WO2011048667A1 - レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法 - Google Patents

レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法 Download PDF

Info

Publication number
WO2011048667A1
WO2011048667A1 PCT/JP2009/068067 JP2009068067W WO2011048667A1 WO 2011048667 A1 WO2011048667 A1 WO 2011048667A1 JP 2009068067 W JP2009068067 W JP 2009068067W WO 2011048667 A1 WO2011048667 A1 WO 2011048667A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
light source
laser
source unit
case
Prior art date
Application number
PCT/JP2009/068067
Other languages
English (en)
French (fr)
Inventor
修己 靭矢
友二 安藤
暁棠 葛
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2010516717A priority Critical patent/JP4611456B1/ja
Priority to PCT/JP2009/068067 priority patent/WO2011048667A1/ja
Publication of WO2011048667A1 publication Critical patent/WO2011048667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/104Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates to a laser light source unit used for, for example, a projector or a head-up display, an image display device including the laser light source unit, and a method for manufacturing the laser light source unit.
  • a laser light source unit using two or more types of laser light sources such as red, blue, and green as a light source is used (see, for example, Patent Document 1).
  • This type of laser light source unit needs to be adjusted so that the position of the emitted light and the light diameter of each laser light source are the same at the target position.
  • a method for adjusting a laser light source unit using three laser light sources each having a semiconductor laser light source attached to a CAN package will be described with reference to FIG.
  • the laser light source unit 101 shown in FIG. 1 includes laser light sources LD11, LD12, and LD13, collimator lenses 102, 103, and 104, LD holders 105, 106, and 107, mirrors 108 and 109, and a case 110. I have.
  • the laser light source LD11 is provided with a semiconductor laser light source G that generates green laser light in a CAN package.
  • the laser light source LD12 has a semiconductor laser light source B that generates blue laser light attached to a CAN package.
  • the laser light source LD13 is provided with a semiconductor laser light source R that generates red laser light in a CAN package.
  • the collimator lens 102 converts the laser light emitted from the laser light source LD11 into parallel light.
  • the collimator lens 103 makes the laser light emitted from the laser light source LD12 into parallel light.
  • the collimator lens 104 converts the laser light emitted from the laser light source LD13 into parallel light.
  • the parallel light is cylindrical light having a diameter that is the size of the collimator lens 102, and is substantially parallel to the optical axis that connects the focal point and the center of the collimator lens.
  • the LD holder 105 is attached to case 110 with screws.
  • the laser light source LD11 is fixed to the LD holder 105 via an adhesive or the like.
  • the fixing direction of the laser light source LD11 can be adjusted in three axial directions (vertical, horizontal, and longitudinal directions in FIG. 1) by the screw.
  • the LD holder 106 is attached to the case 110 with screws.
  • the laser light source LD12 is fixed to the LD holder 106 via an adhesive or the like.
  • the fixing direction of the laser light source LD12 can be adjusted in three axial directions (vertical, horizontal, and longitudinal directions in FIG. 1) by the screw.
  • the LD holder 107 is attached to the case 110 with screws.
  • a laser light source LD13 is fixed to the LD holder 107 via an adhesive or the like.
  • the fixing direction of the laser light source LD13 can be adjusted in three axial directions (vertical, horizontal, and longitudinal directions in FIG. 1) by the screw.
  • the mirror 108 transmits the laser light emitted from the laser light source LD11 and reflects the laser light emitted from the laser light source LD12 toward the half mirror 111 described later. Further, the mirror 108 can adjust the position of the laser light emitted from the laser light source LD12 with a screw.
  • the mirror 109 transmits the laser light emitted from the laser light source LD11 and the laser light emitted from the laser light source LD12 reflected by the mirror 108, and transmits the laser light emitted from the laser light source LD13 toward the half mirror 111 described later. reflect. Further, the mirror 109 can adjust the position of the laser light emitted from the laser light source LD13 with a screw.
  • the half mirror 111 is installed between the laser light source unit 101 and a target TG1, which will be described later, and transmits laser light emitted from the laser light source unit 101 to the target TG1 and partially reflects it to the target TG2.
  • the targets TG1 and TG2 are targets (targets) for confirming the position and diameter of the emitted light of the laser light source, the target TG1 is installed at a position coaxial with the emitted light of the laser light source unit 101, and the target TG2 is a half mirror.
  • the optical path 111 is installed at a position bent vertically.
  • the target TG2 is installed at a position closer to the target TG1 (position where the optical path becomes shorter).
  • the laser light source unit 101 shown in FIG. 1 first performs the three-axis adjustment of the target LD11 so that the laser light source LD11 is turned on and the diameter and position of the emitted light enter the target at the target TG1.
  • the laser light source LD12 is turned on, and the three-axis adjustment of the laser light source LD12 is performed so that the laser light source LD12 coincides with the emission position of the laser light source LD11 on the target TG1 and the diameter enters the target.
  • the target TG2 is confirmed, and if there is a deviation from the emission light position of the laser light source LD11, the position of the laser light source LD12 is readjusted and the emission light position of the laser light source LD11 on the targets TG1 and TG2 and the laser light source LD12.
  • the laser light source LD12 is adjusted so that the amount of deviation from the emitted light position is approximately the same direction and the same distance.
  • offset adjustment is performed without changing the angle of the mirror 108 (the adjustment screws provided at both ends of the mirror 108 are moved by the same amount), and the emitted light of the laser light source LD11 and the emitted light of the laser light source LD12 on the target TG1. Then, the mirror 108 is adjusted so that both the emitted light of the laser light source LD11 and the emitted light of the laser light source LD12 on the target TG2 coincide with each other.
  • the adjustment of the laser light source LD12 is repeated, and the emitted light of the laser light source LD11 and the emitted light of the laser light source LD12 are the same at the targets TG1 and TG2. If the light diameter falls within the predetermined range, the laser light source LD13 and the mirror 109 are finally adjusted in the same manner as the laser light source LD12 and the mirror 108, and the adjustment of the laser light source unit 101 is completed.
  • JP 2009-122455 A Japanese Patent No. 3914670
  • the laser light source unit 101 described above uses a laser light source of a CAN package and further includes an adjustment mechanism using screws, there is a problem that downsizing is difficult and complicated.
  • the semiconductor module described in Patent Document 2 is advantageous for miniaturization because the laser light source is mounted in a chip state, but the semiconductor laser element that is a laser light source is usually in an initial state such as burn-in in a chip state. It is difficult to perform a test for selecting defective products, and it is necessary to perform a burn-in test after assembling as a semiconductor module (laser light source unit). Therefore, if at least one defective semiconductor laser element is incorporated, even if the remaining semiconductor laser elements are non-defective, the semiconductor module itself must be defective, and the yield of the semiconductor module deteriorates. There was a problem.
  • the semiconductor module described in Patent Document 2 is provided with a metal plate such as a copper plate for heat dissipation of the semiconductor laser element. It becomes difficult to secure a sufficient area.
  • Patent Document 2 requires equipment such as an adjuster to fix the three semiconductor laser elements, which requires a large capital investment.
  • the present invention provides, for example, a laser light source unit capable of improving yield and improving heat dissipation and miniaturization of a laser light source, and can be manufactured without much capital investment, and the laser light source unit. It is an object of the present invention to provide an image display device including the above and a method for manufacturing a laser light source unit.
  • the laser light source unit includes a case, a plurality of laser light sources having different colors, and a combining element that superimposes light emitted from the laser light sources,
  • the laser light source unit is disposed in the case so that the plurality of laser light sources have a predetermined diameter at a predetermined target position, and one of the plurality of laser light sources includes: It is provided in the case in a state of being attached to a CAN package or in a state of being attached to a frame package, and the remaining laser light source is provided in the case in a chip state.
