WO2011046458A1 - Pompe à chaleur à compression avec accélérateur thermique - Google Patents

Pompe à chaleur à compression avec accélérateur thermique Download PDF

Info

Publication number
WO2011046458A1
WO2011046458A1 PCT/PL2010/000102 PL2010000102W WO2011046458A1 WO 2011046458 A1 WO2011046458 A1 WO 2011046458A1 PL 2010000102 W PL2010000102 W PL 2010000102W WO 2011046458 A1 WO2011046458 A1 WO 2011046458A1
Authority
WO
WIPO (PCT)
Prior art keywords
working agent
heat pump
vortex tube
stream
temperature
Prior art date
Application number
PCT/PL2010/000102
Other languages
English (en)
Inventor
Błażej OLESZKIEWICZ
Original Assignee
Oleszkiewicz Blazej
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oleszkiewicz Blazej filed Critical Oleszkiewicz Blazej
Publication of WO2011046458A1 publication Critical patent/WO2011046458A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the subject of this invention is the compression heat pump with thermal accelerator intended for getting energy out of so-called holistic low source" (ground, air, water, etc.) and its conversion into usable heat energy.
  • the particularly advantageous area of application of the compression heat pump with thermal accelerator is widely meant heat engineering, especially residential, office and industrial building space heating as well as technological line or system heating in industry or agriculture.
  • thermodynamic cycle which is a reversal of heat engine cycle. Heat is absorbed by thermodynamic working agent (Freon, ammonia, compressed carbon dioxide) in the evaporator (low heat source), where the agent is evaporated and transferred into the compressor, where increases the internal energy (as well as temperature) of the agent, and then, gives heat away in the condenser (upper heat source) by means of condensation and through throttle valve or capillary tube, and then, goes back to the evaporator.”
  • thermodynamic working agent Reon, ammonia, compressed carbon dioxide
  • the Coefficient of Performance (COP) characterizing heat pump efficiency is a ratio between a heat pump heating power and electrical power needed to feed a compressor.
  • Vortex Tube working in such a way, that compressed gas stream fed at the input of this device is divided into two gas streams of hot and cold gas, having lower pressure than the input gas stream.
  • Vortex Tube devices are used in cascade configurations, where two or more Vortex Tube devices are linked together in such a way, that the input of cold or warm stream is linked to the subsequent input of Vortex Tube device.
  • Vortex Tube devices as heat pumps used for heating or cooling.
  • the aim of this invention is the compression heat pump with thermal accelerator characterized by high COP, based on existing at the market components such as: compressors, evaporators, condensers and valves, etc. which uses available at this moment energy sources out of so called stiilow source", such as: ground exchangers, air, see water, etc.).
  • the compression heat pump with thermal accelerator differs from known technical solution of compression heat pumps in certain particulars, such as: in a cycle of classical heat pump, between evaporator and compressor, the Vortex Tube device is build in, which increases working temperature of the working agent, and due to this fact, increases technical efficiency of the entire technical solution.
  • Pressurized working agent goes to the evaporator (1) to the input (3) of the Vortex Tube device (4) through the control valve (2).
  • the working agent stream is divided into two streams: the warm one (5) and the cold one (6).
  • the output of the Vortex Tube device (4), out of which goes out the cold stream of working agent (6) through the control valve (7) is transferred towards other appliances (8, 9), such as: heat exchangers (8), responsible for getting the working agent back to the cycle.
  • the cold cycle of working agent is treated as a waste stream.
  • the construction of heat pumps with thermal accelerator and cascade of Vortex Tube devices in such a way that the individual Vortex Tube device is replaced by the Vortex Tube device cascade is also possible.
  • the aim of using the Vortex Tube devices cascade is to increase the effect of rising energy level carried by warm stream of the working agent.
  • working agent is the propane-butane gas, which in temperature of 5°C, has gas pressure at the level of 4 bar.
  • the working agent in liquid phase in the evaporator (1) collects heat from the low source, evaporates, which results in increasing pressure in the evaporator (1) till level of bar.
  • the working agent in gas phase of 5°C temperature and 4 bar pressure goes through the control valve (2) to the input (3) of Vortex Tube device (4), where is divided into two streams of low pressure: warm (5) of 62°C temperature and cold (6) of -35°C temperature (ratio of warm stream volume to cold stream volume is equal to 4/6).
  • the cold stream (6) through control valve (7) and by means of heat exchanger (8) is warmed up to the temperature of 5°C (using energy of low source), and then mixed (9) with the warm stream (5), which in consequence, gives us stream of working agent going into compressor (10) and having temperature of 22°C.
  • the subsequent stages of the heat pump work are identical as the classical heat pump, what means. That the working agent goes to condenser (11), where is condensed and gives out heat, and then, already in liquid form, through the expansion valve (12) goes to evaporator (1).
  • the industrial application of the subject of this invention may include widely meant heat engineering, and in particular heating of: single family houses, residential houses, public buildings, housing developments, industrial spaces as well as technological processes in heating greenhouses, swimming pools, etc.
  • Particularly interesting application of this invention may be the one with the low source of heat pump with thermal accelerator in form of sea water (i.e. Baltic Sea).
  • Construction of heat-generating plants in towns located at the sea side (such as Gdansk, Sopot, Gdynia, Hel) may be cheaper and, most of all, more environment friendly solution than coal fed heat-generating plants.
  • the preliminary calculation for Baltic Sea water in Gdarisk Bay area proved that the price of 1 GJ of heat energy produced on the basis of the subject of this invention may be of 400% cheaper than the price of 1 GJ of heat energy produced with conventional means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

