WO2011048983A1 - Method for preparation of plating bath, plating bath, and electronic component - Google Patents

Method for preparation of plating bath, plating bath, and electronic component Download PDF

Info

Publication number
WO2011048983A1
WO2011048983A1 PCT/JP2010/067920 JP2010067920W WO2011048983A1 WO 2011048983 A1 WO2011048983 A1 WO 2011048983A1 JP 2010067920 W JP2010067920 W JP 2010067920W WO 2011048983 A1 WO2011048983 A1 WO 2011048983A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating bath
carbon
dispersed
fine particles
plating
Prior art date
Application number
PCT/JP2010/067920
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 木村
康之 伊田
誠 小川
章博 元木
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2011048983A1 publication Critical patent/WO2011048983A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1669Agitation, e.g. air introduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions

Definitions

  • this type of electrode pattern has demands such as high strength, high reliability, low resistance, and high thermal conductivity, but with the recent miniaturization of electronic components, these demands are sufficiently met by conventional metal films. It has become difficult to meet.
  • Patent Document 1 a wiring pattern is formed by a plating film in which CNT is plated with an aqueous plating solution in which CNT is dispersed and mixed by a dispersant, and CNT is taken into the plating metal.
  • Electronic components have been proposed.
  • Patent Documents 1 and 2 since hard-dispersed carbon-based fine particles such as CNT are dispersed in a plating bath through a surfactant, an electrode pattern is formed by plating using these plating baths. In such a case, the surfactant is incorporated as an impurity in the electrode pattern, which may increase the electrical resistance. That is, in Patent Documents 1 and 2, when an electrode pattern is formed by plating, since the surfactant is attached to the surface of the carbon-based fine particles, these surfactants are taken into the electrode pattern as impurities, and as a result. In addition, there is a possibility that a low resistance metal film cannot be obtained due to an increase in electrical resistance, quality is deteriorated, and reliability is lowered.
  • the metal ions include at least one selected from Cu ions, Ni ions, and Au ions.
  • the plating bath according to the present invention is characterized by being produced using the above-described method for producing a plating bath.
  • CNTs are produced as carbon-based fine particles.
  • This CNT can be produced by a CVD method (Chemical Vapor Deposition) such as a substrate growth method or a floating growth method.
  • a CVD method Chemical Vapor Deposition
  • a metal catalyst such as Fe or Ni is directly sprayed on the substrate and placed in the core tube, and the core tube is heated using an electric furnace or the like.
  • a hydrocarbon gas such as (CH 4 ) or acetylene (C 2 H 2 ) is supplied into the furnace and vapor-grown on the substrate to obtain CNTs.
  • the hydrocarbon gas and the metal catalyst are supplied into a furnace at a high temperature, suspended in a reaction atmosphere and vapor-phase grown to obtain CNTs.
  • a large number of CNTs 1 are put into a water-soluble solvent 2 other than a surfactant, and dispersed by stirring.
  • a stirring method an arbitrary method such as a method of stirring with an appropriate stirring bar, a method of stirring using a magnetic stirrer, a method of stirring using air, vibration stirring using ultrasonic waves, or the like is used. be able to.
  • the water-soluble solvent 2 exhibits a dispersion effect of appropriately breaking and dispersing the bundles of the CNTs 1, thereby suppressing impurities from being mixed into the plating film. That is, by increasing the electrical resistance by plating the electrode pattern using the plating bath 4 of the present invention, the high strength, high reliability, low resistance, and high thermal conductivity of the CNT 1 can be suppressed. Thus, a desired plating film in which CNT1 and a metal are combined can be obtained.
  • the piezoelectric substrate 7 is not particularly limited as long as it is a piezoelectric material, and LiTaO 3 , quartz, LiNbO 3 , Li 2 B 4 O 7 , PZT, or the like can be used according to desired piezoelectric characteristics.
  • the plated film was observed with a scanning electron microscope (hereinafter referred to as “SEM”).
  • FIG. 8 is the SEM image.

Abstract

As illustrated in fig. (a), multiple carbon nanotubes (CNTs) (1) are introduced into a water-soluble solvent (2) that is different from a surfactant, and are dispersed in the solvent (2) by agitation. Subsequently, as illustrated in fig. (b), an aqueous metal salt solution (3) containing a metal ion is provided, and the water-soluble solvent (2) having the CNTs (1) dispersed therein is added to the aqueous metal salt solution (3). In this manner, a plating bath (4) having the CNTs (1) dispersed therein as shown in fig. (c) is prepared. The plating bath enables the formation of a high-quality coating film that has no contamination by impurities and is a composite with carbonaceous microparticles.

