WO2011048652A1 - Magnetizing device and method for manufacturing permanent magnet motor - Google Patents

Magnetizing device and method for manufacturing permanent magnet motor Download PDF

Info

Publication number
WO2011048652A1
WO2011048652A1 PCT/JP2009/068003 JP2009068003W WO2011048652A1 WO 2011048652 A1 WO2011048652 A1 WO 2011048652A1 JP 2009068003 W JP2009068003 W JP 2009068003W WO 2011048652 A1 WO2011048652 A1 WO 2011048652A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetized
permanent magnet
magnetizing
permanent magnets
Prior art date
Application number
PCT/JP2009/068003
Other languages
French (fr)
Japanese (ja)
Inventor
孝教 小松
隆一 瀧口
諭 山代
康樹 木村
覚 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN200980161730.7A priority Critical patent/CN102576595B/en
Priority to PCT/JP2009/068003 priority patent/WO2011048652A1/en
Priority to JP2011537035A priority patent/JP5409800B2/en
Publication of WO2011048652A1 publication Critical patent/WO2011048652A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Definitions

  • the present invention relates to a magnetizing device and a method for manufacturing a permanent magnet type electric motor using the same.
  • Patent Document 1 As a conventional example using such a technique, for example, in Patent Document 1 below, by providing an output unit of a magnetized power supply corresponding to each divided magnetizing coil, and operating each output unit simultaneously, A multi-pole magnetizing method for large magnets that can secure the required output current without using a high-voltage, high-energy large-scale power supply and that can be magnetized by using a small, power-saving and inexpensive power supply. is suggesting.
  • JP-A-7-106129 (page 2, line 0007, FIG. 1)
  • Patent Document 1 requires a magnetized power source, there is a problem in that it is not possible to reduce power consumption even if power can be saved.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a permanent magnet type magnetized power source that can be magnetized without using a magnetized power source. To do.
  • the present invention includes at least a magnetic field generating space having a dimension capable of passing a magnetized piece, and a pair of permanent magnets provided in opposite positions of the magnetic field generating space and having the same magnetic field direction. And a magnetic circuit that forms a circulating magnetic field that penetrates the magnetic field generation space from the permanent magnet, enters the other permanent magnet, and finally returns to the one permanent magnet.
  • Embodiment 6 of this invention It is a figure for demonstrating the magnetizing apparatus by Embodiment 6 of this invention. It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 7 of this invention. It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 8 of this invention. It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 9 of this invention. It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 10 of this invention. It is a perspective view of an example of the permanent magnet type magnetizing apparatus used with the manufacturing method of the permanent magnet type electric motor by Embodiment 11 of this invention.
  • FIG. 11 It is a perspective view of another example of the permanent magnet type
  • FIG. 1 is a side view showing a configuration of a magnetizing apparatus according to Embodiment 1 of the present invention.
  • the magnetizing device includes a pair of magnetic field generating permanent magnets 1a and 1b, a pair of pole pieces (magnetic pole pieces) 2a and 2b, and a yoke (junction) 2 connecting the magnetic field generating permanent magnets 1a and 1b.
  • the magnetic circuit 4 configured generates a circulating magnetic field 4a. This magnetic field 4 a passes through the magnetic field generation space 3 formed in the magnetic circuit 4.
  • the pole pieces 2a and 2b and the yoke 2 are made of a high magnetic permeability soft magnetic material such as pure iron or low carbon steel.
  • a pair of magnetic field generating permanent magnets (hereinafter referred to as magnets) 1 a and 1 b having the same magnetic field direction are arranged opposite to each other on both sides of the magnetic field generating space 3.
  • the magnetic field generation space 3 has a dimension that allows the magnetized piece 5 to pass through.
  • the magnetized piece 5 is, for example, a neodymium magnet (neodymium magnet before magnetization).
  • the pole pieces 2a and 2b provided adjacent to the magnets 1a and 1b on the magnetic field generation space 3 side are surfaces which are in contact with the magnets 1a and 1b at one end and the magnetic field generation space 3 at the other end and perpendicular to the magnetic field direction.
  • the yoke 2 connects between the pole pieces 2a and 2b opposite to the pair of magnets 1a and 1b.
  • the magnetic flux density can be improved by converging the magnetic flux of the magnets 1a and 1b to the surfaces of the pole pieces 2a and 2b facing the magnetic field generation space 3, and 2T (Tesla) or more necessary for magnetization.
  • FIG. FIG. 2 is a perspective view showing a configuration of a magnetizing apparatus according to Embodiment 2 of the present invention.
  • the magnetic circuit 4 of the magnetizing apparatus is composed of a pair of magnetic field generating permanent magnets 1a and 1b and a plurality of intermediate permanent magnets (hereinafter referred to as intermediate magnets) 1c provided therebetween.
  • the magnets 1a and 1b and the plurality of intermediate magnets 1c are arranged in a Halbach shape in an annular shape (in this embodiment, an octagonal column having a space in the center).
  • An octagonal columnar magnetic field generation space 3 is formed at the center of the octagonal columnar magnetic circuit 4.
  • each one octagonal column is centered on an octagonal column axis (an axis passing through the center of each of the upper and lower surfaces of the octagon).
  • the triangular prism divided into eight equal parts has a shape of a quadrangular prism having a trapezoidal horizontal cross section in which a notch portion is formed so as to form an inner side surface parallel to the outer side surface at a portion on the center side of the octagonal column.
  • the configuration of the magnetic circuit 4 is such that four or more even-numbered magnets including a pair of magnets whose magnetic field directions are oriented in the magnetic field generating space 3 are annularly arranged in Halbach, and four or more even angles having a space in the center.
  • the polygonal column may be used.
  • the magnetic circuit 4 is a magnet only, and forms a magnetic field in a plane orthogonal to the axial direction of the octagonal prism.
  • the magnetized piece 5 can be magnetized by the magnetic field generated in the magnetic field generating space 3 by inserting the magnetized piece 5 in the magnetic field generating space 3 along the axial direction of the octagonal prism.
  • the magnetic circuit can be formed only with permanent magnets without using pole pieces. Even when the length of the magnetizing device in the axial direction, that is, the length in the insertion direction of the magnetized piece 5 in the magnetic field generating space 3 is shorter than the length in the longitudinal direction of the magnetized piece 5, the magnetized piece 5. Can be magnetized regardless of the length of the magnetized piece 5, since the entire magnetized piece 5 can be magnetized by penetrating the inside of the magnetic field generating space 3 along the axial direction of the magnetizing device.
  • FIG. 3 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 3 of the present invention.
  • the magnetized piece 5 is guided into the magnetic field generating space 3 or further magnetized in the magnetic field generating space 3.
  • a guide rail 6 is installed as a transport mechanism that passes in the axial direction of the apparatus.
  • the magnetized piece 5 can be inserted or penetrated into the magnetic field generating space 3 along the guide rail 6. Further, by fixing the guide rail 6 in the magnetic field generating space 3 with high precision (in this case, the guide rail 6 also has a function of a positioning mechanism), the magnetized piece 5 can be placed in a desired position (for example, a magnetic field). It can be accurately positioned so as to pass through the center of the generation space and the axial position of the polygonal column-shaped magnetizing device, thereby preventing poor magnetization.
  • a desired position for example, a magnetic field
  • FIG. 4 and 5 are perspective views showing the structure of a magnetizing apparatus according to Embodiment 4 of the present invention.
  • FIG. 4 shows a state before the magnetized piece 5 is inserted into the magnetizing device
  • FIG. 5 shows a state where the magnetized piece 5 is inserted into the magnetizing device.
  • the magnetized piece 5 is mounted on a tray 8 having a handle 8 a and inserted into the magnetic field generation space 3.
  • the tray 8 has a dimension capable of positioning the magnetized magnetic piece 5 at a desired position in the magnetic field generating space 3 when the magnetized piece 5 is mounted and inserted into the magnetic field generating space 3 (positioning mechanism).
  • the magnetized piece 5 can be passed through the magnetic field generating space 3 along the axial direction of the magnetizing device. As a result, the magnetized piece 5 can be magnetized manually and the magnetized piece 5 can be accurately positioned at a desired position in the magnetic field generating space 3, thereby preventing poor magnetization.
  • FIG. 6 is a perspective view showing the structure of a magnetizing apparatus according to Embodiment 5 of the present invention.
  • the magnetized piece 5 mounted on the tray 8 passes through the magnetic field generating space 3 along the axial direction of the magnetizing apparatus in the magnetizing apparatus of the second embodiment.
  • the belt conveyor 9 is installed and fixed.
  • the magnetized piece 5 can be magnetized automatically by using the tray 8 that can automatically magnetize the magnetized piece 5 and has the function of a positioning mechanism in the shape of the tray 8 of the fourth embodiment. 3 can be accurately positioned at a desired position in 3 so that a magnetization failure can be prevented.
  • Embodiment 6 7 and 8 are views for explaining a magnetizing apparatus according to Embodiment 6 of the present invention.
  • FIG. 7 is a perspective view of a magnetizing apparatus in the case of magnetizing a magnetized piece 5 having a cross-sectional shape of a D type (a saddle type, a semicylindrical type).
  • FIGS. 8A to 8C are diagrams in the case of magnetizing the magnetized magnetized piece 5 having a C-shaped (arch-shaped) cross section.
  • FIG. 8A is a perspective view
  • the direction of the magnetized piece 5 to be inserted into the magnetizing device is reversed for each polarity.
  • the inner side surface of the guide rail 6 is formed in accordance with the shape of both end surfaces of the magnetized magnetic piece 5 as shown in FIGS.
  • the magnetizing device does not require a power source, it is easy to prepare the magnetizing device for the N pole and the S pole separately. In that case, if one of the two magnetizing devices having the same configuration is turned upside down, both polarities can be handled.
  • FIG. 9 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 7 of the present invention.
  • pole pieces 2a and 2b are provided adjacent to the respective magnetic field generating spaces 3 of the magnets 1a and 1b in the magnetizing apparatus of the second embodiment. ing.
  • the pole pieces 2a and 2b are arranged to face each other with the magnetic field generation space 3 interposed therebetween.
  • the magnetizing device can be downsized. It can. Further, it is possible to use the guide rail 6, the tray 8, and the belt conveyor 9 according to the third to sixth embodiments.
  • FIG. 10 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 8 of the present invention.
  • the magnetizing apparatus of this embodiment in the magnetic circuit 4 of the magnetizing apparatus of the second embodiment, it is parallel to the magnetic flux direction of magnetization (the direction of the arrow indicating the magnetic field of the magnets 1a and 1b).
  • At least one of the intermediate magnets 1c is extracted to form the opening 10.
  • the opening 10 has such a size that the magnetized piece 5 can be inserted into the magnetic field generating space 3 from the opening 10 in a direction orthogonal to the axial direction of the magnetizing device in the horizontal plane.
  • the magnetization range can be adjusted at the insertion position of the magnetized piece 5 in the direction perpendicular to the axial direction into the magnetic field generating space 3.
  • the magnet assembly operation is facilitated.
  • FIG. FIG. 11 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 9 of the present invention.
  • the magnetizing apparatus of this embodiment shown in FIG. 11 has a length necessary for magnetizing the field side magnet of the permanent magnet type linear motor.
  • the permanent magnet rows 11 and 12 of Halbach arrangement arranged in two rows in a straight line are arranged facing each other across the magnetic field generation space 3.
  • the intermediate permanent magnets 11 a and 12 a having a magnetic field parallel to the arrangement direction of the permanent magnets in the permanent magnet rows 11 and 12 are permanent in which the magnetic flux direction of the intermediate permanent magnet 11 a in the permanent magnet row 11 is opposed across the magnetic field generation space 3.
  • the intermediate permanent magnets 12a of the magnet array 12 are arranged so as to be opposite to each other in the magnetic flux direction.
  • the magnetic field generating permanent magnets 11b and 12b having a magnetic field perpendicular to the direction in which the permanent magnets in the permanent magnet arrays 11 and 12 are aligned are such that the magnetic flux generating direction of the magnetic field generating permanent magnet 11b in the permanent magnet array 11 is the magnetic field generating space 3.
  • FIG. 12 is a perspective view showing the structure of a magnetizing apparatus according to Embodiment 10 of the present invention.
  • the magnetizing apparatus of this embodiment shown in FIG. 12 is adjacent to the surface of the magnetic field generating permanent magnets 11b, 12b on the magnetic field generating space 3 side of each magnetic field generating permanent magnet 11b, 12b of the magnetizing apparatus of the eighth embodiment.
  • pole pieces 2a and 2b are provided.
  • the pole pieces 2a and 2b are made to face each other with the magnetic field generation space 3 interposed therebetween.
  • the magnetic flux generated by the magnetic field generating permanent magnets 11b and 12b can be converged by the pole pieces 2a and 2b, and a stronger magnetic field can be generated in the magnetic field generating space 3 than the magnetizing device of the eighth embodiment.
  • the magnetizing device can be reduced in size.
  • FIG. FIGS. 13 to 15 are views for explaining a method of manufacturing the permanent magnet type motor according to the present invention.
  • This manufacturing method includes magnetization of a magnetized piece and attachment of the magnetized magnetized piece, that is, a permanent magnet to a field yoke.
  • 13 and 14 are perspective views of a permanent magnet type magnetizing apparatus used in this manufacturing method.
  • FIG. 15 is a diagram showing a magnetized magnetized piece (magnet) affixed to a field yoke 15 for a permanent magnet motor.
  • the magnet Since the magnet is attached to the field yoke 15 (rotor core) for the permanent magnet motor using an adhesive (not shown), it is necessary to pressurize the magnet until the adhesive is cured. Therefore, in the present invention, the magnet is partially magnetized before being attached to the field yoke. Alternatively, the entire magnet may be incompletely magnetized with a slightly weak magnetic field. The partial magnetization or the weak magnetization (pre-magnetization) before the sticking is performed using the permanent magnet type magnetizing apparatus shown in FIG. Positioning and passing the adherent magnetic piece 5 with respect to the magnetic field generation space 3 of the magnetizing device as in the above-described embodiment so that the magnetic field is applied to the desired position of the adherent magnetic piece 5 with the desired intensity. Thus, for example, only the vicinity of both end surfaces of the magnetized piece 5, which is a portion that hits between the poles when fixed to the field yoke, is magnetized.
  • the magnetizing device of FIG. 14 is a combination of two magnetizing devices of Embodiment 8 (see FIG. 10) having openings 10 in the opposite direction, shifted in the axial direction, for example.
  • an adhesive is applied to the affixed surface of the magnetized magnetized piece 5 or field yoke 15, and the magnetized piece 5 is affixed to the field yoke 15 as shown in FIG.
  • the magnetized piece 5 is partially magnetized or weakly magnetized, there is no work risk due to magnetic attraction when being attached, and the magnetized piece 5 caused by an impact is not affected. There is no damage.
  • the magnetized piece 5 is completely magnetized before being attached, the magnetized piece 5 is attracted to the field yoke 15 with a strong magnetic force. At this time, if it is affixed carelessly, the magnetized piece 5 may be broken by an impact that collides with the field yoke 15. Therefore, when sticking the fully magnetized magnetized piece 5, it is necessary to work while paying attention not to break the magnetized piece 5.
  • the magnetized magnetic piece 5 pressurizes the bonded portion by its magnetic attraction force without being peeled off by its own weight before the adhesive is cured, so there is no need to prepare any other pressurizing means. . Since the applied pressure is uniform for all the magnetized magnetic pieces 5, there is also an effect of making the adhesive thickness uniform. On the other hand, when the magnetization is performed after the magnetized pieces 5 are attached, all the magnetized pieces 5 must be continuously pressed until the adhesive is cured. The more a multipolar motor is used, the larger the pressurizing jig becomes.
  • the magnetized piece 5 is only partially magnetized or weakly magnetized, after the adhesive is cured, the remaining part is energized by a power source and magnetized. Ordinary magnetization is performed using a magnetizing device (not shown).
  • the rotor of the permanent magnet type motor manufactured in this way is as shown in FIG.
  • the magnetizing magnetic field is parallel to the magnetization direction of the magnetized piece at the pole interval 16, that is, at both ends of the magnetized piece. It is hard to magnetize because it does not become. Therefore, in general, the power source capacity is increased due to both ends of the magnetized piece.
  • both ends of the magnetizing magnetic field are magnetized in advance, the capacity of the magnetizing power source here can be suppressed.
  • the magnetizing apparatus of the present invention is not limited to magnetizing a permanent magnet of a permanent magnet type motor, and can be used for magnetizing work in many other fields.

Abstract

A permanent magnet type magnetizing power supply that enables magnetization without using a magnetizing power supply comprises: a magnetic field generation space (3) having a dimension that enables a magnetized piece (5) to pass through; and a magnetic circuit (4) that includes at least a pair of permanent magnets (1a, 1b) provided at positions facing each other with the magnetic field generation space in between and having mutually the same magnetic field direction and that forms a circulatory magnetic field (4a) passing through the magnetic field generation space from one of the permanent magnets, entering the other one of the permanent magnet, and finally returning to the one of the permanent magnets. The magnetic circuit (4) can further include, for example, pole pieces (2a, 2b) provided on the magnetic field generation space sides of the pair of permanent magnets (1a, 1b), having one end contacting the permanent magnet and the other end contacting the magnetic field generation space, and having such a shape that the cross-sectional area of a plane orthogonal to the magnetic field direction decreases from the one end toward the other end and a yoke (2) connecting between the opposite sides of the respective permanent magnets with respect to the pole pieces.

Description

着磁装置、永久磁石式電動機の製造方法Magnetizing apparatus and method for manufacturing permanent magnet motor
 この発明は、着磁装置およびこれを用いた永久磁石式電動機の製造方法に関するものである。 The present invention relates to a magnetizing device and a method for manufacturing a permanent magnet type electric motor using the same.
 従来、永久磁石式電動機の永久磁石を着磁するときは、パルス電源で通電して大きな磁界を発生する着磁ヨークを用いており、特に大型モータ用磁石の多極着磁では、着磁ヨーク、及び着磁電源ともに大型化してしまう問題があった。 Conventionally, when magnetizing a permanent magnet of a permanent magnet type electric motor, a magnetizing yoke that generates a large magnetic field when energized by a pulse power supply has been used. In addition, there is a problem that both the magnetized power source and the magnetized power source become large.
 これを解決するため、着磁電源に対し、一つのコイルと見なされる着磁コイルを、巻線抵抗が無視できる単位に分割して、着磁電源の容量と電源電圧を抑える方法がある。 In order to solve this problem, there is a method in which the magnetizing power source and the power source voltage are suppressed by dividing the magnetizing coil, which is regarded as one coil, into units in which the winding resistance can be ignored.
 このような技術を用いた従来例として、たとえば下記特許文献1では、分割された各々の着磁コイルに対応して、着磁電源の出力部を設け、各出力部を同時に動作させることにより、高電圧の高エネルギー大型電源を使用しないで容易に必要な出力電流を確保でき、かつ、小型、省電力で安価な電源を用いることによって着磁が可能な、大型マグネットの多極着磁方法を提案している。 As a conventional example using such a technique, for example, in Patent Document 1 below, by providing an output unit of a magnetized power supply corresponding to each divided magnetizing coil, and operating each output unit simultaneously, A multi-pole magnetizing method for large magnets that can secure the required output current without using a high-voltage, high-energy large-scale power supply and that can be magnetized by using a small, power-saving and inexpensive power supply. is suggesting.
特開平7-106129号公報(2頁0007行、図1)JP-A-7-106129 (page 2, line 0007, FIG. 1)
 しかしながら、上記特許文献1では着磁電源が必要なため、省電力化はできても、無電力化はできないという問題点があった。 However, since the above-mentioned Patent Document 1 requires a magnetized power source, there is a problem in that it is not possible to reduce power consumption even if power can be saved.
 この発明は、上記のような問題点を解決するためになされたものであり、着磁電源を使用せずに着磁を可能にした永久磁石式の着磁電源等を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a permanent magnet type magnetized power source that can be magnetized without using a magnetized power source. To do.
 この発明は、被着磁片を通すことが可能な寸法を有する磁界発生空間と、前記磁界発生空間の互いに対向する位置に設けられた磁界方向が互いに同じ一対の永久磁石を少なくとも含み、一方の永久磁石から磁界発生空間を貫通して他方の永久磁石に入り最終的に前記一方の永久磁石に戻る循環する磁界を形成する磁気回路と、を備えたことを特徴とする着磁装置にある。 The present invention includes at least a magnetic field generating space having a dimension capable of passing a magnetized piece, and a pair of permanent magnets provided in opposite positions of the magnetic field generating space and having the same magnetic field direction. And a magnetic circuit that forms a circulating magnetic field that penetrates the magnetic field generation space from the permanent magnet, enters the other permanent magnet, and finally returns to the one permanent magnet.
 この発明によれば、着磁電源用設備等が不要となり、電源設備及び工場電源エネルギーのコストを不要にできる。 According to the present invention, there is no need for a magnetized power supply facility and the like, and the cost of the power supply facility and factory power source energy can be eliminated.
この発明の実施の形態1による着磁装置の構成を示す側面図である。It is a side view which shows the structure of the magnetizing apparatus by Embodiment 1 of this invention. この発明の実施の形態2による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 2 of this invention. この発明の実施の形態3による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 3 of this invention. この発明の実施の形態4による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 4 of this invention. この発明の実施の形態4による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 4 of this invention. この発明の実施の形態5による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 5 of this invention. この発明の実施の形態6による着磁装置を説明するための図である。It is a figure for demonstrating the magnetizing apparatus by Embodiment 6 of this invention. この発明の実施の形態6による着磁装置を説明するための図である。It is a figure for demonstrating the magnetizing apparatus by Embodiment 6 of this invention. この発明の実施の形態7による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 7 of this invention. この発明の実施の形態8による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 8 of this invention. この発明の実施の形態9による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 9 of this invention. この発明の実施の形態10による着磁装置の構成を示す斜視図である。It is a perspective view which shows the structure of the magnetizing apparatus by Embodiment 10 of this invention. この発明の実施の形態11による永久磁石式電動機の製造方法で使用される永久磁石式の着磁装置の一例の斜視図である。It is a perspective view of an example of the permanent magnet type magnetizing apparatus used with the manufacturing method of the permanent magnet type electric motor by Embodiment 11 of this invention. この発明の実施の形態11による永久磁石式電動機の製造方法で使用される永久磁石式の着磁装置の別の例の斜視図である。It is a perspective view of another example of the permanent magnet type | mold magnetizing apparatus used with the manufacturing method of the permanent magnet type electric motor by Embodiment 11 of this invention. この発明の実施の形態11による永久磁石式電動機の製造方法において界磁ヨークに貼り付けられた着磁された被着磁片を示す図である。It is a figure which shows the magnetized to-be-magnetized piece stuck on the field yoke in the manufacturing method of the permanent magnet type electric motor by Embodiment 11 of this invention.
 以下、この発明を各実施の形態に従って説明する。なお、各実施の形態において同一もしくは相当部分は同一符号で示し、重複する説明は省略する。 Hereinafter, the present invention will be described according to each embodiment. In addition, in each embodiment, the same or equivalent part is shown with the same code | symbol, and the overlapping description is abbreviate | omitted.
 実施の形態1.
 図1はこの発明の実施の形態1による着磁装置の構成を示す側面図である。図1において、着磁装置は、一対の磁界発生永久磁石1a,1b、一対のポールピース(磁極片)2a,2b、および磁界発生永久磁石1a,1b間を接続するヨーク(継鉄)2で構成される磁気回路4で、循環する磁界4aを発生させる。この磁界4aは磁気回路4内に形成された磁界発生空間3を通る。ポールピース2a,2bおよびヨーク2は純鉄や低炭素鋼など、高透磁率の軟磁性体で構成される。
Embodiment 1 FIG.
1 is a side view showing a configuration of a magnetizing apparatus according to Embodiment 1 of the present invention. In FIG. 1, the magnetizing device includes a pair of magnetic field generating permanent magnets 1a and 1b, a pair of pole pieces (magnetic pole pieces) 2a and 2b, and a yoke (junction) 2 connecting the magnetic field generating permanent magnets 1a and 1b. The magnetic circuit 4 configured generates a circulating magnetic field 4a. This magnetic field 4 a passes through the magnetic field generation space 3 formed in the magnetic circuit 4. The pole pieces 2a and 2b and the yoke 2 are made of a high magnetic permeability soft magnetic material such as pure iron or low carbon steel.
 互いに同じ磁界方向を有する一対の磁界発生永久磁石(以下磁石とする)1a,1bは、磁界発生空間3の両側に互いに対向して配置されている。磁界発生空間3は、被着磁片5を通すことが可能な寸法を有している。被着磁片5は、例えばネオジウム磁石(着磁前のネオジウム磁石)である。磁石1a,1bの磁界発生空間3側に隣接して設けられたポールピース2a,2bは、それぞれ、一端が磁石1a,1bに接し他端は磁界発生空間3に接し、磁界方向と直交する面の断面積が一端から他端に向かって減少するテーパ形状を有する。ヨーク2は、一対の磁石1a,1bのそれぞれのポールピース2a,2bと反対側の間を接続する。 A pair of magnetic field generating permanent magnets (hereinafter referred to as magnets) 1 a and 1 b having the same magnetic field direction are arranged opposite to each other on both sides of the magnetic field generating space 3. The magnetic field generation space 3 has a dimension that allows the magnetized piece 5 to pass through. The magnetized piece 5 is, for example, a neodymium magnet (neodymium magnet before magnetization). The pole pieces 2a and 2b provided adjacent to the magnets 1a and 1b on the magnetic field generation space 3 side are surfaces which are in contact with the magnets 1a and 1b at one end and the magnetic field generation space 3 at the other end and perpendicular to the magnetic field direction. Has a tapered shape in which the cross-sectional area decreases from one end to the other end. The yoke 2 connects between the pole pieces 2a and 2b opposite to the pair of magnets 1a and 1b.
 これにより、磁石1a,1bの磁束を、磁界発生空間3に面したポールピース2a,2bの面に収束させることにより、磁束密度を向上することができ、着磁に必要な2T(テスラ)以上の磁束密度を磁界発生空間3に発生できる。このため、着磁電源用設備等が不要となり、それに伴い着磁電源等の冷却も不要となるため、着磁作業の待ち時間を短縮できる。 Thereby, the magnetic flux density can be improved by converging the magnetic flux of the magnets 1a and 1b to the surfaces of the pole pieces 2a and 2b facing the magnetic field generation space 3, and 2T (Tesla) or more necessary for magnetization. Can be generated in the magnetic field generating space 3. This eliminates the need for a magnetized power supply facility and the like, and accordingly eliminates the need for cooling the magnetized power source, thereby reducing the waiting time for the magnetizing operation.
 実施の形態2.
 図2はこの発明の実施の形態2による着磁装置の構成を示す斜視図である。図2において、着磁装置の磁気回路4は、一対の磁界発生永久磁石1a,1bと、これらの間に設けられた複数の中間永久磁石(以下中間磁石とする)1cから構成されている。磁石1a,1bおよび複数の中間磁石1cは、環状(この実施の形態では中心に空間を有する八角柱状)にハルバッハ配置されている。八角柱状の磁気回路4の中心部には、八角柱形状の磁界発生空間3が形成されている。
Embodiment 2. FIG.
FIG. 2 is a perspective view showing a configuration of a magnetizing apparatus according to Embodiment 2 of the present invention. In FIG. 2, the magnetic circuit 4 of the magnetizing apparatus is composed of a pair of magnetic field generating permanent magnets 1a and 1b and a plurality of intermediate permanent magnets (hereinafter referred to as intermediate magnets) 1c provided therebetween. The magnets 1a and 1b and the plurality of intermediate magnets 1c are arranged in a Halbach shape in an annular shape (in this embodiment, an octagonal column having a space in the center). An octagonal columnar magnetic field generation space 3 is formed at the center of the octagonal columnar magnetic circuit 4.
 すなわち、例えば、一対の磁石1a,1bおよび複数の中間磁石1cは同じ形状を有し、それぞれ1つの八角柱を八角柱の軸(八角形の上面と下面のそれぞれの中心を通る軸)を中心に8等分した三角柱の、八角柱の中心側になる部分に外側面と並行な内側面を形成するように切り欠き部を設けた、水平断面が台形の四角柱の形状を有する。なお、磁気回路4の構成は、磁界発生空間3に磁界の方向が向いた一対の磁石を含む4個以上の偶数個の磁石を環状にハルバッハ配置し、中心に空間を有する4以上の偶数角の多角柱であればよい。 That is, for example, the pair of magnets 1a, 1b and the plurality of intermediate magnets 1c have the same shape, and each one octagonal column is centered on an octagonal column axis (an axis passing through the center of each of the upper and lower surfaces of the octagon). The triangular prism divided into eight equal parts has a shape of a quadrangular prism having a trapezoidal horizontal cross section in which a notch portion is formed so as to form an inner side surface parallel to the outer side surface at a portion on the center side of the octagonal column. The configuration of the magnetic circuit 4 is such that four or more even-numbered magnets including a pair of magnets whose magnetic field directions are oriented in the magnetic field generating space 3 are annularly arranged in Halbach, and four or more even angles having a space in the center. The polygonal column may be used.
 磁気回路4は磁石のみで、八角柱の軸方向と直交する面内で磁界を形成している。そして被着磁片5を、磁界発生空間3に八角柱の軸方向に沿って挿入することにより、磁界発生空間3に発生する磁界により被着磁片5への着磁が可能となる。 The magnetic circuit 4 is a magnet only, and forms a magnetic field in a plane orthogonal to the axial direction of the octagonal prism. The magnetized piece 5 can be magnetized by the magnetic field generated in the magnetic field generating space 3 by inserting the magnetized piece 5 in the magnetic field generating space 3 along the axial direction of the octagonal prism.
 これにより、ポールピースを用いることなく、永久磁石のみで磁気回路を形成できるため、着磁装置の小型化ができる。また、着磁装置の軸方向の長さ、すなわち磁界発生空間3の被着磁片5の挿入方向の長さが被着磁片5の長手方向の長さより短い場合でも、被着磁片5を磁界発生空間3の内部を着磁装置の軸方向に沿って貫通させることで被着磁片5全体を着磁できるため、被着磁片5の長さに関係なく着磁できる。 This makes it possible to reduce the size of the magnetizing device because the magnetic circuit can be formed only with permanent magnets without using pole pieces. Even when the length of the magnetizing device in the axial direction, that is, the length in the insertion direction of the magnetized piece 5 in the magnetic field generating space 3 is shorter than the length in the longitudinal direction of the magnetized piece 5, the magnetized piece 5. Can be magnetized regardless of the length of the magnetized piece 5, since the entire magnetized piece 5 can be magnetized by penetrating the inside of the magnetic field generating space 3 along the axial direction of the magnetizing device.
 実施の形態3.
 図3はこの発明の実施の形態3による着磁装置の構成を示す斜視図である。この実施の形態の着磁装置では図3に示すように、実施の形態2の着磁装置において、被着磁片5を磁界発生空間3内に導く、またはさらに磁界発生空間3内を着磁装置の軸方向に通す搬送機構であるガイドレール6を設置している。
Embodiment 3 FIG.
3 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 3 of the present invention. In the magnetizing apparatus of this embodiment, as shown in FIG. 3, in the magnetizing apparatus of the second embodiment, the magnetized piece 5 is guided into the magnetic field generating space 3 or further magnetized in the magnetic field generating space 3. A guide rail 6 is installed as a transport mechanism that passes in the axial direction of the apparatus.
 これにより、ガイドレール6に沿って被着磁片5を磁界発生空間3内に挿入または貫通させることができる。またガイドレール6を磁界発生空間3内に精度よく固定することで(この場合ガイドレール6は位置決め機構の機能も有する)、被着磁片5を磁界発生空間3内の所望の位置(例えば磁界発生空間の中心や多角柱形状の着磁装置の軸位置)を通るように精度よく位置決めでき、着磁不良を防止できる。 Thereby, the magnetized piece 5 can be inserted or penetrated into the magnetic field generating space 3 along the guide rail 6. Further, by fixing the guide rail 6 in the magnetic field generating space 3 with high precision (in this case, the guide rail 6 also has a function of a positioning mechanism), the magnetized piece 5 can be placed in a desired position (for example, a magnetic field). It can be accurately positioned so as to pass through the center of the generation space and the axial position of the polygonal column-shaped magnetizing device, thereby preventing poor magnetization.
 実施の形態4.
 図4,5はこの発明の実施の形態4による着磁装置の構成を示す斜視図である。図4は被着磁片5を着磁装置に挿入する前の状態、図5は被着磁片5を着磁装置に挿入した状態を示す。図4および図5に示すように、被着磁片5は取っ手8aを有するトレー8上に搭載されて磁界発生空間3に挿入される。トレー8は、被着磁片5を搭載して磁界発生空間3内に挿入された時に、被着磁片5を磁界発生空間3内の所望の位置に位置決めできる寸法を有する(位置決め機構)。また、被着磁片5を磁界発生空間3内を着磁装置の軸方向に沿って貫通させることができる。これにより、被着磁片5を手作業で着磁でき、かつ被着磁片5を磁界発生空間3の所望位置に精度よく位置決めできるため、着磁不良を防止できる。
Embodiment 4 FIG.
4 and 5 are perspective views showing the structure of a magnetizing apparatus according to Embodiment 4 of the present invention. FIG. 4 shows a state before the magnetized piece 5 is inserted into the magnetizing device, and FIG. 5 shows a state where the magnetized piece 5 is inserted into the magnetizing device. As shown in FIGS. 4 and 5, the magnetized piece 5 is mounted on a tray 8 having a handle 8 a and inserted into the magnetic field generation space 3. The tray 8 has a dimension capable of positioning the magnetized magnetic piece 5 at a desired position in the magnetic field generating space 3 when the magnetized piece 5 is mounted and inserted into the magnetic field generating space 3 (positioning mechanism). Further, the magnetized piece 5 can be passed through the magnetic field generating space 3 along the axial direction of the magnetizing device. As a result, the magnetized piece 5 can be magnetized manually and the magnetized piece 5 can be accurately positioned at a desired position in the magnetic field generating space 3, thereby preventing poor magnetization.
 実施の形態5.
 図6はこの発明の実施の形態5による着磁装置の構成を示す斜視図である。この実施の形態では図6に示すように、実施の形態2の着磁装置において、磁界発生空間3内を着磁装置の軸方向に沿ってトレー8に搭載された被着磁片5が通るようにベルトコンベア9を設置固定している。これにより、自動で被着磁片5を着磁でき、かつ実施の形態4のトレー8のような形状により位置決め機構の機能を備えるトレー8を用いることにより、被着磁片5を磁界発生空間3内の所望位置に精度よく位置決めできるため、着磁不良を防止できる。
Embodiment 5 FIG.
6 is a perspective view showing the structure of a magnetizing apparatus according to Embodiment 5 of the present invention. In this embodiment, as shown in FIG. 6, the magnetized piece 5 mounted on the tray 8 passes through the magnetic field generating space 3 along the axial direction of the magnetizing apparatus in the magnetizing apparatus of the second embodiment. Thus, the belt conveyor 9 is installed and fixed. As a result, the magnetized piece 5 can be magnetized automatically by using the tray 8 that can automatically magnetize the magnetized piece 5 and has the function of a positioning mechanism in the shape of the tray 8 of the fourth embodiment. 3 can be accurately positioned at a desired position in 3 so that a magnetization failure can be prevented.
 実施の形態6
 図7,8はこの発明の実施の形態6による着磁装置を説明するための図である。図7はD型(蒲鉾型、反円筒(semicylindrical)型)の横断面形状の被着磁片5を着磁する場合の着磁装置の斜視図である。図8の(a)~(c)はC型(アーチ型)の横断面形状の被着磁片5を着磁する場合の図であり、(a)は斜視図、(b)は被着磁片5を内側曲面を下にしてガイドレール6に搭載した場合の(a)の矢印Aから見た矢視図、(c)は被着磁片5を外側曲面を下にしてガイドレール6に搭載した場合の(a)の矢印Aから見た矢視図である。
