され、この課題の克服が強く望まれている。 This ABC phenomenon means that pharmacological effects are reduced and unexpected side effects may be induced with frequent administration. Therefore, in the future, it is expected that such PEGylated drugs will impose restrictions on the types of indication diseases and drug administration modes (dose / number of administration / frequency of administration). It is rare.
 ところで、ABC現象のメカニズムに関しては、その詳細が明らかにされていないのが現状である。一つの有力な仮説としては、PEG化医薬品が脾臓のB細胞を刺激して、抗PEG-IgMが産生されることでABC現象が誘導されることが述べられている(非特許文献3)。しかしながら、PEGの末端構造や、PEGの分子量を変化させてもABC現象の誘起に影響がなかったことからすれば、PEGを用いる限り本質的にABC現象を回避することは困難であると考えられる。
 したがって、PEGに代わる、抗体産生を誘導しない新たな水溶性高分子化合物(いわゆる、ポストPEG化合物)を見出すことが、ABC現象の回避には必要であると思われる。
By the way, as for the mechanism of the ABC phenomenon, the details are not made clear at present. One promising hypothesis is that the PEGylated drug stimulates splenic B cells to produce anti-PEG-IgM, thereby inducing the ABC phenomenon (Non-patent Document 3). However, if the end structure of PEG and the molecular weight of PEG were changed, there was no effect on the induction of ABC phenomenon, so it would be difficult to essentially avoid ABC phenomenon as long as PEG is used. .
Therefore, finding a new water-soluble polymer compound (so-called post-PEG compound) that does not induce antibody production instead of PEG seems necessary to avoid the ABC phenomenon.
 これまで、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリロイルモルフォリン(PAcM)、ポリグリセリン(PG)、ポリヒドロキシエチルアスパラギンなどを修飾剤として用いてリポソームやタンパク質にステルス性を付与できることが報告されている(非特許文献4~8)。しかしながら、これらの高分子化合物により修飾させたナノ粒子については、ステルス性やABC現象に関する知見は未だ何もないのが現状である。 So far, stealth can be imparted to liposomes and proteins using polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyacryloylmorpholine (PAcM), polyglycerin (PG), polyhydroxyethylasparagine, etc. as modifiers. It has been reported (Non-Patent Documents 4 to 8). However, as for the nanoparticles modified with these polymer compounds, there is no knowledge about stealth property or ABC phenomenon yet.
 本発明者等は、これまでにポリ乳酸、すなわち乳酸重合体(以後、「PLA」と記す場合もある)とポリエチレングリコールとを結合したPLA-PEGブロック共重合体のマイクロ粒子ないしナノ粒子に薬物を封入させた、患部ターゲッティング及び徐放性に優れ、かつ肝臓集積を低減し、血中滞留性を高めた陰荷電基を持つ低分子薬物含有ナノ粒子を提供してきている(特許文献1)。
 そこで、PLA-PEGブロック共重合体におけるPEGに代えて、これら高分子化合物を用いてPLAと結合させたブロック共重合体を合成し、そのナノ粒子のステルス性とABC現象に関する検討を行うことで、パッシブターゲッティングが可能なポストPEG化粒子の検索を行った。
The present inventors have heretofore made a drug on PLA-PEG block copolymer microparticles or nanoparticles in which polylactic acid, that is, a lactic acid polymer (hereinafter sometimes referred to as “PLA”) and polyethylene glycol are combined. Has been providing low-molecular-weight drug-containing nanoparticles having negatively charged groups that are excellent in diseased part targeting and sustained release, have reduced liver accumulation, and have increased blood retention (Patent Document 1).
Therefore, instead of PEG in the PLA-PEG block copolymer, a block copolymer bonded with PLA using these polymer compounds was synthesized, and the stealth property and ABC phenomenon of the nanoparticles were studied. A search for post-PEGylated particles capable of passive targeting was conducted.
 その結果、PLAとの共重合体成分として、ポリビニルピロリドン(PVP)、ポリアクリロイルモルフォリン(PAcM))、及びポリジメチルアクリルアミド(PDMAA)を用いて得られたPLAとのブロック共重合体のナノ粒子に薬物を封入した場合には、上記したABC現象が誘導されないことを新規に見出し、その結果本発明を完成させるに至った。 As a result, block copolymer nanoparticles with PLA obtained using polyvinylpyrrolidone (PVP), polyacryloylmorpholine (PAcM)), and polydimethylacrylamide (PDMAA) as copolymer components with PLA When the drug was encapsulated in the above, the above-described ABC phenomenon was not newly induced, and as a result, the present invention was completed.
国際公開 WO2008/139804International publication WO2008 / 139804
 したがって本発明は、パッシブターゲッティング療法に使用しうる薬物封入ナノ粒子において、頻回投与に伴い薬理効果の低減や、副作用発現の見られない、ABC現象の誘発を抑制した低分子薬物含有ナノ粒子を提供することを課題とする。 Therefore, the present invention relates to a drug-encapsulated nanoparticle that can be used for passive targeting therapy. The issue is to provide.
 かかる課題を解決するべく、本発明者らは鋭意検討した結果、陰荷電基を持つ低分子薬物を金属イオンにより疎水化し、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン、ポリアクリロイルモルフォリン、又はポリジメチルアクリルアミド)ブロック共重合体を作用させることにより得られる陰荷電基を持つ低分子薬物含有ナノ粒子が、患部ターゲッティング及び徐放性に優れ、なおかつ肝臓集積を低減し、血中滞留性に優れ、特に徐放性に優れると共に、頻回投与によってもその効果の減少が見られない、ABC現象の誘発を抑制したものであることを確認して、本発明を完成するに至った。 In order to solve such a problem, the present inventors have conducted intensive studies. As a result, the low molecular weight drug having a negatively charged group is hydrophobized with a metal ion, and (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, poly Low molecular weight drug-containing nanoparticles with negatively charged groups obtained by the action of acryloylmorpholine or polydimethylacrylamide) block copolymer are excellent in targeting and sustained release of the affected area, and also reduce liver accumulation, blood In order to complete the present invention, it was confirmed that the medium retention was excellent, in particular, the sustained release property, and the effect of the repeated administration was not reduced, and the induction of the ABC phenomenon was suppressed. It came.
 特に本発明は、これまで使用されているポリエチレングリコール(PEG)に代えて、ポリビニルピロリドン(PVP)、ポリアクリロイルモルフォリン(PAcM))、又はポリジメチルアクリルアミド(PDMAA)を用いてPLAと共重合させたブロック共重合体を使用することにより、ABC現象の誘発が抑制される点に特徴がある。 In particular, in the present invention, polyvinyl pyrrolidone (PVP), polyacryloylmorpholine (PAcM)), or polydimethylacrylamide (PDMAA) is used instead of polyethylene glycol (PEG) that has been used so far, and copolymerized with PLA. The use of the block copolymer is characterized in that the induction of ABC phenomenon is suppressed.
 したがって本発明は、これまでに頻回投与により薬理効果の減少が認められるABC現象を誘発することなく、ステルス性に優れ、患部ターゲッティング及び徐放性に優れると共に、肝臓集積を低減することにより副作用を軽減し、さらに血中滞留性に優れた陰荷電基を持つ低分子薬物を含有するナノ粒子を提供する。
 さらに本発明は、当該ナノ粒子を有効成分とする静脈注射用製剤、局所注射用製剤、点鼻剤、点眼剤、吸入剤、噴霧剤などの非経口投与用製剤を提供する。
Therefore, the present invention is excellent in stealth, excellent in targeting and sustained release of the affected area without inducing the ABC phenomenon in which the pharmacological effect is reduced by frequent administration so far, and has reduced side effects by reducing liver accumulation. In addition, the present invention provides a nanoparticle containing a low-molecular-weight drug having a negatively charged group that is excellent in retention in blood.
Furthermore, the present invention provides preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, sprays and the like containing the nanoparticles as an active ingredient.
 より具体的には、本発明は以下の構成からなる。すなわち、
(1)陰荷電基を持つ低分子薬物を金属イオンにより疎水化し、これを、
(a)ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、及び、
(b)(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体から選択される共重合体の一種、
と作用させることにより得られる陰荷電基を持つ低分子薬物含有ナノ粒子;
(2)さらに、塩基性低分子化合物を混合することを特徴とする上記1に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(3)さらに界面活性剤を配合することからなる上記1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(4)粒子の直径が20~300nm、好ましくは50~200nmである上記1~3のいずれかに記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(5)金属イオンが、亜鉛イオン、鉄イオン、銅イオン、ニッケルイオン、ベリリウムイオン、マンガンイオン又はコバルトイオンの1種又は2種以上である上記1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(6)陰荷電基を持つ低分子薬物が、前記金属イオンにより疎水化されるためのリン酸基、硫酸基又はカルボキシル基を有していることを特徴とする上記1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(7)陰荷電基を持つ低分子薬物が、抗炎症性ステロイド、非ステロイド性抗炎症薬、プロスタグランジン又はその誘導体、抗微生物薬又は抗癌薬である上記1、2又は6に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(8)(b)の(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体の重量平均分子量が、2,000~50,000である上記1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(9)塩基性低分子化合物が、(ジメチルアミノ)ピリジン、ピリジン、ピペリジン、ピリミジン、ピラジン、ピリダジン、キノリン、キヌクリジン、イソキノリン、ビス(ジメチルアミノ)ナフタレン、ナフチルアミン、モルホリン、アマンタジン、アニリン、スペルミン、スペルミジン、ヘキサメチレンジアミン、プトレシン、カダベリン、フェネチルアミン、ヒスタミン、ジアザビシクロオクタン、ジイソプロピルエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチレンジアミン、ジエチレントリアミン、エチレンジアミン、トリメチレンジアミンから選択される1種又は2種以上のものである上記2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