Description

めっき浴の作製方法、めっき浴、及び電子部品Plating bath preparation method, plating bath, and electronic component
 本発明はめっき浴の作製方法、めっき浴、及び電子部品に関し、より詳しくはカーボンナノチューブ(以下、「CNT」という。)等の炭素系微粒子がめっき浴中に分散しためっき浴の作製方法、この作製方法を使用して作製されためっき浴、及びこのめっき浴を使用して製造された弾性表面波フィルタ等の電子部品に関する。 The present invention relates to a method for producing a plating bath, a plating bath, and an electronic component, and more specifically, a method for producing a plating bath in which carbon-based fine particles such as carbon nanotubes (hereinafter referred to as “CNT”) are dispersed in a plating bath. The present invention relates to a plating bath manufactured using the manufacturing method, and an electronic component such as a surface acoustic wave filter manufactured using the plating bath.
 近年、種々の電子機器に搭載される電子部品は、高性能かつ小型化が要請されており、電子部品に形成される電極パターンも、微細化の傾向にある。 In recent years, electronic components mounted on various electronic devices are required to have high performance and miniaturization, and electrode patterns formed on the electronic components are also becoming finer.
 また、この種の電極パターンには、高強度、高信頼性、低抵抗、高熱伝導などの要求があるが、近年における電子部品の微細化にともない、従来の金属膜ではこれらの要求を十分に満たす事が困難になってきている。 In addition, this type of electrode pattern has demands such as high strength, high reliability, low resistance, and high thermal conductivity, but with the recent miniaturization of electronic components, these demands are sufficiently met by conventional metal films. It has become difficult to meet.
 ところで、CNT等の炭素系微粒子は、アルミニウムよりも軽量であり、また鋼よりも高強度であり、さらに銅よりも電流輸送量が大きく、熱伝導度も高いことから、炭素系微粒子を金属膜と複合させて該炭素系微粒子を電極パターンに取り込む技術が盛んに研究・開発されている。 By the way, carbon-based fine particles such as CNT are lighter than aluminum, have higher strength than steel, have a larger current transport amount than copper, and have high thermal conductivity. A technology for incorporating the carbon-based fine particles into the electrode pattern in combination with the carbon is actively researched and developed.
 例えば、特許文献1では、配線パターンが、分散剤によりCNTが液中に分散されて混入した水溶液性のめっき液を用いてめっきされて、めっき金属中にCNTが取り込まれためっき皮膜により形成された電子部品が提案されている。 For example, in Patent Document 1, a wiring pattern is formed by a plating film in which CNT is plated with an aqueous plating solution in which CNT is dispersed and mixed by a dispersant, and CNT is taken into the plating metal. Electronic components have been proposed.
 特許文献1では、CNTが多少の撥水性を有することから、ポリアクリル酸等の界面活性剤を分散剤に使用してCNTを水溶性のめっき液に分散させている。そして、このめっき液を使用して基板上にめっき皮膜を形成し、周知のフォトリソグラフィ技術やエッチング技術を使用して微細な配線パターンを形成している。 In Patent Document 1, since CNT has some water repellency, a surfactant such as polyacrylic acid is used as a dispersant to disperse CNT in a water-soluble plating solution. A plating film is formed on the substrate using this plating solution, and a fine wiring pattern is formed using a well-known photolithography technique or etching technique.
 また、特許文献2には、水に不溶の微粒子を水溶液に分散させるための微粒子分散剤において、両性界面活性剤のアルキルジ(アミノエチル)グリシンとカチオン系界面活性剤のジメチルベンジルアルキルアンモニウムクロライドとを、含有比率が3:5000~500:1となるように含有する微粒子分散剤が提案されている。 Patent Document 2 discloses an amphoteric surfactant alkyldi (aminoethyl) glycine and a cationic surfactant dimethylbenzylalkylammonium chloride in a fine particle dispersant for dispersing fine particles insoluble in water in an aqueous solution. There have been proposed fine particle dispersants containing a content ratio of 3: 5000 to 500: 1.
 特許文献2では、上述した特定の両面界面活性剤とカチオン系界面活性剤とを所定の含有比率とすることにより、CNT等の水に不溶な微粒子を水溶液中に分散させて微粒子分散剤を作製し、この微粒子分散剤を所定条件下、無電解めっき浴に添加し、この無電解めっき浴を使用して被めっき物である微粒子表面にめっき皮膜を形成している。 In Patent Document 2, a particulate dispersant is prepared by dispersing fine particles insoluble in water, such as CNTs, in an aqueous solution by setting the above-mentioned specific double-sided surfactant and cationic surfactant to a predetermined content ratio. Then, the fine particle dispersant is added to the electroless plating bath under a predetermined condition, and a plating film is formed on the surface of the fine particles as the object to be plated using the electroless plating bath.
特許第4032116号明細書Patent No. 4032116 特許第3984189号明細書Japanese Patent No. 3984189
 しかしながら、特許文献1及び2では、CNT等の水中に難分散の炭素系微粒子を界面活性剤を介してめっき浴中に分散させているため、これらのめっき浴を使用して電極パターンをめっき形成した場合、界面活性剤が電極パターン中に不純物として取り込まれ、そのため電気抵抗の増大を招くおそれがあった。すなわち、特許文献1及び2では、電極パターンをめっき形成した場合、炭素系微粒子の表面に界面活性剤が付着しているため、これらの界面活性剤が不純物として電極パターン中に取り込まれ、その結果、電気抵抗が増大して低抵抗な金属膜が得られなくなったり、品質劣化を招き、信頼性低下を招くおそれがあった。 However, in Patent Documents 1 and 2, since hard-dispersed carbon-based fine particles such as CNT are dispersed in a plating bath through a surfactant, an electrode pattern is formed by plating using these plating baths. In such a case, the surfactant is incorporated as an impurity in the electrode pattern, which may increase the electrical resistance. That is, in Patent Documents 1 and 2, when an electrode pattern is formed by plating, since the surfactant is attached to the surface of the carbon-based fine particles, these surfactants are taken into the electrode pattern as impurities, and as a result. In addition, there is a possibility that a low resistance metal film cannot be obtained due to an increase in electrical resistance, quality is deteriorated, and reliability is lowered.
 本発明はこのような事情に鑑みなされたものであって、不純物の混入を抑制し、炭素系微粒子と複合した高品質のめっき皮膜を得ることができるめっき浴の作製方法、めっき浴、及び不純物の電極パターンへの混入が抑制された電子部品を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a plating bath manufacturing method, plating bath, and impurities that can suppress mixing of impurities and obtain a high-quality plating film combined with carbon-based fine particles. An object of the present invention is to provide an electronic component in which contamination of the electrode pattern is suppressed.