L'invention concerne l'application la plus simple présentée en Fig. 1. Lors de l'explication des principes de fonctionnement, on suppose qu'un agent de travail est le gaz propane-butane, qui, à la température de 5°C, a une pression de gaz au niveau de 4 bars. L'agent de travail en phase liquide dans l'évaporateur (1) collecte de la chaleur à partir de la source basse, et s'évapore, ce qui produit en résultat une pression accrue dans l'évaporateur (1) jusqu'au niveau de bars. L'agent de travail en phase gazeuse à la température de 5°C et à la pression de 4 bars traverse la vanne de commande (2) vers l'entrée (3) d'un dispositif à tube à tourbillonnement (4), où il est divisé en deux courants à basse pression : un courant chaud (5) à une température de 62°C et un courant froid (6) à une température de -35°C (le rapport du volume de courant chaud au volume de courant froid est égal à 4/6). Le courant froid (6) à travers la vanne de commande (7) est chauffé à l'aide d'un échangeur de chaleur (8) à la température de 5°C (en utilisant l'énergie de la source basse), puis est mélangé (9) au courant chaud (5), ce qui, en conséquence, produit un courant d'agent de travail rentrant dans un compresseur (10) et ayant une température de 22°C. Les étages suivants du travail de la pompe à chaleur sont identiques à ceux d'une pompe à chaleur classique, ce qui signifie que l'agent de travail va vers un condenseur (11), où il est condensé et délivre de la chaleur, après quoi, déjà sous une forme liquide, il passe à travers la vanne de détente (12) et va vers l'évaporateur (1).
PCT/PL2010/000102 2009-10-12 2010-10-11 Pompe à chaleur à compression avec accélérateur thermique WO2011046458A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PLP.389256 2009-10-12
PL389256A PL224444B1 (pl) 2009-10-12 2009-10-12 Sprężarkowa pompa ciepła z akceleratorem termicznym

Publications (1)

Publication Number Publication Date
WO2011046458A1 true WO2011046458A1 (fr) 2011-04-21

Family

ID=43385623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PL2010/000102 WO2011046458A1 (fr) 2009-10-12 2010-10-11 Pompe à chaleur à compression avec accélérateur thermique

Country Status (2)

Country Link
PL (1) PL224444B1 (fr)
WO (1) WO2011046458A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457027A (zh) * 2014-12-02 2015-03-25 苟仲武 一种改进的压缩式热泵工作方法及其装置
CN104792055A (zh) * 2014-01-21 2015-07-22 广州九恒新能源有限公司 空气能二氧化碳热泵式干燥机
CN105783320A (zh) * 2016-05-09 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 一种空调***
CN105923674A (zh) * 2016-06-07 2016-09-07 重庆大学 超临界co2热泵驱动的双热源海水淡化***
CN108773258A (zh) * 2018-08-10 2018-11-09 大连民族大学 基于涡流管的电动汽车供暖***
CN109916102A (zh) * 2019-01-21 2019-06-21 江苏白雪电器股份有限公司 带涡流管的自复叠双温***
CN110530045A (zh) * 2019-07-09 2019-12-03 西安交通大学 一种跨临界co2***多功能除雾除湿***及控制方法
CN110530047A (zh) * 2019-07-17 2019-12-03 西安交通大学 一种双涡流管辅助的跨临界co2***及其控制方法
RU2717483C2 (ru) * 2015-02-26 2020-03-23 Юрий Михайлович Примазон Вихревой тепловой насос
CN117387239A (zh) * 2023-12-12 2024-01-12 珠海格力电器股份有限公司 一种空调***及相关控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002754A1 (ru) * 1981-06-08 1983-03-07 Московское Ордена Ленина, Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Высшее Техническое Училище Им. Н.Э.Баумана Вихревой холодильник
US6250086B1 (en) * 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
WO2001067011A1 (fr) * 2000-03-03 2001-09-13 Vai Holdings, Llc Systeme frigorifique haute efficacite
JP2008020140A (ja) * 2006-07-13 2008-01-31 Fujitsu General Ltd ボルテックスチューブ及び、それを用いた冷媒回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002754A1 (ru) * 1981-06-08 1983-03-07 Московское Ордена Ленина, Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Высшее Техническое Училище Им. Н.Э.Баумана Вихревой холодильник
US6250086B1 (en) * 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
WO2001067011A1 (fr) * 2000-03-03 2001-09-13 Vai Holdings, Llc Systeme frigorifique haute efficacite
JP2008020140A (ja) * 2006-07-13 2008-01-31 Fujitsu General Ltd ボルテックスチューブ及び、それを用いた冷媒回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUDOLF HILSCH: "The Use of the Expansion of Gases in A Centrifugal Field as Cooling Process", THE REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 18, no. 2, 1947, pages 108 - 1113
ZEIT. NATURWIS., vol. 1, 1946, pages 208