  • a laser light source unit manufacturing method comprising: a laser light source unit attached to one CAN package; and a laser light source unit having at least one chip state.
  • a manufacturing method comprising: a first step of attaching a laser light source attached to the CAN package or attached to the frame package to the case; and a state attached to the CAN package or attached to the frame package.
  • a third step of fixing the serial case is characterized by the sequential execution.
  • FIG. 4 is a simplified diagram showing another configuration of the laser light source unit shown in FIG. 3.
  • FIG. 4 is a simplified diagram showing another configuration of the laser light source unit shown in FIG. 3.
  • FIG. 4 is a simplified diagram showing another configuration of the laser light source unit shown in FIG. 3.
  • FIG. 4 is a simplified diagram showing another configuration of the laser light source unit shown in FIG. 3.
  • the laser light source unit according to one embodiment of the present invention is provided in the case with one of the plurality of laser light sources attached to the CAN package or attached to the frame package, and the rest. Since the laser light source is provided in the case in a chip state, one becomes a laser light source for a CAN package or a frame package that has passed the burn-in test, and the yield can be improved as compared with a case where all are in a chip state. it can. In addition, equipment such as adjusters can be reduced, and capital investment can be reduced.
  • the laser light source attached to the CAN package or the laser light source attached to the frame package is a laser light emitted from a laser light source in a chip state where the laser light emitted from the laser light source of the case passes through the synthesis element. May be provided at a position shorter than the distance passing through the synthesis element.
  • a collimator lens that converts laser light that has passed through the combining element into parallel light may be provided at the subsequent stage of the combining element. By doing so, the number of parts can be reduced and the laser light source unit can be miniaturized as compared with the case where a collimator lens is provided between each laser light source and the combining element.
  • a laser light source in a chip state may be fixed to the case, and a heat radiating plate for radiating heat generated by the laser light source in the chip state may be provided corresponding to each laser light source.
  • the metal plate for heat radiation of the laser light source attached to the CAN package or attached to the frame package becomes unnecessary, and per metal plate compared to the case of all chips. The area can be widened to improve heat dissipation.
  • the image display device may include the laser light source unit described above and an optical scanning unit that causes the image display unit to scan the light emitted from the user light source unit.
  • an image display device that is small in size and excellent in heat dissipation and high in yield can be configured.
  • the laser light source attached to the CAN package or attached to the frame package is attached to the case, and the position of the collimator lens is adjusted and fixed based on the position and the light diameter of the emitted light of the laser light source.
  • the laser light source unit is manufactured by sequentially executing the steps of fixing and fixing the laser light source in the chip state so that the position and the light diameter of the emitted light coincide with those of the laser light source attached to the CAN package. May be. This eliminates the need for adjustment when the laser light source is attached to the CAN package, and the remaining laser light sources in the chip state are adjusted based on the laser light source attached to the CAN package. It can be carried out. Furthermore, it is possible to reduce the number of facilities for adjusting and fixing the laser light source in the chip state and to simplify the manufacturing process as compared with a case where the laser light source is in the chip state.
  • the image display device 1 includes an image signal input unit 2, a video ASIC 3, a frame memory 4, a ROM 5, a RAM 6, a laser driver ASIC 7, a MEMS control unit 8, and a laser light source unit 9. And a MEMS mirror 10.
  • the image signal input unit 2 receives an image signal input from the outside and outputs it to the video ASIC 3.
  • the video ASIC 3 is a block that controls the laser driver ASIC 7 and the MEMS control unit 8 based on the image signal input from the image signal input unit 2 and the scanning position information input from the MEMS mirror 10, and is an ASIC (Application Specific Integrated Circuit). ).
  • the video ASIC 3 includes a synchronization / image separation unit 31, a bit data conversion unit 32, a light emission pattern conversion unit 33, and a timing controller 34.
  • the synchronization / image separation unit 31 separates the image data displayed on the screen 11 serving as the image display unit and the synchronization signal from the image signal input from the image signal input unit 2 and writes the image data in the frame memory 4.
  • the bit data conversion unit 32 reads the image data written in the frame memory 4 and converts it into bit data.
  • the light emission pattern conversion unit 33 converts the bit data converted by the bit data conversion unit 32 into a signal representing the light emission pattern of each laser.
  • the timing controller 34 controls the operation timing of the synchronization / image separation unit 31 and the bit data conversion unit 32.
  • the timing controller 34 also controls the operation timing of the MEMS control unit 8 described later.
  • the image data separated by the synchronization / image separation unit 31 is written.
  • the ROM 5 stores a control program and data for operating the video ASIC 3.
  • the RAM 6 sequentially reads and writes various data as a work memory when the video AISC 3 operates.
  • the laser driver ASIC 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 to be described later, and is configured as an ASIC (Application Specific Specific Integrated Circuit).
  • the laser driver ASIC 7 includes a red laser driving circuit 71, a green laser driving circuit 72, and a blue laser driving circuit 73.
  • the red laser driving circuit 71 drives the red laser LD1 based on the signal output from the light emission pattern conversion unit 33.
  • the green laser driving circuit 72 drives the green laser LD2 based on the signal output from the light emission pattern conversion unit 33.
  • the blue laser drive circuit 73 drives the blue laser LD3 based on the signal output from the light emission pattern conversion unit 33.
  • the MEMS control unit 8 controls the MEMS mirror 10 based on a signal output from the timing controller 34.
  • the MEMS control unit 8 includes a servo circuit 81 and a driver circuit 82.
  • the servo circuit 81 controls the operation of the MEMS mirror 10 based on a signal from the timing controller 34.
  • the driver circuit 82 amplifies the control signal of the MEMS mirror 10 output from the servo circuit 81 to a predetermined level and outputs the amplified signal.
  • the laser light source unit 9 includes a case 91, a wavelength selective element 92, a collimator lens 93, a red laser LD1, a green laser LD2, and a blue laser LD3.
  • the case 91 is formed in a substantially box shape with resin or the like, and as shown in FIG. 4, a copper sheet metal or the like is included so as to include the mounting positions of the respective lasers for heat radiation of the red laser LD1 and the green laser LD2 described later.
  • the heat sinks 95 and 96 comprised by are inserted. Further, a part of the heat radiating plates 95 and 96 is exposed on the outer surface of the case 91.
  • the case 91 is provided with a hole penetrating into the case 91 and a concave section in the CAN mounting portion 91a and a surface orthogonal to the CAN mounting portion 91a in order to mount a blue laser LD3 described later.
  • a hole penetrating into the case 91 is provided, and a collimator mounting portion 91b having a concave cross section is formed.
  • the wavelength selective element 92 as a combining element is composed of, for example, a trichroic prism, and transmits the laser light emitted from the red laser LD1 toward the collimator lens 93 and reflects the laser light emitted from the green laser LD2.
  • the surface 92a is reflected toward the collimator lens 93, and the laser light emitted from the blue laser LD3 is reflected at the reflection surface 92b toward the collimator lens 93. By doing in this way, the emitted light from each laser is superimposed.
  • the wavelength selective element 92 is provided in the vicinity of the collimator mounting portion 91 b in the case 91.
  • the collimator lens 93 emits the laser beam incident from the wavelength selective element 92 to the MEMS mirror 10 as parallel light.
  • the collimator lens 93 is fixed to the collimator mounting portion 91b of the case 91 with an UV-based adhesive 94 or the like after adjustment described later. That is, the collimator lens 93 is provided after the synthesis element.
  • the red laser LD1 as the laser light source in the chip state emits red laser light.