 本発明者らは、上記目的を達成するために鋭意研究を行なったところ、CNT等の炭素系微粒子は、イソプロピルアルコール(以下、「IPA」という。)等の界面活性剤以外の水溶性溶媒には略均一に分散するということを見出した。したがって、炭素系微粒子を界面活性剤以外の水溶性溶媒に分散させた後、めっき対象となる金属イオンを含有した金属塩水溶液に前記水溶性溶媒を添加することにより、炭素系微粒子をめっき浴中に分散させることができる。 The inventors of the present invention have made extensive studies to achieve the above object, and as a result, carbon-based fine particles such as CNT are dissolved in a water-soluble solvent other than a surfactant such as isopropyl alcohol (hereinafter referred to as “IPA”). Was found to disperse substantially uniformly. Accordingly, after dispersing the carbon-based fine particles in a water-soluble solvent other than the surfactant, the carbon-based fine particles are placed in the plating bath by adding the water-soluble solvent to the metal salt aqueous solution containing the metal ions to be plated. Can be dispersed.
 本発明はこのような知見に基づきなされたものであって、本発明に係るめっき浴の作製方法は、炭素系微粒子がめっき浴中に分散しためっき浴の作製方法であって、前記炭素系微粒子を界面活性剤以外の水溶性溶媒に分散させた後、金属イオンを含有した金属塩水溶液に前記水溶性溶媒を添加し、前記炭素系微粒子を前記金属塩水溶液中に分散させることを特徴としている。 The present invention has been made on the basis of such knowledge, and the method for producing a plating bath according to the present invention is a method for producing a plating bath in which carbon-based fine particles are dispersed in a plating bath, and the carbon-based fine particles Is dispersed in a water-soluble solvent other than a surfactant, and then the water-soluble solvent is added to a metal salt aqueous solution containing metal ions to disperse the carbon-based fine particles in the metal salt aqueous solution. .
 また、本発明のめっき浴の作製方法は、前記炭素系微粒子は、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、及びフラーレンの中から選択された少なくとも1種を含むのが好ましい。 In the method for producing a plating bath of the present invention, it is preferable that the carbon-based fine particles include at least one selected from carbon nanotubes, carbon nanohorns, carbon nanocoils, and fullerenes.
 また、本発明のめっき浴の作製方法は、前記水溶性溶媒は、イソプロピルアルコール、メタノール、エタノール、及び酢酸エチルの中から選択された少なくとも1種を含むのが好ましい。 In the method for producing a plating bath of the present invention, it is preferable that the water-soluble solvent contains at least one selected from isopropyl alcohol, methanol, ethanol, and ethyl acetate.
 また、本発明のめっき浴の作製方法は、前記金属イオンは、Cuイオン、Niイオン、及びAuイオンの中から選択された少なくとも1種を含むのが好ましい。 In the method for producing a plating bath of the present invention, it is preferable that the metal ions include at least one selected from Cu ions, Ni ions, and Au ions.
 また、本発明に係るめっき浴は、上記めっき浴の作製方法を使用して作製されたことを特徴としている。 Further, the plating bath according to the present invention is characterized by being produced using the above-described method for producing a plating bath.
 また、本発明に係る電子部品は、上記めっき浴を使用して製造されたことを特徴としている。 Also, the electronic component according to the present invention is characterized by being manufactured using the above plating bath.
 上記めっき浴の作製方法及びめっき浴によれば、炭素系微粒子(CNT、カーボンナノホーン、カーボンナノコイル、フラーレン等)を界面活性剤以外の水溶性溶媒(イソプロピルアルコール、メタノール、エタノール、酢酸エチル等)に分散させた後、金属イオン(Cuイオン、Niイオン、Auイオン等)を含有した金属塩水溶液に前記水溶性溶媒を添加し、前記炭素系微粒子を前記金属塩水溶液中に分散させるので、界面活性剤を使用しなくとも、炭素系微粒子をめっき浴中に効果的に分散させることが可能となる。 According to the above plating bath preparation method and plating bath, carbon-based fine particles (CNT, carbon nanohorn, carbon nanocoil, fullerene, etc.) are dissolved in water-soluble solvents other than surfactants (isopropyl alcohol, methanol, ethanol, ethyl acetate, etc.). Since the water-soluble solvent is added to a metal salt aqueous solution containing metal ions (Cu ions, Ni ions, Au ions, etc.) and the carbon-based fine particles are dispersed in the metal salt aqueous solution. Even without using an activator, the carbon-based fine particles can be effectively dispersed in the plating bath.
 また、上記電子部品は、上記めっき浴を使用して製造されているので、めっき膜中に不純物が混入するのを抑制できる。すなわち、めっき膜中に界面活性剤等の不純物が混入することもなく、したがって不純物の混入に起因した電気抵抗の増大を招くこともなく、高品質で良好な信頼性を有する電子部品を得ることができる。 Moreover, since the electronic component is manufactured using the plating bath, it is possible to prevent impurities from being mixed into the plating film. That is, it is possible to obtain an electronic component having high quality and good reliability without causing impurities such as a surfactant to be mixed into the plating film, and thus without causing an increase in electric resistance due to the mixing of impurities. Can do.
本発明に係るめっき浴の作製方法の一実施の形態を示す図である。It is a figure which shows one Embodiment of the preparation methods of the plating bath which concerns on this invention. 本発明に係る電子部品としての弾性表面波フィルタの一実施の形態を示す平面図である。It is a top view which shows one Embodiment of the surface acoustic wave filter as an electronic component which concerns on this invention. 図2のA-A斜視図である。FIG. 3 is an AA perspective view of FIG. 2. 図3の第2の誘電体9を除いた斜視図である。FIG. 4 is a perspective view excluding a second dielectric body 9 of FIG. 3. 上記弾性表面波フィルタの製造方法を示す製造工程図(1/3)である。It is a manufacturing-process figure (1/3) which shows the manufacturing method of the said surface acoustic wave filter. 上記弾性表面波フィルタの製造方法を示す製造工程図(2/3)である。It is a manufacturing process figure (2/3) which shows the manufacturing method of the said surface acoustic wave filter. 上記弾性表面波フィルタの製造方法を示す製造工程図(3/3)である。It is a manufacturing process figure (3/3) which shows the manufacturing method of the said surface acoustic wave filter. 実施例のめっき膜のSEM像である。It is a SEM image of the plating film of an Example.
 次に、本発明に係るめっき浴の作製方法を詳説する。 Next, a method for producing a plating bath according to the present invention will be described in detail.
 まず、炭素系微粒子としてCNTを作製する。このCNTは基板成長法や浮遊成長法等のCVD法(化学気相成長法:Chemical Vapor Deposition)で作製することができる。例えば、CNTを基板成長法で作製する場合は、FeやNi等の金属触媒を基板に直接散布して炉心管内に配し、電気炉等を使用して炉心管を加熱し、高温下、メタン(CH)やアセチレン(C)等の炭化水素ガスを炉内に供給して基板上に気相成長させてCNTを得る。また、CNTを浮遊成長法で作製する場合は、炭化水素ガスと金属触媒と一緒に高温下の炉内に供給し、反応雰囲気に浮遊させて気相成長させ、CNTを得る。 First, CNTs are produced as carbon-based fine particles. This CNT can be produced by a CVD method (Chemical Vapor Deposition) such as a substrate growth method or a floating growth method. For example, when producing CNTs by the substrate growth method, a metal catalyst such as Fe or Ni is directly sprayed on the substrate and placed in the core tube, and the core tube is heated using an electric furnace or the like. A hydrocarbon gas such as (CH 4 ) or acetylene (C 2 H 2 ) is supplied into the furnace and vapor-grown on the substrate to obtain CNTs. In the case of producing CNTs by the floating growth method, the hydrocarbon gas and the metal catalyst are supplied into a furnace at a high temperature, suspended in a reaction atmosphere and vapor-phase grown to obtain CNTs.