More specifically, the present invention has the following configuration. That is,
(1) Hydrophobizing low molecular weight drugs with negatively charged groups with metal ions,
(A) a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer, and
(B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers,
Low-molecular-weight drug-containing nanoparticles with negatively charged groups obtained by acting with
(2) The low-molecular-weight drug-containing nanoparticle having a negatively charged group as described in 1 above, further mixed with a basic low-molecular compound;
(3) A low-molecular-weight drug-containing nanoparticle having a negatively charged group as described in 1 or 2 above, further comprising a surfactant;
(4) A low-molecular-weight drug-containing nanoparticle having a negatively charged group according to any one of 1 to 3 above, wherein the particle has a diameter of 20 to 300 nm, preferably 50 to 200 nm;
(5) The low molecule having a negatively charged group as described in 1 or 2 above, wherein the metal ion is one or more of zinc ion, iron ion, copper ion, nickel ion, beryllium ion, manganese ion or cobalt ion Drug-containing nanoparticles;
(6) The negative molecule according to (1) or (2) above, wherein the low-molecular drug having a negatively charged group has a phosphate group, a sulfate group or a carboxyl group to be hydrophobized by the metal ion. Small molecule drug-containing nanoparticles with charged groups;
(7) The low molecular weight drug having a negatively charged group is an anti-inflammatory steroid, a nonsteroidal anti-inflammatory drug, a prostaglandin or a derivative thereof, an antimicrobial drug or an anticancer drug according to the above 1, 2 or 6 Low molecular weight drug-containing nanoparticles with negatively charged groups;
(8) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly) 3. The low molecular weight drug-containing nanoparticle having a negatively charged group as described in 1 or 2 above, wherein the weight average molecular weight of the DL- or L-lactic acid) / (polydimethylacrylamide) block copolymer is 2,000 to 50,000 ;
(9) Basic low molecular weight compounds are (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine , Hexamethylenediamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, One or more selected from ethylenediamine and trimethylenediamine Low-molecular-weight drug-containing nanoparticles with than is negatively charged groups according to the 2;
(10)界面活性剤が、ホスファチジルコリン、ポリオキシエチレン(20)ソルビタンモノオレート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタントリオレート、ポリオキシエチレン(80)オクチルフェニルエーテル、ポリオキシエチレン(20)コレステロールエステル、脂質-ポリエチレングリコール、ポリオキシエチレン硬化ヒマシ油及び脂肪酸-ポリエチレングリコール共重合体から選択される1種又は2種以上のものである上記3に記載の陰荷電基を持つ低分子薬物含有ナノ粒子;
(11)上記1~10に記載の陰荷電基を持つ低分子薬物含有ナノ粒子を有効成分とする非経口投与用製剤;
(12)製剤が静脈注射用製剤、局所注射用製剤、点鼻剤、点眼剤、吸入剤又は噴霧剤である上記11に記載の非経口投与用製剤;
(13)陰荷電基を持つ低分子薬物と金属イオンを溶媒中で混合して相互作用させ、この混合液中に、
(a)ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、及び、
(b)(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体から選択される共重合体の一種、
を加えて混合することを特徴とする上記1に記載された陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法;
(14)上記13の製造方法において、さらに塩基性低分子化合物を混合することを特徴とする上記13に記載の陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法;
(15)塩基性低分子化合物が、(ジメチルアミノ)ピリジン、ピリジン、ピペリジン、ピリミジン、ピラジン、ピリダジン、キノリン、キヌクリジン、イソキノリン、ビス(ジメチルアミノ)ナフタレン、ナフチルアミン、モルホリン、アマンタジン、アニリン、スペルミン、スペルミジン、ヘキサメチレンジアミン、プトレシン、カダベリン、フェネチルアミン、ヒスタミン、ジアザビシクロオクタン、ジイソプロピルエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチレンジアミン、ジエチレントリアミン、エチレンジアミン、トリメチレンジアミンから選択される1種又は2種以上のものである上記14に記載の陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法;
である。
(10) Surfactant is phosphatidylcholine, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan mono Palmitate, polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (80) octylphenyl ether, polyoxyethylene (20) cholesterol ester, lipid-polyethylene glycol, polyoxyethylene hydrogenated castor oil and fatty acid-polyethylene glycol co-polymer The low-molecular-weight drug-containing nanoparticle having a negatively charged group as described in 3 above, which is one or more selected from a combination;
(11) A preparation for parenteral administration comprising the low-molecular-weight drug-containing nanoparticles having negatively charged groups described in 1 to 10 as an active ingredient;
(12) The preparation for parenteral administration according to 11 above, wherein the preparation is a preparation for intravenous injection, a preparation for local injection, a nasal drop, an eye drop, an inhalant or a spray;
(13) A low molecular weight drug having a negatively charged group and a metal ion are mixed in a solvent to interact with each other.
(A) a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer, and
(B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers,
A method for producing a low-molecular-weight drug-containing nanoparticle having a negatively charged group described in 1 above, which comprises adding and mixing;
(14) The method for producing a low-molecular-weight drug-containing nanoparticle having a negatively charged group as described in (13) above, wherein a basic low-molecular compound is further mixed in the production method according to (13);
(15) A basic low molecular weight compound is (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine , Hexamethylenediamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, One or more selected from ethylenediamine and trimethylenediamine Method for producing a low-molecular-weight drug-containing nanoparticles having a negatively charged group according to the above 14 is intended;
It is.
 すなわち本発明は、陰荷電基を持つ低分子薬物を金属イオンにより疎水化し、この疎水化された薬物を、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体と作用させることによりナノ粒子に封入した陰荷電基を持つ低分子薬物含有ナノ粒子を作製することを特徴とする。 That is, the present invention hydrophobizes a low-molecular-weight drug having a negatively charged group with a metal ion, and converts the hydrophobized drug into a (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) block copolymer. To produce low-molecular-weight drug-containing nanoparticles having negatively charged groups encapsulated in the nanoparticles.
 本発明が提供する陰荷電基を持つ低分子薬物含有ナノ粒子は、陰荷電基を持つ低分子薬物を患部ターゲッティングし、薬物の徐放性に優れ、さらに肝臓集積を低減することにより副作用を軽減し、さらにまた血中滞留性に優れており、特に徐放性において優れていると共に、ABC現象を抑制し、頻回投与によっても薬理効果の低減が認められず、ステルス性に優れたものである。
 特に、従来から使用されているPEGに代えてPVP、PAcM或いはPDMAAを使用し、これとポリ乳酸との共重合体を使用することにより、ABC現象の誘発を抑制し、ステルス性に優れたものとなる点に本発明の特徴がある。
The low-molecular-weight drug-containing nanoparticles with negatively charged groups provided by the present invention target low-molecular-weight drugs with negatively charged groups, have excellent drug sustained release properties, and reduce side effects by reducing liver accumulation In addition, it is excellent in blood retention, particularly in sustained release, suppresses the ABC phenomenon, does not show a decrease in pharmacological effects even after repeated administration, and has excellent stealth properties. is there.