  • the red laser LD1 is fixed at a position on the heat radiating plate 95 that is coaxial with the wavelength selective element 92 and the collimator lens 93 in the case 91 while the semiconductor laser light source is in a chip state or the chip is mounted on a submount or the like. ing.
  • the green laser LD2 as a laser light source in the chip state emits green laser light.
  • the green laser LD2 has a semiconductor laser light source in a chip state, or the chip is mounted on a submount and the laser beam emitted from the case 91 can be reflected toward the collimator lens 93 by the reflecting surface 92a. Fixed in position. The positions of the red laser LD1 and the green laser LD2 may be switched.
  • the chip state in the claims includes not only the die itself from which the semiconductor laser light source is separated from the wafer but also the state in which the die is placed on the submount as described above.
  • the blue laser LD3 as a laser light source attached to the CAN package or attached to the frame package emits blue laser light.
  • the blue laser LD 3 has a semiconductor laser light source chip B for generating blue laser light mounted in a CAN package, and is fixed to the CAN mounting portion 91 a of the case 91.
  • the blue laser LD3 mounting position (CAN mounting portion 91a) is provided at a position where the distance through which the laser light emitted from the blue laser LD3 passes through the wavelength selective element 92 is the shortest.
  • the laser light source attached to the CAN package or attached to the frame package is not limited to the blue laser light source.
  • the red laser LD1, the green laser LD2, and the blue laser LD3 need to have substantially the same optical distance from the laser beam emission position to the collimator lens 93 although there is a slight difference depending on the wavelength. In order to reduce the size of the laser light source unit 9, it is necessary to shorten this distance. However, since the blue laser LD3 is attached to the CAN package, the distance L from the semiconductor laser light source B to the outer edge of the CAN package is small. For this reason, it is not easy to bring the laser beam emission position close to the wavelength selective element 92 as in the red laser LD1 and the green laser LD2.
  • the distance that the emitted light of the blue laser LD3 passes through the wavelength selective element 92 is made shorter than the distance that the emitted light of the red laser LD1 and the green laser LD2 passes through the wavelength selective element 92, thereby emitting the laser light.
  • the distance from the position to the collimator lens 93 is shortened to reduce the size of the laser light source unit 9.
  • the shorter the distance that the emitted light of the blue laser LD3 passes through the wavelength selective element 92 the smaller the laser light source unit 9 contributes to the miniaturization of the laser light source unit 9, so that the configuration (collimator lens 93 is minimized) as shown in FIG. If the reflecting surface 92b is provided at the end portion on the side), the influence of the CAN package can be minimized.
  • the MEMS mirror 10 as a scanning unit reflects the laser light emitted from the laser light source unit 9 toward the screen 11. Further, in order to display an image input to the image signal input unit 2, it is movable so as to scan the screen 11 under the control of the MEMS control unit 8, and scanning position information at that time (for example, information such as a mirror angle) ) To the video ASIC 3.
  • step S1 corresponds to the first step in the claims.
  • the position of the collimator lens 93 at the collimator mounting portion 91b is adjusted, and the position of the emitted light of the blue laser LD3 matches the target position on the target provided outside the laser light source unit 9, or the light on the target. It is determined whether the diameter is a predetermined size. When the position of the emitted light matches the target position and the light diameter is a predetermined size, the collimator lens 93 is fixed at that position, and so on. If not, the adjustment of the position of the collimator lens 93 is repeated until the position of the emitted light matches the target position and the light diameter reaches a predetermined size (steps S2 to S4). That is, steps S2 to S4 correspond to the second step in the claims.
  • the fixing position of the first chip (for example, the red laser LD1 but the green laser LD2) may be adjusted.
  • the emitted light of the red laser LD1 coincides with the position and the light diameter of the emitted light of the blue laser LD3 on the target while holding the red laser LD1 with a chuck or the like and dropping the stylus.
  • the red laser LD1 is fixed with solder or the like (steps S5 to S7).
  • the fixing position of the second chip (the semiconductor laser light source chip of the color not fixed in the above step) is adjusted.
  • This adjustment method is also the same as that of the first chip.
  • the green laser LD2 is gripped with a chuck or the like and the stylus is dropped and turned on, the emitted light of the green laser LD2 is reflected on the blue laser LD3 and red laser LD1 on the target. Match the position and light diameter.
  • the green laser LD2 is fixed with solder or the like (steps S8 to S10). ). That is, steps S5 to S10 correspond to the third step of the claims.
  • the blue laser LD 3 is provided in the case 91 with being attached to the CAN package. Since the red laser LD1 and the green laser LD2 are provided in the case 91 in a chip state, the blue laser LD3 is composed of a CAN package product that has passed the burn-in test. Can be improved. Further, it is sufficient to provide two chips of copper sheet metals 95 and 96 for heat dissipation, and the area per one copper sheet metal can be widened as compared with the case of three chips. In addition, equipment such as adjusters can be reduced, and capital investment can be reduced.
  • the blue laser LD3 attached to the CAN package is provided at the position where the light emitted from the blue laser LD3 of the case 91 passes through the wavelength selective element 92 is the shortest.
  • the laser light source unit 9 can be reliably reduced in size as compared with the case where the laser light source unit 9 is attached to.
  • the laser light source unit 9 can be made smaller than the collimator lens 93 provided between each laser light source and the wavelength selective element 92. it can.
  • the adjustment when the blue laser LD 3 is attached becomes unnecessary. Further, the adjustment of the optical components can be performed only by the collimator lens 93.
  • the red laser LD1 and the green laser LD2 can be adjusted with the blue laser LD3 as a reference. Furthermore, the number of facilities for adjusting and fixing the laser light source chip can be reduced as compared with the case of using a laser light source in a chip state, and the manufacturing process can be simplified.
  • the blue laser light source is provided in the case 91 in a state of being attached to the CAN package.
  • the case 91 is not limited to the CAN package and is attached to the case 91 in a state of being attached to a resin-molded frame package. It may be provided.
  • the arrangement of the red laser LD1, the green laser LD2, and the blue laser LD3 in the laser light source unit 9 is not limited to that shown in the above-described embodiment, and may be configured as shown in FIGS. 6 to 8, for example. 6 to 8 show only the red laser LD1, the green laser LD2, the blue laser LD3, the wavelength selective element 92, and the collimator lens 93, and simplify the drawings.
  • 6 to 8 show only the red laser LD1, the green laser LD2, the blue laser LD3, the wavelength selective element 92, and the collimator lens 93, and simplify the drawings.
  • the green laser LD2 and the blue laser LD3 are arranged at point-symmetrical positions with the wavelength selective element 92 as the center, the projected area can be minimized.
  • the following laser light source unit 9 and the method for manufacturing the laser light source unit 9 are obtained.
  • the blue laser LD3 is mounted on the CAN package and is provided in the case 91, and the red laser LD1 and the green laser LD2 are in the chip state in the case 91.
  • a laser light source unit 9 is provided.
  • the laser light source unit 9 one becomes a laser light source of a CAN package that has passed the burn-in test, and the yield can be improved as compared with a case where all are in a chip state.
  • equipment such as adjusters can be reduced, and capital investment can be reduced.
  • this laser light source unit manufacturing method adjustment when the blue laser LD3 is attached is not necessary, and the remaining red laser LD1 and green laser LD2 can be adjusted with the blue laser LD3 as a reference. Furthermore, the number of facilities for adjusting and fixing the laser light source chip can be reduced as compared with the case of using a laser light source in a chip state, and the manufacturing process can be simplified.
  • S4 Collimator lens fixation (second process) S5 First chip fixing position adjustment (third step)
  • S6 Is the same position and light diameter as the output light of the CAN laser (third step)
  • First chip fixing (third process) S8
  • Second chip fixing position adjustment (third step) Is it the same position and light diameter as the light emitted from the S9 CAN laser (third step)?

