WO2011047605A1 - 供电装置 - Google Patents

供电装置 Download PDF

Info

Publication number
WO2011047605A1
WO2011047605A1 PCT/CN2010/077733 CN2010077733W WO2011047605A1 WO 2011047605 A1 WO2011047605 A1 WO 2011047605A1 CN 2010077733 W CN2010077733 W CN 2010077733W WO 2011047605 A1 WO2011047605 A1 WO 2011047605A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
voltage
component
feedback
power supply
Prior art date
Application number
PCT/CN2010/077733
Other languages
English (en)
French (fr)
Inventor
章琳
程宇航
许靖
谢正生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2011047605A1 publication Critical patent/WO2011047605A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc

Definitions

  • the invention belongs to the field of electronic technology, and in particular relates to a power supply device.
  • the detachable connection structure of components and components is a relatively common structure in existing electronic devices.
  • a first component 1 can match a plurality of second components 2 having a relatively small volume and a relatively small surface area.
  • the two components 2 are detachably connected to the first component 1, so that different functions can be realized on the first component 1 by replacing the second component 2 provided with different electrical devices (for example, chips).
  • the first component 1 is provided with a plurality of different voltage conversion circuits 11, and different voltage conversion circuits 11 can supply a plurality of different voltages of electrical energy to the electrical device 4 by converting the initial voltage of the power supply 60.
  • the first component 1 can provide a total of four voltages of 3. 3V, 1. 0V, 1. 2V, and 1. 8V, for example, the first component 1 can provide three voltages of 3. 3V, 1. 0V, 1. 2V, and 1.8V.
  • the power supply is selected for the second component 2;
  • the first component 1 only provides a voltage source 60, and different voltage conversion circuits 11 are respectively disposed on different second components 2, through a plurality of different voltage conversion circuits.
  • 1 1 to convert different voltages to meet the power supply requirements of the different components 2 on the second component 2, for example: the first component 1 only provides 4. 0V voltage, and the second component 2 respectively sets multiple voltage conversions
  • the circuit 1 1 converts the power supplies of the three voltages of 3. 3V, 1. 0V, 1. 2V, and 1.8V for use by the powered device 4 on the second component 2.
  • the first power supply method in the prior art makes the circuit on the first component 1 as shown in FIG. 2 extremely complicated and costly;
  • the embodiment of the invention provides a power supply device, which solves the technical problem that the existing power supply method has a complicated circuit.
  • the power supply device includes a first component, a second component, a feedback resistor, and a voltage conversion module, wherein:
  • the voltage conversion module is provided with a voltage input end and a voltage output end, the voltage input end is connected to the power output end of the power supply device, and the voltage output end is connected to the power device; the second component and the device The first component is detachably connected, and when the second component is mounted on the first component, the feedback resistor is respectively connected to the voltage conversion module and the voltage output end;
  • the voltage conversion module is configured to receive a feedback voltage of the feedback resistor and control a magnitude of a voltage output by the voltage output terminal according to the feedback voltage.
  • the foregoing technical solution provided by the present invention has the following advantages: Since the second component provided by the embodiment of the present invention is detachably connected to the first component, the second group When the device is mounted on the first component, the feedback resistor is respectively connected to the voltage conversion module and the voltage output terminal. At this time, the voltage conversion module can receive the feedback voltage on the feedback resistor and control the voltage output from the voltage output terminal according to the feedback voltage, because The feedback voltage is proportional to the resistance value of the feedback resistor, so it can be controlled not only by adjusting whether the second component is mounted on the first component, but also by controlling whether the feedback resistor is connected to the circuit or by changing the resistance value of the feedback resistor.
  • the feedback resistor corresponding to the power device may be selected according to the need, and then the first The second component is mounted on the first component, so that a suitable resistance feedback resistor is connected to the circuit to reach the voltage outputted by the control voltage output terminal, so that the voltage outputted by the voltage output terminal meets the rated voltage required by the power device. the goal of;
  • a voltage power supply and a voltage conversion module are required to be applicable to a plurality of power devices, without the need for the prior art.
  • a plurality of voltage conversion circuits 1 are provided on the first component 1, so that the circuit is simpler and lower in cost, thereby solving the technical problem that the existing power supply method has complicated circuits;
  • the voltage conversion module provided by the embodiment of the present invention is disposed on the first component, and only one voltage conversion module is provided, without the need of the prior art.
  • a plurality of voltage conversion circuits 11 are respectively disposed on the second component 2, so that the first component is less prone to electromagnetic interference and circuit redundancy, and the second component is not provided with a voltage conversion module or a voltage conversion circuit, not only The circuit is simpler and less susceptible to electromagnetic interference and circuit redundancy.
  • FIG. 1 is a schematic diagram of a combination relationship between a first component and a plurality of second components in the prior art
  • 2 is a schematic diagram of a combination of a first component and a plurality of second components in the prior art
  • FIG. 3 is a schematic diagram of another combination of a first component and a plurality of second components in the prior art
  • FIG. 1 is a schematic block diagram of a circuit principle of a power supply device provided in Example 1
  • FIG. 5 is a circuit diagram of a power supply device according to Embodiment 1 of the present invention
  • Fig. 6 is another circuit diagram of the power supply device according to Embodiment 2 of the present invention.