In particular, PVP, PAcM or PDMAA is used instead of the conventionally used PEG, and by using a copolymer of this and polylactic acid, the induction of ABC phenomenon is suppressed and the stealth is excellent. This is a feature of the present invention.
 したがって、これまで十分に達成されていなかった陰荷電基を持つ低分子薬物のターゲッティング及び持続的な徐放性を向上させ、さらに肝臓集積による副作用を軽減し、さらに血中濃度を持続向上させるナノ粒子を提供する点で、特に優れたものである。 Therefore, nano-molecules that have improved the targeting and sustained sustained release of low molecular weight drugs with negatively charged groups, which have not been fully achieved until now, further reducing the side effects caused by liver accumulation, and further improving the blood concentration. It is particularly excellent in providing particles.
実施例3の結果を示した図である。It is the figure which showed the result of Example 3. 実施例4の結果を示した図であり、対照としてのPEG修飾粒子の結果を示した。It is the figure which showed the result of Example 4, and showed the result of the PEG modification particle | grains as a control | contrast. 実施例4の結果を示した図であり、本発明のPVP修飾粒子の結果を示した。It is the figure which showed the result of Example 4, and showed the result of the PVP modified particle | grains of this invention. 実施例5の結果を示した図であり、対照としてのPEG修飾粒子の結果を示した。Bは本発明のPVP修飾粒子の結果である。It is the figure which showed the result of Example 5, and showed the result of the PEG modification particle | grains as a control | contrast. B is the result of the PVP modified particles of the present invention. 実施例5の結果を示した図であり、本発明のPVP修飾粒子の結果を示した。It is the figure which showed the result of Example 5, and showed the result of the PVP modified particle | grains of this invention. 実施例6の結果を示した図である。It is the figure which showed the result of Example 6.
 本発明の態様である陰荷電基を持つ低分子薬物含有ナノ粒子は、陰荷電基を持つ低分子薬物を金属イオンにより疎水化し、この疎水化した薬物をポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、及び(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン、ポリアクリロイルモルフォリン、又はポリジメチルアクリルアミド)ブロック共重合体[以下、これらブロック共重合体を、「ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体」と記す場合もある]と作用させることにより得られる。また、界面活性剤を配合してもよく、界面活性剤を配合することにより、生成したナノ粒子を安定化することができる。 The low-molecular-weight drug-containing nanoparticles having a negatively charged group which is an embodiment of the present invention hydrophobizes a low molecular weight drug having a negatively charged group with a metal ion, and the hydrophobized drug is converted to poly DL- or L-lactic acid or poly ( (DL- or L-lactic acid / glycolic acid) copolymer, and (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, polyacryloylmorpholine, or polydimethylacrylamide) block copolymer [hereinafter these The block copolymer may be expressed as “poly DL-, D- or L-lactic acid” / (polyvinylpyrrolidone or the like) block copolymer ”). Moreover, you may mix | blend surfactant and the produced | generated nanoparticle can be stabilized by mix | blending surfactant.
 本発明の陰荷電基を持つ低分子薬物含有ナノ粒子は、ナノ粒子を形成するために使用する生分解性高分子として、L異性体であるポリL-乳酸又はポリ(L-乳酸/グリコール酸)共重合体を使用することも、また一つの特徴とする。
 ポリ-L-乳酸はポリ-DL-乳酸に比し、有機溶媒への溶解性が異なり、また結晶性が高いことが知られている。本発明では、ポリ-L-乳酸を、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体と共に混合しナノ粒子を形成させることにより、ポリ-L-乳酸の水相での結晶化を抑止し、安定に分散可能なナノ粒子を調製することができる。
 ポリ-L-乳酸は、アセトンに不溶性であるため、その溶解性を上げるために、アセトン/ジオキサンあるいはアセトン/テトラヒドロフランの混合液を使用して、ナノ粒子を調製した。
The low-molecular-weight drug-containing nanoparticle having a negatively charged group of the present invention is an L-isomer poly-L-lactic acid or poly (L-lactic acid / glycolic acid) as a biodegradable polymer used for forming the nanoparticle. ) The use of a copolymer is also a feature.
Poly-L-lactic acid is known to have different solubility in organic solvents and higher crystallinity than poly-DL-lactic acid. In the present invention, poly-L-lactic acid is mixed with a block copolymer (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) to form nanoparticles, thereby forming poly-L-lactic acid. Nanoparticles that can be stably dispersed can be prepared by suppressing crystallization in the aqueous phase.
Since poly-L-lactic acid is insoluble in acetone, nanoparticles were prepared using a mixture of acetone / dioxane or acetone / tetrahydrofuran in order to increase its solubility.
 上記の陰荷電基を持つ低分子薬物含有ナノ粒子は、界面活性剤を配合していてもよく、界面活性剤を配合することにより、生成したナノ粒子を安定化し、粒子間の凝集を抑止することができる。 The above low-molecular-weight drug-containing nanoparticles having negatively charged groups may contain a surfactant. By adding a surfactant, the produced nanoparticles are stabilized and aggregation between particles is suppressed. be able to.
 上記により提供される本発明の陰荷電基を持つ低分子薬物含有ナノ粒子は、静脈注射用製剤、局所注射用製剤、点鼻剤、点眼剤、吸入剤、噴霧剤などの非経口投与用製剤とすることにより、投与することができる。 The low-molecular-weight drug-containing nanoparticles having a negatively charged group of the present invention provided by the above are preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, sprays and the like. By doing so, it can be administered.
 本発明が提供する陰荷電基を持つ低分子薬物含有ナノ粒子は、以下のとおり作製することができる。
 すなわち、陰荷電基を持つ低分子薬物と金属イオンを、有機溶媒又は含水有機溶媒の溶媒中で混合して疎水性薬物とし、この混合液中にポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、さらに(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体を加えて攪拌し、この溶液を水中に添加、拡散することにより調製することができる。
The low-molecular-weight drug-containing nanoparticles having negatively charged groups provided by the present invention can be prepared as follows.
That is, a low molecular drug having a negatively charged group and a metal ion are mixed in an organic solvent or a water-containing organic solvent to form a hydrophobic drug, and poly DL-, L-lactic acid or poly (DL- Or L-lactic acid / glycolic acid) copolymer and further (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.) block copolymer and stirred, and this solution is added to water and diffused. Can be prepared.
 また、ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、さらに(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体を溶媒に溶解した溶液と、陰荷電基を持つ低分子薬物の水溶液、及び金属イオン水溶液を同時に加えて混合しても同様のナノ粒子を調製することができる。 Further, poly DL- or L-lactic acid or poly (DL- or L-lactic acid / glycolic acid) copolymer, and further (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone etc.) block copolymer are used. Similar nanoparticles can be prepared by simultaneously adding and mixing a solution dissolved in a solvent, an aqueous solution of a low-molecular drug having a negatively charged group, and an aqueous metal ion solution.
 本発明においては、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体をナノ粒子の表面修飾剤として用いることで、ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体の水相における結晶化を抑制し、その結果、粒子の大きさが均一で安定なナノ粒子を得ることができる。 In the present invention, a poly (DL-, D-, or L-lactic acid) / (polyvinyl pyrrolidone, etc.) block copolymer is used as a surface modifier for the nanoparticles, so that poly (DL-) or L-lactic acid or poly (DL The crystallization of the (or L-lactic acid / glycolic acid) copolymer in the aqueous phase is suppressed, and as a result, stable nanoparticles with uniform particle size can be obtained.
 使用される金属イオンとしては、亜鉛イオン、鉄イオン、銅イオン、ニッケルイオン、ベリリウムイオン、マンガンイオン、コバルトイオンのいずれかであり、それらの水溶性金属塩の1種又は2種以上が使用される。そのなかでも好ましくは亜鉛イオン、鉄イオンであり、塩化亜鉛、塩化鉄などが好ましく使用できる。 The metal ion used is any one of zinc ion, iron ion, copper ion, nickel ion, beryllium ion, manganese ion and cobalt ion, and one or more of these water-soluble metal salts are used. The Of these, zinc ions and iron ions are preferable, and zinc chloride, iron chloride and the like can be preferably used.