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】歩留まりを向上させるとともに、レーザ光源の放熱性の向上や小型化を図り、さらに、多くの設備投資を行わずに製造することができるレーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法を提供する。 【解決手段】画像表示装置1が備えているレーザ光源ユニット9において、3色のレーザ光源のうち、青色レーザLD3がCANパッケージに取付けられた状態でケース91内に設けられているとともに、残りの赤色レーザLD1,緑色レーザLD2がチップ状態でケース91に設けられている。

Description

レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法
 本発明は、例えば、プロジェクタやヘッドアップディスプレイなどに用いられるレーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法に関する。
 例えば、画像表示装置としてのプロジェクタやヘッドアップディスプレイなどには、光源として赤、青、緑等の2種類以上のレーザ光源を用いたレーザ光源ユニットが用いられる(例えば、特許文献1を参照)。
 この種のレーザ光源ユニットは、各レーザ光源の出射光の位置や光径が目標位置で同じになるように調整する必要がある。ここで、半導体レーザ光源がCANパッケージに取付けられたレーザ光源を3つ使用したレーザ光源ユニットの調整方法について図1を参照して説明する。
 図1に示されたレーザ光源ユニット101は、レーザ光源LD11、LD12、LD13と、コリメータレンズ102、103、104と、LDホルダー105、106、107と、ミラー108、109と、ケース110と、を備えている。
 レーザ光源LD11は、CANパッケージに緑色のレーザ光を発生する半導体レーザ光源Gが取付けられている。レーザ光源LD12は、CANパッケージに青色のレーザ光を発生する半導体レーザ光源Bが取付けられている。レーザ光源LD13は、CANパッケージに赤色のレーザ光を発生する半導体レーザ光源Rが取付けられている。
 コリメータレンズ102は、レーザ光源LD11から出射されたレーザ光を平行光にする。コリメータレンズ103は、レーザ光源LD12から出射されたレーザ光を平行光にする。コリメータレンズ104は、レーザ光源LD13から出射されたレーザ光を平行光にする。なお、上記の平行光とは、コリメータレンズ102の大きさの直径を持つ円筒状の光であり、コリメータレンズの焦点と中心を結ぶ光軸に略平行な光である。
 LDホルダー105は、ネジによってケース110に取り付けられる。LDホルダー105には、接着剤等を介してレーザ光源LD11が固定される。ここで、レーザ光源LD11の固定方向は、当該ネジによって3軸方向(図1中の上下、左右、前後方向)に調整可能とされている。LDホルダー106は、ネジによってケース110に取り付けられる。LDホルダー106には、接着剤等を介してレーザ光源LD12が固定される。ここで、レーザ光源LD12の固定方向は、当該ネジによって3軸方向(図1中の上下、左右、前後方向)に調整可能とされている。LDホルダー107は、ネジによってケース110に取り付けられる。LDホルダー107には、接着剤等を介してレーザ光源LD13が固定される。ここで、レーザ光源LD13の固定方向は、当該ネジによって3軸方向(図1中の上下、左右、前後方向)に調整可能とされている。
 ミラー108は、レーザ光源LD11から出射されたレーザ光を透過するとともに、レーザ光源LD12から出射されたレーザ光を後述するハーフミラー111に向かって反射する。また、ミラー108はネジによってレーザ光源LD12から出射されるレーザ光の位置を調整可能としている。ミラー109は、レーザ光源LD11から出射されたレーザ光とミラー108が反射したレーザ光源LD12が出射したレーザ光を透過するとともに、レーザ光源LD13から出射されたレーザ光を後述するハーフミラー111に向かって反射する。また、ミラー109はネジによってレーザ光源LD13から出射されるレーザ光の位置を調整可能としている。
 ハーフミラー111は、レーザ光源ユニット101と後述するターゲットTG1との間に設置され、レーザ光源ユニット101から出射されたレーザ光をターゲットTG1へ透過するとともに一部をターゲットTG2へ反射する。
 ターゲットTG1、TG2は、レーザ光源の出射光の位置、径を確認するためのターゲット(目標)であり、ターゲットTG1はレーザ光源ユニット101の出射光と同軸な位置に設置され、ターゲットTG2はハーフミラー111によって光路が垂直に曲げられた位置に設置される。また、ターゲットTG2はターゲットTG1よりも近い位置(光路が短くなる位置)に設置されている。
 そして、図1に示されたレーザ光源ユニット101は、まず、レーザ光源LD11を点燈させターゲットTG1で出射光の径、位置が目標に入るように、ターゲットLD11の3軸調整を行う。次に、レーザ光源LD12を点燈させてターゲットTG1上のレーザ光源LD11の出射位置と一致し、かつ径が目標に入るようにレーザ光源LD12の3軸調整を行う。その後、ターゲットTG2を確認してレーザ光源LD11の出射光位置とのずれがある場合はレーザ光源LD12の位置を再調整してターゲットTG1、TG2上のレーザ光源LD11の出射光位置とレーザ光源LD12の出射光位置とのずれ量がほぼ同方向、同じ距離になるようにレーザ光源LD12を調整する。
 そして、ミラー108の角度を変えずにオフセット調整(ミラー108の両端に設けられている調整用ネジを同じだけ移動させる)し、ターゲットTG1上のレーザ光源LD11の出射光およびレーザ光源LD12の出射光と、ターゲットTG2上のレーザ光源LD11の出射光およびレーザ光源LD12の出射光の両方とも一致させるようにミラー108を調整する。一致しない場合やレーザ光源LD12の出射光の径が所定の値から外れた場合はレーザ光源LD12の調整から繰り返し、ターゲットTG1,TG2でレーザ光源LD11の出射光とレーザ光源LD12の出射光とが一致し、光径が所定範囲内となったら、最後にレーザ光源LD13とミラー109の調整をレーザ光源LD12とミラー108の調整と同様に行い、レーザ光源ユニット101の調整を完了させる。
 また、図1に示した方法の他に特許文献2に記載の半導体モジュールのように、各レーザ光源をチップ状態のまま位置調整後に固定する方法も提案されている。
特開2009-122455号公報 特許第3914670号公報
 上述したレーザ光源ユニット101は、CANパッケージのレーザ光源を用い、さらにネジによる調整機構が搭載されているので、小型化が困難で複雑になってしまうという問題があった。
 また、特許文献2に記載された半導体モジュールは、レーザ光源がチップ状態で搭載されているので、小型化には有利であるが、レーザ光源である半導体レーザ素子は通常チップ状態でバーンインなどの初期不良品を選別する試験を行うことは困難であり、半導体モジュール(レーザ光源ユニット)として組み立てた後にバーンイン試験を行う必要がある。そのため、1つでも不良品の半導体レーザ素子を組み込んでしまった場合は、残りの半導体レーザ素子が良品であっても半導体モジュールそのものを不良品とせざるを得ず、半導体モジュールの歩留まりが悪化するという問題があった。
 また、特許文献2に記載された半導体モジュールは、半導体レーザ素子の放熱のために銅板などの金属板を設けているが、各チップごとに設ける必要があるために、小型化すると1つ当たりの面積を十分に確保することが困難になる。
 さらに、特許文献2に記載された半導体モジュールは、3つの半導体レーザ素子を固定するために調整機などの設備が必要となり、そのための設備投資などが多くかかってしまう。
 そこで、本発明は、例えば、歩留まりを向上させるとともに、レーザ光源の放熱性の向上や小型化を図り、さらに、多くの設備投資を行わずに製造することができるレーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法を提供することを課題とする。
 上記課題を解決するために、請求項1に記載のレーザ光源ユニットは、ケースと、それぞれ色が異なる複数のレーザ光源と、前記レーザ光源から出射された光を重ね合わせる合成素子と、を備え、前記複数のレーザ光源が予め定めた目標位置で所定の大きさの光径となるように前記ケースに配置されているレーザ光源ユニットであって、前記複数のレーザ光源のうち、一つのレーザ光源がCANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態で前記ケースに設けられているとともに、残りのレーザ光源がチップ状態で前記ケース内に設けられていることを特徴としている。
 請求項6に記載のレーザ光源ユニットの製造方法は、一つのCANパッケージに取付けられた状態のレーザ光源と、一つ以上のチップ状態のレーザ光源と、がケースに設けられているレーザ光源ユニットの製造方法であって、前記CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源を前記ケースに取り付ける第一の工程と、前記CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源の出射光の位置および光径に基づいて、コリメータレンズの位置を調整して前記ケースに固定する第二の工程と、前記チップ状態のレーザ光源を、出射光の位置および光径が前記CANパッケージに取付けられた状態のレーザ光源と一致するように取付位置を調整して前記ケースに固定する第三の工程とを、を順次実行することを特徴としている。