Embodiment 6
7 and 8 are views for explaining a magnetizing apparatus according to Embodiment 6 of the present invention. FIG. 7 is a perspective view of a magnetizing apparatus in the case of magnetizing a magnetized piece 5 having a cross-sectional shape of a D type (a saddle type, a semicylindrical type). FIGS. 8A to 8C are diagrams in the case of magnetizing the magnetized magnetized piece 5 having a C-shaped (arch-shaped) cross section. FIG. 8A is a perspective view, and FIG. (A) when viewed from the arrow A in the case where the magnetic piece 5 is mounted on the guide rail 6 with the inner curved surface down, (c) is the guide rail 6 with the magnetic piece 5 to be attached facing down on the outer curved surface. It is the arrow view seen from the arrow A of (a) at the time of carrying in.
 電動機ではN,S両方の極性の磁石が必要であるため、極性毎に着磁装置に挿入する被着磁片5の向きを反転させる。C型横断面形状の被着磁片5の場合、図8の(b)(c)に示すようにガイドレール6の内側側面を被着磁片5の両側端面の形状に合わせて形成することで、被着磁片5が内側曲面を下にして搭載されても、また外側曲面を下にして搭載されても安定して着磁装置に挿入することができる。またD型の被着磁片5においても、図8のガイドレールを用いて上下反転できるため、N極、S極の着磁を同様に行うことができる。 Since the motor requires both N and S polarity magnets, the direction of the magnetized piece 5 to be inserted into the magnetizing device is reversed for each polarity. In the case of the magnetized magnetic piece 5 having a C-shaped cross section, the inner side surface of the guide rail 6 is formed in accordance with the shape of both end surfaces of the magnetized magnetic piece 5 as shown in FIGS. Thus, even if the magnetized piece 5 is mounted with the inner curved surface down or mounted with the outer curved surface down, it can be stably inserted into the magnetizing device. Further, since the D-shaped magnetized piece 5 can be inverted up and down using the guide rail of FIG. 8, the N-pole and S-pole can be magnetized in the same manner.
 これにより、着磁装置は電源を必要としないため、着磁装置はN極用、S極用をそれぞれ別個に用意することが容易である。その場合、同じ構成を有する2つの着磁装置の内1つを天地反転すれば両極性に対応できる。 Thus, since the magnetizing device does not require a power source, it is easy to prepare the magnetizing device for the N pole and the S pole separately. In that case, if one of the two magnetizing devices having the same configuration is turned upside down, both polarities can be handled.
 実施の形態7.
 図9はこの発明の実施の形態7による着磁装置の構成を示す斜視図である。この実施の形態の着磁装置では図9に示すように、実施の形態2の着磁装置において、磁石1a,1bのそれぞれの磁界発生空間3の側に隣接してポールピース2a,2bを設けている。ポールピース2a,2bは磁界発生空間3を挟んで互いに向かい合うようにされている。
Embodiment 7 FIG.
FIG. 9 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 7 of the present invention. As shown in FIG. 9, in the magnetizing apparatus of this embodiment, pole pieces 2a and 2b are provided adjacent to the respective magnetic field generating spaces 3 of the magnets 1a and 1b in the magnetizing apparatus of the second embodiment. ing. The pole pieces 2a and 2b are arranged to face each other with the magnetic field generation space 3 interposed therebetween.
 これにより、磁石により発生する磁気回路4の磁束をポールピースで収束させることにより、磁界発生空間3に実施の形態2の着磁装置より強い磁界を発生させることができ、着磁装置を小型化できる。さらに、実施の形態3から6のガイドレール6、トレー8、ベルトコンベア9の使用も可能である。 Thereby, by converging the magnetic flux of the magnetic circuit 4 generated by the magnet with the pole piece, a stronger magnetic field can be generated in the magnetic field generating space 3 than the magnetizing device of the second embodiment, and the magnetizing device can be downsized. it can. Further, it is possible to use the guide rail 6, the tray 8, and the belt conveyor 9 according to the third to sixth embodiments.
 実施の形態8.
 図10はこの発明の実施の形態8による着磁装置の構成を示す斜視図である。この実施の形態の着磁装置では図10に示すように、実施の形態2の着磁装置の磁気回路4において、着磁の磁束方向(磁石1a,1bの磁界を示す矢印の方向)に平行な中間磁石1cの少なくとも1つを抜き取って開口部10を形成する。開口部10は、磁界発生空間3に、着磁装置の軸方向と水平面内で直交する方向に、開口部10から被着磁片5を挿入することができる寸法となっている。
Embodiment 8 FIG.
FIG. 10 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 8 of the present invention. In the magnetizing apparatus of this embodiment, as shown in FIG. 10, in the magnetic circuit 4 of the magnetizing apparatus of the second embodiment, it is parallel to the magnetic flux direction of magnetization (the direction of the arrow indicating the magnetic field of the magnets 1a and 1b). At least one of the intermediate magnets 1c is extracted to form the opening 10. The opening 10 has such a size that the magnetized piece 5 can be inserted into the magnetic field generating space 3 from the opening 10 in a direction orthogonal to the axial direction of the magnetizing device in the horizontal plane.
 これにより、磁界発生空間3に被着磁片5を挿入する際、磁界発生空間3への上記軸方向に垂直な方向での被着磁片5の挿入位置で着磁範囲を調整できるため、磁石組立時の磁石吸引力を抑えることにより、磁石組立作業が容易となる。さらに、実施の形態3から6のガイドレール6、トレー8、ベルトコンベア9の使用も可能である。 Thereby, when inserting the magnetized piece 5 into the magnetic field generating space 3, the magnetization range can be adjusted at the insertion position of the magnetized piece 5 in the direction perpendicular to the axial direction into the magnetic field generating space 3. By suppressing the magnet attractive force during magnet assembly, the magnet assembly operation is facilitated. Further, it is possible to use the guide rail 6, the tray 8, and the belt conveyor 9 according to the third to sixth embodiments.
 実施の形態9.
 図11はこの発明の実施の形態9による着磁装置の構成を示す斜視図である。図11に示すこの実施の形態の着磁装置は、永久磁石式リニアモータの界磁側磁石を着磁するのに必要な長さを有する。直線状に2列に並んだハルバッハ配置の永久磁石列11,12は磁界発生空間3を挟んで互いに向かい合って配置されている。
Embodiment 9 FIG.
FIG. 11 is a perspective view showing the configuration of a magnetizing apparatus according to Embodiment 9 of the present invention. The magnetizing apparatus of this embodiment shown in FIG. 11 has a length necessary for magnetizing the field side magnet of the permanent magnet type linear motor. The permanent magnet rows 11 and 12 of Halbach arrangement arranged in two rows in a straight line are arranged facing each other across the magnetic field generation space 3.
 永久磁石列11,12の永久磁石の並び方向と平行な磁界を有する中間永久磁石11a,12aは、永久磁石列11の中間永久磁石11aの磁束方向が、磁界発生空間3を挟んで対向する永久磁石列12の中間永久磁石12aの磁束方向と互いに反対向きになるように配置されている。また、永久磁石列11,12の永久磁石の並び方向と直交する方向の磁界を有する磁界発生永久磁石11b,12bは、永久磁石列11の磁界発生永久磁石11bの磁束方向が、磁界発生空間3を挟んで対向する永久磁石列12の磁界発生永久磁石12aの磁束方向と同じ向きになるように配置されている。 The intermediate permanent magnets 11 a and 12 a having a magnetic field parallel to the arrangement direction of the permanent magnets in the permanent magnet rows 11 and 12 are permanent in which the magnetic flux direction of the intermediate permanent magnet 11 a in the permanent magnet row 11 is opposed across the magnetic field generation space 3. The intermediate permanent magnets 12a of the magnet array 12 are arranged so as to be opposite to each other in the magnetic flux direction. The magnetic field generating permanent magnets 11b and 12b having a magnetic field perpendicular to the direction in which the permanent magnets in the permanent magnet arrays 11 and 12 are aligned are such that the magnetic flux generating direction of the magnetic field generating permanent magnet 11b in the permanent magnet array 11 is the magnetic field generating space 3. Are arranged in the same direction as the magnetic flux direction of the magnetic field generating permanent magnet 12a of the permanent magnet row 12 facing each other.
 これにより、多数の被着磁片5が配列された永久磁石式リニアモータ用の界磁側固定子13を電源なしで着磁できる。 Thereby, it is possible to magnetize the field side stator 13 for a permanent magnet type linear motor in which a large number of magnetized pieces 5 are arranged without a power source.
 実施の形態10.
 図12はこの発明の実施の形態10による着磁装置の構成を示す斜視図である。図12に示すこの実施の形態の着磁装置は、実施の形態8の着磁装置の各磁界発生永久磁石11b,12bの磁界発生空間3側に、磁界発生永久磁石11b,12bの面に隣接してポールピース2a,2bを設けている。ポールピース2a,2bはそれぞれ磁界発生空間3を挟んで互いに向かい合うようにされている。
Embodiment 10 FIG.
12 is a perspective view showing the structure of a magnetizing apparatus according to Embodiment 10 of the present invention. The magnetizing apparatus of this embodiment shown in FIG. 12 is adjacent to the surface of the magnetic field generating permanent magnets 11b, 12b on the magnetic field generating space 3 side of each magnetic field generating permanent magnet 11b, 12b of the magnetizing apparatus of the eighth embodiment. Thus, pole pieces 2a and 2b are provided. The pole pieces 2a and 2b are made to face each other with the magnetic field generation space 3 interposed therebetween.
 これにより、磁界発生永久磁石11b,12bにより発生する磁気回路の磁束をポールピース2a,2bにより収束させ、磁界発生空間3に実施の形態8の着磁装置より強い磁界を発生することができ、着磁装置を小型化できる。 Thereby, the magnetic flux generated by the magnetic field generating permanent magnets 11b and 12b can be converged by the pole pieces 2a and 2b, and a stronger magnetic field can be generated in the magnetic field generating space 3 than the magnetizing device of the eighth embodiment. The magnetizing device can be reduced in size.
 実施の形態11.
 図13から図15はこの発明の永久磁石式電動機の製造方法を説明するための図である。この製造方法は、被着磁片の着磁と、着磁された被着磁片すなわち永久磁石の界磁ヨークへの貼り付けを含む。図13,14はこの製造方法で使用される永久磁石式の着磁装置の斜視図である。図15は永久磁石式電動機のための界磁ヨーク15に貼り付けられた着磁された被着磁片(磁石)を示す図である。
Embodiment 11 FIG.
FIGS. 13 to 15 are views for explaining a method of manufacturing the permanent magnet type motor according to the present invention. This manufacturing method includes magnetization of a magnetized piece and attachment of the magnetized magnetized piece, that is, a permanent magnet to a field yoke. 13 and 14 are perspective views of a permanent magnet type magnetizing apparatus used in this manufacturing method. FIG. 15 is a diagram showing a magnetized magnetized piece (magnet) affixed to a field yoke 15 for a permanent magnet motor.
 磁石は接着剤(図示省略)を用いて永久磁石式電動機のための界磁ヨーク15(回転子鉄心)へ貼り付けるため、接着剤が硬化するまでの間、磁石を加圧する必要がある。そこでこの発明では、磁石を界磁ヨークに貼り付ける前に、部分的に着磁しておく。または磁石全体を若干弱い磁界で不完全に着磁させても良い。この貼り付け前の部分的着磁又は弱い着磁(事前着磁)は、図13の永久磁石式の着磁装置を用いて行う。被着磁片5の所望の位置に所望の強度で磁界が当たるように、上述の実施の形態のように被着磁片5を着磁装置の磁界発生空間3に対して位置決めして通すことで、例えば被着磁片5の、界磁ヨークに固定された時に極間に当たる部分である、両端面付近のみを着磁する。 Since the magnet is attached to the field yoke 15 (rotor core) for the permanent magnet motor using an adhesive (not shown), it is necessary to pressurize the magnet until the adhesive is cured. Therefore, in the present invention, the magnet is partially magnetized before being attached to the field yoke. Alternatively, the entire magnet may be incompletely magnetized with a slightly weak magnetic field. The partial magnetization or the weak magnetization (pre-magnetization) before the sticking is performed using the permanent magnet type magnetizing apparatus shown in FIG. Positioning and passing the adherent magnetic piece 5 with respect to the magnetic field generation space 3 of the magnetizing device as in the above-described embodiment so that the magnetic field is applied to the desired position of the adherent magnetic piece 5 with the desired intensity. Thus, for example, only the vicinity of both end surfaces of the magnetized piece 5, which is a portion that hits between the poles when fixed to the field yoke, is magnetized.
 図13の着磁装置は、例えば実施の形態7(図9参照)の着磁装置の界磁発生永久磁石1a,1bと界磁発生空間3の幅を拡げ、ポールピース2a,2bを界磁発生空間3の両側に沿って設けたものである。図13の着磁装置の代わりに図14の着磁装置を使用してもよい。図14の着磁装置は、例えば逆方向に開口部10を有する実施の形態8(図10参照)の着磁装置を2つ、軸方向にずらして組み合わせたものである。 13 expands the width of the field generating permanent magnets 1a, 1b and the field generating space 3 of the magnetizing apparatus of the seventh embodiment (see FIG. 9), for example, and makes the pole pieces 2a, 2b magnetic fields. It is provided along both sides of the generation space 3. Instead of the magnetizing device of FIG. 13, the magnetizing device of FIG. 14 may be used. The magnetizing device of FIG. 14 is a combination of two magnetizing devices of Embodiment 8 (see FIG. 10) having openings 10 in the opposite direction, shifted in the axial direction, for example.
 これらの着磁装置は電源を使用しないため、複数用意することでタクトタイムを短縮することが容易である。 Since these magnetizing devices do not use a power source, it is easy to shorten the tact time by preparing a plurality of them.
 次に、着磁された被着磁片5または界磁ヨーク15の貼り付け面に接着剤を塗布し、被着磁片5を図15に示すように界磁ヨーク15に貼り付ける。この際、被着磁片5は部分的に着磁されているまたは弱い着磁がされているので、貼り付けるときに磁気吸引力による作業上の危険は無く、衝撃による被着磁片5の損傷も無い。もし、貼り付け前に被着磁片5が完全に着磁されている場合、強力な磁力で被着磁片5は界磁ヨーク15に吸着される。このとき、不注意に貼り付けると、界磁ヨーク15に衝突する衝撃で、被着磁片5が割れる恐れがある。そのため、完全に着磁された被着磁片5を貼り付ける場合、被着磁片5が割れないように注意しながら作業をする必要がある。 Next, an adhesive is applied to the affixed surface of the magnetized magnetized piece 5 or field yoke 15, and the magnetized piece 5 is affixed to the field yoke 15 as shown in FIG. At this time, since the magnetized piece 5 is partially magnetized or weakly magnetized, there is no work risk due to magnetic attraction when being attached, and the magnetized piece 5 caused by an impact is not affected. There is no damage. If the magnetized piece 5 is completely magnetized before being attached, the magnetized piece 5 is attracted to the field yoke 15 with a strong magnetic force. At this time, if it is affixed carelessly, the magnetized piece 5 may be broken by an impact that collides with the field yoke 15. Therefore, when sticking the fully magnetized magnetized piece 5, it is necessary to work while paying attention not to break the magnetized piece 5.
 また、貼り付け後、被着磁片5はその磁気吸引力によって、接着剤が硬化する前に自重で剥がれ落ちることなく、接着部を加圧するため、他に加圧手段を用意する必要が無い。その加圧力は全ての被着磁片5で均一となるため、接着剤厚みを均一にする効果もある。逆に、被着磁片5を貼り付け後に着磁を行う場合、接着剤が硬化するまですべての被着磁片5を加圧し続けなければならない。多極の電動機になるほど加圧用の治具が大掛かりになってしまう。 In addition, after bonding, the magnetized magnetic piece 5 pressurizes the bonded portion by its magnetic attraction force without being peeled off by its own weight before the adhesive is cured, so there is no need to prepare any other pressurizing means. . Since the applied pressure is uniform for all the magnetized magnetic pieces 5, there is also an effect of making the adhesive thickness uniform. On the other hand, when the magnetization is performed after the magnetized pieces 5 are attached, all the magnetized pieces 5 must be continuously pressed until the adhesive is cured. The more a multipolar motor is used, the larger the pressurizing jig becomes.
 最後に、被着磁片5は部分的に着磁されているまたは弱い着磁がされているだけなので、接着剤が硬化後に、残りの部分は電源により通電して着磁を行う電気式の着磁装置(図示省略)を用いて通常の着磁を行う。 Finally, since the magnetized piece 5 is only partially magnetized or weakly magnetized, after the adhesive is cured, the remaining part is energized by a power source and magnetized. Ordinary magnetization is performed using a magnetizing device (not shown).
 このようにして製造された永久磁石式電動機の回転子は図15に示すようになる。広く知られているように、被着磁片を貼り付け後に着磁する場合は、極間16、すなわち被着磁片の両側端は、着磁磁界が被着磁片の磁化方向と平行にならないために着磁がし辛い。そのため、一般的に電源容量は被着磁片の両端のために大きくなる。しかし、この実施の形態では着磁磁界の両端を事前に着磁していたため、ここでの着磁電源の容量は抑えることができる。 The rotor of the permanent magnet type motor manufactured in this way is as shown in FIG. As is widely known, when the magnetized piece is magnetized after being attached, the magnetizing magnetic field is parallel to the magnetization direction of the magnetized piece at the pole interval 16, that is, at both ends of the magnetized piece. It is hard to magnetize because it does not become. Therefore, in general, the power source capacity is increased due to both ends of the magnetized piece. However, in this embodiment, since both ends of the magnetizing magnetic field are magnetized in advance, the capacity of the magnetizing power source here can be suppressed.
 なお、この発明は上記各実施の形態に限定されるものではなく、各実施の形態の可能な組み合わせを全て含むことは云うまでもない。 It should be noted that the present invention is not limited to the above-described embodiments, and it is needless to say that all possible combinations of the embodiments are included.
産業上の利用の可能性Industrial applicability
 この発明の着磁装置は、永久磁石式電動機の永久磁石の着磁に限定されることなく、その他の多くの分野における着磁作業に利用可能である。 The magnetizing apparatus of the present invention is not limited to magnetizing a permanent magnet of a permanent magnet type motor, and can be used for magnetizing work in many other fields.
 1a,1b 界磁発生永久磁石、1c 中間磁石、2 ヨーク、2a,2b ポールピース、3 界磁発生空間、4 磁気回路、4a 磁界、5 被着磁片、6 ガイドレール、8 トレー、8a 取っ手、9 ベルトコンベア、10 開口部、11,12 永久磁石列、11a,12a 中間永久磁石、11b,12b 磁界発生永久磁石、13 界磁側固定子、15 界磁ヨーク、極間16。 1a, 1b, field generating permanent magnet, 1c, intermediate magnet, 2, yoke, 2a, 2b pole piece, 3, field generating space, 4 magnetic circuit, 4a magnetic field, 5 magnetized piece, 6 guide rail, 8 tray, 8a handle , 9 belt conveyor, 10 opening, 11, 12 permanent magnet row, 11a, 12a intermediate permanent magnet, 11b, 12b magnetic field generating permanent magnet, 13 field side stator, 15 field yoke, pole 16.

Claims (9)

  1.  被着磁片を通すことが可能な寸法を有する磁界発生空間と、前記磁界発生空間の互いに対向する位置に設けられた磁界方向が互いに同じ一対の永久磁石を少なくとも含み、一方の永久磁石から磁界発生空間を貫通して他方の永久磁石に入り最終的に前記一方の永久磁石に戻る循環する磁界を形成する磁気回路と、を備えたことを特徴とする着磁装置。 A magnetic field generating space having a dimension capable of passing the magnetized magnetized piece, and at least a pair of permanent magnets having the same magnetic field direction provided at positions facing each other in the magnetic field generating space. And a magnetic circuit that forms a circulating magnetic field that passes through the generation space and enters the other permanent magnet and finally returns to the one permanent magnet.
  2.  前記磁気回路が、
     前記一対の永久磁石と、
     前記一対の永久磁石の前記磁界発生空間側に設けられ、一端が前記永久磁石に接し他端は前記磁界発生空間に接し、前記一端から他端に向かって磁界方向と直交する面の断面積が減少する形状のポールピースと、
     それぞれの前記永久磁石の前記ポールピースと反対側の間を接続するヨークと、
     を備えたことを特徴とする請求項1に記載の着磁装置。
    The magnetic circuit is
    The pair of permanent magnets;
    Provided on the magnetic field generation space side of the pair of permanent magnets, one end is in contact with the permanent magnet, the other end is in contact with the magnetic field generation space, and a cross-sectional area of a surface orthogonal to the magnetic field direction from the one end toward the other end A pole piece with a decreasing shape,
    A yoke connecting between the pole piece and the opposite side of each permanent magnet;
    The magnetizing apparatus according to claim 1, further comprising:
  3.  前記磁気回路が、
     前記一対の永久磁石と、中心に前記磁界発生空間を形成するように前記一対の永久磁石間に前記一対の永久磁石も含めて環状にハルバッハ配置され前記循環する磁界を形成する複数の中間永久磁石からなることを特徴とする請求項1に記載の着磁装置。
    The magnetic circuit is
    The pair of permanent magnets and a plurality of intermediate permanent magnets that form a circulating magnetic field by being arranged annularly in a Halbach state including the pair of permanent magnets so as to form the magnetic field generating space at the center. The magnetizing device according to claim 1, comprising:
  4.  前記一対の永久磁石の各永久磁石に、一端が前記永久磁石に接し他端は前記磁界発生空間に接し、前記一端から他端に向かって磁界方向と直交する面の断面積が減少する形状のポールピースを設けたことを特徴とする請求項3に記載の着磁装置。 Each permanent magnet of the pair of permanent magnets has a shape in which one end is in contact with the permanent magnet, the other end is in contact with the magnetic field generation space, and a cross-sectional area of a surface perpendicular to the magnetic field direction decreases from the one end toward the other end. 4. A magnetizing apparatus according to claim 3, wherein a pole piece is provided.
  5.  前記被着磁片を前記磁界発生空間内に導くまたは磁界発生空間内を通す搬送機構および前記被着磁片を前記磁界発生空間内で位置決めする位置決め機構の少なくとも一方を備えたことを特徴とする請求項3または4に記載の着磁装置。 At least one of a conveyance mechanism that guides the magnetized piece to the magnetic field generation space or passes the magnetized piece in the magnetic field generation space and a positioning mechanism that positions the magnetized piece in the magnetic field generation space are provided. The magnetizing apparatus according to claim 3 or 4.
  6.  前記一対の永久磁石と同じ磁界方向を有する前記複数の中間永久磁石のうちの少なくとも1つを設けずに、前記磁界発生空間への前記被着磁片の出し入れのためのスリット部としたことを特徴とする請求項3または4に記載の着磁装置。 Without providing at least one of the plurality of intermediate permanent magnets having the same magnetic field direction as the pair of permanent magnets, a slit portion for taking the magnetized piece into and out of the magnetic field generation space is provided. The magnetizing apparatus according to claim 3, wherein the magnetizing apparatus is characterized in that:
  7.  前記磁気回路が、
     それぞれ複数の永久磁石をハルバッハ配置により直線状に並べ前記磁界発生空間の互いに対向する位置に配置された第1および第2の永久磁石列からなり、
     前記第1および第2の永久磁石列が、前記磁界発生空間の互いに対向する位置に設けられ磁界方向が互いに同じ複数の前記対の永久磁石と、前記複数の対の永久磁石の間の前記磁界発生空間の互いに対向する位置に設けられ磁界方向が磁石配列方向に並行でかつ互いに反対の複数対の中間永久磁石と、
     を含むことを特徴とする請求項1に記載の着磁装置。
    The magnetic circuit is
    A plurality of permanent magnets are arranged in a straight line by Halbach arrangement, and are composed of first and second permanent magnet arrays arranged at positions facing each other in the magnetic field generation space,
    The first and second permanent magnet arrays are provided at positions facing each other in the magnetic field generation space, and the magnetic fields between the plurality of pairs of permanent magnets having the same magnetic field direction and the plurality of pairs of permanent magnets. A plurality of pairs of intermediate permanent magnets provided at opposite positions in the generation space and having magnetic field directions parallel to the magnet arrangement direction and opposite to each other;
    The magnetizing apparatus according to claim 1, comprising:
  8.  前記複数の対の永久磁石の各永久磁石が前記磁界発生空間側にポールピースを設けたことを特徴とする請求項7に記載の着磁装置。 The magnetizing apparatus according to claim 7, wherein each permanent magnet of the plurality of pairs of permanent magnets is provided with a pole piece on the magnetic field generation space side.
  9.  請求項2から6のいずれか1項に記載の永久磁石式の着磁装置により、界磁ヨークに固定する前の被着磁片の界磁ヨークに固定された時に極間に当たる部分を着磁するかまたは弱い磁界で被着磁片全体を着磁する第1の着磁工程と、
     前記第1の着磁工程で着磁された被着磁片を前記界磁ヨークに接着剤で接着する接着工程と、
     前記接着剤が硬化した後に、電源により通電して着磁を行う電気式の着磁装置により、界磁ヨークに固定された被着磁片全体の着磁を行う第2の着磁工程と、
     を備えたことを特徴とする永久磁石式電動機の製造方法。
    The permanent magnet type magnetizing device according to any one of claims 2 to 6, wherein a portion of the magnetized piece before being fixed to the field yoke is magnetized between the poles when fixed to the field yoke. Or a first magnetization step of magnetizing the entire magnetized piece with a weak magnetic field,
    A bonding step of bonding the magnetized piece magnetized in the first magnetizing step to the field yoke with an adhesive;
    A second magnetizing step of magnetizing the entire magnetized piece fixed to the field yoke by an electric magnetizing device that conducts and magnetizes with a power source after the adhesive is cured;
    A method for manufacturing a permanent magnet electric motor.
PCT/JP2009/068003 2009-10-19 2009-10-19 Magnetizing device and method for manufacturing permanent magnet motor WO2011048652A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980161730.7A CN102576595B (en) 2009-10-19 2009-10-19 Magnetizing device and method for manufacturing permanent magnet motor
PCT/JP2009/068003 WO2011048652A1 (en) 2009-10-19 2009-10-19 Magnetizing device and method for manufacturing permanent magnet motor
JP2011537035A JP5409800B2 (en) 2009-10-19 2009-10-19 Method for manufacturing permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068003 WO2011048652A1 (en) 2009-10-19 2009-10-19 Magnetizing device and method for manufacturing permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2011048652A1 true WO2011048652A1 (en) 2011-04-28

Family

ID=43899905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068003 WO2011048652A1 (en) 2009-10-19 2009-10-19 Magnetizing device and method for manufacturing permanent magnet motor

Country Status (3)

Country Link
JP (1) JP5409800B2 (en)
CN (1) CN102576595B (en)
WO (1) WO2011048652A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161251A (en) * 2015-10-23 2015-12-16 天津博雅全鑫磁电科技有限公司 Magnetostatic field magnetizing device and method at normal temperature
JP2018049903A (en) * 2016-09-21 2018-03-29 株式会社村田製作所 Magnetization method of ferrite core and magnetization device
JPWO2020138094A1 (en) * 2018-12-25 2021-11-18 ダイセルミライズ株式会社 Rare earth magnet precursors or rare earth magnet molded bodies having a roughened structure on the surface and their manufacturing methods

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879754B (en) * 2012-09-19 2015-07-22 中国科学院电工研究所 Magnetic field circulating device for proton/electron double resonance imaging
CN203423549U (en) * 2013-08-30 2014-02-05 中山大洋电机制造有限公司 Permanent magnetic rotor structure
CN105979463B (en) * 2016-04-30 2023-11-17 苏州亿欧得电子有限公司 Automatic magnetization testing equipment for program-controlled telephone receiver
TWI767971B (en) * 2017-01-03 2022-06-21 日商東京威力科創股份有限公司 Workpiece magnetizing system and method of operating
CN107578882A (en) * 2017-09-29 2018-01-12 杭州史宾纳科技有限公司 A kind of continuous magnetization method of magneto and device
WO2020195005A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Rotor manufacturing method and motor manufacturing method
CN110010325B (en) * 2019-04-12 2021-12-21 上海浩灵磁电器件有限公司 Permanent magnet type multi-pole magnet magnetizer
CN113903542B (en) * 2021-09-02 2022-05-20 华中科技大学 Magnetizing method and device for linear Halbach array

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155450A (en) * 1988-12-05 1990-06-14 Tdk Corp Magnetizing device for assembling small-sized motor
JPH0897035A (en) * 1994-09-27 1996-04-12 Seiko Epson Corp Demagnetizing method and device
JPH0992498A (en) * 1995-09-26 1997-04-04 Shin Etsu Chem Co Ltd Magnetic circuit for inserted light source device
JP2005287271A (en) * 2004-03-31 2005-10-13 Honda Motor Co Ltd Method for manufacturing rotor
JP2007522657A (en) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ Permanent magnet assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156107A (en) * 1978-05-30 1979-12-08 Nippon Denso Co Ltd Method of assembling stators of permanent magnet motors
CN2155613Y (en) * 1993-01-06 1994-02-09 冶金工业部钢铁研究总院 Permanent-magnet device
JP2007267575A (en) * 2006-03-30 2007-10-11 Jtekt Corp Process for manufacturing rotor and motor for electric power steering
CN100494820C (en) * 2006-12-21 2009-06-03 中国科学院电工研究所 Permanent magnet system for rotary magnetic refrigeration apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155450A (en) * 1988-12-05 1990-06-14 Tdk Corp Magnetizing device for assembling small-sized motor
JPH0897035A (en) * 1994-09-27 1996-04-12 Seiko Epson Corp Demagnetizing method and device
JPH0992498A (en) * 1995-09-26 1997-04-04 Shin Etsu Chem Co Ltd Magnetic circuit for inserted light source device
JP2007522657A (en) * 2004-02-03 2007-08-09 アストロノーティックス コーポレイション オブ アメリカ Permanent magnet assembly
JP2005287271A (en) * 2004-03-31 2005-10-13 Honda Motor Co Ltd Method for manufacturing rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161251A (en) * 2015-10-23 2015-12-16 天津博雅全鑫磁电科技有限公司 Magnetostatic field magnetizing device and method at normal temperature
JP2018049903A (en) * 2016-09-21 2018-03-29 株式会社村田製作所 Magnetization method of ferrite core and magnetization device
JPWO2020138094A1 (en) * 2018-12-25 2021-11-18 ダイセルミライズ株式会社 Rare earth magnet precursors or rare earth magnet molded bodies having a roughened structure on the surface and their manufacturing methods
JP2022000907A (en) * 2018-12-25 2022-01-04 ダイセルミライズ株式会社 Manufacturing method of rare earth magnet precursor or rare earth magnet molded body having roughened structure on surface
JP2022002318A (en) * 2018-12-25 2022-01-06 ダイセルミライズ株式会社 Rare earth magnet precursor or rare earth magnet molding, and composite molding employing the same
JP7100185B2 (en) 2018-12-25 2022-07-12 ダイセルミライズ株式会社 Rare earth magnet precursor or rare earth magnet molded body and composite molded body using it
US11810713B2 (en) 2018-12-25 2023-11-07 Daicel Miraizu Ltd. Rare earth magnet precursor or rare earth magnet molded body having roughened structure on surface and method for manufacturing same

Also Published As

Publication number Publication date
CN102576595A (en) 2012-07-11
JPWO2011048652A1 (en) 2013-03-07
JP5409800B2 (en) 2014-02-05
CN102576595B (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5409800B2 (en) Method for manufacturing permanent magnet motor
EP2566021A3 (en) Electric machine with linear mover
US8179001B2 (en) Linear motor armature and linear motor
CN109195079B (en) Magnetic circuit system assembling method and magnetizing system
DE50014586D1 (en) Electrodynamic linear direct drive
US8766753B2 (en) In-situ magnetizer
JP2014121116A (en) Magnetization device and magnetization method
JP2010193587A (en) Magnet magnetization device for rotors, and motor
JP2008228460A (en) Rotating machine and its manufacturing method
US20160365763A1 (en) Rotor, motor, and method of manufacturing rotor
US10020714B2 (en) Method of manufacturing rotor
JPH08339916A (en) Permanent-magnet magnetic circuit
WO2015072328A1 (en) Magnetic-field generation device and linear motor
CN110829758A (en) Magnet structure, method for manufacturing magnet structure, and method for manufacturing rotating electric machine
JP2005094970A (en) Method for magnetizing/inserting rotor of permanent magnet motor and device therefor
JP5553247B2 (en) Linear slider
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
CN114829921A (en) Magnetic flux leakage inspection device and defect inspection method
JP2010004604A (en) Cylindrical mm type linear motor and manufacturing method for needle tereof
JP2005204449A (en) Linear motor with core
JPH1052007A (en) Magnetized yoke
JP2006121814A (en) Linear motor
JP2018042445A (en) Motor and motor control circuit
JP6021829B2 (en) Demagnetizer for permanent magnet
JP2007209175A (en) Three-phase linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161730.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011537035

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09850550

Country of ref document: EP

Kind code of ref document: A1