 尚、CNTの大きさは、平均長さが5~50μm、平均直径は10~200nmが好ましく、この範囲の大きさのCNTであれば、後述する水溶性溶媒に分散させたときにより一層バンドル状になり難い。 The average length of the CNT is preferably 5 to 50 μm and the average diameter is preferably 10 to 200 nm. If the CNT has a size within this range, it is more bundled when dispersed in a water-soluble solvent described later. It is hard to become.
 次に、図1に示すような方法でめっき浴を作製する。 Next, a plating bath is prepared by a method as shown in FIG.
 まず、図1(a)に示すように、界面活性剤以外の水溶性溶媒2に多数のCNT1(炭素系微粒子)を投入し、撹拌して分散させる。ここで、撹拌方法としては、適当な撹拌棒で撹拌する方法、マグネットスターラーを使用して撹拌する方法、空気を使用して撹拌する方法、超音波などによる振動撹拌等、任意の方法を使用することができる。 First, as shown in FIG. 1 (a), a large number of CNTs 1 (carbon-based fine particles) are put into a water-soluble solvent 2 other than a surfactant, and dispersed by stirring. Here, as a stirring method, an arbitrary method such as a method of stirring with an appropriate stirring bar, a method of stirring using a magnetic stirrer, a method of stirring using air, vibration stirring using ultrasonic waves, or the like is used. be able to.
 次いで、図1(b)に示すように、金属イオンを含有した金属塩水溶液3を用意し、CNT1を分散させた水溶性溶媒2を金属塩水溶液3に添加し、これにより図1(c)に示すようにCNT1が分散しためっき浴4を作製する。 Next, as shown in FIG. 1B, a metal salt aqueous solution 3 containing metal ions is prepared, and a water-soluble solvent 2 in which CNTs 1 are dispersed is added to the metal salt aqueous solution 3, whereby FIG. A plating bath 4 in which CNT1 is dispersed is prepared as shown in FIG.
 すなわち、めっき浴となるべき金属塩水溶液3にCNT1を直接投入しても、金属塩水溶液3中には均一に分散せず、大部分は表面に浮遊にする。特に、純度が高く高品質になるほどCNT1は、めっき浴に分散し難い。 That is, even if CNT1 is directly put into the metal salt aqueous solution 3 to be a plating bath, it is not uniformly dispersed in the metal salt aqueous solution 3, and most of the CNT1 is floated on the surface. In particular, the higher the purity and the higher the quality, the more difficult the CNT1 is dispersed in the plating bath.
 その理由は以下のように考えられる。 The reason is considered as follows.
 CNT1は、通常バンドル化し、凝集状態で存在する。このバンドル化されたCNT1は嵩密度が小さく(例えば、0.001~0.1g/cm程度)、また、バンドル化した状態で金属塩水溶液3に投入してもバンドル構造の中から小さな気泡が発生し易い。 CNT1 is usually bundled and exists in an aggregated state. This bundled CNT1 has a low bulk density (for example, about 0.001 to 0.1 g / cm 3 ), and even if it is put into the metal salt aqueous solution 3 in a bundled state, small bubbles are generated from the bundle structure. Is likely to occur.
 このためCNT1を直接金属塩水溶液3に投入しても、CNT1は水面又は水面近傍に浮遊してしまい、めっき浴中での均一分散が困難になるものと思われる。 For this reason, even if CNT1 is directly added to the aqueous metal salt solution 3, the CNT1 floats on the water surface or in the vicinity of the water surface, and it seems that uniform dispersion in the plating bath becomes difficult.
 しかしながら、特許文献1及び2のように界面活性剤を使用してCNT1を金属塩水溶液中に分散させた場合、界面活性剤はCNT1を被覆するように付着するため、電極パターンをめっき形成しようとした場合、電極パターン中に界面活性剤が不純物として混入し、電気抵抗が増大したり、品質低下等を招くおそれがある。 However, when CNT1 is dispersed in a metal salt aqueous solution using a surfactant as in Patent Documents 1 and 2, the surfactant adheres so as to cover CNT1, so an attempt is made to form an electrode pattern by plating. In such a case, the surfactant may be mixed as an impurity in the electrode pattern, and the electrical resistance may increase or the quality may deteriorate.
 そこで、本実施の形態では、界面活性剤以外の水溶性溶媒2を使用し、該水溶性溶媒2中でこのバンドル構造を適度に解して分散させ、CNT1が分散した水溶性溶媒2を金属塩水溶液3に添加して混合することにより、CNT1を金属塩水溶液3に分散させ、これによりめっき浴を作製している。 Therefore, in the present embodiment, a water-soluble solvent 2 other than a surfactant is used, and the bundle structure is appropriately dissociated and dispersed in the water-soluble solvent 2, so that the water-soluble solvent 2 in which CNT1 is dispersed is a metal. By adding and mixing with the salt aqueous solution 3, CNT1 is disperse | distributed to the metal salt aqueous solution 3, and, thereby, the plating bath is produced.
 このように水溶性溶媒2は、CNT1のバンドル化を適度に解して分散させるという分散効果を発揮し、これによりめっき膜中に不純物が混入するのを抑制できる。すなわち、本発明のめっき浴4を使用して電極パターンをめっき形成することにより、電気抵抗が増大するのを抑制でき、その結果、CNT1の有する高強度、高信頼性、低抵抗、高熱伝導性を発揮することができ、CNT1と金属が複合した所望のめっき膜を得ることができる。 As described above, the water-soluble solvent 2 exhibits a dispersion effect of appropriately breaking and dispersing the bundles of the CNTs 1, thereby suppressing impurities from being mixed into the plating film. That is, by increasing the electrical resistance by plating the electrode pattern using the plating bath 4 of the present invention, the high strength, high reliability, low resistance, and high thermal conductivity of the CNT 1 can be suppressed. Thus, a desired plating film in which CNT1 and a metal are combined can be obtained.
 そして、このような水溶性溶媒2としては、界面活性剤以外であれば特に限定されるものではなく、例えば、IPA、メタノール、エタノール、酢酸エチル等を使用することができる。 And as such a water-soluble solvent 2, if it is other than surfactant, it will not specifically limit, For example, IPA, methanol, ethanol, ethyl acetate etc. can be used.
 また、金属塩水溶液3に含有される金属イオンは、めっき源となる金属イオンを必要に応じて選択することができ、例えば、Cuイオン、Niイオン、及びAuイオン等の各種金属イオンを使用することができる。 Moreover, the metal ion contained in the metal salt aqueous solution 3 can select the metal ion used as a plating source as needed, for example, uses various metal ions, such as Cu ion, Ni ion, and Au ion. be able to.
 また、金属塩水溶液3についても、酸性、中性、アルカリ性のいずれであってもよく、例えば、金属イオンがCuイオンの場合であれば、酸性の硫酸銅水溶液、中性のクエン酸銅水溶液、アルカリ性のピロリン酸水溶液のいずれであってもよい。 Also, the metal salt aqueous solution 3 may be any of acidic, neutral, and alkaline. For example, when the metal ion is Cu ion, an acidic copper sulfate aqueous solution, a neutral copper citrate aqueous solution, Any of aqueous alkaline pyrophosphate solutions may be used.