 上記の反応に使用される溶媒としては、アセトン、アセトニトリル、エタノール、メタノール、プロパノール、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、テトラヒドロフランなどの有機溶媒、あるいはこれらの含水溶媒であり、アセトン、ジメチルホルムアミド、ジオキサン、テトラヒドロフランが好ましい。 Solvents used in the above reaction include organic solvents such as acetone, acetonitrile, ethanol, methanol, propanol, dimethylformamide, dimethyl sulfoxide, dioxane, tetrahydrofuran, and water-containing solvents thereof, acetone, dimethylformamide, dioxane, Tetrahydrofuran is preferred.
 陰荷電基を持つ低分子薬物は、上記の金属イオンと結合して疎水化され易いように分子内にリン酸基、硫酸基又はカルボキシル基を有していることが好ましく、また分子量が1,000以下であることが好適である。 The low molecular weight drug having a negatively charged group preferably has a phosphate group, a sulfate group or a carboxyl group in the molecule so as to be easily hydrophobized by binding to the above metal ion, and has a molecular weight of 1, 000 or less is preferred.
 そのような陰荷電基を持つ低分子薬物としては、種々の薬物を挙げることができるが、なかでも水溶性の抗炎症性ステロイド、非ステロイド性抗炎症薬、プロスタグランジン又はその誘導体、抗微生物薬、又は抗癌薬が好適であり、より具体的には、リン酸ベタメタゾン、リン酸デキサメタゾン、リン酸プレドニゾロン、リン酸ヒドロコルチゾン、コハク酸プレドニゾロン、コハク酸ヒドロコルチゾンなどの抗炎症性ステロイド;ロキソプロフェン、イブプロフェン、ケトプロフェン、ジクロフェナック、フェンブフェンなどの非ステロイド性抗炎症薬;プロスタグランジンE、プロスタグランジンE又はその誘導体;バンコマイシン、コハク酸クロラムフェニコール、ラタモキセフ、セフピロム、リン酸クリンダマイシン、カルモナムなどの抗微生物薬;ビンクリスチン、ビンブラスチンなどの抗癌薬などが挙げられるが、これらに限定されるものではない。 Examples of such low molecular weight drugs having negatively charged groups include various drugs, among which water-soluble anti-inflammatory steroids, non-steroidal anti-inflammatory drugs, prostaglandins or derivatives thereof, antimicrobials Drugs or anticancer drugs are preferred, and more specifically, anti-inflammatory steroids such as betamethasone phosphate, dexamethasone phosphate, prednisolone phosphate, hydrocortisone phosphate, prednisolone succinate, hydrocortisone succinate; loxoprofen, ibuprofen , ketoprofen, diclofenac, a non-steroidal anti-inflammatory drugs such as fenbufen; prostaglandin E 1, prostaglandin E 2, or derivatives thereof; vancomycin, succinic acid chloramphenicol, latamoxef, cefpirome, clindamycin phosphate, Carmona Antimicrobial agents, such as; vincristine, but anti-cancer agents and the like, such as vinblastine, but is not limited thereto.
 (ポリDL-、D-又はL-乳酸)/(ポリビニルプロリドン等)ブロック共重合体は、ポリDL-乳酸(PDLLAということもある)、ポリD-乳酸(PDLAということもある)若しくはポリL-乳酸(PLLAということもある)(これらの重合体をブロックAという)と、ポリビニルピロリドン(PVP)ポリアクリロイルモルフォリン(PAcM))、又はポリジメチルアクリルアミド(PDMAA)(これらをブロックBという)とを、ジイソプロピルカルボジイミド、エチレンジメチルアミノプロピルカルボジイミドなどの縮合剤のもとで反応させることにより、生成することができるが、市販されている同様のブロック共重合体を使用してもよい。 (Poly DL-, D- or L-lactic acid) / (polyvinyl prolidone etc.) block copolymer is poly DL-lactic acid (sometimes called PDLLA), poly D-lactic acid (sometimes called PDLA) or poly L-lactic acid (sometimes called PLLA) (these polymers are called block A), polyvinylpyrrolidone (PVP) polyacryloylmorpholine (PAcM)), or polydimethylacrylamide (PDMAA) (these are called block B) Can be produced by reaction under a condensing agent such as diisopropylcarbodiimide, ethylenedimethylaminopropylcarbodiimide, or the like, but a similar block copolymer that is commercially available may be used.
 (ポリDL-、D-又はL-乳酸)/(ポリビニルプロリドン等)ブロック共重合体の構成としては、A-Bタイプ、A-B-Aタイプ、B-A-Bタイプのいずれであっても本発明の目的を達成することができる。また、これらのブロック共重合体の重量平均分子量は2,000~50,000であることが好ましい。 (Poly DL-, D- or L-lactic acid) / (polyvinyl prolidone, etc.) The block copolymer may be any of AB type, ABA type, and BAB type. However, the object of the present invention can be achieved. The weight average molecular weight of these block copolymers is preferably 2,000 to 50,000.
 また、本発明の陰荷電基を持つ低分子薬物含有ナノ粒子は、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体に対するポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体の混合比を高くすると、大きなナノ粒子が生成され、かつ薬物のナノ粒子への封入率が増加する傾向にある。 In addition, the low-molecular-weight drug-containing nanoparticles having negatively charged groups of the present invention include poly (DL-, L-lactic acid) or poly (poly (DL-, D- or L-lactic acid)) / (polyvinylpyrrolidone, etc.) block copolymers. When the mixing ratio of the (DL- or L-lactic acid / glycolic acid) copolymer is increased, large nanoparticles are generated and the encapsulation rate of the drug in the nanoparticles tends to increase.
 本発明の陰荷電基を持つ低分子薬物含有ナノ粒子おいて、さらに塩基性低分子化合物を混合することにより薬物のナノ粒子への封入率が増加し、10%程度まで封入することができる。
 このような塩基性低分子化合物としては(ジメチルアミノ)ピリジン、ピリジン、ピペリジン、ピリミジン、ピラジン、ピリダジン、キノリン、キヌクリジン、イソキノリン、ビス(ジメチルアミノ)ナフタレン、ナフチルアミン、モルホリン、アマンタジン、アニリン、スペルミン、スペルミジン、ヘキサメチレンジアミン、プトレシン、カダベリン、フェネチルアミン、ヒスタミン、ジアザビシクロオクタン、ジイソプロピルエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチレンジアミン、ジエチレントリアミン、エチレンジアミン、トリメチレンジアミン等を挙げることができ、好ましくは、2級又は3級アミン類であり、ジエタノールアミンが特に好ましい。
In the low-molecular-weight drug-containing nanoparticle having a negatively charged group of the present invention, by further mixing a basic low-molecular compound, the encapsulation rate of the drug in the nanoparticle increases, and it can be encapsulated to about 10%.
Such basic low molecular weight compounds include (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine , Hexamethylenediamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, Examples include ethylenediamine and trimethylenediamine. Details, a secondary or tertiary amine, diethanolamine being particularly preferred.
 かくして調製された陰荷電基を持つ低分子薬物含有ナノ粒子に界面活性剤を配合してもよく、界面活性剤を配合することにより、生成したナノ粒子を安定化し、かつ粒子間の凝集を抑制することができる。したがって、ナノ粒子を含有する製剤の製剤化工程にとって好ましいものとなる。 A surfactant may be added to the low-molecular-weight drug-containing nanoparticles having negatively charged groups thus prepared, and by adding a surfactant, the generated nanoparticles are stabilized and aggregation between particles is suppressed. can do. Therefore, it becomes a preferable thing for the formulation process of the formulation containing nanoparticles.
 使用される界面活性剤としては、ホスファチジルコリン、ポリオキシエチレン(20)ソルビタンモノオレート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタントリオレート、ポリオキシエチレン(80)オクチルフェニルエーテル、ポリオキシエチレン(20)コレステロールエステル、脂質-ポリエチレングリコール、ポリオキシエチレン硬化ヒマシ油及び脂肪酸-ポリエチレングリコール共重合体等をあげることができ、これらの界面活性剤から選択される1種又は2種以上を使用するのが好ましい。 Surfactants used include phosphatidylcholine, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan Monopalmitate, polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (80) octylphenyl ether, polyoxyethylene (20) cholesterol ester, lipid-polyethylene glycol, polyoxyethylene hydrogenated castor oil and fatty acid-polyethylene glycol A polymer etc. can be mention | raise | lifted and it is preferable to use 1 type, or 2 or more types selected from these surfactant.
 本発明が提供する陰荷電基を持つ低分子薬物含有ナノ粒子にあっては、その粒子の直径は20~300nmの範囲内であり、好ましくは50~200nmであり、それぞれの薬物が目的とするターゲット患部に依存して、その粒子径を決定することができる。
 例えば、薬物を関節炎、癌、閉塞性動脈硬化症などに使用する場合には、50~200nmの粒径を有するナノ粒子を静脈注射することが好ましい。
In the low-molecular-weight drug-containing nanoparticles having negatively charged groups provided by the present invention, the diameter of the particles is in the range of 20 to 300 nm, preferably 50 to 200 nm. Depending on the target affected area, the particle size can be determined.
For example, when the drug is used for arthritis, cancer, obstructive arteriosclerosis, etc., it is preferable to intravenously inject nanoparticles having a particle size of 50 to 200 nm.