  • the embodiment of the invention provides a power supply device with simple structure, low cost and less problem of electromagnetic interference and circuit redundancy.
  • the power supply device provided by the embodiment of the present invention includes a first component 1, a second component 2, a feedback resistor R, and a voltage conversion module 3, wherein:
  • the voltage input terminal V_IN and the voltage output terminal V_0UT are provided on the voltage conversion module 3, the voltage input terminal V_IN is connected to the power output terminal 6 of the power supply device, and the voltage output terminal V_0UT is connected to the power device 4;
  • the second component 2 is detachably connected to the first component 1, and when the second component 2 is mounted on the first component 1, the feedback resistor R is respectively connected to the voltage conversion module 3 and the voltage output terminal V_0UT;
  • the voltage conversion module 3 is configured to receive the feedback voltage on the feedback resistor R, and control the voltage outputted by the voltage output terminal V_0UT according to the feedback voltage.
  • the second component 2 provided by the embodiment of the present invention is detachably connected to the first component 1, and the second component 2 can be adjusted to be mounted on the first component 1 to control whether the feedback resistor R is inserted into the circuit.
  • the feedback resistor R is respectively connected to the voltage conversion module 3 and the voltage output terminal V_0UT.
  • the voltage conversion module 3 can receive the feedback voltage on the feedback resistor R and according to the feedback voltage.
  • the magnitude of the voltage outputted by the voltage output terminal V_0UT is proportional to the magnitude of the resistance value of the feedback resistor R. Therefore, it is possible to control whether or not the feedback resistor R is connected by adjusting whether the second component 2 is mounted on the first component 1.
  • the voltage output from the voltage output terminal V_0UT can be controlled by changing the resistance value of the feedback resistor R.
  • the initial voltage outputted by the power supply or voltage output terminal ⁇ _ ⁇ of the power supply device does not meet the voltage required by the power device 4, or when the power supply device is powered by the power device 4 having a different rated voltage, it may be selected and used according to requirements.
  • the electric device 4 corresponds to the feedback resistor R, and then the second component 2 is mounted on the first component 1, so that a suitable resistance feedback resistor R is connected to the circuit to reach the voltage output by the control voltage output terminal V_0UT.
  • the voltage outputted by the voltage output terminal V_0UT is made to meet the required voltage rating of the consumer device 4.
  • a voltage power supply and a voltage conversion module 3 are required to be applicable to a plurality of power devices 4 without the prior art.
  • a plurality of voltage conversion circuits 1 are provided on the first component 1, the circuit is simpler and the cost is lower, and the existing power supply method has a complicated circuit and a high cost.
  • the voltage conversion module 3 provided by the embodiment of the present invention is disposed on the first component 1, and only one voltage conversion module 3 is provided, without the prior art
  • a plurality of voltage conversion circuits 1 1 are respectively disposed on the second component 2 as in the second power supply method shown in FIG. 3, so that the first component 1 is less prone to electromagnetic interference and circuit redundancy, and the second component 2
  • the voltage conversion module 3 or the voltage conversion circuit is not provided, and the circuit is simpler, and electromagnetic interference and circuit redundancy are less likely to occur.
  • the power output terminal 6 shown in FIG. 4 may be a power output end of the power supply device, for example, a household power output terminal, or a power output terminal of the power supply device, for example, a battery output terminal. Therefore, the actual power supply can be flexibly selected according to needs.
  • the feedback resistor R can also be provided on the second component 2.
  • the feedback resistor R is disposed on the second component 2, when the second component 2 is mounted on the first component 1, the feedback resistor R is respectively connected to the voltage conversion module 3 and the voltage output terminal V_0UT, so that the second component 2 can be different.
  • the feedback resistor R with different resistance values is set. By replacing the second component 2, the feedback resistor R can be replaced at the same time. The magnitude of the feed resistor R is further obtained to meet the power requirements of different consumers.
  • the electrical device 4 in this embodiment can also be fixed to the second component 2.
  • the first component 1 need not be changed, and only the second component 2 detachably connected to the first component 1 is replaced, so that the electric device for replacing different power requirements can be replaced. 4, and thus achieve the purpose of a variety of different functions.
  • the feedback resistor R and the power device 4 are connected to the voltage conversion module 3, and the voltage conversion module 3 can be obtained according to the feedback resistor R from different resistance values. Different feedback voltages control the voltage outputted by the voltage output terminal V_OUT, thereby outputting the required voltage of the power device 4, and if the power device 4 is not used, the second component 1 can be unplugged. Component 2, at this time, the power device 4 and the feedback resistor R are simultaneously disconnected, and the operation is convenient.
  • the voltage conversion module 3 is further provided with a voltage feedback pin FB/NC, and the feedback resistor R includes a first resistor R1 and a second resistor R2, and the first resistor R1 and/or the second resistor R2 can be fixed on the second component 2, among them:
  • Voltage feedback pin FB/NC is used to receive the feedback voltage on the feedback resistor R, and input the feedback voltage into the voltage conversion module;
  • One end of the first resistor R1 is connected to the voltage output terminal V_0UT, and the other end is connected to the voltage feedback pin FB/NC and the second resistor R2;
  • One end of the second resistor R2 is connected to the voltage feedback pin FB/NC and the first resistor R1, and the other end is grounded.
  • the resistance value of the first resistor R1 or the second resistor R2 in the feedback resistor R is different, and the feedback voltage of the feedback resistor R from the voltage feedback pin FB/NC input voltage conversion module 3 is different, and the voltage output terminal V_0UT is input to the power device.