従来のレーザ光源ユニットの構成図である。 本発明の一実施例にかかる画像表示装置のブロック図である。 図2に示された画像表示装置のレーザ光源ユニットを示した構成図である。 図3に示されたレーザ光源ユニットの銅板金の構成を示す説明図である。 図3に示されたレーザ光源ユニットの製造手順を示すフローチャートである。 図3に示されたレーザ光源ユニットの他の構成を示した簡略図である。 図3に示されたレーザ光源ユニットの他の構成を示した簡略図である。 図3に示されたレーザ光源ユニットの他の構成を示した簡略図である。
 以下、本発明の一実施形態にかかるレーザ光源ユニットを説明する。本発明の一実施形態にかかるレーザ光源ユニットは、複数のレーザ光源のうち、一つのレーザ光源がCANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態でケースに設けられているとともに、残りのレーザ光源がチップ状態でケース内に設けられているので、一つがバーンイン試験をパスしたCANパッケージのレーザ光源またはフレームパッケージのレーザ光源となり、全てチップ状態とした場合よりも歩留まりを向上させることができる。さらに、調整機などの設備も削減でき、設備投資を抑えることができる。
 また、CANパッケージに取付けられたレーザ光源またはフレームパッケージに取付けられたレーザ光源は、ケースの当該レーザ光源から出射されたレーザ光が合成素子を通る距離がチップ状態のレーザ光源から出射されたレーザ光が合成素子を通る距離よりも短くなる位置に設けられていてもよい。このようにすることにより、CANパッケージまたはフレームパッケージによる影響を少なくして、全てCANパッケージに取付けられた状態とした場合と比較してレーザ光源ユニットを確実に小型化することができる。
 また、合成素子の後段に合成素子を通過したレーザ光を平行光に変換するコリメータレンズが設けられていてもよい。このようにすることにより、コリメータレンズを各レーザ光源と合成素子との間に設けるよりも部品点数を減らしレーザ光源ユニットを小型化することができる。
 また、ケースには、チップ状態のレーザ光源が固定されるとともに、当該チップ状態のレーザ光源が発生する熱を放熱する放熱板が各レーザ光源に対応して設けられていてもよい。このようにすることにより、CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源の放熱用の金属板は不要になり、全てチップとした場合と比較して金属板1つ当たりの面積を広くして放熱性を向上することができる。
 また、画像表示装置に上述したレーザ光源ユニットと、前記ユーザ光源ユニットから出射された光を画像表示部に走査させる光走査手段と、を備えてもよい。このようにすることにより、小型で放熱に優れるとともに歩留まりが高い画像表示装置を構成することができる。
 また、CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源をケースに取り付け、当該レーザ光源の出射光の位置および光径に基づいて、コリメータレンズの位置を調整して固定し、チップ状態のレーザ光源を、出射光の位置および光径がCANパッケージに取付けられた状態のレーザ光源と一致するように取付位置を調整して固定する工程を順次実行してレーザ光源ユニットを製造してもよい。このようにすることにより、CANパッケージに取付けられた状態のレーザ光源取り付け時の調整が不要となり、また、残りのチップ状態のレーザ光源はCANパッケージに取付けられた状態のレーザ光源を基準として調整を行うことができる。さらに、全てチップ状態のレーザ光源で構成した場合よりもチップ状態のレーザ光源の調整や固定のための設備を少なくでき、また、製造工程を簡素化することができる。
 本発明の一実施例にかかる画像表示装置1を図2乃至図5を参照して説明する。画像表示装置1は、図2に示すように画像信号入力部2と、ビデオASIC3と、フレームメモリ4と、ROM5と、RAM6と、レーザドライバASIC7と、MEMS制御部8と、レーザ光源ユニット9と、MEMSミラー10と、を備えている。
 画像信号入力部2は、外部から入力される画像信号を受信してビデオASIC3に出力する。
 ビデオASIC3は、画像信号入力部2から入力される画像信号およびMEMSミラー10から入力される走査位置情報に基づいてレーザドライバASIC7やMEMS制御部8を制御するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。ビデオASIC3は、同期/画像分離部31と、ビットデータ変換部32と、発光パターン変換部33と、タイミングコントローラ34と、を備えている。
 同期/画像分離部31は、画像信号入力部2から入力された画像信号から画像表示部であるスクリーン11に表示される画像データと同期信号とを分離し、画像データをフレームメモリ4に書き込む。
 ビットデータ変換部32は、フレームメモリ4に書き込まれた画像データを読み出してビットデータに変換する。
 発光パターン変換部33は、ビットデータ変換部32で変換されたビットデータを各レーザの発光パターンを表わす信号に変換する。
 タイミングコントローラ34は、同期/画像分離部31、ビットデータ変換部32の動作タイミングを制御する。また、タイミングコントローラ34は、後述するMEMS制御部8の動作タイミングも制御する。
 フレームメモリ4は、同期/画像分離部31で分離された画像データが書き込まれる。ROM5は、ビデオASIC3が動作するための制御プログラムやデータ等が記憶されている。RAM6は、ビデオAISC3が動作する際のワークメモリとして各種データ等が逐次読み書きされる。
 レーザドライバASIC7は、後述するレーザ光源ユニット9に設けられるレーザダイオードを駆動する信号を生成するブロックであり、ASIC(Application Specific Integrated Circuit)として構成されている。レーザドライバASIC7は、赤色レーザ駆動回路71と、緑色レーザ駆動回路72と、青色レーザ駆動回路73と、を備えている。
 赤色レーザ駆動回路71は、発光パターン変換部33が出力する信号に基づき、赤色レーザLD1を駆動する。緑色レーザ駆動回路72は、発光パターン変換部33が出力する信号に基づき、緑色レーザLD2を駆動する。青色レーザ駆動回路73は、発光パターン変換部33が出力する信号に基づき、青色レーザLD3を駆動する。
 MEMS制御部8は、タイミングコントローラ34が出力する信号に基づきMEMSミラー10を制御する。MEMS制御部8は、サーボ回路81と、ドライバ回路82と、を備えている。
 サーボ回路81は、タイミングコントローラ34からの信号に基づき、MEMSミラー10の動作を制御する。
 ドライバ回路82は、サーボ回路81が出力するMEMSミラー10の制御信号を所定レベルに増幅して出力する。
 レーザ光源ユニット9は、図3に示すように、ケース91と、波長選択性素子92と、コリメータレンズ93と、赤色レーザLD1と、緑色レーザLD2と、青色レーザLD3と、を備えている。
 ケース91は、樹脂等で略箱状に形成されるとともに、図4に示すように後述する赤色レーザLD1と緑色レーザLD2の放熱のために、それぞれのレーザの取付位置を含むように銅板金などで構成された放熱板95、96がインサートされている。また、この放熱板95、96はケース91の外表面に一部が露出している。
 また、ケース91には、後述する青色レーザLD3を取り付けるために、ケース91内へ貫通する孔が設けられているとともに断面が凹状のCAN取付部91aと、CAN取付部91aと直交する面に設けられ、ケース91内へ貫通する孔が設けられているとともに断面が凹状のコリメータ取付部91bと、が形成されている。
 合成素子としての波長選択性素子92は、例えばトリクロイックプリズムなどで構成され、赤色レーザLD1から出射されたレーザ光をコリメータレンズ93へ向かって透過させ、緑色レーザLD2から出射されたレーザ光を反射面92aでコリメータレンズ93へ向かって反射させ、青色レーザLD3から出射されたレーザ光を反射面92bでコリメータレンズ93へ向かって反射させる。このようにすることで、各レーザからの出射光が重ね合わされる。また、波長選択性素子92は、ケース91内のコリメータ取付部91bの近傍に設けられている。
 コリメータレンズ93は、波長選択性素子92から入射したレーザ光を平行光にしてMEMSミラー10へ出射する。コリメータレンズ93は、ケース91のコリメータ取付部91bに、後述する調整を行った後にUV系接着剤94などで固定される。即ち、合成素子の後段にコリメータレンズ93が設けられている。
 チップ状態のレーザ光源としての赤色レーザLD1は、赤色のレーザ光を出射する。赤色レーザLD1は半導体レーザ光源がチップ状態のまま、或いはチップがサブマウントなどに載置されてケース91内の波長選択性素子92とコリメータレンズ93と同軸となる放熱板95上の位置に固定されている。
 チップ状態のレーザ光源としての緑色レーザLD2は、緑色のレーザ光を出射する。緑色レーザLD2は半導体レーザ光源がチップ状態のまま、或いはチップがサブマウントなどに載置されてケース91内の出射したレーザ光が反射面92aによってコリメータレンズ93へ向かって反射できる放熱板96上の位置に固定されている。この赤色レーザLD1と緑色レーザLD2の位置は入れ替わっていても良い。なお、特許請求の範囲のチップ状態とは、半導体レーザ光源がウエハから切り離されたダイそのものだけでなく、上述したようにサブマウントにダイが載置された状態も含む。
 CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源としての青色レーザLD3は、青色のレーザ光を出射する。ここで、本実施例においては、青色レーザLD3はCANパッケージ内に青色のレーザ光を発生する半導体レーザ光源チップBが取付けられており、ケース91のCAN取付部91aに固定されている。また、青色レーザLD3の取付位置(CAN取付部91a)は、青色レーザLD3から出射したレーザ光が波長選択性素子92を通る距離が最も短くなる位置に設けられている。なお、CANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源は青色のレーザ光源に限らないことは言うまでも無い。
 赤色レーザLD1、緑色レーザLD2、青色レーザLD3は、それぞれのレーザ光の出射位置からコリメータレンズ93までの光学的距離を、波長により若干の差があるものの略同じにする必要がある。レーザ光源ユニット9を小型化するためには、この距離を短くする必要があるが、青色レーザLD3はCANパッケージに取付けられた状態のため、半導体レーザ光源BからCANパッケージの外縁までの距離Lがあるために、赤色レーザLD1、緑色レーザLD2のように波長選択性素子92にレーザ光の出射位置を近づけることが容易ではない。そのため、青色レーザLD3の出射光が波長選択性素子92内を通る距離が赤色レーザLD1、緑色レーザLD2の出射光が波長選択性素子92内を通る距離よりも短くすることで、レーザ光の出射位置からコリメータレンズ93までの距離を短くして、レーザ光源ユニット9の小型化を図っている。勿論、青色レーザLD3の出射光が波長選択性素子92内を通る距離は短いほどレーザ光源ユニット9の小型化に寄与するので、図3に示したように最も短くなるように構成(コリメータレンズ93側の端部に反射面92bを設ける)すればCANパッケージによる影響を最小にすることができる。
 走査手段としてのMEMSミラー10は、レーザ光源ユニット9から出射されたレーザ光をスクリーン11に向けて反射する。また、画像信号入力部2に入力された画像を表示するためにMEMS制御部8からの制御によりスクリーン11上を走査するように可動し、その際の走査位置情報(例えばミラーの角度などの情報)をビデオASIC3へ出力する。
 次に、上述した構成のレーザ光源ユニット9を製造する際の手順について図5のフローチャートを参照して説明する。
 まず、予め波長選択性素子92が取り付けられているケース91にCANレーザ(青色レーザLD3)を取り付ける。この際、ケース91のCAN取付部91aに固定するのみであり調整等は行わない(ステップS1)。即ち、ステップS1が特許請求の範囲の第一の工程に相当する。
 次に、コリメータレンズ93のコリメータ取付部91bにおける位置を調整し、青色レーザLD3の出射光の位置がレーザ光源ユニット9の外部に設けられたターゲット上の目標位置と合っているか、ターゲット上の光径が予め定めた大きさになっているかを判断して、出射光の位置が目標位置と合い光径が予め定めた大きさになっている場合はその位置にコリメータレンズ93を固定し、そうでない場合は出射光の位置が目標位置と合い光径が予め定めた大きさになるまでコリメータレンズ93の位置の調整を繰り返す(ステップS2~S4)。即ち、ステップS2~S4が特許請求の範囲の第二の工程に相当する。
 次に、第1チップ(例えば赤色レーザLD1とするが緑色レーザLD2でもよい)の固定位置の調整を行う。この調整方法は、例えば赤色レーザLD1をチャック等で掴み触針を落として点燈させながら赤色レーザLD1の出射光がターゲット上で青色レーザLD3の出射光の位置および光径と一致するようにする。そして、赤色レーザLD1の出射光がターゲット上で青色レーザLD3の出射光の位置および光径が一致する位置となった場合は半田などにより赤色レーザLD1を固定する(ステップS5~S7)。
 次に、第2チップ(上述したステップで固定していない色の半導体レーザ光源チップ)の固定位置の調整を行う。この調整方法も第1チップと同様で、例えば緑色レーザLD2をチャック等で掴み触針を落として点燈させながら緑色レーザLD2の出射光がターゲット上で青色レーザLD3、赤色レーザLD1の出射光の位置および光径と一致するようにする。そして、緑色レーザLD2の出射光がターゲット上で青色レーザLD3、赤色レーザLD1の出射光の位置および光径が一致する位置となった場合は半田などにより緑色レーザLD2を固定する(ステップS8~S10)。即ち、ステップS5~S10が特許請求の範囲の第三の工程に相当する。
 本実施形態によれば、画像表示装置1が備えているレーザ光源ユニット9において、3色のレーザ光源のうち、青色レーザLD3がCANパッケージに取付けられた状態でケース91内に設けられているとともに、赤色レーザLD1、緑色レーザLD2がチップ状態でケース91に設けられているので、青色レーザLD3がバーンイン試験をパスしたCANパッケージ品で構成されているために、全てチップ状態とした場合よりも歩留まりを向上させることができる。また、放熱用のためには銅板金95、96の2チップ分設ければよく、3チップ分の場合と比較して銅板金の1つ当たりの面積を広くすることができる。さらに、調整機などの設備も削減でき、設備投資を抑えることができる。
 また、CANパッケージに取付けられた青色レーザLD3は、ケース91の当該青色レーザLD3から出射された光が波長選択性素子92を通る距離が最も短い位置に設けられているので、3色ともCANパッケージに取付けられた状態とした場合と比較してレーザ光源ユニット9を確実に小型化することができる。
 また、波長選択性素子92の後段にコリメータレンズ93が設けられているので、コリメータレンズ93を各レーザ光源と波長選択性素子92との間に設けるよりもレーザ光源ユニット9を小型化することができる。
 また、図5のフローチャートの手順で製造することで、青色レーザLD3取付時の調整が不要になる。また、光学部品の調整もコリメータレンズ93のみで良くなる。また、赤色レーザLD1、緑色レーザLD2は、青色レーザLD3を基準として調整を行うことができる。さらに、レーザ光源チップの調整や固定のための設備も全てチップ状態のレーザ光源とした場合よりも少なくでき、製造工程も簡素化することができる。
 なお、実施例では青色のレーザ光源が、CANパッケージに取付けられた状態でケース91に設けられるようにしたが、CANパッケージに限らず、樹脂モールドされたフレームパッケージに取り付けられた状態でケース91に設けられるようにしてもよい。
 また、レーザ光源ユニット9内の赤色レーザLD1、緑色レーザLD2、青色レーザLD3の配置は、上述した実施例に示したものに限らず、例えば図6~図8に示す構成としてもよい。図6~図8は、赤色レーザLD1、緑色レーザLD2、青色レーザLD3と、波長選択性素子92と、コリメータレンズ93のみを記載して図を簡略化している。例えば、図6の構成の場合、波長選択性素子92を中心として点対称の位置に緑色レーザLD2と青色レーザLD3とを配置したので投影面積を最小にすることができる。
 前述した実施例によれば、以下のレーザ光源ユニット9およびレーザ光源ユニット9の製造方法が得られる。
 (付記1)ケース91と、赤色レーザLD1、緑色レーザLD2、青色レーザLD3と、赤色レーザLD1、緑色レーザLD2、青色レーザLD3から出射された光を重ね合わせる波長選択性素子92と、を備え、赤色レーザLD1、緑色レーザLD2、青色レーザLD3が予め定めた目標位置で所定の大きさの光径となるようにケース91に配置されているレーザ光源ユニット9であって、
 赤色レーザLD1、緑色レーザLD2、青色レーザLD3のうち、青色レーザLD3がCANパッケージに取付けられた状態でケース91に設けられているとともに、赤色レーザLD1、緑色レーザLD2がチップ状態でケース91内に設けられていることを特徴とするレーザ光源ユニット9。
 このレーザ光源ユニット9によれば、一つがバーンイン試験をパスしたCANパッケージのレーザ光源となり、全てチップ状態とした場合よりも歩留まりを向上させることができる。さらに、調整機などの設備も削減でき、設備投資を抑えることができる。
 (付記2)青色レーザLD3と、赤色レーザLD1、緑色レーザLD2と、をケース91に取り付けるレーザ光源ユニット9の製造方法であって、
 青色レーザLD3をケース91に取り付けるステップS1と、
 青色レーザLD3の出射光の位置および光径に基づいて、コリメータレンズ93の位置を調整してケース91に固定するステップS2、S3、S4と、
 赤色レーザLD1、緑色レーザLD2を、出射光の位置および光径が青色レーザLD3と一致するように取付位置を調整してケース91に固定するステップS5、S6、S7、S8、S9、S10と、
を順次実行することを特徴とするレーザ光源ユニットの製造方法。
 このレーザ光源ユニットの製造方法によれば、青色レーザLD3取付時の調整が不要となり、また、残りの赤色レーザLD1、緑色レーザLD2は青色レーザLD3を基準として調整を行うことができる。さらに、レーザ光源チップの調整や固定のための設備も全てチップ状態のレーザ光源とした場合よりも少なくでき、製造工程も簡素化することができる。
 なお、前述した実施例は本発明の代表的な形態を示したに過ぎず、本発明は、実施例に限定されるものではない。すなわち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
  1        画像表示装置
  9       レーザ光源ユニット
  10      MEMSミラー(走査手段)
  11      スクリーン(画像表示部)
  91      ケース
  92      波長選択性素子(合成素子)
  93      コリメータレンズ
  95      銅板金(放熱板)
  96      銅板金(放熱板)
  LD1    赤色レーザ(チップ状態のレーザ光源)
  LD2    緑色レーザ(チップ状態のレーザ光源)
  LD3    青色レーザ(CANパッケージに取付けられた状態のレーザ光源)
  S1      CANレーザ取り付け(第一の工程)
  S2   コリメータレンズ調整(第二の工程)
  S3   予め定めた位置・光径になっているか(第二の工程)
  S4   コリメータレンズ固定(第二の工程)
  S5   第1チップ固定位置調整(第三の工程)
  S6   CANレーザの出射光と同じ位置・光径か(第三の工程)
  S7   第1チップ固定(第三の工程)
  S8   第2チップ固定位置調整(第三の工程)
  S9   CANレーザの出射光と同じ位置・光径か(第三の工程)
  S10  第2チップ固定(第三の工程)

Claims (6)

  1.  ケースと、それぞれ色が異なる複数のレーザ光源と、前記レーザ光源から出射された光を重ね合わせる合成素子と、を備え、前記複数のレーザ光源が予め定めた目標位置で所定の大きさの光径となるように前記ケースに配置されているレーザ光源ユニットであって、
     前記複数のレーザ光源のうち、一つのレーザ光源がCANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態で前記ケースに設けられているとともに、残りのレーザ光源がチップ状態で前記ケース内に設けられていることを特徴とするレーザ光源ユニット。
  2.  前記CANパッケージに取付けられた状態または前記フレームパッケージに取付けられた状態のレーザ光源は、前記ケースの当該レーザ光源から出射されたレーザ光が前記合成素子を通る距離が前記チップ状態のレーザ光源から出射されたレーザ光が前記合成素子を通る距離よりも短くなる位置に設けられていることを特徴とする請求項1に記載のレーザ光源ユニット。
  3.  前記合成素子の後段に前記合成素子を通過したレーザ光を平行光に変換するコリメータレンズが設けられていることを特徴とする請求項1または2に記載のレーザ光源ユニット。
  4.  前記ケースには、チップ状態の前記レーザ光源が固定されるとともに、前記レーザ光源が発生する熱を放熱する放熱板が設けられていることを特徴とする請求項1乃至3のうちいずれか一項に記載のレーザ光源ユニット。
  5.  請求項1乃至4のうちいずれか一項に記載のレーザ光源ユニットと、前記ユーザ光源ユニットから出射されたレーザ光を画像表示部に走査させる光走査手段と、を備えたことを特徴とする画像表示装置。
  6.  一つのCANパッケージに取付けられた状態またはフレームパッケージに取付けられた状態のレーザ光源と、一つ以上のチップ状態のレーザ光源と、がケースに設けられているレーザ光源ユニットの製造方法であって、
     前記CANパッケージに取付けられた状態または前記フレームパッケージに取付けられた状態のレーザ光源を前記ケースに取り付ける第一の工程と、
     前記CANパッケージに取付けられた状態または前記フレームパッケージに取付けられた状態のレーザ光源の出射光の位置および光径に基づいて、コリメータレンズの位置を調整して前記ケースに固定する第二の工程と、
     前記チップ状態のレーザ光源を、出射光の位置および光径が前記CANパッケージに取付けられた状態のレーザ光源と一致するように取付位置を調整して前記ケースに固定する第三の工程と、
    を順次実行することを特徴とするレーザ光源ユニットの製造方法。
PCT/JP2009/068067 2009-10-20 2009-10-20 レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法 WO2011048667A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010516717A JP4611456B1 (ja) 2009-10-20 2009-10-20 レーザ光源ユニットの製造方法およびレーザ光源ユニット並びにそのレーザ光源ユニットを備えた画像表示装置
PCT/JP2009/068067 WO2011048667A1 (ja) 2009-10-20 2009-10-20 レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068067 WO2011048667A1 (ja) 2009-10-20 2009-10-20 レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法

Publications (1)

Publication Number Publication Date
WO2011048667A1 true WO2011048667A1 (ja) 2011-04-28

Family

ID=43566591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068067 WO2011048667A1 (ja) 2009-10-20 2009-10-20 レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置並びにレーザ光源ユニットの製造方法

Country Status (2)

Country Link
JP (1) JP4611456B1 (ja)
WO (1) WO2011048667A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2015029139A (ja) * 2014-10-08 2015-02-12 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
WO2015145608A1 (ja) * 2014-03-26 2015-10-01 株式会社島津製作所 レーザ装置
JPWO2013146313A1 (ja) * 2012-03-26 2015-12-10 シチズンホールディングス株式会社 レーザ光源装置及びレーザ光源装置の製造方法
JP2016004850A (ja) * 2014-06-16 2016-01-12 株式会社デンソー 車載用レーザ光源ユニット
US9243761B2 (en) 2013-02-28 2016-01-26 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
JP2016046481A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2016058680A (ja) * 2014-09-12 2016-04-21 株式会社デンソー レーザユニット
JP2016138901A (ja) * 2015-01-26 2016-08-04 株式会社日立エルジーデータストレージ 光モジュール、及び走査型画像表示装置
JP2017028331A (ja) * 2016-11-09 2017-02-02 住友電気工業株式会社 光アセンブリ
JP2019503079A (ja) * 2016-01-11 2019-01-31 フィスバ・アクチェンゲゼルシャフトFisba Ag 光モジュールの製造方法、光モジュール、および光モジュールの操作方法およびコンピュータ・プログラム・プロダクト
JP2019046830A (ja) * 2017-08-29 2019-03-22 住友電気工業株式会社 光モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817274B1 (ja) * 2011-01-18 2011-11-16 パナソニック株式会社 画像表示装置
JP4822300B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4822301B1 (ja) * 2011-01-18 2011-11-24 パナソニック株式会社 画像表示装置
JP4904431B1 (ja) * 2011-02-22 2012-03-28 パナソニック株式会社 画像表示装置
JP4880789B1 (ja) * 2011-02-22 2012-02-22 パナソニック株式会社 画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855357A (ja) * 1994-08-17 1996-02-27 Sony Corp 半導体レーザ装置
JP2001144364A (ja) * 1999-11-18 2001-05-25 Pioneer Electronic Corp 半導体モジュール及び半導体モジュールの半導体レーザ素子の取り付け方法
JP2005235390A (ja) * 2005-04-22 2005-09-02 Hitachi Ltd 光ヘッド、及び、それを用いた光学的情報記録再生装置
JP2009122455A (ja) * 2007-11-15 2009-06-04 Funai Electric Co Ltd 画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855357A (ja) * 1994-08-17 1996-02-27 Sony Corp 半導体レーザ装置
JP2001144364A (ja) * 1999-11-18 2001-05-25 Pioneer Electronic Corp 半導体モジュール及び半導体モジュールの半導体レーザ素子の取り付け方法
JP2005235390A (ja) * 2005-04-22 2005-09-02 Hitachi Ltd 光ヘッド、及び、それを用いた光学的情報記録再生装置
JP2009122455A (ja) * 2007-11-15 2009-06-04 Funai Electric Co Ltd 画像表示装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146313A1 (ja) * 2012-03-26 2015-12-10 シチズンホールディングス株式会社 レーザ光源装置及びレーザ光源装置の製造方法
US9243761B2 (en) 2013-02-28 2016-01-26 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
US9644805B2 (en) 2013-02-28 2017-05-09 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
JP2015015433A (ja) * 2013-07-08 2015-01-22 住友電気工業株式会社 光アセンブリの製造方法
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JPWO2015145608A1 (ja) * 2014-03-26 2017-04-13 株式会社島津製作所 レーザ装置
WO2015145608A1 (ja) * 2014-03-26 2015-10-01 株式会社島津製作所 レーザ装置
JP2016004850A (ja) * 2014-06-16 2016-01-12 株式会社デンソー 車載用レーザ光源ユニット
JP2016046481A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2016058680A (ja) * 2014-09-12 2016-04-21 株式会社デンソー レーザユニット
JP2015029139A (ja) * 2014-10-08 2015-02-12 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2016138901A (ja) * 2015-01-26 2016-08-04 株式会社日立エルジーデータストレージ 光モジュール、及び走査型画像表示装置
WO2016121407A1 (ja) * 2015-01-26 2016-08-04 株式会社日立エルジーデータストレージ 光モジュール、及び走査型画像表示装置
CN107112718A (zh) * 2015-01-26 2017-08-29 日立乐金光科技株式会社 光模块及扫描型图像显示装置
US20180007325A1 (en) * 2015-01-26 2018-01-04 Hitachi-Lg Data Storage, Inc. Optical module and scan-type image projection display device
JP2019503079A (ja) * 2016-01-11 2019-01-31 フィスバ・アクチェンゲゼルシャフトFisba Ag 光モジュールの製造方法、光モジュール、および光モジュールの操作方法およびコンピュータ・プログラム・プロダクト
JP2017028331A (ja) * 2016-11-09 2017-02-02 住友電気工業株式会社 光アセンブリ
JP2019046830A (ja) * 2017-08-29 2019-03-22 住友電気工業株式会社 光モジュール

Also Published As

Publication number Publication date
JPWO2011048667A1 (ja) 2013-03-07
JP4611456B1 (ja) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4611456B1 (ja) レーザ光源ユニットの製造方法およびレーザ光源ユニット並びにそのレーザ光源ユニットを備えた画像表示装置
JP4769912B1 (ja) 光学素子、ヘッドアップディスプレイ及び光学素子の製造方法
JP5432368B2 (ja) 拡散補正機能付ビーム整列室
EP2696232B1 (en) Light deflector, light source device, image projecting device, and display device
US9042021B2 (en) Optical element, head-up display and light source unit
JP2015153889A (ja) レーザ合成光学装置
JP5095797B2 (ja) レーザ光源ユニットおよびそのレーザ光源ユニットを備えた画像表示装置
JP2014056812A (ja) 照明光形成装置、並びに、画像投射装置、照明装置及び表示装置
JP5803377B2 (ja) プロジェクター
JP4809507B1 (ja) レーザ光源ユニット及び画像表示装置
JP2009175426A (ja) プロジェクタおよびプロジェクタの光軸調整方法
US11275297B2 (en) Light source unit including a plurality of light sources which emit light in a same wavelength range and projector including the light source unit
JP2011170271A (ja) 光学装置、光学部品の位置調整固定方法、及びレーザプロジェクタ
JP2016164632A (ja) 光走査装置、光走査装置における基板の固定方法、画像表示装置、車両
WO2012053070A1 (ja) レーザ光源モジュール及びレーザ光源モジュールの製造方法
KR100867949B1 (ko) 광 모듈
US20230266648A1 (en) Projector
JP4679868B2 (ja) 投射装置
JP2019046882A (ja) 光源装置およびその製造方法
US11632526B2 (en) Light source apparatus including a microlens array, projector including a microlens array, microlens array, and light source control method for the light source apparatus including the microlens array
JP2012094891A (ja) レーザ光源モジュール及びレーザ光源モジュールの製造方法
JP2021144130A (ja) 光走査装置、ヘッドアップディスプレイ、及び移動体
JP4548268B2 (ja) プロジェクタ装置
JP2022045957A (ja) 保持部材、光源装置、投影装置及び光学部材の保持方法
JP2022045954A (ja) 固定部材、光源装置、投影装置及び光学部材の固定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010516717

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850565

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/07/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09850565

Country of ref document: EP

Kind code of ref document: A1