 この粒径は、例えば、(ポリDL-、D-又はL-乳酸)/(ポリビニルピロリドン等)ブロック共重合体を溶解する溶媒、好ましくはアセトン又はジオキサンの量を調節することにより調整することができ、アセトン又はジオキサンの量を多くすることにより小さな粒径のナノ粒子が得られる。また、ナノ粒子の粒径が大きくなるほど薬物の封入率が高くなる傾向にある。 This particle size can be adjusted, for example, by adjusting the amount of a solvent, preferably acetone or dioxane, that dissolves the block copolymer (poly DL-, D- or L-lactic acid) / (polyvinylpyrrolidone, etc.). In addition, by increasing the amount of acetone or dioxane, nanoparticles having a small particle size can be obtained. Also, the drug encapsulation rate tends to increase as the particle size of the nanoparticles increases.
 かくして調製した本発明の陰荷電基を持つ低分子薬物含有ナノ粒子は、ナノ粒子の溶液又は懸濁液を、遠心分離、限外濾過、ゲル濾過、フィルター濾過、ファイバー透析などの操作により適宜精製した後、凍結乾燥して取得、保存される。 The low-molecular-weight drug-containing nanoparticles having negatively charged groups of the present invention thus prepared are appropriately purified from nanoparticle solutions or suspensions by operations such as centrifugation, ultrafiltration, gel filtration, filter filtration, and fiber dialysis. And then freeze-dried to obtain and store.
 その際、凍結乾燥した製剤を再懸濁して投与できるようにするため安定化剤及び/又は分散化剤を加えて凍結乾燥されることが好ましく、そのような安定化剤、分散化剤としてはショ糖、トレハロース、カルボキシメチルセルロースナトリウムなどが好ましく使用される。 At that time, it is preferable to add a stabilizer and / or a dispersing agent in order to resuspend the lyophilized preparation so that it can be administered, and then lyophilized. Sucrose, trehalose, sodium carboxymethyl cellulose and the like are preferably used.
 本発明が提供する陰荷電基を持つ低分子薬物含有ナノ粒子は、静脈注射用製剤、局所注射用製剤、点鼻剤、点眼剤、吸入剤、噴霧剤などの非経口投与用製剤の医薬品として使用され、なかでも静脈注射用製剤とすることで、当該ナノ粒子の特性、効果をより良く発揮することができる。 The low-molecular-weight drug-containing nanoparticles having a negatively charged group provided by the present invention are used as pharmaceuticals for preparations for parenteral administration such as intravenous injection preparations, topical injection preparations, nasal drops, eye drops, inhalants, and sprays. In particular, the characteristics and effects of the nanoparticles can be better exhibited by preparing a preparation for intravenous injection.
 これらの非経口投与用製剤の調製に使用される基剤、その他の添加剤成分としては、製剤学的に許容され、使用されている各種基剤、成分を挙げることができる。具体的には、生理食塩水、単糖類、二糖類、糖アルコール類、多糖類などの糖類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロースなどの高分子添加剤;イオン性又は非イオン性界面活性剤;などが剤型に応じて適宜選択され、使用することができる。 Examples of bases and other additive components used in the preparation of these parenteral preparations include various bases and components that are pharmaceutically acceptable and used. Specifically, saccharides such as physiological saline, monosaccharides, disaccharides, sugar alcohols, polysaccharides; polymer additives such as hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose; ionic or nonionic surfactants; Etc. can be appropriately selected and used depending on the dosage form.
 以下に本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
実施例1:ブロック共重合体の合成
 PLAとのブロック共重合体の相手として、ポリビニルピロリドン(PVP)、ポリアクリロイルモルフォリン(PAcM)、及びポリジメチルアクリルアミド(PDMAA)を選択し、ブロックポリマー(すなわち、PVP-PLAブロック共重合体、PAcM-PLAブロック共重合体、及びPVP-PDMAAブロック共重合体)を、ラジカル重合により合成した。
 PLA(多木化学社製、D,L-体、平均分子量:18,300)とアミノエタンチオール塩酸塩(和光純薬工業社製)を、ジイソプロピルカルボジイミド(Sigma社製)により縮合することで、末端チオール化PLAを合成した。
 得られた末端チオール化PLA(300mg)を用い、反応開始剤のアゾビスイソブチロニトリル(10mg)、及び各モノマー(1100mg:ビニルピロリドン、アクリロイルモルフォリン、及びジメチルアクリルアミド)をジメチルホルムアミド1mL中に溶解し、70℃にて4時間反応させた。次いで反応物を水中に分散し、限外濾過により精製し、凍結乾燥することにより各ポリマーを得た。
Example 1 Synthesis of Block Copolymer Polyvinylpyrrolidone (PVP), polyacryloylmorpholine (PAcM), and polydimethylacrylamide (PDMAA) are selected as block copolymer partners with PLA, and a block polymer (ie, , PVP-PLA block copolymer, PAcM-PLA block copolymer, and PVP-PDMAA block copolymer) were synthesized by radical polymerization.
By condensing PLA (manufactured by Taki Chemical Co., Ltd., D, L-isomer, average molecular weight: 18,300) and aminoethanethiol hydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) with diisopropylcarbodiimide (manufactured by Sigma), Terminal thiolated PLA was synthesized.
Using the obtained terminal thiolated PLA (300 mg), the initiator azobisisobutyronitrile (10 mg) and each monomer (1100 mg: vinylpyrrolidone, acryloylmorpholine, and dimethylacrylamide) were added to 1 mL of dimethylformamide. It melt | dissolved and it was made to react at 70 degreeC for 4 hours. The reaction product was then dispersed in water, purified by ultrafiltration, and lyophilized to obtain each polymer.
 得られた各ポリマーの分子量及び組成は、サイズ排除クロマトグラフィー(SEC)及びプロトンNMRにより解析した。各親水性鎖(PVP、PAcM、及びPDMAA)の平均分子量はおよそ30,000程度であり、ポリマー中に占める親水性鎖の割合は、およそ60~70%であった。 The molecular weight and composition of each polymer obtained were analyzed by size exclusion chromatography (SEC) and proton NMR. The average molecular weight of each hydrophilic chain (PVP, PAcM, and PDMAA) was about 30,000, and the ratio of the hydrophilic chain in the polymer was about 60 to 70%.
 その結果を下記表1中に示した。
 なお、PLAとポリビニルピロリドン(PVP)、ポリアクリロイルモルフォリン(PAcM)、及びポリジメチルアクリルアミド(PDMAA)とのブロックポリマーを、以下、PVP-PLA、PAcM-PLA、及びPDMAA-PLAとそれぞれ表記する。
The results are shown in Table 1 below.
The block polymers of PLA and polyvinylpyrrolidone (PVP), polyacryloylmorpholine (PAcM), and polydimethylacrylamide (PDMAA) are hereinafter referred to as PVP-PLA, PAcM-PLA, and PDMAA-PLA, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Mw:重量平均分子量
Mn:数平均分子量
*1:何れもSECにより算出した親水性鎖(PVP、PAcM及びPDMAA)の分子量を示した。
Mw: Weight average molecular weight Mn: Number average molecular weight * 1: All indicate the molecular weight of the hydrophilic chain (PVP, PAcM and PDMAA) calculated by SEC.
実施例2:ナノ粒子の調製
 上記表1に示したブロック共重合体を用い、薬物としてプロスタグランジンE1(PGE1)を封入したナノ粒子を調製した。
 25mgの表1に示した各ポリマー、25mgのPLA(L-体、分子量:17500)、10mgのプロスタグランジンE1(PGE1)、9.5mgのジエタノールアミンを、アセトン/ジオキサン混合液(混合比:7/3)1.5mLに溶解し、0.5Mの塩化第二鉄無水物のアセトン溶液30μLを添加した。この混合液を10分静置した後、攪拌子を用い1000rpmで攪拌している水中(25mL)に、一気に添加した。直ちに、2.5mLの0.5Mクエン酸ナトリウム水溶液と125μLの200mg/mLのポリソルベート80水溶液を添加し、限外濾過により精製・濃縮しナノ粒子を得た。
 また、対照として特許文献1に記載の方法に準じて得た、ポリエチレングリコール(PEG)を用いたPEG-PLAブロック共重合体(PEG-PLA)を使用し、薬物としてプロスタグランジンE1(PGE1)を封入したナノ粒子を調製した。
Example 2: Preparation of nanoparticles Using the block copolymer shown in Table 1 above, nanoparticles encapsulating prostaglandin E1 (PGE1) as a drug were prepared.
25 mg of each polymer shown in Table 1, 25 mg of PLA (L-form, molecular weight: 17500), 10 mg of prostaglandin E1 (PGE1), 9.5 mg of diethanolamine were mixed in an acetone / dioxane mixture (mixing ratio: 7). / 3) Dissolve in 1.5 mL, and add 30 μL of 0.5 M anhydrous ferric chloride solution in acetone. The mixture was allowed to stand for 10 minutes, and then added at once to water (25 mL) stirred at 1000 rpm using a stir bar. Immediately, 2.5 mL of 0.5 M sodium citrate aqueous solution and 125 μL of 200 mg / mL polysorbate 80 aqueous solution were added, and purified and concentrated by ultrafiltration to obtain nanoparticles.
Further, as a control, a PEG-PLA block copolymer (PEG-PLA) using polyethylene glycol (PEG) obtained according to the method described in Patent Document 1 was used, and prostaglandin E1 (PGE1) was used as a drug. Nanoparticles encapsulating were prepared.
 得られたナノ粒子の特性を、下記表2に示した。 The characteristics of the obtained nanoparticles are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
粒子径及びゼータ電位は、Zetasizer Nano ZS (Malvern)により測定した。
PGE1量はHPLCにより測定した。
The particle size and zeta potential were measured by Zetasizer Nano ZS (Malvern).
The amount of PGE1 was measured by HPLC.
 表2中に示した結果から判明するように、各ブロック共重合体を用いて調製したナノ粒子にあっては、その粒子径は120~130nm程度であった。