  • the magnitude of the voltage value of 4 is also different. Therefore, by changing the resistance value of the first resistor R1 or the second resistor R2, the voltage value of the power input to the power device 4 at the voltage output terminal V_0UT can be controlled.
  • the feedback resistor R can be a variable resistor, when the voltage output terminal V_OUT When the power device 4 with different rated voltages is connected, the variable resistor can be adjusted as needed, so that the voltage output terminal V_0UT outputs a voltage that satisfies the rated voltage requirement of the power device 4 by changing the resistance of the feedback resistor R.
  • the second resistor R2 can be fixed on the second component 2, and the voltage output from the voltage output terminal V_0UT to the power device 4 satisfies the following formula:
  • V oa; (Rl+R2) /R2 Vref , where:
  • V ⁇ i is the voltage value that the voltage output terminal OUT outputs to the power device 4,
  • R1 is the resistance value of the first resistor R1
  • R2 is the resistance value of the second resistor R2
  • Vref is the internal reference voltage of the voltage conversion module 3.
  • the internal reference voltage indicates: The initial output voltage when the voltage conversion module 3 is not connected to the feedback resistor R.
  • the second resistor R2 When the second component 2 with the second resistor R2 is mounted on the first component 1, the second resistor R2 is connected to the voltage conversion module 3. At this time, the voltage value outputted by the voltage output terminal V_0UT can be calculated according to the above formula. .
  • the first resistor R1 may be connected to the voltage conversion module 3 in advance, or may be fixed to the second component 2 at the same time as the second resistor R2.
  • the two resistors R2 are connected to the voltage conversion module 3.
  • the first resistor R1 and the second resistor R2 can be replaced with each other.
  • the voltage conversion module 3 is a power chip or an output adjustable power module. Power Chip or Output
  • the adjustable power module is a voltage conversion device with stable performance and adjustable output voltage through feedback voltage.
  • the voltage conversion module 3 in this embodiment may also be a power conversion chip or a voltage conversion device other than the adjustable power supply module that can adjust the output voltage through the feedback voltage.
  • the first component 1 can be a bottom plate
  • the second component 2 can be a gusset plate.
  • the bottom plate and the gusset plate are relatively detachable connecting devices, and the gusset plate can be mounted on the bottom plate by means of plugging.
  • the technical solution provided by the embodiment of the present invention is suitable.
  • the first component 1 provided in this embodiment may also be an electronic device
  • the second component 2 may also be an accessory of the electronic device.
  • the accessories of the electronic device especially the accessories of the portable electronic device such as a notebook, a mobile phone, a palmtop computer, etc., are relatively small in size and the power consumption of the electrical device 4 on the portable electronic device is not large, so it is also suitable to adopt the embodiment of the present invention.
  • the embodiment is basically the same as the first embodiment, and the difference is that the power supply device provided in this embodiment further includes an analog switch 5 and an upper switch connected to the analog switch 5 and disposed on the second component 2.
  • the fifth resistor R5 is grounded, and the voltage conversion module 3 is provided with a voltage feedback pin FB/NC, where:
  • Voltage feedback pin FB/NC is used to receive the feedback voltage on the feedback resistor R, and input the feedback voltage into the voltage conversion module;
  • One end of the third resistor R3 is connected to the voltage output terminal V_0UT and the analog switch 5, and the other end is connected to the voltage feedback pin FB/NC, the fourth resistor R4 and the fifth resistor R5, respectively;
  • the voltage feedback pin FB/NC is respectively connected to the third resistor R3, the fourth resistor R4 and the fifth resistor R5;
  • the fourth resistor R4 is connected in series with the analog switch 5 and in parallel with the third resistor R3;
  • the analog switch 5 is controlled to be closed by changing the state of the pull-up resistor R6.
  • the analog switch 5 when the pull-up resistor R6 is grounded, the analog switch 5 is closed or opened, and when the pull-up resistor R is pulled up to the high level, the analog switch 5 is opened or closed.
  • the pull-up resistor R6 is grounded, the analog switch 5 is closed, then the third resistor R3 is connected in parallel with the fourth resistor R4; when the pull-up resistor R6 is turned off, the analog switch 5 is turned off, then the fourth resistor R4 is not connected. Into the circuit, but the third resistor R3 is connected to the circuit. It can be seen that, in this embodiment, the upper and lower pull-down of the pull-up resistor R6 can be controlled to reach the control feedback resistor R resistance value, thereby achieving the purpose of controlling the voltage output terminal V_0UT input voltage conversion module 3 voltage magnitude.
  • the feedback resistor R and the analog switch 5 are both fixed on the first component 1. If the pull-up resistor R6 is disposed on the second component 2, the second component 2 can also be changed in the first component
  • the position on 1 switches the upper and lower pull-down resistors.
  • the two states of R6 are: ground or high level, which controls whether analog switch 5 is turned on, thus controlling the resistance value of feedback resistor R.
  • the analog switch 5 When the pull-up resistor R6 is grounded, the analog switch 5 is closed, and when the pull-up resistor R6 is pulled high, the analog switch 5 is turned off.
  • the voltage output terminal V_0UT is output to the voltage value of the power device 4, and the following formula is satisfied:
  • V oa; (Ra+Rb) /Rb Vref , where:
  • V ⁇ i is output to the voltage output electric voltage value V_0UT device 4,
  • Ra is the resistance value of the fifth resistor R5,
  • Vref is the initial output voltage of the power chip.
  • the resistance value of the feedback resistor R is controlled, so that the voltage value outputted by the voltage output terminal V_0UT to the power device 4 is switched between two values, and thus
  • the power supply device 4 which has two rated voltages corresponding to the output voltage of the voltage output terminal V_0UT, is powered by the power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Description