 また、めっき膜に不純物として析出しない程度に光沢剤や平滑剤などを適宜添加するのも好ましく、例えば、ローム・アンド・ハース電子材料社製のエレクトロポジット1100を5.0体積%程度添加するのも好ましい。 Further, it is also preferable to add a brightener or a smoothing agent as appropriate so as not to precipitate as impurities on the plating film. For example, about 5.0% by volume of Electroposit 1100 manufactured by Rohm and Haas Electronic Materials Co., Ltd. is added. Is also preferable.
 次に、上記めっき浴を使用して製造された電子部品の一例を説明する。 Next, an example of an electronic component manufactured using the above plating bath will be described.
 図2は、本発明に係る電子部品としての弾性表面波フィルタの一実施の形態を示す平面図であり、図3は図2のA-A斜視図、図4は図3の第2の誘電体9を除いた斜視図である。 FIG. 2 is a plan view showing an embodiment of a surface acoustic wave filter as an electronic component according to the present invention, FIG. 3 is a perspective view of AA in FIG. 2, and FIG. 4 is a second dielectric of FIG. FIG. 6 is a perspective view excluding a body 9.
 すなわち、本弾性表面波フィルタは、微細な電極線幅Tを有する電極指5a、5bを含むIDT電極6a、6bが圧電基板7上に形成され、該電極指5a、5bの各電極間には第1の誘電体8が形成され、かつ電極指5a、5b及び第1の誘電体8の表面には第2の誘電体9が形成されている。電極指5aと電極指5bとにより弾性表面波が励振される。 That is, in the surface acoustic wave filter, IDT electrodes 6a and 6b including electrode fingers 5a and 5b having a fine electrode line width T are formed on the piezoelectric substrate 7, and between the electrodes of the electrode fingers 5a and 5b are formed. A first dielectric 8 is formed, and a second dielectric 9 is formed on the surfaces of the electrode fingers 5 a and 5 b and the first dielectric 8. Surface acoustic waves are excited by the electrode fingers 5a and 5b.
 圧電基板7としては、圧電性材料であれば特に限定されるものではなく、所望する圧電特性に応じLiTaO、水晶、LiNbO、Li、PZT等を使用することができる。 The piezoelectric substrate 7 is not particularly limited as long as it is a piezoelectric material, and LiTaO 3 , quartz, LiNbO 3 , Li 2 B 4 O 7 , PZT, or the like can be used according to desired piezoelectric characteristics.
 第1及び第2の誘電体8、9についても、特に限定されるものではなく、例えば、SiO、SiN、ZnO、更にはポリイミド等の樹脂材料、低誘電体材料(low-k材料)等を使用することができる。尚、第2の誘電体9は、必要な特性が得られるのであれば、適宜省略することが可能である。 The first and second dielectrics 8 and 9 are also not particularly limited. For example, SiO 2 , SiN x , ZnO, a resin material such as polyimide, and a low dielectric material (low-k material). Etc. can be used. The second dielectric 9 can be omitted as long as necessary characteristics can be obtained.
 IDT電極6a、6bの電極指5a、5bは、上述しためっき浴を使用した電解めっきによってめっき形成され、CNT1が金属膜10に複合されている。 The electrode fingers 5a and 5b of the IDT electrodes 6a and 6b are formed by electroplating using the plating bath described above, and the CNT1 is combined with the metal film 10.
 次に、上記弾性表面波フィルタの製造方法を詳述する。 Next, a method for manufacturing the surface acoustic wave filter will be described in detail.
 図5~図7は、上記弾性表面波フィルタの製造方法を示す製造工程図である。 5 to 7 are manufacturing process diagrams showing a method for manufacturing the surface acoustic wave filter.
 まず、図5(a)に示すように、スパッタ法等を使用して圧電基板7上に所定厚みの第1の誘電体層8を成膜し、次いで、スピンコータ法等を使用し、図5(b)に示すように、所定厚みのフォトレジスト11を第1の誘電体層8上に塗布する。次いで、図5(c)に示すように、開口部12を有するフォトマスク13を使用してフォトレジスト11を露光し、現像し、フォトマスク13の開口部12に相当する部分が除去されたレジストパターン14を形成する。 First, as shown in FIG. 5A, a first dielectric layer 8 having a predetermined thickness is formed on the piezoelectric substrate 7 using a sputtering method or the like, and then a spin coater method or the like is used. As shown in (b), a photoresist 11 having a predetermined thickness is applied on the first dielectric layer 8. Next, as shown in FIG. 5C, the photoresist 11 is exposed and developed using the photomask 13 having the opening 12, and the resist corresponding to the opening 12 of the photomask 13 is removed. A pattern 14 is formed.
 次に、図6(d)に示すように、例えばCF、CHF、SFのうちの1種又は2種以上のフッ素系ガスを使用し、レジストパターン14をマスクとして第1の誘電体層8に対し、反応性イオンエッチングを行い、これによりIDT電極用の溝部15を形成する。尚、反応性イオンエッチングに使用するガスとしては上述したフッ素系ガスに加え、必要に応じOを添加するのも好ましい。 Next, as shown in FIG. 6D, for example, one or two or more fluorine-based gases of CF 4 , CHF 3 , and SF 6 are used, and the resist pattern 14 is used as a mask to form the first dielectric. The layer 8 is subjected to reactive ion etching, thereby forming a groove 15 for the IDT electrode. Incidentally, in addition to the fluorine-based gas described above as a gas used for the reactive ion etching is also preferable to add a necessary O 2.
 次に、圧電基板7を剥離液に浸漬し、揺動等することにより、図6(e)に示すように、レジストパターン14を第1の誘電体層8から剥離させる。 Next, the resist pattern 14 is peeled off from the first dielectric layer 8 as shown in FIG. 6 (e) by immersing the piezoelectric substrate 7 in a stripping solution and swinging it.
 次いで、図6(f)に示すように、スパッタ法によりバリア膜16を成膜する。バリア膜16の成膜材としてはTaが好んで使用されるが、金属の圧電基板7への拡散やマイグレーションを防ぐ材料であれば、特に限定されるものではなく、Ti、Cr,Ni,NiCrなどの金属材料、TaN、TiNなどの窒化系材料、或いはTaやTiOなどの酸化物から1種また2種以上を組み合わせて使用することができる。 Next, as shown in FIG. 6F, a barrier film 16 is formed by sputtering. Ta is preferably used as a film forming material for the barrier film 16, but is not particularly limited as long as it is a material that prevents diffusion and migration of metal to the piezoelectric substrate 7. Ti, Cr, Ni, NiCr A metal material such as TaN or TiN, or an oxide such as Ta 2 O 5 or TiO 2 can be used alone or in combination.
 次いで、バリア膜16上に給電層としてのシード層17をスパッタ法等で形成する。 Next, a seed layer 17 as a power feeding layer is formed on the barrier film 16 by sputtering or the like.
 次に、圧電基板7を本発明のめっき浴4(図1参照)に浸漬し、めっき浴4を撹拌しながら所定電流(例えば、2mA/cm)を所定時間(例えば、10分)通電し、図7(g)に示すように、所定膜厚のめっき層18を形成する。すなわち、電解めっきを行うことにより、金属膜10がシード層17の表面に析出する際、CNT1が金属膜10中に取り込まれ、金属膜10とCNT1とが複合しためっき層18がシード層17の表面に形成される。 Next, the piezoelectric substrate 7 is immersed in the plating bath 4 of the present invention (see FIG. 1), and a predetermined current (for example, 2 mA / cm 2 ) is applied for a predetermined time (for example, 10 minutes) while stirring the plating bath 4. As shown in FIG. 7G, a plating layer 18 having a predetermined thickness is formed. That is, when the metal film 10 is deposited on the surface of the seed layer 17 by performing electrolytic plating, the CNT 1 is taken into the metal film 10, and the plating layer 18 in which the metal film 10 and the CNT 1 are combined is the seed layer 17. Formed on the surface.