 また、表面電位は、いずれのナノ粒子もわずかにマイナスの値を有していた。
 プロスタグランジンE1(PGE1)の封入率(粒子全量中のPGE1重量比)は1%弱程度であった。これらの値は、PEG-PLAを用い調製したナノ粒子とほぼ同等の値であった。
 以上の結果から、表1に示した各ポリマーを使用することによっても、PEG-PLAを使用して調製したPEG修飾ナノ粒子と同様に、PGE1を含有するナノ粒子を調製できることが明らかになった。
As can be seen from the results shown in Table 2, in the nanoparticles prepared using the respective block copolymers, the particle diameter was about 120 to 130 nm.
Further, the surface potential of each nanoparticle was slightly negative.
The encapsulation rate of prostaglandin E1 (PGE1) (PGE1 weight ratio in the total amount of particles) was about 1% or less. These values were almost equivalent to the nanoparticles prepared using PEG-PLA.
From the above results, it has been clarified that by using each polymer shown in Table 1, nanoparticles containing PGE1 can be prepared in the same manner as PEG-modified nanoparticles prepared using PEG-PLA. .
実施例3:各ナノ粒子を投与した場合の薬物の血中滞留性評価
 実施例2で得られた各ナノ粒子(以下、PVP修飾粒子、PAcM修飾粒子、PDMAA修飾粒子及びPEG修飾粒子と記す)の1,000μgを、Wister系ラット(雄性:6週齢)に尾静脈注射し、経時的にプロスタグランジンE1(PGE1)の血中濃度を、EIA法により測定した。
Example 3: Evaluation of drug retention in blood when each nanoparticle is administered Each nanoparticle obtained in Example 2 (hereinafter referred to as PVP-modified particle, PAcM-modified particle, PDMAA-modified particle, and PEG-modified particle) Was injected into the Wister rat (male: 6 weeks old) via tail vein, and the blood concentration of prostaglandin E1 (PGE1) was measured by the EIA method over time.
 その結果を図1に示した。
 PGE1を単独で血中投与した場合には、投与後数分で血中から消失することが報告されているが、図中に示した結果からも判明するように、いずれの粒子においても、PGE1の血中滞留性の大幅な増大が認められた。PVP修飾粒子、PAcM修飾粒子およびPDMAA修飾粒子は、PEG修飾粒子ほど高くないが、ほぼ同程度の血中滞留性を示していた。
The results are shown in FIG.
When PGE1 is administered alone in the blood, it has been reported that it disappears from the blood within a few minutes after administration. However, as can be seen from the results shown in the figure, in any particle, PGE1 A significant increase in blood retention was observed. PVP-modified particles, PAcM-modified particles, and PDMAA-modified particles were not as high as PEG-modified particles, but showed approximately the same blood retention.
実施例4:PVP修飾粒子及びPEG修飾粒子におけるABC現象の惹起
 実施例2で得られたPVP修飾粒子(50μg或いは1,000μg)を、Wister系ラット(雄性:6週齢)に尾静脈注射し、一定のインターバル後、再びPVP修飾粒子(1,000μg)を尾静脈注射し、PGE1の血中濃度を測定した。
 また、対照として、PEG修飾粒子を用い、同様に評価した。
Example 4: Induction of ABC phenomenon in PVP modified particles and PEG modified particles PVP modified particles (50 μg or 1,000 μg) obtained in Example 2 were injected into Wister rats (male: 6 weeks old) via tail vein. After a certain interval, PVP-modified particles (1,000 μg) were again injected into the tail vein, and the blood concentration of PGE1 was measured.
As a control, PEG-modified particles were used and evaluated in the same manner.
 その結果を図2及び3に示した。
 図中に示した結果からも判明するように、PEG修飾粒子の場合(図2)には、前投与なしに比べ、7日前にPEG修飾粒子を前投与(50μg或いは1,000μg)すると、2度目の投与時にはPGE1の血中濃度が激減することがわかった。
 これは典型的なABC現象が惹起しているものといえる。
 一方、本発明のPVP修飾粒子においては(図3)、3日、7日、14日前にPVP修飾粒子を前投与(50μg)した場合、或いは、7日前にPVP修飾粒子を前投与(1,000μg)した場合であっても、2度目の投与時にPGE1の大きな血中濃度の変化は認められず、ABC現象が惹起されなかった。
The results are shown in FIGS.
As can be seen from the results shown in the figure, in the case of PEG-modified particles (FIG. 2), when PEG-modified particles are pre-administered 7 days before (50 μg or 1,000 μg), 2 It was found that the blood concentration of PGE1 drastically decreased at the second administration.
This can be said to be caused by a typical ABC phenomenon.
On the other hand, in the PVP modified particles of the present invention (FIG. 3), when the PVP modified particles were pre-administered (50 μg) 3 days, 7 days, 14 days ago, or the PVP modified particles were pre-administered 7 days ago (1, 000 μg), no significant change in the blood concentration of PGE1 was observed at the second administration, and no ABC phenomenon was induced.
実施例5:複数回投与時のPVP修飾粒子及びPEG修飾粒子におけるABC現象の惹起
 実施例2で得られたPVP修飾粒子(50μg或いは1,000μg)をWister系ラット(雄性:6週齢)に1週間間隔で3度尾静脈注射し、3度目の投与から1週間後にPVP修飾粒子(1,000μg)を尾静脈注射し、PGE1の血中濃度を測定した。
 また、対照としてPEG修飾粒子を用い、同様にしてPGE1の血中濃度を測定した。
Example 5: Induction of ABC Phenomenon in PVP-modified Particles and PEG-Modified Particles after Multiple Administrations PVP-modified particles (50 μg or 1,000 μg) obtained in Example 2 were given to Wister rats (male: 6 weeks old). The tail vein was injected three times at weekly intervals, one week after the third administration, PVP modified particles (1,000 μg) were injected into the tail vein, and the blood concentration of PGE1 was measured.
Further, PEG-modified particles were used as a control, and the blood concentration of PGE1 was measured in the same manner.
 その結果を図4及び5に示した。
 図中に示した結果からも判明するように、PEG修飾粒子の場合(図4)には、PGE1の血中濃度が前投与なしに比べ減少したことから、ABC現象が誘導されていることがわかる。
 一方、本発明のPVP修飾粒子の場合(図5)には、いずれの投与量においても、ABC現象が惹起されていなかった。
The results are shown in FIGS.
As can be seen from the results shown in the figure, in the case of the PEG-modified particles (FIG. 4), the blood concentration of PGE1 decreased compared to the case without the pre-administration, so that the ABC phenomenon was induced. Recognize.
On the other hand, in the case of the PVP modified particles of the present invention (FIG. 5), the ABC phenomenon was not induced at any dose.
実施例6:PAcM修飾粒子及びPDMAA修飾粒子におけるABC現象の惹起
 実施例2で得られたPAcM修飾粒子或いはPDMAA修飾粒子(各50μg)をWister系ラット(雄性:6週齢)に尾静脈注射し、7日後、再び同じ粒子(1,000μg)を尾静脈注射し、PGE1の血中濃度を測定した。
Example 6: Induction of ABC Phenomenon in PAcM Modified Particles and PDMAA Modified Particles PAcM modified particles or PDMAA modified particles (50 μg each) obtained in Example 2 were injected into Wister rats (male: 6 weeks old) via tail vein. Seven days later, the same particles (1,000 μg) were again injected into the tail vein, and the blood concentration of PGE1 was measured.
 その結果を図6に示した。
 図中に示した結果からも判明するように、PAcM修飾粒子及びPDMAA修飾粒子のいずれの場合においても、前投与の有無に関わらずほぼ同じPGE1の血中滞留性を示していた。すなわち、これらの修飾粒子においても、ABC現象が惹起されていなかった。
The results are shown in FIG.
As can be seen from the results shown in the figure, in both cases of PAcM-modified particles and PDMAA-modified particles, the same PGE1 retention in blood was exhibited regardless of the presence or absence of pre-administration. That is, even in these modified particles, the ABC phenomenon was not induced.
 以上のように、本発明が提供する低分子薬物含有ナノ粒子は、陰荷電基を持つ低分子薬物を患部ターゲッティングし、薬物の徐放性に優れ、さらに肝臓集積を低減することにより副作用を軽減し、さらにまた血中滞留性に優れており、特に徐放性において優れていると共に、ABC現象を抑制し、頻回投与によっても薬理効果の低減が認められず、ステルス性に優れたものである。
 特に、従来から使用されているPEGに代えてPVP等を使用し、これとポリ乳酸との共重合体を使用することにより、ABC現象を抑制し、ステルス性に優れたものとなる点で、その産業上の利用性は多大なものである。
As described above, the low-molecular-weight drug-containing nanoparticles provided by the present invention target a low-molecular-weight drug having a negatively charged group, are excellent in sustained release of the drug, and reduce side effects by reducing liver accumulation. In addition, it is excellent in blood retention, particularly in sustained release, suppresses the ABC phenomenon, does not show a decrease in pharmacological effects even after repeated administration, and has excellent stealth properties. is there.
In particular, by using PVP or the like instead of PEG that has been used conventionally, and using a copolymer of this and polylactic acid, the ABC phenomenon is suppressed, and the stealth property is excellent. Its industrial applicability is tremendous.

Claims (15)

  1.  陰荷電基を持つ低分子薬物を金属イオンにより疎水化し、これを、
    (a)ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、及び、
    (b)(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体から選択される共重合体の一種、
    と作用させることにより得られる陰荷電基を持つ低分子薬物含有ナノ粒子。
    Hydrophobizing low molecular weight drugs with negatively charged groups with metal ions,
    (A) a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer, and
    (B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers,
    Low-molecular-weight drug-containing nanoparticles with negatively charged groups obtained by acting with
  2.  さらに、塩基性低分子化合物を混合することを特徴とする請求項1に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 Furthermore, the low molecular weight drug-containing nanoparticle having a negatively charged group according to claim 1, further comprising mixing a basic low molecular weight compound.
  3.  さらに界面活性剤を配合することからなる請求項1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 The low-molecular-weight drug-containing nanoparticle having a negatively charged group according to claim 1 or 2, further comprising a surfactant.
  4.  粒子の直径が20~300nm、好ましくは50~200nmである請求項1~3のいずれかに記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 The low-molecular-weight drug-containing nanoparticle having a negatively charged group according to any one of claims 1 to 3, wherein the diameter of the particle is 20 to 300 nm, preferably 50 to 200 nm.
  5.  金属イオンが、亜鉛イオン、鉄イオン、銅イオン、ニッケルイオン、ベリリウムイオン、マンガンイオン又はコバルトイオンの1種又は2種以上である請求項1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 The low molecular drug containing negatively charged group according to claim 1 or 2, wherein the metal ion is one or more of zinc ion, iron ion, copper ion, nickel ion, beryllium ion, manganese ion or cobalt ion. Nanoparticles.
  6.  陰荷電基を持つ低分子薬物が、前記金属イオンにより疎水化されるためのリン酸基、硫酸基又はカルボキシル基を有していることを特徴とする請求項1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 3. The negatively charged group according to claim 1 or 2, wherein the low molecular weight drug having a negatively charged group has a phosphate group, a sulfate group or a carboxyl group to be hydrophobized by the metal ion. Low-molecular-weight drug-containing nanoparticles with
  7.  陰荷電基を持つ低分子薬物が、抗炎症性ステロイド、非ステロイド性抗炎症薬、プロスタグランジン又はその誘導体、抗微生物薬又は抗癌薬である請求項1、2又は6に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 The negative charge according to claim 1, 2, or 6, wherein the low molecular weight drug having a negatively charged group is an anti-inflammatory steroid, a non-steroidal anti-inflammatory drug, a prostaglandin or a derivative thereof, an antimicrobial drug or an anticancer drug. Low-molecular-weight drug-containing nanoparticles with groups.
  8.  (b)の(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体の重量平均分子量が2,000~50,000である請求項1又は2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 (B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or The low-molecular-weight drug-containing nanoparticle having a negatively charged group according to claim 1 or 2, wherein the L-lactic acid) / (polydimethylacrylamide) block copolymer has a weight average molecular weight of 2,000 to 50,000.
  9.  塩基性低分子化合物が、(ジメチルアミノ)ピリジン、ピリジン、ピペリジン、ピリミジン、ピラジン、ピリダジン、キノリン、キヌクリジン、イソキノリン、ビス(ジメチルアミノ)ナフタレン、ナフチルアミン、モルホリン、アマンタジン、アニリン、スペルミン、スペルミジン、ヘキサメチレンジアミン、プトレシン、カダベリン、フェネチルアミン、ヒスタミン、ジアザビシクロオクタン、ジイソプロピルエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチレンジアミン、ジエチレントリアミン、エチレンジアミン、トリメチレンジアミンから選択される1種又は2種以上のものである請求項2に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 Basic low molecular weight compounds are (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine, hexamethylene Diamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, ethylenediamine, triethylene One or more selected from methylenediamine Low-molecular-weight drug-containing nanoparticles having a negatively charged group according to a claim 2.
  10.  界面活性剤が、ホスファチジルコリン、ポリオキシエチレン(20)ソルビタンモノオレート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタントリオレート、ポリオキシエチレン(80)オクチルフェニルエーテル、ポリオキシエチレン(20)コレステロールエステル、脂質-ポリエチレングリコール、ポリオキシエチレン硬化ヒマシ油及び脂肪酸-ポリエチレングリコール共重合体から選択される1種又は2種以上のものである請求項3に記載の陰荷電基を持つ低分子薬物含有ナノ粒子。 Surfactant is phosphatidylcholine, polyoxyethylene (20) sorbitan monooleate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monostearate, polyoxyethylene (20) sorbitan monopalmitate, Selected from polyoxyethylene (20) sorbitan trioleate, polyoxyethylene (80) octylphenyl ether, polyoxyethylene (20) cholesterol ester, lipid-polyethylene glycol, polyoxyethylene hydrogenated castor oil and fatty acid-polyethylene glycol copolymer The low-molecular-weight drug-containing nanoparticle having a negatively charged group according to claim 3, wherein the low-molecular-weight drug-containing nanoparticle according to claim 3.
  11.  請求項1~10に記載の陰荷電基を持つ低分子薬物含有ナノ粒子を有効成分とする非経口投与用製剤。 A preparation for parenteral administration comprising the low-molecular-weight drug-containing nanoparticles having negatively charged groups according to claim 1 as an active ingredient.
  12.  製剤が静脈注射用製剤、局所注射用製剤、点鼻剤、点眼剤、吸入剤又は噴霧剤である請求項11に記載の非経口投与用製剤。 The preparation for parenteral administration according to claim 11, wherein the preparation is a preparation for intravenous injection, a preparation for local injection, a nasal drop, an eye drop, an inhalant or a spray.
  13.  陰荷電基を持つ低分子薬物と金属イオンを溶媒中で混合して相互作用させ、この混合液中に、
    (a)ポリDL-又はL-乳酸又はポリ(DL-又はL-乳酸/グリコール酸)共重合体、及び、
    (b)(ポリDL-又はL-乳酸)/(ポリビニルピロリドン)ブロック共重合体、(ポリDL-又はL-乳酸)/(ポリアクリロイルモルフォリン)ブロック共重合体、及び(ポリDL-又はL-乳酸)/(ポリジメチルアクリルアミド)ブロック共重合体から選択される共重合体の一種、
    を加えて混合することを特徴とする請求項1に記載された陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法。
    A low-molecular-weight drug having a negatively charged group and a metal ion are mixed and interacted in a solvent.
    (A) a poly DL- or L-lactic acid or a poly (DL- or L-lactic acid / glycolic acid) copolymer, and
    (B) (Poly DL- or L-lactic acid) / (Polyvinylpyrrolidone) block copolymer, (Poly DL- or L-lactic acid) / (Polyacryloylmorpholine) block copolymer, and (Poly DL- or L -A kind of copolymer selected from lactic acid) / (polydimethylacrylamide) block copolymers,
    The method for producing nanoparticles containing low-molecular-weight drugs having negatively charged groups according to claim 1, wherein:
  14.  請求項13の製造方法において、さらに塩基性低分子化合物を混合することを特徴とする請求項13に記載の陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法。 14. The method for producing low-molecular-weight drug-containing nanoparticles having a negatively charged group according to claim 13, wherein a basic low-molecular compound is further mixed in the production method of claim 13.
  15.  塩基性低分子化合物が、(ジメチルアミノ)ピリジン、ピリジン、ピペリジン、ピリミジン、ピラジン、ピリダジン、キノリン、キヌクリジン、イソキノリン、ビス(ジメチルアミノ)ナフタレン、ナフチルアミン、モルホリン、アマンタジン、アニリン、スペルミン、スペルミジン、ヘキサメチレンジアミン、プトレシン、カダベリン、フェネチルアミン、ヒスタミン、ジアザビシクロオクタン、ジイソプロピルエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、メチルアミン、ジメチルアミン、トリメチルアミン、トリエチレンジアミン、ジエチレントリアミン、エチレンジアミン、トリメチレンジアミンから選択される1種又は2種以上のものである請求項14に記載の陰荷電基を持つ低分子薬物含有ナノ粒子の製造方法。 Basic low molecular weight compounds are (dimethylamino) pyridine, pyridine, piperidine, pyrimidine, pyrazine, pyridazine, quinoline, quinuclidine, isoquinoline, bis (dimethylamino) naphthalene, naphthylamine, morpholine, amantadine, aniline, spermine, spermidine, hexamethylene Diamine, putrescine, cadaverine, phenethylamine, histamine, diazabicyclooctane, diisopropylethylamine, monoethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, methylamine, dimethylamine, trimethylamine, triethylenediamine, diethylenetriamine, ethylenediamine, triethylene One or more selected from methylenediamine Method for producing a low-molecular-weight drug-containing nanoparticles having a negatively charged group according to a claim 14.
PCT/JP2010/068257 2009-10-19 2010-10-18 Low-molecular drug-containing nanoparticle WO2011049036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240796 2009-10-19
JP2009240796A JP2011084541A (en) 2009-10-19 2009-10-19 Low molecular drug-containing nanoparticle