供电装置
本申请要求于 2009 年 10 月 22 日提交中国专利局、 申请号为 200910180702.1 , 发明名称为 "供电装置" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。
技术领域
本发明属于电子技术领域, 具体涉及一种供电装置。
背景技术
随着电子技术的不断发展, 各种电子设备已经成为人们生活、 工作中 不可缺少的重要工具。
如图 1 所示, 组件与组件的可拆卸连接结构是现有的电子设备内比较 常见的结构, 通常一块第一组件 1 可以匹配多块体积和表面积相对较小的 第二组件 2, 由于第二组件 2与第一组件 1为可拆卸连接, 所以通过更换设 有不同用电器件(例如: 芯片) 的第二组件 2便可以在第一组件 1上实现 不同的功能。
由于不同的第二组件 2 上的用电器件不同, 且不同的用电器件可能存 在不同的电压需求, 所以需要提供多种电源电压以满足用电器件的电源需 求, 现有技术中主要采用以下两种供电方法来解决不同的第二组件 2 上的 用电器件的供电问题:
1、 如图 2所示, 第一组件 1上设有多个不同的电压转换电路 11, 不同 的电压转换电路 11通过转换电源 60的初始电压可以为用电器件 4提供多 种不同电压的电能, 以满足不同的用电器件 4 的供电需要。 这样, 第二组 件 2便可以根据其上所设置的用电器件 4的供电需要选用, 例如: 第一组 件 1可以提供 3. 3V、 1. 0V、 1. 2V以及 1. 8V共四种电压的电源供第二组件 2 选用;
2、 如图 3所示, 第一组件 1只提供一种电压的电源 60, 在不同的第二 组件 2上分别设置不同的电压转换电路 11, 通过多个不同的电压转换电路 1 1来转换出不同的电压, 以满足不同第二组件 2上的用电器件 4的供电需 要, 例如: 第一组件 1只提供 4. 0V电压, 第二组件 2上分别设置多个电压 转换电路 1 1转换出 3. 3V 、 1. 0V、 1. 2V以及 1. 8V四种电压的电源供第二 组件 2上的用电器件 4使用。
本发明人在实现本发明的过程中发现, 现有技术至少存在以下问题:
1、 现有技术中第一种供电方法使得如图 2所示的第一组件 1上的电路 极为复杂、 成本较高;
2、 现有技术中第二种供电方法中如图 3所示的第二组件 2上的电路比 较复杂, 同时, 由于第二组件 2 的体积和表面积通常均比较小, 所以极易 发生电磁干扰。 发明内容
本发明实施例提供了一种供电装置, 解决了现有的供电方法存在电路 复杂的技术问题。
为达到上述目的, 本发明的实施例采用如下技术方案:
该供电装置, 包括第一组件、 第二组件、 反馈电阻以及电压转换模块, 其中:
所述电压转换模块上设有电压输入端以及电压输出端, 所述电压输入 端与所述供电装置的电源输出端相连, 所述电压输出端与用电器件相连; 所述第二组件与所述第一组件可拆卸连接, 且所述第二组件安装于所 述第一组件时, 所述反馈电阻分别与所述电压转换模块、 所述电压输出端 相连;
所述电压转换模块用于接收所述反馈电阻的反馈电压并根据所述反馈 电压控制所述电压输出端输出的电压大小。
与现有技术相比, 本发明所提供上述技术方案具有如下优点: 由于本发明实施例所提供的第二组件与第一组件可拆卸连接, 第二组 件安装于第一组件时, 反馈电阻会分别与电压转换模块、 电压输出端相连, 此时, 电压转换模块可接收反馈电阻上的反馈电压并根据反馈电压控制电 压输出端输出的电压大小, 因为反馈电压与反馈电阻的电阻值的大小成正 比, 所以不仅可以通过调整第二组件是否安装于第一组件上, 控制是否将 反馈电阻接入电路中, 还可以通过改变反馈电阻的电阻值, 控制电压输出 端输出的电压大小, 件所需要的电压时, 或该供电装置的为额定电压不同的用电器件供电时, 可根据需要选择出与用电器件相对应的反馈电阻, 然后再将第二组件安装 于第一组件上, 从而将合适阻值的反馈电阻接入电路, 达到控制电压输出 端所输出的电压的大小, 进而使电压输出端所输出的电压符合用电器件所 需额定电压的目的;
与现有技术中第一种供电方法相比, 本发明实施例中仅需要提供一种 电压的电源以及一种电压转换模块便可适用多种用电器件, 无需如现有技 术所提供的第一种供电方法那样在第一组件 1上设有多个电压转换电路 1, 所以电路更为简单、 成本也更低, 进而解决了现有的供电方法存在电路复 杂的技术问题;
同时, 与现有技术中第二种供电方法相比, 本发明实施例所提供的电 压转换模块设置于第一组件上, 而且仅设置了一种电压转换模块, 无需如 现有技术所提供的第二种供电方法那样在第二组件 2 上分别设置多个电压 转换电路 11, 所以第一组件不易出现电磁干扰以及电路冗余, 而第二组件 上未设置电压转换模块或电压转换电路, 不仅电路更为简单, 而且不易发 生电磁干扰和电路冗余问题。 附图说明