 次いで、上面を化学機械的研磨(CMP)し、図7(h)に示すように、第1の誘電体8が表面露出する程度にほぼ同一平面とし、これにより多数の電極指5a、5bを有するIDT電極が作製される。 Next, the upper surface is subjected to chemical mechanical polishing (CMP), as shown in FIG. 7 (h), so that the first dielectric 8 is almost flush with the surface so that a large number of electrode fingers 5a and 5b are formed. An IDT electrode is produced.
 その後、図7(i)に示すように、第2の誘電体9をスパッタ法等で形成し、これにより弾性表面波フィルタが製造される。 Thereafter, as shown in FIG. 7 (i), the second dielectric 9 is formed by a sputtering method or the like, whereby a surface acoustic wave filter is manufactured.
 このように本実施の形態では、上記めっき浴を使用して製造しているので、電極指5a、5b中に不純物が混入するのを抑制できる。すなわち、電極指5a、5b中に界面活性剤等の不純物が混入することもなく、したがって不純物の混入に起因した電気抵抗の増大を招くこともなく、低抵抗、高強度、高熱伝導性を有し、高品質で高信頼性を有する弾性表面波フィルタを得ることができる。 Thus, in this embodiment, since the plating bath is used for manufacturing, it is possible to prevent impurities from being mixed into the electrode fingers 5a and 5b. That is, impurities such as surfactants are not mixed in the electrode fingers 5a and 5b, and therefore, electrical resistance is not increased due to the mixing of impurities, and low resistance, high strength, and high thermal conductivity are provided. Thus, a surface acoustic wave filter having high quality and high reliability can be obtained.
 尚、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態では、炭素系微粒子としCNT1を使用したが、CNT1は多層、単層のいずれであってもよい。また、CNT1以外のカーボンナノホーン、カーボンナノコイル、フラーレン等の他の炭素系微粒子についても同様に適用できるのはいうまでもない。また、これらの炭素系微粒子の一部にホウ素などに代表されるような材料をドープしたものであってもよい。 The present invention is not limited to the above embodiment. For example, in the above embodiment, CNT1 is used as the carbon-based fine particles, but CNT1 may be either a multilayer or a single layer. Needless to say, the present invention can be similarly applied to other carbon-based fine particles such as carbon nanohorns, carbon nanocoils, and fullerenes other than CNT1. Further, a part of these carbon-based fine particles may be doped with a material typified by boron.
 また、上記実施の形態では電解めっきを行なっているが、電解めっきに限定されるものではなく、無電解めっきにも同様に適用できる。 Further, although the electrolytic plating is performed in the above embodiment, the present invention is not limited to the electrolytic plating, and can be similarly applied to the electroless plating.
 次に、本発明の実施例を具体的に説明する。 Next, specific examples of the present invention will be described.
 界面活性剤以外の水溶性溶媒としてIPAを用意し、炭素系微粒子として、平均長さ8μm、平均直径150nmの多層CNTを用意した。 IPA was prepared as a water-soluble solvent other than the surfactant, and multilayer CNTs having an average length of 8 μm and an average diameter of 150 nm were prepared as carbon-based fine particles.
 次いで、多層CNTが0.5重量%となるように、多数の多層CNTをIPAに投入し、マグネットスターラを用い、回転数400rpmで撹拌した。そして、CNTはIPA中に分散しているのを視認した。 Next, a large number of multi-walled CNTs were put into IPA so that the multi-walled CNTs would be 0.5% by weight and stirred at a rotational speed of 400 rpm using a magnetic stirrer. It was visually confirmed that CNTs were dispersed in IPA.
 次に、以下の組成を有する硫酸銅水溶液(金属塩水溶液)を用意した。 Next, a copper sulfate aqueous solution (metal salt aqueous solution) having the following composition was prepared.
〔硫酸銅水溶液の組成〕
 硫酸銅五水和物:60~90[g/L]
 硫酸:100~250[g/L]
 塩素イオン:40~60ppm
 次に、多層CNTが分散したIPAを硫酸銅水溶液に添加した撹拌し、これによりめっき浴を作製した。
[Composition of copper sulfate aqueous solution]
Copper sulfate pentahydrate: 60 to 90 [g / L]
Sulfuric acid: 100 to 250 [g / L]
Chlorine ion: 40-60ppm
Next, IPA in which multi-walled CNTs were dispersed was added to a copper sulfate aqueous solution and stirred to prepare a plating bath.
 作製されためっき浴は黒味がかかっており、めっき浴は、多層CNTが硫酸銅水溶液中に分散していることが確認された。 The produced plating bath was blackish, and it was confirmed that the multilayer CNT was dispersed in the copper sulfate aqueous solution in the plating bath.
 次に、縦:10mm、横:20mmの平板状のSi基板を用意し、CuをターゲットとしてSi基板にスパッタリングを行い、膜厚100nmのシード層(給電層)を形成した。 Next, a flat Si substrate having a length of 10 mm and a width of 20 mm was prepared, and sputtering was performed on the Si substrate using Cu as a target to form a seed layer (feeding layer) having a thickness of 100 nm.
 次いで、上記めっき浴を使用し、温度26℃、カソード電流密度2A/dm 、電流50mAで、20分間通電し、シード層上に膜厚600nmのめっき皮膜を形成した。 Next, using the above plating bath, current was passed for 20 minutes at a temperature of 26 ° C., a cathode current density of 2 A / dm 2 , and a current of 50 mA to form a 600 nm thick plating film on the seed layer.
 そして、このめっき皮膜を走査型電子顕微鏡(以下、「SEM」という。)で観察した。 The plated film was observed with a scanning electron microscope (hereinafter referred to as “SEM”).
 図8は、そのSEM像である。 FIG. 8 is the SEM image.
 この図8において、繊維状のものが多層CNTであり、その周囲がCu膜を示し、Cu膜の粒界が観察されている。すなわち、Cu膜中に繊維状の多層CNTがムラなく混じっており、Cu膜の粒界を跨いでネットワークが形成されていることが確認された。そして、これにより、不純物の混入が抑制された低抵抗で高品質のめっき膜が形成されることが分かった。 In FIG. 8, the fibrous material is multi-layer CNT, the periphery of which shows a Cu film, and the grain boundary of the Cu film is observed. That is, it was confirmed that fibrous multilayer CNTs were mixed evenly in the Cu film, and a network was formed across the grain boundary of the Cu film. As a result, it has been found that a high-quality plated film having a low resistance in which mixing of impurities is suppressed is formed.
 金属膜中にCNT等の炭素系微粒子が複合しためっき膜を形成する場合であっても、めっき膜中に不純物が混入するのを抑制することが可能となる。そして、このめっき浴を使用することにより、微細な電極パターンへの不純物の混入が抑制され、低抵抗で高品質の信頼性に優れた弾性表面波フィルタ等の電子部品を実現できる。 Even when a plating film in which carbon-based fine particles such as CNT are combined is formed in a metal film, it is possible to prevent impurities from entering the plating film. By using this plating bath, it is possible to realize an electronic component such as a surface acoustic wave filter which has low resistance and high quality and reliability, with the inclusion of impurities in the fine electrode pattern suppressed.
1 CNT(炭素系微粒子)
2 水溶性溶媒
3 金属塩水溶液
4 めっき浴
1 CNT (carbon-based fine particles)
2 Water-soluble solvent 3 Metal salt aqueous solution 4 Plating bath