Publications (1)

Publication Number Publication Date
WO2011049036A1 true WO2011049036A1 (en) 2011-04-28

Family

ID=43900262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068257 WO2011049036A1 (en) 2009-10-19 2010-10-18 Low-molecular drug-containing nanoparticle

Country Status (2)

Country Link
JP (1) JP2011084541A (en)
WO (1) WO2011049036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178072A (en) * 2017-04-13 2018-11-15 株式会社日本触媒 Biocompatible medical material
WO2022169690A1 (en) * 2021-02-02 2022-08-11 Yanping Kong Composition and methods for treating cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101493A1 (en) * 2002-05-31 2003-12-11 Ltt Bio-Pharma Co., Ltd. Intravenous composition, process for producing the same and preparation thereof
WO2004084871A1 (en) * 2003-03-26 2004-10-07 Ltt Bio-Pharma Co., Ltd. Intravenous nanoparticles for targenting drug delivery and sustained drug release
WO2007074604A1 (en) * 2005-12-26 2007-07-05 Ltt Bio-Pharma Co., Ltd. Nanoparticle containing water-soluble non-peptidic low molecular weight substance
JP2008162904A (en) * 2006-12-27 2008-07-17 Ltt Bio-Pharma Co Ltd Therapeutic agent for bronchial asthma
WO2008139804A1 (en) * 2007-05-14 2008-11-20 Ltt Bio-Pharma Co., Ltd. Low-molecule drug-containing nanoparticle having sustained release negatively charged group

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101493A1 (en) * 2002-05-31 2003-12-11 Ltt Bio-Pharma Co., Ltd. Intravenous composition, process for producing the same and preparation thereof
WO2004084871A1 (en) * 2003-03-26 2004-10-07 Ltt Bio-Pharma Co., Ltd. Intravenous nanoparticles for targenting drug delivery and sustained drug release
WO2007074604A1 (en) * 2005-12-26 2007-07-05 Ltt Bio-Pharma Co., Ltd. Nanoparticle containing water-soluble non-peptidic low molecular weight substance
JP2008162904A (en) * 2006-12-27 2008-07-17 Ltt Bio-Pharma Co Ltd Therapeutic agent for bronchial asthma
WO2008139804A1 (en) * 2007-05-14 2008-11-20 Ltt Bio-Pharma Co., Ltd. Low-molecule drug-containing nanoparticle having sustained release negatively charged group

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178072A (en) * 2017-04-13 2018-11-15 株式会社日本触媒 Biocompatible medical material
JP7158143B2 (en) 2017-04-13 2022-10-21 株式会社日本触媒 biocompatible medical materials
WO2022169690A1 (en) * 2021-02-02 2022-08-11 Yanping Kong Composition and methods for treating cancer

Also Published As

Publication number Publication date
JP2011084541A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5131971B2 (en) Water-soluble non-peptide low molecular weight drug-containing nanoparticles
Gu et al. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery
JP5248487B2 (en) Low-molecular-weight drug-containing nanoparticles with sustained-release negatively charged groups
Yuan et al. Stearic acid-g-chitosan polymeric micelle for oral drug delivery: in vitro transport and in vivo absorption
CA2723563C (en) Method of forming non-immunogenic hydrophobic protein nanoparticles, and uses therefor
US20170035694A1 (en) Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same
Praphakar et al. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in-vitro, and in-vivo performance of rifampicin-loaded poly (ester amide) s nanocarriers
US20110257253A1 (en) Preparation method of polymeric micellar nanoparticles composition containing a poorly water-soluble drug
Kumbham et al. Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma
KR20150056619A (en) Therapeutic nanoparticles comprising a therapeutic agent and methods of making and using same
JP2006521367A (en) Nanoparticles for intravenous injection for targeting and sustained release
JP5780775B2 (en) Nanoparticles containing prostaglandin I2 derivatives
KR20170125793A (en) Compositions and methods for bile acid particles
Wang et al. Peptide decorated calcium phosphate/carboxymethyl chitosan hybrid nanoparticles with improved drug delivery efficiency
Hoskins et al. A review on comb-shaped amphiphilic polymers for hydrophobic drug solubilization
Jansook et al. Self-assembled γ-cyclodextrin as nanocarriers for enhanced ocular drug bioavailability
Sikwal et al. Non-ionic self-assembling amphiphilic polyester dendrimers as new drug delivery excipients
Yan et al. Design of a novel nucleus-targeted NLS-KALA-SA nanocarrier to delivery poorly water-soluble anti-tumor drug for lung cancer treatment
Liu et al. Two-step fabricating micelle-like nanoparticles of cisplatin with the ‘real’long circulation and high bioavailability for cancer therapy
Yin et al. Co-delivery systems of paclitaxel prodrug for targeted synergistic therapy of breast cancer
WO2011049036A1 (en) Low-molecular drug-containing nanoparticle
Zhang et al. Preparation, characterization and in vivo antitumor evaluation of a micellar formulation of camptothecin prodrug
Balaure et al. Organic polymeric nanomaterials as advanced tools in the fight against antibiotic-resistant infections
WO2023221774A1 (en) Turmeric self-dispersing particle system, method for preparing same, preparation device, and use thereof
Hu et al. Thioether choline phosphate liposomes for reactive oxygen species-trigger drug release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824885

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824885

Country of ref document: EP

Kind code of ref document: A1