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792055A (zh) * 2014-01-21 2015-07-22 广州九恒新能源有限公司 空气能二氧化碳热泵式干燥机
CN104457027A (zh) * 2014-12-02 2015-03-25 苟仲武 一种改进的压缩式热泵工作方法及其装置
RU2717483C2 (ru) * 2015-02-26 2020-03-23 Юрий Михайлович Примазон Вихревой тепловой насос
CN105783320A (zh) * 2016-05-09 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 一种空调***
CN105923674A (zh) * 2016-06-07 2016-09-07 重庆大学 超临界co2热泵驱动的双热源海水淡化***
CN108773258A (zh) * 2018-08-10 2018-11-09 大连民族大学 基于涡流管的电动汽车供暖***
CN109916102A (zh) * 2019-01-21 2019-06-21 江苏白雪电器股份有限公司 带涡流管的自复叠双温***
CN110530045A (zh) * 2019-07-09 2019-12-03 西安交通大学 一种跨临界co2***多功能除雾除湿***及控制方法
CN110530047A (zh) * 2019-07-17 2019-12-03 西安交通大学 一种双涡流管辅助的跨临界co2***及其控制方法
CN110530047B (zh) * 2019-07-17 2020-10-27 西安交通大学 一种双涡流管辅助的跨临界co2***及其控制方法
CN117387239A (zh) * 2023-12-12 2024-01-12 珠海格力电器股份有限公司 一种空调***及相关控制方法
CN117387239B (zh) * 2023-12-12 2024-05-03 珠海格力电器股份有限公司 一种空调***及相关控制方法

Also Published As

Publication number Publication date
PL224444B1 (pl) 2016-12-30
PL389256A1 (pl) 2011-04-26

Similar Documents

Publication Publication Date Title
WO2011046458A1 (fr) Pompe à chaleur à compression avec accélérateur thermique
US20100077779A1 (en) Air-source heat pump
Fan et al. Thermodynamic analysis of a modified solar assisted ejector-compression heat pump cycle with zeotropic mixture R290/R600a
Slesarenko Heat pumps as a source of heat energy for desalination of seawater
JP2010518348A (ja) ヒートポンプ、小規模発電装置、及び熱を移動させる方法
Chen et al. Energy and exergy analysis of a new direct-expansion solar assisted vapor injection heat pump cycle with subcooler for water heater
CN102434995A (zh) 采用evi压缩机的r32风冷冷水热泵机组
WO2008139527A1 (fr) Installation d'alimentation électrique destinée à une usine de liquéfaction de gaz naturel, système et procédé destinés au contrôle de l'installation d'alimentation électrique et usine de liquéfaction de gaz naturel
Minh et al. Improved vapour compression refrigeration cycles: literature review and their application to heat pumps
CN202382470U (zh) 采用evi压缩机的r32风冷冷水热泵机组
Bhatia Overview of vapor absorption cooling systems
Almohammed et al. Practical study on heat pump enhancement by the solar energy
CN209925039U (zh) 一种二氧化碳跨临界循环冷电联产***
CN110736301B (zh) 高压气体冷热水机组
CN112619185A (zh) 利用卡诺循环原理的低温蒸发装置
CN207113283U (zh) 新型余热制冷装置
KR100867272B1 (ko) 볼텍스튜브 냉방시스템
JP2007187428A (ja) 換気排熱・蓄熱材併用高効率ヒートポンプ暖冷房装置
CN109612155A (zh) 一种带吸附式制冷的制冰机
Shatalov et al. Utilization of secondary energy resources of metallurgical enterprises using heat pump
CN103398500A (zh) 中间完全冷却两级压缩双效吸收的复合热泵
CN102829567A (zh) 带冷凝器冷却***的制冷装置
CN202547191U (zh) 低温高效空气源热泵热水机
CN208075366U (zh) 一种氨制冷压缩机组冷却***
Poredoš et al. The energy efficiency of chillers in a trigeneration plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10782448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10782448

Country of ref document: EP

Kind code of ref document: A1