Claims (6)

  1.  炭素系微粒子がめっき浴中に分散しためっき浴の作製方法であって、
     前記炭素系微粒子を界面活性剤以外の水溶性溶媒に分散させた後、金属イオンを含有した金属塩水溶液に前記水溶性溶媒を添加し、前記炭素系微粒子を前記金属塩水溶液中に分散させることを特徴とするめっき浴の作製方法。
    A method for producing a plating bath in which carbon-based fine particles are dispersed in a plating bath,
    After the carbon-based fine particles are dispersed in a water-soluble solvent other than a surfactant, the water-soluble solvent is added to a metal salt aqueous solution containing metal ions, and the carbon-based fine particles are dispersed in the metal salt aqueous solution. A method for producing a plating bath characterized by the following.
  2.  前記炭素系微粒子は、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、及びフラーレンの中から選択された少なくとも1種を含むことを特徴とする請求項1記載のめっき浴の作製方法。 The method for producing a plating bath according to claim 1, wherein the carbon-based fine particles include at least one selected from carbon nanotubes, carbon nanohorns, carbon nanocoils, and fullerenes.
  3.  前記水溶性溶媒は、イソプロピルアルコール、メタノール、エタノール、及び酢酸エチルの中から選択された少なくとも1種を含むことを特徴とする請求項1又は請求項2記載のめっき浴の作製方法。 3. The method for producing a plating bath according to claim 1, wherein the water-soluble solvent contains at least one selected from isopropyl alcohol, methanol, ethanol, and ethyl acetate.
  4.  前記金属イオンは、Cuイオン、Niイオン、及びAuイオンの中から選択された少なくとも1種を含むことを特徴とする請求項1乃至請求項3のいずれかに記載のめっき浴の作製方法。 The method for producing a plating bath according to any one of claims 1 to 3, wherein the metal ions include at least one selected from Cu ions, Ni ions, and Au ions.
  5.  請求項1乃至請求項4のいずれかに記載のめっき浴の作製方法を使用して作製されたことを特徴とするめっき浴。 A plating bath produced using the method for producing a plating bath according to any one of claims 1 to 4.
  6.  請求項5記載のめっき浴を使用して製造されたことを特徴とする電子部品。 An electronic component manufactured using the plating bath according to claim 5.
PCT/JP2010/067920 2009-10-19 2010-10-13 Method for preparation of plating bath, plating bath, and electronic component WO2011048983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240281 2009-10-19
JP2009240281 2009-10-19