图 1为现有技术中第一组件与多个第二组件的组合关系的示意图; 图 2为现有技术中第一组件与多个第二组件组合后的示意图; 图 3为现有技术中第一组件与多个第二组件组合另一的示意图; 图 4为本发明的实施例 1所提供的供电装置的电路原理的示意框图; 图 5为本发明的实施例 1所提供的供电装置的电路示意图;
图 6为本发明的实施例 2所提供的供电装置的另一电路示意图。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
本发明实施例提供了一种结构简单、 成本较低且不易发生电磁干扰、 电路冗余问题的供电装置。
实施例 1:
如图 4和图 5所示,本发明实施例所提供的供电装置,包括第一组件 1、 第二组件 2、 反馈电阻 R以及电压转换模块 3, 其中:
电压转换模块 3上设有的电压输入端 V_ IN以及电压输出端 V_0UT, 电 压输入端 V_ IN与供电装置的电源输出端 6相连, 电压输出端 V_0UT与用电 器件 4相连;
第二组件 2与第一组件 1可拆卸连接,且第二组件 2安装于第一组件 1 时, 反馈电阻 R分别与电压转换模块 3、 电压输出端 V_0UT相连;
电压转换模块 3用于接收反馈电阻 R上的反馈电压, 并根据反馈电压 控制电压输出端 V_0UT输出的电压大小。
本发明实施例所提供的第二组件 2与第一组件 1可拆卸连接, 可以调 整第二组件 2是否安装于第一组件 1上, 以控制是否将反馈电阻 R接入电 路中。 当第二组件 2安装于第一组件 1时, 反馈电阻 R会分别与电压转换 模块 3、 电压输出端 V_0UT相连, 此时, 电压转换模块 3可接收反馈电阻 R 上的反馈电压并根据反馈电压控制电压输出端 V_0UT输出的电压大小, 反 馈电压与反馈电阻 R 的电阻值的大小成正比, 所以不仅可以通过调整第二 组件 2是否安装于第一组件 1上, 控制是否将反馈电阻 R接入电路中, 还 可以通过改变反馈电阻 R的电阻值, 控制电压输出端 V_0UT输出的电压大 小。
当该供电装置的电源或电压输出端 ν_ουτ输出的初始电压不符合用电 器件 4所需要的电压时, 或该供电装置的为额定电压不同的用电器件 4供 电时, 可根据需要选择与用电器件 4相对应的反馈电阻 R, 然后将第二组件 2安装于第一组件 1上,从而将合适阻值的反馈电阻 R接入电路, 达到控制 电压输出端 V_0UT所输出的电压的大小, 使电压输出端 V_0UT所输出的电 压符合用电器件 4所需额定电压的目的。
与现有技术中第一种供电方法相比, 本发明实施例中仅需要提供一种 电压的电源以及一种电压转换模块 3便可适用多种用电器件 4,无需现有技 术所提供如图 2所示的第一种供电方法那样在第一组件 1上设有多个电压 转换电路 1, 电路更为简单、 成本也更低, 解决了现有的供电方法存在电路 复杂、 成本较高的技术问题。
同时, 与现有技术中第二种供电方法相比, 本发明实施例所提供的电 压转换模块 3设置于第一组件 1上, 而且仅设置了一种电压转换模块 3, 无 需如现有技术所提供的如图 3所示的第二种供电方法那样在第二组件 2上 分别设置多个电压转换电路 1 1, 所以第一组件 1不易出现电磁干扰以及电 路冗余, 而第二组件 2上未设置电压转换模块 3或电压转换电路, 电路更 为简单, 且不易发生电磁干扰和电路冗余问题。
本实施例中如图 4所示的电源输出端 6可以是该供电装置外界的电源 输出端, 例如: 家用电源输出端, 也可以是该供电装置内部的电源输出端, 例如: 电池输出端, 所以实际使用中电源可根据需要灵活选用。
反馈电阻 R也可以设于第二组件 2上。 反馈电阻 R设于第二组件 2上 时,第二组件 2安装于第一组件 1上时,反馈电阻 R分别与电压转换模块 3、 电压输出端 V_0UT相连, 所以可在不同的第二组件 2上设置电阻值不同的 反馈电阻 R, 通过更换第二组件 2便可以同时达到更换反馈电阻 R, 改变反 馈电阻 R的大小, 进而得到符合不同用电器件 4用电需求的效果。
本实施例中用电器件 4也可以固设于第二组件 2上。 用电器件 4与第 二组件 2相固连时, 无需改变第一组件 1, 只需更换与第一组件 1可拆卸连 接的第二组件 2, 便可以达到更换不同用电需求的用电器件 4, 进而实现多 种不同功能的目的。
将第二组件 2安装于第一组件 1上时, 反馈电阻 R与用电器件 4便会 接入电压转换模块 3, 电压转换模块 3即可根据从不同电阻值的反馈电阻 R 上所得到的不同的反馈电压, 控制电压输出端 V_ 0UT输出的电压大小, 从 而为用电器件 4输出所需电压的电能, 若不使用此用电器件 4时, 可以从 第一组件 1上拔掉第二组件 2,此时用电器件 4以及反馈电阻 R会同时断开, 操作比较方便。
电压转换模块 3还设有电压反馈引脚 FB/NC ,反馈电阻 R包括第一电阻 R1和第二电阻 R2, 第一电阻 R1和 /或第二电阻 R2可以固设于第二组件 2 上, 其中:
电压反馈引脚 FB/NC用于接收反馈电阻 R上的反馈电压, 并将反馈电 压输入电压转换模块;
第一电阻 R1的一端与电压输出端 V_0UT相连, 另一端分别与电压反馈 引脚 FB/NC、 第二电阻 R2相连;
第二电阻 R2的一端分别与电压反馈引脚 FB/NC、 第一电阻 R1相连, 另 一端接地。
反馈电阻 R中的第一电阻 R1或第二电阻 R2的电阻值不同,反馈电阻 R 从电压反馈引脚 FB/NC输入电压转换模块 3的反馈电压是不同的, 电压输 出端 V_0UT输入用电器件 4的电压值大小也不同, 所以通过改变第一电阻 R1或第二电阻 R2的电阻值便可以控制电压输出端 V_0UT输入用电器件 4的 电能的电压值。
当然, 本实施例中反馈电阻 R可以采用可变电阻, 当电压输出端 V_ 0UT 连接不同额定电压的用电器件 4 时, 可根据需要调节可变电阻, 从而通过 改变反馈电阻 R 阻值的方法, 使得电压输出端 V_0UT输出满足用电器件 4 额定电压要求的电压。
本实施例中第二电阻 R2可以固设于第二组件 2上, 电压输出端 V_0UT 输出至用电器件 4的电压值满足下列公式:
Voa;= (Rl+R2) /R2 Vref , 其中:
V∞i为电压输出端 OUT输出至用电器件 4的电压值,
上述公式中 R1为第一电阻 R1的电阻值,
上述公式中 R2为第二电阻 R2的电阻值,
Vref 为电压转换模块 3的内部参考电压。
内部参考电压表示: 电压转换模块 3未与反馈电阻 R相连时的初始输 出电压。
固设有第二电阻 R2的第二组件 2安装于第一组件 1 时, 第二电阻 R2 与电压转换模块 3相连, 此时, 可才艮据上述公式计算得到电压输出端 V_0UT 输出的电压值。
本实施例中第一电阻 R1可以预先与电压转换模块 3相连, 也可与第二 电阻 R2同时固设于第二组件 2上, 当第二组件 2安装于第一组件 1时, 再 与第二电阻 R2—同与电压转换模块 3相连。 当然, 本实施例中第一电阻 R1 与第二电阻 R2可以互相替换。
电压转换模块 3 为电源芯片或输出可调整电源模块。 电源芯片或输出 可调整电源模块均为性能稳定且可通过反馈电压调整输出电压的电压转换 器件。 当然, 本实施例中电压转换模块 3也可以为电源芯片或输出可调整 电源模块以外的其他可通过反馈电压调整输出电压的电压转换器件。
本实施例中第一组件 1可以为底板, 第二组件 2可以为扣板。 底板与 扣板为比较常用的可拆卸连接器件, 扣板可以通过插接的方式安装于底板 上, 适宜采用本发明实施例所提供的技术方案。 当然, 本实施例所提供的第一组件 1 也可以为电子设备, 第二组件 2 也可以为电子设备的配件。 电子设备的配件, 尤其是笔记本、 手机、 掌上 电脑等便携式电子设备的配件体积相对较小且便携式电子设备上的用电器 件 4的耗电量也不大, 所以也适宜采用本发明实施例所提供的技术方案。
实施例 2:
如图 6所示, 本实施例与实施例 1基本相同, 其不同点在于: 本实施 例所提供的供电装置还包括模拟开关 5以及与模拟开关 5相连且设于第二 组件 2上的上下拉电阻 R6, 反馈电阻 R包括第三电阻 R3、 第四电阻 R4以 及第五电阻 R5, 所述第五电阻 R5接地, 电压转换模块 3设有电压反馈引脚 FB/NC, 其中:
电压反馈引脚 FB/NC用于接收反馈电阻 R上的反馈电压, 并将反馈电 压输入电压转换模块;
第三电阻 R3的一端与电压输出端 V_0UT、 模拟开关 5相连, 另一端分 别与电压反馈引脚 FB/NC、 第四电阻 R4以及第五电阻 R5相连;
电压反馈引脚 FB/NC分别与第三电阻 R3、 第四电阻 R4 以及第五电阻 R5相连;
第四电阻 R4与模拟开关 5串联后与第三电阻 R3与相并联;
通过改变上下拉电阻 R6的状态以控制模拟开关 5是否闭合。
本实施例中上下拉电阻 R6接地时, 模拟开关 5闭合或断开, 上下拉电 阻 R上拉到高电平时, 模拟开关 5断开或闭合。
假设上下拉电阻 R6接地时, 模拟开关 5闭合, 则此时第三电阻 R3与 第四电阻 R4并联; 上下拉电阻 R6断开时, 模拟开关 5断开, 则此时第四 电阻 R4没有连接到电路中, 但第三电阻 R3连接到电路中。 可见, 本实施 例中可通过控制上下拉电阻 R6的上下拉, 达到控制反馈电阻 R阻值大小, 进而达到控制电压输出端 V_0UT输入电压转换模块 3电压大小的目的。
本实施例中反馈电阻 R以及模拟开关 5均固设于第一组件 1之上。 若 上下拉电阻 R6设于第二组件 2上时, 还可通过改变第二组件 2在第一组件
1上的位置来切换上下拉电阻 R6的两种状态即: 接地或高电平, 控制模拟 开关 5是否导通, 从而控制反馈电阻 R的电阻值。
在上下拉电阻 R6接地时, 模拟开关 5闭合, 上下拉电阻 R6上拉到高 电平时,模拟开关 5断开。 本实施例中电压输出端 V_0UT输出至用电器件 4 的电压值, 满足下列公式:
V oa; = (Ra+Rb) /Rb Vref , 其中:
V∞i为电压输出端 V_0UT输出至用电器件 4的电压值,
Ra为第五电阻 R5的电阻值,
上下拉电阻 R6上拉时, Rb的值为第三电阻 R3的电阻值,即 Rb=R3, 上下拉电阻 R6接地时, Rb的值为第三电阻 R3以及第四电阻 R4并联时 的电阻值,即 Rb=R3 | | R4 ,
Vref 为电源芯片的初始输出电压。
由上可见, 本实施例可通过改变上下拉电阻 R6的状态, 控制反馈电阻 R的电阻值,进而使得电压输出端 V_0UT输出至用电器件 4的电压值在两个 值之间切换, 进而可以选用两种额定电压符合电压输出端 V_0UT输出电压 的用电器件 4采用该供电装置供电。
本实施例仅需要提供一种电压的电源以及一种电压转换模块 3便可适 用两种用电器件 4, 电路更为简单、 成本也更低, 进而解决了现有的供电方 法存在电路复杂、 成本较高的技术问题。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种供电装置, 其特征在于: 包括第一组件、 第二组件、 反馈电阻 以及电压转换模块, 其中:
所述电压转换模块上设有电压输入端以及电压输出端, 所述电压输入 端与所述供电装置的电源输出端相连, 所述电压输出端与用电器件相连; 所述第二组件与所述第一组件可拆卸连接, 且所述第二组件安装于所 述第一组件时, 所述反馈电阻分别与所述电压转换模块、 所述电压输出端 相连;
所述电压转换模块用于接收所述反馈电阻的反馈电压并根据所述反馈 电压控制所述电压输出端输出的电压大小。
2、 根据权利要求 1所述的供电装置, 其特征在于: 所述反馈电阻固设 于所述第二组件上。
3、 根据权利要求 1所述的供电装置, 其特征在于: 所述电压转换模块 设有电压反馈引脚, 所述反馈电阻包括第一电阻和第二电阻, 其中:
所述电压转换模块通过所述电压反馈引脚接收所述反馈电阻上的所述 反馈电压;
所述第一电阻的一端与所述电压输出端相连, 另一端分别与所述电压 反馈引脚、 所述第二电阻相连;
所述第二电阻的一端分别与所述电压反馈引脚、 所述第一电阻相连, 另一端接地。
4、 根据权利要求 3所述的供电装置, 其特征在于: 所述电压输出端输 出至所述用电器件的电压值满足下列公式:
Voa;= (Rl+R2) /R2 Vref , 其中,
V out为所述电压输出端输出至所述用电器件的电压值,
R1为所述第一电阻的电阻值,
R2为所述第二电阻的电阻值, Vref 为所述电压转换模块的内部参考电压。
5、 根据权利要求 1所述的供电装置, 其特征在于: 所述供电装置还包 括模拟开关以及与所述模拟开关相连且设于所述第二组件上的上下拉电 阻, 所述反馈电阻包括第三电阻、 第四电阻以及第五电阻, 所述第五电阻 接地, 所述电压转换模块设有电压反馈引脚, 其中:
所述电压转换模块通过所述电压反馈引脚接收所述反馈电阻上的所述 反馈电压;
所述第三电阻的一端与所述电压输出端、 所述模拟开关相连, 另一端 分别与所述电压反馈引脚、 所述第四电阻以及所述第五电阻相连;
所述电压反馈引脚分别与所述第三电阻、 所述第四电阻以及所述第五 电阻相连;
所述第四电阻与所述模拟开关串联后与所述第三电阻相并联; 通过改变所述上下拉电阻的状态以控制所述模拟开关是否闭合。
6、 根据权利要求 5所述的供电装置, 其特征在于: 所述上下拉电阻接 地时, 所述模拟开关闭合, 或者, 所述上下拉电阻上拉到高电平时, 所述 模拟开关闭合。
7、 根据权利要求 5所述的供电装置, 其特征在于: 所述反馈电阻以及 所述模拟开关均固设于所述第一组件之上。
8、 根据权利要求 1至 7任意一项所述的供电装置, 其特征在于: 所述 电压转换模块为电源芯片或输出可调整电源模块。
9、 根据权利要求 1至 7任意一项所述的供电装置, 其特征在于: 所述 第一组件为底板, 所述第二组件为扣板。
10、 根据权利要求 1至 Ί任意一项所述的供电装置, 其特征在于: 所 述第一组件为电子设备, 所述第二组件为所述电子设备的配件。
11、 如权利要求 4 所述的方法, 其特征在于, 所述第一电阻固设于所 述第二组件, 或者所述第二电阻固设于所述第二组件, 或者所述第一电阻 和所述第二电阻固设于所述第二组件上,
PCT/CN2010/077733 2009-10-20 2010-10-14 供电装置 WO2011047605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910180702.1 2009-10-20
CN200910180702A CN101674007A (zh) 2009-10-20 2009-10-20 供电装置

Publications (1)

Publication Number Publication Date
WO2011047605A1 true WO2011047605A1 (zh) 2011-04-28

Family

ID=42021057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077733 WO2011047605A1 (zh) 2009-10-20 2010-10-14 供电装置

Country Status (2)

Country Link
CN (1) CN101674007A (zh)
WO (1) WO2011047605A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674007A (zh) * 2009-10-20 2010-03-17 华为技术有限公司 供电装置
CN102346527A (zh) * 2010-07-30 2012-02-08 鸿富锦精密工业(深圳)有限公司 电脑***
CN102478871B (zh) * 2010-11-25 2013-12-04 佛山市顺德区顺达电脑厂有限公司 自供电边界扫描器及其方法
CN102243481B (zh) * 2011-03-28 2013-04-24 上海华为技术有限公司 实现不同电源供电的模块之间互联的装置、方法及电路
CN102902219B (zh) * 2011-07-29 2017-01-25 富泰华工业(深圳)有限公司 电子装置及电话交换机
CN102721916A (zh) * 2012-06-29 2012-10-10 福建星网锐捷网络有限公司 电源调压测试装置
CN105446407B (zh) * 2015-12-23 2017-03-22 深圳市中孚能电气设备有限公司 一种电子器件的供电电路
CN106933123A (zh) * 2015-12-31 2017-07-07 中强光电股份有限公司 投影装置、电源管理装置及其电源管理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2558155Y (zh) * 2002-05-14 2003-06-25 天宇工业股份有限公司 可变换直流输出电压准位的配接装置
CN2696200Y (zh) * 2004-02-17 2005-04-27 维熹科技股份有限公司 电源转换器
US6972975B2 (en) * 2003-06-23 2005-12-06 Carl Su Voltage converter with selectable output voltage levels
CN2840474Y (zh) * 2005-10-12 2006-11-22 金桥科技股份有限公司 移动电子产品的电源供应装置
CN101674007A (zh) * 2009-10-20 2010-03-17 华为技术有限公司 供电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2558155Y (zh) * 2002-05-14 2003-06-25 天宇工业股份有限公司 可变换直流输出电压准位的配接装置
US6972975B2 (en) * 2003-06-23 2005-12-06 Carl Su Voltage converter with selectable output voltage levels
CN2696200Y (zh) * 2004-02-17 2005-04-27 维熹科技股份有限公司 电源转换器
CN2840474Y (zh) * 2005-10-12 2006-11-22 金桥科技股份有限公司 移动电子产品的电源供应装置
CN101674007A (zh) * 2009-10-20 2010-03-17 华为技术有限公司 供电装置

Also Published As

Publication number Publication date
CN101674007A (zh) 2010-03-17

Similar Documents

Publication Publication Date Title
WO2011047605A1 (zh) 供电装置
KR101913711B1 (ko) 모바일 기기 충전기의 적응형 충전 전압 생성기
CN104917016B (zh) 充电式集线器
US20110057724A1 (en) High- and Low-Power Power Supply with Standby Power Saving Features
CN203522279U (zh) 一种多用途移动电源
WO2009091474A8 (en) Hybrid on-chip regulator for limited output high voltage
WO2008117166A3 (en) Power converter apparatus and methods using neutral coupling circuits with interleaved operation
WO2013000367A1 (zh) 电子设备和单个电源向至少两个不同负载供电的方法
CN102299620A (zh) 一种电压转换电路及手持设备
CN107846048B (zh) 充电电路及其电容式电源转换电路与充电控制方法
CN205910520U (zh) 一种电源控制芯片及设置有该芯片的电子设备
CN104810868B (zh) 充电***及其充电方法
CN201039333Y (zh) 电压转换电路及具有所述转换电路的电视机
CN105307305A (zh) 一种led电源控制装置及电视机
CN108365749A (zh) 一种直流atx电源
CN204633599U (zh) 功率电荷泵及使用该功率电荷泵的电源管理电路
TW201205259A (en) Computer system
CN201758302U (zh) 多功能充电器
CN102213990A (zh) 计算机***
CN103607113A (zh) 一种正负压产生电路
CN103532377B (zh) 一种电荷泵装置及使用该装置的电源管理电路
CN203645539U (zh) 一种正负压产生电路
CN102346527A (zh) 电脑***
CN201238259Y (zh) 依附在笔记本型电脑电源供应器上的电压转换装置
CN220306996U (zh) 一种太阳能快充适配器电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824446

Country of ref document: EP

Kind code of ref document: A1