Publications (1)

Publication Number Publication Date
WO2011048983A1 true WO2011048983A1 (en) 2011-04-28

Family

ID=43900210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067920 WO2011048983A1 (en) 2009-10-19 2010-10-13 Method for preparation of plating bath, plating bath, and electronic component

Country Status (1)

Country Link
WO (1) WO2011048983A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) * 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2007332454A (en) * 2006-04-12 2007-12-27 Mikarome Ind Co Ltd Method for preparing molybdenum disulfide composite plating liquid, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP2009179827A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Plating method, plated product provided with plated film produced by the plating method, and plating solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169609A (en) * 2004-12-20 2006-06-29 Erugu:Kk Plating solution, method for preparing plating solution, surface treatment method and contact member
JP2007332454A (en) * 2006-04-12 2007-12-27 Mikarome Ind Co Ltd Method for preparing molybdenum disulfide composite plating liquid, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP2009179827A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Plating method, plated product provided with plated film produced by the plating method, and plating solution

Similar Documents

Publication Publication Date Title
KR101066751B1 (en) Metal plating structure and method for production thereof
JP6180457B2 (en) Methods for applying carbon / tin mixtures to metal or alloy coatings
JP5602260B2 (en) Method for producing nickel-coated nanocarbons using electroless plating
KR101305072B1 (en) Carbon nanofiber-metal composite and method for preparing the same
US20100047564A1 (en) Carbon nanotube composites
JP2000511245A (en) Method for untangling hollow carbon microfibers, electrically conductive transparent carbon microfiber agglomeration film, and coating composition for forming such a film
TW200814896A (en) Noise-suppressing wiring-member and printed wiring board
WO2016056557A1 (en) Graphene powder, electrode paste for lithium ion battery and electrode for lithium ion battery
US20100122910A1 (en) Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
Zhang et al. Dendritic growth of monolayer ternary WS 2 (1− x) Se 2x flakes for enhanced hydrogen evolution reaction
KR101341508B1 (en) Transparent Conductive Nano Particle of Core-Shell Structure and Ink Including the Same
JP2012082510A (en) Heat radiating component and method of producing the same
JP2009048937A (en) Carbon fiber manufacturing method, carbon fiber electron source, and field emission display device
CN109023459A (en) A kind of multiple dimensioned surface texture and preparation method thereof for strengthening boiling of bilayer
KR20180132176A (en) Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
JP2010001569A (en) Granulated substance and method of manufacturing the same
WO2007105555A1 (en) Noise suppressing structure, multilayer printed circuit board and method for manufacturing such multilayer printed circuit board
JP2007211305A (en) Composite foil of electrolytic copper, and production method therefor
WO2011048983A1 (en) Method for preparation of plating bath, plating bath, and electronic component
WO2011048984A1 (en) Process for production of plating bath, plating bath, and electronic component
JP2007084850A (en) Method for forming pattern of circuit
Kang et al. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery
JP5453605B2 (en) Electroless Cu plating solution and electroless Cu plating method
CN113979428B (en) Preparation method of heat-conducting wave-absorbing composite film and heat-conducting wave-absorbing composite film
JP3973039B2 (en) Composite plated product and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824832

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP